WO2017068640A1 - 運転制御装置 - Google Patents

運転制御装置 Download PDF

Info

Publication number
WO2017068640A1
WO2017068640A1 PCT/JP2015/079551 JP2015079551W WO2017068640A1 WO 2017068640 A1 WO2017068640 A1 WO 2017068640A1 JP 2015079551 W JP2015079551 W JP 2015079551W WO 2017068640 A1 WO2017068640 A1 WO 2017068640A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
fan
compressor
value
noise
Prior art date
Application number
PCT/JP2015/079551
Other languages
English (en)
French (fr)
Inventor
峻 吉井
昂仁 彦根
拓也 伊藤
靖 大越
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to GB1805686.1A priority Critical patent/GB2557826C/en
Priority to PCT/JP2015/079551 priority patent/WO2017068640A1/ja
Priority to JP2017546306A priority patent/JP6444526B2/ja
Publication of WO2017068640A1 publication Critical patent/WO2017068640A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/08Compressors specially adapted for separate outdoor units
    • F24F1/12Vibration or noise prevention thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/40Vibration or noise prevention at outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • F24F11/67Switching between heating and cooling modes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/87Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling absorption or discharge of heat in outdoor units
    • F24F11/871Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling absorption or discharge of heat in outdoor units by controlling outdoor fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/029Control issues
    • F25B2313/0294Control issues related to the outdoor fan, e.g. controlling speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0315Temperature sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/12Sound
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to an operation control apparatus installed in an outdoor unit of a refrigeration cycle apparatus, for example, a heat pump chiller unit.
  • Patent Document 1 discloses a fan rotation frequency control device that generates a fan rotation sound at a predetermined volume or more by providing a lower limit value for the fan frequency.
  • the rotation frequency control device of Patent Document 1 generates a rotation sound of the fan, thereby canceling out the operation sound when the operation frequency of the compressor increases and suppressing the user's discomfort due to the noise of the compressor. It is configured.
  • the rotation frequency control device of Patent Document 1 has a problem that noise due to the rotation sound of the fan is increased.
  • the compressor is housed in a soundproof machine room at the bottom of the unit, and the fan is placed at the top of the unit in an open state. May be more uncomfortable for the user.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide an operation control device capable of suppressing noise due to fan rotation noise while maintaining the operation efficiency of the refrigeration cycle apparatus. .
  • the operation control apparatus of the present invention is used in a refrigeration cycle apparatus having a refrigeration cycle circuit to which a compressor and a condenser are connected, and a fan for supplying outside air to the condenser.
  • First noise reduction control during cooling operation is performed to increase the target value of the condensation temperature in the condenser.
  • the operation control apparatus of the present invention is used in a refrigeration cycle apparatus having a refrigeration cycle circuit to which a compressor and an evaporator are connected, and a fan for supplying outside air to the evaporator, and during heating operation
  • the first low noise control during the heating operation is performed to lower the target value of the evaporation temperature in the evaporator.
  • the operation control device of the present invention includes a compressor, an air-cooled heat exchanger, a cooling operation in which the air-cooled heat exchanger functions as a condenser, and a heating operation in which the air-cooled heat exchanger functions as a condenser.
  • a refrigeration cycle apparatus having a refrigeration cycle circuit connected to a refrigerant flow switching device for switching between and a fan for supplying outside air to the air-cooled heat exchanger, and during the cooling operation
  • the air-cooled heat Control for increasing the target value of the condensation temperature in the exchanger is executed, and control for decreasing the target value of the evaporation temperature in the air-cooled heat exchanger is executed during the heating operation.
  • the present invention it is possible to perform low noise control for reducing the rotation frequency of the fan by increasing the target value of the condensation temperature during the cooling operation or decreasing the target value of the evaporation temperature during the heating operation. Therefore, according to the present invention, it is possible to provide an operation control device capable of suppressing noise due to the rotation sound of the fan while maintaining the operation efficiency of the refrigeration cycle apparatus.
  • FIG. 1 is a schematic refrigerant circuit diagram illustrating an example of the refrigeration cycle circuit 10 of the outdoor unit 1 in which the operation control device 20 according to Embodiment 1 is installed.
  • the dimensional relationship and shape of each component may be different from the actual one.
  • symbol is attached
  • symbol is abbreviate
  • an outdoor unit 1 includes a compressor 2, a refrigerant flow switching device 3, an air-cooling heat exchanger 4, a decompression device 5, and a water-cooling heat exchanger 6 connected by a refrigerant pipe 9.
  • the refrigeration cycle circuit 10 in which the refrigerant circulates is provided.
  • the outdoor unit 1 is provided with a fan 7 that blows air that passes through the air-cooled heat exchanger 4 to the outside.
  • the outdoor unit 1 is connected to one or more indoor units via a heat medium pipe connected to the water-cooled heat exchanger 6.
  • the compressor 2 is a fluid machine that has a suction pipe and a discharge pipe, compresses low-pressure refrigerant sucked into the compressor 2 through the suction pipe into high-pressure refrigerant, and discharges the compressed high-pressure refrigerant from the discharge pipe.
  • the compressor 2 can be configured as a variable capacity refrigerant compressor, for example, a scroll compressor or a rotary compressor capable of controlling the rotation frequency.
  • FIG. 1 the suction pipe and the discharge pipe are not shown.
  • the refrigerant flow switching device 3 is an actuator that switches the refrigerant flow channel inside the refrigerant flow switching device 3 in accordance with switching from the cooling operation to the heating operation or switching from the heating operation to the cooling operation in the outdoor unit 1. is there.
  • the refrigerant flow switching device 3 during the cooling operation, the refrigerant flows from the discharge port of the compressor 2 to the air-cooled heat exchanger 4 and flows from the water-cooled heat exchanger 6 to the suction port of the compressor 2. Route control of the refrigerant flow path is performed. That is, during the cooling operation, the refrigerant flow path inside the refrigerant flow switching device 3 is a path indicated by the solid line in FIG.
  • the refrigerant flow switching device 3 during the heating operation, the refrigerant flows from the discharge port of the compressor 2 to the water-cooled heat exchanger 6, and the refrigerant flows from the air-cooled heat exchanger 4 to the suction port of the compressor 2.
  • the route control of the refrigerant flow path is performed. That is, during the heating operation, the refrigerant flow path inside the refrigerant flow switching device 3 becomes a path indicated by a broken line in FIG.
  • the refrigerant flow switching device 3 is configured as a four-way valve, for example.
  • the refrigerant flow switching device 3 may be configured using a two-way valve or a three-way valve.
  • the “cooling operation” is an operation for supplying a low-temperature and low-pressure refrigerant to the water-cooled heat exchanger 6, supplying cold heat to the indoor unit, and cooling air into the space where the indoor unit is arranged. It is the operation to supply.
  • the “heating operation” is an operation for supplying a high-temperature and high-pressure refrigerant to the water-cooled heat exchanger 6, supplying warm heat to the indoor unit, and supplying heating air to the space where the indoor unit is arranged. It is driving.
  • the air-cooled heat exchanger 4 is a heat source side heat exchanger that functions as a condenser during cooling operation and functions as an evaporator during heating operation.
  • the air-cooled heat exchanger 4 performs heat exchange between the refrigerant flowing inside the air-cooled heat exchanger 4 and outdoor air that is guided to and passes through the air-cooled heat exchanger 4 by the rotational drive of the fan 7.
  • the air-cooled heat exchanger 4 is configured as, for example, a cross fin type fin-and-tube heat exchanger.
  • the condenser may be referred to as a “heat radiator” and the evaporator may be referred to as a “cooler”.
  • the air-cooled heat exchanger 4 has a heat exchange part 4a having a plurality of heat transfer tubes and a plurality of fins.
  • One end of the heat transfer tube of the heat exchange unit 4a is connected to a plurality of first header branch pipes 4c branched from the first header main pipe 4b.
  • the other end portion of the heat transfer tube of the heat exchange unit 4a is connected to a plurality of second header branch tubes 4e branched from the second header main tube 4d.
  • the refrigerant flows from the first header main pipe 4b to the second header main pipe 4d during the cooling operation, and during the heating operation, the refrigerant flows from the second header main pipe 4d to the first header main pipe. It arrange
  • the decompression device 5 is an actuator that expands and decompresses the high-pressure liquid refrigerant.
  • the decompression device 5 can be configured as, for example, an expansion valve such as a linear electronic expansion valve whose opening degree can be adjusted in multiple stages or continuously, or an expander that is a mechanical expansion valve.
  • the linear electronic expansion valve may be abbreviated as “LEV”.
  • the water-cooled heat exchanger 6 is a heat exchanger between heat media that functions as an evaporator during cooling operation and functions as a condenser during heating operation.
  • the water-cooled heat exchanger 6 flows between the high-pressure refrigerant flowing inside the water-cooled heat exchanger 6 and the water-cooled heat exchanger 6, circulates between the outdoor unit 1 and the indoor unit, and cools the indoor unit.
  • heat exchange is performed with a heat medium that supplies warm heat.
  • the water-cooled heat exchanger 6 can be configured as, for example, a plate heat exchanger or a double tube heat exchanger.
  • a liquid state medium such as water or brine is used.
  • a heat medium circuit that is connected to the water-cooled heat exchanger 6 and circulates the heat medium between the outdoor unit 1 and the indoor unit is not shown.
  • the water-cooled heat exchanger 6 may be referred to as a “water heat exchanger”.
  • the fan 7 is an actuator that guides outdoor air to the air-cooled heat exchanger 4 by rotational driving, and blows the outdoor air that has passed through the air-cooled heat exchanger 4 to the outside.
  • the fan 7 is configured as a propeller fan, for example.
  • a refrigerant pipe 9 connecting the decompression device 5 and the water-cooled heat exchanger 6 is a receiver that temporarily stores high-pressure liquid refrigerant condensed in the water-cooled heat exchanger 6 during heating operation. 8 is connected.
  • the liquid receiver 8 is a cylindrical container also called a receiver or a refrigerant tank.
  • the outdoor unit 1 when the outdoor unit 1 is for a small-scale refrigeration cycle apparatus, the outdoor unit 1 may be configured not to include the liquid receiver 8.
  • the outdoor unit 1 may include an actuator, an oil separator, a supercooling heat exchanger, and the like in addition to the above-described components. Further, when the outdoor unit 1 is exclusively used for cooling or heating, the refrigerant flow switching device 3 may not be provided.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the air-cooled heat exchanger 4 via the refrigerant flow switching device 3.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the air-cooled heat exchanger 4 is heat-exchanged by releasing heat to the external air, which is a low-temperature medium, and becomes a high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant flows into the decompression device 5.
  • the high-pressure liquid refrigerant that has flowed into the decompression device 5 is expanded and decompressed to become a low-temperature and low-pressure two-phase refrigerant.
  • the low-temperature and low-pressure two-phase refrigerant flows into the water-cooled heat exchanger 6, absorbs heat from the high-temperature heat medium flowing through the water-cooled heat exchanger 6, and evaporates to dry the two-phase refrigerant or the low-temperature and low-pressure refrigerant. It becomes a gas refrigerant.
  • Highly dry two-phase refrigerant or low-temperature low-pressure gas refrigerant that has flowed out of the water-cooled heat exchanger 6 is sucked into the compressor 2 via the refrigerant flow switching device 3.
  • the refrigerant sucked into the compressor 2 is compressed to become a high-temperature and high-pressure gas refrigerant and is discharged from the compressor 2.
  • the heat medium cooled by the water-cooled heat exchanger 6 is circulated to the indoor unit, exchanged with a high-temperature medium such as room air, and supplies cold heat to the space where the indoor unit is arranged.
  • the heat exchanged high-temperature heat medium flows into the water-cooled heat exchanger 6 and is cooled by heat exchange with the low-temperature and low-pressure two-phase refrigerant flowing through the water-cooled heat exchanger 6.
  • the above cycle is repeated to perform the cooling operation.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the water-cooled heat exchanger 6 through the refrigerant flow switching device 3.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the water-cooled heat exchanger 6 is heat-exchanged by releasing heat to a low-temperature heat medium that flows through the water-cooled heat exchanger 6 to become a high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant flows into the decompression device 5.
  • the high-pressure liquid refrigerant that has flowed into the decompression device 5 is expanded and decompressed to become a low-temperature and low-pressure two-phase refrigerant.
  • the low-temperature and low-pressure two-phase refrigerant flows into the air-cooled heat exchanger 4, absorbs heat from the external air that is a high-temperature medium flowing through the air-cooled heat exchanger 4, evaporates, and has a high dryness or It becomes a low-temperature and low-pressure gas refrigerant.
  • the two-phase refrigerant having a high degree of dryness or the low-temperature and low-pressure gas refrigerant flowing out from the air-cooled heat exchanger 4 is sucked into the compressor 2 through the refrigerant flow switching device 3.
  • the refrigerant sucked into the compressor 2 is compressed to become a high-temperature and high-pressure gas refrigerant and is discharged from the compressor 2.
  • the heat medium heated by the water-cooled heat exchanger 6 is circulated to the indoor unit, exchanged with a low-temperature medium such as indoor air, and supplies the heat to the space where the indoor unit is arranged.
  • the heat-exchanged low-temperature heat medium flows into the water-cooled heat exchanger 6, heat is exchanged with the high-temperature and high-pressure gas refrigerant flowing through the water-cooled heat exchanger 6, and is heated.
  • the above cycle is repeated to perform the heating operation.
  • the outdoor unit 1 includes a first pressure sensor 11, a second pressure sensor 12, a first temperature sensor 15, a second temperature sensor 16, a third temperature sensor 17, and a fourth temperature sensor. 18 and a fifth temperature sensor 19.
  • the first pressure sensor 11 is a high-pressure sensor that detects the pressure of the high-temperature and high-pressure refrigerant discharged from the discharge pipe of the compressor 2.
  • the first pressure sensor 11 is disposed in the refrigerant pipe 9 that connects between the discharge pipe of the compressor 2 and the refrigerant flow switching device 3.
  • the second pressure sensor 12 is a low-pressure sensor that detects the pressure of the low-pressure refrigerant sucked into the compressor 2 through the suction pipe of the compressor 2.
  • the second pressure sensor 12 is disposed in the refrigerant pipe 9 that connects the suction pipe of the compressor 2 and the refrigerant flow switching device 3.
  • the first pressure sensor 11 and the second pressure sensor 12 a crystal piezoelectric pressure sensor, a semiconductor sensor, a pressure transducer, or the like is used.
  • the 1st pressure sensor 11 and the 2nd pressure sensor 12 may be comprised with the same kind, and may be comprised with a different kind.
  • the first temperature sensor 15 is an outside air temperature sensor that detects the temperature of the outdoor air that is guided to the air-cooled heat exchanger 4 by the rotational drive of the fan 7 and passes therethrough.
  • the first temperature sensor 15 is disposed at a position where the temperature on the upstream side of the outdoor air passing through the air-cooled heat exchanger 4 can be measured.
  • the second temperature sensor 16 is a discharge temperature sensor that detects the temperature of the high-temperature and high-pressure refrigerant discharged from the discharge pipe of the compressor 2 via the refrigerant pipe 9.
  • the second temperature sensor 16 is disposed in the refrigerant pipe 9 that connects the discharge pipe of the compressor 2 and the refrigerant flow switching device 3.
  • the second temperature sensor 16 may be referred to as a compressor discharge side temperature sensor.
  • the third temperature sensor 17 is a suction temperature sensor that detects the temperature of the low-pressure refrigerant sucked into the compressor 2 through the suction pipe of the compressor 2 through the refrigerant pipe 9.
  • the third temperature sensor 17 is disposed in the refrigerant pipe 9 that connects the suction pipe of the compressor 2 and the refrigerant flow switching device 3. Note that the third temperature sensor 17 may be referred to as an inlet gas temperature sensor.
  • the fourth temperature sensor 18 detects the temperature of the high-pressure liquid refrigerant flowing from the air-cooling heat exchanger 4 to the decompression device 5 through the refrigerant pipe 9 during the cooling operation, and the liquid of the air-cooling heat exchanger 4 is detected. It is a side temperature sensor.
  • the fourth temperature sensor 18 is disposed in the refrigerant pipe 9 that connects the air-cooled heat exchanger 4 and the decompression device 5. In the fourth temperature sensor 18, during the heating operation, the temperature of the two-phase refrigerant that is expanded and depressurized by the decompression device 5 and flows into the air-cooled heat exchanger 4 is detected via the refrigerant pipe 9.
  • the fifth temperature sensor 19 is expanded and depressurized by the decompression device 5 and detects the temperature of the two-phase refrigerant flowing into the water-cooled heat exchanger 6 through the refrigerant pipe 9.
  • 3 is a liquid side temperature sensor of the vessel 6.
  • the fifth temperature sensor 19 is disposed in the refrigerant pipe 9 that connects between the decompression device 5 and the water-cooled heat exchanger 6.
  • the fifth temperature sensor 19 detects the temperature of the high-pressure liquid refrigerant flowing from the water-cooled heat exchanger 6 into the decompression device 5 through the refrigerant pipe 9 during the heating operation.
  • Examples of the material of the first temperature sensor 15, the second temperature sensor 16, the third temperature sensor 17, the fourth temperature sensor 18, and the fifth temperature sensor 19 include a semiconductor material such as a thermistor or a temperature measurement. A metal material such as a resistor is used.
  • the first temperature sensor 15, the second temperature sensor 16, the third temperature sensor 17, the fourth temperature sensor 18, and the fifth temperature sensor 19 may be made of the same material, You may comprise with a different material.
  • the operation control device 20 controls the overall operation of the outdoor unit 1 including driving or stopping of the outdoor unit 1.
  • the operation control device 20 is configured as a dedicated hardware, a microcomputer or a microprocessing unit including a central processing unit, a memory, and the like.
  • the internal structure of the operation control device 20 is not shown.
  • the operation control device 20 can be configured by, for example, a single circuit, a composite circuit, an ASIC, an FPGA, or a combination thereof.
  • the operation control device 20 may be configured such that each control process can be realized by individual hardware, or each control process may be performed by one hardware.
  • ASIC is an abbreviation for an application specific integrated circuit
  • FPGA is an abbreviation for a field programmable gate array.
  • the control process executed by the operation control device 20 is realized by software, firmware, or a combination of software and firmware.
  • Software or firmware is described as a control program.
  • the memory is configured as a storage unit of the operation control device 20 that stores the control program.
  • the memory can be configured as a nonvolatile or volatile semiconductor memory such as a RAM, a ROM, a flash memory, an EPROM, or an EEPROM.
  • the central processing unit is configured as an arithmetic unit that implements control processing by reading and executing a control program stored in a memory.
  • the central processing unit is abbreviated as “CPU”.
  • the central processing unit is also referred to as a processing unit, a processing unit, a microprocessor, or a processor.
  • the operation control device 20 includes an input / output port configured as a communication unit of the operation control device 20.
  • the input / output port of the operation control device 20 receives an electrical signal of detection information detected by a sensor arranged in the outdoor unit 1, and uses the control signal calculated by the execution of the control program as an actuator such as the compressor 2 and the fan 7. It is configured to be able to send to.
  • the input / output port of the operation control device 20 is configured to receive an electrical signal of pressure information detected by the first pressure sensor 11 and the second pressure sensor 12.
  • the input / output port of the operation control device 20 is detected by the first temperature sensor 15, the second temperature sensor 16, the third temperature sensor 17, the fourth temperature sensor 18, and the fifth temperature sensor 19. It is configured to receive an electrical signal of temperature information.
  • the input / output port of the operation control device 20 is configured to transmit a control signal of the frequency of the compressor 2 calculated by the operation control device 20 to the compressor 2. Further, the input / output port of the operation control device 20 is configured to transmit a control signal for the rotation frequency of the fan 7 calculated by the operation control device 20 to the fan 7. Note that the input / output port of the operation control device 20 may be configured so that an electrical signal from the sensor and a control signal from the operation control device 20 can be transmitted and received via a communication line 25 as shown in FIG. Alternatively, it may be configured to be able to transmit and receive wirelessly without going through the communication line 25. The input / output port may be abbreviated as “I / O port”.
  • the operation control device 20 can be configured to have a data storage device capable of storing various types of data having a large capacity such as a data table corresponding to the ph diagram of the refrigeration cycle device.
  • the data storage device may be configured separately from the operation control device 20 so that data can be transmitted to and received from the operation control device 20 by wired communication or wireless communication.
  • operation control device 20 may be configured such that part of the control processing is realized by dedicated hardware and the remaining control processing is realized by a microcomputer or a microprocessing unit.
  • the positional relationship between the constituent members of the outdoor unit 1 in the following description is the positional relationship when the outdoor unit 1 is installed in a usable state.
  • FIG. 2 is a perspective view showing an example of a schematic external configuration of the outdoor unit 1 in which the operation control apparatus 20 according to the first embodiment is installed.
  • the outdoor unit 1 is configured as an air-cooled heat pump chiller unit that manufactures cold water or hot water by cooling or heating a heat medium such as water with a refrigerant inside the water-cooled heat exchanger 6.
  • the outdoor unit 1 has a first case 30 having a truncated pyramid shape and a second case 35 having a cubic shape provided at a lower portion of the first case 30.
  • the quadrangular pyramid-shaped first housing 30 has a rectangular upper surface and lower surface, the length of the short side of the upper surface is longer than the length of the short side of the lower surface, and the length of the long side of the upper surface. Is configured to be the same as the length of the long side of the lower surface.
  • two opposing side surfaces having a large area form an inclined surface.
  • the air-cooled heat exchanger 4 is disposed so as to face each other.
  • the first casing 30 guides outdoor air to the inside of the first casing 30 through the air-cooling heat exchanger 4 by driving rotation of the fan 7, and is guided to the inside of the first casing 30.
  • the heat exchange chamber is configured to exhaust the air heat-exchanged by the air-cooled heat exchanger 4 from the upper surface. Since the fan 7 of the outdoor unit 1 is arranged to be opened to the outside on the upper surface of the first housing 30, noise is easily generated.
  • the cube-shaped second casing 35 is configured as a machine room that houses the components of the refrigeration cycle circuit 10 other than the air-cooled heat exchanger 4 and the operation control device 20.
  • the compressor 2 is accommodated in the second casing 35.
  • the second casing 35 is provided with a soundproofing measure so that the driving sound generated by driving the compressor 2 does not resonate inside the second casing 35 so as to suppress noise generated from the compressor 2.
  • the outdoor unit 1 among the four side surfaces of the second housing 35, at least one side surface having a large area may be used as a service surface provided with a service cover for maintenance of the outdoor unit 1. it can.
  • the second casing 35 may be configured to accommodate a plurality of refrigeration cycle circuits 10.
  • FIG. 3 is a flowchart showing an example of the low noise control process during the cooling operation of the outdoor unit 1 in the operation control apparatus 20 according to the first embodiment.
  • the time zone for low noise operation can be set, for example, by inputting the start time and end time of low noise operation on the user side using the schedule function of the operation control device 20.
  • the operation control device 20 starts the low noise operation by receiving the low noise operation start signal as needed, and ends the low noise operation by receiving the low noise operation stop signal from the user as needed. It can be configured to perform normal cooling operation.
  • the operation control device 20 is configured to repeatedly execute the control process of FIG. 3 at regular time intervals, for example, every 5 minutes, during low noise operation. Further, the operation control device 20 can be configured so that the control process of FIG.
  • the “normal cooling operation” of the outdoor unit 1 refers to the cooling operation of the outdoor unit 1 that prioritizes operating efficiency, and particularly refers to a cooling operation state in which the operating efficiency is evaluated by COP.
  • COP is an abbreviation for coefficient of performance.
  • step S1 the operation control device 20 calculates the target condensation temperature Tc1 in the low noise operation.
  • the target condensation temperature Tc1 is calculated from the target maximum noise value N1 in the low noise operation input on the user side.
  • the operation control device 20 stores, for example, a data table showing the relationship between the target value of the condensation temperature and the maximum noise value in advance, from the target maximum noise value N1 in the low noise operation.
  • the target condensation temperature Tc1 can be calculated.
  • the operation control device 20 stores in advance an arithmetic expression indicating the relationship between the target value of the condensation temperature and the maximum noise value, and from the target maximum noise value N1 in the low noise operation, You may comprise so that target condensation temperature Tc1 may be calculated.
  • FIG. 4 is a graph showing an example of the relationship between the target value of the condensation temperature and the maximum noise value during the cooling operation of the outdoor unit 1 in which the operation control apparatus 20 according to the first embodiment is installed.
  • the horizontal axis of the graph of FIG. 4 is the condensation temperature, and the unit is Celsius temperature.
  • the vertical axis of the graph of FIG. 4 is the maximum noise value of the fan 7, and the unit is decibels.
  • the maximum noise value of the fan 7 is reduced and the target value of the condensation temperature is increased. Therefore, as shown in FIG. 4, when the maximum noise value is set small, the target value of the condensation temperature becomes high.
  • the target maximum noise value in the graph of FIG. 4 is the amount of noise measured at a point 1.0 m away from the service surface provided in the machine room of the outdoor unit 1 in the horizontal direction and 1.5 m away from the ground in the vertical direction. It is.
  • step S2 the operation control device 20 calculates the outside air temperature upper limit value Ta0 in the low noise operation.
  • the operation control device 20 can store a data table indicating the relationship between the target value of the condensation temperature and the upper limit outside air temperature, and can be configured to calculate the outside air temperature upper limit value Ta0 from the target condensation temperature Tc1 in the low noise operation. . Further, the operation control device 20 stores an arithmetic expression indicating the relationship between the target value of the condensation temperature and the upper limit outside air temperature, and calculates the outside air temperature upper limit value Ta0 from the target condensation temperature Tc1 in the low noise operation. May be.
  • FIG. 5 is a graph showing an example of the relationship between the target value of the condensation temperature and the upper limit outside air temperature during the cooling operation in the outdoor unit 1 in which the operation control device 20 according to the first embodiment is installed.
  • the horizontal axis of the graph in FIG. 5 is the condensation temperature, and the unit is degrees Celsius.
  • the vertical axis of the graph of FIG. 5 is the upper limit outside air temperature, and the unit is Celsius temperature.
  • the upper limit outside air temperature is an allowable value of the outside air temperature set in order to avoid an increase in high pressure that causes an abnormal operation of the outdoor unit 1. As shown in FIG.
  • the upper limit outside air temperature is in a relationship of decreasing.
  • the target condensation temperature Tc1 is set to a temperature higher than the set condensation temperature Tc0 during the normal operation. Therefore, the outside air temperature upper limit value Ta0 in the low noise control is higher than the outside air temperature upper limit during the normal operation. Also lower.
  • step S3 the operation control device 20 determines whether or not the current outside air temperature Ta is equal to or lower than the outside air temperature upper limit Ta0 calculated in step S2.
  • the current outside air temperature Ta is a measured value calculated from an electrical signal of temperature information detected by the first temperature sensor 15.
  • step S4 the operation control device 20 sets the rotational frequency of the fan 7 so that the condensation temperature Tc becomes equal to the target condensation temperature Tc1.
  • the condensation temperature Tc is, for example, a temperature converted value calculated from an electrical signal of pressure information of the discharge pressure detected by the first pressure sensor 11.
  • the control in step S4 is referred to as “first cooling operation low noise control”.
  • step S5 the operation control device 20 causes the low noise with the upper limits to the rotation frequency of the fan 7 and the operation frequency of the compressor 2. Control processing is performed.
  • the control in step S5 is referred to as “second noise reduction control during cooling operation”.
  • the low noise control process during the cooling operation described above is repeatedly executed at regular intervals.
  • FIG. 6 is a graph showing an example of the relationship between the outside air temperature and the condensation temperature during the cooling operation of the outdoor unit 1 in which the operation control apparatus 20 according to the first embodiment is installed.
  • the horizontal axis of the graph of FIG. 6 is the outside air temperature, and the unit is Celsius temperature.
  • the vertical axis of the graph in FIG. 6 is the condensation temperature, and the unit is degrees Celsius.
  • the relationship between the outside air temperature and the condensation temperature during normal operation is indicated by a broken line
  • the relationship between the outside air temperature and the condensation temperature during low noise control is indicated by a solid line.
  • FIG. 7 is a graph showing an example of the relationship between the rotational frequency of the fan 7 and the outside air temperature during the cooling operation of the outdoor unit 1 in which the operation control apparatus 20 according to Embodiment 1 is installed.
  • the horizontal axis of the graph of FIG. 7 is the outside air temperature, and the unit is Celsius temperature.
  • the vertical axis of the graph of FIG. 7 is the rotation frequency of the fan 7, and the unit is Hertz.
  • the relationship between the rotation frequency of the fan 7 and the condensation temperature during normal operation is indicated by a broken line
  • the relationship between the rotation frequency of the fan 7 and the condensation temperature during low noise control is indicated by a solid line. Has been.
  • the rotation frequency of the fan 7 during normal operation is controlled with priority on the operation efficiency so that the condensation temperature remains constant at the set condensation temperature Tc0 until the outside air temperature exceeds the threshold value Ta1.
  • the rotational frequency of the fan 7 is controlled to be constant at the threshold value F1 in order to reduce the noise value.
  • the threshold value F1 of the rotation frequency of the fan 7 is determined by, for example, a data table or an arithmetic expression indicating a relationship with the allowable noise amount of the fan 7.
  • the threshold value Ta1 of the outside air temperature during normal operation is determined by, for example, a data table or an arithmetic expression indicating the relationship between the set condensation temperature Tc0 and the rotation frequency threshold value F1 of the fan 7. That is, the threshold value Ta1 of the outside air temperature during normal operation is not set based on the relationship between the condensation temperature and the upper limit outside air temperature as in the control process of step S2 during the low noise control.
  • the target condensing temperature Tc1 at the time of low noise control is determined in relation to the maximum noise value N0 due to the rotational drive of the fan 7, so the target condensing temperature Tc1 is set condensation. It is set higher than the temperature Tc0.
  • the target condensation temperature Tc1 is set higher than the set condensation temperature Tc0, thereby reducing the rotational frequency of the fan 7 and supplying the fan to the air-cooled heat exchanger 4
  • the low noise control at the time of the first cooling operation for reducing the air volume from 7 can be performed.
  • the rotation frequency of the fan 7 can be reduced during the low noise control as compared with the normal operation as shown by the solid line in FIG.
  • the noise amount of the fan 7 can be reduced.
  • the outside air temperature exceeds the outside air temperature upper limit value Ta0
  • maintaining the condensation temperature at the target condensation temperature Tc1 increases the possibility of causing the abnormal operation of the outdoor unit 1 due to an increase in high pressure.
  • the noise value generated from the fan 7 and the compressor 2 increases due to the increase in the rotation frequency of the fan 7 and the increase in the operation frequency of the compressor 2.
  • the outdoor unit 1 when the outside air temperature exceeds the outside air temperature upper limit value Ta0, the second low noise control during the cooling operation for setting the rotation frequency of the fan 7 and the upper limit value of the operation frequency of the compressor 2 is performed. Done.
  • the upper limit value of the rotation frequency of the fan 7 is set to the threshold value F0.
  • the operation control device 20 by setting the upper limit value of the rotation frequency of the fan 7 and the operation frequency of the compressor 2, as shown in FIG. 6 and FIG. While avoiding it, it is possible to avoid an increase in the noise value generated from the fan 7 and the compressor 2.
  • FIG. 8 is a flowchart showing an example of the low noise control process during the heating operation of the outdoor unit 1 in the operation control apparatus 20 according to the first embodiment.
  • the time zone for low noise operation can be set, for example, by inputting the start time and end time of low noise operation on the user side using the schedule function of the operation control device 20.
  • the operation control device 20 starts the low noise operation by receiving the low noise operation start signal as needed, and ends the low noise operation by receiving the low noise operation stop signal from the user as needed. It can be configured to perform normal heating operation.
  • the operation control device 20 is configured to repeatedly execute the control process of FIG. 8 at regular intervals, for example, every 5 minutes, during low noise operation. Further, the operation control device 20 can be configured to execute the control process of FIG.
  • the “normal heating operation” of the outdoor unit 1 refers to the heating operation of the outdoor unit 1 that prioritizes operating efficiency, and particularly refers to the heating operation state in which the operating efficiency is evaluated by COP.
  • step S11 the operation control device 20 calculates the target evaporation temperature Te1 in the low noise operation.
  • the target evaporation temperature Te1 is calculated from the target maximum noise value N3 in the low noise operation input on the user side.
  • the operation control device 20 stores, for example, a data table showing the relationship between the target value of the evaporation temperature and the maximum noise value in advance, from the target maximum noise value N3 in the low noise operation.
  • the target evaporation temperature Te1 can be calculated.
  • the operation control device 20 stores in advance an arithmetic expression indicating the relationship between the target value of the evaporation temperature and the maximum noise value in order to perform the control process of step S11, and from the target maximum noise value N3 in the low noise operation, The target evaporation temperature Te1 may be calculated.
  • FIG. 9 is a graph showing an example of the relationship between the target value of the evaporation temperature and the maximum noise value during the heating operation of the outdoor unit 1 in which the operation control apparatus 20 according to Embodiment 1 is installed.
  • the horizontal axis of the graph of FIG. 9 is the evaporation temperature, and the unit is Celsius temperature.
  • the vertical axis of the graph of FIG. 9 is the maximum noise value of the fan 7, and the unit is decibels.
  • the outdoor unit 1 when the rotation frequency of the fan 7 is reduced, the maximum noise value of the fan 7 is reduced and the target value of the evaporation temperature is reduced. Therefore, as shown in FIG. 9, when the maximum noise value is set small, the target value of the evaporating temperature becomes low.
  • the target evaporation temperature Te1 is set lower than the set evaporation temperature Te0 during normal operation.
  • the maximum noise value in the graph of FIG. 9 is 1.0 m away from the service surface provided in the machine room of the outdoor unit 1 in the horizontal direction and 1.5 m away from the ground in the vertical direction, as in the cooling operation. The amount of noise measured at the point.
  • step S12 the operation control device 20 calculates the outside air temperature lower limit Ta2 in the low noise operation.
  • the operation controller 20 can be configured to store a data table showing the relationship between the target value of the evaporation temperature and the lower limit outside air temperature, and to calculate the outside air temperature lower limit value Ta2 from the target evaporation temperature Te1 in the low noise operation. . Further, the operation control device 20 stores an arithmetic expression indicating the relationship between the target value of the evaporation temperature and the lower limit outside air temperature, and is configured to calculate the outside air temperature lower limit value Ta2 from the target evaporation temperature Te1 in the low noise operation. May be.
  • FIG. 10 is a graph showing an example of the relationship between the target value of the evaporation temperature and the lower limit outside air temperature during the heating operation of the outdoor unit 1 in which the operation control apparatus 20 according to Embodiment 1 is installed.
  • the horizontal axis of the graph of FIG. 10 is the evaporation temperature, and the unit is Celsius temperature.
  • the vertical axis of the graph of FIG. 10 is the lower limit outside air temperature, and the unit is Celsius temperature.
  • the outdoor unit 1 when control is performed to keep the evaporation temperature constant, when the outside air temperature rises, the pressure of the high-pressure portion in the refrigeration cycle circuit 10 also rises.
  • the lower limit outside air temperature is an allowable value of the outside air temperature that is set in order to avoid an increase in high pressure that causes an abnormal operation of the outdoor unit 1.
  • the lower limit outdoor air temperature increases.
  • the target evaporation temperature Te1 is set to a temperature lower than the set evaporation temperature Te0 during normal operation, so the outside air temperature lower limit Ta2 in low noise control is lower than the outside air temperature lower limit during normal operation. Also gets higher.
  • step S13 the operation control device 20 determines whether or not the current outside air temperature Ta is equal to or higher than the outside air temperature lower limit Ta2 calculated in step S12.
  • the current outside air temperature Ta is a measured value calculated from an electrical signal of temperature information detected by the first temperature sensor 15 as in the cooling operation.
  • step S14 the operation control device 20 sets the rotation frequency of the fan 7 so that the evaporation temperature Te becomes equal to the target evaporation temperature Te1.
  • the evaporation temperature Te is, for example, a temperature converted value calculated from an electrical signal of pressure information of the suction pressure detected by the second pressure sensor 12.
  • the control in step S14 is referred to as “first heating operation low noise control”.
  • step S15 is a low value in which the rotation frequency of the fan 7 and the operation frequency of the compressor 2 are provided with lower limits. Noise control processing is performed.
  • the control in step S15 is referred to as “second noise reduction control during heating operation”.
  • the low noise control process during the heating operation described above is repeatedly executed at regular intervals.
  • FIG. 11 is a graph showing an example of the relationship between the outside air temperature and the evaporation temperature during the heating operation of the outdoor unit 1 in which the operation control apparatus 20 according to the first embodiment is installed.
  • the horizontal axis of the graph in FIG. 11 is the outside air temperature, and the unit is Celsius temperature.
  • the vertical axis of the graph of FIG. 11 is the evaporation temperature, and the unit is Celsius temperature.
  • the relationship between the outside air temperature and the evaporation temperature during normal operation is indicated by a broken line
  • the relationship between the outside temperature and the evaporation temperature during low noise control is indicated by a solid line.
  • FIG. 12 is a graph showing an example of the relationship between the rotational frequency of the fan 7 and the outside air temperature during the heating operation of the outdoor unit 1 in which the operation control apparatus 20 according to the first embodiment is installed.
  • the horizontal axis of the graph in FIG. 12 is the outside air temperature, and the unit is Celsius temperature.
  • the vertical axis of the graph of FIG. 12 is the rotation frequency of the fan 7, and the unit is Hertz.
  • the relationship between the rotation frequency of the fan 7 and the evaporation temperature during normal operation is indicated by a broken line
  • the relationship between the rotation frequency of the fan 7 and the evaporation temperature during low noise control is indicated by a solid line. Has been.
  • the rotational frequency of the fan 7 during normal operation gives priority to the operation efficiency so that the evaporation temperature is constant at the set evaporation temperature Te0 while the outside air temperature is equal to or higher than the threshold value Ta3. It is controlled. Further, as shown by the broken line in FIG. 12, when the outside air temperature becomes lower than the threshold value Ta3, the rotational frequency of the fan 7 is controlled to be constant at the threshold value F3 in order to reduce the noise value.
  • the region of the outside air temperature threshold Ta4 or more in the broken line in FIG. 12 is the fan temperature because the temperature of the outside air supplied to the air-cooled heat exchanger 4 is sufficiently high to maintain the set evaporation temperature Te0.
  • the rotational frequency of 7 is constant.
  • the threshold value F3 of the rotation frequency of the fan 7 is determined by, for example, a data table or an arithmetic expression indicating a relationship with the allowable noise amount of the fan 7.
  • the outside air temperature threshold Ta3 is determined by, for example, a data table or an arithmetic expression indicating the relationship between the set evaporation temperature Te0 and the rotation frequency threshold F1 of the fan 7. That is, the threshold Ta3 for the outside air temperature during normal operation is not set based on the relationship between the evaporation temperature and the lower limit outside air temperature as in the control process of step S12 during the low noise control.
  • the target evaporation temperature Te1 at the time of low noise control is determined in relation to the target maximum noise value N3 due to the rotational drive of the fan 7, so the target evaporation temperature Te1 is set. It is set lower than the evaporation temperature Te0.
  • the fan 7 is supplied to the air-cooled heat exchanger 4 by reducing the rotational frequency of the fan 7 by setting the target evaporation temperature Te1 lower than the set evaporation temperature Te0.
  • the low noise control during the first heating operation can be performed to reduce the air volume from the air. Therefore, in the operation control device 20 of the first embodiment, as indicated by the solid line in FIG.
  • the rotation frequency of the fan 7 can be reduced during low noise control compared to during normal operation.
  • the noise amount of the fan 7 can be reduced.
  • maintaining the evaporation temperature at the target evaporation temperature Te1 increases the possibility of causing the abnormal operation of the outdoor unit 1 due to an increase in high pressure.
  • the noise value generated from the fan 7 and the compressor 2 increases due to the increase in the rotation frequency of the fan 7 and the increase in the operation frequency of the compressor 2. Therefore, in the outdoor unit 1, when the outside air temperature becomes less than the outside air temperature lower limit value Ta2, the second low noise control during heating operation that sets the lower limit value of the rotation frequency of the fan 7 and the operating frequency of the compressor 2 is set. Is done.
  • the lower limit value of the rotation frequency of the fan 7 is set to a threshold value F0.
  • the operation control device 20 by setting the lower limit value of the rotation frequency of the fan 7 and the operation frequency of the compressor 2, for example, as shown in FIG. 11 and FIG. While avoiding the operation, it is possible to avoid an increase in noise value generated from the fan 7 and the compressor 2.
  • the region of the outside air temperature between the threshold Ta5 and the threshold Ta6 in the solid line in FIG. 12 is a temperature at which the temperature of the outside air supplied to the air-cooled heat exchanger 4 is sufficiently high to maintain the set evaporation temperature Te0. Therefore, the rotation frequency of the fan 7 is constant. Further, in the region of the outside air temperature threshold Ta6 or more in the solid line in FIG. 12, the temperature of the outside air supplied to the air-cooled heat exchanger 4 is further increased, so that the rotational frequency of the fan 7 decreases as the outside air temperature increases. Yes.
  • the operation control device 20 of the first embodiment includes the compressor 2 and the refrigeration cycle circuit 10 to which the air-cooled heat exchanger 4 functioning as a condenser is connected, and the air-cooled heat exchanger. 4 is used in a refrigeration cycle apparatus having a fan 7 for supplying outside air to the first air conditioning unit 4 and performs first low noise control during cooling operation to increase a target value of the condensation temperature in the air cooling heat exchanger 4 during cooling operation. It is configured as follows.
  • the operation control device 20 of the first embodiment supplies the outside air to the compressor 2 and the refrigeration cycle circuit 10 to which the air-cooled heat exchanger 4 functioning as an evaporator is connected, and the air-cooled heat exchanger 4.
  • the operation control device 20 of the first embodiment includes a cooling operation in which the compressor 2, the air-cooled heat exchanger 4, and the air-cooled heat exchanger 4 function as a condenser, and the air-cooled heat exchanger 4 as an evaporator.
  • a refrigeration cycle apparatus having a refrigeration cycle circuit 10 connected to a refrigerant flow switching device 3 for switching between heating operation to function as a fan and a fan 7 for supplying outside air to the air-cooled heat exchanger 4
  • Control is performed to increase the target value of the condensation temperature in the air-cooling heat exchanger 4 during the cooling operation, and control is performed to decrease the target value of the evaporation temperature in the air-cooling heat exchanger 4 during the heating operation. It is configured.
  • the low noise control for reducing the rotation frequency of the fan 7 can be performed by increasing the target value of the condensation temperature during the cooling operation or decreasing the target value of the evaporation temperature during the heating operation. it can. At this time, the motion frequency of the compressor 2 can be maintained with the normal operation. Therefore, according to the present invention, it is possible to provide the operation control device 20 capable of suppressing noise due to the rotation sound of the fan 7 while maintaining the operation efficiency of the refrigeration cycle device.
  • the refrigeration cycle apparatus used in the operation control apparatus 20 of the first embodiment can be configured as a refrigeration cycle apparatus dedicated to cooling, a refrigeration cycle apparatus dedicated to heating, or a refrigeration cycle apparatus capable of switching between cooling and heating.
  • the above-described configuration is useful, for example, in a location where houses are densely located in the vicinity and it is necessary to consider noise to the surroundings, or in an environment where noise such as night driving needs to be considered. Especially when driving refrigeration cycle equipment at night in factories or hospitals located near densely populated areas, noise countermeasures become easier and operational efficiency can be ensured. It is possible to save the trouble of reducing the operating rate of the apparatus.
  • noise due to the rotation sound of the fan 7 can be suppressed, so that it is not necessary to attach a silencer such as a soundproof hood or a soundproof duct to the refrigeration cycle apparatus. Therefore, it is possible to shorten the design period or local construction period in selecting the silencer. In addition, it is possible to reduce the design cost of the silencer in the refrigeration cycle apparatus, reduce the load on the refrigeration cycle apparatus, and improve the maintainability.
  • the operation control apparatus 20 of this Embodiment 1 is the case where the temperature of the outside air supplied to the air-cooled heat exchanger 4 exceeds the upper limit value of the outside air temperature determined from the target value of the increased condensation temperature.
  • the second low noise control during the cooling operation in which the rotation frequency of the fan 7 and the upper limit value of the operation frequency of the compressor 2 are provided can be executed.
  • the operation control apparatus 20 of this Embodiment 1 is the case where the temperature of the outside air supplied to the air-cooled heat exchanger 4 exceeds the lower limit value of the outside air temperature determined from the target value of the lowered evaporation temperature.
  • the second noise reduction control during heating operation in which the upper limit values of the rotation frequency of the fan 7 and the operation frequency of the compressor 2 are provided can be executed.
  • the operation control device 20 is configured so that the second low noise control during the cooling operation or the second low noise control during the heating operation can be executed, thereby increasing the condensation temperature during the cooling operation or Abnormal operation of the refrigeration cycle apparatus due to a decrease in evaporation temperature during heating operation can be avoided.
  • the abnormal operation of the refrigeration cycle apparatus can be avoided, and an increase in noise value generated from the fan 7 and the compressor 2 can be avoided.
  • the refrigeration cycle apparatus used in the operation control apparatus 20 of the first embodiment can be configured as an air-cooled heat pump chiller unit.
  • the compressor 2 is housed in the second casing 35 which is a machine room, and it is easy to reduce the noise value.
  • the fan 7 is arranged on the upper part of the first housing 30 having a configuration opened to the outside, the air-cooled heat pump chiller unit needs to cope with the noise of the fan 7.
  • a conventional noise countermeasure there is a method of attaching a silencer to the inlet or outlet, but it is necessary to examine the structural influence when adding the weight of the silencer or the influence of the capacity accompanying the increase in pressure loss. Yes, construction may take some time.
  • the operation control device 20 of the first embodiment can achieve a great effect when used in an air-cooled heat pump chiller unit.
  • Embodiment 2 control during low-capacity operation that is performed by the operation control device 20 when the first cooling operation low noise control or the first heating operation low noise control is executed will be described.
  • the operation control device 20 whether or not the operation is low-capacity operation is, for example, by detecting the number of indoor units driven and determining that it is in a low-capacity operation state when only the number of units or less is driven. Can do.
  • FIG. 13 shows an example of a control process performed when the first cooling operation low noise control or the first heating operation low noise control is performed and the low capacity operation is performed in the operation control device 20 according to the second embodiment. It is a flowchart which shows.
  • the operation control apparatus 20 of the second embodiment data indicating the relationship between the noise value of the compressor 2 and the operation frequency of the compressor 2 and the relationship between the noise value of the fan 7 and the rotation frequency of the fan 7. Control processing is performed in a state where a table or an arithmetic expression is stored.
  • step S ⁇ b> 21 the operation control device 20 determines whether or not the noise value Nc of the compressor 2 calculated from the operation frequency of the compressor 2 exceeds the noise value Nf of the fan 7 calculated from the rotation frequency of the fan 7. The When the noise value Nc of the compressor 2 is equal to or less than the noise value Nf of the fan 7, the control process during the low capacity operation ends, and the first low noise control during the cooling operation or the first low noise control during the heating operation. Is done.
  • the operation control device 20 causes the fan 7 to have the noise value Nf of the fan 7 equal to the noise value Nc of the compressor 2 in step S22. Increase the rotation frequency.
  • the above control processing is repeatedly executed simultaneously with the execution of the first cooling operation low noise control or the first heating operation low noise control.
  • the operation control device 20 is configured such that the noise value of the compressor 2 exceeds the noise value of the fan 7 during the execution of the first noise reduction control during the cooling operation.
  • it can be configured to execute control to make the noise value of the compressor 2 and the noise value of the fan 7 the same.
  • the operation control device 20 of the second embodiment is configured such that the compressor 2 has a noise value exceeding the noise value of the fan 7 during execution of the first noise reduction control during heating operation. It can be configured to execute control for making the noise value of the fan and the noise value of the fan the same.
  • the frequency of the fan 7 is controlled so that the noise value of the fan 7 becomes the noise value of the compressor 2. Therefore, the operation efficiency can be ensured while reducing the noise of the compressor 2. Therefore, according to the above-described configuration, it is possible to take measures against noise of the refrigeration cycle apparatus even when the operation load of the indoor unit is small, such as a so-called intermediate period.
  • the target condensing temperature is calculated by the operation control device 20 from the maximum noise value.
  • the graph material showing the relationship between the target condensing temperature and the maximum noise value. Can be submitted to the user in advance, and the target condensing temperature can be set by direct input.
  • 1 outdoor unit 2 compressor, 3 refrigerant flow switching device, 4 air-cooled heat exchanger, 4a heat exchange section, 4b first header main pipe, 4c first header branch pipe, 4d second header main pipe, 4e 2nd header branch pipe, 5 pressure reducing device, 6 water-cooled heat exchanger, 7 fan, 8 liquid receiver, 9 refrigerant piping, 10 refrigeration cycle circuit, 11 first pressure sensor, 12 second pressure sensor, 15 1st temperature sensor, 16 2nd temperature sensor, 17 3rd temperature sensor, 18 4th temperature sensor, 19 5th temperature sensor, 20 operation control device, 25 communication line, 30 1st housing, 35 Second housing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Signal Processing (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Fluid Mechanics (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

冷凍サイクル装置の運転効率を維持しつつ、ファンの回転音による騒音を抑制可能な運転制御装置を提供するものであり、運転制御装置は、圧縮機及び凝縮器が接続された冷凍サイクル回路と、凝縮器に外気を供給するファンとを有する冷凍サイクル装置で用いられるものであり、冷房運転時において、凝縮器における凝縮温度の目標値を上昇させる第1の冷房運転時低騒音制御を実行する。

Description

運転制御装置
 本発明は、冷凍サイクル装置の室外ユニット、例えばヒートポンプチラーユニットに設置される運転制御装置に関する。
 従来の室外ユニットの運転制御装置として、特許文献1には、ファンの周波数に下限値を設けてファンの回転音を一定以上の音量で発生させるファンの回転周波数制御装置が開示されている。特許文献1の回転周波数制御装置は、ファンの回転音を発生させることにより、圧縮機の運転周波数が増加する際の運転音を掻き消し、圧縮機の騒音による利用者の不快感を抑制するように構成されている。
特開2007-218531号公報
 しかしながら、特許文献1の回転周波数制御装置では、ファンの回転音による騒音が大きくなるという課題がある。特に、空冷式のヒートポンプチラーユニットの場合、圧縮機はユニット下部の防音可能な機械室に収納され、ファンは上方に開放された状態でユニット上部に配置されているため、ファンの回転音による騒音の方が利用者に不快感となる可能性があった。
 本発明は、上述の課題を解決するためになされたものであり、冷凍サイクル装置の運転効率を維持しつつ、ファンの回転音による騒音を抑制可能な運転制御装置を提供することを目的とする。
 本発明の運転制御装置は、圧縮機及び凝縮器が接続された冷凍サイクル回路と、前記凝縮器に外気を供給するファンとを有する冷凍サイクル装置で用いられるものであり、冷房運転時において、前記凝縮器における凝縮温度の目標値を上昇させる第1の冷房運転時低騒音制御を実行する。
 また、本発明の運転制御装置は、圧縮機及び蒸発器が接続された冷凍サイクル回路と、前記蒸発器に外気を供給するファンとを有する冷凍サイクル装置で用いられるものであり、暖房運転時において、前記蒸発器における蒸発温度の目標値を下降させる第1の暖房運転時低騒音制御を実行する。
 また、本発明の運転制御装置は、圧縮機、空冷式熱交換器、及び前記空冷式熱交換器を凝縮器として機能させる冷房運転と前記空冷式熱交換器を凝縮器として機能させる暖房運転とを切替える冷媒流路切替装置が接続された冷凍サイクル回路と、前記空冷式熱交換器に外気を供給するファンとを有する冷凍サイクル装置で用いられるものであり、冷房運転時において、前記空冷式熱交換器における凝縮温度の目標値を上昇させる制御を実行し、暖房運転時において、前記空冷式熱交換器における蒸発温度の目標値を下降させる制御を実行する。
 本発明によれば、冷房運転時における凝縮温度の目標値を上昇、又は暖房運転時における蒸発温度の目標値を下降させることにより、ファンの回転周波数を低減させる低騒音制御を行うことができる。したがって、本発明によれば、冷凍サイクル装置の運転効率を維持しつつ、ファンの回転音による騒音を抑制可能な運転制御装置を提供することができる。
本発明の実施の形態1に係る運転制御装置20が設置される室外ユニット1の冷凍サイクル回路10の一例を示す概略的な冷媒回路図である。 本発明の実施の形態1に係る運転制御装置20が設置される室外ユニット1の概略的な外観構成の一例を示す斜視図である。 本発明の実施の形態1に係る運転制御装置20における、室外ユニット1の冷房運転時の低騒音制御処理の一例を示すフローチャートである。 本発明の実施の形態1に係る運転制御装置20が設置される室外ユニット1の冷房運転時における、凝縮温度の目標値と最大騒音値との関係の一例を示すグラフである。 本発明の実施の形態1に係る運転制御装置20が設置される室外ユニット1の冷房運転時における、凝縮温度の目標値と上限外気温度との関係の一例を示すグラフである。 本発明の実施の形態1に係る運転制御装置20が設置される室外ユニット1の冷房運転時における、外気温度と凝縮温度との関係の一例を示したグラフである。 本発明の実施の形態1に係る運転制御装置20が設置される室外ユニット1の冷房運転時における、ファン7の回転周波数と外気温度との関係の一例を示したグラフである。 本発明の実施の形態1に係る運転制御装置20における、室外ユニット1の暖房運転時の低騒音制御処理の一例を示すフローチャートである。 本発明の実施の形態1に係る運転制御装置20が設置される室外ユニット1の暖房運転時における、蒸発温度の目標値と最大騒音値との関係の一例を示すグラフである。 本発明の実施の形態1に係る運転制御装置20が設置される室外ユニット1の暖房運転時における、蒸発温度の目標値と下限外気温度との関係の一例を示すグラフである。 本発明の実施の形態1に係る運転制御装置20が設置される室外ユニット1の暖房運転時における、外気温度と蒸発温度との関係の一例を示したグラフである。 本発明の実施の形態1に係る運転制御装置20が設置される室外ユニット1の暖房運転時における、ファン7の回転周波数と外気温度との関係の一例を示したグラフである。 本発明の実施の形態2に係る運転制御装置20における、第1の冷房運転時低騒音制御又は第1の暖房運転時低騒音制御の実行時かつ低容量運転時に行われる制御処理の一例を示すフローチャートである。
実施の形態1.
 本発明の実施の形態1に係る運転制御装置20が設置される冷凍サイクル装置の室外ユニット1について説明する。図1は、本実施の形態1に係る運転制御装置20が設置される室外ユニット1の冷凍サイクル回路10の一例を示す概略的な冷媒回路図である。なお、図1を含む以下の図面では各構成部材の寸法の関係及び形状が、実際のものとは異なる場合がある。また、以下の図面では、同一又は類似する部材又は部分には、同一の符号を付すか、あるいは符号を付すことを省略している。
 図1に示すように、室外ユニット1は、圧縮機2、冷媒流路切替装置3、空冷式熱交換器4、減圧装置5、及び水冷式熱交換器6が冷媒配管9で接続され、内部を冷媒が循環する冷凍サイクル回路10を備えている。また、室外ユニット1には、空冷式熱交換器4を通過する空気を外部に吹き出すファン7が設けられている。また、図示しないが、室外ユニット1には、1以上の室内ユニットが水冷式熱交換器6に接続されている熱媒体配管を介して接続されている。
 圧縮機2は、吸入管と吐出管を有し、吸入管を介して圧縮機2の内部に吸入した低圧冷媒を高圧冷媒に圧縮し、圧縮した高圧冷媒を吐出管から吐出する流体機械である。圧縮機2は、容量可変型の冷媒圧縮機、例えば、回転周波数を制御可能なスクロール圧縮機又はロータリ圧縮機として構成できる。なお、図1には、吸入管及び吐出管は図示していない。
 冷媒流路切替装置3は、室外ユニット1における冷房運転から暖房運転への切替え又は暖房運転から冷房運転への切替えに応じて、冷媒流路切替装置3の内部の冷媒流路が切替えられるアクチュエータである。冷媒流路切替装置3においては、冷房運転時には、圧縮機2の吐出口から空冷式熱交換器4へ冷媒が流れ、水冷式熱交換器6から圧縮機2の吸入口に冷媒が流れるように冷媒流路の経路制御が行われる。すなわち、冷房運転時においては、冷媒流路切替装置3の内部の冷媒流路は、図1の実線で示された経路となる。また、冷媒流路切替装置3においては、暖房運転時には、圧縮機2の吐出口から水冷式熱交換器6へ冷媒が流れ、空冷式熱交換器4から圧縮機2の吸入口に冷媒が流れるように冷媒流路の経路制御が行われる。すなわち、暖房運転時においては、冷媒流路切替装置3の内部の冷媒流路は、図1の破線で示された経路となる。冷媒流路切替装置3は、例えば四方弁として構成される。また、冷媒流路切替装置3は、二方弁又は三方弁を用いて構成してもよい。
 なお、「冷房運転」とは、水冷式熱交換器6に低温低圧の冷媒を供給する運転のことであり、室内ユニットに冷熱を供給し、室内ユニットが配置された空間に冷房用の空気を供給する運転のことである。「暖房運転」とは、水冷式熱交換器6に高温高圧の冷媒を供給する運転のことであり、室内ユニットに温熱を供給し、室内ユニットが配置された空間に暖房用の空気を供給する運転のことである。
 空冷式熱交換器4は、冷房運転時においては凝縮器として機能し、暖房運転時においては蒸発器として機能する熱源側熱交換器である。空冷式熱交換器4は、空冷式熱交換器4の内部を流れる冷媒と、ファン7の回転駆動によって空冷式熱交換器4に誘導されて通過する室外空気との間で熱交換を行うように構成される。空冷式熱交換器4は、例えば、クロスフィン式のフィン・アンド・チューブ型熱交換器として構成される。なお、冷凍サイクル装置においては、凝縮器は「放熱器」と称され、蒸発器は「冷却器」と称される場合がある。
 空冷式熱交換器4は、複数の伝熱管と複数のフィンとを有する熱交換部4aを有している。熱交換部4aの伝熱管の一方の末端部は、第1のヘッダ主管4bから分岐した複数の第1のヘッダ枝管4cに接続されている。また、熱交換部4aの伝熱管の他の一方の末端部は、第2のヘッダ主管4dから分岐した複数の第2のヘッダ枝管4eに接続されている。空冷式熱交換器4は、冷房運転時においては、第1のヘッダ主管4bから第2のヘッダ主管4dに冷媒が流れ、暖房運転時においては、第2のヘッダ主管4dから第1のヘッダ主管4bに冷媒が流れるように冷凍サイクル回路10に配置されている。
 減圧装置5は、高圧液冷媒を膨張及び減圧させるアクチュエータである。減圧装置5は、例えば、多段階又は連続的に開度を調節可能なリニア電子膨張弁等の膨張弁、又は機械式膨張弁である膨張機として構成できる。なお、冷凍サイクル装置においては、リニア電子膨張弁は「LEV」と略称される場合がある。
 水冷式熱交換器6は、冷房運転時においては蒸発器として機能し、暖房運転時においては凝縮器として機能する熱媒体間熱交換器である。水冷式熱交換器6は、水冷式熱交換器6の内部を流れる高圧冷媒と、水冷式熱交換器6の内部を流れ、室外ユニット1と室内ユニットとの間を循環し、室内ユニットに冷熱又は温熱を供給する熱媒体との間で熱交換を行うように構成される。水冷式熱交換器6は、例えば、プレート式熱交換器又は二重管熱交換器として構成できる。また、熱媒体としては、例えば、水又はブライン等の液状態媒体が用いられる。なお、図1を含む以下の図面には、水冷式熱交換器6に接続され、室外ユニット1と室内ユニットとの間で熱媒体を循環させる熱媒体回路は図示していない。また、冷凍サイクル装置においては、水冷式熱交換器6は「水熱交換器」と称される場合がある。
 ファン7は、上述したように、回転駆動によって室外空気を空冷式熱交換器4に誘導し、空冷式熱交換器4を通過して熱交換された室外空気を外部に吹き出すアクチュエータである。ファン7は、例えばプロペラファンとして構成される。
 また、減圧装置5と水冷式熱交換器6との間を接続する冷媒配管9には、暖房運転時に水冷式熱交換器6で凝縮された高圧の液冷媒を一時的に貯留する受液器8が接続されている。受液器8は、レシーバ又は冷媒タンクとも称される円筒形の容器である。受液器8で高圧の液冷媒を一時的に貯留することにより、室外ユニット1では、冷凍サイクル回路10を循環する冷媒量が調整される。
 なお、室外ユニット1が小規模の冷凍サイクル装置用のものである場合は、室外ユニット1は受液器8を設けない構成としてもよい。また、室外ユニット1は、上述の構成要素の他に、アクチュエータ、油分離器、過冷却熱交換器等を備えていてもよい。また、室外ユニット1を冷房専用又は暖房専用とする場合には、冷媒流路切替装置3を設けない構成としてもよい。
 次に、冷房運転時の室外ユニット1の動作について説明する。
 圧縮機2から吐出された高温高圧のガス冷媒は、冷媒流路切替装置3を介して、空冷式熱交換器4へ流入する。空冷式熱交換器4に流入した高温高圧のガス冷媒は、低温の媒体である外部空気に熱を放出することによって熱交換され、高圧の液冷媒となる。高圧の液冷媒は、減圧装置5に流入する。減圧装置5に流入した高圧の液冷媒は、膨張及び減圧されて低温低圧の二相冷媒となる。低温低圧の二相冷媒は、水冷式熱交換器6に流入し、水冷式熱交換器6を流れる高温の熱媒体から熱を吸収し、蒸発して乾き度の高い二相冷媒又は低温低圧のガス冷媒となる。水冷式熱交換器6から流出した乾き度の高い二相冷媒又は低温低圧のガス冷媒は、冷媒流路切替装置3を介して、圧縮機2に吸入される。圧縮機2に吸入された冷媒は圧縮されて、高温高圧のガス冷媒となり、圧縮機2から吐出される。また、水冷式熱交換器6で冷却された熱媒体は、室内ユニットに循環され、室内空気等の高温の媒体と熱交換され、室内ユニットが配置された空間に冷熱を供給する。熱交換された高温の熱媒体は、水冷式熱交換器6に流入し、水冷式熱交換器6を流れる低温低圧の二相冷媒と熱交換が行われて冷却される。室外ユニット1では以上のサイクルが繰り返されて冷房運転が行われる。
 次に、暖房運転時の室外ユニット1の動作について説明する。
 圧縮機2から吐出された高温高圧のガス冷媒は、冷媒流路切替装置3を介して、水冷式熱交換器6へ流入する。水冷式熱交換器6に流入した高温高圧のガス冷媒は、水冷式熱交換器6を流れる低温の熱媒体に熱を放出することによって熱交換され、高圧の液冷媒となる。高圧の液冷媒は、減圧装置5に流入する。減圧装置5に流入した高圧の液冷媒は、膨張及び減圧されて低温低圧の二相冷媒となる。低温低圧の二相冷媒は、空冷式熱交換器4に流入し、空冷式熱交換器4を流れる高温の媒体である外部空気から熱を吸収し、蒸発して乾き度の高い二相冷媒又は低温低圧のガス冷媒となる。空冷式熱交換器4から流出した乾き度の高い二相冷媒又は低温低圧のガス冷媒は、冷媒流路切替装置3を介して、圧縮機2に吸入される。圧縮機2に吸入された冷媒は圧縮されて、高温高圧のガス冷媒となり、圧縮機2から吐出される。また、水冷式熱交換器6で加熱された熱媒体は、室内ユニットに循環され、室内空気等の低温の媒体と熱交換され、室内ユニットが配置された空間に温熱を供給する。熱交換された低温の熱媒体は、水冷式熱交換器6に流入し、水冷式熱交換器6を流れる高温高圧のガス冷媒と熱交換が行われて加熱される。室外ユニット1では以上のサイクルが繰り返されて暖房運転が行われる。
 次に、室外ユニット1に配置されるセンサについて説明する。
 室外ユニット1は、第1の圧力センサ11と、第2の圧力センサ12と、第1の温度センサ15と、第2の温度センサ16と、第3の温度センサ17と、第4の温度センサ18と、第5の温度センサ19とを備えている。
 第1の圧力センサ11は、圧縮機2の吐出管から吐出される高温高圧の冷媒の圧力を検知する高圧圧力センサである。第1の圧力センサ11は、圧縮機2の吐出管と冷媒流路切替装置3との間を接続する冷媒配管9に配置される。
 第2の圧力センサ12は、圧縮機2の吸入管を介して圧縮機2の内部に吸入される低圧の冷媒の圧力を検知する低圧センサである。第2の圧力センサ12は、圧縮機2の吸入管と冷媒流路切替装置3との間を接続する冷媒配管9に配置される。
 第1の圧力センサ11及び第2の圧力センサ12としては、水晶圧電式圧力センサ、半導体センサ、又は圧力トランスデューサ等が用いられる。なお、第1の圧力センサ11及び第2の圧力センサ12は、同種類のもので構成してもよいし、異なる種類のもので構成してもよい。
 第1の温度センサ15は、ファン7の回転駆動によって空冷式熱交換器4に誘導されて通過する室外空気の温度を検知する外気温度センサである。第1の温度センサ15は、空冷式熱交換器4を通過する室外空気の上流側の温度を測定可能な位置に配置される。
 第2の温度センサ16は、圧縮機2の吐出管から吐出される高温高圧の冷媒の温度を冷媒配管9を介して検知する吐出温度センサである。第2の温度センサ16は、圧縮機2の吐出管と冷媒流路切替装置3との間を接続する冷媒配管9に配置される。なお、第2の温度センサ16は、圧縮機吐出側温度センサと称される場合がある。
 第3の温度センサ17は、圧縮機2の吸入管を介して圧縮機2の内部に吸入される低圧の冷媒の温度を冷媒配管9を介して検知する吸入温度センサである。第3の温度センサ17は、圧縮機2の吸入管と冷媒流路切替装置3との間を接続する冷媒配管9に配置される。なお、第3の温度センサ17は、入口ガス温度センサと称される場合がある。
 第4の温度センサ18は、冷房運転時においては、空冷式熱交換器4から減圧装置5に流入する高圧の液冷媒の温度を冷媒配管9を介して検知する空冷式熱交換器4の液側温度センサである。第4の温度センサ18は、空冷式熱交換器4と減圧装置5との間を接続する冷媒配管9に配置される。また、第4の温度センサ18では、暖房運転時においては、減圧装置5で膨張及び減圧され、空冷式熱交換器4に流入する二相冷媒の温度を冷媒配管9を介して検知される。
 第5の温度センサ19は、冷房運転時においては、減圧装置5で膨張及び減圧され、水冷式熱交換器6に流入する二相冷媒の温度を冷媒配管9を介して検知する水冷式熱交換器6の液側温度センサである。第5の温度センサ19は、減圧装置5と水冷式熱交換器6との間を接続する冷媒配管9に配置される。また、第5の温度センサ19では、暖房運転時においては、水冷式熱交換器6から減圧装置5に流入する高圧の液冷媒の温度を冷媒配管9を介して検知される。
 第1の温度センサ15、第2の温度センサ16、第3の温度センサ17、第4の温度センサ18、及び第5の温度センサ19の材料としては、例えば、サーミスタ等の半導体材料又は測温抵抗体等の金属材料が用いられる。なお、第1の温度センサ15、第2の温度センサ16、第3の温度センサ17、第4の温度センサ18、及び第5の温度センサ19は、同一の材料で構成してもよいし、異なる材料で構成してもよい。
 次に、本実施の形態1に係る運転制御装置20について説明する。
 本実施の形態1に係る運転制御装置20は、室外ユニット1の駆動又は停止を含む室外ユニット1の全体の動作を制御するものである。運転制御装置20は、専用のハードウェア又は、中央演算装置、メモリ等を備えたマイクロコンピュータ又はマイクロプロセッシングユニットとして構成される。なお、運転制御装置20の内部構造については図示していない。
 運転制御装置20が専用のハードウェアとして構成される場合、運転制御装置20は、例えば、単一回路、複合回路、ASIC、FPGA、又はこれらを組み合わせて構成できる。運転制御装置20は、各々の制御処理を個々のハードウェアで実現できるように構成してもよいし、各々の制御処理を一つのハードウェアで行うように構成してもよい。なお、「ASIC」は特定用途向け集積回路の略称であり、「FPGA」はフィールドプログラマブルゲートアレイの略称である。
 運転制御装置20がマイクロコンピュータ又はマイクロプロセッシングユニットとして構成される場合、運転制御装置20が実行する制御処理は、ソフトウェア、ファームウェア、又はソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェア又はファームウェアは、制御プログラムとして記述される。メモリは、制御プログラムを格納する運転制御装置20の記憶部として構成される。メモリは、例えば、RAM、ROM、フラッシュメモリ、EPROM、EEPROM等の不揮発性又は揮発性の半導体メモリとして構成できる。中央演算装置は、メモリに格納された制御プログラムを読み出して実行することにより、制御処理を実現する演算部として構成される。なお、中央演算装置は「CPU」と略称される。また、中央演算装置は、処理装置、演算装置、マイクロプロセッサ、又はプロセッサとも称される。
 また、運転制御装置20は、運転制御装置20の通信部として構成される入出力ポートを備えている。運転制御装置20の入出力ポートは、室外ユニット1に配置されたセンサで検知した検知情報の電気信号を受信し、制御プログラムの実行により演算された制御信号を圧縮機2、ファン7等のアクチュエータに送信できるように構成されている。例えば、運転制御装置20の入出力ポートは、第1の圧力センサ11及び第2の圧力センサ12で検知した圧力情報の電気信号を受信できるように構成されている。また、運転制御装置20の入出力ポートは、第1の温度センサ15、第2の温度センサ16、第3の温度センサ17、第4の温度センサ18、及び第5の温度センサ19で検知した温度情報の電気信号を受信できるように構成されている。また、運転制御装置20の入出力ポートは、運転制御装置20で演算された圧縮機2の周波数の制御信号を圧縮機2に送信できるように構成されている。また、運転制御装置20の入出力ポートは、運転制御装置20で演算されたファン7の回転周波数の制御信号をファン7に送信できるように構成されている。なお、運転制御装置20の入出力ポートは、センサからの電気信号及び運転制御装置20からの制御信号を、図1に示すように通信線25を介して有線で送受信できるように構成してもよいし、通信線25を介さずに無線で送受信できるように構成してもよい。なお、入出力ポートは「I/Oポート」と略称される場合がある。
 また、運転制御装置20は、冷凍サイクル装置のp-h線図に対応するデータテーブル等の容量の大きな各種データを記憶可能なデータ記憶装置を有するように構成できる。なお、データ記憶装置は、運転制御装置20と別体で構成し、有線通信又は無線通信により運転制御装置20とデータの送受信ができるように構成してもよい。
 また、運転制御装置20は、制御処理の一部を専用のハードウェアで実現し、残余の制御処理をマイクロコンピュータ又はマイクロプロセッシングユニットで実現するように構成してもよい。
 次に、室外ユニット1の外観構造について説明する。なお、以下の説明における室外ユニット1の各々の構成部材同士の位置関係、例えば上下関係等の位置関係は、室外ユニット1を使用可能な状態に設置したときの位置関係とする。
 図2は、本実施の形態1に係る運転制御装置20が設置される室外ユニット1の概略的な外観構成の一例を示す斜視図である。図2では、室外ユニット1は、水冷式熱交換器6の内部で水等の熱媒体を冷媒により冷却又は加熱して、冷水又は温水を製造する空冷式のヒートポンプチラーユニットとして構成される。
 室外ユニット1は、四角錐台形状の第1の筐体30と、第1の筐体30の下部に設けられた立方体形状の第2の筐体35とを有している。四角錐台形状の第1の筐体30は、長方形形状の上面及び下面を有しており、上面の短辺の長さが下面の短辺の長さよりも長くなり、上面の長辺の長さが下面の長辺の長さと同一になるように構成されている。また、第1の筐体30の4つの側面のうち、面積の大きい対向する2つの側面は、傾斜面を構成している。第1の筐体30の2つの傾斜面には、空冷式熱交換器4が対向して配置されている。また、第1の筐体30の上面には、1以上、例えば図2においては4つのファン7が配置されている。第1の筐体30は、ファン7の駆動回転により、室外空気を空冷式熱交換器4を介して第1の筐体30の内部に誘導し、第1の筐体30の内部に誘導され、空冷式熱交換器4で熱交換された空気を上面から排気する熱交換室として構成されている。室外ユニット1のファン7は、第1の筐体30の上面で外部に開放された配置となっているため、騒音が発生しやすくなっている。
 立方体形状の第2の筐体35は、空冷式熱交換器4以外の冷凍サイクル回路10の構成要素、及び運転制御装置20を収容する機械室として構成されている。例えば、第2の筐体35には圧縮機2が収容されている。第2の筐体35は、例えば圧縮機2の駆動により発生する駆動音が第2の筐体35の内部で共鳴しないように防音対策を施して、圧縮機2から発生する騒音を抑制するように構成できる。また、室外ユニット1においては、第2の筐体35の4つの側面のうち、面積の大きい少なくとも1つの側面を、室外ユニット1のメンテナンスのためのサービスカバー等を設けたサービス面とすることができる。
 なお、室外ユニット1は、複数台並列に接続した構成としてもよい。また、第2の筐体35は、複数の冷凍サイクル回路10を収容できるように構成してもよい。
 次に、本実施の形態1に係る運転制御装置20における、冷房運転時の低騒音制御処理を説明する。
 図3は、本実施の形態1に係る運転制御装置20における、室外ユニット1の冷房運転時の低騒音制御処理の一例を示すフローチャートである。低騒音運転の時間帯は、例えば、運転制御装置20のスケジュール機能にて低騒音運転の開始時刻及び終了時刻を使用者側で入力することにより、設定することができる。また、運転制御装置20は、低騒音運転の開始信号を随時受信することにより低騒音運転を開始し、使用者からの低騒音運転の停止信号を随時受信することにより、低騒音運転を終了し、通常の冷房運転を行うように構成できる。また、運転制御装置20は、低騒音運転時において、一定時間ごと、例えば5分おきに図3の制御処理を繰り返し実行できるように構成される。また、運転制御装置20は、低騒音運転時において第1の温度センサ15から受信する外気温度に変動があった場合に、図3の制御処理を随時実行できるように構成できる。なお、室外ユニット1の「通常の冷房運転」とは、運転効率を優先する室外ユニット1の冷房運転をいい、特に、COPによって運転効率が評価される冷房運転状態をいう。なお、COPは、成績係数の略称である。
 ステップS1においては、運転制御装置20では、低騒音運転における目標凝縮温度Tc1が算出される。例えば、運転制御装置20では、使用者側で入力した低騒音運転における目標最大騒音値N1から、目標凝縮温度Tc1が算出される。
 運転制御装置20は、ステップS1の制御処理を行うために、例えば、凝縮温度の目標値と最大騒音値との関係を示したデータテーブルをあらかじめ記憶させ、低騒音運転における目標最大騒音値N1から、目標凝縮温度Tc1を算出可能なように構成できる。また、運転制御装置20は、ステップS1の制御処理を行うために、凝縮温度の目標値と最大騒音値との関係を示す演算式をあらかじめ記憶させ、低騒音運転における目標最大騒音値N1から、目標凝縮温度Tc1を算出するように構成してもよい。
 図4は、本実施の形態1に係る運転制御装置20が設置される室外ユニット1の冷房運転時における、凝縮温度の目標値と最大騒音値との関係の一例を示すグラフである。図4のグラフの横軸は凝縮温度であり、単位は摂氏温度である。図4のグラフの縦軸はファン7の最大騒音値であり、単位はデシベルである。室外ユニット1においては、ファン7の回転周波数が低減すると、ファン7の最大騒音値が小さくなり、凝縮温度の目標値は高くなる。したがって、図4に示すように、最大騒音値が小さく設定されると、凝縮温度の目標値は高くなる。低騒音運転時における目標最大騒音値N1は、通常運転時における最大騒音値N0よりも小さく設定されるため、目標凝縮温度Tc1は、通常運転時における設定凝縮温度Tc0よりも高く設定される。なお、図4のグラフの最大騒音値は、室外ユニット1の機械室に設けられたサービス面から水平方向に1.0m離れ、地面から垂直方向に1.5m離れた地点で測定された騒音量である。
 ステップS2においては、運転制御装置20では、低騒音運転における外気温度上限値Ta0が算出される。運転制御装置20は、凝縮温度の目標値と上限外気温度との関係を示したデータテーブルを記憶し、低騒音運転における目標凝縮温度Tc1から、外気温度上限値Ta0を算出可能なように構成できる。また、運転制御装置20は、凝縮温度の目標値と上限外気温度との関係を示す演算式を記憶し、低騒音運転における目標凝縮温度Tc1から、外気温度上限値Ta0を算出するように構成してもよい。
 図5は、本実施の形態1に係る運転制御装置20が設置される室外ユニット1における、冷房運転時の凝縮温度の目標値と上限外気温度との関係の一例を示すグラフである。図5のグラフの横軸は凝縮温度であり、単位は摂氏温度である。図5のグラフの縦軸は上限外気温度であり、単位は摂氏温度である。室外ユニット1においては、凝縮温度を一定とする制御を行っている場合に、外気温度が上昇すると、冷凍サイクル回路10における高圧部分の圧力も上昇する。上限外気温度は、室外ユニット1の異常動作を引き起こす高圧の上昇を回避するために設定される外気温度の許容値である。図5に示すように、室外ユニット1においては、凝縮温度の目標値を高く設定すると、上限外気温度は小さくなる関係にある。低騒音運転時においては、目標凝縮温度Tc1は、通常運転時における設定凝縮温度Tc0よりも高い温度に設定されるため、低騒音制御における外気温度上限値Ta0は、通常運転時の外気温度上限よりも低くなる。
 ステップS3においては、運転制御装置20では、現在の外気温度TaがステップS2で算出された外気温度上限値Ta0以下であるか否かが判定される。現在の外気温度Taは、第1の温度センサ15で検知された温度情報の電気信号から算出される測定値である。
 現在の外気温度Taが外気温度上限値Ta0以下であると判定された場合、ステップS4において、運転制御装置20では、凝縮温度Tcが目標凝縮温度Tc1と等しくなるように、ファン7の回転周波数が制御される。凝縮温度Tcは、例えば、第1の圧力センサ11で検知された吐出圧力の圧力情報の電気信号から算出される温度換算値である。以降の説明では、ステップS4における制御を「第1の冷房運転時低騒音制御」と称する。
 一方、現在の外気温度Taが外気温度上限値Ta0を超えると判定された場合、ステップS5において、運転制御装置20では、ファン7の回転周波数及び圧縮機2の運転周波数に上限を設けた低騒音制御処理が行われる。以降の説明では、ステップS5における制御を「第2の冷房運転時低騒音制御」と称する。
 本実施の形態1に係る運転制御装置20においては、以上の冷房運転時の低騒音制御処理が一定時間ごとに繰り返し実行される。
 次に、本実施の形態1に係る低騒音制御時における室外ユニット1の凝縮温度及びファン回転周波数の制御について、図6及び図7を用いて説明する。
 図6は、本実施の形態1に係る運転制御装置20が設置される室外ユニット1の冷房運転時における、外気温度と凝縮温度との関係の一例を示したグラフである。図6のグラフの横軸は外気温度であり、単位は摂氏温度である。図6のグラフの縦軸は凝縮温度であり、単位は摂氏温度である。図6のグラフにおいては、通常運転時の外気温度と凝縮温度との関係は破線で示されており、低騒音制御時の外気温度と凝縮温度との関係は実線で示されている。
 図7は、本実施の形態1に係る運転制御装置20が設置される室外ユニット1の冷房運転時における、ファン7の回転周波数と外気温度との関係の一例を示したグラフである。図7のグラフの横軸は外気温度であり、単位は摂氏温度である。図7のグラフの縦軸はファン7の回転周波数であり、単位はヘルツである。図7のグラフにおいては、通常運転時のファン7の回転周波数と凝縮温度との関係は破線で示されており、低騒音制御時のファン7の回転周波数と凝縮温度との関係は実線で示されている。
 図6の破線に示すように、通常運転時のファン7の回転周波数は、外気温度が閾値Ta1を超えるまでは、凝縮温度が設定凝縮温度Tc0で一定となるように運転効率を優先して制御されている。また、外気温度が閾値Ta1を超えると、ファン7の回転周波数は、騒音値を低減するために閾値F1で一定となるように制御される。なお、通常運転においては、ファン7の回転周波数の閾値F1は、例えば、ファン7の許容騒音量との関係を示すデータテーブル又は演算式によって決定される。また、通常運転時の外気温度の閾値Ta1は、例えば、設定凝縮温度Tc0とファン7の回転周波数の閾値F1との関係を示すデータテーブル又は演算式によって決定される。すなわち、通常運転の外気温度の閾値Ta1は、低騒音制御時のステップS2の制御処理のように、凝縮温度と上限外気温度との関係から設定されるものではない。
 これに対し、図6の実線に示すように、低騒音制御時の目標凝縮温度Tc1は、ファン7の回転駆動による最大騒音値N0との関係で決定されるため、目標凝縮温度Tc1は設定凝縮温度Tc0よりも高く設定される。運転制御装置20が設置された室外ユニット1では、目標凝縮温度Tc1を設定凝縮温度Tc0よりも高く設定することにより、ファン7の回転周波数を低減し、空冷式熱交換器4に供給されるファン7からの風量を低減する第1の冷房運転時低騒音制御が行うことができる。したがって、本実施の形態1の運転制御装置20では、図6の実線に示すように低騒音制御時においては、通常運転時と比較して、ファン7の回転周波数を低減することができるため、ファン7の騒音量を低減できる。また、外気温度が外気温度上限値Ta0を超えた場合は、凝縮温度を目標凝縮温度Tc1に維持すると、高圧の上昇により室外ユニット1の異常動作を引き起こす可能性が高くなる。また、ファン7の回転周波数の上昇及び圧縮機2の運転周波数の上昇により、ファン7及び圧縮機2から発生する騒音値が上昇する。したがって、室外ユニット1では、外気温度が外気温度上限値Ta0を超えた場合には、ファン7の回転周波数及び圧縮機2の運転周波数の上限値を設定する第2の冷房運転時低騒音制御が行われる。例えば、図7の実線に示すように、ファン7の回転周波数の上限値は、閾値F0に設定される。運転制御装置20では、ファン7の回転周波数及び圧縮機2の運転周波数の上限値を設定することにより、図6及び図7に示すように、凝縮温度を上昇させて室外ユニット1の異常動作を回避するとともに、ファン7及び圧縮機2から発生する騒音値の上昇を回避することができる。
 次に、本実施の形態1に係る運転制御装置20における、暖房運転時の低騒音制御処理を説明する。
 図8は、本実施の形態1に係る運転制御装置20における、室外ユニット1の暖房運転時の低騒音制御処理の一例を示すフローチャートである。低騒音運転の時間帯は、例えば、運転制御装置20のスケジュール機能にて低騒音運転の開始時刻及び終了時刻を使用者側で入力することにより、設定することができる。また、運転制御装置20は、低騒音運転の開始信号を随時受信することにより低騒音運転を開始し、使用者からの低騒音運転の停止信号を随時受信することにより、低騒音運転を終了し、通常の暖房運転を行うように構成できる。また、運転制御装置20は、低騒音運転時において、一定時間ごと、例えば5分おきに図8の制御処理を繰り返し実行できるように構成される。また、運転制御装置20は、低騒音運転時において第1の温度センサ15から受信する外気温度に変動があった場合に、図8の制御処理を随時実行できるように構成できる。なお、室外ユニット1の「通常の暖房運転」とは、運転効率を優先する室外ユニット1の暖房運転をいい、特に、COPによって運転効率が評価される暖房運転状態をいう。
 ステップS11においては、運転制御装置20では、低騒音運転における目標蒸発温度Te1が算出される。例えば、運転制御装置20では、使用者側で入力した低騒音運転における目標最大騒音値N3から、目標蒸発温度Te1が算出される。
 運転制御装置20は、ステップS11の制御処理を行うために、例えば、蒸発温度の目標値と最大騒音値との関係を示したデータテーブルをあらかじめ記憶させ、低騒音運転における目標最大騒音値N3から、目標蒸発温度Te1を算出可能なように構成できる。また、運転制御装置20は、ステップS11の制御処理を行うために、蒸発温度の目標値と最大騒音値との関係を示す演算式をあらかじめ記憶させ、低騒音運転における目標最大騒音値N3から、目標蒸発温度Te1を算出するように構成してもよい。
 図9は、本実施の形態1に係る運転制御装置20が設置される室外ユニット1の暖房運転時における、蒸発温度の目標値と最大騒音値との関係の一例を示すグラフである。図9のグラフの横軸は蒸発温度であり、単位は摂氏温度である。図9のグラフの縦軸はファン7の最大騒音値であり、単位はデシベルである。室外ユニット1においては、ファン7の回転周波数が低減すると、ファン7の最大騒音値が小さくなり、蒸発温度の目標値は低くなる。したがって、図9に示すように、最大騒音値が小さく設定されると、蒸発温度の目標値は低くなる。低騒音運転時における目標最大騒音値N3は、通常運転時における最大騒音値N2よりも小さく設定されるため、目標蒸発温度Te1は、通常運転時における設定蒸発温度Te0よりも低く設定される。なお、図9のグラフの最大騒音値は、冷房運転時と同様に、室外ユニット1の機械室に設けられたサービス面から水平方向に1.0m離れ、地面から垂直方向に1.5m離れた地点で測定された騒音量である。
 ステップS12においては、運転制御装置20では、低騒音運転における外気温度下限値Ta2が算出される。運転制御装置20は、蒸発温度の目標値と下限外気温度との関係を示したデータテーブルを記憶し、低騒音運転における目標蒸発温度Te1から、外気温度下限値Ta2を算出可能なように構成できる。また、運転制御装置20は、蒸発温度の目標値と下限外気温度との関係を示す演算式を記憶し、低騒音運転における目標蒸発温度Te1から、外気温度下限値Ta2を算出するように構成してもよい。
 図10は、本実施の形態1に係る運転制御装置20が設置される室外ユニット1の暖房運転時における、蒸発温度の目標値と下限外気温度との関係の一例を示すグラフである。図10のグラフの横軸は蒸発温度であり、単位は摂氏温度である。図10のグラフの縦軸は下限外気温度であり、単位は摂氏温度である。室外ユニット1においては、蒸発温度を一定とする制御を行っている場合に、外気温度が上昇すると、冷凍サイクル回路10における高圧部分の圧力も上昇する。下限外気温度は、室外ユニット1の異常動作を引き起こす高圧の上昇を回避するために設定される外気温度の許容値である。図10に示すように、室外ユニット1においては、蒸発温度の目標値を低く設定すると、下限外気温度は高くなる関係にある。低騒音運転時においては、目標蒸発温度Te1は、通常運転時における設定蒸発温度Te0よりも低い温度に設定されるため、低騒音制御における外気温度下限値Ta2は、通常運転時の外気温度下限よりも高くなる。
 ステップS13においては、運転制御装置20では、現在の外気温度TaがステップS12で算出された外気温度下限値Ta2以上であるか否かが判定される。現在の外気温度Taは、冷房運転時と同様に、第1の温度センサ15で検知された温度情報の電気信号から算出される測定値である。
 現在の外気温度Taが外気温度下限値Ta2以上であると判定された場合、ステップS14において、運転制御装置20では、蒸発温度Teが目標蒸発温度Te1と等しくなるように、ファン7の回転周波数が制御される。蒸発温度Teは、例えば、第2の圧力センサ12で検知された吸入圧力の圧力情報の電気信号から算出される温度換算値である。以降の説明では、ステップS14における制御を「第1の暖房運転時低騒音制御」と称する。
 一方、現在の外気温度Taが外気温度下限値Ta2未満であると判定された場合、ステップS15において、運転制御装置20では、ファン7の回転周波数及び圧縮機2の運転周波数に下限を設けた低騒音制御処理が行われる。以降の説明では、ステップS15における制御を「第2の暖房運転時低騒音制御」と称する。
 本実施の形態1に係る運転制御装置20においては、以上の暖房運転時の低騒音制御処理が一定時間ごとに繰り返し実行される。
 次に、本実施の形態1に係る低騒音制御時における室外ユニット1の蒸発温度及びファン回転周波数の制御について、図11及び図12を用いて説明する。
 図11は、本実施の形態1に係る運転制御装置20が設置される室外ユニット1の暖房運転時における、外気温度と蒸発温度との関係の一例を示したグラフである。図11のグラフの横軸は外気温度であり、単位は摂氏温度である。図11のグラフの縦軸は蒸発温度であり、単位は摂氏温度である。図11のグラフにおいては、通常運転時の外気温度と蒸発温度との関係は破線で示されており、低騒音制御時の外気温度と蒸発温度との関係は実線で示されている。
 図12は、本実施の形態1に係る運転制御装置20が設置される室外ユニット1の暖房運転時における、ファン7の回転周波数と外気温度との関係の一例を示したグラフである。図12のグラフの横軸は外気温度であり、単位は摂氏温度である。図12のグラフの縦軸はファン7の回転周波数であり、単位はヘルツである。図12のグラフにおいては、通常運転時のファン7の回転周波数と蒸発温度との関係は破線で示されており、低騒音制御時のファン7の回転周波数と蒸発温度との関係は実線で示されている。
 図11の破線に示すように、通常運転時のファン7の回転周波数は、外気温度が閾値Ta3以上である間は、蒸発温度が設定蒸発温度Te0で一定となるように運転効率を優先して制御されている。また、図12の破線に示すように、外気温度が閾値Ta3より低くなると、ファン7の回転周波数は、騒音値を低減するために閾値F3で一定となるように制御される。
 なお、図12の破線における外気温度の閾値Ta4以上の領域は、空冷式熱交換器4に供給される外気の温度が、設定蒸発温度Te0を維持するのに十分に高い温度であるため、ファン7の回転周波数が一定となっている。また、通常運転においては、ファン7の回転周波数の閾値F3は、例えば、ファン7の許容騒音量との関係を示すデータテーブル又は演算式によって決定される。また、外気温度の閾値Ta3は、例えば、設定蒸発温度Te0とファン7の回転周波数の閾値F1との関係を示すデータテーブル又は演算式によって決定される。すなわち、通常運転の外気温度の閾値Ta3は、低騒音制御時のステップS12の制御処理のように、蒸発温度と下限外気温度との関係からとして設定されるものではない。
 これに対し、図11の実線に示すように、低騒音制御時の目標蒸発温度Te1は、ファン7の回転駆動による目標最大騒音値N3との関係で決定されるため、目標蒸発温度Te1は設定蒸発温度Te0よりも低く設定される。運転制御装置20が設置された室外ユニット1では、目標蒸発温度Te1を設定蒸発温度Te0よりも低く設定することにより、ファン7の回転周波数を低減し、空冷式熱交換器4に供給するファン7からの風量を低減する第1の暖房運転時低騒音制御が行うことができる。したがって、本実施の形態1の運転制御装置20では、図12の実線に示すように、低騒音制御時においては、通常運転時と比較して、ファン7の回転周波数を低減することができるため、ファン7の騒音量を低減できる。また、外気温度が外気温度下限値Ta2未満となった場合は、蒸発温度を目標蒸発温度Te1に維持すると、高圧の上昇により室外ユニット1の異常動作を引き起こす可能性が高くなる。また、ファン7の回転周波数の上昇及び圧縮機2の運転周波数の上昇により、ファン7及び圧縮機2から発生する騒音値が上昇する。したがって、室外ユニット1では、外気温度が外気温度下限値Ta2未満となった場合には、ファン7の回転周波数及び圧縮機2の運転周波数の下限値を設定する第2の暖房運転時低騒音制御が行われる。例えば、図12に示すように、ファン7の回転周波数の下限値は、閾値F0に設定される。運転制御装置20では、ファン7の回転周波数及び圧縮機2の運転周波数の下限値を設定することにより、例えば、図11及び図12に示すように、蒸発温度を上昇させて室外ユニット1の異常動作を回避するとともに、ファン7及び圧縮機2から発生する騒音値の上昇を回避することができる。
 なお、図12の実線における閾値Ta5と閾値Ta6との間の外気温度の領域は、空冷式熱交換器4に供給される外気の温度が、設定蒸発温度Te0を維持するのに十分に高い温度であるため、ファン7の回転周波数が一定となっている。また、図12の実線における外気温度の閾値Ta6以上の領域は、空冷式熱交換器4に供給される外気の温度が更に高くなるため、ファン7の回転周波数が外気温度の上昇とともに減少している。
 以上に説明したように、本実施の形態1の運転制御装置20は、圧縮機2、及び凝縮器として機能する空冷式熱交換器4が接続された冷凍サイクル回路10と、空冷式熱交換器4に外気を供給するファン7とを有する冷凍サイクル装置で用いられ、冷房運転時において、空冷式熱交換器4における凝縮温度の目標値を上昇させる第1の冷房運転時低騒音制御を実行するように構成されている。
 また、本実施の形態1の運転制御装置20は、圧縮機2、及び蒸発器として機能する空冷式熱交換器4が接続された冷凍サイクル回路10と、空冷式熱交換器4に外気を供給するファン7とを有する冷凍サイクル装置で用いられるものであり、暖房運転時において、空冷式熱交換器4における蒸発温度の目標値を下降させる第1の暖房運転時低騒音制御を実行するように構成されている。
 また、本実施の形態1の運転制御装置20は、圧縮機2、空冷式熱交換器4、及び空冷式熱交換器4を凝縮器として機能させる冷房運転と空冷式熱交換器4を蒸発器として機能させる暖房運転とを切替える冷媒流路切替装置3が接続された冷凍サイクル回路10と、空冷式熱交換器4に外気を供給するファン7とを有する冷凍サイクル装置で用いられるものであり、冷房運転時において、空冷式熱交換器4における凝縮温度の目標値を上昇させる制御を実行し、暖房運転時において、空冷式熱交換器4における蒸発温度の目標値を下降させる制御を実行するように構成されている。
 上述の構成によれば、冷房運転時における凝縮温度の目標値を上昇、又は暖房運転時における蒸発温度の目標値を下降させることにより、ファン7の回転周波数を低減させる低騒音制御を行うことができる。このとき、圧縮機2の運動周波数は、通常時の運転のままで維持することができる。したがって、本発明によれば、冷凍サイクル装置の運転効率を維持しつつ、ファン7の回転音による騒音を抑制可能な運転制御装置20を提供することができる。また、本実施の形態1の運転制御装置20で用いられる冷凍サイクル装置は、冷房専用の冷凍サイクル装置、暖房専用の冷凍サイクル装置、又は冷暖房切替可能な冷凍サイクル装置として構成できる。
 上述の構成は、例えば、近隣に住宅が密集し周囲への騒音を配慮する必要がある立地条件、又は夜間運転等の騒音に配慮する必要がある環境において有用である。特に、住宅密集地の近隣に立地している工場又は病院等において、夜間に冷凍サイクル装置を駆動する場合においても、騒音対策が容易になり、運転効率の確保をできるため、夜間運転における冷凍サイクル装置の稼働率を低下させる手間を省くことができる。
 また、上述の構成によれば、ファン7の回転音による騒音を抑制することができるため、防音フード又は防音ダクト等の消音装置を冷凍サイクル装置に取り付ける必要がなくなる。したがって、消音装置の選定における設計期間又は現地での施工期間を短縮することができる。また、冷凍サイクル装置における、消音装置の設計費用を削減し、冷凍サイクル装置への負荷を削減し、メンテナンス性も向上させることが可能である。
 また、本実施の形態1の運転制御装置20は、空冷式熱交換器4に供給される外気の温度が、上昇させた凝縮温度の目標値から決定される外気温度の上限値を超えた場合に、ファン7の回転周波数及び圧縮機2の運転周波数の上限値を設ける第2の冷房運転時低騒音制御を実行するように構成できる。
 また、本実施の形態1の運転制御装置20は、空冷式熱交換器4に供給される外気の温度が、下降させた蒸発温度の目標値から決定される外気温度の下限値を超えた場合に、ファン7の回転周波数及び圧縮機2の運転周波数の上限値を設ける第2の暖房運転時低騒音制御を実行するように構成できる。
 本実施の形態1の運転制御装置20は、第2の冷房運転時低騒音制御又は第2の暖房運転時低騒音制御を実行できるように構成することにより、冷房運転時における凝縮温度の上昇又は暖房運転時における蒸発温度の低下による冷凍サイクル装置の異常動作を回避することができる。また、冷凍サイクル装置の異常動作を回避するとともに、ファン7及び圧縮機2から発生する騒音値の上昇を回避することができる。
 また、本実施の形態1の運転制御装置20で用いる冷凍サイクル装置を、空冷式のヒートポンプチラーユニットとして構成できる。空冷式のヒートポンプチラーユニットでは、圧縮機2は機械室である第2の筐体35に収納され、騒音値の低減が図ることは容易である。一方、ファン7は、外部に開放された構成を有する第1の筐体30の上部に配置されるため、空冷式のヒートポンプチラーユニットでは、ファン7の騒音に対する対処が必要となる。従来の騒音対策としては、消音装置を吸込み口又は吹出し口に取り付ける方法があるが、消音装置の重量を加えた場合の構造上の影響、又は圧力損失増加に伴う能力の影響を検討する必要があり、施工に時間がかかる場合がある。しかしながら、本実施の形態1の構成によれば、ファン7の回転音による騒音を抑制することができるため、消音装置を設置する必要がない。したがって、本実施の形態1の運転制御装置20は、空冷式のヒートポンプチラーユニットに用いることにより大きな効果が得られる。
実施の形態2.
 本発明の実施の形態2では、第1の冷房運転時低騒音制御又は第1の暖房運転時低騒音制御の実行時に運転制御装置20で行われる、低容量運転時の制御について説明する。運転制御装置20においては、低容量運転であるか否かは、例えば、室内ユニットの駆動台数を検知し、基準値以下の台数しか駆動していない場合に低容量運転状態であると判定することができる。
 図13は、本実施の形態2に係る運転制御装置20における、第1の冷房運転時低騒音制御又は第1の暖房運転時低騒音制御の実行時かつ低容量運転時に行われる制御処理の一例を示すフローチャートである。なお、本実施の形態2の運転制御装置20においては、圧縮機2の騒音値と圧縮機2の運転周波数との関係、及びファン7の騒音値とファン7の回転周波数との関係を示すデータテーブル又は演算式を記憶した状態で制御処理が行われる。
 ステップS21においては、運転制御装置20では、圧縮機2の運転周波数から算出した圧縮機2の騒音値Ncがファン7の回転周波数から算出したファン7の騒音値Nfを超えるか否かが判定される。圧縮機2の騒音値Ncがファン7の騒音値Nf以下である場合は、低容量運転時における制御処理は終了し、第1の冷房運転時低騒音制御又は第1の暖房運転時低騒音制御が行われる。
 圧縮機2の騒音値Ncがファン7の騒音値Nfを超える場合、ステップS22において、運転制御装置20では、ファン7の騒音値Nfが圧縮機2の騒音値Ncと等しくなるように、ファン7の回転周波数を上昇させる。
 本実施の形態2に係る運転制御装置20においては、以上の制御処理が、第1の冷房運転時低騒音制御又は第1の暖房運転時低騒音制御の実行と同時に繰り返し実行される。
 以上に説明したように、本実施の形態2の運転制御装置20は、第1の冷房運転時低騒音制御の実行中に、圧縮機2の騒音値が、ファン7の騒音値を超えた場合に、圧縮機2の騒音値とファン7の騒音値を同一にする制御を実行するように構成できる。
 また、本実施の形態2の運転制御装置20は、第1の暖房運転時低騒音制御の実行中に、圧縮機2の騒音値が、ファン7の騒音値を超えた場合に、前記圧縮機の騒音値と前記ファンの騒音値を同一にする制御を実行するように構成できる。
 上述の構成によれば、低容量運転時に、圧縮機2の騒音値がファン7の騒音値を超える場合に、ファン7の周波数を制御して、ファン7の騒音値が圧縮機2の騒音値と同等になるようにできるため、圧縮機2の騒音を低減しつつ、運転効率を確保することができる。したがって、上述の構成によれば、いわゆる中間期等の室内ユニットの運転負荷が小さい時期においても、冷凍サイクル装置の騒音対策が可能となる。
その他の実施の形態.
 上述の実施の形態に限らず種々の変形が可能である。例えば、上述の実施の形態1のステップS1の制御処理では、目標凝縮温度を最大騒音値から運転制御装置20で算出する構成としたが、目標凝縮温度と最大騒音値との関係を示すグラフ資料を予め使用者に提出し、目標凝縮温度を直接入力により設定するようにできる。
 また、上述の実施の形態は互いに組み合わせて用いることが可能である。
 1 室外ユニット、2 圧縮機、3 冷媒流路切替装置、4 空冷式熱交換器、4a 熱交換部、4b 第1のヘッダ主管、4c 第1のヘッダ枝管、4d 第2のヘッダ主管、4e 第2のヘッダ枝管、5 減圧装置、6 水冷式熱交換器、7 ファン、8 受液器、9 冷媒配管、10 冷凍サイクル回路、11 第1の圧力センサ、12 第2の圧力センサ、15 第1の温度センサ、16 第2の温度センサ、17 第3の温度センサ、18 第4の温度センサ、19 第5の温度センサ、20 運転制御装置、25 通信線、30 第1の筐体、35 第2の筐体。

Claims (8)

  1.  圧縮機及び凝縮器が接続された冷凍サイクル回路と、前記凝縮器に外気を供給するファンとを有する冷凍サイクル装置で用いられるものであり、
     冷房運転時において、前記凝縮器における凝縮温度の目標値を上昇させる第1の冷房運転時低騒音制御を実行する
    運転制御装置。
  2.  前記凝縮器に供給される前記外気の温度が、上昇させた凝縮温度の目標値から決定される外気温度の上限値を超えた場合に、前記ファンの回転周波数及び前記圧縮機の運転周波数の上限値を設ける第2の冷房運転時低騒音制御を実行する
    請求項1に記載の運転制御装置。
  3.  前記第1の冷房運転時低騒音制御の実行中に、前記圧縮機の騒音値が、前記ファンの騒音値を超えた場合に、前記ファンの騒音値と前記圧縮機の騒音値を同一にする制御を実行する
    請求項1又は2に記載の運転制御装置。
  4.  圧縮機及び蒸発器が接続された冷凍サイクル回路と、前記蒸発器に外気を供給するファンとを有する冷凍サイクル装置で用いられるものであり、
     暖房運転時において、前記蒸発器における蒸発温度の目標値を下降させる第1の暖房運転時低騒音制御を実行する
    運転制御装置。
  5.  前記蒸発器に供給される前記外気の温度が、下降させた蒸発温度の目標値から決定される外気温度の下限値を超えた場合に、前記ファンの回転周波数及び前記圧縮機の運転周波数の上限値を設ける第2の暖房運転時低騒音制御を実行する
    請求項4に記載の運転制御装置。
  6.  前記第1の暖房運転時低騒音制御の実行中に、前記圧縮機の騒音値が、前記ファンの騒音値を超えた場合に、前記圧縮機の騒音値と前記ファンの騒音値を同一にする制御を実行する
    請求項4又は5に記載の運転制御装置。
  7.  圧縮機、空冷式熱交換器、及び前記空冷式熱交換器を凝縮器として機能させる冷房運転と前記空冷式熱交換器を凝縮器として機能させる暖房運転とを切替える冷媒流路切替装置が接続された冷凍サイクル回路と、前記空冷式熱交換器に外気を供給するファンとを有する冷凍サイクル装置で用いられるものであり、
     冷房運転時において、前記空冷式熱交換器における凝縮温度の目標値を上昇させる制御を実行し、
     暖房運転時において、前記空冷式熱交換器における蒸発温度の目標値を下降させる制御を実行する
    運転制御装置。
  8.  前記冷凍サイクル装置が空冷式のヒートポンプチラーユニットである
    請求項1~7のいずれか1項に記載の運転制御装置。
PCT/JP2015/079551 2015-10-20 2015-10-20 運転制御装置 WO2017068640A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
GB1805686.1A GB2557826C (en) 2015-10-20 2015-10-20 Operation control device and method for operation control
PCT/JP2015/079551 WO2017068640A1 (ja) 2015-10-20 2015-10-20 運転制御装置
JP2017546306A JP6444526B2 (ja) 2015-10-20 2015-10-20 運転制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/079551 WO2017068640A1 (ja) 2015-10-20 2015-10-20 運転制御装置

Publications (1)

Publication Number Publication Date
WO2017068640A1 true WO2017068640A1 (ja) 2017-04-27

Family

ID=58557035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/079551 WO2017068640A1 (ja) 2015-10-20 2015-10-20 運転制御装置

Country Status (3)

Country Link
JP (1) JP6444526B2 (ja)
GB (1) GB2557826C (ja)
WO (1) WO2017068640A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109945397A (zh) * 2019-03-29 2019-06-28 广东美的制冷设备有限公司 空调器及其防凝露方法和装置
CN111023503A (zh) * 2019-12-19 2020-04-17 四川长虹空调有限公司 一种空调噪音控制方法
CN113606726A (zh) * 2021-06-29 2021-11-05 青岛海尔空调电子有限公司 空调器噪音控制方法、控制装置及空调器
CN114777345A (zh) * 2022-04-20 2022-07-22 青岛海信日立空调系统有限公司 制冷设备
WO2024127907A1 (ja) * 2022-12-15 2024-06-20 三菱重工サーマルシステムズ株式会社 コンデンシングユニットの制御装置、これを備えた輸送用冷凍装置及びコンデンシングユニットの制御方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109915990B (zh) * 2019-02-22 2020-10-09 珠海格力电器股份有限公司 控制风机的方法、装置和空调系统
DE102019114739A1 (de) * 2019-06-03 2020-12-03 Vaillant Gmbh Kompressor-Lüfter-Management
CN114061067A (zh) * 2020-08-07 2022-02-18 美的集团股份有限公司 风档的调节方法、空调器及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05172411A (ja) * 1991-12-24 1993-07-09 Hitachi Ltd 空冷式凝縮器用送風機の回転数制御方式
JPH07103546A (ja) * 1993-09-30 1995-04-18 Sanyo Electric Co Ltd 空気調和機
JPH0989347A (ja) * 1995-09-25 1997-04-04 Sanyo Electric Co Ltd 空気調和機
JPH1038392A (ja) * 1996-07-23 1998-02-13 Sanyo Electric Co Ltd 凝縮器用送風機の速調装置
JP2012247150A (ja) * 2011-05-30 2012-12-13 Mitsubishi Electric Corp 冷凍サイクル装置
WO2014103028A1 (ja) * 2012-12-28 2014-07-03 三菱電機株式会社 空気調和装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05172411A (ja) * 1991-12-24 1993-07-09 Hitachi Ltd 空冷式凝縮器用送風機の回転数制御方式
JPH07103546A (ja) * 1993-09-30 1995-04-18 Sanyo Electric Co Ltd 空気調和機
JPH0989347A (ja) * 1995-09-25 1997-04-04 Sanyo Electric Co Ltd 空気調和機
JPH1038392A (ja) * 1996-07-23 1998-02-13 Sanyo Electric Co Ltd 凝縮器用送風機の速調装置
JP2012247150A (ja) * 2011-05-30 2012-12-13 Mitsubishi Electric Corp 冷凍サイクル装置
WO2014103028A1 (ja) * 2012-12-28 2014-07-03 三菱電機株式会社 空気調和装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109945397A (zh) * 2019-03-29 2019-06-28 广东美的制冷设备有限公司 空调器及其防凝露方法和装置
CN111023503A (zh) * 2019-12-19 2020-04-17 四川长虹空调有限公司 一种空调噪音控制方法
CN111023503B (zh) * 2019-12-19 2021-07-06 四川长虹空调有限公司 一种空调噪音控制方法
CN113606726A (zh) * 2021-06-29 2021-11-05 青岛海尔空调电子有限公司 空调器噪音控制方法、控制装置及空调器
CN113606726B (zh) * 2021-06-29 2022-12-27 青岛海尔空调电子有限公司 空调器噪音控制方法、控制装置及空调器
CN114777345A (zh) * 2022-04-20 2022-07-22 青岛海信日立空调系统有限公司 制冷设备
WO2024127907A1 (ja) * 2022-12-15 2024-06-20 三菱重工サーマルシステムズ株式会社 コンデンシングユニットの制御装置、これを備えた輸送用冷凍装置及びコンデンシングユニットの制御方法

Also Published As

Publication number Publication date
GB2557826B (en) 2020-09-30
GB2557826C (en) 2020-10-21
JP6444526B2 (ja) 2018-12-26
JPWO2017068640A1 (ja) 2018-04-26
GB201805686D0 (en) 2018-05-23
GB2557826A (en) 2018-06-27

Similar Documents

Publication Publication Date Title
JP6444526B2 (ja) 運転制御装置
US11175076B2 (en) Free cooling refrigeration system
ES2700466T3 (es) Optimización de funcionamiento de sistema de refrigeración enfriado por aire
CN108700347B (zh) 用于控制制冷系统的系统和方法
US20170030599A1 (en) Hvac unit with hot gas reheat
US20120103005A1 (en) Screw chiller economizer system
JP5979112B2 (ja) 冷凍装置
WO2016194098A1 (ja) 空気調和装置及び運転制御装置
JP6021955B2 (ja) 冷凍サイクル装置、及び、冷凍サイクル装置の制御方法
JP2014102050A (ja) 冷凍装置
JPWO2011099074A1 (ja) 冷凍サイクル装置
CN111425977A (zh) 一种多联式热管精密空调
JP2014202385A (ja) 冷凍サイクル装置
JP6758506B2 (ja) 空気調和装置
JP6155824B2 (ja) 空気調和装置
JP5404231B2 (ja) 空気調和装置
JP6310077B2 (ja) 熱源システム
US11668496B2 (en) Supplemental cooling for an HVAC system
JP6984048B2 (ja) 空気調和機
EP3059523A1 (en) Oil line control system
JP5646300B2 (ja) 冷凍装置
JP7038836B2 (ja) 冷水供給システム
JP2024036963A (ja) 冷凍サイクル装置
JP2021038907A (ja) 空気調和機
WO2014057454A2 (en) Combined air conditioner, heat pump and water heater

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15906646

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017546306

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 201805686

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20151020

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15906646

Country of ref document: EP

Kind code of ref document: A1