WO2020003490A1 - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
WO2020003490A1
WO2020003490A1 PCT/JP2018/024787 JP2018024787W WO2020003490A1 WO 2020003490 A1 WO2020003490 A1 WO 2020003490A1 JP 2018024787 W JP2018024787 W JP 2018024787W WO 2020003490 A1 WO2020003490 A1 WO 2020003490A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
refrigerant
compressor
indoor fan
air
Prior art date
Application number
PCT/JP2018/024787
Other languages
English (en)
French (fr)
Inventor
佑樹 原
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2020526849A priority Critical patent/JPWO2020003490A1/ja
Priority to PCT/JP2018/024787 priority patent/WO2020003490A1/ja
Publication of WO2020003490A1 publication Critical patent/WO2020003490A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle

Definitions

  • the present invention relates to an air conditioner having a refrigerant circuit.
  • an air conditioner performs pressure protection control for controlling an outdoor unit actuator including an outdoor fan and a compressor so that a high pressure side pressure, which is a pressure of a high pressure side circuit, does not exceed an upper limit value. Further, the air conditioner performs pressure protection control for controlling the indoor unit actuator including the indoor fan and the expansion valve so that the low pressure side pressure, which is the pressure of the low pressure side circuit, does not exceed the upper limit value. For example, if the indoor unit is an outdoor air introduction type indoor unit and the outside air temperature is high outside air exceeding 40 ° C., when the air conditioner performs the cooling operation, one or both of the high pressure side pressure and the low pressure side pressure increases. Tend to.
  • the air conditioner When the high-pressure side pressure rises to the upper limit, the air conditioner performs high-pressure protection control to lower the frequency of the compressor to protect the actuator of the high-pressure side circuit. As the frequency of the compressor decreases, the low pressure side pressure increases. When the low pressure side pressure rises to the upper limit value, the air conditioner performs low pressure protection control for reducing the opening of the expansion valve in order to protect the actuator of the low pressure side circuit. If the high-pressure protection control and the low-pressure protection control are repeated and the suction pressure of the compressor deviates from the guaranteed range, the operation of the air conditioner may have to be stopped once.
  • the present invention has been made in order to solve the above-described problems, and provides an air conditioner that can suppress an increase in refrigerant pressure even with a single indoor unit.
  • An air conditioner includes a refrigerant circuit in which a compressor, a heat source-side heat exchanger, an expansion valve, and a load-side heat exchanger are connected, in which a refrigerant circulates, and a room that supplies air to the load-side heat exchanger.
  • a fan a discharge pressure sensor provided at a refrigerant discharge port of the compressor, and detecting a discharge pressure of the refrigerant
  • a suction pressure sensor provided at a refrigerant suction port of the compressor, and detecting a suction pressure of the refrigerant
  • Determining means for determining whether or not the refrigerant pressure has reached a protection pressure, based on whether or not the discharge pressure has increased to a high pressure upper limit, or whether or not the suction pressure has increased to a low pressure upper limit;
  • the control means controls the indoor fan and an actuator other than the indoor fan to reduce the refrigerant pressure.
  • the refrigerant pressure can be reduced by controlling not only the indoor fan but also other actuators in response to the increase in the refrigerant pressure.
  • FIG. 2 is a refrigerant circuit diagram illustrating a configuration example of an air-conditioning apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a functional block diagram illustrating a configuration example of a control device illustrated in FIG. 1.
  • 5 is a flowchart showing an operation procedure of the air-conditioning apparatus according to Embodiment 1 of the present invention.
  • 2 is a table showing an example of air volume control of the indoor fan shown in FIG. 1. It is a flowchart which shows the operation
  • Embodiment 1 FIG. The configuration of the air-conditioning apparatus according to Embodiment 1 will be described.
  • an air-conditioning apparatus will be described as an external-air introduction type apparatus in which outside air is introduced, and the introduced external air is air-conditioned and supplied to a space to be air-conditioned.
  • FIG. 1 is a refrigerant circuit diagram showing one configuration example of the air-conditioning apparatus according to Embodiment 1 of the present invention.
  • the air conditioner 1 has a heat source side unit 10 and a load side unit 20.
  • the heat source side unit 10 includes a compressor 11, a flow switching device 12, a heat source side heat exchanger 13, an outdoor fan 14, and a control device 15.
  • the load-side unit 20 includes an expansion valve 21, a load-side heat exchanger 22, and an indoor fan 23.
  • the compressor 11, the heat source side heat exchanger 13, the expansion valve 21, and the load side heat exchanger 22 are connected by a refrigerant pipe, and a refrigerant circuit 30 in which the refrigerant circulates is configured.
  • a case will be described in which one load-side unit 20 is provided, but a plurality of load-side units 20 may be connected to the heat source-side unit 10.
  • a discharge pressure sensor 41 is provided on the refrigerant discharge port side of the compressor 11.
  • the discharge pressure sensor 41 detects a discharge pressure Pd, which is a pressure of the refrigerant discharged from the compressor 11.
  • the discharge pressure Pd corresponds to the high-pressure side pressure of the refrigeration cycle.
  • a suction pressure sensor 42 is provided on the refrigerant suction port side of the compressor 11.
  • the suction pressure sensor 42 detects a suction pressure Ps, which is a pressure of the refrigerant drawn into the compressor 11.
  • the suction pressure Ps corresponds to the low pressure side pressure of the refrigeration cycle.
  • the load side unit 20 is provided with a temperature sensor 43.
  • the temperature sensor 43 detects the blowout temperature Taout of the air after the outside air exchanges heat with the refrigerant in the load side heat exchanger 22.
  • the compressor 11 compresses and discharges the refrigerant circulating in the refrigerant circuit 30.
  • the compressor 11 is an inverter-type compressor whose capacity can be adjusted by controlling the rotation frequency.
  • the compressor 11 is, for example, a compressor such as a rotary compressor, a scroll compressor, and a screw compressor.
  • the flow switching device 12 is provided on the refrigerant outlet side of the compressor 11.
  • the flow switching device 12 switches the flow of the refrigerant according to the operation modes of the heating operation and the cooling operation. Specifically, the flow path switching device 12 switches the flow path so that the refrigerant discharged from the compressor 11 during the cooling operation flows through the heat source side heat exchanger 13, and is discharged from the compressor 11 during the heating operation.
  • the flow path is switched so that the refrigerant flows through the load-side heat exchanger 22.
  • the flow path switching device 12 is, for example, a four-way valve.
  • the heat source side heat exchanger 13 functions as an evaporator during the heating operation and functions as a condenser during the cooling operation.
  • the heat source side heat exchanger 13 is, for example, a fin tube type heat exchanger.
  • the outdoor fan 14 supplies air to the heat source side heat exchanger 13 by rotating.
  • the outdoor fan 14 is, for example, a fan such as a propeller fan and a turbo fan.
  • the condensing capacity and the evaporating capacity of the heat source side heat exchanger 13 are adjusted by the rotation speed of the outdoor fan 14.
  • the load-side heat exchanger 22 functions as a condenser during the heating operation and functions as an evaporator during the cooling operation.
  • the load side heat exchanger 22 is, for example, a fin tube type heat exchanger.
  • the expansion valve 21 expands the refrigerant flowing out of the heat source side heat exchanger 13 or the load side heat exchanger 22 to reduce the pressure.
  • the expansion valve 21 is, for example, an electric expansion valve that can adjust the flow rate of the refrigerant.
  • the indoor fan 23 supplies air to the load-side heat exchanger 22 by rotating.
  • the indoor fan 23 is, for example, a fan such as a propeller fan, a cross flow fan, a sirocco fan, and a turbo fan.
  • FIG. 2 is a functional block diagram illustrating a configuration example of the control device illustrated in FIG. 1.
  • the control device 15 includes a memory 51 that stores a program, and a CPU (Central Processing Unit) 52 that executes processing according to the program.
  • the control device 15 is, for example, a microcomputer.
  • the control device 15 is connected to the compressor 11, the flow switching device 12, the expansion valve 21, the outdoor fan 14, and the indoor fan 23 by signal lines.
  • the control device 15 is connected to various sensors such as a discharge pressure sensor 41, a suction pressure sensor 42, and a temperature sensor 43 by signal lines.
  • the control device 15 includes a determination unit 53 and a control unit 54. When the CPU 52 executes the program, the determination unit 53 and the control unit 54 are configured in the air conditioner 1.
  • the determining means 53 determines whether or not the discharge pressure Pd detected by the discharge pressure sensor 41 has increased to the high pressure upper limit. When determining that the discharge pressure Pd has risen to the high pressure upper limit, the determination unit 53 notifies the control unit 54 of a determination result indicating that the refrigerant pressure has reached the protection pressure. The control means 54 controls the rotation frequency of the compressor 11 and the opening of the expansion valve 21 so that the detection value of the temperature sensor 43 becomes the set temperature. Further, when the determination unit 53 notifies the determination result that the refrigerant pressure has reached the protection pressure from the determination unit 53, the control unit 54 controls the air volume of the indoor fan 23 and the frequency of the compressor 11 to lower the refrigerant pressure.
  • FIG. 1 shows a configuration in the case where the control device 15 is provided in the heat source side unit 10, but the installation location of the control device 15 is not limited to the heat source side unit 10.
  • the control device 15 may be provided in the load-side unit 20.
  • FIG. 1 shows a configuration in which the expansion valve 21 is provided in the load-side unit 20, but the expansion valve 21 may be provided in the heat-source-side unit 10.
  • a temperature sensor and a pressure sensor may be provided, and in this case, the control unit 54 may control the refrigeration cycle using the detection values of the temperature sensor and the pressure sensor (not shown). .
  • the pressure sensor for detecting the high pressure side pressure is not limited to the discharge pressure sensor 41, and may be provided in the high pressure side circuit in the refrigerant circuit 30.
  • the pressure sensor for detecting the low pressure side pressure is not limited to the suction pressure sensor 42, and may be provided in the low pressure side circuit of the refrigerant circuit 30.
  • the control device 15 switches the flow path of the flow switching device 12 so that the refrigerant discharged from the compressor 11 flows into the heat source side heat exchanger 13.
  • the control device 15 switches the flow path of the flow switching device 12 so that the refrigerant discharged from the compressor 11 flows into the heat source side heat exchanger 13.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 11, the high-temperature and high-pressure gas refrigerant is discharged from the compressor 11.
  • the gas refrigerant discharged from the compressor 11 flows into the heat source side heat exchanger 13 via the flow path switching device 12.
  • the refrigerant that has flowed into the heat source side heat exchanger 13 condenses by exchanging heat with air in the heat source side heat exchanger 13 and flows out of the heat source side heat exchanger 13 as a low-temperature and high-pressure liquid refrigerant.
  • the liquid refrigerant flowing out of the heat source side heat exchanger 13 is turned into a low-temperature and low-pressure liquid refrigerant by the expansion valve 21.
  • the liquid refrigerant flows into the load side heat exchanger 22.
  • the refrigerant that has flowed into the load-side heat exchanger 22 evaporates by exchanging heat with the outside air in the load-side heat exchanger 22, and flows out of the load-side heat exchanger 22 as a low-temperature low-pressure gas refrigerant.
  • the refrigerant absorbs heat from the introduced outside air, so that the cooled air is supplied to the room.
  • the refrigerant flowing out of the load-side heat exchanger 22 is drawn into the compressor 11 via the flow switching device 12.
  • the refrigerant discharged from the compressor 11 flows through the heat source side heat exchanger 13, the expansion valve 21, and the load side heat exchanger 22 in order, and is then sucked into the compressor 11. Cycle is repeated.
  • the control device 15 switches the flow path of the flow path switching device 12 so that the refrigerant discharged from the compressor 11 flows into the load-side heat exchanger 22.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 11, so that the high-temperature and high-pressure gas refrigerant is discharged from the compressor 11.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 11 flows into the load-side heat exchanger 22 via the flow path switching device 12.
  • the refrigerant that has flowed into the load-side heat exchanger 22 is condensed by exchanging heat with the outside air in the load-side heat exchanger 22, and flows out of the load-side heat exchanger 22 as a high-temperature and high-pressure liquid refrigerant.
  • the refrigerant radiates heat to the introduced outside air, so that warmed air is supplied to the room.
  • the high-temperature and high-pressure liquid refrigerant flowing out of the load-side heat exchanger 22 becomes low-temperature and low-pressure liquid refrigerant by the expansion valve 21.
  • the liquid refrigerant flows into the heat source side heat exchanger 13.
  • the refrigerant that has flowed into the heat source side heat exchanger 13 evaporates by exchanging heat with air in the heat source side heat exchanger 13, and flows out of the heat source side heat exchanger 13 as a low-temperature low-pressure gas refrigerant.
  • the refrigerant flowing out of the heat source side heat exchanger 13 is drawn into the compressor 11 via the flow switching device 12.
  • the refrigerant discharged from the compressor 11 flows through the load-side heat exchanger 22, the expansion valve 21, and the heat-source-side heat exchanger 13 in order, and then flows to the compressor 11. The cycle until suction is repeated.
  • FIG. 3 is a flowchart showing an operation procedure of the air-conditioning apparatus according to Embodiment 1 of the present invention.
  • FIG. 4 is a table showing an example of air volume control of the indoor fan shown in FIG.
  • the determining means 53 monitors the discharge pressure Pd at a constant cycle, and determines whether the high pressure side pressure has reached the high pressure protection pressure. Specifically, the determination unit 53 determines whether the discharge pressure Pd has reached the high pressure upper limit value Pdmax (step S101). If the discharge pressure Pd has not reached the high pressure upper limit value Pdmax, the determining means 53 returns to step S101.
  • step S101 If the result of determination in step S101 is that the discharge pressure Pd has reached the high pressure upper limit value Pdmax, the control means 54 reduces the frequency of the compressor 11 (step S102). Further, the control means 54 reduces the air volume of the indoor fan 23 (step S103). In this manner, the air conditioner 1 reduces the amount of decrease ⁇ F in frequency to be reduced by the high pressure protection control to the compressor 11, and makes up for the remaining amount by controlling the air flow of the indoor fan 23.
  • the air volume control of the indoor fan 23 in step S103 will be described.
  • the outside air temperature be Tin
  • the threshold value of the outside air temperature be Tst_outdoor.
  • the threshold value Tst_outdoor is, for example, a value of 40 ° C. or more.
  • the threshold value set for the outlet temperature Taout is Tst.
  • the current air volume of the indoor fan 23 before the air volume control in step S103 is performed is Vair
  • the air volume of the indoor fan 23 after the air volume control in step S103 is performed is Vair * .
  • the types of air volume that can be set for the indoor fan 23 are four types: strong wind Hi, medium wind Mi, weak wind Lo, and light wind LoLo.
  • the air volume of the indoor fan 23 set to the strong wind Hi is Vair_hi
  • the air volume of the indoor fan 23 set to the medium wind Mi is Vair_mi.
  • the air volume of the indoor fan 23 set to the low wind L is Vair_lo
  • the air volume of the indoor fan 23 set to the low wind LoLo is Vair_lolo.
  • the magnitude of the air volume has a relationship of Vair_hi> Vair_mi> Vair_lo> Vair_lolo.
  • the type of air volume of the indoor fan 23 is not limited to four types.
  • condition (1) Tin> Tst_outdoor
  • condition (2) Taout> Tst
  • the control unit 54 After the air volume of the indoor fan 23 is set to the low wind LoLo, the control unit 54 increases the air volume of the indoor fan 23 to the air volume set by the user according to the following determination and FIG. A to c used for the determination are arbitrary constants set by the refrigerating capacity of the load-side unit 20, the refrigerating load, and the like.
  • the control unit 54 maintains the air volume of the indoor fan 23.
  • the air volume of the indoor fan 23 is forcibly set to the low air volume LoLo, the air volume can be switched to the air volume set by the user thereafter.
  • ⁇ Pd is a pressure amount [Pa] of the high-pressure side pressure to be reduced by the conventional high-pressure protection control.
  • ⁇ F is the frequency decrease [Hz] when the frequency of the compressor is reduced by the conventional high-pressure protection control.
  • A is an arbitrary coefficient determined by the refrigeration cycle system. Specifically, A is a coefficient determined by the relationship between the high-pressure side pressure and the frequency of the compressor.
  • ⁇ Ps is a pressure amount [Pa] of the low-pressure side pressure that increases due to ⁇ F.
  • B is an arbitrary coefficient determined by the refrigeration cycle system. Specifically, B is a coefficient determined by the relationship between the low pressure side pressure and the frequency of the compressor. As shown in the equations (1) and (2), when the high pressure side pressure is reduced, the low pressure side pressure increases.
  • the air-conditioning apparatus 1 includes a plurality of load units 20 connected to the heat source unit 10
  • Different identification numbers are assigned to the respective load-side units 20 of the plurality of load-side units 20.
  • the identification number is, for example, a positive integer of 1, 2, 3,....
  • f is an arbitrary frequency [Hz] of the compressor 11.
  • f means a value that makes the frequency to be reduced smaller than the reduction amount ⁇ F that is reduced by the high-voltage protection control.
  • C is an arbitrary coefficient determined by the refrigeration cycle system. Specifically, C is a coefficient determined by the relationship between the high-pressure side pressure and the airflow of the indoor fan.
  • Ga ⁇ is the potential [kg / h] of the load side heat exchanger.
  • the potential of the heat exchanger is a value indicating the performance of the heat exchanger.
  • j is an identification number of the load side unit 20 included in the air conditioner 1.
  • x is an identification number indicating the load-side unit 20 whose air volume of the indoor fan 23 is to be reduced.
  • Ga is the air volume [m 3 / min] of the indoor fan 23.
  • ⁇ * Ps is a pressure amount [Pa] of the low-pressure side pressure that is increased by ⁇ (F ⁇ f).
  • D is an arbitrary coefficient determined by the refrigeration cycle system. Specifically, D is a coefficient determined by the relationship between the low-pressure side pressure and the air volume of the indoor fan. Comparing Equation (2) and Equation (4), ⁇ * Ps ⁇ Ps. Therefore, the first embodiment can suppress the amount of increase in the low pressure side pressure as compared with the comparative example.
  • the high-pressure side pressure is reduced by reducing the amount of decrease ⁇ F of the frequency to be reduced by the compressor 11 to be lower than the frequency to be reduced during the high-pressure protection control and reducing the remaining amount by controlling the air flow of the indoor fan 23.
  • the required amount can be reduced. As a result, it is possible to suppress an increase in the low-pressure side pressure caused by a decrease in the frequency of the compressor 11.
  • the control unit 54 causes the indoor fan 23 and the actuator other than the indoor fan 23 to operate. Is controlled to lower the refrigerant pressure.
  • the control of the indoor fan 23 is insufficient for the compressor 11
  • the pressure of the refrigerant can be reduced by supplementing with the control.
  • control unit 54 controls the compressor 11 to reduce a part of the decrease in the discharge pressure Pd, and controls the airflow of the indoor fan 23 to reduce the remaining decrease. May be lowered.
  • the air conditioner 1 can prevent any of the high-pressure side pressure and the low-pressure side pressure from increasing by adjusting the air volume of the indoor fan 23 in accordance with the blowout temperature Taout.
  • the air volume of the indoor fan 23 is often set by the user. If the air-conditioning apparatus 1 attempts to lower the refrigerant pressure only by controlling the air flow of the indoor fan 23, the air flow will greatly differ from the air flow set by the user.
  • the compressor 11 is controlled to reduce the refrigerant pressure. Therefore, a change in the air volume of the indoor fan 23 is not greatly different from the air volume set by the user, and it is possible to prevent the user from feeling uncomfortable.
  • the operation guarantee range of the outside air temperature can be increased, for example, from 43 ° C. to about 50 ° C., and the outside air temperature guaranteed by the product can be expanded.
  • Embodiment 2 FIG.
  • the first embodiment is a case where the indoor fan and the compressor are controlled to suppress the increase in the refrigerant pressure.
  • the indoor fan and the expansion valve are controlled to suppress the increase in the refrigerant pressure. Things.
  • the same components as those described in the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the determining means 53 determines whether or not the suction pressure Ps detected by the suction pressure sensor 42 has increased to the low pressure upper limit value. When determining that the suction pressure Ps has increased to the low pressure upper limit value, the determination unit 53 notifies the control unit 54 of a determination result indicating that the refrigerant pressure has reached the protection pressure. When the determination unit 53 notifies the determination result that the refrigerant pressure has reached the protection pressure from the determination unit 53, the control unit 54 controls the air flow of the indoor fan 23 and the opening degree of the expansion valve 21 to lower the refrigerant pressure.
  • FIG. 5 is a flowchart showing an operation procedure of the air-conditioning apparatus according to Embodiment 2 of the present invention.
  • the determining means 53 monitors the suction pressure Ps at a constant cycle, and determines whether the low pressure side pressure has reached the low pressure protection pressure. Specifically, the determination unit 53 determines whether the suction pressure Ps has reached the low pressure upper limit value Psmax (step S201). If the suction pressure Ps has not reached the low pressure upper limit value Psmax, the determining means 53 returns to step S201.
  • step S201 If the result of the determination in step S201 indicates that the suction pressure Ps has reached the low pressure upper limit value Psmax, the control means 54 reduces the opening of the expansion valve 21 (step S202). Further, the control means 54 reduces the air volume of the indoor fan 23 (step S203). In this way, the air-conditioning apparatus 1 reduces the amount of decrease ⁇ Sj in the degree of opening that is reduced to the expansion valve 21 by the low-pressure protection control, and makes up for the remaining amount by controlling the airflow of the indoor fan 23.
  • ⁇ Ps is the pressure amount [Pa] of the low pressure side pressure to be reduced by the conventional low pressure protection control.
  • Ga ⁇ is the potential [kg / h] of the load side heat exchanger 22.
  • j is the identification number of the load side unit of the air conditioner.
  • x is an identification number indicating a load-side unit whose air volume of the indoor fan is to be reduced.
  • ⁇ Sj is a decrease amount [pulse] of the opening degree of the expansion valve to be throttled by the conventional low pressure protection control.
  • the expansion valve is an electronic expansion valve whose opening is adjusted by the rotation angle of the stepping motor. The rotation angle of the stepping motor is controlled by the number of pulses.
  • E is an arbitrary coefficient determined by the refrigeration cycle system. Specifically, E is a coefficient determined by the relationship between the low pressure side pressure and the degree of opening of the expansion valve.
  • ⁇ Pd is the pressure amount [Pa] of the high-pressure side pressure that increases due to ⁇ Sj.
  • F is an arbitrary coefficient determined by the refrigeration cycle system. Specifically, F is a coefficient determined by the relationship between the high pressure side pressure and the degree of opening of the expansion valve. As shown in the equations (5) and (6), when the low pressure side pressure is reduced, the high pressure side pressure increases.
  • the air-conditioning apparatus 1 includes a plurality of load units 20 connected to the heat source unit 10
  • Different identification numbers are assigned to the respective load-side units 20 of the plurality of load-side units 20.
  • sj is an arbitrary opening [pulse] of the expansion valve 21.
  • sj means a value that decreases the degree of opening to be smaller than the reduction amount ⁇ Sj that is reduced by the low-pressure protection control.
  • Other parameters are the same as those described above, and a description thereof will not be repeated.
  • ⁇ * Pd is a pressure amount [Pa] of the low-pressure side pressure that is increased by ⁇ (Sj ⁇ sj). Other parameters are the same as those described above, and a description thereof will not be repeated. Comparing Equation (6) with Equation (8), ⁇ * Pd ⁇ Pd. Therefore, the second embodiment can suppress the amount of increase in the high pressure side pressure as compared with the comparative example.
  • the lowering amount ⁇ Sj of the opening degree Sj to be reduced by the expansion valve 21 is made smaller than the opening degree to be reduced at the time of the low pressure protection control, and the remaining amount is reduced by controlling the air flow of the indoor fan 23 to thereby reduce the low pressure.
  • the required side pressure can be reduced.
  • the amount of increase in the high-pressure side pressure due to the adjustment of the opening of the expansion valve 21 can be suppressed.
  • the air-conditioning apparatus 1 When the suction pressure Ps reaches the low pressure upper limit, the air-conditioning apparatus 1 according to Embodiment 2 performs control to reduce the opening of the expansion valve 21 and control to reduce the air volume of the indoor fan 23.
  • the control unit 54 may reduce a part of the reduction in the suction pressure Ps by controlling the expansion valve 21 and reduce the remaining reduction by controlling the indoor fan 23.
  • the second embodiment by controlling the opening degree of the expansion valve 21, it is possible to suppress a rise in the low-pressure side pressure and to suppress a rise in the high-pressure side pressure.
  • the cooling capacity under high outside air exceeding 40 ° C. is improved, and the outside air temperature guaranteed by the product can be increased.
  • Embodiment 3 is a combination of the first embodiment and the second embodiment.
  • the same components as those described in the first and second embodiments are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the determination unit 53 determines whether the discharge pressure Pd detected by the discharge pressure sensor 41 has increased to the high pressure upper limit.
  • the determining means 53 determines whether or not the suction pressure Ps detected by the suction pressure sensor 42 has increased to the low pressure upper limit value.
  • the determination unit 53 notifies the control unit 54 of a determination result indicating that the refrigerant pressure has reached the protection pressure.
  • the determination unit 53 notifies the control unit 54 of a determination result indicating that the refrigerant pressure has reached the protection pressure.
  • the control means 54 controls the frequency of the compressor 11, the opening degree of the expansion valve 21, and the air volume of the indoor fan 23 when notified of the determination result that the refrigerant pressure has reached the protection pressure from the determination means 53. To lower the refrigerant pressure.
  • FIG. 6 is a flowchart showing an operation procedure of the air-conditioning apparatus according to Embodiment 3 of the present invention.
  • the determining unit 53 monitors the discharge pressure Pd at a constant cycle, and determines whether the discharge pressure Pd has reached the high pressure upper limit value Pdmax (step S301). If the discharge pressure Pd has not reached the high pressure upper limit value Pdmax, the determining means 53 proceeds to step S302. In step S302, the determination unit 53 determines whether the suction pressure Ps has reached the low pressure upper limit value Psmax. If the result of determination in step S302 is that the suction pressure Ps has not reached the low pressure upper limit value Psmax, the determining means 53 returns to step S301.
  • step S302 the determination means 53 determines whether the suction pressure Ps has reached the low pressure upper limit value Psmax. If the result of determination in step S302 is that the suction pressure Ps has reached the low pressure upper limit value Psmax, the frequency of the compressor 11 is reduced (step S303), and the opening of the expansion valve 21 is reduced (step S304). Also, as a result of the determination in step S301, if the discharge pressure Pd has reached the high pressure upper limit value Pdmax, the control unit 54 also performs the control in steps S303 and S304. After steps S303 and S304, the control means 54 reduces the air volume of the indoor fan 23 (step S305).
  • the air conditioner 1 reduces the amount of decrease ⁇ F in the frequency to be reduced by the compressor 11 to be lower than the frequency to be decreased in the high-pressure protection control, and reduces the amount of decrease ⁇ Sj in the opening degree Sj to be reduced by the expansion valve 21 to the low pressure.
  • the opening is made smaller than the opening that is reduced during protection control.
  • the amount of the decrease in the refrigerant pressure that is insufficient under the control of the compressor 11 and the expansion valve 21 is reduced by the airflow of the indoor fan 23.
  • FIG. 7 is a timing chart showing an example of the operation of the air conditioner of the comparative example.
  • the five graphs shown in FIG. 7 are graphs showing the time change of each parameter of the compressor frequency f, the discharge pressure Pd, the suction pressure Ps, the opening degree Sj of the expansion valve, and the blowout temperature Taout.
  • the horizontal axis of the five graphs is time t.
  • the discharge pressure Pd corresponds to the high-pressure side pressure
  • the suction pressure Ps corresponds to the low-pressure side pressure.
  • the protection control does not operate for a few minutes from the start of operation.
  • the frequency f of the compressor when the frequency f of the compressor is increased to lower the blowout temperature Taout, the discharge pressure Pd approaches the high pressure upper limit value Pdmax, and the high pressure protection control is performed. Due to the high-pressure protection control, the frequency f of the compressor decreases. When the frequency f of the compressor decreases, the discharge pressure Pd decreases away from the high pressure upper limit value Pdmax, so that the air conditioner increases the frequency f of the compressor again. As a result, as shown in FIG. 7, the frequency f of the compressor fluctuates up and down.
  • the air conditioner of the comparative example performs the low pressure protection control.
  • the opening degree Sj of the expansion valve is reduced.
  • the suction pressure Ps decreases away from the low pressure upper limit value Psmax, so the air conditioner increases the opening Sj of the expansion valve again.
  • the opening Sj of the expansion valve fluctuates up and down. Further, even if the opening Sj of the expansion valve has not reached the upper limit Sjmax of the opening Sj, the opening Sj cannot be increased by the low pressure protection control.
  • the blowout temperature Taout is a high temperature of 30 ° C. or more due to the above-described protection control. Further, the blowout temperature Taout fluctuates up and down in a range between 30 ° C. and 40 ° C., and maintains a high temperature. As a result, the room cannot be cooled.
  • FIG. 8 is a timing chart showing an example of the operation of the air-conditioning apparatus according to Embodiment 3 of the present invention.
  • the six graphs shown in FIG. 8 are graphs showing the time change of each parameter of the frequency f of the compressor 11, the discharge pressure Pd, the suction pressure Ps, the opening degree Sj of the expansion valve 21, the air volume of the indoor fan 23, and the blowout temperature Taout. It is.
  • the horizontal axis of the six graphs is time t.
  • the discharge pressure Pd corresponds to the high-pressure side pressure
  • the suction pressure Ps corresponds to the low-pressure side pressure.
  • the protection control does not operate for a few minutes from the start of operation.
  • the control means 54 raises and maintains the frequency f of the compressor 11 to the frequency upper limit value so that the high pressure protection control does not work.
  • the control unit 54 increases the opening Sj of the expansion valve 21 so that the discharge pressure Pd does not reach the high pressure upper limit value Pdmax.
  • the control unit 54 reduces the air volume Vair of the indoor fan 23 to the low wind LoLo. After Taout ⁇ Tst-a is satisfied after the air volume Vair is set to the low wind LoLo, the control unit 54 switches the air volume Vair to the low wind Lo. When Tst-b ⁇ Taout ⁇ Tst-a is satisfied after the air volume Vair is set to the low wind Lo, the control unit 54 switches the air volume Vair to the medium air Mi.
  • the control unit 54 switches the air volume Vair to the strong wind Hi.
  • the blowout temperature Taout decreases to a temperature Tst-a lower than 20 ° C. in a state where the air flow Vair of the indoor fan 23 is the breeze LoLo.
  • the outlet temperature Taout once rises, but drops again and drops to the temperature Tst-b.
  • the outlet temperature Taout once increases, but decreases to the temperature Tst-c.
  • the outlet temperature Taout increases, but is maintained at a temperature lower than the threshold value Tst. As shown in the graph of the blowing temperature Taout in FIG. 8, the blowing temperature Taout is maintained in a range between 30 ° C. and 20 ° C. Therefore, the room can be cooled.
  • the reduction amount ⁇ F of the frequency to be reduced by the compressor 11 is made smaller than the frequency to be reduced during the high-pressure protection control, and the reduction amount ⁇ Sj of the opening Sj to be reduced by the expansion valve 21 is reduced during the low-pressure protection control. It is smaller than the opening.
  • the amount of the decrease in the refrigerant pressure that is insufficient under the control of the compressor 11 and the expansion valve 21 is reduced by the airflow of the indoor fan 23.
  • the air-conditioning apparatus 1 performs control to reduce the frequency of the compressor 11, control to reduce the opening of the expansion valve 21, and control to reduce the air volume of the indoor fan 23.
  • the third embodiment by controlling the frequency of the compressor 11, the opening degree of the expansion valve 21, and the airflow of the indoor fan 23, the amount of increase in the high-pressure side pressure and the amount of increase in the low-pressure side pressure can be suppressed.
  • the cooling capacity under high outside air exceeding 40 ° C. is improved, and the outside air temperature guaranteed by the product can be increased.
  • the control unit 54 reduces a part of the decrease in the refrigerant pressure by the control of the compressor 11 and the expansion valve 21 and reduces the remaining decrease by the control of the indoor fan 23. . Since a part of the refrigerant pressure is reduced by controlling the compressor 11 and the expansion valve 21 and the remaining is reduced by the control of the indoor fan 23, it is possible to prevent both the high pressure side and the low pressure side from increasing. it can.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

空気調和装置は、圧縮機、熱源側熱交換器、膨張弁および負荷側熱交換器が接続され、冷媒が循環する冷媒回路と、負荷側熱交換器に空気を供給する室内ファンと、圧縮機から吐出される冷媒の吐出圧力を検出する吐出圧力センサと、圧縮機に吸入される冷媒の吸入圧力を検出する吸入圧力センサと、吐出圧力が高圧上限値に上昇したか否か、または吸入圧力が低圧上限値まで上昇したか否かによって、冷媒圧力が保護圧力に到達したか否かを判定する判定手段と、冷媒圧力が保護圧力に達したと判定手段が判定すると、室内ファンと室内ファン以外のアクチュエータとを制御して冷媒圧力を下げる制御手段と、を有するものである。

Description

空気調和装置
 本発明は、冷媒回路を有する空気調和装置に関する。
 従来、空気調和機は、高圧側回路の圧力である高圧側圧力が上限値を超えないように、室外ファンおよび圧縮機を含む室外機アクチュエータを制御する圧力保護制御を行う。また、空気調和機は、低圧側回路の圧力である低圧側圧力が上限値を超えないように、室内ファンおよび膨張弁を含む室内機アクチュエータを制御する圧力保護制御を行う。例えば、室内機が外気導入型室内機で、かつ外気温度が40℃を超える高外気の場合、空気調和機が冷房運転を行うと、高圧側圧力および低圧側圧力のうち、一方または両方が上昇する傾向がある。
 空気調和機は、高圧側圧力が上限値まで上昇すると、高圧側回路のアクチュエータを保護するために、圧縮機の周波数を下げる高圧保護制御を行う。圧縮機の周波数が低下することで、低圧側圧力が上昇する。低圧側圧力が上限値まで上昇すると、空気調和機は、低圧側回路のアクチュエータを保護するため、膨張弁の開度を絞る低圧保護制御を行う。高圧保護制御と低圧保護制御とが繰り返され、圧縮機の吸入圧力が保証範囲を逸脱すると、空気調和機は、運転を一旦、停止せざるを得ないことがある。
 この問題に対して、複数の室内機を有する空気調和機において、一部の室内機のファンの風量を下げる、またはサーモオフする制御を行うことが提案されている(例えば、特許文献1参照)。
特開2015-124958号公報
 複数の室内機のうち、制御対象として選択できる室内機がない場合、および室内機が1台しかない空気調和機の場合、特許文献1に開示された制御を採用できない。
 本発明は、上記のような課題を解決するためになされたもので、室内機が1台であっても、冷媒圧力の上昇を抑制できる空気調和装置を提供するものである。
 本発明に係る空気調和装置は、圧縮機、熱源側熱交換器、膨張弁および負荷側熱交換器が接続され、冷媒が循環する冷媒回路と、前記負荷側熱交換器に空気を供給する室内ファンと、前記圧縮機の冷媒吐出口に設けられ、冷媒の吐出圧力を検出する吐出圧力センサと、前記圧縮機の冷媒吸入口に設けられ、冷媒の吸入圧力を検出する吸入圧力センサと、前記吐出圧力が高圧上限値に上昇したか否か、または前記吸入圧力が低圧上限値まで上昇したか否かによって、冷媒圧力が保護圧力に到達したか否かを判定する判定手段と、前記冷媒圧力が前記保護圧力に達したと前記判定手段が判定すると、前記室内ファンと前記室内ファン以外のアクチュエータとを制御して前記冷媒圧力を下げる制御手段と、を有するものである。
 本発明によれば、負荷側ユニットが1台であっても、冷媒圧力の上昇に対して、室内ファンだけでなく他のアクチュエータも制御することで、冷媒圧力を低下させることができる。
本発明の実施の形態1に係る空気調和装置の一構成例を示す冷媒回路図である。 図1に示した制御装置の一構成例を示す機能ブロック図である。 本発明の実施の形態1に係る空気調和装置の動作手順を示すフローチャートである。 図1に示した室内ファンの風量制御の一例を示す表である。 本発明の実施の形態2に係る空気調和装置の動作手順を示すフローチャートである。 本発明の実施の形態3に係る空気調和装置の動作手順を示すフローチャートである。 比較例の空気調和装置の動作の一例を示すタイミングチャートである。 本発明の実施の形態3に係る空気調和装置の動作の一例を示すタイミングチャートである。
実施の形態1.
 本実施の形態1の空気調和装置の構成を説明する。本実施の形態1では、空気調和装置が外気を導入し、導入した外気を空気調和して空調対象空間に供給する外気導入型装置の場合で説明するが、外気導入型装置に限らない。
 図1は、本発明の実施の形態1に係る空気調和装置の一構成例を示す冷媒回路図である。図1に示すように、空気調和装置1は、熱源側ユニット10と、負荷側ユニット20とを有する。熱源側ユニット10は、圧縮機11と、流路切替装置12と、熱源側熱交換器13と、室外ファン14と、制御装置15とを有する。負荷側ユニット20は、膨張弁21と、負荷側熱交換器22と、室内ファン23とを有する。圧縮機11、熱源側熱交換器13、膨張弁21および負荷側熱交換器22が冷媒配管で接続され、冷媒が循環する冷媒回路30が構成される。本実施の形態1では、負荷側ユニット20が1台の場合で説明するが、複数の負荷側ユニット20が熱源側ユニット10と接続されていてもよい。
 圧縮機11の冷媒吐出口側に吐出圧力センサ41が設けられている。吐出圧力センサ41は、圧縮機11から吐出される冷媒の圧力である吐出圧力Pdを検出する。吐出圧力Pdが冷凍サイクルの高圧側圧力に相当する。圧縮機11の冷媒吸入口側に吸入圧力センサ42が設けられている。吸入圧力センサ42は、圧縮機11に吸入される冷媒の圧力である吸入圧力Psを検出する。吸入圧力Psが冷凍サイクルの低圧側圧力に相当する。負荷側ユニット20には、温度センサ43が設けられている。温度センサ43は、外気が負荷側熱交換器22において冷媒と熱交換した後の空気の吹出温度Taoutを検出する。
 圧縮機11は、冷媒回路30を循環する冷媒を圧縮して吐出する。圧縮機11は、回転周波数を制御することで容量を調節することができるインバータ型圧縮機である。圧縮機11は、例えば、ロータリ圧縮機、スクロール圧縮機およびスクリュー圧縮機等の圧縮機である。流路切替装置12は、圧縮機11の冷媒吐出口側に設けられている。流路切替装置12は、暖房運転および冷房運転の運転モードにしたがって、冷媒の流れを切り替える。具体的には、流路切替装置12は、冷房運転時に圧縮機11から吐出される冷媒が熱源側熱交換器13に流通するように流路を切り替え、暖房運転時に圧縮機11から吐出される冷媒が負荷側熱交換器22に流通するように流路を切り替える。流路切替装置12は、例えば、四方弁である。
 熱源側熱交換器13は、暖房運転時には蒸発器として機能し、冷房運転時には凝縮器として機能する。熱源側熱交換器13は、例えば、フィンチューブ型熱交換器である。室外ファン14は、回転することで熱源側熱交換器13に空気を供給する。室外ファン14は、例えば、プロペラファンおよびターボファン等のファンである。室外ファン14の回転数によって熱源側熱交換器13の凝縮能力および蒸発能力が調整される。
 負荷側熱交換器22は、暖房運転時には凝縮器として機能し、冷房運転時には蒸発器として機能する。負荷側熱交換器22は、例えば、フィンチューブ型熱交換器である。膨張弁21は、熱源側熱交換器13または負荷側熱交換器22から流出した冷媒を膨張させて減圧する。膨張弁21は、例えば、冷媒の流量を調整できる電動膨張弁である。室内ファン23は、回転することで負荷側熱交換器22に空気を供給する。室内ファン23は、例えば、プロペラファン、クロスフローファン、シロッコファンおよびターボファン等のファンである。
 図1に示した制御装置15の構成を説明する。図2は、図1に示した制御装置の一構成例を示す機能ブロック図である。図1に示すように、制御装置15は、プログラムを記憶するメモリ51と、プログラムにしたがって処理を実行するCPU(Central Processing Unit)52とを有する。制御装置15は、例えば、マイクロコンピュータである。制御装置15は、圧縮機11、流路切替装置12、膨張弁21、室外ファン14および室内ファン23と信号線で接続されている。制御装置15は、吐出圧力センサ41、吸入圧力センサ42および温度センサ43の各種センサと信号線で接続されている。図2に示すように、制御装置15は、判定手段53と、制御手段54とを有する。CPU52がプログラムを実行することで、判定手段53および制御手段54が空気調和装置1に構成される。
 判定手段53は、吐出圧力センサ41が検出する吐出圧力Pdが高圧上限値に上昇したか否かを判定する。判定手段53は、吐出圧力Pdが高圧上限値に上昇したと判定すると、冷媒圧力が保護圧力に到達した旨の判定結果を制御手段54に通知する。制御手段54は、温度センサ43の検出値が設定温度になるように、圧縮機11の回転周波数および膨張弁21の開度を制御する。また、制御手段54は、冷媒圧力が保護圧力に到達した旨の判定結果を判定手段53から通知されると、室内ファン23の風量と圧縮機11の周波数とを制御して冷媒圧力を下げる。
 なお、図1は、制御装置15が熱源側ユニット10に設けられている場合の構成を示しているが、制御装置15の設置場所は熱源側ユニット10に限らない。例えば、制御装置15が負荷側ユニット20に設けられていてもよい。また、図1は、膨張弁21が負荷側ユニット20に設けられている場合の構成を示しているが、膨張弁21は熱源側ユニット10に設けられていてもよい。また、図に示さない温度センサおよび圧力センサが設けられていてもよく、この場合、制御手段54は、図に示さない温度センサおよび圧力センサの検出値も用いて冷凍サイクルを制御してもよい。さらに、高圧側圧力を検出する圧力センサは、吐出圧力センサ41に限定されず、冷媒回路30における高圧側回路に設けられていればよい。また、低圧側圧力を検出する圧力センサは、吸入圧力センサ42に限定されず、冷媒回路30における低圧側回路に設けられていればよい。
 次に、図1に示す冷媒回路30において、冷媒の流れを説明する。はじめに、空気調和装置1の運転状態が冷房運転の場合を説明する。空気調和装置1が冷房運転を行う場合、制御装置15は、圧縮機11から吐出される冷媒が熱源側熱交換器13に流入するように、流路切替装置12の流路を切り替える。低温低圧の冷媒が圧縮機11によって圧縮されることで、高温高圧のガス冷媒が圧縮機11から吐出される。圧縮機11から吐出されたガス冷媒は、流路切替装置12を経由して、熱源側熱交換器13に流入する。熱源側熱交換器13に流入した冷媒は、熱源側熱交換器13において、空気と熱交換することで凝縮し、低温高圧の液冷媒となって熱源側熱交換器13から流出する。
 熱源側熱交換器13から流出した液冷媒は、膨張弁21によって低温低圧の液冷媒になる。液冷媒は、負荷側熱交換器22に流入する。負荷側熱交換器22に流入した冷媒は、負荷側熱交換器22において、外気と熱交換することで蒸発し、低温低圧のガス冷媒となって負荷側熱交換器22から流出する。負荷側熱交換器22において、導入された外気から冷媒が吸熱することで、冷却された空気が室内に供給される。負荷側熱交換器22から流出した冷媒は、流路切替装置12を介して圧縮機11に吸入される。空気調和装置1が冷房運転を行っている間、圧縮機11から吐出する冷媒が、熱源側熱交換器13、膨張弁21および負荷側熱交換器22を順に流通した後、圧縮機11に吸引されるまでのサイクルが繰り返される。
 続いて、空気調和装置1の運転状態が暖房運転の場合の冷媒の流れを、図1を参照して説明する。空気調和装置1が暖房運転を行う場合、制御装置15は、圧縮機11から吐出される冷媒が負荷側熱交換器22に流入するように、流路切替装置12の流路を切り替える。
 低温低圧の冷媒が圧縮機11によって圧縮されることで、高温高圧のガス冷媒が圧縮機11から吐出される。圧縮機11から吐出された高温高圧のガス冷媒は、流路切替装置12を経由して、負荷側熱交換器22に流入する。負荷側熱交換器22に流入した冷媒は、負荷側熱交換器22において、外気と熱交換することで凝縮され、高温高圧の液冷媒となって負荷側熱交換器22から流出する。負荷側熱交換器22において、導入された外気に冷媒が放熱することで、温められた空気が室内に供給される。
 負荷側熱交換器22から流出した高温高圧の液冷媒は、膨張弁21によって低温低圧の液冷媒になる。液冷媒は、熱源側熱交換器13に流入する。熱源側熱交換器13に流入した冷媒は、熱源側熱交換器13において、空気と熱交換することで蒸発し、低温低圧のガス冷媒となって熱源側熱交換器13から流出する。熱源側熱交換器13から流出した冷媒は、流路切替装置12を介して圧縮機11に吸入される。空気調和装置1が暖房運転を行っている間、圧縮機11から吐出される冷媒が、負荷側熱交換器22、膨張弁21および熱源側熱交換器13を順に流通した後、圧縮機11に吸引されるまでのサイクルが繰り返される。
 次に、本実施の形態1の空気調和装置1の動作を説明する。運転モードが冷房の場合である。図3は、本発明の実施の形態1に係る空気調和装置の動作手順を示すフローチャートである。図4は、図1に示した室内ファンの風量制御の一例を示す表である。判定手段53は、吐出圧力Pdを一定の周期で監視し、高圧側圧力が高圧保護圧力に達していないか判定する。具体的には、判定手段53は、吐出圧力Pdが高圧上限値Pdmaxに達しているか否かを判定する(ステップS101)。吐出圧力Pdが高圧上限値Pdmaxに達していない場合、判定手段53はステップS101に戻る。
 ステップS101の判定の結果、吐出圧力Pdが高圧上限値Pdmaxに達している場合、制御手段54は、圧縮機11の周波数を下げる(ステップS102)。また、制御手段54は、室内ファン23の風量を下げる(ステップS103)。このようにして、空気調和装置1は、高圧保護制御によって圧縮機11に低下させる周波数の低下量ΔFを少なくし、残り分を室内ファン23の風量制御で補う。
 ステップS103における室内ファン23の風量制御について説明する。外気温度をTinとし、外気温度の閾値をTst_outdoorとする。閾値Tst_outdoorは、例えば、40℃以上の値である。吹出温度Taoutについて設定される閾値をTstとする。ステップS103の風量制御が行われる前の現在の室内ファン23の風量をVairとし、ステップS103の風量制御が行われた後の室内ファン23の風量をVairとする。
 また、本実施の形態1では、室内ファン23に設定できる風量の種類は、強風Hi、中風Mi、弱風Loおよび微風LoLoの4種類とする。強風Hiに設定された室内ファン23の風量をVair_hiとし、中風Miに設定された室内ファン23の風量をVair_miとする。弱風Lに設定された室内ファン23の風量をVair_loとし、微風LoLoに設定された室内ファン23の風量をVair_loloとする。風量の大きさは、Vair_hi>Vair_mi>Vair_lo>Vair_loloの関係になっている。室内ファン23の風量の種類は4種類に限らない。
 制御手段54は、次の条件(1)および条件(2)が満たされる場合、室内ファン23の風量を強制的に微風LoLoに落とす。
 条件(1):Tin>Tst_outdoor
 条件(2):Taout>Tst
 室内ファン23の風量が微風LoLoに設定された後、制御手段54は、以下の判定および図4にしたがって、室内ファン23の風量をユーザの設定風量まで上げる。判定に用いられるa~cは、負荷側ユニット20の冷凍能力および冷凍負荷等によって設定される任意の定数である。
 室内ファン23の風量が微風LoLoに設定された後、Taout<Tst-aが満たされると、制御手段54は、室内ファン23の風量を弱風Loに切り替える。これにより、Vair=Vair_loとなる。風量が弱風Loに設定された後、Tst-b<Taout<Tst-aが満たされると、制御手段54は、室内ファン23の風量を中風Miに切り替える。これにより、Vair=Vair_miとなる。風量が中風Miに設定された後、Taout<Tst-cが満たされると、制御手段54は、室内ファン23の風量を強風Hiに切り替える。これにより、Vair=Vair_hiとなる。その後、条件(1)および条件(2)が満たされない限り、制御手段54は、室内ファン23の風量を維持する。室内ファン23の風量が強制的に微風LoLoに設定されるが、その後、ユーザの設定風量に切り替えられるため、ユーザに違和感を生じさせることを抑制できる。
 次に、本実施の形態1の空気調和装置1の動作を、比較例と比較して説明する。はじめに、比較例の制御を説明する。
Figure JPOXMLDOC01-appb-M000001
 式(1)において、ΔPdは従来の高圧保護制御により下げるべき高圧側圧力の圧力量[Pa]である。ΔFは従来の高圧保護制御によって圧縮機の周波数を減少させるときの周波数減少量[Hz]である。Aは冷凍サイクルシステム系統によって決まる任意の係数である。具体的には、Aは高圧側圧力と圧縮機の周波数との関係で決まる係数である。
Figure JPOXMLDOC01-appb-M000002
 式(2)において、ΔPsはΔFにより上がってしまう低圧側圧力の圧力量[Pa]である。Bは冷凍サイクルシステム系統によって決まる任意の係数である。具体的には、Bは低圧側圧力と圧縮機の周波数との関係で決まる係数である。式(1)および式(2)に示すように、高圧側圧力を下げようとすると、低圧側圧力が高くなってしまう。
 続いて、本実施の形態1の空気調和装置1の制御を説明する。ここでは、空気調和装置1が、熱源側ユニット10に接続される複数の負荷側ユニット20を有する場合で説明する。複数の負荷側ユニット20の各負荷側ユニット20には互いに異なる識別番号が割り当てられている。識別番号は、例えば、1、2、3、・・・の正の整数であるものとする。
Figure JPOXMLDOC01-appb-M000003
 式(3)において、fは圧縮機11の任意の周波数[Hz]である。ここでは、fは、高圧保護制御で低下させる低下量ΔFよりも、低下させる周波数を少なくする値を意味する。Cは冷凍サイクルシステム系統によって決まる任意の係数である。具体的には、Cは高圧側圧力と室内ファンの風量との関係で決まる係数である。Gaεは負荷側熱交換器のポテンシャル[kg/h]である。熱交換器のポテンシャルとは、熱交換器の性能を示す値である。jは空気調和装置1が有する負荷側ユニット20の識別番号である。xは室内ファン23の風量を下げる対象となる負荷側ユニット20を示す識別番号である。Gaは室内ファン23の風量[m/min]である。
Figure JPOXMLDOC01-appb-M000004
 式(4)において、ΔPsはΔ(F-f)により上がってしまう低圧側圧力の圧力量[Pa]である。Dは冷凍サイクルシステム系統によって決まる任意の係数である。具体的には、Dは低圧側圧力と室内ファンの風量との関係で決まる係数である。式(2)と式(4)とを見比べると、ΔPs<ΔPsになる。そのため、本実施の形態1は、比較例に比べて低圧側圧力の上昇量を抑制できる。
 本実施の形態1では、圧縮機11に低下させる周波数の低下量ΔFを高圧保護制御時に低下させる周波数よりも少なくし、残り分を室内ファン23の風量制御で低下させることにより、高圧側圧力を必要量下げることができる。その結果、圧縮機11の周波数の低下に起因する低圧側圧力の上昇量を抑制できる。
 本実施の形態1の空気調和装置1は、判定手段53が高圧側圧力または低圧側圧力の冷媒圧力が保護圧力に達したと判定すると、制御手段54が室内ファン23と室内ファン23以外のアクチュエータとを制御して冷媒圧力を下げるものである。
 本実施の形態1によれば、冷媒圧力の上昇に対して、室内ファン23だけでなく他のアクチュエータとして圧縮機11も制御することで、室内ファン23の制御で足りない分を圧縮機11の制御で補って、冷媒圧力を低下させることができる。また、圧縮機11の周波数の低下に起因する低圧側圧力の上昇量を抑制できる。その結果、高圧側圧力および低圧側圧力の上昇量を抑制できる。
 また、本実施の形態1において、制御手段54は、吐出圧力Pdの下げ分のうち、一部の下げ分を圧縮機11の制御で下げ、残りの下げ分を室内ファン23の風量の制御で下げてもよい。
 空気調和装置1は、室内ファン23の風量を吹出温度Taoutに対応して調整することで、高圧側圧力および低圧側圧力のいずれもの圧力の上昇を防ぐことができる。しかし、室内ファン23の風量はユーザによって設定されることが多い。空気調和装置1が室内ファン23の風量制御だけで冷媒圧力を下げようとすると、ユーザが設定した風量と大きく異なってしまうことになる。これに対して、本実施の形態1では、室内ファン23だけでなく圧縮機11も制御して冷媒圧力を低下させている。そのため、室内ファン23の風量の変化が、ユーザの設定した風量と大きく異なることが抑制され、ユーザに違和感を生じさせることを抑制できる。
 本実施の形態1によれば、40℃を超える高外気下での冷房能力を改善することができる。また、外気温度の運転保証範囲を、例えば、43℃から50℃前後まで上げることができ、製品が保証する外気温度を拡大できる。さらに、中東アジア、東南アジアおよび南米などの熱帯および砂漠地帯に属する地域に、ハードウェアの追加を不要とし、制御技術で高外気に対応できる空気調和装置を安価に提供できる。
実施の形態2.
 実施の形態1は、室内ファンおよび圧縮機を制御して冷媒圧力の上昇を抑制する場合であるが、本実施の形態2は、室内ファンおよび膨張弁を制御して冷媒圧力の上昇を抑制するものである。本実施の形態2では、実施の形態1で説明した構成と同様な構成については同一の符号を付し、その詳細な説明を省略する。
 本実施の形態2の空気調和装置の構成を、図1および図2を参照して説明する。判定手段53は、吸入圧力センサ42が検出する吸入圧力Psが低圧上限値まで上昇しかた否かを判定する。判定手段53は、吸入圧力Psが低圧上限値まで上昇したと判定すると、冷媒圧力が保護圧力に到達した旨の判定結果を制御手段54に通知する。制御手段54は、冷媒圧力が保護圧力に到達した旨の判定結果を判定手段53から通知されると、室内ファン23の風量と膨張弁21の開度とを制御して冷媒圧力を下げる。
 次に、本実施の形態2の空気調和装置1の動作を説明する。図5は、本発明の実施の形態2に係る空気調和装置の動作手順を示すフローチャートである。判定手段53は、吸入圧力Psを一定の周期で監視し、低圧側圧力が低圧保護圧力に達していないか判定する。具体的には、判定手段53は、吸入圧力Psが低圧上限値Psmaxに達しているか否かを判定する(ステップS201)。吸入圧力Psが低圧上限値Psmaxに達していない場合、判定手段53はステップS201に戻る。
 ステップS201の判定の結果、吸入圧力Psが低圧上限値Psmaxに達している場合、制御手段54は、膨張弁21の開度を絞る(ステップS202)。また、制御手段54は、室内ファン23の風量を下げる(ステップS203)。このようにして、空気調和装置1は、低圧保護制御によって膨張弁21に低下させる開度の低下量ΔSjを少なくし、残り分を室内ファン23の風量制御で補っている。
 次に、本実施の形態2の空気調和装置1の動作を、比較例と比較して説明する。はじめに、比較例の制御を説明する。
 比較例の制御を説明する。
Figure JPOXMLDOC01-appb-M000005
 式(5)において、ΔPsは従来の低圧保護制御により下げるべき低圧側圧力の圧力量[Pa]である。Gaεは負荷側熱交換器22のポテンシャル[kg/h]である。jは空気調和装置が有する負荷側ユニットの識別番号である。xは室内ファンの風量を下げる対象となる負荷側ユニットを示す識別番号である。ΔSjは従来の低圧保護制御により絞るべき膨張弁の開度の減少量[pulse]である。膨張弁は、ステッピングモータの回転角度で開度が調節される電子膨張弁である。ステッピングモータの回転角度はパルス数で制御される。Eは冷凍サイクルシステム系統によって決まる任意の係数である。具体的には、Eは低圧側圧力と膨張弁の開度との関係で決まる係数である。
Figure JPOXMLDOC01-appb-M000006
 式(6)において、ΔPdはΔSjにより上がってしまう高圧側圧力の圧力量[Pa]である。Fは冷凍サイクルシステム系統によって決まる任意の係数である。具体的には、Fは高圧側圧力と膨張弁の開度との関係で決まる係数である。式(5)および式(6)に示すように、低圧側圧力を下げようとすると、高圧側圧力が高くなってしまう。
 続いて、本実施の形態2の空気調和装置1が行う制御を説明する。ここでは、空気調和装置1が、熱源側ユニット10に接続される複数の負荷側ユニット20を有する場合で説明する。複数の負荷側ユニット20の各負荷側ユニット20には互いに異なる識別番号が割り当てられている。
Figure JPOXMLDOC01-appb-M000007
 式(7)において、sjは膨張弁21の任意の開度[pulse]である。ここでは、sjは、低圧保護制御で小さくする低下量ΔSjよりも、小さくする開度を少なくする値を意味する。他のパラメータについては上述した内容と同様であるため、説明を省略する。
Figure JPOXMLDOC01-appb-M000008
 式(8)において、ΔPdはΔ(Sj-sj)により上がってしまう低圧側圧力の圧力量[Pa]である。他のパラメータについては上述した内容と同様であるため、説明を省略する。式(6)と式(8)とを見比べると、ΔPd<ΔPdになる。そのため、本実施の形態2は、比較例に比べて高圧側圧力の上昇量を抑制できる。
 本実施の形態2では、膨張弁21に低下させる開度Sjの低下量ΔSjを低圧保護制御時に低下させる開度よりも少なくし、残り分を室内ファン23の風量制御で低下させることにより、低圧側圧力を必要量下げることができる。その結果、膨張弁21の開度の調節に起因する高圧側圧力の上昇量を抑制できる。
 本実施の形態2の空気調和装置1は、吸入圧力Psが低圧上限値に到達すると、膨張弁21の開度を小さくする制御と室内ファン23の風量を下げる制御とを行うものである。この場合、制御手段54は、吸入圧力Psの下げ分のうち、一部の下げ分を膨張弁21の制御で下げ、残りの下げ分を室内ファン23の制御で下げてもよい。
 本実施の形態2によれば、膨張弁21の開度を制御することで低圧側圧力の上昇を抑えるとともに、高圧側圧力の上昇量を抑制できる。本実施の形態2によれば、実施の形態1と同様に、40℃を超える高外気下での冷房能力が改善され、製品が保証する外気温度を拡大できる。
実施の形態3.
 本実施の形態3は、実施の形態1および実施の形態2を組み合わせたものである。本実施の形態3では、実施の形態1および実施の形態2で説明した構成と同様な構成に同一の符号を付し、その詳細な説明を省略する。
 本実施の形態3の空気調和装置の構成を、図1および図2を参照して説明する。判定手段53は、吐出圧力センサ41が検出する吐出圧力Pdが高圧上限値に上昇したか否かを判定する。判定手段53は、吸入圧力センサ42が検出する吸入圧力Psが低圧上限値まで上昇しかた否かを判定する。判定手段53は、吐出圧力Pdが高圧上限値に上昇したと判定すると、冷媒圧力が保護圧力に到達した旨の判定結果を制御手段54に通知する。判定手段53は、吸入圧力Psが低圧上限値まで上昇したと判定すると、冷媒圧力が保護圧力に到達した旨の判定結果を制御手段54に通知する。制御手段54は、冷媒圧力が保護圧力に到達した旨の判定結果を判定手段53から通知されると、圧縮機11の周波数と、膨張弁21の開度と、室内ファン23の風量とを制御して冷媒圧力を下げる。
 次に、本実施の形態3の空気調和装置1の動作を説明する。図6は、本発明の実施の形態3に係る空気調和装置の動作手順を示すフローチャートである。判定手段53は、吐出圧力Pdを一定の周期で監視し、吐出圧力Pdが高圧上限値Pdmaxに達しているか否かを判定する(ステップS301)。吐出圧力Pdが高圧上限値Pdmaxに達していない場合、判定手段53はステップS302に進む。ステップS302において、判定手段53は、吸入圧力Psが低圧上限値Psmaxに達しているか否かを判定する。ステップS302の判定の結果、吸入圧力Psが低圧上限値Psmaxに達していない場合、判定手段53はステップS301に戻る。
 ステップS302において、判定手段53は、吸入圧力Psが低圧上限値Psmaxに達しているか否かを判定する。ステップS302の判定の結果、吸入圧力Psが低圧上限値Psmaxに達している場合、圧縮機11の周波数を下げ(ステップS303)、膨張弁21の開度を絞る(ステップS304)。また、ステップS301の判定の結果、吐出圧力Pdが高圧上限値Pdmaxに達している場合も、制御手段54は、ステップS303およびS304の制御を行う。ステップS303およびS304の後、制御手段54は、室内ファン23の風量を下げる(ステップS305)。
 このようにして、空気調和装置1は、圧縮機11に低下させる周波数の低下量ΔFを高圧保護制御時に低下させる周波数よりも少なくし、膨張弁21に低下させる開度Sjの低下量ΔSjを低圧保護制御時に低下させる開度よりも少なくしている。そして、圧縮機11および膨張弁21の制御で不足する冷媒圧力の低下分を、室内ファン23の風量で低下させている。なお、図6を参照して、判定手段53がステップS301の後にステップS302の処理を行う場合を説明したが、ステップS301およびステップS302の順番はいずれが先であってもよい。また、制御手段54がステップS303の後にステップS304の処理を行う場合を説明したが、どちらの処理が先であってもよく、並列処理が望ましい。
 次に、本実施の形態3の空気調和装置1の動作を、比較例と比較して説明する。はじめに、比較例の制御を説明する。図7は、比較例の空気調和装置の動作の一例を示すタイミングチャートである。図7に示す5つのグラフは、圧縮機の周波数f、吐出圧力Pd、吸入圧力Ps、膨張弁の開度Sj、および吹出温度Taoutの各パラメータの時間変化を示すグラフである。5つのグラフの横軸は時間tである。吐出圧力Pdは高圧側圧力に相当し、吸入圧力Psは低圧側圧力に相当する。なお、空気調和装置の運転停止時、高圧側圧力および低圧側圧力が均圧化され、低圧側圧力は低圧上限値Psmaxより高い値になっているため、空気調和装置が運転を開始すると、低圧保護制御は運転開始から数分は作動しない。
 比較例の空気調和装置は、吹出温度Taoutを下げようとして、圧縮機の周波数fを大きくすると、吐出圧力Pdが高圧上限値Pdmaxに近づき高圧保護制御を行う。高圧保護制御により、圧縮機の周波数fが低下する。圧縮機の周波数fが低下すると、吐出圧力Pdが高圧上限値Pdmaxから離れて下がっていくので、再び、空気調和装置は圧縮機の周波数fを大きくする。その結果、図7に示すように、圧縮機の周波数fが上下に変動する。
 一方、圧縮機の周波数fが下がると、吸入圧力Psが上昇して低圧上限値Psmaxに近づくため、比較例の空気調和装置は低圧保護制御を行う。低圧保護制御により、膨張弁の開度Sjが小さくなる。膨張弁の開度Sjが小さくなると、吸入圧力Psが低圧上限値Psmaxから離れて下がっていくので、再び、空気調和装置は膨張弁の開度Sjを大きくする。その結果、図7の膨張弁開度のグラフに示すように、膨張弁の開度Sjが上下に変動する。また、膨張弁の開度Sjは開度Sjの上限値Sjmaxまで達していなくても、低圧保護制御により開度Sjを大きくすることができない。
 比較例では、次の(1)~(6)の動作を繰り返す。(1)高圧保護作動→(2)圧縮機の周波数を下げる→(3)低圧側圧力が上昇→(4)低圧保護作動→(5)膨張弁の開度を絞る→(6)高圧側圧力が上昇→(1)→・・・。その結果、圧縮機は周波数最小運転に陥る。高外気の状況下で圧縮機が周波数最小運転を行うと、吸入圧力が高過ぎる低圧過多になる。このまま圧縮機が運転を継続すると、最悪の場合、保証範囲を逸脱する運転を継続することになり、圧縮機の寿命が短くなってしまう。
 図7に示す吹出温度Taoutのグラフを参照すると、比較例の空気調和装置では、上述の保護制御により、吹出温度Taoutは30℃以上の高い温度である。また、吹出温度Taoutは、30℃および40℃の間の範囲で上下に変動し、高い温度を維持している。その結果、室内を冷却することができない。
 続いて、本実施の形態3の空気調和装置1の動作を、図8を参照して説明する。図8は、本発明の実施の形態3に係る空気調和装置の動作の一例を示すタイミングチャートである。図8に示す6つのグラフは、圧縮機11の周波数f、吐出圧力Pd、吸入圧力Ps、膨張弁21の開度Sj、室内ファン23の風量および吹出温度Taoutの各パラメータの時間変化を示すグラフである。6つのグラフの横軸は時間tである。吐出圧力Pdは高圧側圧力に相当し、吸入圧力Psは低圧側圧力に相当する。空気調和装置1の運転停止時、高圧側圧力および低圧側圧力が均圧化され、低圧側圧力は低圧上限値Psmaxより高い値になっているため、空気調和装置1が運転を開始すると、低圧保護制御は運転開始から数分は作動しない。
 制御手段54は、吐出圧力Pdが高圧上限値Pdmaxまで上昇していなければ、高圧保護制御が働かないように、圧縮機11の周波数fを周波数上限値まで上げて維持する。圧縮機11の周波数fの上昇に伴って吐出圧力Pdが上昇するが、制御手段54は、吐出圧力Pdが高圧上限値Pdmaxに到達しないように膨張弁21の開度Sjを大きくしていく。これらの制御により、高圧保護制御が働かない限界の状態が維持される。
 圧縮機11の周波数fが高い値まで上がることで、吸入圧力Psが低圧上限値よりも離れた低い値で維持される。また、制御手段54は、室内ファン23の風量Vairを微風LoLoに落とす。風量Vairが微風LoLoに設定された後、Taout<Tst-aが満たされると、制御手段54は、風量Vairを弱風Loに切り替える。風量Vairが弱風Loに設定された後、Tst-b<Taout<Tst-aが満たされると、制御手段54は、風量Vairを中風Miに切り替える。風量Vairが中風Miに設定された後、Taout<Tst-cが満たされると、制御手段54は、風量Vairを強風Hiに切り替える。図8に示すグラフでは、定数aおよびcは、a=cの関係である。
 上述の制御の結果を、図8の吹出温度Taoutのグラフを参照して説明する。吹出温度Taoutのグラフに示すように、室内ファン23の風量Vairが微風LoLoの状態で、吹出温度Taoutは20℃より低い温度Tst-aまで低下する。風量Vairが微風LoLoから弱風Loに切り替わると、吹出温度Taoutが、一旦上昇するが、再び低下し、温度Tst-bまで低下する。風量Vairが弱風Loから中風Miに切り替わると、吹出温度Taoutが、一旦上昇するが、温度Tst-cまで低下する。風量Vairが中風Miから強風Hiに切り替わると、吹出温度Taoutは、上昇するが、閾値Tstより低い温度で維持される。図8の吹出温度Taoutのグラフに示すように、吹出温度Taoutは、30℃および20℃の間の範囲で維持される。そのため、室内を冷却することができる。
 本実施の形態3では、圧縮機11に低下させる周波数の低下量ΔFを高圧保護制御時に低下させる周波数よりも少なくし、膨張弁21に低下させる開度Sjの低下量ΔSjを低圧保護制御時に低下させる開度よりも少なくしている。そして、圧縮機11および膨張弁21の制御で不足する冷媒圧力の低下分を、室内ファン23の風量で低下させている。その結果、高圧側圧力および低圧側圧力を必要量下げるだけでなく、高圧側圧力および低圧側圧力の低下によって生じる相手の圧力の上昇量を抑制できる。
 本実施の形態3の空気調和装置1は、圧縮機11の周波数を下げる制御と、膨張弁21の開度を小さくする制御と、室内ファン23の風量を下げる制御とを行うものである。
 本実施の形態3によれば、圧縮機11の周波数、膨張弁21の開度および室内ファン23の風量を制御することで、高圧側圧力の上昇量および低圧側圧力の上昇量を抑制できる。本実施の形態3によれば、実施の形態1と同様に、40℃を超える高外気下での冷房能力が改善され、製品が保証する外気温度を拡大できる。
 また、負荷側ユニット20が外気導入型の場合、外気温度が高いと、高い温度の空気を熱交換して室内に送り出すため、高圧側圧力および低圧側圧力の両方が上昇する傾向がより強い。本実施の形態3では、制御手段54は、冷媒圧力の下げ分のうち、一部の下げ分を圧縮機11および膨張弁21の制御で下げ、残りの下げ分を室内ファン23の制御で下げる。圧縮機11および膨張弁21を制御して冷媒圧力の一部を下げ、残りを室内ファン23の制御で下げているので、高圧側圧力および低圧側圧力の両方が上昇することを抑制することができる。
 1 空気調和装置、10 熱源側ユニット、11 圧縮機、12 流路切替装置、13 熱源側熱交換器、14 室外ファン、15 制御装置、20 負荷側ユニット、21 膨張弁、22 負荷側熱交換器、23 室内ファン、30 冷媒回路、41 吐出圧力センサ、42 吸入圧力センサ、43 温度センサ、51 メモリ、52 CPU、53 判定手段、54 制御手段。

Claims (7)

  1.  圧縮機、熱源側熱交換器、膨張弁および負荷側熱交換器が接続され、冷媒が循環する冷媒回路と、
     前記負荷側熱交換器に空気を供給する室内ファンと、
     前記圧縮機の冷媒吐出口に設けられ、冷媒の吐出圧力を検出する吐出圧力センサと、
     前記圧縮機の冷媒吸入口に設けられ、冷媒の吸入圧力を検出する吸入圧力センサと、
     前記吐出圧力が高圧上限値に上昇したか否か、または前記吸入圧力が低圧上限値まで上昇したか否かによって、冷媒圧力が保護圧力に到達したか否かを判定する判定手段と、
     前記冷媒圧力が前記保護圧力に達したと前記判定手段が判定すると、前記室内ファンと前記室内ファン以外のアクチュエータとを制御して前記冷媒圧力を下げる制御手段と、
    を有する空気調和装置。
  2.  前記制御手段は、
     前記吐出圧力が前記高圧上限値に到達したと前記判定手段が判定した場合、前記圧縮機の周波数を下げる制御と前記室内ファンの風量を下げる制御とを行う、請求項1に記載の空気調和装置。
  3.  前記制御手段は、
     前記吐出圧力の下げ分のうち、一部の下げ分を前記圧縮機の制御で下げ、残りの下げ分を前記室内ファンの風量の制御で下げる、請求項2に記載の空気調和装置。
  4.  前記制御手段は、
     前記吸入圧力が前記低圧上限値に到達すると、前記膨張弁の開度を小さくする制御と前記室内ファンの風量を下げる制御とを行う、請求項1に記載の空気調和装置。
  5.  前記制御手段は、
     前記吸入圧力の下げ分のうち、一部の下げ分を前記膨張弁の制御で下げ、残りの下げ分を前記室内ファンの制御で下げる、請求項4に記載の空気調和装置。
  6.  前記制御手段は、
     前記圧縮機の周波数を下げる制御と、前記膨張弁の開度を小さくする制御と、前記室内ファンの風量を下げる制御とを行う、請求項1に記載の空気調和装置。
  7.  前記制御手段は、
     前記冷媒圧力の下げ分のうち、一部の下げ分を前記圧縮機および前記膨張弁の制御で下げ、残りの下げ分を前記室内ファンの制御で下げる、請求項6に記載の空気調和装置。
PCT/JP2018/024787 2018-06-29 2018-06-29 空気調和装置 WO2020003490A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020526849A JPWO2020003490A1 (ja) 2018-06-29 2018-06-29 空気調和装置
PCT/JP2018/024787 WO2020003490A1 (ja) 2018-06-29 2018-06-29 空気調和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/024787 WO2020003490A1 (ja) 2018-06-29 2018-06-29 空気調和装置

Publications (1)

Publication Number Publication Date
WO2020003490A1 true WO2020003490A1 (ja) 2020-01-02

Family

ID=68986811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/024787 WO2020003490A1 (ja) 2018-06-29 2018-06-29 空気調和装置

Country Status (2)

Country Link
JP (1) JPWO2020003490A1 (ja)
WO (1) WO2020003490A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111637587A (zh) * 2020-05-28 2020-09-08 宁波奥克斯电气股份有限公司 压缩机过载保护的控制方法、系统及空调器
CN114383258A (zh) * 2022-01-27 2022-04-22 宁波奥克斯电气股份有限公司 压缩机的频率波动的控制方法、空调器以及存储介质
JP7570257B2 (ja) 2020-03-12 2024-10-21 三菱重工業株式会社 冷凍装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03251637A (ja) * 1990-02-28 1991-11-11 Daikin Ind Ltd 空気調和装置の運転制御装置
JPH09243185A (ja) * 1996-03-07 1997-09-16 Matsushita Electric Ind Co Ltd 冷凍サイクル操作方法とこれを利用した冷凍装置
JP2002277099A (ja) * 2001-03-21 2002-09-25 Daikin Ind Ltd 冷凍装置
JP2005055053A (ja) * 2003-08-04 2005-03-03 Matsushita Electric Ind Co Ltd 空気調和装置
JP2005076933A (ja) * 2003-08-29 2005-03-24 Mitsubishi Electric Corp 冷凍サイクル装置
JP2015124958A (ja) * 2013-12-27 2015-07-06 日立アプライアンス株式会社 空気調和機
JP2016166710A (ja) * 2015-03-10 2016-09-15 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド 空気調和システム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03251637A (ja) * 1990-02-28 1991-11-11 Daikin Ind Ltd 空気調和装置の運転制御装置
JPH09243185A (ja) * 1996-03-07 1997-09-16 Matsushita Electric Ind Co Ltd 冷凍サイクル操作方法とこれを利用した冷凍装置
JP2002277099A (ja) * 2001-03-21 2002-09-25 Daikin Ind Ltd 冷凍装置
JP2005055053A (ja) * 2003-08-04 2005-03-03 Matsushita Electric Ind Co Ltd 空気調和装置
JP2005076933A (ja) * 2003-08-29 2005-03-24 Mitsubishi Electric Corp 冷凍サイクル装置
JP2015124958A (ja) * 2013-12-27 2015-07-06 日立アプライアンス株式会社 空気調和機
JP2016166710A (ja) * 2015-03-10 2016-09-15 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド 空気調和システム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7570257B2 (ja) 2020-03-12 2024-10-21 三菱重工業株式会社 冷凍装置
CN111637587A (zh) * 2020-05-28 2020-09-08 宁波奥克斯电气股份有限公司 压缩机过载保护的控制方法、系统及空调器
CN114383258A (zh) * 2022-01-27 2022-04-22 宁波奥克斯电气股份有限公司 压缩机的频率波动的控制方法、空调器以及存储介质

Also Published As

Publication number Publication date
JPWO2020003490A1 (ja) 2021-04-01

Similar Documents

Publication Publication Date Title
US8522568B2 (en) Refrigeration system
US10371407B2 (en) Air conditioning apparatus
WO2017179192A1 (ja) 空気調和機
US11262108B2 (en) Refrigeration cycle apparatus
JP6707189B2 (ja) 空気調和機及び空気調和機のファン速制御方法
JP2008202908A (ja) 空気調和機
US20040221593A1 (en) Method for controlling air conditioner
WO2019087621A1 (ja) 空調装置
WO2018164253A1 (ja) 空気調和装置
WO2020003490A1 (ja) 空気調和装置
JP2008190759A (ja) 空気調和装置
JP2005147490A (ja) 空気調和装置
KR100625568B1 (ko) 멀티형 공기조화기
JP2011149611A (ja) 空気調和機
JPH1096545A (ja) 空気調和機およびその制御方法
JP2019020093A (ja) 空気調和機
JP2007170706A (ja) 冷凍システム
JP2010210222A (ja) 空気調和機およびその制御方法
JP2007327717A (ja) 空気調和機
KR20070088077A (ko) 공기조화기 및 그 제어방법
WO2018211612A1 (ja) 空気調和装置
WO2018167866A1 (ja) 空気調和装置
JP7466786B2 (ja) 空気調和装置
WO2023228323A1 (ja) 冷凍サイクル装置
JP7254103B2 (ja) 空気調和システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18924490

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020526849

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18924490

Country of ref document: EP

Kind code of ref document: A1