WO2018185880A1 - 光ファイバ切断システム - Google Patents

光ファイバ切断システム Download PDF

Info

Publication number
WO2018185880A1
WO2018185880A1 PCT/JP2017/014243 JP2017014243W WO2018185880A1 WO 2018185880 A1 WO2018185880 A1 WO 2018185880A1 JP 2017014243 W JP2017014243 W JP 2017014243W WO 2018185880 A1 WO2018185880 A1 WO 2018185880A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
blade member
cutting system
fiber cutting
outer peripheral
Prior art date
Application number
PCT/JP2017/014243
Other languages
English (en)
French (fr)
Inventor
一美 佐々木
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Priority to EP17889526.4A priority Critical patent/EP3447550B1/en
Priority to KR1020177019646A priority patent/KR101970422B1/ko
Priority to US15/570,156 priority patent/US10591673B2/en
Publication of WO2018185880A1 publication Critical patent/WO2018185880A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/25Preparing the ends of light guides for coupling, e.g. cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D3/00Cutting work characterised by the nature of the cut made; Apparatus therefor
    • B26D3/16Cutting rods or tubes transversely

Definitions

  • the present invention relates to an optical fiber cutting system.
  • Patent Document 1 discloses a matter of rotating a blade member little by little every time an optical fiber is initially scratched with a disk-shaped blade member (wound blade).
  • Patent Document 2 when an end face of an optical fiber after cutting is analyzed by an image analyzer, and it is determined that the cutting performance of a predetermined portion of the blade member is deteriorated based on the analysis result, the contact of the blade member with the optical fiber
  • Patent Document 3 discloses a configuration in which an image analysis device that analyzes an end face of an optical fiber after cutting (before connection) is provided in a fusion splicing device that connects optical fibers. In this configuration, when it is determined that the predetermined part of the blade member is worn based on the analysis result of the image analysis apparatus, an instruction to change the part of the blade member that contacts the optical fiber is given to the cutting device including the blade member.
  • a configuration for transmitting is disclosed.
  • the present invention has been made in view of the above-described circumstances, and an object thereof is to provide an optical fiber cutting system that can use a blade member without waste.
  • the optical fiber cutting system according to the present invention is arranged at intervals in the longitudinal direction of the optical fiber, and moves between the pair of clamps for gripping the optical fiber and the outer peripheral edge by moving between the pair of clamps.
  • a disk-shaped blade member that contacts and scratches the surface of an optical fiber, the disk-shaped blade member capable of changing the position of the outer peripheral edge contacting the optical fiber, and the optical fiber A pressing member that pushes and bends the wound portion and cuts the optical fiber; and an acquisition unit that acquires position information of the outer peripheral edge that contacts the optical fiber, the acquisition unit including the outer peripheral edge
  • the optical fiber cutting system is a sensor that acquires the position information of the outer peripheral edge by detecting the direction of the magnetic lines of force according to the position.
  • the blade member can be used without waste.
  • FIG. 1 is a block diagram showing an optical fiber cutting system according to the first embodiment.
  • FIG. 2 is a perspective view illustrating a configuration example of the optical fiber cutting system according to the first embodiment.
  • 3A to 3D are views for explaining a process of scratching the surface of the optical fiber 100 with the blade member 13.
  • 4A to 4D illustrate a process of scratching the surface of the optical fiber 100 with the blade member 13 when the relative position between the optical fiber 100 and the blade member 13 is closer than in the case of FIGS. 3A to 3D.
  • FIG. 5A to 5C are explanatory diagrams of the magnetic sensor.
  • FIG. 5A and FIG. 5B are diagrams illustrating the relationship between the rotational positions of the magnetic sensor and the magnet.
  • FIG. 5C is an explanatory diagram of output characteristics of the magnetic sensor.
  • FIG. 6A is a perspective view for explaining the rotation unit 50 provided on the blade member 13 side and the sensor-side unit 60 provided on the outer edge position measurement sensor 15 side.
  • FIG. 6B is a cross-sectional view for explaining the rotation unit 50 provided on the blade member 13 side and the sensor side unit 60 provided on the outer edge position measurement sensor 15 side.
  • FIG. 7 is an exploded explanatory view of the rotation unit 50.
  • FIG. 8 is a block diagram showing an optical fiber cutting system according to the second embodiment.
  • FIG. 9 is a block diagram showing an optical fiber cutting system according to the third embodiment.
  • FIG. 10 is a block diagram illustrating an optical fiber cutting system according to the fourth embodiment.
  • FIG. 11 is a block diagram illustrating an optical fiber cutting system according to a fifth embodiment.
  • a pair of clamps that are arranged at intervals in the longitudinal direction of the optical fiber and that move between the pair of clamps so that the outer peripheral edge contacts the surface of the optical fiber and is scratched
  • a disk-shaped blade member that can change the position of the outer peripheral edge portion that contacts the optical fiber, and the optical fiber by pressing and bending the scratched portion of the optical fiber.
  • a pressing member for cutting, and an acquisition unit that acquires position information of the outer peripheral edge portion that contacts the optical fiber, wherein the acquisition unit detects a direction of the lines of magnetic force according to the position of the outer peripheral edge portion.
  • the position information is preferably the rotational position of the disk-shaped blade member.
  • the disk-shaped blade member is provided with magnetic lines of force in the diameter direction of the disk plane, It is desirable that the acquisition unit acquires the rotation position of the disk-shaped blade member as the position information by detecting the direction of the applied magnetic field lines. Thereby, since the direction of a magnetic force line changes according to the rotation position of a blade member, based on the direction of the magnetic force line which the sensor detected, the rotation position of a blade member can be acquired correctly.
  • the blade member is magnetized by applying a strong magnetic field, and the magnetized blade member itself generates the lines of magnetic force. Thereby, a component structure can be simplified.
  • a magnet is attached to the blade member, and the magnet generates the lines of magnetic force. Thereby, a blade member and a magnet can be constituted separately.
  • the magnet is attached to a fixed part that is fixed to the blade member. Therefore, since the direction of the magnetic force line which a magnet generates changes according to the rotation position of a blade member, based on the direction of the magnetic force line which the sensor detected, the rotation position of a blade member can be acquired correctly.
  • the position information is preferably a relative position with respect to the optical fiber in the height direction of the blade member.
  • Magnetic field lines are applied in a direction orthogonal to the magnetic field lines, and the acquisition unit acquires the relative position in the height direction of the blade member as the position information by detecting the direction of the applied magnetic field lines.
  • the direction of the magnetic lines of force changes according to the rotational position of the screw, the fixed component fixed to the screw, or both of them, and therefore in the height direction of the blade member based on the direction of the magnetic lines of force detected by the sensor.
  • the relative position with respect to the optical fiber can be obtained accurately.
  • the screw, the fixed part, or both are magnetized by applying a strong magnetic field, and the magnetized object itself generates the magnetic field lines. Thereby, a component structure can be simplified.
  • a magnet is attached to the screw, a fixed part fixed to the screw, or both, and the magnet generates the magnetic lines of force.
  • the fixed component fixed to the screw and the screw and the magnet can be configured separately.
  • the adjustment of the relative position of the blade member with respect to the optical fiber in the height direction is not the adjustment of the position of the blade member in the height direction, but the adjustment of the position in the height direction of the clamp that holds the optical fiber. It is desirable to do. Thereby, the structure of the member moved with a blade member can be reduced in size and simplified.
  • FIG. 1 is a block diagram showing an optical fiber cutting system according to the first embodiment.
  • FIG. 2 is a perspective view illustrating a configuration example of the optical fiber cutting system according to the first embodiment.
  • the optical fiber cutting system 1 acquires the position information of the optical fiber cutting device 2 including the blade member 13 for cutting (cleaving) the optical fiber 100 (optical fiber core wire) and the position of the blade member 13 with respect to the optical fiber 100.
  • the optical fiber cutting system 1 of the present embodiment includes a calculation unit 3 that handles position information of the blade member 13, a storage unit 4, and a display unit 5.
  • the optical fiber cutting device 2 includes a pair of clamps 11 and 12, a blade member 13, and a pressing member 14.
  • the pair of clamps 11 and 12 and the blade member 13 are disposed on the base 17 of the optical fiber cutting device 2.
  • the pressing member 14 is also arranged on the base 17 in the same manner.
  • the pair of clamps 11 and 12 are arranged at intervals in the longitudinal direction of the optical fiber 100 to grip the optical fiber 100.
  • the clamps 11 and 12 include lower clamps 11A and 12A and upper clamps 11B and 12B that sandwich the optical fiber 100 from the vertical direction (vertical direction in FIG. 2).
  • Elastic pads 18 (refer to FIG. 3A and FIG. 4A) made of rubber or the like are provided at portions of the lower clamps 11A and 12A and the upper clamps 11B and 12B that face each other (portions that sandwich the optical fiber 100).
  • the blade member 13 is formed in a disk shape.
  • the blade member 13 is arranged so that its disk plane is orthogonal to the longitudinal direction of the optical fiber 100 (the arrangement direction of the pair of clamps 11 and 12).
  • the blade member 13 is movable between the pair of clamps 11 and 12 in a direction perpendicular to the longitudinal direction of the optical fiber 100 with respect to the pair of clamps 11 and 12 and the optical fiber 100 held by the pair of clamps 11 and 12. Yes.
  • the blade member 13 is configured such that the outer peripheral edge portion 19 (blade edge) of the blade member 13 contacts the surface of the optical fiber 100 held by the pair of clamps 11 and 12 in the middle of the movement path (while moving). The surface of the fiber 100 is damaged.
  • the blade member 13 is rotatable on the blade base 20 around the axis of the blade member 13. Thereby, the position of the outer peripheral edge 19 of the blade member 13 in contact with the optical fiber 100 can be changed.
  • the blade member 13 can be switched between a non-rotatable state and a rotatable state by a ratchet mechanism 54 (described later). Thereby, the position of the outer peripheral edge 19 of the blade member 13 in contact with the optical fiber 100 can be appropriately maintained.
  • the relative position with the part 19 can be changed.
  • the blade member 13 is centered on the axis of the blade member 13 with respect to the blade base 20 arranged on the base 17 so as to be movable in the moving direction of the blade member 13 described above. It is provided rotatably.
  • the blade base 20 is a member that slides on the base 17.
  • the base 17 is provided with a spring (not shown), the blade base 20 is fired by releasing the compressed spring, and the blade member 13 contacts the optical fiber 100 during the movement of the blade base 20.
  • the position (height position) of the blade member 13 in the height direction can be adjusted, and the height of the optical fiber 100 held by the pair of clamps 11 and 12 can be adjusted.
  • the position is fixed.
  • a mechanism for adjusting the height position of the blade member 13 will be specifically described.
  • the blade base 20 includes a base portion 21 and a swinging portion 22 that is swingably connected to the base portion 21.
  • An axis (connection axis) that connects the base portion 21 and the swinging portion 22 is parallel to the longitudinal direction of the optical fiber 100.
  • the swing part 22 extends in a direction away from the connecting shaft.
  • the blade member 13 is provided at a midway portion in the extending direction of the swinging portion 22.
  • An adjustment screw 23 that adjusts the height position of the distal end portion of the swinging portion 22 relative to the base portion 21 is attached to the distal end portion of the swinging portion 22 in the extending direction. Thereby, the height position of the blade member 13 can be adjusted.
  • a magnet 24 is provided on the head of the adjusting screw 23 (described later). In the present embodiment, the rotation of the blade member 13 and the adjustment of the height position of the blade member 13 are manually adjusted by an operator who handles the optical fiber cutting device 2.
  • 3A to 3D are views for explaining a process of scratching the surface of the optical fiber 100 with the blade member 13.
  • 4A to 4D illustrate a process of scratching the surface of the optical fiber 100 with the blade member 13 when the relative position between the optical fiber 100 and the blade member 13 is closer than in the case of FIGS. 3A to 3D.
  • FIG. When the surface of the optical fiber 100 is scratched (initially scratches the surface of the optical fiber 100) in the optical fiber cutting device 2 including the pair of clamps 11 and 12 and the blade member 13 described above, FIG. As shown in FIGS.
  • the outer peripheral edge of the blade member 13 is obtained by moving the blade member 13 in a direction orthogonal to the longitudinal direction of the optical fiber 100 held by the pair of clamps 11 and 12.
  • the portion 19 is pressed against the surface of the optical fiber 100.
  • the optical fiber 100 positioned between the pair of clamps 11 and 12 is bent by pressing the blade member 13 as shown in FIGS. 3A and 4A.
  • a predetermined length in the circumferential direction in the outer peripheral edge portion 19 of the blade member 13 contacts the surface of the optical fiber 100.
  • this predetermined length is referred to as “contact length” of the blade member 13 with respect to the optical fiber 100.
  • the contact length of the blade member 13 with respect to the optical fiber 100 is indicated by reference numerals CL1 and CL2 in FIGS. 3D and 4D.
  • the contact length of the blade member 13 changes according to the relative position between the optical fiber 100 and the blade member 13 in the height direction. For example, as shown in FIGS. 3A to 3D, when the upper end of the blade member 13 is positioned relatively below the optical fiber 100 in the height direction, the bending of the optical fiber 100 is small (the contact pressure is low). The contact length CL1 of the blade member 13 is short. On the other hand, as shown in FIGS. 4A to 4D, when the upper end of the blade member 13 is positioned higher in the height direction than in the case of FIGS. 3A to 3D, the bending of the optical fiber 100 is large (contact). The contact length CL2 of the blade member 13 is increased. When the cutting performance of the outer peripheral edge portion 19 of the blade member 13 is the same, the longer the contact length of the blade member 13, the greater the degree of scratching the surface of the optical fiber 100.
  • the pressing member 14 shown in FIG. 2 cuts the optical fiber 100 by bending the scratched portion of the optical fiber 100 after the surface of the optical fiber 100 is scratched by the blade member 13.
  • the blade member 13 is rotatable. Therefore, the optical fiber 100 is repeatedly damaged each time with a predetermined (identical) outer peripheral edge portion 19 (a part of the outer peripheral peripheral edge portion 19 in the circumferential direction) of the blade member 13 and / or with a predetermined (identical) contact pressure.
  • a predetermined outer peripheral edge portion 19 is worn (including deterioration of the blade tip of the blade member 13 with time, deterioration with time, etc.) and the cutting performance for cutting the optical fiber 100 is lowered
  • the blade member 13 is rotated to change the position of the outer peripheral edge 19 of the blade member 13 that contacts the optical fiber 100. Specifically, the blade member 13 is rotated so that another outer peripheral edge portion 19 adjacent to the predetermined outer peripheral edge portion 19 comes into contact with the optical fiber 100 at the time of injury. Thereby, the above-mentioned cutting performance is recovered.
  • the relative position between the optical fiber 100 and the blade member 13 in the height direction can be changed.
  • the predetermined outer peripheral edge 19 is worn by repeatedly scratching the optical fiber 100 each time with the predetermined (identical) outer peripheral edge 19 and / or the predetermined (identical) contact pressure of the blade member 13.
  • the cutting performance for cutting the optical fiber 100 decreases, the relative position between the optical fiber 100 and the blade member 13 in the height direction so that the contact pressure increases (the contact length increases). To change. Thereby, the above-mentioned cutting performance is recovered.
  • whether or not the cutting performance is degraded is determined by, for example, an operator confirming the state of the end face of the optical fiber 100 after cutting.
  • the acquisition unit 10 acquires position information of the outer peripheral edge 19 of the blade member 13 that contacts the optical fiber 100.
  • the acquisition unit 10 of the present embodiment includes an outer edge position measurement sensor 15 that measures a rotation angle (rotation position) of the blade member 13 as position information of the outer peripheral edge portion 19 of the blade member 13 with respect to the optical fiber 100.
  • the outer edge position measurement sensor 15 measures the position of the outer peripheral edge portion 19 of the blade member 13 in contact with the optical fiber 100.
  • the outer edge position measurement sensor 15 is provided in the optical fiber cutting device 2.
  • the outer edge position measurement sensor 15 may continuously measure the rotation angle of the blade member 13 or may discretely measure the rotation angle.
  • the number of rotation angles (positions of the outer peripheral edge portion 19) of the blade member 13 to be measured may be appropriately set according to the diameter dimension of the blade member 13, but is 16 in this embodiment. That is, in the present embodiment, the number of positions of the outer peripheral edge portions 19 of the blade member 13 that can be used for cutting the optical fiber 100 in the circumferential direction of the blade member 13 is set to 16.
  • the blade base 20 is fired by releasing the compressed spring, and after the blade member 13 comes into contact with the optical fiber 100 during the movement, the blade base 20 receives an impact and stops at the end of the movement range. It will be. For this reason, if a sensor for measuring the rotational position (and height position) of the blade member 13 is provided on the blade base 20, it is difficult to guarantee the wiring of the sensor and the durability of the wiring. For this reason, it is desirable that the sensor for measuring the rotational position of the blade member 13 is provided on the base 17 side instead of moving together with the blade member 13 and the blade base 20.
  • a plurality of (16) markers are arranged on the outer edge portion of the blade member 13 at equal intervals in the circumferential direction.
  • the rotational position of the blade member 13 is measured by detecting one of the markers using an optical sensor, the position is accurately measured due to the influence of optical fiber cutting waste and coating waste on the detection light of the optical sensor. It may not be possible.
  • the outer edge position measurement sensor 15 of the present embodiment measures the rotational position of the blade member 13 using a magnetic sensor that detects magnetism.
  • FIG. 5A to 5C are explanatory diagrams of the magnetic sensor.
  • FIG. 5A and FIG. 5B are diagrams showing the relationship of the rotational position (rotational angle) between the magnetic sensor and the magnet.
  • FIG. 5C is an explanatory diagram of output characteristics of the magnetic sensor.
  • the magnet has a disc shape and is magnetized in the diameter direction.
  • a disk-shaped magnet is magnetized in the diametrical direction so that one side in a predetermined diametric direction is an N pole and the opposite side is an S pole.
  • the magnetic sensor is a so-called magnetic angle sensor.
  • the magnetic sensor is a sensor that detects the direction of the lines of magnetic force and outputs a signal corresponding to the direction of the lines of magnetic force.
  • the magnetic sensor package is marked.
  • the rotational position of the magnetic sensor and the magnet is set to 0 degree (reference angle).
  • an angle at which the magnet is rotated counterclockwise from the reference angle with respect to the magnetic sensor is defined as a “rotational position of the magnetic sensor and the magnet”.
  • the “rotational position of the magnetic sensor and the magnet” illustrated in FIG. 5B is “90 degrees”.
  • the magnetic sensor outputs a signal (output voltage) corresponding to the rotational position of the magnetic sensor and the magnet.
  • a signal output voltage
  • the output voltage of the magnetic sensor changes linearly.
  • the output voltage of the magnetic sensor only needs to be correlated with the rotational position of the magnetic sensor and the magnet, and does not necessarily change linearly.
  • FIG. 6A is a perspective view for explaining the rotation unit 50 provided on the blade member 13 side and the sensor side unit 60 provided on the outer edge position measurement sensor 15 side.
  • FIG. 6B is a cross-sectional view for explaining the rotation unit 50 provided on the blade member 13 side and the sensor side unit 60 provided on the outer edge position measurement sensor 15 side.
  • FIG. 7 is an exploded explanatory view of the rotation unit 50.
  • the rotation unit 50 is a mechanism that rotatably holds the blade member 13 and the magnet 51 with respect to the blade base 20.
  • the rotation unit 50 is provided in the swing part 22.
  • the rotation unit 50 includes a pressing member 52, a rotation shaft 53, and a ratchet mechanism 54 in addition to the blade member 13 and the magnet 51.
  • the pressing member 52 is an example of a fixing component for fixing the disk-shaped blade member 13.
  • the pressing member 52 is a fixed component that fixes the blade member 13 to the ratchet disc of the ratchet mechanism 54.
  • the pressing member 52 has a flange portion 521 and a protruding portion 522.
  • the flange portion 521 is a flange-shaped portion for pressing the side surface of the blade member 13.
  • the direction of the lines of magnetic force of the magnet 51 is shown on the side surface of the flange portion 521.
  • the protruding portion 522 is a portion protruding from the flange portion 521 toward the sensor side.
  • a magnet 51 is provided on the surface of the protrusion 522 on the sensor side.
  • the magnet 51 has a disc shape and is magnetized in the diametrical direction.
  • the ratchet mechanism 54 is a mechanism that holds the blade member 13 so that the blade member 13 can be switched between a non-rotatable state and a rotatable state.
  • the ratchet mechanism 54 includes a ratchet disc 541 and a ratchet pawl 542.
  • a ratchet gear is formed on the outer periphery of the ratchet disc 541.
  • the blade member 13 may be formed of a magnet. Even in this case, since the magnetized blade member 13 generates magnetic lines of force, the outer edge position measuring sensor 15 configured by a magnetic sensor detects the magnetic lines of force generated by the blade member 13 and sets the rotation position of the blade member 13 to the rotational position. A corresponding signal can be output. In this case, the configuration of the pressing member 52 can be simplified.
  • the blade member 13 is formed with a fitting hole 13A.
  • the ratchet disk 541 has a convex portion 541A, and the convex portion 541A is fitted in the fitting hole 13A of the blade member 13.
  • the pressing member 52 is formed with a convex portion 521A (see FIG. 6B), and the convex portion 521A is also fitted in the fitting hole 13A of the blade member 13.
  • the sensor side unit 60 is a mechanism that rotatably holds the outer edge position measurement sensor 15 (magnetic sensor).
  • the sensor side unit 60 includes a swing member 61 and a sensor rotation shaft 62.
  • the swing member 61 is a member that can rotate around the sensor rotation shaft 62 while holding the outer edge position measurement sensor 15 that is a magnetic sensor.
  • the rotation position of the swing member 61 is a position where the outer edge position measurement sensor 15 can be opposed to the magnet 51.
  • the outer edge position measurement sensor 15 is in a position not facing the magnet 51, as shown in FIG.
  • the pressing member 52 provided with the magnet 51 can be removed by rotating the swing member 61 and retracting the outer edge position measurement sensor 15.
  • the outer edge position measuring sensor 15 is composed of a magnetic sensor, detects a magnetic force line generated by the magnet 51, and outputs a signal corresponding to the rotational position of the magnet 51. For this reason, even if cutting waste or covering waste of the optical fiber 100 enters between the outer edge position measuring sensor 15 and the magnet 51, the outer edge position measuring sensor 15 is affected by the cutting waste or covering waste of the optical fiber 100. Without receiving, a signal corresponding to the rotational position of the magnet 51 can be output. Even if disturbance light enters from the outside, the outer edge position measurement sensor 15 can output a signal corresponding to the rotational position of the magnet 51 without being affected by the disturbance light. For this reason, the outer edge position measurement sensor 15 can accurately measure the rotational position (rotational position) of the blade member 13. The rotation angle (measured value) of the blade member 13 measured by the outer edge position measurement sensor 15 is output from the outer edge position measurement sensor 15 as an electric signal, for example.
  • the acquisition unit 10 of the present embodiment acquires relative position information between the optical fiber 100 and the outer peripheral edge portion 19 of the blade member 13 in the height direction. Specifically, the acquisition unit 10 of the present embodiment measures the position of the outer peripheral edge 19 of the blade member 13 in the height direction (height position of the blade member 13) as the above-described relative position information.
  • (Position measuring sensor) 16 is included.
  • the contact length measurement sensor 16 is provided in the optical fiber cutting device 2.
  • the contact length measurement sensor 16 may continuously measure the height position of the blade member 13, but in the present embodiment, the height position is discretely measured.
  • the number of height positions of the blade member 13 to be measured may be arbitrary, but in the present embodiment, it is assumed that there are three “low”, “medium”, and “high”.
  • the number of height positions of the blade member 13 that can be used for cutting the optical fiber 100 at the same position of the outer peripheral edge portion 19 is three. Therefore, in this embodiment, the total number of positions of the blade member 13 that can be used for cutting the optical fiber 100 is the number 16 of the positions of the outer peripheral edge portion 19 in the circumferential direction of the blade member 13 and the number of positions of the blade member 13. It becomes 48 places which multiplied several number of height positions.
  • the contact length measurement sensor 16 is disposed so as to be able to face the head of the adjustment screw 23 (in FIG. 2, the magnet 24 on the head of the adjustment screw 23 is shown. Sensor 16 is transparent and is shown in dotted lines).
  • the adjustment screw 23 is a rotating member for adjusting the height position of the tip portion of the swinging portion 22. When the adjusting screw 23 is rotated, the protrusion amount of the lower end of the adjusting screw 23 from the lower surface of the swinging portion 22 is adjusted, and thereby the height position of the tip end portion of the swinging portion 22 is adjusted. The height position of the member 13 is adjusted.
  • a magnet 24 is provided on the head of the adjustment screw 23.
  • the head of the adjustment screw 23 is formed in a disk shape, and the adjustment is performed so that the lines of magnetic force are applied in the diameter direction of the disk-shaped head (the direction perpendicular to the rotation axis of the adjustment screw 23).
  • the head of the screw 23 is magnetized.
  • a magnetic line of force is applied to a fixed part (part rotating with the adjusting screw 23) fixed to the adjusting screw 23 in a direction perpendicular to the rotation axis of the adjusting screw 23.
  • magnetic lines of force may be applied to both the adjustment screw 23 and the fixed part fixed to the adjustment screw 23 in a direction perpendicular to the rotation axis of the adjustment screw 23.
  • the contact length measurement sensor 16 which is a magnetic sensor, detects a line of magnetic force generated by the magnet 24 at the head of the adjustment screw 23 and outputs a signal corresponding to the rotational position of the magnet 24. For this reason, even if cutting waste or coating waste of the optical fiber 100 enters between the contact length measurement sensor 16 and the adjusting screw 23, the contact length measurement sensor 16 is affected by the cutting waste or coating waste of the optical fiber 100.
  • the signal according to the rotational position of the adjusting screw 23 can be output without receiving the signal. Even if ambient light enters from the outside, the contact length measurement sensor 16 can output a signal corresponding to the rotational position of the adjusting screw 23 without being affected by the ambient light. For this reason, the contact length measurement sensor 16 can accurately measure the height position of the blade member 13.
  • the height position (measured value) of the blade member 13 measured by the contact length measurement sensor 16 is output from the contact length measurement sensor 16 as an electrical signal, for example.
  • the outer edge position measurement sensor 15 and the contact length measurement sensor 16 described above are provided in the optical fiber cutting device 2. As illustrated in FIG. 2, the outer edge position measurement sensor 15 and the contact length measurement sensor 16 are separated from the position where the outer peripheral edge 19 of the blade member 13 is in contact with the optical fiber 100 in the moving direction of the blade member 13 (for example, You may arrange
  • the calculation unit 3 shown in FIG. 1 calculates maintenance information regarding the blade member 13 based on the position information acquired by the outer edge position measurement sensor 15 and the contact length measurement sensor 16.
  • the maintenance information includes, for example, when the predetermined outer peripheral edge portion 19 of the blade member 13 is worn and the cutting performance for cutting the optical fiber 100 is deteriorated, the next of the outer peripheral edge portion 19 used for cutting the optical fiber 100 Information indicating the position (the outer peripheral edge portion 19 different from the predetermined outer peripheral edge portion 19) and / or the height position of the blade member 13 (hereinafter referred to as “next moving destination position of the blade member 13”), that is, cutting performance Information for recovering may be included.
  • the correct use order of a plurality (48 places) of the blade member 13 used for cutting the optical fiber 100 (hereinafter, “the correct use order of the blade member 13”) Information) is used.
  • the information is stored in advance in the storage unit 4 described later.
  • Procedure A The position (initial position) of the blade member 13 that is used first for cutting the optical fiber 100 is such that the height position of the blade member 13 is “low” and the outer peripheral edge portion 19 in the circumferential direction of the blade member 13. Is the position ("blade height position (blade height): low, position of the outer peripheral edge 19 of the blade member 13 (blade angle): 1")).
  • the positions of the outer peripheral edge 19 in the circumferential direction of the blade member 13 are numbered “1”, “2”,..., “16” in the circumferential direction of the blade member 13.
  • Procedure B Each time the outer peripheral edge portion 19 of the predetermined number of the blade member 13 that contacts the optical fiber 100 is worn, the blade member 13 is rotated, and “No. 1” ⁇ “No. 2” ⁇ “No. 3” The position of the outer peripheral edge 19 in the circumferential direction of the blade member 13 is changed in the order of “ ⁇ ... ⁇ “ No. 15 ” ⁇ “ No. 16 ”.
  • Procedure C When the blade member 13 makes one rotation and returns to “No. 1”, the height position of the blade member 13 is changed from “low” to “medium”. That is, after using the position of “blade height: low, blade angle: No. 16” in the blade member 13, the position of “blade height: medium, blade angle: No. 1” is used.
  • Procedure D With the height position of the blade member 13 held at “medium”, “No. 1” ⁇ “No. 2” ⁇ “No. 3” ⁇ . The position of the outer peripheral edge portion 19 in the circumferential direction of the blade member 13 is changed in the order of “No.” ⁇ “No. 16”.
  • Step E When the blade member 13 makes one rotation and returns to “No.
  • the maintenance information may include information indicating the degree of wear of the blade member 13, for example.
  • the degree of wear of the blade member 13 is, for example, a blade member that has been used for cutting the optical fiber 100 at the present time, with the total number (48 locations) of the blade member 13 that can be used for cutting the optical fiber 100 as a denominator. This is the ratio of the number of positions 13 as a molecule. For example, when the number of used blade members 13 is 36, the degree of wear of the blade members 13 is 75%.
  • the maintenance information may include, for example, information indicating the remaining life of the blade member 13.
  • the remaining life of the blade member 13 is, for example, the total number (48 locations) of the blade member 13 that can be used for cutting the optical fiber 100 as a denominator, and the blade member that is not currently used for cutting the optical fiber 100 This is the ratio of the number of positions 13 as a molecule. For example, when the number of positions of the unused blade member 13 is 12, the remaining life of the blade member 13 is 25%.
  • the maintenance information may include, for example, information (for example, after 42 days) indicating the estimated replacement time of the blade member 13.
  • the information indicating the estimated replacement time of the blade member 13 may be calculated based on an estimated value of the number of positions of the blade member 13 used for one day, for example.
  • the storage unit 4 stores the position information of the blade member 13 relative to the optical fiber 100 and the maintenance information described above. In addition, the storage unit 4 stores information such as the above-described “correct use order of the blade members 13” and the total number of positions of the blade members 13 that can be used for cutting the optical fiber 100 (48 locations). . Various information stored in the storage unit 4 may be appropriately read out by the calculation unit 3.
  • the display unit 5 displays the position information and maintenance information of the blade member 13.
  • the display unit 5 includes, for example, the current position information of the blade member 13, the correct position information of the current blade member 13 calculated by the calculation unit 3, and the “next movement destination position of the blade member 13 calculated by the calculation unit 3. ”, Information for warning the operator that a movement error has occurred, information on the remaining life of the blade member 13 calculated by the calculation unit 3, information for notifying the operator of replacement of the blade member 13, etc. Is mentioned.
  • the position information of the blade member 13 displayed on the display unit 5 includes information indicating the position of the outer peripheral edge portion 19 in the circumferential direction of the blade member 13 and information indicating the height position of the blade member 13.
  • the display method (numeric display, graphic display, etc.) of various information displayed on the display unit 5 may be arbitrary. In addition, operation buttons and the like may be displayed on the display unit 5.
  • the acquisition unit 10 acquires the positional information of the outer peripheral edge 19 of the blade member 13 that contacts the optical fiber 100, thereby The position of the outer peripheral edge portion 19 of the blade member 13 can be accurately grasped. For this reason, it can suppress suitably that the movement mistake of the blade member 13 generate
  • the acquisition unit 10 acquires the position information of the outer peripheral edge portion 19 by detecting the direction of the lines of magnetic force according to the position of the outer peripheral edge portion 19 of the blade member 13. Sensors (outer edge position measurement sensor 15 and contact length measurement sensor 16). Thereby, since the positional information on the outer peripheral edge 19 can be acquired without being affected by the cutting waste or covering waste of the optical fiber 100 or the influence of ambient light, the position of the outer peripheral edge 19 of the blade member 13 is accurately determined. Can grasp.
  • the position information of the outer peripheral edge 19 acquired by the acquiring unit 10 is the rotation angle (rotation position) of the disk-shaped blade member 13.
  • the rotation angle of the blade member 13 (the position of the outer peripheral edge portion 19 of the blade member 13 in contact with the optical fiber 100) can be accurately grasped.
  • a magnet 51 is attached to the blade member 13, and the magnet 51 generates lines of magnetic force.
  • the material of the blade member 13 is There are fewer restrictions.
  • the blade member 13 may be magnetized by applying a strong magnetic field, and the magnetized blade member 13 itself may generate lines of magnetic force. In this case, the component configuration can be simplified.
  • the magnet 51 is attached to a pressing member 52 that is an example of a fixed component that is fixed to the blade member 13.
  • the magnet 51 can be rotated according to the rotational position of the blade member 13, the direction of the lines of magnetic force changes according to the rotational position of the blade member 13. Based on the detected direction of the lines of magnetic force, the rotational position of the blade member 13 can be accurately acquired.
  • the magnet 51 may be attached to a member different from the pressing part 52 because it may be attached to a fixed part fixed to the blade member 13.
  • the position information of the outer peripheral edge portion 19 acquired by the acquisition unit 10 is a relative position with respect to the optical fiber 100 in the height direction of the blade member 13.
  • the acquisition unit 10 includes a contact length measurement sensor 16 that measures the position of the outer peripheral edge 19 of the blade member 13 in the height direction as relative position information. This makes it possible to accurately grasp the relative position between the optical fiber 100 and the blade member 13 in the height direction (the height position of the blade member 13).
  • the contact length measurement sensor 16 is a magnetic sensor, the light in the height direction of the blade member 13 is not affected by the influence of cutting waste or coating waste of the optical fiber 100, disturbance light, or the like.
  • Position information of the outer peripheral edge portion 19 that detects a relative position with respect to the fiber 100 can be acquired.
  • the optical fiber cutting system 1 of the present embodiment includes an adjustment mechanism that adjusts the relative position of the blade member 13 with respect to the optical fiber 100 in the height direction according to the rotational position of the adjustment screw 23.
  • the adjustment screw 23 (or both of the fixed part fixed to the adjustment screw 23 or both of the adjustment screw 23 and the fixed part fixed to the adjustment screw 23) is orthogonal to the rotation axis of the adjustment screw 23.
  • the magnetic force lines are applied in the direction of movement, and the acquisition unit 10 (contact length measurement sensor 16) detects the direction of the applied magnetic force lines, thereby determining the relative position of the blade member 13 with respect to the optical fiber 100 in the height direction. get. Thereby, the height position of the blade member 13 can be accurately grasped.
  • the adjustment screw 23 (or both of the fixed component fixed to the adjustment screw 23 or both the adjustment screw 23 and the fixed component fixed to the adjustment screw 23) is magnetized by applying a strong magnetic field.
  • the magnetized object for example, the adjusting screw 23
  • the magnetized object itself generates magnetic lines of force.
  • a component structure can be simplified.
  • a magnet is attached to the adjustment screw 23 (or both of the fixed part fixed to the adjustment screw 23 or the fixed part fixed to the adjustment screw 23 and the adjustment screw 23), and the magnet generates lines of magnetic force. Also good.
  • the adjustment screw 23 and the magnet are separate from each other, so that there are fewer restrictions on the material of the adjustment screw 23 and the like.
  • the optical fiber cutting system 1 of the present embodiment in addition to the acquisition unit 10 that acquires the position information of the outer peripheral edge portion 19 of the blade member 13 with respect to the optical fiber 100, the calculation unit 3, the storage unit 4, and the display unit 5, it is possible to notify the operator of “the next movement destination position of the blade member 13”. For this reason, generation
  • production of the movement mistake of the blade member 13 by an operator can further be suppressed.
  • the acquisition unit 10, the calculation unit 3, the storage unit 4, and the display unit 5 are provided, so that the degree of wear of the blade member 13, the remaining life, the estimated replacement time, the replacement It is also possible to notify the operator of maintenance information such as instructions. For this reason, the replacement preparation of the blade member 13 can be performed appropriately.
  • the unused blade member 13 can be prepared in advance when the degree of wear of the blade member 13 is close to 100% (the remaining life is close to 0%) or the replacement time of the blade member 13 is approaching. In other words, it is not necessary to always carry the unused blade member 13, and the handling of the optical fiber cutting device 2 becomes easy.
  • the calculation unit 3, the storage unit 4, and the display that handle the positional information of the blade member 13 acquired by the acquisition unit 10 and the maintenance information calculated based on the positional information.
  • the unit 5 is provided in the optical fiber cutting device 2. For this reason, compared with the case where the calculating part 3, the memory
  • movement (for example, movement of a gaze) can be suppressed to the minimum. That is, the operator can easily handle the optical fiber cutting system 1.
  • the optical fiber cutting system 1A of the present embodiment is similar to the first embodiment in that the optical fiber cutting device 2A, the outer edge position measuring sensor 15, the contact length measuring sensor 16, the computing unit 3, and the storage unit. 4 and a display unit 5.
  • the configuration of the optical fiber cutting device 2A may be the same as that of the optical fiber cutting device 2 of the first embodiment.
  • the outer edge position measurement sensor 15 and the contact length measurement sensor 16 are provided in the optical fiber cutting device 2A as in the first embodiment.
  • the functions of the calculation unit 3, the storage unit 4, and the display unit 5 are the same as those in the first embodiment.
  • the position information of the blade member 13 (the rotation angle of the blade member 13 and the height position of the blade member 13) measured by the outer edge position measurement sensor 15 and the contact length measurement sensor 16. Is transmitted to an external device 6A separate from the optical fiber cutting device 2A. That is, the optical fiber cutting device 2A of the present embodiment includes a transmission unit 31A that transmits the position information of the blade member 13 output from the outer edge position measurement sensor 15 and the contact length measurement sensor 16 to the external device 6A.
  • the external device 6A may be, for example, a fusion splicing device that connects the optical fibers 100 (optical fiber cores), and handles position information of the blade member 13 such as a mobile phone, a personal computer, or a cloud data server. It can be any device that can.
  • the external device 6A includes a receiving unit (not shown) that receives position information of the blade member 13 transmitted from the optical fiber cutting device 2A.
  • the line for transmitting information from the optical fiber cutting device 2A to the external device 6A may be wireless or wired.
  • the arithmetic unit 3, the storage unit 4 and the display unit 5 are provided in the external device 6A. For this reason, calculation, storage, and display of maintenance information and the like based on the position information of the blade member 13 are performed by the external device 6A.
  • the optical fiber cutting system 1A of the present embodiment has the same effects as those of the first embodiment. Furthermore, according to the optical fiber cutting system 1A of the present embodiment, the calculation unit 3, the storage unit 4, and the display unit 5 are provided in the external device 6A. For this reason, compared with the optical fiber cutting system 1 of 1st Embodiment, size reduction and cost reduction of 2 A of optical fiber cutting devices can be achieved. Further, since the optical fiber cutting device 2A is small, the optical fiber cutting device 2A can be easily carried, and is particularly effective for use of the optical fiber cutting device 2A outdoors.
  • the optical fiber cutting system 1B of the present embodiment is similar to the first embodiment in that the optical fiber cutting device 2B, the outer edge position measuring sensor 15, the contact length measuring sensor 16, the computing unit 3, and the storage unit. 4 and a display unit 5.
  • the configuration of the optical fiber cutting device 2B may be the same as that of the optical fiber cutting device 2 of the first embodiment.
  • the outer edge position measuring sensor 15 and the contact length measuring sensor 16 are provided in the optical fiber cutting device 2B as in the first embodiment.
  • the functions of the calculation unit 3, the storage unit 4, and the display unit 5 are the same as those in the first embodiment.
  • the position information of the blade member 13 measured by the outer edge position measurement sensor 15 and the contact length measurement sensor 16 and the maintenance information calculated based on the position information of the blade member 13 are used. Is transmitted to an external device 6B separate from the optical fiber cutting device 2B. That is, the optical fiber cutting device 2B according to the present embodiment includes the transmission unit 31A similar to that of the second embodiment. A specific example of the external device 6B may be the same as that illustrated in the second embodiment.
  • storage part 4 are provided in the optical fiber cutting device 2B, and the display part 5 is provided in the external device 6B. For this reason, only the information displayed on the display unit 5 among the positional information and maintenance information of the blade member 13 is transmitted from the optical fiber cutting device 2B to the external device 6B.
  • the optical fiber cutting system 1B of this embodiment has the same effects as those of the first and second embodiments. Furthermore, according to the optical fiber cutting system 1B of the present embodiment, since the display unit 5 is provided in the external device 6B, the optical fiber cutting device 2B is compared with the optical fiber cutting system 1 of the first embodiment. Miniaturization and cost reduction can be achieved.
  • the optical fiber cutting system 1C of the present embodiment is similar to the first embodiment in that the optical fiber cutting device 2C, the outer edge position measuring sensor 15, the contact length measuring sensor 16, the computing unit 3, and the storage unit. 4 and a display unit 5.
  • the configuration of the optical fiber cutting device 2C may be the same as that of the optical fiber cutting device 2 of the first embodiment.
  • the outer edge position measurement sensor 15 and the contact length measurement sensor 16 are provided in the optical fiber cutting device 2C as in the first embodiment.
  • the functions of the calculation unit 3, the storage unit 4, and the display unit 5 are the same as those in the first embodiment.
  • the position information of the blade member 13 measured by the outer edge position measuring sensor 15 and the contact length measuring sensor 16 is used as the optical fiber cutting device 2C. Transmits to a separate external device 6C. That is, the optical fiber cutting device 2C of the present embodiment includes a transmission unit 31A similar to that of the second embodiment. A specific example of the external device 6C may be the same as that illustrated in the second embodiment.
  • storage part 4 are provided in the external device 6C, and the display part 5 is provided in the optical fiber cutting device 2C. For this reason, calculation and storage of maintenance information and the like based on the position information of the blade member 13 are performed by the external device 6C.
  • Information displayed on the display unit 5 among the positional information and maintenance information of the blade member 13 is transmitted from the external device 6C to the optical fiber cutting device 2C. That is, the external device 6C is provided with a transmission unit (not shown) for transmitting information to be displayed on the display unit 5 to the optical fiber cutting device 2C.
  • the optical fiber cutting device 2C is provided with a receiving unit (not shown) for receiving information to be displayed on the display unit 5.
  • the optical fiber cutting system 1C of this embodiment has the same effects as those of the first and second embodiments. Furthermore, according to the optical fiber cutting system 1C of the present embodiment, since the calculation unit 3 and the storage unit 4 are provided in the external device 6C, compared with the optical fiber cutting system 1 of the first embodiment, It is possible to reduce the size and cost of the optical fiber cutting device 2C.
  • the optical fiber cutting system 1D of the present embodiment is similar to the first embodiment in that the optical fiber cutting device 2D, the outer edge position measuring sensor 15, the contact length measuring sensor 16, the computing unit 3, and the storage unit. 4 and a display unit 5.
  • the functions of the calculation unit 3, the storage unit 4, and the display unit 5 are the same as those in the first embodiment.
  • the optical fiber cutting device 2D of the present embodiment by adjusting the height position of the optical fiber 100 with respect to the blade member 13, the relative position between the optical fiber 100 and the blade member 13 in the height direction is adjusted.
  • the contact length of the blade member 13 is adjusted.
  • An adjustment screw 25 is attached to the base 17.
  • the adjusting screw 25 is a rotating member for adjusting the height position of the clamps 11 and 12 (gripping portions that grip the optical fiber 100).
  • a magnet 26 is provided on the head of the adjustment screw 25.
  • the head of the adjustment screw 25 is formed in a disk shape, and the adjustment is performed so that the lines of magnetic force are applied in the diameter direction of the disk-shaped head (the direction perpendicular to the rotation axis of the adjustment screw 25).
  • the head of the screw 25 is magnetized.
  • a magnetic line of force is applied to the fixed part (part rotating with the adjustment screw 25) fixed to the adjustment screw 25 in a direction perpendicular to the rotation axis of the adjustment screw 25.
  • magnetic lines of force may be applied to both the adjustment screw 25 and the fixed part fixed to the adjustment screw 25 in a direction perpendicular to the rotation axis of the adjustment screw 25.
  • the contact length measurement sensor 16 which is a magnetic sensor, detects magnetic lines generated by the magnet 26 at the head of the adjustment screw 25 and outputs a signal corresponding to the rotational position of the magnet 26. For this reason, even if cutting waste or coating waste of the optical fiber 100 enters between the contact length measurement sensor 16 and the adjusting screw 25, the contact length measurement sensor 16 is affected by the cutting waste or coating waste of the optical fiber 100.
  • the signal according to the rotational position of the adjusting screw 23 can be output without receiving the signal. Even if ambient light enters from the outside, the contact length measurement sensor 16 can output a signal corresponding to the rotational position of the adjusting screw 25 without being affected by the ambient light. For this reason, the contact length measurement sensor 16 can accurately measure the height position of the optical fiber 100 with respect to the blade member 13 (relative position between the optical fiber 100 and the blade member 13 (or the outer peripheral edge portion 19) in the height direction). .
  • the adjustment of the relative position of the blade member 13 with respect to the optical fiber 100 in the height direction is not the adjustment of the position of the blade member 13 in the height direction as in the above-described embodiment, but the optical fiber 100 is gripped. This is done by adjusting the position of the clamps 11 and 12 in the height direction.
  • the blade base 20 since the height position of the blade member 13 does not need to be adjusted, the blade base 20 does not include the oscillating portion 22, and the blade member 13 includes the base portion 21. It is provided in the middle of the extending direction.
  • the rotation unit 50 rotatably holds the blade member 13 and the magnet 51 with respect to the blade base 20.
  • the optical fiber cutting system 1D of this embodiment has the same effects as those of the first embodiment. Furthermore, according to the optical fiber cutting system 1D of the present embodiment, since the oscillating portion 22 does not have to be provided on the blade base 20, compared with the optical fiber cutting system 1 of the first embodiment, the blade member 13 is provided. The structure of the blade 20 to be moved can be reduced in size and simplified.
  • the storage unit 4 may be provided in the optical fiber cutting devices 2A and 2C. That is, the maintenance information calculated by the calculation unit 3 of the external devices 6A and 6C may be transmitted to the optical fiber cutting devices 2A and 2C and stored in the storage unit 4 of the optical fiber cutting devices 2A and 2C.
  • the calculation unit 3, the storage unit 4, and the display unit 5 are optical fibers. It may be provided in both the cutting devices 2A to 2C and the external devices 6A to 6C.
  • the upper part of the “correct use order of blade members” stored in advance in the storage unit 4 is not limited to that described in the above embodiment, and may be arbitrarily set.
  • the warning to the operator is not limited to being displayed on the display unit 5.
  • the sound may be emitted from a speaker or the like.
  • the calculation unit 3 can calculate the degree of wear and the remaining life of the blade member 13 based on, for example, the acquired position information and the number of times the optical fiber 100 has been damaged. As a result, the degree of wear of the blade member 13 and the remaining life information can be transmitted to the operator more finely than in the case of the above embodiment.
  • the optical fiber cutting device may include an image analysis device that analyzes the state of the end face of the optical fiber after being cut.
  • an image analysis device that analyzes the state of the end face of the optical fiber after being cut.
  • the blade for the optical fiber 100 is used.
  • An instruction to change the position of the member 13 can be displayed on the display unit 5.
  • the position of the blade member 13 relative to the optical fiber 100 is not limited to an optical fiber cutting device that is manually operated by an operator.
  • the position of the blade member 13 relative to the optical fiber 100 is automatically changed by a motor or the like. It is also applicable to the device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Forests & Forestry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

【解決手段】本開示の光ファイバ切断システムは、光ファイバの長手方向に間隔をあけて配され、前記光ファイバを把持する1対のクランプと、前記1対のクランプ間を移動させて外周縁部を前記光ファイバの表面に接触させて加傷する円板状の刃部材であって、前記光ファイバに接触する前記外周縁部の位置を変更可能な円板状の前記刃部材と、前記光ファイバの加傷部を押し曲げて光ファイバを切断する押し当て部材と、前記光ファイバに接触する前記外周縁部の位置情報を取得する取得部と、を備える。前記取得部は、前記外周縁部の位置に応じた磁力線の方向を検出することにより、前記外周縁部の前記位置情報を取得するセンサである。

Description

光ファイバ切断システム
 本発明は、光ファイバ切断システムに関する。
 光ファイバ(光ファイバ心線)を切断する際には、はじめに、刃部材を光ファイバに接触させて光ファイバの表面に初期傷をつける。その後、光ファイバのうち初期傷がついた部位を押し曲げることで、光ファイバを切断する。刃部材は、光ファイバに初期傷をつける毎に摩耗する。このため、従来では、刃部材のうち光ファイバに接触する部位を変更することが考えられている(例えば特許文献1~3参照。)。
 特許文献1には、円板状の刃部材(加傷刃)で光ファイバに初期傷をつける毎に、刃部材を少しずつ回転させる事項が開示されている。
 特許文献2には、切断後の光ファイバの端面を画像分析装置により分析し、分析結果に基づいて刃部材の所定部位の切断性能が低下したと判断した場合に、光ファイバに対する刃部材の接触部位を自動的に変更する事項が開示されている。
 特許文献3には、光ファイバ同士を接続する融着接続装置に、切断後(接続前)の光ファイバの端面を分析する画像分析装置を設けた構成が開示されている。この構成では、画像分析装置の分析結果に基づいて刃部材の所定部位が摩耗したと判断した場合に、光ファイバに接触する刃部材の部位を変更すべき指示を、刃部材を含む切断装置に送信する構成が開示されている。
特許第2850910号公報 特開平6-186436号公報 特許第4383289号公報
 ところで、光ファイバを切断するための刃部材は高価であるため、光ファイバに初期傷をつける刃部材の全ての部分を無駄なく使用できることが望まれている。しかしながら、上記従来の構成では、刃部材の位置を変更する際に、刃部材の移動ミスが生じることがある。その結果、刃部材の一部が使用されない、という問題がある。
 本発明は、上述した事情に鑑みてなされたものであって、刃部材を無駄なく使用することが可能な光ファイバ切断システムを提供することを目的とする。
 本発明に係る光ファイバ切断システムは、光ファイバの長手方向に間隔をあけて配され、前記光ファイバを把持する1対のクランプと、前記1対のクランプ間を移動させて外周縁部を前記光ファイバの表面に接触させて加傷する円板状の刃部材であって、前記光ファイバに接触する前記外周縁部の位置を変更可能な円板状の前記刃部材と、前記光ファイバの加傷部を押し曲げて光ファイバを切断する押し当て部材と、前記光ファイバに接触する前記外周縁部の位置情報を取得する取得部と、を備え、前記取得部は、前記外周縁部の位置に応じた磁力線の方向を検出することにより、前記外周縁部の前記位置情報を取得するセンサであることを特徴とする光ファイバ切断システムである。
 本発明の他の特徴については、後述する明細書及び図面の記載により明らかにする。
 本発明によれば、光ファイバに接触する刃部材の外周縁部の位置情報を取得することで、光ファイバに対する刃部材の外周縁部の位置を正確に把握できる。したがって、刃部材を無駄なく使用することが可能となる。
図1は、第1実施形態の光ファイバ切断システムを示すブロック図である。 図2は、第1実施形態の光ファイバ切断システムの構成例を示す斜視図である。 図3A~図3Dは、刃部材13により光ファイバ100の表面を加傷する工程を説明するための図である。 図4A~図4Dは、図3A~図3Dの場合よりも光ファイバ100と刃部材13との相対位置が近い場合において、刃部材13により光ファイバ100の表面を加傷する工程を説明するための図である。 図5A~図5Cは、磁気センサの説明図である。図5A及び図5Bは、磁気センサと磁石との回転位置の関係を示す図である。図5Cは、磁気センサの出力特性の説明図である。 図6Aは、刃部材13の側に設けられた回転ユニット50と、外縁位置測定センサ15の側に設けられたセンサ側ユニット60を説明するための斜視図である。図6Bは、刃部材13の側に設けられた回転ユニット50と、外縁位置測定センサ15の側に設けられたセンサ側ユニット60を説明するための断面図である。 図7は、回転ユニット50の分解説明図である。 図8は、第2実施形態の光ファイバ切断システムを示すブロック図である。 図9は、第3実施形態の光ファイバ切断システムを示すブロック図である。 図10は、第4実施形態の光ファイバ切断システムを示すブロック図である。 図11は、第5実施形態の光ファイバ切断システムを示すブロック図である。
 後述する明細書及び図面の記載から、少なくとも以下の事項が明らかとなる。
 光ファイバの長手方向に間隔をあけて配され、前記光ファイバを把持する1対のクランプと、前記1対のクランプ間を移動させて外周縁部を前記光ファイバの表面に接触させて加傷する円板状の刃部材であって、前記光ファイバに接触する前記外周縁部の位置を変更可能な円板状の前記刃部材と、前記光ファイバの加傷部を押し曲げて光ファイバを切断する押し当て部材と、前記光ファイバに接触する前記外周縁部の位置情報を取得する取得部と、を備え、前記取得部は、前記外周縁部の位置に応じた磁力線の方向を検出することにより、前記外周縁部の前記位置情報を取得するセンサであることを特徴とする光ファイバ切断システムが明らかとなる。このような光ファイバ切断システムによれば、光ファイバに対する刃部材の外周縁部の位置を正確に把握できる。
 前記位置情報は、円板状の前記刃部材の回転位置であることが望ましい。これにより、刃部材の回転位置を正確に取得できるため、光ファイバに対する刃部材の外周縁部の位置を正確に把握できる。
 円板状の前記刃部材には、その円板平面の直径方向に磁力線が付与されており、
 前記取得部は、付与された前記磁力線の方向を検出することにより、円板状の前記刃部材の回転位置を前記位置情報として取得することが望ましい。これにより、刃部材の回転位置に応じて磁力線の方向が変化するため、センサの検知した磁力線の方向に基づいて、刃部材の回転位置を正確に取得できる。
 前記刃部材は、強磁界の印加により着磁されており、着磁された前記刃部材そのものが前記磁力線を発生させることが望ましい。これにより、部品構成を簡略化できる。
 前記刃部材には、磁石が取り付けられており、前記磁石が前記磁力線を発生させることが望ましい。これにより、刃部材と磁石とを別体で構成できる。
 前記磁石は、前記刃部材に固定する固定部品に取り付けられていることが望ましい。これにより、刃部材の回転位置に応じて磁石の発生する磁力線の方向が変化するため、センサの検知した磁力線の方向に基づいて、刃部材の回転位置を正確に取得できる。
 前記位置情報は、前記刃部材の高さ方向における前記光ファイバとの相対位置であることが望ましい。これにより、前記刃部材の高さ方向における前記光ファイバとの相対位置を正確に取得できるため、光ファイバに対する刃部材の外周縁部の位置を正確に把握できる。
 前記刃部材の高さ方向における前記相対位置を、ネジの回転位置に応じて調整する調整機構をさらに備え、前記ネジ、前記ネジに固定した固定部品、又はそれら両方には、前記ネジの回転軸に直交する方向に磁力線が付与されており、前記取得部は、付与された前記磁力線の方向を検出することにより、前記刃部材の高さ方向における前記相対位置を前記位置情報として取得することが望ましい。これにより、前記ネジ、前記ネジに固定した固定部品、又はそれら両方の回転位置に応じて磁力線の方向が変化するため、センサの検知した磁力線の方向に基づいて、前記刃部材の高さ方向における前記光ファイバとの相対位置を正確に取得できる。
 前記ネジ、前記固定部品、又はそれら両方は、強磁界の印加により着磁されており、着磁された物そのものが前記磁力線を発生させることが望ましい。これにより、部品構成を簡略化できる。
 前記ネジ、前記ネジに固定した固定部品、又はそれら両方には、磁石が取り付けられており、前記磁石が前記磁力線を発生させることが望ましい。これにより、前記ネジ及び前記ネジに固定した固定部品と磁石とを別体で構成できる。
 前記刃部材の高さ方向における前記光ファイバとの相対位置の調整は、前記刃部材の高さ方向における位置の調整ではなく、前記光ファイバを把持する前記クランプの高さ方向における位置の調整によって行うことが望ましい。これにより、刃部材とともに移動させる部材の構成を小型化・簡略化できる。
 〔第1実施形態〕
 図1は、第1実施形態の光ファイバ切断システムを示すブロック図である。図2は、第1実施形態の光ファイバ切断システムの構成例を示す斜視図である。

 光ファイバ切断システム1は、光ファイバ100(光ファイバ心線)を切断(劈開)するための刃部材13を含む光ファイバ切断装置2と、光ファイバ100に対する刃部材13の位置情報を取得する取得部10とを備える。また、本実施形態の光ファイバ切断システム1は、刃部材13の位置情報を取り扱う演算部3、記憶部4及び表示部5を備える。
 光ファイバ切断装置2は、1対のクランプ11,12、刃部材13および押し当て部材14を備える。1対のクランプ11,12および刃部材13は、光ファイバ切断装置2の基台17上に配されている。特に図示しないが、押し当て部材14も同様にして、基台17上に配されている。
 1対のクランプ11,12は、光ファイバ100の長手方向に間隔をあけて配されて、光ファイバ100を把持する。各クランプ11,12は、光ファイバ100を上下方向(図2における上下方向)から挟み込む下クランプ11A,12A及び上クランプ11B,12Bを有する。下クランプ11A,12A及び上クランプ11B,12Bのうち相互に対向する部位(光ファイバ100を挟み込む部位)には、ゴム等の弾性パッド18(図3A、図4A参照)が設けられている。
 刃部材13は、円板状に形成されている。刃部材13は、その円板平面が光ファイバ100の長手方向(1対のクランプ11,12の配列方向)に直交するように配されている。刃部材13は、1対のクランプ11,12およびこれに把持された光ファイバ100に対して、1対のクランプ11,12間を光ファイバ100の長手方向と直交する方向に移動可能とされている。
 刃部材13は、その移動経路の途中(移動途中)において刃部材13の外周縁部19(刃先)が1対のクランプ11,12に把持された光ファイバ100の表面に接触することで、光ファイバ100の表面を加傷する。
 刃部材13は、刃台20上において刃部材13の軸線を中心に回転可能とされている。これにより、光ファイバ100に接触する刃部材13の外周縁部19の位置が変更可能となっている。また、刃部材13は、ラチェット機構54(後述)によって、回転不能な状態と回転可能な状態とを切り替え可能とされている。これにより、光ファイバ100に接触する刃部材13の外周縁部19位置を適切に保持することができる。
 また、本実施形態の光ファイバ切断装置2では、光ファイバ100の長手方向及び刃部材13の移動方向に直交する高さ方向(図2における上方向)における光ファイバ100と刃部材13の外周縁部19との相対位置が変更可能となっている。これにより、刃部材13で光ファイバ100の表面を加傷する際に、刃部材13の外周縁部19を光ファイバ100の表面に押し付ける圧力(接触圧)を変えることができる。
 図2に例示する光ファイバ切断装置2において、刃部材13は、基台17上において前述した刃部材13の移動方向に移動可能に配された刃台20に対し、刃部材13の軸線を中心に回転可能に設けられている。刃台20は、基台17の上をスライドする部材である。基台17には不図示のバネが設けられており、圧縮させたバネを開放することによって刃台20が発射され、刃台20の移動中に刃部材13が光ファイバ100に接触することになる。
 また、図2に例示する光ファイバ切断装置2では、高さ方向における刃部材13の位置(高さ位置)が調整可能とされ、1対のクランプ11,12で把持された光ファイバ100の高さ位置は固定されている。以下、刃部材13の高さ位置を調整する機構について具体的に説明する。
 図2に例示する光ファイバ切断装置2では、刃台20が、ベース部21と、ベース部21に対して揺動可能に連結された揺動部22と、を備える。ベース部21と揺動部22とを連結する軸(連結軸)は、光ファイバ100の長手方向に平行している。揺動部22は、連結軸から離れる方向に延びている。刃部材13は、揺動部22の延長方向の中途部に設けられている。揺動部22の延長方向の先端部には、ベース部21に対する揺動部22の先端部の高さ位置を調整する調整ネジ23が取り付けられている。これにより、刃部材13の高さ位置が調整可能とされている。なお、調整ネジ23の頭部には磁石24が設けられている(後述)。
 本実施形態において、刃部材13の回転や刃部材13の高さ位置の調整は、光ファイバ切断装置2を扱う作業者によって手動で調整される。
 図3A~図3Dは、刃部材13により光ファイバ100の表面を加傷する工程を説明するための図である。図4A~図4Dは、図3A~図3Dの場合よりも光ファイバ100と刃部材13との相対位置が近い場合において、刃部材13により光ファイバ100の表面を加傷する工程を説明するための図である。
 上記した1対のクランプ11,12および刃部材13を含む光ファイバ切断装置2において、光ファイバ100の表面を加傷する(光ファイバ100の表面に初期傷をつける)際には、図3B~図3D及び図4B~図4Dに示すように、刃部材13を1対のクランプ11,12によって把持された光ファイバ100の長手方向に直交する方向に移動させることで、刃部材13の外周縁部19を光ファイバ100の表面に押し付ける。
 この際、1対のクランプ11,12の間に位置する光ファイバ100は、図3A及び図4Aに示すように、刃部材13の押し付けによって撓む。これにより、刃部材13の外周縁部19のうち周方向の所定長さが、光ファイバ100の表面に接触する。以下の説明では、この所定長さを、光ファイバ100に対する刃部材13の「接触長」と呼ぶ。光ファイバ100に対する刃部材13の接触長は、図3D及び図4Dにおいて符号CL1,CL2で示している。
 刃部材13の接触長は、高さ方向における光ファイバ100と刃部材13との相対位置に応じて変化する。例えば図3A~図3Dに示すように、高さ方向において刃部材13の上端が光ファイバ100に対して比較的下方に位置する場合には、光ファイバ100の撓みが小さく(接触圧が低く)、刃部材13の接触長CL1が短い。一方、図4A~図4Dに示すように、高さ方向において刃部材13の上端が図3A~図3Dの場合と比較して上方に位置する場合には、光ファイバ100の撓みが大きく(接触圧が高く)、刃部材13の接触長CL2が長くなる。刃部材13の外周縁部19の切断性能が同じである場合、刃部材13の接触長が長い方が光ファイバ100の表面を加傷する度合いが大きい。
 図2に示す押し当て部材14は、刃部材13によって光ファイバ100の表面を加傷した後に、光ファイバ100の加傷部を押し曲げることで、光ファイバ100を切断する。
 上記した光ファイバ切断装置2においては、刃部材13が回転可能とされている。このため、刃部材13の所定(同一)の外周縁部19(周方向の一部の外周縁部19)、および/または、所定(同一)の接触圧で毎回繰り返し光ファイバ100を加傷することで、所定の外周縁部19が摩耗(刃部材13の刃先の経時摩耗、経時欠損等の劣化を含む)して光ファイバ100を切断するための切断性能が低下した場合には、刃部材13を回転させて光ファイバ100に接触する刃部材13の外周縁部19の位置を変更する。具体的には、所定の外周縁部19に隣り合う別の外周縁部19が加傷時に光ファイバ100に接触するように、刃部材13を回転させる。これにより、前述の切断性能が回復する。
 また、上記した光ファイバ切断装置2においては、高さ方向における光ファイバ100と刃部材13との相対位置が変更可能となっている。このため、刃部材13の所定(同一)の外周縁部19、および/または、所定(同一)の接触圧で毎回繰り返し光ファイバ100を加傷することで、所定の外周縁部19が摩耗して光ファイバ100を切断するための切断性能が低下した場合には、接触圧が高くなるように(接触長が長くなるように)、高さ方向における光ファイバ100と刃部材13との相対位置を変更する。これにより、前述の切断性能が回復する。
 上記説明において、切断性能が低下しているか否かは、例えば作業者が切断後の光ファイバ100の端面の状態を確認して判断する。
 図1及び図2に示すように、取得部10は、光ファイバ100に接触する刃部材13の外周縁部19の位置情報を取得する。
 本実施形態の取得部10は、光ファイバ100に対する刃部材13の外周縁部19の位置情報として、刃部材13の回転角度(回転位置)を測定する外縁位置測定センサ15を含む。言い換えれば、外縁位置測定センサ15は、光ファイバ100に接触する刃部材13の外周縁部19の位置を測定する。本実施形態において、外縁位置測定センサ15は、光ファイバ切断装置2に設けられている。
 外縁位置測定センサ15は、刃部材13の回転角度を連続的に測定しても良いが、回転角度を離散的に測定しても良い。測定される刃部材13の回転角度(外周縁部19の位置)の数は、刃部材13の径寸法に応じて適宜設定されてよいが、本実施形態では16個とする。すなわち、本実施形態では、刃部材13の周方向に並び、光ファイバ100の切断に用いることが可能な刃部材13の外周縁部19の位置の数を16箇所とする。
 ところで、刃台20は、圧縮させたバネを開放することによって刃台20が発射され、移動中に刃部材13が光ファイバ100に接触した後、移動範囲の終端部で衝撃を受けて停止することになる。このため、仮に刃部材13の回転位置(及び高さ位置)を測定するセンサを刃台20に設けた場合には、センサの配線や、その配線の耐久性を保証することが難しい。このため、刃部材13の回転位置等を測定するセンサは、刃部材13や刃台20とともに移動するのではなく、基台17の側に設けることが望ましい。
 加えて、仮に刃部材13の外縁部分に周方向に等間隔で複数(16個)のマーカー(光を反射する反射板、若しくは光の透過する貫通孔)を配列させ、外縁位置測定センサ15が光センサを利用してマーカーの一つを検出することで、刃部材13の回転位置を測定する場合、光ファイバの切断屑や被覆屑が光センサの検出光に与える影響により、正確に位置測定できないおそれがある。また、光センサを利用して刃部材13の回転位置を測定する場合、装置の外部から外乱光が入り込むことにより、正確に位置測定できないおそれもある。そこで、本実施形態の外縁位置測定センサ15は、磁気を検知する磁気センサを利用して、刃部材13の回転位置を測定する。
 図5A~図5Cは、磁気センサの説明図である。図5A及び図5Bは、磁気センサと磁石との回転位置(回転角度)の関係を示す図である。図5Cは、磁気センサの出力特性の説明図である。
 磁石は、円板状に構成されており、直径方向に着磁されている。ここでは、図5A及び図5Bに示すように、所定の直径方向の片側がN極となり、反対側がS極になるように、円板状の磁石が直径方向に着磁されている。磁気センサは、いわゆる磁気式角度センサである。磁気センサは、磁力線の方向を検知し、磁力線の方向に応じた信号を出力するセンサである。
 図5A及び図5Bに示すように、磁気センサのパッケージにはマーキングが施されている。ここでは、図5Aに示すように、磁石のN極が磁気センサのマーキング側に向いている場合、磁気センサと磁石との回転位置を0度(基準角度)とする。また、図5Bに示すように、磁石が磁気センサに対して基準角度から反時計回りに回転した角度を「磁気センサと磁石との回転位置」とする。例えば、図5Bに示す「磁気センサと磁石との回転位置」は、「90度」である。
 図5Cに示すように、磁気センサは、磁気センサと磁石との回転位置に応じた信号(出力電圧)を出力する。ここでは、磁気センサと磁石との回転位置が0度から360度の範囲では、磁気センサの出力電圧が直線的に変化している。ただし、磁気センサの出力電圧は、磁気センサと磁石との回転位置に対して相関関係であればよく、必ずしも直線的に変化しなくてもよい。
 図6Aは、刃部材13の側に設けられた回転ユニット50と、外縁位置測定センサ15の側に設けられたセンサ側ユニット60を説明するための斜視図である。図6Bは、刃部材13の側に設けられた回転ユニット50と、外縁位置測定センサ15の側に設けられたセンサ側ユニット60を説明するための断面図である。図7は、回転ユニット50の分解説明図である。
 回転ユニット50は、刃台20に対して刃部材13及び磁石51を回転可能に保持する機構である。ここでは、回転ユニット50は、揺動部22に設けられている。回転ユニット50は、刃部材13及び磁石51のほかに、押さえ部材52と、回転軸53と、ラチェット機構54とを有する。押さえ部材52は、円板状の刃部材13を固定するための固定部品の一例である。ここでは、押さえ部材52は、刃部材13をラチェット機構54のラチェット円板に固定する固定部品である。押さえ部材52は、フランジ部521と、突出部522とを有する。フランジ部521は、刃部材13の側面を押さえるためのフランジ状の部位である。なお、フランジ部521の側面には、磁石51の磁力線の方向が示されている。突出部522は、フランジ部521からセンサ側に突出した部位である。突出部522のセンサ側の面には磁石51が設けられている。なお、磁石51は、円板状に構成されており、直径方向に着磁されている。ラチェット機構54は、刃部材13を回転不能な状態と回転可能な状態とを切り替え可能に保持する機構である。ラチェット機構54は、ラチェット円板541と、ラチェット爪542とを有する。ラチェット円板541の外周部には、ラチェット歯車が形成されている。ラチェット円板541にラチェット爪542が係合することによって、ラチェット円板541の回転を許容しつつ、ラチェット円板541を所定の回転位置を維持した状態で固定することが可能となる。
 なお、押さえ部材52に磁石51を設ける代わりに、刃部材13が磁石で構成されても良い。この場合においても、着磁された刃部材13が磁力線を発生させるため、磁気センサで構成された外縁位置測定センサ15は、刃部材13の発生する磁力線を検知し、刃部材13の回転位置に応じた信号を出力することができる。この場合、押さえ部材52の構成を簡略化できる。
 刃部材13には、嵌合穴13Aが形成されている。ラチェット円板541には凸部541Aが形成されており、凸部541Aが刃部材13の嵌合穴13Aに嵌合している。また、押さえ部材52には凸部521A(図6B参照)が形成されており、凸部521Aも刃部材13の嵌合穴13Aに嵌合している。これにより、ラチェット円板541に対して刃部材13及び押さえ部材52が固定され、押さえ部材52に設けられた磁石51は、刃部材13とともに回転可能に保持される。
 センサ側ユニット60は、外縁位置測定センサ15(磁気センサ)を回転可能に保持する機構である。センサ側ユニット60は、揺動部材61と、センサ用回転軸62とを有する。揺動部材61は、磁気センサである外縁位置測定センサ15を保持しつつ、センサ用回転軸62を軸として回転可能な部材である。通常状態では、図6A及び図6Bに示すように、揺動部材61の回転位置は、外縁位置測定センサ15を磁石51に対向可能な位置になる。通常状態から揺動部材61を回転させると、図7に示すように、外縁位置測定センサ15は磁石51に対向しない位置になる。例えば刃部材13の交換時に、揺動部材61を回転させて、外縁位置測定センサ15を待避させることによって、磁石51の設けられた押さえ部材52を取り外すことが可能になる。
 外縁位置測定センサ15は、磁気センサで構成されており、磁石51が発生する磁力線を検知し、磁石51の回転位置に応じた信号を出力する。このため、仮に外縁位置測定センサ15と磁石51との間に光ファイバ100の切断屑や被覆屑が入り込んだとしても、外縁位置測定センサ15は、光ファイバ100の切断屑や被覆屑の影響を受けずに、磁石51の回転位置に応じた信号を出力できる。また、仮に外部から外乱光が入り込んだとしても、外縁位置測定センサ15は、外乱光の影響を受けずに、磁石51の回転位置に応じた信号を出力できる。このため、外縁位置測定センサ15は、刃部材13の回転位置(回転位置)を正確に測定できる。外縁位置測定センサ15で測定された刃部材13の回転角度(測定値)は、例えば電気信号で外縁位置測定センサ15から出力される。
 また、本実施形態の取得部10は、高さ方向における光ファイバ100と刃部材13の外周縁部19との相対位置情報を取得する。具体的に、本実施形態の取得部10は、上記の相対位置情報として、高さ方向における刃部材13の外周縁部19の位置(刃部材13の高さ位置)を測定する接触長測定センサ(位置測定センサ)16を含む。本実施形態において、接触長測定センサ16は、光ファイバ切断装置2に設けられている。
 接触長測定センサ16は、刃部材13の高さ位置を連続的に測定しても良いが、本実施形態では高さ位置を離散的に測定する。測定される刃部材13の高さ位置の数は任意であってよいが、本実施形態では「低」、「中」、「高」の3つとする。すなわち、本実施形態では、同一の外周縁部19の位置において、光ファイバ100の切断に用いることが可能な刃部材13の高さ位置の数を3箇所とする。
 したがって、本実施形態では、光ファイバ100の切断に用いることが可能な刃部材13の位置の総数が、刃部材13の周方向における外周縁部19の位置の数16箇所と、刃部材13の高さ位置の数3箇所とを掛け合わせた48箇所となる。
 接触長測定センサ16は、例えば図2に示すように、調整ネジ23の頭部に対向可能に配置されている(図2では、調整ネジ23の頭部の磁石24を示すため、接触長測定センサ16を透明にして点線で示されている)。調整ネジ23は、揺動部22の先端部の高さ位置を調整するための回転部材である。調整ネジ23を回転させると、揺動部22の下面からの調整ネジ23の下端の突出量が調整され、これにより、揺動部22の先端部の高さ位置が調整され、この結果、刃部材13の高さ位置が調整されることになる。調整ネジ23の頭部には、磁石24が設けられている。ここでは、調整ネジ23の頭部が円板状に形成されており、円板状の頭部の直径方向(調整ネジ23の回転軸に直交する方向)に磁力線が付与されるように、調整ネジ23の頭部が着磁されている。但し、調整ネジ23の頭部を着磁する代わりに、調整ネジ23に固定した固定部品(調整ネジ23とともに回転する部品)に、調整ネジ23の回転軸に直交する方向に磁力線が付与されてもよい。若しくは、調整ネジ23及び調整ネジ23に固定した固定部品の両方に、調整ネジ23の回転軸に直交する方向に磁力線が付与されてもよい。
磁気センサである接触長測定センサ16は、調整ネジ23の頭部の磁石24が発生する磁力線を検知し、磁石24の回転位置に応じた信号を出力する。このため、仮に接触長測定センサ16と調整ネジ23との間に光ファイバ100の切断屑や被覆屑が入り込んだとしても、接触長測定センサ16は、光ファイバ100の切断屑や被覆屑の影響を受けずに、調整ネジ23の回転位置に応じた信号を出力できる。また、仮に外部から外乱光が入り込んだとしても、接触長測定センサ16は、外乱光の影響を受けずに、調整ネジ23の回転位置に応じた信号を出力できる。このため、接触長測定センサ16は、刃部材13の高さ位置を正確に測定できる。接触長測定センサ16で測定された刃部材13の高さ位置(測定値)は、例えば電気信号で接触長測定センサ16から出力される。
 上記した外縁位置測定センサ15、接触長測定センサ16は、光ファイバ切断装置2に設けられる。
 外縁位置測定センサ15、接触長測定センサ16は、図2に例示するように、刃部材13の外周縁部19が光ファイバ100と接触する位置から刃部材13の移動方向に離れた位置(例えば待機位置)に配された状態で刃部材13の位置情報を取得するように、基台17上に配置されてよい。この場合、外縁位置測定センサ15、接触長測定センサ16から延びる電気配線(不図示)の配置等を容易に設定できる。
 また、外縁位置測定センサ15、接触長測定センサ16は、例えば刃台20のベース部21上に配されてもよい。この場合、刃部材13の移動方向の任意の位置において、刃部材13の位置情報を取得することが可能となる。
 図1に示す演算部3は、外縁位置測定センサ15、接触長測定センサ16において取得された位置情報に基づいて刃部材13に関する保守情報を演算する。
 保守情報には、例えば、刃部材13の所定の外周縁部19が摩耗して光ファイバ100を切断するための切断性能が低下した際、次に光ファイバ100の切断に用いる外周縁部19の位置(所定の外周縁部19とは別の外周縁部19)および/または刃部材13の高さ位置(以下、「刃部材13の次回移動先位置」と呼ぶ)を示す情報、すなわち切断性能を回復させるための情報が含まれてよい。
 「刃部材13の次回移動先位置」の演算には、光ファイバ100の切断に用いる刃部材13の複数(48箇所)の位置の正しい使用順序(以下、「刃部材13の正しい使用順序」と呼ぶ)を示す情報を利用する。当該情報は、予め後述の記憶部4に記憶されている。
 本実施形態において、「刃部材13の正しい使用順序」の情報は、以下の手順A~Eを順番に含むものとする。
 手順A:最初に光ファイバ100の切断に使用する刃部材13の位置(初期位置)は、刃部材13の高さ位置を「低」とし、かつ、刃部材13の周方向における外周縁部19の位置を「1番」とした位置(「刃の高さ位置(刃高さ):低、刃部材13の外周縁部19の位置(刃角度):1番」)とする。刃部材13の周方向における外周縁部19の位置は、刃部材13の周方向に「1番」、「2番」・・・「16番」の番号が付されているものとする。
 手順B:その上で、光ファイバ100に接触する刃部材13の所定番号の外周縁部19が摩耗する毎に、刃部材13を回転させ、「1番」→「2番」→「3番」→・・・→「15番」→「16番」の順番で刃部材13の周方向における外周縁部19の位置を変更する。
 手順C:刃部材13が1回転して「1番」に戻った際には、刃部材13の高さ位置を「低」から「中」に変更する。すなわち、刃部材13のうち「刃高さ:低、刃角度:16番」の位置を使用した後には、「刃高さ:中、刃角度:1番」の位置を使用する。
 手順D:刃部材13の高さ位置を「中」に保持した状態で、上記「手順B」と同様に、「1番」→「2番」→「3番」→・・・→「15番」→「16番」の順番で刃部材13の周方向における外周縁部19の位置を変更する。
 手順E:刃部材13が1回転して「1番」に戻った際には、上記「手順C」と同様にして、刃部材13の位置を「刃高さ:中、刃角度:16番」から「刃高さ:高、刃角度:1番」に変更する。
 手順F:刃部材13の高さ位置を「高」に保持した状態で、上記「手順B」と同様に、「1番」→「2番」→「3番」→・・・→「15番」→「16番」の順番で刃部材13の周方向における外周縁部19の位置を変更し、「刃高さ:高、刃角度:16番」での使用が完了した(切断性能が低下した)段階で、刃部材13自体の使用を終わらせる。
 このため、本実施形態において、現在使用している刃部材13の位置が「刃高さ:中、刃角度:16番」である場合、演算部3において演算される「刃部材13の次回移動先位置」は、上記した「刃部材13の正しい使用順序」の情報に基づいて、「刃高さ:高、刃角度:1番」となる。
 また、保守情報には、例えば刃部材13の消耗度合いを示す情報が含まれてよい。刃部材13の消耗度合いとは、例えば、光ファイバ100の切断に用いることが可能な刃部材13の位置の総数(48箇所)を分母とし、現時点で光ファイバ100の切断に使用済みの刃部材13の位置の数を分子とした割合である。例えば、使用済みの刃部材13の位置の数が36箇所である場合、刃部材13の消耗度合いは75%となる。
 また、保守情報には、例えば刃部材13の残り寿命を示す情報が含まれてよい。刃部材13の残り寿命とは、例えば、光ファイバ100の切断に用いることが可能な刃部材13の位置の総数(48箇所)を分母とし、現時点で光ファイバ100の切断に未使用の刃部材13の位置の数を分子とした割合である。例えば、未使用の刃部材13の位置の数が12箇所である場合、刃部材13の残り寿命は25%となる。
 また、保守情報には、例えば刃部材13の推定交換時期を示す情報(例えば42日後)が含まれてよい。この場合、刃部材13の推定交換時期を示す情報は、例えば1日に使用される刃部材13の位置の数の推定値を基準として演算されてよい。
 記憶部4は、光ファイバ100に対する刃部材13の位置情報や前述の保守情報を記憶する。また、記憶部4には、前述した「刃部材13の正しい使用順序」、光ファイバ100の切断に用いることが可能な刃部材13の位置の総数(48箇所)等の情報が記憶されている。記憶部4に記憶された各種情報は、演算部3によって適宜読み出されることがある。
 表示部5は、刃部材13の位置情報や保守情報を表示する。表示部5には、例えば、現在の刃部材13の位置情報、演算部3で演算された現在の刃部材13の正しい位置情報、演算部3で演算された「刃部材13の次回移動先位置」の情報、移動ミスが発生していることを作業者に警告する情報、演算部3で演算された刃部材13の残り寿命の情報、作業者に刃部材13の交換を通知する情報、などが挙げられる。また、表示部5に表示される刃部材13の位置情報として、刃部材13の周方向における外周縁部19の位置を示す情報や、刃部材13の高さ位置を示す情報が含まれる。表示部5に表示される各種情報の表示方法(数字表示、グラフィック表示等)は、任意であってよい。また、表示部5には、操作ボタンなどが表示されてもよい。
 以上説明したように、本実施形態の光ファイバ切断システム1によれば、取得部10によって光ファイバ100に接触する刃部材13の外周縁部19の位置情報を取得することで、光ファイバ100に対する刃部材13の外周縁部19の位置を正確に把握できる。このため、作業者の人為的ミスによって刃部材13の移動ミスが発生することを好適に抑制できる。その結果、刃部材13を無駄なく使用することが可能となる。
 特に、本実施形態の光ファイバ切断システム1では、取得部10は、刃部材13の外周縁部19の位置に応じた磁力線の方向を検出することにより、外周縁部19の位置情報を取得するセンサ(外縁位置測定センサ15及び接触長測定センサ16)である。これにより、光ファイバ100の切断屑や被覆屑の影響や、外乱光の影響などを受けずに、外周縁部19の位置情報を取得できるため、刃部材13の外周縁部19の位置を正確に把握できる。
 また、本実施形態の光ファイバ切断システム1では、取得部10の取得する外周縁部19の位置情報は、円板状の刃部材13の回転角度(回転位置)である。これにより、刃部材13の回転角度(光ファイバ100に接触する刃部材13の外周縁部19の位置)を正確に把握することができる。
 なお、本実施形態では、刃部材13には、磁石51が取り付けられており、磁石51が磁力線を発生させている。このため、本実施形態では、刃部材13と磁石51とが別体であるため、刃部材13を着磁させて刃部材13そのものが磁力線を発生させる構成と比べると、刃部材13の材質の制約は少なくて済む。但し、刃部材13が強磁界の印加により着磁されており、着磁された刃部材13そのものが磁力線を発生させてもよい。この場合、部品構成を簡略化できる。
 また、本実施形態では、磁石51は、刃部材13に固定する固定部品の一例である押さえ部材52に取り付けられている。これにより、刃部材13の回転位置に応じて磁石51を回転させることができるため、刃部材13の回転位置に応じて磁力線の方向が変化するため、取得部10は、外縁位置測定センサ15の検知した磁力線の方向に基づいて、刃部材13の回転位置を正確に取得できる。但し、磁石51は、刃部材13に固定する固定部品に取り付けられればよいため、押さえ部品52とは別の部材に取り付けられてもよい。
 また、本実施形態の光ファイバ切断システム1では、取得部10の取得する外周縁部19の位置情報は、刃部材13の高さ方向における光ファイバ100との相対位置である。特に、取得部10は、相対位置情報として、高さ方向における刃部材13の外周縁部19の位置を測定する接触長測定センサ16を含む。これにより、高さ方向における光ファイバ100と刃部材13との相対位置(刃部材13の高さ位置)を正確に把握することが可能となる。なお、本実施形態では接触長測定センサ16が磁気センサであるため、光ファイバ100の切断屑や被覆屑の影響や、外乱光の影響などを受けずに、刃部材13の高さ方向における光ファイバ100との相対位置を検出する外周縁部19の位置情報を取得できる。
 また、本実施形態の光ファイバ切断システム1では、刃部材13の高さ方向における光ファイバ100との相対位置を、調整ネジ23の回転位置に応じて調整する調整機構を備えている。そして、本実施形態では、調整ネジ23(若しくは、調整ネジ23に固定した固定部品、又は、調整ネジ23及び調整ネジ23に固定した固定部品の両方)には、調整ネジ23の回転軸に直交する方向に磁力線が付与されており、取得部10(接触長測定センサ16)は、付与された磁力線の方向を検出することにより、刃部材13の高さ方向における光ファイバ100との相対位置を取得する。これにより、刃部材13の高さ位置を正確に把握することができる。
 なお、本実施形態では、調整ネジ23(若しくは、調整ネジ23に固定した固定部品、又は、調整ネジ23及び調整ネジ23に固定した固定部品の両方)は、強磁界の印加により着磁されており、着磁された物(例えば調整ネジ23)そのものが磁力線を発生させている。このため、部品構成を簡略化できる。但し、調整ネジ23(若しくは、調整ネジ23に固定した固定部品、又は、調整ネジ23及び調整ネジ23に固定した固定部品の両方)に磁石が取り付けられており、その磁石が磁力線を発生させてもよい。これにより、調整ネジ23等と磁石とが別体であるため、調整ネジ23等の材質の制約が少なくて済む。
 また、本実施形態の光ファイバ切断システム1によれば、光ファイバ100に対する刃部材13の外周縁部19の位置情報を取得する取得部10の他に、演算部3、記憶部4、表示部5を備えることで、「刃部材13の次回移動先位置」を作業者に通知することも可能となる。このため、作業者による刃部材13の移動ミスの発生を好適に抑制できる。
 また、仮に作業者による刃部材13の移動ミスが発生しても、移動ミスの旨を作業者に通知(警告)することも可能となる。このため、作業者による刃部材13の移動ミスの発生をさらに抑制できる。
 また、本実施形態の光ファイバ切断システム1によれば、取得部10、演算部3、記憶部4、表示部5を備えることで、刃部材13の消耗度合い、残り寿命、推定交換時期、交換指示等の保守情報を作業者に通知することも可能となる。このため、刃部材13の交換準備を適切に行うことができる。例えば、刃部材13の消耗度合いが100%近く(残り寿命が0%近く)になったり、刃部材13の交換時期が近づいたりした時に、未使用の刃部材13を予め準備することができる。言い換えれば、未使用の刃部材13を常に携行する必要が無くなり、光ファイバ切断装置2の取り扱いが容易となる。
 また、本実施形態の光ファイバ切断システム1によれば、取得部10で取得された刃部材13の位置情報や、これに基づいて演算された保守情報を扱う演算部3、記憶部4、表示部5が、光ファイバ切断装置2に設けられている。このため、演算部3、記憶部4、表示部5を光ファイバ切断装置2と別個に設ける場合と比較して、作業者の動作(例えば視線の動き)を最小限におさえることができる。すなわち、作業者は光ファイバ切断システム1を容易に取り扱うことができる。
 〔第2実施形態〕
 次に、第2実施形態について、図8を参照して第1実施形態との相違点を中心に説明する。なお、第1実施形態と共通する構成については、同一符号を付し、その説明を省略する。
 図8に示すように、本実施形態の光ファイバ切断システム1Aは、第1実施形態と同様に、光ファイバ切断装置2A、外縁位置測定センサ15、接触長測定センサ16、演算部3、記憶部4及び表示部5を備える。光ファイバ切断装置2Aの構成は、第1実施形態の光ファイバ切断装置2と同様であってよい。外縁位置測定センサ15、接触長測定センサ16は、第1実施形態と同様に、光ファイバ切断装置2Aに設けられている。また、演算部3、記憶部4及び表示部5の機能は、第1実施形態と同様である。
 ただし、本実施形態の光ファイバ切断システム1Aでは、外縁位置測定センサ15、接触長測定センサ16で測定された刃部材13の位置情報(刃部材13の回転角度、刃部材13の高さ位置)を、光ファイバ切断装置2Aとは別個の外部装置6Aに送信する。すなわち、本実施形態の光ファイバ切断装置2Aは、外縁位置測定センサ15、接触長測定センサ16から出力された刃部材13の位置情報を外部装置6Aに送信する送信部31Aを備える。
 外部装置6Aは、例えば、光ファイバ100(光ファイバ心線)同士を接続する融着接続装置であってもよいし、携帯電話機、パーソナルコンピュータ、クラウドデータサーバなど、刃部材13の位置情報を取り扱うことが可能な任意の装置であってよい。
 外部装置6Aは、光ファイバ切断装置2Aから送信された刃部材13の位置情報を受信する受信部(不図示)を備える。情報を光ファイバ切断装置2Aから外部装置6Aに送信する回線は、無線であってもよいし、有線であってもよい。
 そして、本実施形態の光ファイバ切断システム1Aでは、演算部3、記憶部4及び表示部5が、上記の外部装置6Aに設けられている。このため、刃部材13の位置情報に基づく保守情報等の演算、記憶、表示は、外部装置6Aで行われる。
 本実施形態の光ファイバ切断システム1Aは、第1実施形態と同様の効果を奏する。
 さらに、本実施形態の光ファイバ切断システム1Aによれば、演算部3、記憶部4、表示部5が、上記の外部装置6Aに設けられている。このため、第1実施形態の光ファイバ切断システム1と比較して、光ファイバ切断装置2Aの小型化、低コスト化を図ることができる。また、光ファイバ切断装置2Aが小型となることで、光ファイバ切断装置2Aの持ち運びが容易となり、特に屋外における光ファイバ切断装置2Aの使用に有効となる。
 〔第3実施形態〕
 次に、第3実施形態について、図9を参照して第1、第2実施形態との相違点を中心に説明する。なお、第1、第2実施形態と共通する構成については、同一符号を付し、その説明を省略する。
 図9に示すように、本実施形態の光ファイバ切断システム1Bは、第1実施形態と同様に、光ファイバ切断装置2B、外縁位置測定センサ15、接触長測定センサ16、演算部3、記憶部4及び表示部5を備える。光ファイバ切断装置2Bの構成は、第1実施形態の光ファイバ切断装置2と同様であってよい。外縁位置測定センサ15、接触長測定センサ16は、第1実施形態と同様に、光ファイバ切断装置2Bに設けられている。また、演算部3、記憶部4及び表示部5の機能は、第1実施形態と同様である。
 ただし、本実施形態の光ファイバ切断システム1Bでは、外縁位置測定センサ15、接触長測定センサ16で測定された刃部材13の位置情報や、刃部材13の位置情報に基づいて演算された保守情報を、光ファイバ切断装置2Bとは別個の外部装置6Bに送信する。すなわち、本実施形態の光ファイバ切断装置2Bは、第2実施形態と同様の送信部31Aを備える。
 外部装置6Bの具体例は、第2実施形態において例示したものと同様であってよい。
 そして、本実施形態の光ファイバ切断システム1Bでは、演算部3及び記憶部4が光ファイバ切断装置2Bに設けられ、表示部5が外部装置6Bに設けられている。このため、刃部材13の位置情報や保守情報のうち表示部5に表示する情報のみが、光ファイバ切断装置2Bから外部装置6Bに送信される。
 本実施形態の光ファイバ切断システム1Bは、第1、第2実施形態と同様の効果を奏する。
 さらに、本実施形態の光ファイバ切断システム1Bによれば、表示部5が外部装置6Bに設けられているため、第1実施形態の光ファイバ切断システム1と比較して、光ファイバ切断装置2Bの小型化、低コスト化を図ることができる。
 〔第4実施形態〕
 次に、第4実施形態について、図10を参照して第1、第2実施形態と相違点を中心に説明する。なお、第1、第2実施形態と共通する構成については、同一符号を付し、その説明を省略する。
 図10に示すように、本実施形態の光ファイバ切断システム1Cは、第1実施形態と同様に、光ファイバ切断装置2C、外縁位置測定センサ15、接触長測定センサ16、演算部3、記憶部4及び表示部5を備える。光ファイバ切断装置2Cの構成は、第1実施形態の光ファイバ切断装置2と同様であってよい。外縁位置測定センサ15、接触長測定センサ16は、第1実施形態と同様に、光ファイバ切断装置2Cに設けられている。また、演算部3、記憶部4及び表示部5の機能は、第1実施形態と同様である。
 また、本実施形態の光ファイバ切断システム1Cでは、第2実施形態と同様に、外縁位置測定センサ15、接触長測定センサ16で測定された刃部材13の位置情報を、光ファイバ切断装置2Cとは別個の外部装置6Cに送信する。すなわち、本実施形態の光ファイバ切断装置2Cは、第2実施形態と同様の送信部31Aを備える。
 外部装置6Cの具体例は、第2実施形態において例示したものと同様であってよい。
 そして、本実施形態の光ファイバ切断システム1Cでは、演算部3及び記憶部4が外部装置6Cに設けられ、表示部5が光ファイバ切断装置2Cに設けられている。このため、刃部材13の位置情報に基づく保守情報等の演算、記憶は外部装置6Cで行われる。
 また、刃部材13の位置情報や保守情報のうち表示部5に表示する情報が、外部装置6Cから光ファイバ切断装置2Cに送信される。すなわち、外部装置6Cには、表示部5に表示する情報を光ファイバ切断装置2Cに送信するための送信部(不図示)が設けられる。また、光ファイバ切断装置2Cには、表示部5に表示する情報を受信するための受信部(不図示)が設けられる。
 本実施形態の光ファイバ切断システム1Cは、第1、第2実施形態と同様の効果を奏する。
 さらに、本実施形態の光ファイバ切断システム1Cによれば、演算部3及び記憶部4が上記の外部装置6Cに設けられているため、第1実施形態の光ファイバ切断システム1と比較して、光ファイバ切断装置2Cの小型化、低コスト化を図ることができる。
 〔第5実施形態〕
 次に、第5実施形態について、図11を参照して第1実施形態と相違点を中心に説明する。なお、第1実施形態と共通する構成については、同一符号を付し、その説明を省略する。
 図11に示すように、本実施形態の光ファイバ切断システム1Dは、第1実施形態と同様に、光ファイバ切断装置2D、外縁位置測定センサ15、接触長測定センサ16、演算部3、記憶部4及び表示部5を備える。演算部3、記憶部4及び表示部5の機能は、第1実施形態と同様である。
 本実施形態の光ファイバ切断装置2Dでは、刃部材13に対する光ファイバ100の高さ位置を調整することによって、高さ方向における光ファイバ100と刃部材13との相対位置が調整され、これにより、刃部材13の接触長を調整している。基台17には、調整ネジ25が取り付けられている。調整ネジ25は、クランプ11,12(光ファイバ100を把持する把持部)の高さ位置を調整するための回転部材である。調整ネジ25を回転させると、基台17の上方に突出したクランプ11,12の高さ位置が変更され、これにより、光ファイバ100の高さ位置が調整されることになる。調整ネジ25の頭部には磁石26が設けられている。ここでは、調整ネジ25の頭部が円板状に形成されており、円板状の頭部の直径方向(調整ネジ25の回転軸に直交する方向)に磁力線が付与されるように、調整ネジ25の頭部が着磁されている。但し、調整ネジ25の頭部を着磁する代わりに、調整ネジ25に固定した固定部品(調整ネジ25とともに回転する部品)に、調整ネジ25の回転軸に直交する方向に磁力線が付与されてもよい。若しくは、調整ネジ25及び調整ネジ25に固定した固定部品の両方に、調整ネジ25の回転軸に直交する方向に磁力線が付与されてもよい。
 磁気センサである接触長測定センサ16は、調整ネジ25の頭部の磁石26が発生する磁力線を検知し、磁石26の回転位置に応じた信号を出力する。このため、仮に接触長測定センサ16と調整ネジ25との間に光ファイバ100の切断屑や被覆屑が入り込んだとしても、接触長測定センサ16は、光ファイバ100の切断屑や被覆屑の影響を受けずに、調整ネジ23の回転位置に応じた信号を出力できる。また、仮に外部から外乱光が入り込んだとしても、接触長測定センサ16は、外乱光の影響を受けずに、調整ネジ25の回転位置に応じた信号を出力できる。このため、接触長測定センサ16は、刃部材13に対する光ファイバ100の高さ位置(高さ方向における光ファイバ100と刃部材13(若しくは外周縁部19)との相対位置)を正確に測定できる。
 本実施形態では、刃部材13の高さ方向における光ファイバ100との相対位置の調整は、前述の実施形態のように刃部材13の高さ方向における位置の調整ではなく、光ファイバ100を把持するクランプ11,12の高さ方向における位置の調整によって行われている。本実施形態の光ファイバ切断装置2Dでは、刃部材13の高さ位置は調整しなくても良いため、刃台20は、揺動部22を備えておらず、刃部材13は、ベース部21の延長方向の中途部に設けられている。なお、第1実施形態と同様に、回転ユニット50は、刃台20に対して刃部材13及び磁石51を回転可能に保持する。
 本実施形態の光ファイバ切断システム1Dは、第1実施形態と同様の効果を奏する。さらに、本実施形態の光ファイバ切断システム1Dによれば、刃台20に揺動部22を設けなくてもよいため、第1実施形態の光ファイバ切断システム1と比較して、刃部材13を移動させる刃台20の構成を小型化・簡略化できる。
 〔その他〕
 以上、本発明の詳細について説明したが、本発明は上述した実施形態に限定されるものではなく、本発明の主旨を逸脱しない範囲において種々の変更を加えることができる。
 例えば、演算部3を外部装置に設けた第2、第4実施形態の光ファイバ切断システム1A,1Cでは、記憶部4が光ファイバ切断装置2A,2Cに設けられてもよい。すなわち、外部装置6A,6Cの演算部3で演算された保守情報を、光ファイバ切断装置2A,2Cに送信し、光ファイバ切断装置2A,2Cの記憶部4に記憶してもよい。
 また、光ファイバ切断装置2A~2C及び外部装置6A~6Cを含む第2~第4実施形態の光ファイバ切断システム1A~1Cでは、例えば、演算部3、記憶部4、表示部5が光ファイバ切断装置2A~2C及び外部装置6A~6Cの両方に設けられてもよい。
 また、光ファイバ切断システムにおいて、予め記憶部4に記憶される「刃部材の正しい使用順序」の上方は上記実施形態に記載のものに限らず、任意に設定されてよい。
 また、光ファイバ切断システムにおいて、作業者等が刃部材13の位置を変更することで刃部材13の移動ミスが発生した場合、作業者に対する警告は、表示部5への表示で行うことに限らず、例えばスピーカー等から音を発することで行ってもよい。
 また、光ファイバ切断システムでは、例えば同-の外周縁部19および刃部材13の高さ位置で光ファイバ100を加傷した回数を数えてもよい。この場合、演算部3は、例えば、取得された位置情報および光ファイバ100を加傷した回数に基づいて刃部材13の消耗度合いや残り寿命を演算することができる。その結果、刃部材13の消耗度合いや残り寿命の情報を上記実施形態の場合と比較してより細かく作業者に伝えることが可能となる。
 また、例えば光ファイバ切断装置が切断後の光ファイバの端面の状態を分析する画像分析装置を備えてもよい。この場合には、例えば、画像分析装置で得られた光ファイバ端面の分析結果に基づき、刃部材13の所定の外周縁部19の切断性能が低下したと判断したときに、光ファイバ100に対する刃部材13の位置を変更する指示を、表示部5に表示することができる。また、例えば、画像分析装置で得られた光ファイバ端面の分析結果、刃部材13の位置情報に基づき、演算部3等において光ファイバ100に対する刃部材13の位置を変更すべき適切なタイミングを演算することもできる。
 また、光ファイバ100に対する刃部材13の位置変更を作業者等の手動で行う光ファイバ切断装置に限らず、例えば、光ファイバ100に対する刃部材13の位置変更をモータ等により自動で行う光ファイバ切断装置にも適用可能である。
1、1A、1B、1C 光ファイバ切断システム、
2 、2A、2B、2C 光ファイバ切断装置、
3 演算部、4 記憶部、5 表示部、
6A、6B、6C 外部装置、
10 取得部、11、12 クランプ、
13 刃部材、13A 嵌合穴、14 押し当て部材、
15 外縁位置測定センサ(磁気センサ)、
16 接触長測定センサ(磁気センサ)、
17 基台、18 弾性パッド、19 外周縁部、
20 刃台、21 ベース部、22 揺動部、
23 調整ネジ、24 磁石、
25 調整ネジ、26 磁石、
31A 送信部、
50 回転ユニット、51 磁石、52 押さえ部材(固定部品の一例)、
521 フランジ部、521A 凸部、522 突出部、
53 回転軸、54 ラチェット機構、
541 ラチェット円板、541A 凸部、
542 ラチェット爪、
60 センサ側ユニット、61 揺動部材、
62 センサ用回転軸、
100 光ファイバ

Claims (11)

  1.  光ファイバの長手方向に間隔をあけて配され、前記光ファイバを把持する1対のクランプと、
     前記1対のクランプ間を移動させて外周縁部を前記光ファイバの表面に接触させて加傷する円板状の刃部材であって、前記光ファイバに接触する前記外周縁部の位置を変更可能な円板状の前記刃部材と、
     前記光ファイバの加傷部を押し曲げて光ファイバを切断する押し当て部材と、
     前記光ファイバに接触する前記外周縁部の位置情報を取得する取得部と、
    を備え、
     前記取得部は、前記外周縁部の位置に応じた磁力線の方向を検出することにより、前記外周縁部の前記位置情報を取得するセンサであることを特徴とする光ファイバ切断システム。
  2.  請求項1に記載の光ファイバ切断システムであって、
     前記位置情報は、円板状の前記刃部材の回転位置であることを特徴とする光ファイバ切断システム。
  3.  請求項2に記載の光ファイバ切断システムであって、
     円板状の前記刃部材には、その円板平面の直径方向に磁力線が付与されており、
     前記取得部は、付与された前記磁力線の方向を検出することにより、円板状の前記刃部材の回転位置を前記位置情報として取得することを特徴とする光ファイバ切断システム。
  4.  請求項3に記載の光ファイバ切断システムであって、
     前記刃部材は、強磁界の印加により着磁されており、着磁された前記刃部材そのものが前記磁力線を発生させることを特徴とする光ファイバ切断システム。
  5.  請求項3に記載の光ファイバ切断システムであって、
     前記刃部材には、磁石が取り付けられており、前記磁石が前記磁力線を発生させることを特徴とする光ファイバ切断システム。
  6.  請求項5に記載の光ファイバ切断システムであって、
     前記磁石は、前記刃部材に固定する固定部品に取り付けられていることを特徴とする光ファイバ切断システム。
  7.  請求項1に記載の光ファイバ切断システムであって、
     前記位置情報は、前記刃部材の高さ方向における前記光ファイバとの相対位置であることを特徴とする光ファイバ切断システム。
  8.  請求項7に記載の光ファイバ切断システムであって、
     前記刃部材の高さ方向における前記相対位置を、ネジの回転位置に応じて調整する調整機構をさらに備え、
     前記ネジ、前記ネジに固定した固定部品、又はそれら両方には、前記ネジの回転軸に直交する方向に磁力線が付与されており、
     前記取得部は、付与された前記磁力線の方向を検出することにより、前記刃部材の高さ方向における前記相対位置を前記位置情報として取得することを特徴とする光ファイバ切断システム。
  9.  請求項8に記載の光ファイバ切断システムであって、
     前記ネジ、前記固定部品、又はそれら両方は、強磁界の印加により着磁されており、着磁された物そのものが前記磁力線を発生させることを特徴とする光ファイバ切断システム。
  10.  請求項8に記載の光ファイバ切断システムであって、
     前記ネジ、前記ネジに固定した固定部品、又はそれら両方には、磁石が取り付けられており、前記磁石が前記磁力線を発生させることを特徴とする光ファイバ切断システム。
  11.  請求項8に記載の光ファイバ切断システムであって、
     前記刃部材の高さ方向における前記光ファイバとの相対位置の調整は、前記刃部材の高さ方向における位置の調整ではなく、前記光ファイバを把持する前記クランプの高さ方向における位置の調整によって行うことを特徴とする光ファイバ切断システム。
PCT/JP2017/014243 2017-04-04 2017-04-05 光ファイバ切断システム WO2018185880A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17889526.4A EP3447550B1 (en) 2017-04-04 2017-04-05 Optical fiber cutting system
KR1020177019646A KR101970422B1 (ko) 2017-04-04 2017-04-05 광섬유 절단 시스템
US15/570,156 US10591673B2 (en) 2017-04-04 2017-04-05 Optical fiber cutting system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017074180 2017-04-04
JP2017-074180 2017-04-04

Publications (1)

Publication Number Publication Date
WO2018185880A1 true WO2018185880A1 (ja) 2018-10-11

Family

ID=61323153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/014243 WO2018185880A1 (ja) 2017-04-04 2017-04-05 光ファイバ切断システム

Country Status (5)

Country Link
US (1) US10591673B2 (ja)
EP (1) EP3447550B1 (ja)
KR (1) KR101970422B1 (ja)
CN (2) CN108693601B (ja)
WO (1) WO2018185880A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3447550B1 (en) 2017-04-04 2020-07-08 Fujikura Ltd. Optical fiber cutting system
JP6697507B2 (ja) * 2018-05-25 2020-05-20 矢崎総業株式会社 電線端末加工装置
CN109514644A (zh) * 2018-12-12 2019-03-26 南京吉隆光纤通信股份有限公司 一种光纤切割刀安装架
CN114674674B (zh) * 2022-05-26 2022-09-06 四川航天拓达玄武岩纤维开发有限公司 一种玄武岩纤维管材质检用线性测量装置及测量方法
CN118169808A (zh) * 2022-12-09 2024-06-11 株式会社藤仓 光纤切断装置以及光纤切断方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06186436A (ja) * 1992-12-21 1994-07-08 Sumitomo Electric Ind Ltd 光ファイバ心線の自動切断装置
JPH08334627A (ja) * 1995-06-05 1996-12-17 Sumitomo Electric Ind Ltd 光ファイバ用切断失敗検出機構
JP2005055479A (ja) * 2003-08-04 2005-03-03 Three M Innovative Properties Co 光ファイバの切断装置及び切断方法
JP2006251034A (ja) * 2005-03-08 2006-09-21 Fujikura Ltd 光ファイバ切断装置
JP2006337165A (ja) * 2005-06-01 2006-12-14 Citizen Electronics Co Ltd 磁気方位検出手段付き携帯機器及びそのキャリブレーション方法
JP2012008472A (ja) * 2010-06-28 2012-01-12 Sumitomo Electric Ind Ltd 光ファイバカッタ
JP2012194465A (ja) * 2011-03-17 2012-10-11 Sei Optifrontier Co Ltd 光ファイバカッタ
US20150323740A1 (en) * 2012-02-20 2015-11-12 Dh Infotech (Weihai) Inc. An optical fiber cutting knife

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4691987A (en) * 1983-07-08 1987-09-08 Itek Graphix Corp. Optical fiber cable producer and method of bonding optical fibers to light emitting diodes
JP2850910B2 (ja) 1988-06-22 1999-01-27 住友電気工業株式会社 光ファイバの切断装置
FR2661635B1 (fr) * 1990-05-03 1994-12-09 Alcatel Fibres Optiques Dispositif pour couper obliquement une fibre optique.
US5253412A (en) * 1991-04-12 1993-10-19 The Furukawa Electric Co., Ltd. Tip processing apparatus for jacketed optical fibers
JP3956500B2 (ja) * 1998-09-11 2007-08-08 古河電気工業株式会社 光ファイバ切断器
JP4065749B2 (ja) 2001-10-23 2008-03-26 株式会社フジクラ 光ファイバ切断機およびこれを用いた光ファイバ切断方法
JP2003266305A (ja) * 2002-03-15 2003-09-24 Seiko Instruments Inc 端面研磨装置及び端面研磨方法
US7090414B2 (en) * 2003-03-25 2006-08-15 Aurora Instruments, Inc. Automatic apparatus for cleaving optical fiber waveguides
JP4383289B2 (ja) 2004-08-18 2009-12-16 古河電気工業株式会社 光ファイバ切断装置、光ファイバ融着接続機、光ファイバ切断接続システム、光ファイバ加工管理方法、光ファイバ把持具及び光ファイバ補強装置
US7828926B1 (en) * 2006-04-04 2010-11-09 Radiation Monitoring Devices, Inc. Selective removal of resin coatings and related methods
JP5326198B2 (ja) * 2006-10-04 2013-10-30 住友電気工業株式会社 光ファイバの切断装置及び光ファイバの切断方法
JP5065800B2 (ja) * 2007-01-23 2012-11-07 住友電気工業株式会社 光ファイバ切断装置
US20080295664A1 (en) * 2007-06-01 2008-12-04 Semion Stolyar Web-slitter with electronic motor control
JP5102581B2 (ja) * 2007-10-22 2012-12-19 株式会社フジクラ 光ファイバ切断装置における切断刃ホルダ移動機構、並びに光ファイバ切断装置及び光ファイバの切断方法
JP5084466B2 (ja) 2007-11-21 2012-11-28 住友電気工業株式会社 光ファイバ切断用カッター、光ファイバの切断方法および光ファイバ切断用カッターを備えた光ファイバ切断機
JP2012168260A (ja) 2011-02-10 2012-09-06 Star Micronics Co Ltd 光ファイバ切断装置
CN102360099B (zh) 2011-10-19 2013-02-20 南京吉隆光纤通信股份有限公司 带有碎光纤收集装置的光纤切割器
JP5209126B1 (ja) * 2012-03-29 2013-06-12 株式会社フジクラ 光ファイバ融着接続機
JP2015531894A (ja) * 2012-09-18 2015-11-05 ナノプレシジョン プロダクツ インコーポレイテッドNanoprecision Products, Inc. 光ファイバ用スクライビング工具
US9435954B2 (en) * 2012-10-18 2016-09-06 INNO Instrument .Inc Fully automated optical fiber cutter
JP2015203786A (ja) 2014-04-15 2015-11-16 キヤノン株式会社 レンズ鏡筒および光学機器
US9541710B2 (en) * 2015-01-30 2017-01-10 Fujikura Ltd. Optical fiber holding device
EP3447550B1 (en) 2017-04-04 2020-07-08 Fujikura Ltd. Optical fiber cutting system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06186436A (ja) * 1992-12-21 1994-07-08 Sumitomo Electric Ind Ltd 光ファイバ心線の自動切断装置
JPH08334627A (ja) * 1995-06-05 1996-12-17 Sumitomo Electric Ind Ltd 光ファイバ用切断失敗検出機構
JP2005055479A (ja) * 2003-08-04 2005-03-03 Three M Innovative Properties Co 光ファイバの切断装置及び切断方法
JP2006251034A (ja) * 2005-03-08 2006-09-21 Fujikura Ltd 光ファイバ切断装置
JP2006337165A (ja) * 2005-06-01 2006-12-14 Citizen Electronics Co Ltd 磁気方位検出手段付き携帯機器及びそのキャリブレーション方法
JP2012008472A (ja) * 2010-06-28 2012-01-12 Sumitomo Electric Ind Ltd 光ファイバカッタ
JP2012194465A (ja) * 2011-03-17 2012-10-11 Sei Optifrontier Co Ltd 光ファイバカッタ
US20150323740A1 (en) * 2012-02-20 2015-11-12 Dh Infotech (Weihai) Inc. An optical fiber cutting knife

Also Published As

Publication number Publication date
KR101970422B1 (ko) 2019-04-18
US20180306975A1 (en) 2018-10-25
KR20180135786A (ko) 2018-12-21
EP3447550B1 (en) 2020-07-08
CN108693601A (zh) 2018-10-23
EP3447550A1 (en) 2019-02-27
US10591673B2 (en) 2020-03-17
CN108693601B (zh) 2020-05-19
EP3447550A4 (en) 2019-07-31
CN206920648U (zh) 2018-01-23

Similar Documents

Publication Publication Date Title
WO2018185880A1 (ja) 光ファイバ切断システム
WO2018083816A1 (ja) 光ファイバ切断システム
US20160069712A1 (en) Magnetically Coupled Optical Encoder
JP2013517500A5 (ja)
JP6785211B2 (ja) 光ファイバ切断システム
US10101224B2 (en) Surface force apparatus based on a spherical lens
US20150236755A1 (en) Measuring device having data transmission function
JP2013079842A (ja) 寸法測定器
KR101906865B1 (ko) 다축형 구조물 변위 측정장치
JP2005241605A (ja) レンズメータ
JP2021196250A (ja) 位置決め装置
JP2018072811A (ja) 光ファイバ切断システム、及び、光ファイバ切断システムの測定方法
EP3343256B1 (en) Optical fiber cutting system
JPH0729402U (ja) 平行度測定装置
JP3193558U (ja) 投影寸法測定器
EP1273882A3 (de) Vorrichtung und Verfahren zum Vermessen von Räumlichkeiten und Maschinen
JP4443305B2 (ja) 円筒体測定装置及びそれを用いた円筒体測定方法
JP2016093230A (ja) 運動検出装置及び運動器具
JP2021003767A (ja) 教示装置及び教示方法
JP2021021759A (ja) 測定機器
JP2019138898A (ja) 表面形状測定機
JP2002228403A (ja) 球面測定装置および球面測定方法
JP2002324293A (ja) 出力付き測定器
JPS5967412A (ja) 変位測定方法および装置
JP2005177933A (ja) スリッター丸刃の相対位置の測定装置及びその測定方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20177019646

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15570156

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2017889526

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017889526

Country of ref document: EP

Effective date: 20180704

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17889526

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE