WO2018181873A1 - はんだ合金、ソルダペースト及びはんだ継手 - Google Patents
はんだ合金、ソルダペースト及びはんだ継手 Download PDFInfo
- Publication number
- WO2018181873A1 WO2018181873A1 PCT/JP2018/013555 JP2018013555W WO2018181873A1 WO 2018181873 A1 WO2018181873 A1 WO 2018181873A1 JP 2018013555 W JP2018013555 W JP 2018013555W WO 2018181873 A1 WO2018181873 A1 WO 2018181873A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- solder
- solder alloy
- alloy
- less
- content
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/26—Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
- B23K35/264—Bi as the principal constituent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/26—Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
- B23K35/262—Sn as the principal constituent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/02—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
- B23K35/0222—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
- B23K35/0244—Powders, particles or spheres; Preforms made therefrom
- B23K35/025—Pastes, creams, slurries
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/26—Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/36—Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C13/00—Alloys based on tin
- C22C13/02—Alloys based on tin with antimony or bismuth as the next major constituent
Definitions
- the present invention relates to a solder alloy, a solder paste, and a solder joint which are high in strength and excellent in vibration resistance of a joint.
- Hybrid vehicles and electric vehicles are equipped with on-board electronic circuits in which electronic components are soldered to a printed circuit board.
- the on-vehicle electronic circuit has been disposed in a vehicle room where the vibration environment is relatively loose, but has been mounted directly on the engine room, the oil chamber of the transmission, and further on the mechanical device due to the expansion of applications.
- the on-vehicle electronic circuit has come to be mounted at a location which receives various external loads such as a temperature difference, an impact, and a vibration due to the expansion of the mounting area.
- various external loads such as a temperature difference, an impact, and a vibration due to the expansion of the mounting area.
- an on-vehicle electronic circuit mounted in an engine room may be exposed to a high temperature of 125 ° C. or more during engine operation.
- the engine is stopped, it is exposed to a low temperature of -40 ° C or less in cold regions.
- stress is concentrated on the junction due to the difference in thermal expansion coefficient between the electronic component and the printed circuit board.
- Patent Documents 1 to 5 disclose Sn-Ag-Cu-Bi-Sb-Ni-Co based solder alloys.
- Patent Document 1 with an alloy composition in which Sb is 1.5% or less, or Sb is 3.0% or more, and Bi is 2.7% or less, presence or absence of void generation, Cu loading, and heat cycle
- Patent Document 2 the impact resistance before and after the heat cycle test is evaluated for an alloy composition in which Ni is 0.1% or more or Ni is 0.04% and Bi is 3.2%. There is.
- Patent No. 5349703 gazette Patent No. 5723056 gazette Patent No. 6047254 International Publication No. 2014/163167 Patent No. 6053248
- Patent Documents 1 to 5 are mainly evaluated with respect to a solder alloy for an on-vehicle electronic circuit exposed to an environment such as an engine room where the temperature difference is large.
- the mounting area of the on-vehicle electronic circuit is expanded, it is necessary to improve impact resistance and vibration resistance as well as heat cycle characteristics, and studies focusing on these characteristics are also necessary.
- the invention described in Patent Document 2 is evaluated for impact resistance, but as an evaluation method, it is only described that the drop impact property was evaluated by dropping 5 times from a height of 1 m. ing.
- Patent Document 2 since a vehicle is equipped with a suspension, it is difficult to imagine a situation in which an impact such as falling from 1 m is applied to the vehicle just by traveling on a paved road or gravel road. For this reason, it is also considered that the evaluation of the drop impact property described in Patent Document 2 assumes a case where a car collides. In this case, in order to evaluate the drop impact property, at least a surface drop, a corner drop, etc. of the substrate must be defined, and a material of the falling floor must also be defined. However, as described above, Patent Document 2 only defines the height of the fall and the number of times of the fall, and the evaluation itself is inevitably vague, and it is unclear what kind of collision is assumed. It is.
- alloy design is mainly performed focusing on heat cycle characteristics.
- stress is applied to the joint due to the difference between the thermal expansion coefficients of the printed circuit board and the electronic component.
- the vibration is applied to the on-vehicle electronic circuit, the stress is considered to be a stress close to external impact, unlike the stress caused by the expansion and contraction of the printed circuit board and the electronic component generated during the heat cycle. That is, heat cycle test and vibration test differ in the behavior of load applied to the joint, so an alloy design suitable for the expansion of the mounting area of the substrate is required.
- the object of the present invention is to provide a solder alloy, a solder paste and a solder joint having high reliability by having high tensile strength of the solder alloy and excellent vibration resistance of the joint between the printed circuit board and the electronic component. It is.
- the inventors first investigated the failure mode of a joint joined by a conventional Sn-3Ag-0.5Cu solder alloy, assuming that vibrational load is applied to the joint as described above. . It was found that this solder alloy was broken at the interface between the electrode and the solder alloy.
- the present inventors focused on the Ni content and the Co content in Sn-Ag-Cu-Bi-Sb-Ni-Co based solder alloy, and these elements. Content was investigated in detail. As a result, it was found that although the above-mentioned failure mode was not observed within a predetermined range, they transition to the failure mode in the solder alloy in the vicinity of the intermetallic compound layer. That is, it was found that in the alloy composition in which the Ni content and the Co content were adjusted, the transition of the fracture mode leads to the improvement of the vibration resistance.
- Patent Literatures 1 to 5 disclose, in the examples of the Sn—Ag—Cu—Bi—Sb—Ni—Co based solder alloy, only the alloy composition in which the Sb and Bi contents are suppressed low. .
- the mounting area of the on-vehicle electronic circuit has been expanded, a higher tensile strength of the solder alloy has been required.
- the present inventors finely adjust the Ni content and the Co content in the composition containing a predetermined amount of Ag and Cu, and then improve the strength of the solder alloy itself, so the Sb content and the Bi content. Alloy design with increasing As a result, the crack in the solder alloy in the vicinity of the intermetallic compound layer was suppressed, the vibration resistance was improved, and the knowledge that the tensile strength of the solder alloy was improved was obtained.
- the inventors of the present invention obtained a solder alloy that can sufficiently cope with the expansion of the mounting area of the substrate by the above examination, the present inventors conducted a study to further improve the reliability. It is assumed that the improvement of the vibration resistance is not seen because the contents of Ni and Co relatively decrease if the contents of Sb and Bi are simply increased to improve the tensile strength.
- the present invention obtained by these findings is as follows. (1) In mass%, Ag: 1 to 4%, Cu: 0.5 to 0.8%, Bi: more than 4.8% to 5.5% or less, Sb: more than 1.5% to 5.5% or less Ni: 0.01% or more and less than 0.1%, Co: more than 0.001% and 0.1% or less, and the balance has an alloy composition consisting of Sn.
- Ni + Co ⁇ 0.105% 0.020% ⁇ Ni + Co ⁇ 0.105%
- 98% ⁇ Sb + Bi ⁇ 10.4%
- Ni, Co, Bi, and Sb each represent the content (% by mass) in the solder alloy.
- solder paste comprising the solder alloy according to (1) or (2) above.
- FIG. 1 shows a cross-sectional SEM photograph of a solder joint
- FIG. 1 (a) is a cross-sectional SEM photograph of a solder joint formed with the alloy composition of Example 1
- FIG. 1 (b) shows an alloy composition of Comparative Example 6. It is a cross-sectional SEM photograph of the formed solder joint.
- FIG. 2 is a graph showing the relationship between equation (3) and TS ⁇ number of vibrations.
- % relating to the solder alloy composition is “% by mass” unless otherwise specified.
- Solder alloy (1) Ag 1 to 4% Ag improves the wettability of the solder, and precipitates a network-like compound of the intermetallic compound of Ag 3 Sn in the solder matrix to form a precipitation strengthened type alloy and improves the tensile strength of the solder alloy. . If the Ag content is less than 1%, the wettability of the solder is not improved.
- the lower limit of the Ag content is preferably 2.0% or more, more preferably 3.3% or more.
- the upper limit of the Ag content is preferably 3.7% or less, more preferably 3.5% or less.
- Cu 0.5 to 0.8% Cu improves the tensile strength of the solder alloy. If the Cu content is less than 0.5%, the tensile strength is not improved.
- the lower limit of Cu is preferably 0.6% or more, more preferably 0.65% or more.
- the upper limit of Cu is preferably 0.75% or less.
- Bi more than 4.8% and 5.5% or less Bi is an element necessary for improving the vibration resistance by improving the tensile strength of the solder alloy. Moreover, even if it contains Bi, formation of the fine SnSb intermetallic compound mentioned later is not prevented but a precipitation strengthening type solder alloy is maintained. The said effect can not fully be exhibited as Bi content is 4.8% or less. The lower limit of the Bi content is preferably 4.9% or more.
- the upper limit of the Bi content is preferably 5.3% or less, more preferably 5.2% or less.
- Sb more than 1.5% and 5.5% or less
- Sb is an element of solid solution strengthening type that penetrates into the Sn matrix, and at the same time, the portion exceeding the solid solution limit to Sn is fine SnSb metal It is an element of precipitation dispersion strengthening type that forms a compound, and is an element necessary to improve vibration resistance by improving the tensile strength of the solder alloy. If the Sb content is 1.5% or less, precipitation of the SnSb intermetallic compound is insufficient and the above effect can not be exhibited.
- the lower limit of the Sb content is preferably 1.6% or more, more preferably 3.0% or more, and still more preferably 4.8% or more.
- the upper limit of the Sb content is preferably 5.3% or less, more preferably 5.2% or less.
- Ni 0.01% or more and less than 0.1% Ni is uniformly dispersed in the intermetallic compound deposited near the bonding interface between the electrode and the solder alloy, and the intermetallic compound layer is reformed, and the electrode Suppress fracture at the bonding interface between the solder and the solder alloy. This causes the failure mode to transition to the failure mode in the solder alloy near the intermetallic compound layer. If the Ni content is less than 0.01%, the above effect can not be exhibited.
- the lower limit of the Ni content is preferably 0.02% or more, and more preferably 0.03% or more.
- the Ni content is 0.1% or more, the melting point of the solder alloy becomes high, and the temperature setting at the time of solder bonding must be changed.
- the upper limit of the Ni content is preferably 0.09% or less, more preferably 0.05% or less.
- Co more than 0.001% and 0.1% or less Co is an element necessary to enhance the effect of the aforementioned Ni. If the Co content is 0.001% or less, the above effect can not be exhibited.
- the lower limit of the Co content is preferably 0.002% or more, more preferably 0.004% or more.
- the Co content exceeds 0.1%, the melting point of the solder alloy becomes high, and the temperature setting at the time of solder bonding must be changed.
- the upper limit of the Co content is preferably 0.05% or less, more preferably 0.012% or less.
- the lower limit of the total amount of Ni and Co is preferably 0.020% or more, more preferably 0.042% or more.
- the upper limit is preferably 0.105% or less, more preferably 0.098% or less, in order to suppress the rise of the melting point and to form the solder joint under the conventional reflow conditions. Preferably it is 0.09% or less, especially preferably 0.050% or less.
- Ni and Co represent content (mass%) in a solder alloy, respectively.
- the lower limit of the total amount of Sb and Bi is preferably 9.1% or more, more preferably 9.6% or more, and still more preferably 9.7% or more. Particularly preferably, it is more than 9.8%.
- the upper limit is preferably 10.4% or less, more preferably 10.0% or less from the viewpoint of suppressing crack extension in the solder alloy without the solder alloy becoming too hard.
- Bi and Sb represent content (mass%) in a solder alloy, respectively. (9) 4.05 ⁇ 10 ⁇ 3 ⁇ (Ni + Co) / (Bi + Sb) ⁇ 1.00 ⁇ 10 ⁇ 2 (3)
- the solder alloy of the present invention it is preferable to maintain the balance between the tensile strength and the vibration resistance from the viewpoint of sufficiently coping with the expansion of the mounting area of the substrate. If the content of Bi and Sb is not increased too much, the content of Ni and Co does not decrease relatively to the content of Bi and Sb, and the tensile strength of the solder alloy does not become too high.
- the lower limit of the formula (3) is preferably 4.05 ⁇ 10 ⁇ 3 or more, more preferably 4.20 ⁇ 10 ⁇ 3 or more. is there.
- the upper limit of the formula (3) is preferably 1.00 ⁇ 10 ⁇ 2 or less, more preferably 9.8 ⁇ 10 ⁇ 3 or less, and particularly preferably 9.0 ⁇ 10 ⁇ 3 or less. And most preferably 5.5 ⁇ 10 ⁇ 3 or less.
- Ni, Co, Bi, and Sb show content (mass%) in a solder alloy, respectively.
- (10) Remainder Sn
- the remainder of the solder alloy according to the present invention is Sn, and may contain unavoidable impurities in addition to the aforementioned elements. Even when the inevitable impurities are contained, the above-mentioned effects are not affected.
- solder paste of the present invention is a mixture of a solder powder having the above-mentioned alloy composition and a flux.
- the flux used in the present invention is not particularly limited as long as it can be soldered by a conventional method. Therefore, a commonly used rosin, an organic acid, an activator, and a solvent appropriately blended may be used.
- the mixing ratio of the metal powder component and the flux component is not particularly limited, but preferably, the metal powder component: 80 to 90% by mass, and the flux component: 10 to 20% by mass.
- solder joint is suitable for use in connection between an IC chip in a semiconductor package and its substrate (interposer) or connection between a semiconductor package and a printed wiring board.
- a "solder joint" means the junction part of an electrode.
- the method for producing a solder alloy according to the present invention may be performed according to a conventional method.
- the bonding method using the solder alloy according to the present invention may be performed according to a conventional method using, for example, a reflow method. Moreover, when joining using the solder alloy which concerns on this invention, if the cooling rate at the time of solidification is considered, a structure
- tissue can be further refined. For example, the solder joint is cooled at a cooling rate of 2 to 3 ° C./s or more. The other bonding conditions can be appropriately adjusted in accordance with the alloy composition of the solder alloy.
- the shape of the lead-free solder according to the present invention may be used not only as solder paste but also as a solder preform in the shape of a ball, pellet, washer or the like, wire solder, core solder.
- the solder alloy which concerns on this invention can manufacture a low alpha ray alloy by using a low alpha ray material as the raw material.
- a low ⁇ -ray alloy can suppress soft errors when used to form solder bumps around the memory.
- the printed circuit board and the electronic component were joined using a solder alloy having the alloy composition shown in Table 1, and the vibration resistance was evaluated. Moreover, the tensile strength of the solder alloy which consists of an alloy composition shown in Table 1 was evaluated. Each evaluation method is described below.
- solder paste was prepared by mixing a solder alloy powder having a solder alloy composition described in Table 1 having an average particle diameter of 20 ⁇ m with a known paste-like rosin-based flux. The flux content was adjusted to 12% by mass with respect to the mass of the entire solder paste.
- solder paste was printed on the following board
- Low temperature constant temperature bath VC-082BAFX (32)
- P3T CUBE type jig (200 mm ⁇ 200 mm): JSA-150-085 Accelerometer attached to CUBE type jig: 731-B
- the above-mentioned vibration test apparatus controls the signal from the acceleration pick-up of the CUBE type jig so as to indicate a predetermined value while measuring the signal from the acceleration pick-up of the substrate using the pre-charge amplifier. By this control, desired acceleration and resonance frequency can be obtained.
- the substrate was excited at an acceleration of 223 G (resonance frequency: 166.32 Hz) by exciting the CUBE type jig at an acceleration of 20 G (resonance frequency: 166.32 Hz).
- the number of oscillations was measured when the resistance value of each LGA increased by 20% from the initial value. In the present embodiment, when the number of vibrations is 300,000 or more, it is determined that there is no problem in practical use.
- Tensile strength was measured according to JIS Z 319-2. Each solder alloy described in Table 1 was cast in a mold to prepare a test piece having a gauge length of 30 mm and a diameter of 8 mm. The prepared test piece was pulled at a stroke of 6 mm / min at room temperature according to Instron Type 5966 to measure the strength when the test piece was broken. In this example, when the tensile strength is 80 MPa or more and 120 MPa or less, it is determined that there is no problem in practical use. The results are shown in Table 1.
- Example 1 As shown in Table 1, in all cases, in Example 1, the tensile strength exceeded 80 MPa and the number of vibrations also exceeded 300,000 cycles.
- Comparative Example 1 the Ni content was large, and the melting point increased, so that the solder bonding was insufficient under the above-described reflow conditions, and the number of vibrations was inferior. Comparative Example 2 was low in Bi content and inferior in tensile strength and frequency of vibration.
- Comparative Example 3 was broken at the interface between the solder alloy and the electrode because it did not contain Ni, and the number of vibrations was inferior.
- Comparative Example 4 was broken at the interface between the solder alloy and the electrode because it did not contain Co, and the number of vibrations was inferior.
- the comparative example 5 has many Sb and Bi content, high tensile strength was shown, and the frequency of vibration was inferior.
- the comparative example 6 since it did not contain Ni and Co, it fractured at the interface of a solder alloy and an electrode, and the frequency of vibration was inferior. Moreover, the tensile strength of the solder alloy was inferior because it did not contain Sb and Bi.
- FIG. 1 shows a cross-sectional SEM photograph of a solder joint
- FIG. 1 (a) is a cross-sectional SEM photograph of a solder joint formed with the alloy composition of Example 1
- FIG. 1 (b) shows an alloy composition of Comparative Example 6. It is a cross-sectional SEM photograph of the formed solder joint.
- a vibration test is continued until a cross section fracture
- Example 1 containing a predetermined amount of Ni and Co, while broken in the solder alloy in the vicinity of the intermetallic compound layer, in Comparative Example 6 which does not contain Ni and Co, the interface between the electrode and the solder alloy It is understood that it is broken.
- the fracture mode is transitioned by containing a predetermined amount of Ni and Co.
- FIG. 2 is a graph showing the relationship between equation (3) and tensile strength ⁇ number of vibrations.
- fills (1) Formula and (2) Formula from Table 1 was extracted.
- the tensile strength ⁇ the number of vibration times is 4.0 ⁇ 10 7 or more within the range of the equation (3), the balance between the tensile strength and the number of vibration times is excellent. It turned out to indicate.
- the tensile strength ⁇ the number of vibrations show a value of 1.2 ⁇ 10 8 or more, the excellent tensile strength and the number of vibrations are obtained. It has been found that it has a good balance and high reliability.
- the solder alloy according to the present invention has high tensile strength and is excellent in vibration resistance, and thus can be suitably used for a circuit such as an on-vehicle electronic circuit used in a place where vibration is transmitted.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electric Connection Of Electric Components To Printed Circuits (AREA)
Abstract
Description
また、通常の走行時に車体に伝わる振動は、衝突時の衝撃と比較して、1回の衝撃により加わる荷重が小さく、かつ荷重が加わる回数が多い。したがって、実情に近い評価条件で耐振動性の評価を行いながら、上記特許文献1~5に開示されている合金組成から改良を加える必要がある。
(1)質量%で、Ag:1~4%、Cu:0.5~0.8%、Bi:4.8%超え5.5%以下、Sb:1.5%超え5.5%以下、Ni:0.01%以上0.1%未満、Co:0.001%超え0.1%以下、および残部がSnからなる合金組成を有することを特徴とするはんだ合金。
9.1%≦Sb+Bi≦10.4% (2)
4.05×10-3≦(Ni+Co)/(Bi+Sb)≦1.00×10-2(3)
(1)式~(3)式中、Ni、Co、Bi、およびSbは、各々はんだ合金中での含有量(質量%)を表す。
(1) Ag:1~4%
Agは、はんだの濡れ性を向上させ、また、はんだマトリックス中にAg3Snの金属間化合物のネットワーク状の化合物を析出させて、析出強化型の合金を作り、はんだ合金の引張強度を向上させる。Ag含有量が1%未満では、はんだの濡れ性が向上しない。Ag含有量の下限は、好ましくは2.0%以上であり、より好ましくは3.3%以上である。
Cuは、はんだ合金の引張強度を改善する。Cu含有量が0.5%未満では、引張強度が向上しない。Cuの下限は、好ましくは0.6%以上であり、より好ましくは0.65%以上である。
Biは、はんだ合金の引張強度を向上させることで、耐振動性を向上させるために必要な元素である。また、Biを含有しても、後述する微細なSnSb金属間化合物の形成が妨げられず、析出強化型のはんだ合金が維持される。Bi含有量が4.8%以下であると上記効果を十分に発揮することができない。Bi含有量の下限は、好ましくは4.9%以上である。
Sbは、Snマトリックス中に侵入する固溶強化型の元素であるとともに、Snへの固溶限を超えた分が微細なSnSb金属間化合物を形成する析出分散強化型の元素であり、はんだ合金の引張強度を向上させることで、耐振動性を向上させるために必要な元素である。Sb含有量が1.5%以下であるとSnSb金属間化合物の析出が不十分となり上記効果を発揮することができない。Sb含有量の下限は、好ましくは1.6%以上であり、より好ましくは3.0%以上であり、さらに好ましくは4.8%以上である。
Niは、電極とはんだ合金との接合界面付近に析出する金属間化合物中に均一に分散し、金属間化合物層が改質し、電極とはんだ合金との接合界面での破断を抑制する。これにより、破壊モードが金属間化合物層近傍でのはんだ合金中における破壊モードに遷移する。Ni含有量が0.01%未満であると上記効果を発揮することができない。Ni含有量の下限は、好ましくは0.02%以上であり、より好ましくは0.03%以上である。
Coは、前述のNiの効果を高めるために必要な元素である。Co含有量が0.001%以下であると上記効果を発揮することができない。Co含有量の下限は、好ましくは0.002%以上であり、より好ましくは0.004%以上である。
本発明のはんだ合金では、はんだ継手の破壊モードとして好ましくない態様である電極との接合界面での破断を抑制する必要がある。この効果が十分に発揮されるため、NiおよびCoの合計量の下限は、好ましくは0.020%以上であり、より好ましくは0.042%以上である。
(8)9.1%≦Sb+Bi≦10.4% (2)
本発明のはんだ合金は、SbおよびBiの合計量を増加させることではんだ合金中のクラック伸展が抑制され、はんだ合金の引張強度が向上し、より耐振動性が向上する。この効果を十分に発揮させるため、SbおよびBiの合計量の下限は、好ましくは9.1%以上であり、より好ましくは9.6%以上であり、さらに好ましくは9.7%以上であり、特に好ましくは9.8%超えである。
(9)4.05×10-3≦(Ni+Co)/(Bi+Sb)≦1.00×10-2 (3)
本発明のはんだ合金では、基板の搭載領域の拡張にさらに十分に対応する観点から、引張強度と耐振動性のバランスを保つことが好ましい。BiおよびSbの含有量が増加しすぎないと、BiおよびSbの含有量に対して相対的にNiおよびCoの含有量が少なくならず、はんだ合金の引張強度が高くなりすぎない。これに対して、NiおよびCo含有量が適量であると、電極とはんだ合金との界面での破壊は抑制され、はんだ合金の融点の上昇が抑えられ、問題なくはんだ付けを行うことができ、耐振動性の劣化が抑制される。このように、はんだ合金の融点の上昇を抑えた上で、プリント基板とはんだ合金との界面での破断を抑制するNiおよびCoの含有量の合計と、引張強度を向上させてはんだ合金中のクラック伸展を抑制するBiおよびSbの含有量の合計とのバランスを調整することによって、さらに高い信頼性が得られると考えられる。
本発明に係るはんだ合金の残部はSnであり、前述の元素の他に不可避的不純物を含有してもよい。不可避的不純物を含有する場合であっても前述の効果に影響することはない。
本発明のソルダペーストは、上述の合金組成を有するはんだ粉末とフラックスとの混合物である。本発明において使用するフラックスは、常法によりはんだ付けが可能であれば特に制限されない。したがって、一般的に用いられるロジン、有機酸、活性剤、そして溶剤を適宜配合したものを使用すればよい。本発明において金属粉末成分とフラックス成分との配合割合は特に制限されないが、好ましくは、金属粉末成分:80~90質量%、フラックス成分:10~20質量%である。
本発明に係るはんだ継手は、半導体パッケージにおけるICチップとその基板(インターポーザ)との接続、或いは半導体パッケージとプリント配線板との接続に使用するのに適している。ここで、「はんだ継手」とは電極の接合部をいう。
本発明に係るはんだ合金の製造方法は常法に従って行えばよい。
(1)ソルダペーストの作製
平均粒径が20μmである表1に記載のはんだ合金組成を有するはんだ合金粉末を、公知のペースト状ロジン系フラックスと混合して、ソルダペーストを作製した。フラックス含有量は、ソルダペースト全体の質量に対して12質量%となるように調整した。
下記基板に下記メタルマスクを用いて上記ソルダペーストを印刷し、下記LGAを印刷後の基板に3個搭載した。その後、下記リフロー条件にてはんだ付けを行い、はんだ継手を形成した。
パッケージ外径:12.90mm×12.90mm
表面処理:電解Ni/Au
総電極数:345ピン
電極ピッチ(電極センター間):0.5mmピッチ
ソルダーレジスト開口部:φ0.23mm
電解Ni/Auランド径:φ0.25mm
・基板
実装基板:132mm×77mm
基板表面処理:Cu-OSP
使用基材:FR-4
層構成:両面基板
線膨張係数:基板厚:1.0mm
ソルダーレジスト開口部:φ0.40mm
電解Ni/Auランド径:φ0.28mm
・メタルマスク
マスク厚さ:120μm
開口径:φ0.28mm
・リフロー条件
プレヒート温度:130~170℃
プレヒート時間:100秒
プレヒート温度から溶融温度までの昇温速度:1.6℃/秒
溶融時間(220℃以上の温度):35秒
ピーク温度:243℃
ピーク温度から150℃までの冷却速度:2.4℃/秒
(3)振動試験
振動試験には、下記構成のエミック株式会社製振動試験装置を用いた。
CUBE型治具(200mm×200mm):JSA-150-085
CUBE型治具に付設の加速度ピックアップ:731-B型
プリチャージアンプ:504-E-2
基板に付設の加速度ピックアップ:710-D型
LGAを搭載した基板をCUBE型治具の上面に固定し、固定された基板に加速度ピックアップ(710-D型)を取り付けた。
引張強度をJISZ3198-2に準じて測定した。表1に記載の各はんだ合金を金型に鋳込み、ゲージ長が30mm、直径8mmの試験片を作製した。作製した試験片を、Instron社製のType5966により、室温で、6mm/minのストロークで引張り、試験片が破断したときの強度を計測した。本実施例では、引張強度が80MPa以上120MPa以下である場合、実用上問題ないレベルであると判断した。結果を表1に示す。
Claims (4)
- 質量%で、Ag:1~4%、Cu:0.5~0.8%、Bi:4.8%超え5.5%以下、Sb:1.5%超え5.5%以下、Ni:0.01%以上0.1%未満、Co:0.001%超え0.1%以下、および残部がSnからなる合金組成を有することを特徴とするはんだ合金。
- 前記合金組成は、下記(1)式~(3)式を満たす、請求項1に記載のはんだ合金。
0.020%≦Ni+Co≦0.105% (1)
9.1%≦Sb+Bi≦10.4% (2)
4.05×10-3≦(Ni+Co)/(Bi+Sb)≦1.00×10-2(3)
上記(1)式~(3)式中、Ni、Co、Bi、およびSbは、各々前記はんだ合金中での含有量(質量%)を表す。 - 請求項1または2に記載のはんだ合金を有することを特徴とするソルダペースト。
- 請求項1または2に記載のはんだ合金を有することを特徴とするはんだ継手。
Priority Applications (12)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES18774478T ES2887361T3 (es) | 2017-03-31 | 2018-03-30 | Aleación para soldadura, pasta para soldadura y unión de soldadura |
KR1020197027240A KR102071255B1 (ko) | 2017-03-31 | 2018-03-30 | 땜납 합금, 솔더 페이스트 및 땜납 조인트 |
CN201880018715.6A CN110430968B (zh) | 2017-03-31 | 2018-03-30 | 软钎料合金、焊膏和钎焊接头 |
US16/498,843 US10967464B2 (en) | 2017-03-31 | 2018-03-30 | Solder alloy, solder paste, and solder joint |
MX2019011465A MX2019011465A (es) | 2017-03-31 | 2018-03-30 | Aleacion de soldadura, pasta de soldadura y union soldada. |
DK18774478.4T DK3603877T3 (da) | 2017-03-31 | 2018-03-30 | Loddelegering, loddepasta og loddeforbindelse |
EP18774478.4A EP3603877B1 (en) | 2017-03-31 | 2018-03-30 | Solder alloy, solder paste, and solder joint |
HRP20211378TT HRP20211378T1 (hr) | 2017-03-31 | 2018-03-30 | Spojna legura, spojna pasta i spojni zglob |
JP2018538810A JP6447790B1 (ja) | 2017-03-31 | 2018-03-30 | はんだ合金、ソルダペースト及びはんだ継手 |
MYPI2019005323A MY188597A (en) | 2017-03-31 | 2018-03-30 | Solder alloy, solder paste, and solder joint |
BR112019020490-3A BR112019020490B1 (pt) | 2017-03-31 | 2018-03-30 | Liga de solda, pasta de solda e junta de solda |
PH12019502148A PH12019502148A1 (en) | 2017-03-31 | 2019-09-19 | Solder alloy, solder paste, and solder joint |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-073270 | 2017-03-31 | ||
JP2017073270 | 2017-03-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018181873A1 true WO2018181873A1 (ja) | 2018-10-04 |
Family
ID=63676469
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/013555 WO2018181873A1 (ja) | 2017-03-31 | 2018-03-30 | はんだ合金、ソルダペースト及びはんだ継手 |
Country Status (16)
Country | Link |
---|---|
US (1) | US10967464B2 (ja) |
EP (1) | EP3603877B1 (ja) |
JP (1) | JP6447790B1 (ja) |
KR (1) | KR102071255B1 (ja) |
CN (1) | CN110430968B (ja) |
BR (1) | BR112019020490B1 (ja) |
DK (1) | DK3603877T3 (ja) |
ES (1) | ES2887361T3 (ja) |
HR (1) | HRP20211378T1 (ja) |
HU (1) | HUE056341T2 (ja) |
MX (1) | MX2019011465A (ja) |
MY (1) | MY188597A (ja) |
PH (1) | PH12019502148A1 (ja) |
PT (1) | PT3603877T (ja) |
TW (1) | TWI677580B (ja) |
WO (1) | WO2018181873A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020157349A (ja) * | 2019-03-27 | 2020-10-01 | 千住金属工業株式会社 | はんだ合金、はんだボール、はんだプリフォーム、はんだペースト及びはんだ継手 |
CN114340835A (zh) * | 2019-09-02 | 2022-04-12 | 阿尔法装配解决方案公司 | 高温超高可靠性合金 |
JP7421157B1 (ja) | 2022-08-12 | 2024-01-24 | 千住金属工業株式会社 | はんだ合金、はんだペースト及びはんだ継手 |
WO2024034689A1 (ja) * | 2022-08-12 | 2024-02-15 | 千住金属工業株式会社 | はんだ合金、はんだペースト及びはんだ継手 |
TWI858864B (zh) | 2022-08-12 | 2024-10-11 | 日商千住金屬工業股份有限公司 | 焊接合金、焊接膏及焊接接點 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7212300B2 (ja) * | 2020-04-10 | 2023-01-25 | 千住金属工業株式会社 | はんだ合金、はんだ粉末、ソルダペースト、はんだボール、ソルダプリフォーム及びはんだ継手 |
JP6836040B1 (ja) | 2020-07-31 | 2021-02-24 | 千住金属工業株式会社 | はんだ合金 |
JP6936926B1 (ja) * | 2021-03-10 | 2021-09-22 | 千住金属工業株式会社 | はんだ合金、はんだ粉末、はんだペースト、およびはんだ継手 |
TWI778648B (zh) * | 2021-06-04 | 2022-09-21 | 岱暉股份有限公司 | 焊料合金 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5723056B2 (ja) | 1977-03-23 | 1982-05-17 | ||
JPS6047254B2 (ja) | 1976-06-28 | 1985-10-21 | スタミカ−ボン・ビ−・ベ− | ε−カプロラクタム/硫酸反応混合物からε−カプロラクタムを回収する方法 |
JPS6053248B2 (ja) | 1981-03-27 | 1985-11-25 | 工業技術院長 | 軟鋼等超厚板の水中ガス切断法 |
JP5349703B1 (ja) | 2012-07-19 | 2013-11-20 | ハリマ化成株式会社 | はんだ合金、ソルダペーストおよび電子回路基板 |
WO2014163167A1 (ja) | 2013-04-02 | 2014-10-09 | 千住金属工業株式会社 | 鉛フリーはんだ合金と車載電子回路 |
JP2015020182A (ja) * | 2013-07-17 | 2015-02-02 | ハリマ化成株式会社 | はんだ組成物、ソルダペーストおよび電子回路基板 |
WO2015166945A1 (ja) * | 2014-04-30 | 2015-11-05 | 株式会社日本スペリア社 | 鉛フリーはんだ合金 |
WO2016098358A1 (ja) * | 2014-12-15 | 2016-06-23 | ハリマ化成株式会社 | はんだ合金、ソルダペーストおよび電子回路基板 |
WO2016179358A1 (en) * | 2015-05-05 | 2016-11-10 | Indium Corporation | High reliability lead-free solder alloys for harsh environment electronics applications |
WO2017018167A1 (ja) * | 2015-07-24 | 2017-02-02 | ハリマ化成株式会社 | はんだ合金、ソルダペーストおよび電子回路基板 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5349703A (en) | 1976-10-19 | 1978-05-06 | Nitto Tire | Pneumatic tire and rim assembly |
JPS5723056A (en) | 1980-07-17 | 1982-02-06 | Nippon Steel Corp | Preparation of molten lead-tin alloy plated steel plate with excellent plating appearance and corrosion resistance |
JPS6047254A (ja) | 1983-08-26 | 1985-03-14 | Hitachi Ltd | 光デイスクの作製方法 |
JPS6053248A (ja) | 1983-08-31 | 1985-03-26 | Daido Kogyo Co Ltd | スチ−ルベルト |
JP2005340275A (ja) | 2004-05-24 | 2005-12-08 | Denso Corp | 電子部品接合体、その製造方法、およびそれを含む電子装置 |
WO2014002304A1 (ja) * | 2012-06-29 | 2014-01-03 | ハリマ化成株式会社 | はんだ合金、ソルダペーストおよび電子回路基板 |
JP6200534B2 (ja) | 2015-03-24 | 2017-09-20 | 株式会社タムラ製作所 | 鉛フリーはんだ合金、電子回路基板および電子制御装置 |
US20160279741A1 (en) | 2015-03-24 | 2016-09-29 | Tamura Corporation | Lead-free solder alloy, electronic circuit board, and electronic control device |
MY188659A (en) | 2015-07-24 | 2021-12-22 | Harima Chemicals Inc | Solder alloy, solder paste, and electronic circuit board |
JP6052381B2 (ja) | 2015-12-24 | 2016-12-27 | 千住金属工業株式会社 | 鉛フリーはんだ合金 |
JP2016107343A (ja) * | 2015-12-24 | 2016-06-20 | 千住金属工業株式会社 | 鉛フリーはんだ合金と車載電子回路 |
CN107427969B (zh) | 2016-03-22 | 2020-07-07 | 株式会社田村制作所 | 无铅软钎料合金、助焊剂组合物、焊膏组合物、电子电路基板和电子控制装置 |
JP6047254B1 (ja) * | 2016-03-22 | 2016-12-21 | 株式会社タムラ製作所 | 鉛フリーはんだ合金、電子回路基板および電子制御装置 |
JP2018083211A (ja) | 2016-11-24 | 2018-05-31 | ハリマ化成株式会社 | ソルダペースト、フラックスおよび電子回路基板 |
-
2018
- 2018-03-30 KR KR1020197027240A patent/KR102071255B1/ko active IP Right Grant
- 2018-03-30 TW TW107111117A patent/TWI677580B/zh active
- 2018-03-30 PT PT187744784T patent/PT3603877T/pt unknown
- 2018-03-30 EP EP18774478.4A patent/EP3603877B1/en active Active
- 2018-03-30 CN CN201880018715.6A patent/CN110430968B/zh active Active
- 2018-03-30 ES ES18774478T patent/ES2887361T3/es active Active
- 2018-03-30 JP JP2018538810A patent/JP6447790B1/ja active Active
- 2018-03-30 BR BR112019020490-3A patent/BR112019020490B1/pt active IP Right Grant
- 2018-03-30 MX MX2019011465A patent/MX2019011465A/es active IP Right Grant
- 2018-03-30 DK DK18774478.4T patent/DK3603877T3/da active
- 2018-03-30 MY MYPI2019005323A patent/MY188597A/en unknown
- 2018-03-30 US US16/498,843 patent/US10967464B2/en active Active
- 2018-03-30 HR HRP20211378TT patent/HRP20211378T1/hr unknown
- 2018-03-30 HU HUE18774478A patent/HUE056341T2/hu unknown
- 2018-03-30 WO PCT/JP2018/013555 patent/WO2018181873A1/ja active Application Filing
-
2019
- 2019-09-19 PH PH12019502148A patent/PH12019502148A1/en unknown
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6047254B2 (ja) | 1976-06-28 | 1985-10-21 | スタミカ−ボン・ビ−・ベ− | ε−カプロラクタム/硫酸反応混合物からε−カプロラクタムを回収する方法 |
JPS5723056B2 (ja) | 1977-03-23 | 1982-05-17 | ||
JPS6053248B2 (ja) | 1981-03-27 | 1985-11-25 | 工業技術院長 | 軟鋼等超厚板の水中ガス切断法 |
JP5349703B1 (ja) | 2012-07-19 | 2013-11-20 | ハリマ化成株式会社 | はんだ合金、ソルダペーストおよび電子回路基板 |
WO2014163167A1 (ja) | 2013-04-02 | 2014-10-09 | 千住金属工業株式会社 | 鉛フリーはんだ合金と車載電子回路 |
JP2015020182A (ja) * | 2013-07-17 | 2015-02-02 | ハリマ化成株式会社 | はんだ組成物、ソルダペーストおよび電子回路基板 |
WO2015166945A1 (ja) * | 2014-04-30 | 2015-11-05 | 株式会社日本スペリア社 | 鉛フリーはんだ合金 |
WO2016098358A1 (ja) * | 2014-12-15 | 2016-06-23 | ハリマ化成株式会社 | はんだ合金、ソルダペーストおよび電子回路基板 |
WO2016179358A1 (en) * | 2015-05-05 | 2016-11-10 | Indium Corporation | High reliability lead-free solder alloys for harsh environment electronics applications |
WO2017018167A1 (ja) * | 2015-07-24 | 2017-02-02 | ハリマ化成株式会社 | はんだ合金、ソルダペーストおよび電子回路基板 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3603877A4 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020157349A (ja) * | 2019-03-27 | 2020-10-01 | 千住金属工業株式会社 | はんだ合金、はんだボール、はんだプリフォーム、はんだペースト及びはんだ継手 |
US11167379B2 (en) | 2019-03-27 | 2021-11-09 | Senju Metal Industry Co., Ltd. | Solder alloy, solder ball, solder preform, solder paste and solder joint |
CN114340835A (zh) * | 2019-09-02 | 2022-04-12 | 阿尔法装配解决方案公司 | 高温超高可靠性合金 |
CN114340835B (zh) * | 2019-09-02 | 2024-07-12 | 阿尔法装配解决方案公司 | 高温超高可靠性合金 |
JP7421157B1 (ja) | 2022-08-12 | 2024-01-24 | 千住金属工業株式会社 | はんだ合金、はんだペースト及びはんだ継手 |
WO2024034689A1 (ja) * | 2022-08-12 | 2024-02-15 | 千住金属工業株式会社 | はんだ合金、はんだペースト及びはんだ継手 |
TWI858864B (zh) | 2022-08-12 | 2024-10-11 | 日商千住金屬工業股份有限公司 | 焊接合金、焊接膏及焊接接點 |
Also Published As
Publication number | Publication date |
---|---|
MY188597A (en) | 2021-12-22 |
KR20190112166A (ko) | 2019-10-02 |
TW201842206A (zh) | 2018-12-01 |
KR102071255B1 (ko) | 2020-01-31 |
JPWO2018181873A1 (ja) | 2019-04-04 |
TWI677580B (zh) | 2019-11-21 |
EP3603877A4 (en) | 2020-02-05 |
BR112019020490B1 (pt) | 2023-03-28 |
MX2019011465A (es) | 2019-11-01 |
PH12019502148B1 (en) | 2020-06-08 |
US10967464B2 (en) | 2021-04-06 |
ES2887361T3 (es) | 2021-12-22 |
PH12019502148A1 (en) | 2020-06-08 |
HRP20211378T1 (hr) | 2021-12-24 |
PT3603877T (pt) | 2021-09-09 |
CN110430968A (zh) | 2019-11-08 |
JP6447790B1 (ja) | 2019-01-09 |
CN110430968B (zh) | 2021-07-16 |
BR112019020490A2 (pt) | 2020-04-28 |
HUE056341T2 (hu) | 2022-02-28 |
US20200114475A1 (en) | 2020-04-16 |
EP3603877B1 (en) | 2021-08-11 |
EP3603877A1 (en) | 2020-02-05 |
DK3603877T3 (da) | 2021-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018181873A1 (ja) | はんだ合金、ソルダペースト及びはんだ継手 | |
JP6624322B1 (ja) | はんだ合金、はんだボール、はんだプリフォーム、はんだペースト及びはんだ継手 | |
TWI502073B (zh) | Lead - free solder alloy | |
KR102194027B1 (ko) | 땜납 합금, 땜납 페이스트, 땜납 볼, 수지 내장 땜납 및 땜납 이음매 | |
KR102153273B1 (ko) | 땜납 합금, 땜납 페이스트, 땜납 볼, 수지 내장 땜납 및 땜납 이음매 | |
JP6836040B1 (ja) | はんだ合金 | |
WO2007102588A1 (ja) | 鉛フリーハンダ合金、ハンダボール及び電子部材と、自動車搭載電子部材用鉛フリーハンダ合金、ハンダボール及び電子部材 | |
KR102672970B1 (ko) | 땜납 합금, 땜납 볼, 땜납 페이스트 및 솔더 조인트 | |
KR20200122980A (ko) | 납 프리 땜납 합금, 전자 회로 실장 기판 및 전자 제어 장치 | |
KR20240112761A (ko) | 땜납 합금, 땜납 페이스트, 땜납 볼, 땜납 프리폼, 솔더 조인트, 차량 탑재 전자 회로, ecu 전자 회로, 차량 탑재 전자 회로 장치 및 ecu 전자 회로 장치 | |
WO2023054630A1 (ja) | はんだ合金、はんだボール、はんだプリフォーム、はんだペースト及びはんだ継手 | |
JP2005046882A (ja) | はんだ合金、はんだボール及びはんだ接合体 | |
WO2016185674A1 (ja) | はんだ合金およびそれを用いた実装構造体 | |
JP7421157B1 (ja) | はんだ合金、はんだペースト及びはんだ継手 | |
JP7376842B1 (ja) | はんだ合金、はんだボール、はんだペースト及びはんだ継手 | |
WO2024034689A1 (ja) | はんだ合金、はんだペースト及びはんだ継手 | |
JP2005334955A (ja) | はんだ合金およびはんだボール | |
JP2005296983A (ja) | はんだ合金およびはんだボール | |
JP2005144495A (ja) | はんだ合金およびはんだボール |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018538810 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18774478 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20197027240 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112019020490 Country of ref document: BR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2018774478 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2018774478 Country of ref document: EP Effective date: 20191031 |
|
ENP | Entry into the national phase |
Ref document number: 112019020490 Country of ref document: BR Kind code of ref document: A2 Effective date: 20190930 |