WO2018181594A1 - 永久磁石及び回転機 - Google Patents

永久磁石及び回転機 Download PDF

Info

Publication number
WO2018181594A1
WO2018181594A1 PCT/JP2018/013003 JP2018013003W WO2018181594A1 WO 2018181594 A1 WO2018181594 A1 WO 2018181594A1 JP 2018013003 W JP2018013003 W JP 2018013003W WO 2018181594 A1 WO2018181594 A1 WO 2018181594A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
permanent magnet
rich
fine powder
rare earth
Prior art date
Application number
PCT/JP2018/013003
Other languages
English (en)
French (fr)
Inventor
大祐 志賀
孝裕 諏訪
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Priority to CN201880021066.5A priority Critical patent/CN110537232B/zh
Publication of WO2018181594A1 publication Critical patent/WO2018181594A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy

Definitions

  • the present invention relates to a permanent magnet and a rotating machine.
  • Permanent magnets containing Nd 2 Fe 14 B as the main phase have a large maximum energy product (BH) max and a large coercive force, and thus are practically used in various technical fields.
  • rare earth elements such as Nd, Pr, Dy, or Tb, which are raw materials for permanent magnets, are expensive, and their supply amount is not stable. Therefore, research has been conducted to replace a part of Nd constituting the permanent magnet with an inexpensive element such as Y, La, or Ce. (See Patent Document 1 below.)
  • the saturation magnetization Is and the anisotropic magnetic field Ha of the main phase composed of inexpensive elements such as Y, La, or Ce are significantly smaller than those of Nd 2 Fe 14 B.
  • the anisotropic magnetic field Ha of Nd 2 Fe 14 B is 67 kOe
  • the anisotropic magnetic field Ha of Ce 2 Fe 14 B is 30 kOe.
  • the unit (kOe) is equivalent to “ ⁇ (10 3 / 4 ⁇ ) ⁇ (kA / m)”. Since there is a difference in anisotropic magnetic field Ha between Nd 2 Fe 14 B and Ce 2 Fe 14 B, Nd is not replaced in the coercive force HcJ of the permanent magnet in which a part of Nd is replaced with Ce. It is significantly smaller than the case.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a permanent magnet having a large coercive force among permanent magnets containing Ce as an alternative element of Nd, and a rotating machine including the permanent magnet. To do.
  • a permanent magnet includes a plurality of main phase particles including a rare earth element R, a transition metal element T, and boron, and a grain boundary phase positioned between the plurality of main phase particles,
  • the element R includes at least Nd and Ce
  • the transition metal element T includes at least Fe
  • the grain boundary phase includes an RT phase and an R rich phase
  • the RT phase includes a rare earth element R
  • the total content of rare earth elements R in the R-rich phase is greater than the total content of rare earth elements R in the RT phase.
  • the Ce content in the phase is [Ce] RT atomic%
  • the total content of the rare earth element R in the RT phase is [R] RT atomic%
  • the rare earth in the R-rich phase is rare earth in the R-rich phase.
  • the total content of the element R is [R] R-RICH atomic%, 00 ⁇ [Ce] R-T / [R] R-T is 65 or more and 100 or less, [R] R-RICH is 100 atomic% 70 atomic% or more.
  • the cross-sectional area of the permanent magnet is S TOTAL
  • the total cross-sectional area of all main phase particles in the cross-section is SMPG
  • the total cross-sectional area of the RT phase in the cross-section is S RT
  • the sum of the cross-sectional areas of the R-rich phase in the cross section is S R-RICH
  • 100 ⁇ (S MPG + S R ⁇ T + S R ⁇ RICH ) / S TOTAL may be 97 or more and 100 or less.
  • the RT phase may be a Laves phase.
  • a rotating machine includes the permanent magnet.
  • a permanent magnet having a large coercive force among permanent magnets containing Ce as an alternative element of Nd, and a rotating machine including the permanent magnet are provided.
  • FIG. 1 is a schematic perspective view of a permanent magnet 10 according to an embodiment of the present invention
  • FIG. 10 is a schematic diagram (a view taken in the direction of the line bb) of a cross section 10cs of FIG.
  • FIG. 2 is an enlarged view of a part II of the cross section 10cs of the permanent magnet 10 shown in FIG.
  • FIG. 3 is a schematic perspective view of a rotating machine according to an embodiment of the present invention.
  • FIG. 4 is a reflected electron image of a cross section of the permanent magnet of Example 1.
  • the permanent magnet according to the present invention may be a sintered magnet or a hot-worked magnet.
  • the permanent magnet according to the present invention may be a rare earth magnet.
  • the whole permanent magnet 10 according to the present embodiment is shown in (a) of FIG.
  • a cross section 10cs of the permanent magnet 10 is shown in FIG.
  • FIG. 2 is an enlarged view of a part II of the cross section 10 cs of the permanent magnet 10.
  • the permanent magnet 10 according to this embodiment includes a plurality of main phase particles 11 and a grain boundary phase 9 located between the main phase particles 11.
  • the permanent magnet 10 may be a sintered body composed of a large number of main phase particles 11 that are sintered together via the grain boundary phase 9.
  • Each main phase particle 11 includes at least a rare earth element R, a transition metal element T, and boron (B).
  • the rare earth element R contains at least Nd (neodymium) and Ce (cerium). That is, a part of Nd is replaced with Ce.
  • the transition metal element T contains at least Fe (iron).
  • the transition metal element T may contain Fe and Co (cobalt). That is, a part of Fe may be replaced with Co.
  • Each main phase particle 11 may contain carbon (C) in addition to boron. That is, part of B may be replaced with C.
  • the main phase particle 11 may contain R 2 T 14 M as a main phase.
  • the element M may be only B.
  • the element M may be B and C.
  • R 2 T 14 M may be represented as Nd 2 ⁇ x Ce x Fe 14 ⁇ s Co s B 1 ⁇ t C t .
  • x is greater than 0 and less than 2.
  • s is 0 or more and less than 14.
  • t is 0 or more and less than 1.
  • the main phase particles 11 may contain Nd 2 Fe 14 B.
  • the main phase particles 11 may include Ce 2 Fe 14 B.
  • the grain boundary phase 9 includes at least the RT phase 3 and the R-rich phase 5.
  • the RT phase 3 is a phase containing R and T intermetallic compounds.
  • the total content of rare earth elements R in the R-rich phase 5 is larger than the total content of rare earth elements R in the RT phase 3.
  • the grain boundary phase 9 may consist of only the RT phase 3 and the R-rich phase 5.
  • the grain boundary phase 9 may include a heterogeneous phase 7 in addition to the RT phase 3 and the R-rich phase 5.
  • the grain boundary phase 9 may include an R 6 T 13 E phase in addition to the RT phase 3 and the R rich phase 5.
  • the element E is at least one selected from the group consisting of Ga (gallium), Si (silicon), Sn (tin) and Bi (bismuth), for example.
  • RT phase 3 R rich phase 5, heterogeneous phase 7, and R 6 T 13 E phase may be as follows.
  • the content of C in the RT phase 3 is expressed as [C] RT atom%.
  • the N content in the RT phase 3 is expressed as [N] RT atom%.
  • the content of O in the RT phase 3 is expressed as [O] RT atom%.
  • the Ce content in the RT phase 3 is expressed as [Ce] RT atom%.
  • the total content of rare earth elements R in the RT phase 3 is expressed as [R] RT atom%.
  • Sum [R] R-T content of the rare earth element R in the R-T phase 3 is greater than the sum of the content of the rare earth element R in the main phase grains 11.
  • the total content of the transition metal element T in the RT phase 3 is expressed as [T] RT atom%.
  • the total content of the element E in the RT phase 3 is expressed as [E] RT atom%.
  • the RT phase 3 may be a phase that satisfies all of the following inequalities (1), (2), and (3). 0 ⁇ [C] RT + [N] RT + [O] RT ⁇ 30 (1) 0.26 ⁇ [R] R ⁇ T / ([R] R T + [T] R T ) ⁇ 0.40 (2) 0.00 ⁇ [E] RT / ([R] RT + [T] RT + [E] RT ) ⁇ 0.03 (3)
  • the RT phase 3 may consist only of R and T intermetallic compounds.
  • the intermetallic compound may consist only of R and T.
  • Intermetallic compounds contained in the RT phase 3 may be, for example, RT 2.
  • the RT phase 3 may consist only of RT 2 .
  • RT 2 may be represented as Nd 1- ⁇ Ce ⁇ Fe 2- ⁇ Co ⁇ .
  • is 0 or more and 1 or less.
  • is 0 or more and 2 or less.
  • RT 2 may be, for example, NdFe 2 or CeFe 2 .
  • the RT phase 3 may contain trace elements other than R and T in addition to R and T intermetallic compounds.
  • the RT phase 3 may be a Laves phase.
  • the crystal structure of RT phase 3 may be C15 type.
  • the RT phase 3 may be identified based on an X-ray diffraction (XRD) pattern. That is, the RT phase 3 may be specified based on the diffraction angle 2 ⁇ of the X-ray diffraction peak derived from the lattice plane (hkl). For example, when CuK ⁇ rays are used as the X-ray source in the measurement of the XRD pattern of the RT phase 3, 2 ⁇ derived from the lattice plane (220) of the RT phase 3 is 34.0 to 34.73. It may be °.
  • XRD X-ray diffraction
  • 2 ⁇ derived from the lattice plane (311) of the RT phase 3 is 40.10 to 40.97. It may be °.
  • the 2 ⁇ may vary within the above range depending on the type of rare earth element R contained in the RT phase 3.
  • the content of C in the R-rich phase 5 is expressed as [C] R-RICH atom%.
  • the N content in the R-rich phase 5 is expressed as [N] R-RICH atom%.
  • the content of O in the R-rich phase 5 is expressed as [O] R-RICH atom%.
  • the total content of rare earth elements R in the R-rich phase 5 is expressed as [R] R-RICH atomic%.
  • Sum [R] R-RICH content of the rare earth element R in the R-rich phase 5 is greater than the sum [R] R-T content of the rare earth element R in the R-T phase 3.
  • the total content of the transition metal element T in the R-rich phase 5 is expressed as [T] R-RICH atom%.
  • the R-rich phase 5 may be a phase in which [R] R-RICH is larger than [R] R-T and satisfies the following inequalities (4) and (5). 0 ⁇ [C] R-RICH + [N] R-RICH + [O] R-RICH ⁇ 30 (4) 0.50 ⁇ [R] R-RICH / ([R] R-RICH + [T] R-RICH ) ⁇ 1.00 (5)
  • the heterogeneous phase 7 may include at least one selected from the group consisting of O, C, and N, for example.
  • the content of C in the heterogeneous phase 7 is expressed as [C] H atom%.
  • the N content in the heterogeneous phase 7 is expressed as [N] H atom%.
  • the O content in the heterogeneous phase 7 is expressed as [O] H atom%.
  • the different phase 7 may be a phase in which [C] H + [N] H + [O] H is 30 or more and less than 100. That is, the different phase 7 may be a phase satisfying the following inequality (6).
  • the hetero phase 7 may include, for example, at least one selected from the group consisting of an oxide of R, a carbide of R, and a nitride of R. 30 ⁇ [C] H + [N] H + [O] H ⁇ 100 (6)
  • the content of C in the R 6 T 13 E phase is expressed as [C] A atomic%.
  • the N content in the R 6 T 13 E phase is expressed as [N] A atomic%.
  • the content of O in the R 6 T 13 E phase is expressed as [O] A atomic%.
  • the total content of rare earth elements R in the R 6 T 13 E phase is expressed as [R] A atomic%.
  • the total content of the transition metal element T in the R 6 T 13 E phase is expressed as [T] A atomic%.
  • the total content of element E in the R 6 T 13 E phase is expressed as [E] A atomic%.
  • the R 6 T 13 E phase may be a phase that satisfies all of the following inequalities (7), (8), and (9).
  • the Ce content in the RT phase 3 is expressed as [Ce] RT atom%.
  • the total content of rare earth elements R in the RT phase 3 is expressed as [R] RT atom%.
  • the total content of rare earth elements R in the R-rich phase 5 is expressed as [R] R-RICH atomic%.
  • 100 ⁇ [Ce] RT / [R] RT is 65 or more and 100 or less, and [R] R-RICH is 70 atom% or more and 100 atom% or less. That is, 65% or more of the rare earth element R contained in the RT phase 3 is Ce, and the content of the rare earth element R in the R rich phase is 70 atomic% or more.
  • the permanent magnet 10 according to the present embodiment is an alternative to Nd.
  • the permanent magnet 10 can have a large coercive force.
  • a part of Nd in the permanent magnet 10 is replaced with cheap Ce, the amount of Nd used is reduced as compared with the prior art, and the raw material cost of the permanent magnet 10 is reduced.
  • the present inventors consider that the mechanism in which the permanent magnet 10 has a large coercive force is as follows. However, the mechanism in which the permanent magnet 10 has a large coercive force is not limited to the following.
  • the RT phase 3 in which 100 ⁇ [Ce] RT / [R] RT is 65 or more and the R rich phase 5 in which [R] R-RICH is 70 atomic% or more are included. Since it is included in the grain boundary phase 9, the magnetization of the grain boundary phase 9 is small, and the main phase grains 11 are magnetically separated.
  • the permanent magnet 10 can have a large coercive force.
  • 100 ⁇ [Ce] RT / [R] RT is less than 65, the magnetization of the RT phase 3 increases, the main phase particles 11 are easily magnetically coupled, and the permanent magnet 10 The coercive force decreases.
  • R-RICH is less than 70 atomic%, the magnetization of the R-rich phase 5 is increased, the main phase particles 11 are easily magnetically coupled to each other, and the coercive force of the permanent magnet 10 is reduced.
  • the area of the cross section of the permanent magnet 10 is represented as S TOTAL .
  • the sum of the cross-sectional areas of all main phase particles 11 in the cross section of the permanent magnet 10 is expressed as SMPG .
  • the total cross-sectional area of the R-T phases in the cross section of the permanent magnet 10 is expressed as S R-T.
  • the total cross-sectional area of the R-rich phase in the cross section of the permanent magnet 10 is represented as S R-RICH .
  • 100 ⁇ (S MPG + S R ⁇ T + S R ⁇ RICH ) / S TOTAL may be 97 or more and 100 or less.
  • Each unit of S TOTAL , S MPG , S R-T , S R-RICH may be m 2 or ( ⁇ m) 2 .
  • the heterogeneous phase 7 included in the grain boundary phase 9 becomes a magnetization reversal nucleus and tends to reduce the coercive force of the permanent magnet 10. Since 100 ⁇ (S MPG + S RT + S R-RICH ) / S TOTAL is 97 or more, the proportion of the volume of the different phase 7 in the grain boundary phase 9 is sufficiently suppressed. As a result, a decrease in coercive force due to the different phase 7 is suppressed, and the coercive force of the permanent magnet 10 is easily improved. However, 100 ⁇ (S MPG + S R-T + S R-RICH) / S TOTAL even when less than 97, the effect of the present invention can be obtained.
  • 100 ⁇ (S MPG + S RT + S R-RICH ) / S TOTAL may be 97.2 or more and 100 or less, or 98.2 or more and 100 or less.
  • 100 ⁇ (S MPG + S R-T + S R-RICH) / S TOTAL is adjusted to 97 or more easily.
  • impurities e.g. O, C and N
  • S TOTAL , S MPG , S R-T and S R-RICH may be measured, for example, by the following method using a field emission scanning electron microscope (FE-SEM).
  • FE-SEM field emission scanning electron microscope
  • the cross section of the permanent magnet 10 is polished using abrasive paper, buffs, diamond abrasive grains, or the like.
  • An ion milling process is performed on the polished cross section to remove impurities such as an oxide film and a nitride film on the cross section.
  • a reflected electron image of the cross section of the permanent magnet 10 after the ion milling process is taken with an FE-SEM.
  • FIG. 4 is a backscattered electron image of a cross section of the permanent magnet of Example 1 of the present invention, taken by FE-SEM.
  • the main phase particles 11 appear gray.
  • the RT phase 3 appears lighter gray than the main phase particles 11.
  • R-rich phase 5 appears white. That is, the radiation efficiency of the reflected electrons in the RT phase 3 is an intermediate value between the radiation efficiency of the reflected electrons in the main phase particle 11 and the radiation efficiency of the reflected electrons in the R-rich phase 5.
  • S TOTAL may be defined as the area of a predetermined region (unit cross section) in the reflected electron image.
  • S TOTAL area of unit cross section
  • a composition analysis of a unit cross section may be performed by an energy dispersive X-ray spectrometer (EDS) attached to the FE-SEM. By composition analysis, it is possible to confirm the composition of the main phase particle 11, the RT phase 3 and the R rich phase 5 that are distinguished from each other in the unit cross section.
  • EDS energy dispersive X-ray spectrometer
  • the cross sections of the main phase particle 11, the RT phase 3 and the R rich phase 5 are extracted by an image analysis method that provides a threshold value that defines the density of the reflected electron image, and S MPG , S RT and S R-RICH are extracted. Each is measured.
  • the analysis method of the permanent magnet 10 is not limited to the above method.
  • the composition of the permanent magnet 10 is an electron beam microanalyzer (EPMA), a fluorescent X-ray (XRF) analysis method, an ICP (Inductively Coupled Plasma) emission analysis method, an inert gas melting-non-dispersive infrared absorption method, combustion in an oxygen stream -It may be specified by infrared absorption method or inert gas melting-thermal conductivity method.
  • the content of impurity elements such as O, C and N in the permanent magnet 10 may be 5000 ppm by mass or less, or 3000 ppm by mass or less.
  • the O content is smaller, rare earth oxides (non-magnetic components) are less likely to be included in the permanent magnet 10, and the magnetic properties of the permanent magnet 10 are less likely to be impaired.
  • the content of the rare earth element R in the permanent magnet 10 may be, for example, 11 atomic% or more and 20 atomic% or less.
  • the permanent magnet 10 tends to contain a sufficient amount of the main phase (R 2 T 14 B phase), and a soft magnetic material such as ⁇ -Fe is contained in the permanent magnet 10. Difficult to precipitate. As a result, the permanent magnet 10 tends to have a large coercive force.
  • the volume ratio of the main phase (R 2 T 14 B phase) in the permanent magnet 10 is sufficiently high, and the permanent magnet 10 tends to have a large residual magnetic flux density.
  • the permanent magnet 10 includes, as rare earth elements R, Sc (scandium), Y (yttrium), La (lanthanum), Pr (praseodymium), Sm (samarium), Eu (europium), Gd (gadolinium), Ho (holmium), It may further include at least one selected from the group consisting of Dy (dysprosium) and Tb (terbium).
  • Dy dysprosium
  • Tb terbium
  • the total content of Ho, Dy, and Tb may be 1 atomic% or less with respect to the entire permanent magnet 10.
  • the total content of other rare earth elements excluding Nd and Ce may be 1 atomic% or less with respect to the entire permanent magnet 10.
  • the ratio of the number of Nd to the number of all rare earth elements contained in the permanent magnet 10 may be 40% or more and 90% or less.
  • the ratio of the number of Nd to the number of all rare earth elements is 40% or more, the residual magnetic flux density and the coercive force are likely to increase.
  • the ratio of the number of Nd to the number of all rare earth elements is 90% or less, it is easy to obtain the effect of reducing raw material costs and the above effect of increasing the coercive force.
  • the content of B in the permanent magnet 10 may be 4 atomic% or more and 7 atomic% or less.
  • the content of B is 4 atomic% or more, the permanent magnet 10 tends to have a large coercive force.
  • the B content is 7 atomic% or less, the permanent magnet 10 tends to have a large residual magnetic flux density.
  • the content of Fe in the permanent magnet 10 may be 70 atomic% or more and 85 atomic% or less.
  • the Co content in the permanent magnet 10 may be 0.0 atomic% or more and 4.0 atomic% or less. Co increases the Curie temperature of the permanent magnet 10 or improves the corrosion resistance of the grain boundary phase 9.
  • the permanent magnet 10 may include one of Al and Cu.
  • the permanent magnet 10 may include both Al and Cu.
  • the total content of Al and Cu in the permanent magnet 10 may be 0.01 atomic% or more and 1.2 atomic% or less. When the total content of Al and Cu is 0.01 atomic percent or more and 1.2 atomic percent or less, the coercive force, corrosion resistance, and temperature characteristics of the permanent magnet 10 are easily improved.
  • the permanent magnet 10 is made of, for example, a group consisting of Ni (nickel), Zr (zirconium), Ti (titanium), Nb (niobium), Ta (tantalum), V (vanadium), Ag (silver), and Ge (germanium). It may further include at least one selected.
  • the permanent magnet 10 is manufactured by a three alloy method.
  • the three-alloy method at least three types of alloys having different compositions are used.
  • fine powder of an alloy having the same composition as the main phase particles 11 fine powder for main phase
  • fine powder of an alloy having the same composition as the RT phase 3 fine powder for RT phase
  • an alloy fine powder (R-rich phase fine powder) having substantially the same composition as the R-rich phase 5, respectively. If the main phase fine powder, the RT phase fine powder, and the R rich phase fine powder are not prepared separately, the composition of the main phase particles, the RT phase, and the R rich phase is set to the desired composition described above. It is difficult to control.
  • a permanent magnet in which 100 ⁇ [Ce] RT / [R] RT is 65 or more and 100 or less and [R] R-RICH is 70 atom% or more and 100 atom% or less is obtained by a one-alloy method. Or it is difficult to manufacture by a 2 alloy method. If a permanent magnet is manufactured by the 1-alloy method or the 2-alloy method, the Ce content in the RT phase decreases in the manufacturing process, or the T content in the R-rich phase increases. Another stable phase that does not satisfy the requirements of the T phase and the R rich phase is likely to be generated.
  • the starting material may be a single element (single metal) of each element constituting the permanent magnet, or an alloy containing each element.
  • the starting material may be, for example, pure neodymium, pure cerium, pure iron, and an alloy of iron and boron (iron boride).
  • As the starting material for the main phase fine powder one or more starting materials containing rare earth element R, transition metal element T, boron, and the like are weighed so as to substantially match the composition of the target main phase particles.
  • As a starting material for the fine powder for RT phase one or more starting materials containing rare earth element R, transition metal element T, boron and the like are weighed so as to substantially match the composition of the target RT phase.
  • As the starting material for the R-rich phase fine powder one or more starting materials containing a rare earth element R, a transition metal element T, boron, and the like are weighed so as to substantially match the composition of the target R-rich phase.
  • Only the RT phase alloy is produced from the starting material of the RT phase fine powder by another strip casting method. Then, the crushing process is performed using only the RT phase alloy.
  • the R-rich phase alloy is produced from the starting material of the R-rich phase fine powder by another strip casting method.
  • the starting material of the R-rich phase fine powder is melted and cooled to obtain the R-rich phase alloy, and then the R-rich phase alloy is kept at 700 ° C. or lower.
  • anneal After annealing, the grinding process is performed using only the R-rich phase alloy.
  • the starting material is melted in a non-oxidizing atmosphere to produce a molten metal (alloy melt).
  • the molten metal is poured into the surface of a rotating roll in a non-oxidizing atmosphere.
  • the molten metal is rapidly cooled on the surface of the roll and solidified to obtain a thin plate or flake (scale piece) of the alloy.
  • the molten metal may be discharged onto the surface of the water-cooled copper plate.
  • Each strip casting method may be performed in a non-oxidizing atmosphere.
  • the non-oxidizing atmosphere may be, for example, a vacuum or an inert gas such as Ar.
  • the raw material alloy obtained by the strip casting method is pulverized to obtain a coarse powder.
  • the raw material alloy may be pulverized by, for example, hydrogen pulverization.
  • hydrogen pulverization a raw material alloy is placed in a hydrogen atmosphere, and the raw alloy is occluded with hydrogen.
  • the volume of the raw material alloy expands.
  • the metal contained in the raw material alloy is hydrogenated, and the raw material alloy becomes brittle. As a result, cracks occur in the raw material alloy, and the raw material alloy is pulverized.
  • the particle diameter of the raw alloy coarse powder may be, for example, 10 to 1000 ⁇ m.
  • the hydrogen may be released from the coarse powder by heating the coarse powder of the raw material alloy.
  • the hydrogen release treatment is performed in a vacuum or under a flow of Ar gas.
  • hydrogen is released from the raw material alloy by holding the raw powder of the raw material alloy in a vacuum atmosphere for a predetermined time while heating at a predetermined temperature.
  • the hydrogen release temperature may be 200-400 ° C.
  • the hydrogen release time may be 0.5 to 20 hours.
  • the coarse pulverization step may be performed by a method other than hydrogen storage and hydrogen release treatment.
  • the raw material alloy is pulverized until the particle size of the alloy reaches about several hundred ⁇ m.
  • Specific means of the coarse pulverization step may be a stamp mill, a jaw crusher, a brown mill, or the like.
  • the coarse pulverization step may be performed in an inert gas atmosphere.
  • the alloy may be pulverized by the hydrogen storage treatment described above.
  • the alloy In the fine grinding process following the coarse grinding process, fine powder is obtained from the alloy.
  • the alloy In the pulverizing step, the alloy may be pulverized using a jet mill. In the case of a jet mill, the average particle size of the alloy may be adjusted to 2.5 to 6 ⁇ m, preferably 3 to 5 ⁇ m.
  • wet pulverization of the alloy may be performed.
  • the specific means of wet grinding may be a ball mill or a wet attritor.
  • the average particle size of the alloy may be adjusted to 1.5 ⁇ m or more and 5 ⁇ m or less, desirably 2 ⁇ m or more and 4.5 ⁇ m or less.
  • wet pulverization since the alloy is pulverized in a dispersion medium, it is difficult for the alloy to come into direct contact with oxygen in the atmosphere, and a fine powder with a small oxygen content is easily obtained.
  • the main phase fine powder, the RT phase fine powder, and the R rich phase fine powder are individually prepared.
  • the mass of the fine powder for main phases is described as m1.
  • the mass of the fine powder for RT phase is expressed as m2.
  • the mass of the R-rich phase fine powder is expressed as m3.
  • the mixed fine powder is prepared by weighing and mixing the fine powder for the main phase, the fine powder for the RT phase, and the fine powder for the R-rich phase. What is necessary is just to adjust the ratio of m1, m2, and m3 so that the composition of the whole mixed fine powder may correspond to the composition of the target permanent magnet 10.
  • fatty acids, fatty acid derivatives, and other hydrocarbons may be added to the mixed fine powder.
  • the hydrocarbon added to the mixed fine powder is, for example, at least one selected from the group consisting of zinc stearate, calcium stearate, aluminum stearate, stearic acid amide, oleic acid amide, ethylenebisisostearic acid amide, paraffin, and naphthalene. It may be. Content of the said hydrocarbon in mixed fine powder may be 0.01 mass% or more and 0.3 mass% or less.
  • Supplied mixed powder into the mold While applying a magnetic field to the mixed fine powder in the mold, the mixed fine powder is pressurized with a mold to obtain a molded body.
  • the pressure exerted on the mixed fine powder may be 30 MPa or more and 300 MPa or less.
  • the strength of the magnetic field applied to the mixed fine powder may be 960 kA / m or more and 1600 kA / m or less.
  • the magnetic field may be a static magnetic field or a pulsed magnetic field. A magnetic field and a pulsed magnetic field may be used in combination.
  • the relative density of the shaped body may be 40-60%.
  • the sintering temperature may be, for example, 750 ° C. or lower.
  • the sintering time may be 100 hours or more, for example.
  • the compact may be sintered in a reduced pressure atmosphere or in an inert atmosphere.
  • the sintered body may be subjected to an aging treatment.
  • the coercive force of the permanent magnet is increased by the aging treatment.
  • the aging treatment may be carried out in two stages. In the aging treatment, for example, the sintered body may be heated at 650 ° C. or lower for about 1 hour.
  • the rotating machine according to the present embodiment includes the permanent magnet 10a as a permanent magnet.
  • An example of the internal structure of the rotating machine is shown in FIG.
  • the rotating machine 200 according to the present embodiment is a permanent magnet synchronous rotating machine (SPM rotating machine).
  • the rotating machine 200 includes a cylindrical rotor 50 and a stator 30 disposed inside the rotor 50.
  • the rotor 50 includes a cylindrical core 52 and a plurality of permanent magnets 10 a arranged along the inner peripheral surface of the core 52.
  • the plurality of permanent magnets 10 a are arranged so that N poles and S poles are alternately arranged along the inner peripheral surface of the core 52.
  • the stator 30 has a plurality of coils 32 provided along the outer peripheral surface thereof.
  • the coil 32 and the permanent magnet 10a are arranged so as to face each other.
  • the rotating machine 200 may be an electric motor.
  • the electric motor converts electrical energy into mechanical energy by the interaction between the field generated by the electromagnet generated by energizing the coil 32 and the field generated by the permanent magnet 10a.
  • the rotating machine 200 may be a generator.
  • the generator converts mechanical energy into electrical energy by the interaction (electromagnetic induction) between the field and the coil 32 by the permanent magnet 10a.
  • the rotating machine 200 that functions as an electric motor may be, for example, a permanent magnet DC motor, a linear synchronous motor, a permanent magnet synchronous motor (SPM motor, IPM motor), or a reciprocating motor.
  • the motor that functions as the reciprocating motor may be, for example, a voice coil motor or a vibration motor.
  • the rotating machine 200 that functions as a generator may be, for example, a permanent magnet synchronous generator, a permanent magnet commutator generator, or a permanent magnet AC generator.
  • the rotating machine 200 may be used for automobiles, industrial machines, household appliances, and the like.
  • the present invention is not necessarily limited to the above-described embodiment.
  • Various modifications of the present invention are possible without departing from the spirit of the present invention, and these modified examples are also included in the present invention.
  • the permanent magnet according to the present invention may be manufactured by a hot working method, a film forming method, a spark plasma sintering method, or the like.
  • the present invention will be described in more detail with reference to examples and comparative examples, but the present invention is not limited to these examples.
  • Example 1 [Production of permanent magnets] A permanent magnet of Example 1 was produced by the three alloy method shown below.
  • Oleic acid amide lubricant
  • the fine powder for the main phase was obtained by pulverizing the alloy powder with a jet mill in high-pressure nitrogen gas.
  • ⁇ Preparation of fine powder for RT phase Each starting material for the RT phase was weighed and mixed so that the composition of the fine powder for the RT phase matched the composition shown in Table 1 below.
  • a thin sheet of an RT phase alloy was prepared from a mixture of starting materials for the RT phase.
  • a mixture of starting materials for the RT phase was melted at 1100 ° C.
  • the RT phase alloy was pulverized by heating a thin plate of the RT phase alloy at room temperature in a 1 atmosphere hydrogen atmosphere for 3 hours.
  • the RT phase alloy was heated at 300 ° C. for 3 hours under vacuum. Oleic acid amide (lubricant) was added to the alloy powder obtained by the hydrogen releasing treatment. Subsequently, the alloy powder was pulverized with a jet mill in high-pressure nitrogen gas to obtain fine powder for RT phase.
  • each starting material for the R-rich phase was weighed and mixed so that the composition of the fine powder for the R-rich phase coincided with the composition shown in Table 1 below.
  • an R-rich phase alloy thin plate was prepared from a mixture of starting materials for the R-rich phase.
  • a mixture of starting materials for the R-rich phase was melted at 900 ° C.
  • the R-rich phase alloy thin plate was annealed at 590 ° C.
  • the R-rich alloy was pulverized by heating a thin plate of the R-rich phase alloy at room temperature for 3 hours in a hydrogen atmosphere of 1 atm.
  • the R-rich phase alloy was heated at 300 ° C. for 3 hours under vacuum.
  • Oleic acid amide lubricant
  • the alloy powder was pulverized with a jet mill in high-pressure nitrogen gas to obtain fine powder for R-rich phase.
  • the mixed fine powder was supplied into the mold. And while applying a static magnetic field to the mixed fine powder in a metal mold
  • the permanent magnet (rare earth magnet) of Example 1 was obtained by the above manufacturing method.
  • a sample for analysis was prepared by embedding a permanent magnet in an epoxy resin and curing the epoxy resin. The sample was cut, and the cross section of the sample (permanent magnet embedded in the resin) was polished using polishing paper, buffs, and diamond abrasive grains. Water was not used for polishing to prevent corrosion of the sample.
  • the backscattered electron image of the cross section of the polished sample was taken by FE-SEM.
  • the backscattered electron image of the cross section of the permanent magnet of Example 1 is shown in FIG.
  • the composition of the cross section of the sample was analyzed using EDS attached to the FE-SEM. The results of the analysis were as follows.
  • the permanent magnet was provided with a plurality of main phase particles including R 1 , T, and B, and a grain boundary phase located between the plurality of main phase particles.
  • the rare earth element R was Nd and Ce.
  • the transition metal element T was Fe and Co.
  • Grain boundary phase contained the RT phase comprising an intermetallic compound RT 2, a, and R-rich phase total content is greater of the rare earth element R than RT phase.
  • 100 ⁇ [Ce] R-T / [R] R-T of Example 1 are shown in Table 2 below.
  • 100 ⁇ [Ce] RT / [R] RT is expressed as “Ce / R” in Table 2 below.
  • [Ce] RT is the content of Ce in the RT phase as described above.
  • [R] RT is the total content of rare earth elements R in the RT phase as described above.
  • [R] R-RICH of Example 1 is shown in Table 2 below.
  • [R] R-RICH is the total content of rare earth elements R in the R-rich phase as described above.
  • S MPG is the sum of the cross-sectional areas of all main phase particles in the cross section of the permanent magnet.
  • the cross section of a permanent magnet means the cross section of the sample by which the backscattered electron image was image
  • SRT is the sum of the cross-sectional areas of the RT phase in the same cross section as described above.
  • S R-RICH is the total cross-sectional area of the R-rich phase in the same cross section.
  • S H is the sum of the cross-sectional area of the secondary phase in the same cross-section.
  • S H was calculated by subtracting the S MPG, S R-T and S R-RICH from the area S TOTAL of the cross section of the permanent magnet.
  • S MPG Example 1 S R-T, S R-RICH, and S H, respectively, are shown in Table 2 below.
  • S MPG shown in Table 2 S R-T, S R-RICH, and S H are, respectively, the percentage of time that considers the area S TOTAL of the cross section of the permanent magnet 100.
  • 100 ⁇ (S MPG + S R ⁇ T + S R ⁇ RICH ) / S TOTAL of Example 1 is shown in Table 2 below.
  • 100 ⁇ (S MPG + S R ⁇ T + S R ⁇ RICH ) / S TOTAL is expressed as “S SUM ” in Table 2 below.
  • the coercive force HcJ of the permanent magnet of Example 1 was measured with a BH tracer.
  • Example 1 The coercive force HcJ is shown in Table 2 below.
  • Examples 2 to 7, Comparative Examples 1 to 4 In the preparation of the fine powder for main phase in each of Examples 2 to 7 and Comparative Examples 1 to 4, each starting material for main phase particles was adjusted so that the composition of the fine powder for main phase coincided with the composition shown in Table 1 below. Weighed.
  • each starting material for R-rich phase was adjusted so that the composition of the fine powder for R-rich phase matched the composition shown in Table 1 below.
  • the raw material was weighed.
  • the RT-phase fine powder and the R-rich phase fine powder were not used.
  • a mixed fine powder was prepared from the main phase fine powder and another fine powder. That is, the permanent magnet of Comparative Example 3 was produced by a two alloy method.
  • Another fine powder composition is Nd 26.8 atomic% -Ce 24.9 atomic% -Fe. bal.
  • the ratio m1: mx of the mass m1 of the fine powder for main phase and the mass mx of another fine powder was adjusted to 88.4: 11.6.
  • Comparative Example 4 the fine powder for the RT phase and the fine powder for the R-rich phase were not used, and only the fine powder for the main phase was used instead of the mixed fine powder. That is, the permanent magnet of Comparative Example 4 was produced by the one alloy method.
  • the permanent magnets of Examples 2 to 7 and Comparative Examples 1 to 4 were analyzed.
  • the permanent magnet includes a plurality of main phase particles including R 1 , T, and B, and a grain boundary phase positioned between the plurality of main phase particles.
  • the rare earth element R was Nd and Ce
  • the transition metal element T was Fe and Co.
  • the grain boundary phase is the sum of the RT phase containing the intermetallic compound RT 2 and the rare earth element R content as compared to the RT phase. And a large R-rich phase.
  • the permanent magnet according to the present invention is used, for example, in a rotating machine for automobiles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

Ndの代替元素としてCeを含む永久磁石の中でも大きい保磁力を有する永久磁石が提供される。永久磁石10は、R、T及びBを含む複数の主相粒子11と、主相粒子11の間に位置する粒界相9と、を備え、RはNd及びCeを含み、TはFeを含み、粒界相は、R‐T相3及びRリッチ相5を含み、R‐T相3はR及びTの金属間化合物を含有し、Rリッチ相5におけるRの含有量は、R‐T相3におけるRの含有量よりも大きく、R‐T相3におけるCeの含有量は[Ce]R‐Tであり、R‐T相3におけるRの含有量の合計は[R]R‐Tであり、Rリッチ相5におけるRの含有量は[R]R‐RICHであり、100・[Ce]R‐T/[R]R‐Tは65~100であり、[R]R‐RICHは70~100原子%である。

Description

永久磁石及び回転機
 本発明は、永久磁石及び回転機に関する。
 主相としてNdFe14Bを含む永久磁石は、大きい最大エネルギー積(BH)maxと大きい保磁力とを兼ね備えることから、様々な技術分野において実用されている。しかし、永久磁石の原料であるNd、Pr、Dy又はTb等の希土類元素は高価であり、その供給量が安定しない。したがって、永久磁石を構成するNdの一部をY、La又はCe等の安価な元素に置換する研究が行われている。(下記特許文献1参照。)
特開2016‐115774号公報
 しかしながら、Y、La又はCe等の安価な元素から構成される主相の飽和磁化Is及び異方性磁界Haは、NdFe14Bと比較して著しく小さい。例えば、NdFe14Bの異方性磁界Haは67kOeであり、CeFe14Bの異方性磁界Haは30kOeである。単位(kOe)は、「×(10/4π)×(kA/m)」と等価である。NdFe14BとCeFe14Bとの間の異方性磁界Haの差があるため、Ndの一部がCeで置換された永久磁石の保磁力HcJは、Ndが置換されていない場合に比べて著しく小さい。
 本発明は、上記事情に鑑みてなされたものであり、Ndの代替元素としてCeを含む永久磁石の中でも大きい保磁力を有する永久磁石、及び当該永久磁石を備える回転機を提供することを目的とする。
 本発明の一側面に係る永久磁石は、希土類元素R、遷移金属元素T、及びホウ素を含む複数の主相粒子と、複数の主相粒子の間に位置する粒界相と、を備え、希土類元素Rは、少なくともNd及びCeを含み、遷移金属元素Tは、少なくともFeを含み、粒界相は、R‐T相と、Rリッチ相と、を含み、R‐T相は、希土類元素R及び遷移金属元素Tの金属間化合物を含有する相であり、Rリッチ相における希土類元素Rの含有量の合計は、R‐T相における希土類元素Rの含有量の合計よりも大きく、R‐T相におけるCeの含有量は、[Ce]R‐T原子%であり、R‐T相における希土類元素Rの含有量の合計は、[R]R‐T原子%であり、Rリッチ相における希土類元素Rの含有量の合計は、[R]R‐RICH原子%であり、100・[Ce]R‐T/[R]R‐Tは、65以上100以下であり、[R]R‐RICHは、70原子%以上100原子%以下である。
 永久磁石の断面の面積は、STOTALであり、断面における全ての主相粒子の断面積の合計は、SMPGであり、断面におけるR‐T相の断面積の合計は、SR‐Tであり、断面におけるRリッチ相の断面積の合計は、SR‐RICHであり、100・(SMPG+SR‐T+SR‐RICH)/STOTALは、97以上100以下であってよい。
 R‐T相はラーベス(Laves)相であってよい。
 本発明の一側面に係る回転機は、上記永久磁石を備える。
 本発明によれば、Ndの代替元素としてCeを含む永久磁石の中でも大きい保磁力を有する永久磁石、及び当該永久磁石を備える回転機が提供される。
図1中の(a)は、本発明の一実施形態に係る永久磁石10の模式的な斜視図であり、図1中の(b)は、図1中の(a)に示される永久磁石10の断面10csの模式図(b‐b線方向の矢視図)である。 図2は、図1中の(b)に示される永久磁石10の断面10csの一部IIの拡大図である。 図3は、本発明の一実施形態に係る回転機の模式的な斜視図である。 図4は、実施例1の永久磁石の断面の反射電子像である。
 以下、場合により図面を参照して、本発明の好適な実施形態について説明する。ただし、本発明は下記実施形態に何ら限定されるものではない。図面において、同一又は同等の構成要素には同一の符号を付す。本発明に係る永久磁石は、焼結磁石、又は熱間加工磁石であってよい。本発明に係る永久磁石は、希土類磁石であってよい。
 本実施形態に係る永久磁石10の全体は、図1中の(a)に示される。永久磁石10の断面10csは、図1中の(b)に示される。図2は、永久磁石10の断面10csの一部IIの拡大図である。図2に示されるように、本実施形態に係る永久磁石10は、複数の主相粒子11と、主相粒子11の間に位置する粒界相9と、を備える。例えば、永久磁石10は、粒界相9を介して互いに焼結した多数の主相粒子11から構成される焼結体であってよい。
 各主相粒子11は、少なくとも希土類元素R、遷移金属元素T、及びホウ素(B)を含む。希土類元素Rは、少なくともNd(ネオジム)及びCe(セリウム)を含む。つまり、Ndの一部がCeで置換されている。遷移金属元素Tは、少なくともFe(鉄)を含む。遷移金属元素Tは、FeとCo(コバルト)とを含んでよい。つまり、Feの一部がCoで置換されてよい。各主相粒子11は、ホウ素に加えて炭素(C)を含んでよい。つまり、Bの一部がCで置換されてよい。主相粒子11は、主相としてR14Mを含んでよい。元素MはBのみであってよい。元素Mは、B及びCであってもよい。R14Mは、Nd2-xCeFe14-sCo1-tと表されてよい。xは、0より大きく2未満である。sは、0以上14未満である。tは、0以上1未満である。例えば、主相粒子11は、NdFe14Bを含んでよい。例えば、主相粒子11は、CeFe14Bを含んでもよい。
 図2に示されるように、粒界相9は少なくともR‐T相3及びRリッチ相5を含む。R‐T相3は、R及びTの金属間化合物を含有する相である。Rリッチ相5における希土類元素Rの含有量の合計は、R‐T相3における希土類元素Rの含有量の合計よりも大きい。粒界相9はR‐T相3及びRリッチ相5のみからなっていてよい。粒界相9は、R‐T相3及びRリッチ相5に加えて、異相(heterogeneous phase)7を含んでよい。粒界相9は、R‐T相3及びRリッチ相5に加えて、R13E相を含んでもよい。元素Eは、例えば、Ga(ガリウム)、Si(ケイ素)、Sn(錫)及びBi(ビスマス)からなる群より選ばれる少なくとも一種である。
 R‐T相3、Rリッチ相5、異相7、及びR13E相それぞれの定義は、下記の通りであってよい。
 R‐T相3におけるCの含有量は、[C]R‐T原子%と表される。R‐T相3におけるNの含有量は、[N]R‐T原子%と表される。R‐T相3におけるOの含有量は、[O]R‐T原子%と表される。R‐T相3におけるCeの含有量は、[Ce]R‐T原子%と表される。R‐T相3における希土類元素Rの含有量の合計は、[R]R‐T原子%と表される。R‐T相3における希土類元素Rの含有量の合計[R]R‐Tは、主相粒子11における希土類元素Rの含有量の合計よりも大きい。R‐T相3における遷移金属元素Tの含有量の合計は、[T]R‐T原子%と表される。R‐T相3における元素Eの含有量の合計は、[E]R‐T原子%と表される。R‐T相3は、下記不等式(1)、(2)、及び(3)の全てを満たす相であってよい。
0≦[C]R‐T+[N]R‐T+[O]R‐T<30 …(1)
0.26≦[R]R‐T/([R]R‐T+[T]R‐T)≦0.40 …(2)
0.00≦[E]R‐T/([R]R‐T+[T]R‐T+[E]R‐T)≦0.03 …(3)
 R‐T相3は、R及びTの金属間化合物のみからなってよい。金属間化合物は、R及びTのみからなっていてよい。R‐T相3に含まれる金属間化合物は、例えば、RTであってよい。R‐T相3はRTのみからなっていてよい。RTは、Nd1-γCeγFe2-δCoδと表されてよい。γは0以上1以下である。δは0以上2以下である。RTは、例えば、NdFe又はCeFeであってよい。R‐T相3は、R及びTの金属間化合物に加えて、R及びT以外の微量の元素を含んでもよい。R‐T相3は、ラーベス相であってよい。R‐T相3の結晶構造は、C15型であってよい。R‐T相3は、X線回折(XRD)パターンに基づいて特定されてよい。つまり、R‐T相3は、格子面(hkl)に由来するX線回折ピークの回折角2θに基づいて特定されてよい。例えば、R‐T相3のXRDパターンの測定においてX線の線源としてCuKα線を用いた場合、R‐T相3の格子面(220)に由来する2θは、34.0~34.73°であってよい。また、R‐T相3のXRDパターンの測定においてX線の線源としてCuKα線を用いた場合、R‐T相3の格子面(311)に由来する2θは、40.10~40.97°であってよい。上記2θは、R‐T相3に含まれる希土類元素Rの種類に応じて、上記範囲内で変化してよい。
 Rリッチ相5におけるCの含有量は、[C]R‐RICH原子%と表される。Rリッチ相5におけるNの含有量は、[N]R‐RICH原子%と表される。Rリッチ相5におけるOの含有量は、[O]R‐RICH原子%と表される。Rリッチ相5における希土類元素Rの含有量の合計は、[R]R‐RICH原子%と表される。Rリッチ相5における希土類元素Rの含有量の合計[R]R‐RICHは、R‐T相3における希土類元素Rの含有量の合計[R]R‐Tよりも大きい。Rリッチ相5における遷移金属元素Tの含有量の合計は、[T]R‐RICH原子%と表される。Rリッチ相5は、[R]R‐RICHが[R]R‐Tよりも大きく、且つ下記不等式(4)及び(5)を満たす相であってよい。
0≦[C]R‐RICH+[N]R‐RICH+[O]R‐RICH<30 …(4)
0.50≦[R]R‐RICH/([R]R‐RICH+[T]R‐RICH)≦1.00 …(5)
 異相7は、例えば、O、C及びNからなる群より選ばれる少なくとも一種を含んでよい。異相7におけるCの含有量は、[C]原子%と表される。異相7におけるNの含有量は、[N]原子%と表される。異相7におけるOの含有量は、[O]原子%と表される。異相7は、[C]+[N]+[O]が30以上100未満である相であってよい。つまり、異相7は、下記不等式(6)を満たす相であってよい。異相7は、例えば、Rの酸化物、Rの炭化物及びRの窒化物からなる群より選ばれる少なくとも一種を含んでよい。
30≦[C]+[N]+[O]<100 …(6)
 R13E相におけるCの含有量は、[C]原子%と表される。R13E相におけるNの含有量は、[N]原子%と表される。R13E相におけるOの含有量は、[O]原子%と表される。R13E相における希土類元素Rの含有量の合計は、[R]原子%と表される。R13E相における遷移金属元素Tの含有量の合計は、[T]原子%と表される。R13E相における元素Eの含有量の合計は、[E]原子%と表される。R13E相は、下記不等式(7)、(8)及び(9)の全てを満たす相であってよい。
0≦[C]+[N]+[O]<30 …(7)
0.26≦[R]/([R]+[T])≦0.40 …(8)
0.03<[E]/([R]+[T]+[E])≦1.00 …(9)
 上述の通り、R‐T相3におけるCeの含有量は、[Ce]R‐T原子%と表される。R‐T相3における希土類元素Rの含有量の合計は、[R]R‐T原子%と表される。Rリッチ相5における希土類元素Rの含有量の合計は、[R]R‐RICH原子%と表される。100・[Ce]R‐T/[R]R‐Tは、65以上100以下であり、[R]R‐RICHは、70原子%以上100原子%以下である。つまり、R‐T相3に含まれる希土類元素Rのうち65%以上の元素がCeであり、Rリッチ相における希土類元素Rの含有量が70原子%以上である。100・[Ce]R‐T/[R]R‐Tが65以上であり、且つ[R]R‐RICHが70原子%以上であるため、本実施形態に係る永久磁石10は、Ndの代替元素としてCeを含む永久磁石の中でも、大きい保磁力を有することができる。また本実施形態によれば、永久磁石10中のNdの一部が安価なCeで置換され、Ndの使用量が従来よりも低減され、永久磁石10の原材料費が低減される。永久磁石10が大きい保磁力を有するメカニズムは以下の通りである、と本発明者らは考える。ただし、永久磁石10が大きい保磁力を有するメカニズムは以下に限定されない。
 主相粒子11同士が粒界相9を介して磁気的に結合している構造では、個々の主相粒子11の異方性磁界Haが大きかったとしても永久磁石10全体の保磁力は必ずしも大きくない。永久磁石10全体の保磁力を増加させるためには粒界相9の組成及び構造を改善することが重要である。本実施形態では、100・[Ce]R‐T/[R]R‐Tが65以上であるR‐T相3と[R]R‐RICHが70原子%以上であるRリッチ相5とが粒界相9に含まれるため、粒界相9の磁化が小さく、主相粒子11同士が磁気的に分断される。その結果、永久磁石10が大きい保磁力を有することが可能になる。100・[Ce]R‐T/[R]R‐Tが65未満である場合、R‐T相3の磁化が大きくなり、主相粒子11同士が磁気的に結合し易く、永久磁石10の保磁力が減少する。[R]R‐RICHが70原子%未満である場合、Rリッチ相5の磁化が大きくなり、主相粒子11同士が磁気的に結合し易く、永久磁石10の保磁力が減少する。
 永久磁石10の断面の面積は、STOTALと表される。永久磁石10の断面における全ての主相粒子11の断面積の合計は、SMPGと表される。永久磁石10の断面におけるR‐T相の断面積の合計は、SR‐Tと表される。永久磁石10の断面におけるRリッチ相の断面積の合計は、SR‐RICHと表される。100・(SMPG+SR‐T+SR‐RICH)/STOTALは、97以上100以下であってよい。STOTAL、SMPG、SR‐T、SR‐RICHそれぞれの単位は、m又は(μm)であってよい。粒界相9に含まれる異相7は、磁化反転核となり、永久磁石10の保磁力を低下させ易い。100・(SMPG+SR‐T+SR‐RICH)/STOTALが97以上であることより、異相7の体積が粒界相9に占める割合が十分に抑制される。その結果、異相7に起因する保磁力の低下が抑制され、永久磁石10の保磁力が向上し易い。ただし、100・(SMPG+SR‐T+SR‐RICH)/STOTALが97未満である場合であっても、本発明の効果は得られる。100・(SMPG+SR‐T+SR‐RICH)/STOTALは、97.2以上100以下、又は98.2以上100以下であってよい。永久磁石の製造に用いる諸添加剤(例えば潤滑剤)を低減することにより、100・(SMPG+SR‐T+SR‐RICH)/STOTALが97以上に調整され易い。永久磁石の出発原料における不純物(例えばO、C及びN)の含有量を低減することにより、100・(SMPG+SR‐T+SR‐RICH)/STOTALが97以上に調整され易い。永久磁石の製造の各工程を不活性ガス(例えば希ガス)又は真空雰囲気の下で実施することにより、100・(SMPG+SR‐T+SR‐RICH)/STOTALが97以上に調整され易い。永久磁石の製造過程において出発原料又は仕掛品の還元処理を実施することにより、100・(SMPG+SR‐T+SR‐RICH)/STOTALが97以上に調整され易い。
 STOTAL、SMPG、SR‐T及びSR‐RICHは、例えば、電界放射型走査型電子顕微鏡(FE‐SEM)を用いた以下の方法によって測定されてよい。測定に先立って、永久磁石10の断面を、研磨紙、バフ、ダイヤモンド砥粒等を用いて研磨する。研磨後の断面にイオンミリング処理を施して、断面上にある酸化膜及び窒化膜等の不純物を除去する。イオンミリング処理後の永久磁石10の断面の反射電子像を、FE‐SEMで撮影する。反射電子像において、希土類元素Rの含有量が多い領域ほど白く見え、希土類元素Rの含有量が少ない領域ほど黒く見える。例えば、図4は、FE‐SEMで撮影された本発明の実施例1の永久磁石の断面の反射電子像である。図4において、主相粒子11はグレーに見える。R‐T相3は、主相粒子11よりも薄いグレーに見える。Rリッチ相5は白に見える。つまり、R‐T相3における反射電子の放射効率は、主相粒子11における反射電子の放射効率と、Rリッチ相5における反射電子の放射効率との中間の値である。このように、主相粒子11、R‐T相3及びRリッチ相5を反射電子像によって識別することができる。STOTALは、反射電子像における所定の領域(単位断面)の面積と定義されてよい。STOTAL(単位断面の面積)は、例えば、50μm×50μmであってよい。FE‐SEMに付属するエネルギー分散型X線分光器(EDS)による単位断面の組成分析を行ってよい。組成分析により、単位断面において互い識別される主相粒子11、R‐T相3及びRリッチ相5の組成を確認することができる。反射電子像の濃淡を画する閾値を設ける画像解析法により、主相粒子11、R‐T相3及びRリッチ相5それぞれの断面が抽出され、SMPG、SR‐T及びSR‐RICHそれぞれが測定される。
 永久磁石10の分析方法は上記の方法に限定されない。永久磁石10の組成は、電子線マイクロアナライザ(EPMA)、蛍光X線(XRF)分析法、ICP(Inductively Coupled Plasma)発光分析法、不活性ガス融解‐非分散型赤外線吸収法、酸素気流中燃焼‐赤外吸収法、又は不活性ガス融解‐熱伝導度法等によって特定されてよい。
 永久磁石10におけるO、C及びN等の不純物元素の含有量は小さいほどよい。例えば、永久磁石10におけるOの含有量は5000質量ppm以下、又は3000質量ppm以下であってよい。Oの含有量が小さいほど、希土類元素の酸化物(非磁性成分)が永久磁石10に含まれ難く、永久磁石10の磁気特性が損なわれ難い。
 永久磁石10における希土類元素Rの含有量は、例えば、11原子%以上20原子%以下あってよい。希土類元素Rの含有量が11原子%以上である場合、永久磁石10が十分な量の主相(R14B相)を含み易く、α‐Fe等の軟磁性体が永久磁石10中に析出し難い。その結果、永久磁石10が大きい保磁力を有し易い。希土類元素Rの含有量が20原子%以下である場合、永久磁石10における主相(R14B相)の体積比率が十分に高く、永久磁石10が大きい残留磁束密度を有し易い。
 永久磁石10は、希土類元素Rとして、Sc(スカンジウム)、Y(イットリウム)、La(ランタン)、Pr(プラセオジム)、Sm(サマリウム)、Eu(ユウロピウム)、Gd(ガドリニウム)、Ho(ホルミウム)、Dy(ジスプロシウム)及びTb(テルビウム)からなる群より選ばれる少なくも一種を更に含んでよい。原材料費を抑制するために、Ho、Dy及びTbの含有量の合計は、永久磁石10全体に対して1原子%以下であってよい。残留磁束密度及び異方性磁界を増加させるために、Nd及びCeを除く他の希土類元素の含有量の合計は、永久磁石10全体に対して1原子%以下であってよい。永久磁石10に含まれる全希土類元素の数に対するNdの数の割合は、40%以上90%以下であってよい。全希土類元素の数に対するNdの数の割合が40%以上である場合、残留磁束密度及び保磁力が増加し易い。全希土類元素の数に対するNdの数の割合が90%以下である場合、原材料費が低減される効果と、保磁力が大きくなる上記効果とが得られ易い。
 永久磁石10におけるBの含有量は、4原子%以上7原子%以下であってよい。Bの含有量が4原子%以上ある場合、永久磁石10が大きい保磁力を有し易い。Bの含有量が7原子%以下ある場合、永久磁石10が大きい残留磁束密度を有し易い。
 永久磁石10におけるFeの含有量は、70原子%以上85原子%以下であってよい。永久磁石10におけるCoの含有量は、0.0原子%以上4.0原子%以下であってよい。Coは、永久磁石10のキュリー温度を高めたり、粒界相9の耐食性を向上させたりする。永久磁石10は、Al及びCuのうち一方を含んでよい。永久磁石10は、Al及びCuの両方を含んでもよい。永久磁石10におけるAl及びCuの含有量の合計は、0.01原子%以上1.2原子%以下であってよい。Al及びCuの含有量の合計は、0.01原子%以上1.2原子%以下である場合、永久磁石10の保磁力、耐食性及び温度特性が向上し易い。
 永久磁石10は、例えば、Ni(ニッケル)、Zr(ジルコニウム)、Ti(チタン)、Nb(ニオブ)、Ta(タンタル)、V(バナジウム)、Ag(銀)及びGe(ゲルマニウム)からなる群より選ばれる少なくとも一種を更に含んでよい。
 (永久磁石の製造方法)
 永久磁石10は、3合金法によって製造される。3合金法では、互いに組成の異なる少なくとも3種類の合金を用いる。3合金法では、主相粒子11と略同じ組成を有する合金の微粉末(主相用微粉)と、R‐T相3と略同じ組成を有する合金の微粉末(R‐T相用微粉)と、Rリッチ相5と略同じ組成を有する合金の微粉末(Rリッチ相用微粉)とを、それぞれ個別に作製する。仮に主相用微粉、R‐T相用微粉とRリッチ相用微粉それぞれを個別に作製しない場合、主相粒子、R‐T相、及びRリッチ相其々の組成を、上述の所望の組成に制御することは困難である。つまり、100・[Ce]R‐T/[R]R‐Tが65以上100以下であり、且つ[R]R‐RICHが70原子%以上100原子%以下である永久磁石を、1合金法又は2合金法によって製造することは困難である。仮に1合金法又は2合金法によって永久磁石を製造した場合、製造過程においてR‐T相におけるCeの含有量が減少したり、Rリッチ相におけるTの含有量が増加したりするため、R‐T相及びRリッチ相其々の要件を満たさない別の安定した相が生成し易い。
 出発原料は、永久磁石を構成する各元素の単体(単体金属)、又は各元素を含む合金であってよい。出発原料は、例えば、純ネオジム、純セリウム、純鉄、並びに、鉄及びホウ素の合金(ホウ化鉄)であってよい。主相用微粉の出発原料として、目的とする主相粒子の組成に略一致するように、希土類元素R、遷移金属元素T、及びホウ素等を含む一種以上の出発原料を秤量する。R‐T相用微粉の出発原料として、目的とするR‐T相の組成に略一致するように、希土類元素R、遷移金属元素T、及びホウ素等を含む一種以上の出発原料を秤量する。Rリッチ相用微粉の出発原料として、目的とするRリッチ相の組成に略一致するように、希土類元素R、遷移金属元素T、及びホウ素等を含む一種以上の出発原料を秤量する。
 ストリップキャスト法により、主相用微粉の出発原料から、主相用合金のみを作製する。そして、主相用合金のみを用いて粉砕工程を実施する。
 別のストリップキャスト法により、R‐T相用微粉の出発原料から、R‐T相用合金のみを作製する。そして、R‐T相用合金のみを用いて粉砕工程を実施する。
 さらに別のストリップキャスト法により、Rリッチ相用微粉の出発原料から、Rリッチ相用合金のみを作製する。Rリッチ相用合金をストリップキャスト法で作製する場合、Rリッチ相用微粉の出発原料を溶融して冷却することにより、Rリッチ相用合金を得てから、Rリッチ相用合金を700℃以下でアニール(anneal)する。アニーリング後、Rリッチ相用合金のみを用いて粉砕工程を実施する。水素吸蔵処理前のRリッチ相用合金のアニーリングにより、Rリッチ相用合金中における主相及びR‐T相の析出が抑制され、後工程において永久磁石の組成を制御し易くなる。
 ストリップキャスト法では、出発原料を非酸化雰囲気中で溶解して、溶湯(合金の融液)を作製する。溶湯を非酸化雰囲気中で、回転するロールの表面へ出湯(pour)する。溶湯がロールの表面で急冷され、凝固することにより、合金の薄板又は薄片(鱗片)が得られる。溶湯の凝固に伴う偏析を抑制するため、溶湯を、水冷銅板の表面へ出湯してもよい。それぞれのストリップキャスト法を非酸化雰囲気中で実施してよい。非酸化雰囲気は、例えば、真空、又はAr等の不活性ガスであってよい。
 粗粉砕工程では、上記のストリップキャスト法によって得られた原料合金を粉砕して、粗粉末を得る。原料合金の粉砕方法は、例えば、水素粉砕であってよい。水素粉砕では、原料合金を水素雰囲気中に置いて、原料合金に水素を吸蔵させる。原料合金が水素を吸蔵すると、原料合金の体積が膨張する。また、原料合金に含まれる金属が水素化されて、原料合金が脆くなる。その結果、原料合金にクラックが生じて、原料合金が粉砕される。原料合金の粗粉末の粒径は、例えば、10~1000μmであってよい。
 原料合金の粗粉末を加熱することにより、粗粉末から水素を放出させてよい。水素放出処理は、真空中又はArガスのフロー下で行う。水素放出処理では、原料合金の粗粉末を、所定の温度で加熱しながら所定の時間にわたって真空雰囲気中に保持することにより、水素が原料合金から放出される。水素放出温度は、200~400℃であってよい。水素放出時間は、0.5~20時間であってよい。
 水素吸蔵及び水素放出処理以外の方法で、粗粉砕工程を実施してもよい。粗粉砕工程では、合金の粒径が数百μm程度になるまで原料合金を粉砕する。粗粉砕工程の具体的な手段は、スタンプミル、ジョークラッシャー、又はブラウンミル等であってよい。粗粉砕工程を不活性ガス雰囲気中で実施してよい。粗粉砕工程として、上述の水素吸蔵処理による合金の粉砕を行ってもよい。
 粗粉砕工程に続く微粉砕工程では、合金から微粉を得る。微粉砕工程では、ジェットミルを用いて合金を粉砕してよい。ジェットミルの場合、合金の平均粒径を、2.5μm以上6μm以下、望ましくは3以上5μm以下に調整してよい。
 微粉砕工程では、合金の湿式粉砕を実施してもよい。湿式粉砕の具体的な手段は、ボールミル、又は湿式アトライタであってよい。湿式粉砕の場合、合金の平均粒径を、1.5μm以上5μm以下、望ましくは2μm以上4.5μm以下に調整してよい。湿式粉砕では、合金が分散媒中で粉砕されるため、合金が大気中の酸素に直接触れ難く、酸素の含有量が小さい微粉末が得られ易い。
 以上の一連の処理及び工程を経て、主相用微粉、R‐T相用微粉、及びRリッチ相用微粉それぞれを個別に調製する。以下では、主相用微粉の質量を、m1と表記する。R‐T相用微粉の質量を、m2と表記する。Rリッチ相用微粉の質量を、m3と表記する。主相用微粉、R‐T相用微粉、及びRリッチ相用微粉を秤量して混合することにより、混合微粉を調整する。混合微粉全体の組成が、目的とする永久磁石10の組成に一致するように、m1、m2及びm3の比を調整すればよい。
 成形工程における混合微粉の潤滑性及び配向性を向上するために、脂肪酸、脂肪酸の誘導体、その他の炭化水素を混合微粉に添加してよい。混合微粉に添加される炭化水素は、例えば、ステアリン酸亜鉛、ステアリン酸カルシウム、ステアリン酸アルミニウム、ステアリン酸アミド、オレイン酸アミド、エチレンビスイソステアリン酸アミド、パラフィン、及びナフタレンからなる群より選ばれる少なくとも一種であってよい。混合微粉における上記炭化水素の含有量は、0.01質量%以上0.3質量%以下であってよい。
 混合微粉を金型内へ供給する。金型内の混合微粉に磁場を印加しながら、混合微粉を金型で加圧することにより、成形体を得る。混合微粉に及ぼす圧力は、30MPa以上300MPa)以下であってよい。混合微粉に印加される磁場の強さは、960kA/m以上1600kA/m以下であってよい。磁場は静磁場又はパルス磁場であってよい。磁場とパルス磁場を併用してもよい。成形体の相対密度は、40~60%であってよい。
 成形体を焼結して、焼結体を得る。焼結温度は、例えば、750℃以下であってよい。焼結時間は、例えば、100時間以上であってよい。成形体を750℃以下で100時間以上加熱することにより、成形体に含まれる主相用微粉、R‐T相用微粉、及びRリッチ相用微粉が原子レベルで混合することが抑制され、主相用微粉、R‐T相用微粉、及びRリッチ相用微粉其々の組成が維持されながら、成形体が徐々に焼き固まる。つまり、成形体を低温で長時間にわたって加熱することにより、主相用微粉、R‐T相用微粉、及びRリッチ相用微粉の間での原子の相互拡散が抑制され、主相用微粉、R‐T相用微粉、及びRリッチ相用微粉其々の組成が変化し難い。成形体の焼結は、減圧雰囲気中又は不活性雰囲気中で行ってよい。
 焼結工程に続いて、焼結体に時効処理を施してよい。永久磁石の保磁力が時効処理によって増加する。時効処理を二段階に分けて実施してよい。時効処理では、例えば、焼結体を650℃以下で約1時間加熱してよい。
 (回転機)
 本実施形態に係る回転機は、永久磁石として、上記の永久磁石10aを備える。回転機の内部構造の一例は、図3に示される。本実施形態に係る回転機200は、永久磁石同期回転機(SPM回転機)である。回転機200は、円筒状のロータ50と、ロータ50の内側に配置されるステータ30と、を備えている。ロータ50は、円筒状のコア52と、コア52の内周面に沿って配置された複数の永久磁石10aと、を有している。複数の永久磁石10aは、コア52の内周面に沿ってN極とS極が交互に並ぶように配置されている。ステータ30は、その外周面に沿って設けられた複数のコイル32を有している。コイル32と永久磁石10aとは互いに対面するように配置されている。
 回転機200は、電動機(モータ)であってよい。電動機は、コイル32への通電によって生成する電磁石による界磁と、永久磁石10aによる界磁と、の相互作用により、電気エネルギーを機械的エネルギーに変換する。回転機200は、発電機(ジェネレータ)であってもよい。発電機は、永久磁石10aによる界磁とコイル32との相互作用(電磁誘導)により、機械的エネルギーを電気的エネルギーに変換する。
 電動機(モータ)として機能する回転機200は、例えば、永久磁石直流モータ、リニア同期モータ、永久磁石同期モータ(SPMモータ、IPMモータ)、又は往復動モータであってよい。往復動モータとして機能するモータは、例えば、ボイスコイルモータ、又は振動モータであってよい。発電機(ジェネレータ)として機能する回転機200は、例えば、永久磁石同期発電機、永久磁石整流子発電機、又は永久磁石交流発電機であってよい。回転機200は、自動車、産業機械、又は家庭用電化製品等に用いられてよい。
 以上、本発明の好適な実施形態について説明したが、本発明は必ずしも上述した実施形態に限定されるものではない。本発明の趣旨を逸脱しない範囲において、本発明の種々の変更が可能であり、これ等の変更例も本発明に含まれる。例えば、本発明に係る永久磁石は、熱間加工法、成膜法、又は放電プラズマ焼結(Spark Plasma Sintering)法等によって製造されてもよい。以下では実施例及び比較例により本発明をさらに詳細に説明するが、本発明はこれらの例によって何ら限定されるものではない。
 (実施例1)
 [永久磁石の作製]
 以下に示される3合金法により、実施例1の永久磁石を作製した。
 <出発原料>
 出発原料として、純ネオジム、純セリウム、純鉄、鉄及びホウ素の合金、純アルミニウム、純銅及び純コバルトを準備した。
 <主相用微粉の調製>
 主相用微粉の組成が下記表1に示される組成に一致するように、主相粒子用の各出発原料を秤量して、これ等を混合した。下記表1において各元素記号の後に記載されている数値は、各微粉における各元素の含有量(単位:原子%)である。ストリップキャスト法により、主相粒子用の上記出発原料の混合物から、主相用合金の薄板を作製した。ストリップキャスト法では、主相粒子用の出発原料の混合物を1400℃で溶融させた。続く水素吸蔵処理では、主相用合金の薄板を、1気圧の水素雰囲気下において常温で3時間加熱することにより、主相用合金を粉砕した。続く水素放出処理では、主相用合金を真空下において300℃で3時間加熱した。水素放出処理によって得られた合金粉末にオレイン酸アミド(潤滑剤)を添加した。続いて、高圧の窒素ガス中において合金粉末をジェットミルで粉砕することにより、主相用微粉を得た。
 <R‐T相用微粉の調製>
 R‐T相用微粉の組成が下記表1に示される組成に一致するように、R‐T相用の各出発原料を秤量して、これ等を混合した。ストリップキャスト法では、R‐T相用の出発原料の混合物からR‐T相用合金の薄板を作製した。ストリップキャスト法では、R‐T相用の出発原料の混合物を1100℃で溶融させた。続く水素吸蔵処理では、R‐T相用合金の薄板を、1気圧の水素雰囲気下において常温で3時間加熱することにより、R‐T相用合金を粉砕した。続く水素放出処理では、R‐T相用合金を真空下において300℃で3時間加熱した。水素放出処理によって得られた合金粉末にオレイン酸アミド(潤滑剤)を添加した。続いて、高圧の窒素ガス中において合金粉末をジェットミルで粉砕することにより、R‐T相用微粉を得た。
 <Rリッチ相用微粉の調製>
 Rリッチ相用微粉の組成が下記表1に示される組成に一致するように、Rリッチ相用の各出発原料を秤量して、これ等を混合した。ストリップキャスト法では、Rリッチ相用の出発原料の混合物からRリッチ相用合金の薄板を作製した。ストリップキャスト法では、Rリッチ相用の出発原料の混合物を900℃で溶融させた。水素吸蔵処理前に、Rリッチ相用合金の薄板を590℃でアニールした。続く水素吸蔵処理では、Rリッチ相用合金の薄板を、1気圧の水素雰囲気下において常温で3時間加熱することにより、Rリッチ用合金を粉砕した。続く水素放出処理では、Rリッチ相用合金を真空下において300℃で3時間加熱した。水素放出処理によって得られた合金粉末にオレイン酸アミド(潤滑剤)を添加した。続いて、高圧の窒素ガス中において合金粉末をジェットミルで粉砕することにより、Rリッチ相用微粉を得た。
 <混合微粉の調製>
 上記の主相用微粉、R‐T相用微粉及びRリッチ相用微粉それぞれを秤量して、これ等を混合することにより、混合微粉を調製した。混合微粉全体の組成が下記表2に示される永久磁石全体の組成に一致するように、m1、m2及びm3の比を下記表1に示される比に調整した。下記表2において各元素記号の後に記載されている数値は、永久磁石における各元素の含有量(単位:原子%)である。
 <成形工程>
 成形工程では、混合微粉を金型内へ供給した。そして、金型内の混合微粉に静磁場を印加しながら、混合微粉を金型で加圧することにより、成形体を得た。混合微粉に及ぼした圧力は、40MPaであった。混合微粉に印加された静磁場の強さは、15KOe(約1194kA/m)であった。磁場方向は加圧方向と垂直であった。成形体の寸法は、20mm×18mm×13mmであった。
 <焼結工程及び時効処理>
 成形工程に続く焼結工程では、成形体を真空下において700℃で100時間加熱することにより、焼結体を得た。続く時効処理では、焼結体を530℃で1時間加熱した。
 以上の製造方法により、実施例1の永久磁石(希土類磁石)を得た。
 [永久磁石の分析]
 XRF分析法及びICP発光分析法により、実施例1の永久磁石全体の組成を分析した。実施例1の永久磁石全体の組成は、下記表2に示される組成と一致することが確認された。
 永久磁石をエポキシ系樹脂に埋設して、エポキシ系樹脂を硬化することにより、分析用の試料を作製した。試料を切断して、試料(樹脂内に埋設された永久磁石)の断面を、研磨紙、バフ及びダイヤモンド砥粒を用いて研磨した。試料の腐食を防止するために、水を研磨に用いなかった。
 研磨された試料の断面の反射電子像を、FE‐SEMによって撮影した。実施例1の永久磁石の断面の反射電子像は、図4に示される。また、試料の断面の組成を、FE‐SEMに付属するEDSを用いて分析した。分析の結果は、以下の通りであった。
 永久磁石は、RT及びBを含む複数の主相粒子と、複数の主相粒子の間に位置する粒界相と、を備えていた。希土類元素Rは、Nd及びCeであった。遷移金属元素Tは、Fe及びCoであった。粒界相は、金属間化合物RTを含むR‐T相と、R‐T相よりも希土類元素Rの含有量の合計が大きいRリッチ相と、を含んでいた。
 実施例1の100・[Ce]R‐T/[R]R‐Tは、下記表2に示される。なお、100・[Ce]R‐T/[R]R‐Tは、下記の表2において「Ce/R」と表記されている。[Ce]R‐Tは、上述の通り、R‐T相におけるCeの含有量である。[R]R‐Tは、上述の通り、R‐T相における希土類元素Rの含有量の合計である。実施例1の[R]R‐RICHは、下記表2に示される。[R]R‐RICHは、上述の通り、Rリッチ相における希土類元素Rの含有量の合計である。
 FE‐SEM及びEDSを用いた上述の画像解析法により、SMPG、SR‐T、SR‐RICH、及びSそれぞれを求めた。SMPGは、上述の通り、永久磁石の断面における全て主相粒子の断面積の合計である。永久磁石の断面とは、上述の通り、反射電子像が撮影された試料の断面を意味する。SR‐Tは、上述の通り、同断面におけるR‐T相の断面積の合計である。SR‐RICHは、上述の通り、同断面におけるRリッチ相の断面積の合計である。Sは、同断面における異相の断面積の合計である。Sは、永久磁石の断面の面積STOTALからSMPG、SR‐T及びSR‐RICHを引くことにより算出した。実施例1のSMPG、SR‐T、SR‐RICH、及びSそれぞれは、下記表2に示される。ただし、下記表2に示されるSMPG、SR‐T、SR‐RICH、及びSそれぞれは、永久磁石の断面の面積STOTALを100とみなしたときの百分率である。実施例1の100・(SMPG+SR‐T+SR‐RICH)/STOTALは、下記表2に示される。なお、100・(SMPG+SR‐T+SR‐RICH)/STOTALは、下記の表2において「SSUM」と表記されている。
 実施例1の永久磁石の保磁力HcJを、BHトレーサーによって測定した。実施例1保磁力HcJは、下記表2に示される。
 (実施例2~7、比較例1~4)
 実施例2~7及び比較例1~4それぞれの主相用微粉の調製では、主相用微粉の組成が下記表1に示される組成に一致するように、主相粒子用の各出発原料を秤量した。
 実施例6及び7それぞれの主相用微粉の調製では、ジェットミル前に合金粉末に添加するオレイン酸アミドの量を実施例1の場合よりも増やした。
 実施例2~7並びに比較例1及び2それぞれのR‐T相用微粉の調製では、R‐T相用微粉の組成が下記表1に示される組成に一致するように、R‐T相用の各出発原料を秤量した。
 実施例2~7並びに比較例1及び2それぞれのRリッチ相用微粉の調製では、Rリッチ相用微粉の組成が下記表1に示される組成に一致するように、Rリッチ相用の各出発原料を秤量した。
 実施例2~7並びに比較例1及び2それぞれの混合微粉の調製では、混合微粉全体の組成が下記表2に示される永久磁石全体の組成に一致するように、m1、m2及びm3の比を下記表1に示される比に調整した。
 比較例3の混合微粉の調製では、R‐T相用微粉及びRリッチ相用微粉を用いなかった。比較例3では、主相用微粉と別の微粉とから、混合微粉を調製した。つまり、比較例3の永久磁石は2合金法により作製した。別の微粉の組成は、Nd26.8原子%‐Ce24.9原子%‐Fe.balであった。主相用微粉の質量m1と別の微粉の質量mxとの比m1:mxは、88.4:11.6に調整した。
 比較例4では、R‐T相用微粉及びRリッチ相用微粉を用いず、混合微粉の代わりに主相用微粉のみを用いた。つまり比較例4の永久磁石は1合金法により作製した。
 以上の事項を除いて実施例1と同様の方法で、実施例2~7並びに比較例1~4それぞれの永久磁石(希土類磁石)を作製した。
 実施例1と同様の方法で、実施例2~7及び比較例1~4それぞれの永久磁石を分析した。実施例2~7及び比較例1~4のいずれの場合においても、永久磁石は、RT及びBを含む複数の主相粒子と、複数の主相粒子の間に位置する粒界相と、を備えており、希土類元素Rは、Nd及びCeであり、遷移金属元素Tは、Fe及びCoであった。実施例2~7及び比較例1~4のいずれの場合においても、粒界相は、金属間化合物RTを含むR‐T相と、R‐T相よりも希土類元素Rの含有量の合計が大きいRリッチ相と、を含んでいた。上記以外の分析の結果は、下記表2に示される。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 本発明に係る永久磁石は、例えば、自動車用の回転機に用いられる。
 3…R‐T相、5…Rリッチ相、7…異相、9…粒界相、11…主相粒子、10,10a…永久磁石、10cs…永久磁石の断面、30…ステータ、32…コイル、52…コア、200…回転機。

Claims (4)

  1.  希土類元素R、遷移金属元素T、及びホウ素を含む複数の主相粒子と、
     前記複数の主相粒子の間に位置する粒界相と、を備え、
     前記希土類元素Rは、少なくともNd及びCeを含み、
     前記遷移金属元素Tは、少なくともFeを含み、
     前記粒界相は、R‐T相と、Rリッチ相と、を含み、
     前記R‐T相は、前記希土類元素R及び前記遷移金属元素Tの金属間化合物を含有する相であり、
     前記Rリッチ相における前記希土類元素Rの含有量の合計は、前記R‐T相における前記希土類元素Rの含有量の合計よりも大きく、
     前記R‐T相におけるCeの含有量は、[Ce]R‐T原子%であり、
     前記R‐T相における前記希土類元素Rの含有量の合計は、[R]R‐T原子%であり、
     前記Rリッチ相における前記希土類元素Rの含有量の合計は、[R]R‐RICH原子%であり、
     100・[Ce]R‐T/[R]R‐Tは、65以上100以下であり、
     [R]R‐RICHは、70原子%以上100原子%以下である、
    永久磁石。
  2.  前記永久磁石の断面の面積は、STOTALであり、
     前記断面における全ての前記主相粒子の断面積の合計は、SMPGであり、
     前記断面における前記R‐T相の断面積の合計は、SR‐Tであり、
     前記断面における前記Rリッチ相の断面積の合計は、SR‐RICHであり、
    100・(SMPG+SR‐T+SR‐RICH)/STOTALは、97以上100以下である、
    請求項1に記載の永久磁石。
  3.  前記R‐T相はラーベス相である、
    請求項1又は2に記載の永久磁石。
  4.  請求項1~3のいずれか一項に記載の永久磁石を備える、
    回転機。
PCT/JP2018/013003 2017-03-30 2018-03-28 永久磁石及び回転機 WO2018181594A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880021066.5A CN110537232B (zh) 2017-03-30 2018-03-28 永久磁铁和旋转电机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017068627A JP2020095989A (ja) 2017-03-30 2017-03-30 希土類磁石及び回転機
JP2017-068627 2017-03-30

Publications (1)

Publication Number Publication Date
WO2018181594A1 true WO2018181594A1 (ja) 2018-10-04

Family

ID=63676311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/013003 WO2018181594A1 (ja) 2017-03-30 2018-03-28 永久磁石及び回転機

Country Status (3)

Country Link
JP (1) JP2020095989A (ja)
CN (1) CN110537232B (ja)
WO (1) WO2018181594A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022123991A1 (ja) * 2020-12-09 2022-06-16 Tdk株式会社 R-t-b系永久磁石
WO2022123990A1 (ja) * 2020-12-09 2022-06-16 Tdk株式会社 R-t-b系永久磁石
EP4177911A1 (en) * 2021-11-05 2023-05-10 Shin-Etsu Chemical Co., Ltd. Anisotropic rare earth sintered magnet and method for producing the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113782291B (zh) * 2021-09-07 2023-08-29 钢铁研究总院 由多个永磁主相功能基元组装的复合磁体及其制备方法
CN114284019A (zh) * 2021-12-27 2022-04-05 烟台正海磁性材料股份有限公司 一种高矫顽力钕铈铁硼永磁体及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015204390A (ja) * 2014-04-15 2015-11-16 Tdk株式会社 永久磁石およびモータ
JP2016115774A (ja) * 2014-12-12 2016-06-23 トヨタ自動車株式会社 希土類磁石粉末及びその製造方法
JP2017188659A (ja) * 2016-04-08 2017-10-12 沈陽中北通磁科技股▲ふん▼有限公司Shenyang General Magnetic Co.,Ltd. セリウム含有ネオジム鉄ホウ素磁石およびその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6202722B2 (ja) * 2012-12-06 2017-09-27 昭和電工株式会社 R−t−b系希土類焼結磁石、r−t−b系希土類焼結磁石の製造方法
CN104575920B (zh) * 2013-10-16 2018-01-19 中国科学院宁波材料技术与工程研究所 稀土永磁体及其制备方法
CN104674115A (zh) * 2013-11-27 2015-06-03 厦门钨业股份有限公司 一种低b的稀土磁铁
JP5729511B1 (ja) * 2014-04-21 2015-06-03 Tdk株式会社 R−t−b系永久磁石、及び、回転機

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015204390A (ja) * 2014-04-15 2015-11-16 Tdk株式会社 永久磁石およびモータ
JP2016115774A (ja) * 2014-12-12 2016-06-23 トヨタ自動車株式会社 希土類磁石粉末及びその製造方法
JP2017188659A (ja) * 2016-04-08 2017-10-12 沈陽中北通磁科技股▲ふん▼有限公司Shenyang General Magnetic Co.,Ltd. セリウム含有ネオジム鉄ホウ素磁石およびその製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022123991A1 (ja) * 2020-12-09 2022-06-16 Tdk株式会社 R-t-b系永久磁石
WO2022123990A1 (ja) * 2020-12-09 2022-06-16 Tdk株式会社 R-t-b系永久磁石
EP4177911A1 (en) * 2021-11-05 2023-05-10 Shin-Etsu Chemical Co., Ltd. Anisotropic rare earth sintered magnet and method for producing the same

Also Published As

Publication number Publication date
CN110537232A (zh) 2019-12-03
CN110537232B (zh) 2021-02-05
JP2020095989A (ja) 2020-06-18

Similar Documents

Publication Publication Date Title
JP6733576B2 (ja) R−t−b系永久磁石
WO2018181594A1 (ja) 永久磁石及び回転機
JP6274216B2 (ja) R−t−b系焼結磁石、および、モータ
JP5767788B2 (ja) R−t−b系希土類永久磁石、モーター、自動車、発電機、風力発電装置
JP6729446B2 (ja) R−t−b系永久磁石
JP6269279B2 (ja) 永久磁石およびモータ
TWI413137B (zh) 機能分級式稀土族永久磁鐵
JP6330813B2 (ja) R−t−b系焼結磁石、および、モータ
JP6536816B2 (ja) R−t−b系焼結磁石およびモータ
WO2012002059A1 (ja) R-t-b系希土類永久磁石、モーター、自動車、発電機、風力発電装置
JP7180096B2 (ja) 永久磁石及び回転機
JP4951703B2 (ja) R−t−b系希土類永久磁石用合金材料、r−t−b系希土類永久磁石の製造方法およびモーター
WO2018181581A1 (ja) 永久磁石及び回転機
WO2018181592A1 (ja) 永久磁石及び回転機
JP2013115156A (ja) R−t−b系永久磁石の製造方法
JP5743458B2 (ja) R−t−b系希土類永久磁石用合金材料、r−t−b系希土類永久磁石の製造方法およびモーター
CN111724959B (zh) R-t-b系永久磁铁
WO2018181580A1 (ja) 永久磁石及び回転機
JP6773150B2 (ja) R−t−b系希土類焼結磁石用合金、r−t−b系希土類焼結磁石
CN113614864B (zh) R-t-b系永久磁体及其制造方法
US20240038420A1 (en) R-t-b based permanent magnet
JP4484024B2 (ja) 希土類焼結磁石及びその製造方法
JP4484025B2 (ja) 希土類焼結磁石及びその製造方法
CN116648522A (zh) R-t-b系永久磁铁
CN116600916A (zh) R-t-b系永久磁铁

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18775361

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18775361

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP