WO2018181482A1 - 銅粒子及びその製造方法 - Google Patents

銅粒子及びその製造方法 Download PDF

Info

Publication number
WO2018181482A1
WO2018181482A1 PCT/JP2018/012780 JP2018012780W WO2018181482A1 WO 2018181482 A1 WO2018181482 A1 WO 2018181482A1 JP 2018012780 W JP2018012780 W JP 2018012780W WO 2018181482 A1 WO2018181482 A1 WO 2018181482A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
copper particles
particles
oxygen
oxide layer
Prior art date
Application number
PCT/JP2018/012780
Other languages
English (en)
French (fr)
Inventor
松山 敏和
晃祐 織田
義明 上住
安俊 遠藤
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to KR1020197024034A priority Critical patent/KR102403998B1/ko
Priority to CN201880012738.6A priority patent/CN110325303B/zh
Priority to JP2019509979A priority patent/JP7050756B2/ja
Publication of WO2018181482A1 publication Critical patent/WO2018181482A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/03Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/10Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/25Oxide

Definitions

  • the present invention relates to copper particles and a method for producing the same.
  • copper has a specific resistance value comparable to that of silver, it has a lower material cost than silver. Therefore, copper is a raw material for conductive pastes used in the formation of printed wiring boards, electrical circuits, and electrodes. Is preferably used. In recent years, as fine pitches and thinning of electrodes have been promoted in fields such as electric circuits, it has been required to achieve both fineness of copper particles for conductive paste and good sinterability. On the other hand, since the microparticulated copper has a very large surface area, the surface oxidation of the particles becomes remarkable during the production of the conductive paste, and the conductivity may be inferior.
  • Patent Document 1 proposes a method for producing copper powder by physical vapor deposition (PVD method) using direct current thermal plasma for the purpose of making copper powder fine particles and ensuring conductivity.
  • PVD method physical vapor deposition
  • the fine copper particles produced by the PVD method have a very large surface area, and the particles tend to aggregate. Therefore, in a wet dispersion process or the like, which is a commercialization process after the manufacture of copper particles, a surface treatment is generally performed in which the copper particles are mixed with a surface treatment agent such as a fatty acid so that the particles are less likely to aggregate. However, even if such a copper particle is subjected to a surface treatment, the primary particles may aggregate again (hereinafter also referred to as reaggregation).
  • the copper particles produced by the PVD method have many coarse particles in addition to the fact that the particles tend to aggregate. Therefore, when a conductive paste is prepared using such copper particles, and the paste is applied to a base material and fired, the conductive film obtained by firing is difficult to obtain good surface smoothness. Therefore, when producing conductive paste using copper particles produced by PVD method or the like as raw materials, it is necessary to remove aggregated particles and coarse particles using a filter in advance, but conventional copper particles are aggregated particles. In addition, due to the large number of coarse particles, the number of particles removed by the filter may increase and the yield may decrease.
  • the present invention resides in the improvement of the copper particles and the production method thereof. Specifically, when the surface treatment agent is used in the wet dispersion process, which is a commercialization process after the copper particles are produced, the particles are re-agglomerated.
  • the present invention relates to hard copper particles and a method for producing the same.
  • the present inventors have found that the copper particles satisfying a specific relationship between the oxygen content ratio and the Cu 2 O crystallite size have been re-established after the surface treatment. It has been found that the degree of aggregation is reduced. The present invention has been completed based on this finding.
  • the present invention has a core portion comprising copper, and a copper oxide layer comprising CuO and Cu 2 O formed on the surface of the core portion, to provide a copper particles satisfy the relation of the following formula (1) Is. Y ⁇ 36X-18 (1)
  • X is the content ratio (% by mass) of oxygen contained in the copper particles
  • Y is the crystallite size (nm) of Cu 2 O contained in the copper oxide layer.
  • the present invention provides a suitable method for producing the copper particles,
  • the raw material powder containing copper element is introduced into the plasma flame to form vapor phase copper, While generating copper particles by cooling the copper in the gas phase, the generated copper particles are exposed to an oxygen-containing atmosphere,
  • the present invention provides a method for producing copper particles, which includes a step of oxidizing the surface of the copper particles after being exposed to an oxygen-containing atmosphere to form a copper oxide layer containing CuO and Cu 2 O.
  • FIG. 1 is a view showing an embodiment of an apparatus for producing copper particles of the present invention.
  • FIG. 2 is a graph showing the relationship between the crystallite size of Cu 2 O and the content ratio of oxygen in the copper particles obtained in Examples and Comparative Examples.
  • the copper particles of the present invention have a core part containing copper and a copper oxide layer containing CuO and Cu 2 O formed on the surface of the core part.
  • a core part is located in the center area
  • the copper oxide layer is located in the surface area of the copper particles of the present invention and constitutes the outermost surface of the copper particles of the present invention.
  • the copper oxide layer preferably covers the entire surface of the core part. However, as long as the effect of the present invention is not impaired, the copper oxide layer is formed so that a part of the surface of the core part is exposed to the outside. The surface of the part may be covered. In the copper particles of the present invention, no layer containing a metal element exists outside the copper oxide layer. However, it is allowed that a layer made of an organic compound exists outside the copper oxide layer.
  • the shape of the copper particles of the present invention is not particularly limited, and various shapes can be adopted according to specific applications.
  • copper particles having various shapes such as a spherical shape, a flake shape, a plate shape, and a dendritic shape can be used.
  • the copper particles of the present invention have a volume cumulative particle size D 50 of 0.2 ⁇ m or more and 0.6 ⁇ m or less at a cumulative volume of 50 vol% according to the laser diffraction scattering type particle size distribution measurement method, regardless of the shape of the copper particles described above. It is preferable that it is 0.2 ⁇ m or more and 0.5 ⁇ m or less.
  • a conductive composition such as a conductive paste is prepared from the copper particles, and the conductive film is formed using the conductive composition.
  • the film is dense and highly conductive.
  • a wet reduction method, a PVD method, or the like may be employed to manufacture the copper particles.
  • measurement of the volume cumulative particle diameter D 50 may be carried out by the method described in the examples below.
  • the core part in the copper particles of the present invention is configured to contain copper. That the core part contains copper includes (a) the case where the core part is substantially made of copper and (b) the case where the core part is made of copper and other elements.
  • the proportion of copper in the core part is preferably 99% by mass or more, more preferably 99.5% by mass or more, and the core part consists of copper and inevitable impurities only. Is more preferable.
  • the core portion is a portion that occupies most of the mass of the copper particles of the present invention.
  • the thickness of the copper oxide layer is preferably 1 nm or more and 100 nm or less, and more preferably 1 nm or more and 55 nm or less. When the copper oxide layer exists in this thickness range, the conductivity of the copper particles of the present invention can be sufficiently increased.
  • the ratio of the core portion in the copper particles of the present invention is determined by performing line analysis of the surface portion of the copper particles using, for example, STEM-EDS (Scanning Transmission Electron Microscope-Energy-Dispersive X-ray Spectroscopy), and oxygen (OK line). The thickness of the copper oxide layer can be measured from the line profile.
  • the copper oxide layer located on the surface of the core part contains CuO and Cu 2 O as described above.
  • the copper oxide layer is composed of only (c) a copper oxide containing CuO and Cu 2 O, or (d) a copper oxide containing CuO and Cu 2 O, in addition to other materials Is included.
  • the copper oxide layer is preferably composed only of copper oxide containing CuO and Cu 2 O and inevitable impurities.
  • the copper particles of the present invention for example, an embodiment in which the core portion is composed only of copper and inevitable impurities, and the copper oxide layer is composed only of copper oxide containing CuO and Cu 2 O and inevitable impurities. Is mentioned.
  • the copper particles in a state where the metallic copper is exposed to the outside are easily bonded to the copper particles in the same state, reaggregation of the particles easily occurs.
  • CuO is uniformly formed on the outermost surface of the copper particles due to the high crystallinity of Cu 2 O contained in the copper oxide layer. I believe that. Since CuO is more stable than Cu 2 O, it hardly reacts with a surface treatment agent such as a fatty acid and is less soluble than Cu 2 O. Therefore, the copper metal contained in the core portion is difficult to be exposed to the outside of the copper particles. As a result, the copper particles are difficult to reaggregate.
  • the content ratio of oxygen in the copper particles of the present invention is preferably 0.8% by mass or more and 1.80% by mass or less, and 0.8% by mass or more and 1% or less. More preferably, it is 6 mass% or less, and it is still more preferable that it is 0.8 mass% or more and 1.5 mass% or less.
  • the content ratio of oxygen in the copper particles of the present invention can be measured, for example, by the method described in Examples described later.
  • the copper particles of the present invention preferably have a crystallite size of Cu 2 O contained in the copper oxide layer of 15 nm or more and 60 nm or less, and 20 nm or more and 60 nm, provided that the relationship of the formula (1) is satisfied. More preferably, it is more preferably 20 nm or more and 55 nm or less.
  • the crystallite size of Cu 2 O is calculated from the diffraction peak obtained by powder X-ray diffraction according to Scherrer's equation. Measurement by powder X-ray diffraction can be carried out by the method described in the examples described later.
  • the copper particles of the present invention may be manufactured by a method described later.
  • the crystallite size of Cu 2 O in the copper particles of the present invention has been described.
  • the copper particles of the present invention have a metal copper crystallite contained in the core portion.
  • size D C is less than 0.090 ⁇ m or more 0.060Myuemu, more preferably less than 0.065 .mu.m 0.085 .mu.m, and still more preferably not less than 0.070 ⁇ m 0.085 ⁇ m.
  • crystallite size D C of the metallic copper is in this range, the crystallite size of the Cu 2 O can also be increased, it is possible to uniformly generate more CuO on the outermost surface of the copper oxide layer.
  • the crystallite size of metallic copper is calculated from the diffraction peak obtained by powder X-ray diffraction according to the Scherrer equation. Measurement by powder X-ray diffraction can be carried out by the method described in the examples described later.
  • the copper particles of the present invention have a core portion with respect to a volume cumulative particle diameter D 50 ( ⁇ m) at a cumulative volume of 50 vol% by a laser diffraction scattering particle size distribution measurement method.
  • the value of D C / D 50 which is the ratio of the crystallite size D C ( ⁇ m) of the metallic copper, is preferably 0.10 or more and 0.40 or less, and is 0.10 or more and 0.30 or less. Is more preferably 0.20 or more and 0.30 or less.
  • copper particles may be produced by a method described later.
  • the copper particles of the present invention include metal copper that is zero-valent copper, Cu 2 O that is monovalent copper, and CuO that is divalent copper.
  • the abundance ratio of these three elements on the surface of the copper particles can be measured using an X-ray photoelectron spectrometer (XPS). According to XPS measurement, X-ray photoelectron spectroscopy spectra of various elements can be obtained, and quantitative analysis can be performed on elemental components at a depth of about 10 nm from the surface of the copper particles.
  • the peak area P1 of Cu (I) which is monovalent copper and Cu (0) which is zero-valent copper is preferably 0.30 or more and 2.50 or less, and 0.40 More preferably, it is 2.50 or less.
  • the copper particles of the present invention satisfy this ratio range, the total amount of Cu (0) and Cu (I) present on the surface of the copper particles and the amount of Cu (II) are reaggregated between the copper particles. It can set appropriately so as to suppress.
  • the measurement using XPS can be performed by the method described in Examples described later.
  • Step 1 Synthesis of copper particles> Conventionally known methods for producing copper particles include a wet reduction method, an atomization method, a physical vapor deposition method (PVD method), and the like. Among these production methods, in order to make the oxygen content ratio in the copper particles, the crystallite size of Cu 2 O and copper metal, and the D 50 of the copper particles easily satisfy the above range, the PVD method is used. It is preferable to employ and produce copper particles. Therefore, a method for producing copper particles using the PVD method will be described below.
  • FIG. 1 shows a thermal plasma generator 1 that is suitably used for the production of copper particles by the PVD method.
  • the thermal plasma generator 1 includes a raw material powder supply device 2, a raw material powder supply path 3, a plasma flame generator 4, a plasma gas supply device 5, a chamber 6, a recovery pot 7, an oxygen supply device 8, a pressure adjustment device 9, and an exhaust device. 10 is comprised.
  • Raw material powder containing copper element (hereinafter also simply referred to as raw material powder) is introduced into the plasma flame generating section 4 from the raw material powder supply device 2 through the raw material powder supply path 3.
  • a plasma flame is generated when the plasma gas is supplied from the plasma gas supply device 5.
  • the raw material powder introduced into the plasma flame is evaporated and converted into vapor phase copper, and then released into the chamber 6 existing on the end side of the plasma flame.
  • the copper in the vapor phase is cooled as it moves away from the plasma flame, and copper particles are generated through nucleation and grain growth.
  • the produced copper particles are exposed to the atmosphere in the chamber 6.
  • the copper particles after being exposed to the atmosphere in the chamber 6 adhere to the wall surface inside the chamber 6 or accumulate in the collection pot 7.
  • the inside of the chamber 6 is controlled by the pressure adjusting device 9 and the exhaust device 10 so that the negative pressure is relatively maintained as compared with the raw material powder supply path 3, stably generating a plasma flame and plasma the raw material powder.
  • the structure can be introduced into the flame generating part 4. Details of the atmosphere in the chamber 6 will be described later.
  • the particle size of the raw material powder used for manufacture of the copper particle of this invention there is no restriction
  • the shape of the raw material powder particles is not particularly limited, and various shapes such as a spherical shape, a flake shape, a plate shape, and a dendritic shape can be used.
  • the oxidation state of the copper element in the raw material powder is not particularly limited, and for example, metal copper powder, copper oxide powder (for example, CuO or Cu 2 O), or a mixture thereof can be used. There are no particular restrictions on the method for producing the raw material powder.
  • the supply amount of the raw material powder is preferably 0.1 g / min or more and 100 g / min or less.
  • the plasma gas that generates the plasma flame is preferably a mixed gas of argon and nitrogen.
  • this mixed gas it is possible to give a larger energy to the raw material powder, and due to this, suitable particle diameter and crystallite size (Cu 2 O and metallic copper) for achieving the effects of the present invention.
  • the plasma flame in addition to using a mixed gas of argon and nitrogen as the plasma gas, the plasma flame can be adjusted to be thick and long in a laminar flow state. preferable.
  • the “substantially spherical shape” refers to a shape that is not a perfect spherical shape but can be recognized as a sphere.
  • Whether or not the plasma flame is in a laminar flow state can be determined by the ratio of the length of the plasma flame to the width of the plasma flame when observed from the side surface where the width of the plasma flame is observed to be the thickest.
  • the ratio of the length of the plasma flame to the width of the plasma flame is 3 or more, it is judged as a laminar flow state, and when the ratio of the length of the plasma flame to the width of the plasma flame is less than 3, it is judged as a turbulent flow state. Can do.
  • the gas flow rate of the plasma gas is preferably 1 L / min to 35 L / min at room temperature, more preferably 5 L / min to 30 L / min. .
  • the plasma output of the thermal plasma generator is preferably 2 kW to 50 kW, more preferably 5 kW to 35 kW.
  • the atmosphere in the chamber 6 is an oxygen-containing atmosphere. Highly crystalline on the surface of the core part while maintaining the oxygen content in the copper particles in the above-mentioned range by being exposed to an oxygen-containing atmosphere during the process of cooling the vapor phase copper and producing copper particles This is because a copper oxide layer containing Cu 2 O can be formed.
  • the resulting core part by setting an appropriate temperature, it is possible to easily form the copper oxide layer comprising a high Cu 2 O crystallinity.
  • the temperature can be controlled by adjusting the gas flow rate of the plasma gas or by adjusting the flow rate of oxygen supplied into the chamber 6 (which will be described later).
  • oxygen gas itself or a mixed gas of oxygen gas and another gas can be used.
  • various inert gases such as argon and nitrogen can be used.
  • the oxygen supply device 8 is connected to the side surface of the chamber and oxygen is supplied into the chamber.
  • oxygen can be stably supplied into the chamber 6 at the connection position of the oxygen supply device. If it is a position, it will not specifically limit.
  • the flow rate of oxygen supplied into the chamber 6 is preferably 0.002 L / min or more and 0.75 L / min or less. 0.004 L / min or more and 0.70 L / min or less is more preferable.
  • the oxygen concentration in the chamber is preferably 100 ppm or more and 2000 ppm or less, and more preferably 200 ppm or more and 1000 ppm or less.
  • the oxidation in this step is performed as follows. After the supply of the raw material powder and the generation of the plasma flame are stopped and the inside of the chamber 6 is returned to normal pressure, the copper particles generated in the ⁇ Step 1> are accumulated in the recovery pot 7 and then recovered, and the copper particles are collected in the atmosphere. Under an atmosphere, Cu 2 O on the surface of the copper particles is oxidized to CuO to form a copper oxide layer.
  • a copper oxide layer can be generated without causing a rapid oxidation reaction of the copper particles.
  • the copper particles in this step, it is preferable to place the copper particles in an air atmosphere having a relative humidity of 30% to 60% and a temperature of 15 ° C to 30 ° C.
  • an air atmosphere having a relative humidity of 30% to 60% and a temperature of 15 ° C to 30 ° C.
  • the processing time of this process is 5 minutes or more and 60 minutes or less on condition that the conditions of an atmospheric condition are in the above-mentioned range from a viewpoint of preventing the rapid oxidation reaction at the time of collection
  • the copper particles of the present invention can be successfully manufactured.
  • the copper particles obtained in this manner are preferably sealed in a non-moisture permeable material container and stored at a temperature of room temperature (25 ° C.) or lower for the purpose of maintaining the oxidized state of the copper particle surface. .
  • the copper particles of the present invention produced by the above-described production method are re-combined with conventional copper particles when a surface treatment agent is used in a wet dispersion process, which is a production process after the production of copper particles. It becomes difficult to agglomerate.
  • a conductive composition such as a conductive paste can be produced without impairing the sinterability at low temperatures.
  • Example 1 The above-mentioned ⁇ Step 1> and ⁇ Step 2> were performed under the following production conditions to produce copper particles.
  • Step 1 Copper particles (particle diameter D 50 : 12 ⁇ m, particle shape: spherical) as raw material powder produced by the atomization method are introduced into the plasma flame of the thermal plasma generator shown in FIG. 1 at a supply rate of 5 g / min, Vapor phase copper.
  • a mixed gas of argon and nitrogen is used as the plasma gas, the flow rate of the plasma gas is 19.0 L / min, and the flow rate (L / min) ratio of argon to nitrogen in the plasma gas is 82:18.
  • the plasma output was 19 kW.
  • Copper particles having a core part and a copper oxide layer were formed so that copper particles were exposed to an oxygen-containing atmosphere while copper in a gas phase was generated by cooling in a chamber.
  • the flow rate of the oxygen-nitrogen mixed gas (containing 5% by volume of oxygen) into the chamber was 0.20 L / min (the flow rate of oxygen was 0.01 L / min), and the oxygen concentration in the chamber was 440 ppm.
  • the generation of the plasma flame is stopped in a state where the copper particles are present in the chamber, and nitrogen gas is supplied into the chamber at a negative pressure ( ⁇ 0.05 MPa) at a flow rate of 30 L / min. The pressure was returned to normal pressure over 15 minutes.
  • ⁇ Process 2> After performing ⁇ Step 1>, copper particles were recovered. A copper oxide layer was formed on the surface of the copper particles while crushing the particles with a sieve in an air atmosphere having a relative humidity of 50% and a temperature of 25 ° C. The time for placing in the atmosphere was 30 minutes.
  • Example 1 is the same as Example 1 except that the flow rate of the oxygen-nitrogen mixed gas into the chamber is 0.29 L / min (the flow rate of oxygen is 0.0145 L / min) and the oxygen concentration in the chamber is 640 ppm.
  • the copper particles were manufactured by performing the above operations.
  • Example 3 Example 1 was the same as Example 1 except that the oxygen-nitrogen mixed gas flow rate into the chamber was 0.11 L / min (oxygen flow rate was 0.0055 L / min) and the oxygen concentration in the chamber was 240 ppm. The operation was performed to produce copper particles.
  • Example 4 is the same as Example 1 except that the flow rate of the oxygen-nitrogen mixed gas into the chamber is 0.34 L / min (the flow rate of oxygen is 0.017 L / min) and the oxygen concentration in the chamber is 750 ppm.
  • the copper particles were manufactured by performing the above operations.
  • Example 5 is the same as Example 1 except that the flow rate of the oxygen-nitrogen mixed gas into the chamber is 0.09 L / min (the flow rate of oxygen is 0.0045 L / min) and the oxygen concentration in the chamber is 200 ppm.
  • the copper particles were manufactured by performing the above operations.
  • Example 6 Example 1 is the same as Example 1 except that the flow rate of the oxygen-nitrogen mixed gas into the chamber is 0.39 L / min (the flow rate of oxygen is 0.0195 L / min) and the oxygen concentration in the chamber is 850 ppm.
  • the copper particles were manufactured by performing the above operations.
  • Example 7 Example 1 is the same as Example 1 except that the flow rate of the oxygen-nitrogen mixed gas into the chamber is 0.33 L / min (the flow rate of oxygen is 0.0165 L / min) and the oxygen concentration in the chamber is 730 ppm.
  • the copper particles were manufactured by performing the above operations.
  • Example 8 Example 1 is the same as Example 1 except that the flow rate of the oxygen-nitrogen mixed gas into the chamber is 0.18 L / min (the flow rate of oxygen is 0.009 L / min) and the oxygen concentration in the chamber is 400 ppm.
  • the copper particles were manufactured by performing the above operations.
  • Example 9 Example 1 is the same as Example 1 except that the flow rate of the oxygen-nitrogen mixed gas into the chamber is 0.26 L / min (the flow rate of oxygen is 0.013 L / min) and the oxygen concentration in the chamber is 570 ppm.
  • the copper particles were manufactured by performing the above operations.
  • Example 10 is the same as Example 1 except that the flow rate of the oxygen-nitrogen mixed gas into the chamber is 0.24 L / min (the flow rate of oxygen is 0.012 L / min) and the oxygen concentration in the chamber is 540 ppm.
  • the copper particles were manufactured by performing the above operations.
  • Example 1 the flow rate of plasma gas is 36 L / min, the flow rate of oxygen-nitrogen mixed gas into the chamber is 0.74 L / min (the flow rate of oxygen is 0.037 L / min), and the oxygen concentration in the chamber is 860 ppm. Except for the above, copper particles were produced in the same manner as in Example 1.
  • Example 2 In Example 1, the flow rate of plasma gas is 36 L / min, the flow rate of oxygen-nitrogen mixed gas into the chamber is 0.35 L / min (the flow rate of oxygen is 0.0175 L / min), and the oxygen concentration in the chamber is 410 ppm. Except for the above, copper particles were produced in the same manner as in Example 1.
  • Example 3 In Example 1, the flow rate of plasma gas is 36 L / min, the flow rate of oxygen-nitrogen mixed gas into the chamber is 0.79 L / min (the flow rate of oxygen is 0.0395 L / min), and the oxygen concentration in the chamber is 910 ppm. Except for the above, copper particles were produced in the same manner as in Example 1.
  • Example 5 In Example 1, the flow rate of plasma gas is 36 L / min, the flow rate of oxygen-nitrogen mixed gas into the chamber is 0.44 L / min (the flow rate of oxygen is 0.022 L / min), and the oxygen concentration in the chamber is 510 ppm. Then, except that ⁇ Step 2> was not performed, the same operations as in Example 1 were performed to produce copper particles.
  • the crystallite size D C of the cumulative volume particle diameter D 50 and metallic copper was measured by the following method. Then, the crystallite size D C of the metallic copper was calculated value of D C / D 50 is divided by a volume cumulative particle diameter D 50 of the copper particles. The results are shown in Table 1.
  • the recovery rate of the copper particles by filter filtration and the surface roughness of the coating film of the composition containing the copper particles are as follows. Measured with The results are shown in Table 1.
  • Scherrer's formula: D K ⁇ / ⁇ cos ⁇ D: Crystallite size K: Scherrer constant (1.333)
  • wavelength of X-ray ⁇ : integral width [rad]
  • Diffraction angle
  • the background mode used is Shirley.
  • the binding energy of C1s was set to 234.8 eV.
  • the above-described peak areas P0, P1, and P2 were calculated from the peak area ratio after Cu 2p3 / 2 peak separation was performed in the range of 930.0 eV or more and 933.0 eV or less for Cu (Cu (I)).
  • the ratio of the mass of the produced copper particles to the total mass of the mass of the copper particles remaining on the filter and the mass of the produced copper particles (the mass of the produced copper particles / (on the filter The mass of the remaining copper particles + the mass of the produced copper particles) ⁇ 100) was calculated, and this value was defined as the recovery rate (%).
  • This paste was further processed 5 times in total using a 3 roll mill to further disperse and mix to prepare a paste.
  • the paste thus prepared was applied onto a slide glass substrate with a doctor blade and a gap of 35 ⁇ m. Then, using a nitrogen oven, it was heated and dried at 150 ° C. for 10 minutes to prepare a coating film.
  • the surface roughness of this coating film was measured using a surface roughness meter (SURFCOM 480B-12 manufactured by TOKYO SEIMITSU).
  • the copper particles of each example have a high filter recovery rate, whereas the copper particles of the comparative example have a low filter recovery rate.
  • the reason for this is that the reaggregation of the particles of the copper particles of the examples is suppressed.
  • the surface roughness of the coating film obtained from the copper particles of each Example having a high recovery rate was the same as the surface roughness of the coating film obtained from the copper particles of the comparative example, although the filter recovery rate was increased. It turns out that it is equivalent. This is also because the copper particles of the examples are suppressed from agglomerating particles.

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Conductive Materials (AREA)

Abstract

本発明の銅粒子は、銅を含むコア部と、該コア部の表面に形成されたCuO及びCu2Oを含む酸化銅層とを有する。銅粒子中に含まれる酸素の含有割合(質量%)をXとし、酸化銅層中に含まれるCu2Oの結晶子サイズ(nm)をYとしたときに、Y≧36X-18の条件を満たす。レーザー回折散乱式粒度分布測定法による累積体積50容量%における体積累積粒径D50(μm)に対するコア部中に含まれる金属銅の結晶子サイズDC(μm)の比率であるDC/D50の値が0.10以上0.40以下であることも好適である。また、酸素の含有割合が0.80質量%以上1.80質量%以下であることも好適である。

Description

銅粒子及びその製造方法
 本発明は、銅粒子及びその製造方法に関する。
 銅は、銀と同程度の比抵抗値を有しつつも、銀と比較して材料費が安価であることから、プリント配線基板や電気回路、電極の形成に用いられる導電性ペースト等の原料として好適に用いられている。近年、電気回路などの分野においてファインピッチ化及び電極の薄層化が進められているのに伴い、導電性ペースト用の銅粒子の微粒子化及び良好な焼結性の両立が求められている。一方で、微粒子化された銅は、表面積が非常に大きいことから導電性ペーストの製造時に粒子の表面酸化が著しくなり、導電性が劣ってしまうことがある。
 特許文献1では、銅粉の微粒子化及び導電性の確保を目的として、直流熱プラズマを用いた物理気相成長法(PVD法)による銅粉の製造方法が提案されている。
国際公開第2015/122251号パンフレット
 PVD法等で製造された微粒な銅粒子は、表面積が非常に大きく、粒子どうしが凝集しやすい。そのため、銅粒子製造後の製品化工程である湿式分散工程等において、銅粒子と脂肪酸などの表面処理剤とを混合して、粒子どうしの凝集を起こりにくくする表面処理が一般的に行われる。しかしながら、このような銅粒子は、表面処理がなされても、一次粒子どうしが再び凝集(以下、再凝集ともいう。)することがある。
 さらに、PVD法等で製造された銅粒子は、粒子どうしが凝集しやすいことに加えて、粗粒が多い。そのため、このような銅粒子を用いて導電性ペーストを作製し、該ペーストを基材に塗布して焼成した場合、焼成によって得られる導電膜は良好な表面平滑性が得られにくい。そこで、PVD法等で製造された銅粒子を原料として導電性ペーストを作製する場合には、事前にフィルターを用いて凝集粒子や粗粒を除去する必要があるが、従来の銅粒子は凝集粒子及び粗粒が多いことに起因して、フィルターで除去される粒子が多くなり、収率が下がってしまうことがある。
 したがって本発明は、銅粒子及びその製造方法の改良にあり、具体的には、銅粒子製造後の製品化工程である湿式分散工程において、表面処理剤を使用した場合に、粒子どうしが再凝集しづらい銅粒子及びその製造方法に関する。
 本発明者らは、前記の課題を解決すべく鋭意検討した結果、酸素の含有割合とCuOの結晶子サイズとが特定の関係を満たす銅粒子は、表面処理後において、粒子どうしの再凝集の程度が低くなることを見出した。本発明はこの知見に基づいて完成されたものである。
 すなわち本発明は、銅を含むコア部と、該コア部の表面に形成されたCuO及びCuOを含む酸化銅層とを有し、下記式(1)の関係を満たす銅粒子を提供するものである。
  Y≧36X-18 ・・・(1)
 式中、Xは銅粒子中に含まれる酸素の含有割合(質量%)であり、Yは酸化銅層中に含まれるCuOの結晶子サイズ(nm)である。
 また本発明は、前記の銅粒子の好適な製造方法として、
 銅元素を含む原料粉をプラズマ炎中に導入して気相状態の銅となし、
 気相状態の前記銅の冷却によって銅粒子を生成させつつ、生成した該銅粒子を酸素含有雰囲気に曝し、
 酸素含有雰囲気に曝された後の前記銅粒子の表面を酸化させてCuO及びCuOを含む酸化銅層を生成させる工程を有する、銅粒子の製造方法を提供するものである。
図1は、本発明の銅粒子を製造する装置の一実施形態を示した図である。 図2は、実施例及び比較例で得られた銅粒子におけるCuOの結晶子サイズと酸素の含有割合との関係を示すグラフである。
 以下、本発明についてその好ましい実施形態に基づいて説明する。本発明の銅粒子は、銅を含むコア部と、コア部の表面に形成されたCuO及びCuOを含む酸化銅層とを有する。コア部は、本発明の銅粒子における中心域に位置し、本発明の銅粒子における質量の大半を占める部位である。一方、酸化銅層は、本発明の銅粒子における表面域に位置し、本発明の銅粒子の最表面を構成している。酸化銅層は、コア部の表面の全域を覆っていることが好ましいが、本発明の効果を損なわない限りにおいて、酸化銅層は、コア部の表面の一部が外界に露出するようにコア部の表面を覆っていてもよい。本発明の銅粒子においては、酸化銅層よりも外側には、金属元素を含む層は存在していない。しかし、酸化銅層よりも外側に、有機化合物からなる層が存在することは許容される。
 本発明の銅粒子は、その形状に特に制限はなく、具体的な用途に応じて種々の形状を採用できる。例えば球状、フレーク状、板状及び樹枝状など種々の形状の銅粒子を用いることができる。
 本発明の銅粒子はその形状が上述のいずれである場合であっても、レーザー回折散乱式粒度分布測定法による累積体積50容量%における体積累積粒径D50が0.2μm以上0.6μm以下であることが好ましく、0.2μm以上0.5μm以下であることがより好ましい。銅粒子の粒径がこの範囲内であることで、該銅粒子から例えば導電性ペースト等の導電性組成物を調製し、該導電性組成物を用いて導電膜を形成した場合に、該導電膜が緻密で且つ導電性の高いものとなる。この範囲の粒径の銅粒子を得るためには、例えば湿式還元法やPVD法などを採用して銅粒子を製造すればよい。また、体積累積粒径D50の測定は、後述する実施例に記載の方法にて行うことができる。
 本発明の銅粒子におけるコア部は銅を含んで構成されている。コア部が銅を含むとは、(ア)コア部が実質的に銅からなる場合と、(イ)コア部が銅及び他の元素からなる場合とを包含する。(ア)の場合、コア部に占める銅の割合は、99質量%以上であることが好ましく、99.5質量%以上であることが更に好ましく、コア部は銅と不可避不純物とのみからなることが一層好ましい。
 前記の(ア)及び(イ)の場合のいずれの場合であっても、上述のとおり、コア部は本発明の銅粒子における質量の大半を占める部位である。酸化銅層の厚みは、1nm以上100nm以下であることが好ましく、1nm以上55nm以下であることが更に好ましい。酸化銅層がこの厚み範囲で存在することで、本発明の銅粒子の導電性を十分に高くすることができる。本発明の銅粒子に占めるコア部の割合は、例えば、STEM-EDS(Scanning Transmission Electron Microscope-Energy-Dispersive X-ray Spectroscopy)で銅粒子表面部のライン分析を行い、酸素(O-K線)のラインプロファイルより酸化銅層の厚みを計測できる。
 コア部の表面に位置する酸化銅層は、上述のとおりCuO及びCuOを含むものである。酸化銅層は、(ウ)CuO及びCuOを含む銅の酸化物のみからなるか、又は(エ)CuO及びCuOを含む銅の酸化物を含み、それらに加えて他の物質も含むものである。(ウ)の場合、酸化銅層はCuO及びCuOを含む銅の酸化物と不可避不純物とのみからなることが好ましい。
 前記の(ウ)及び(エ)のいずれの場合であっても、酸化銅層におけるCuO及びCuOの存在状態に特に制限はない。例えばCuO及びCuOが任意に混在した状態であってもよく、あるいはCuOからなる部位とCuOからなる部位とがそれぞれ別個に存在していてもよい。CuOからなる部位とCuOからなる部位とがそれぞれ別個に存在している場合、例えばコア部の表面にCuOからなる部位が存在し、該部位の表面にCuOからなる部位が存在する形態が挙げられる。
 本発明の銅粒子の特に好ましい実施形態としては、例えばコア部が銅と不可避不純物とのみからなり、酸化銅層がCuO及びCuOを含む銅の酸化物と不可避不純物とのみからなる実施形態が挙げられる。
 本発明者の検討の結果、本発明の銅粒子中の酸素の含有割合と、銅粒子の酸化銅層中のCuOの結晶子サイズが特定の関係にあると、製品化工程における表面処理後の銅粒子の分散性が向上することが判明した。具体的には、銅粒子中の酸素の含有割合(単位:質量%)をXとし、酸化銅層中のCuOの結晶子サイズ(単位:nm)をYとしたときに、下記式(1)の関係が満たされると、製品化工程における表面処理後の銅粒子は再凝集が起こりにくく、分散性が特に向上することが判明した。
  Y≧36X-18 ・・・(1)
 式(1)の関係が満たされると、製品化工程における表面処理後の銅粒子の分散性が特に向上する理由は明確ではないが、本発明者らは、以下のように推測している。湿式還元法やPVD法などによって生成した銅粒子は、粒子表面におけるCuOの露出の程度が多くなっている。このような銅粒子に対して湿式分散工程等の製品化工程において脂肪酸などの表面処理剤と混合すると、脂肪酸とCuOとの反応によりCuOが溶解し、銅粒子のコア部に含まれる金属銅が外界に露出してしまう。金属銅が外界に露出した状態の銅粒子は、同じ状態になっている銅粒子と結合しやすいことから粒子どうしの再凝集が起こりやすい。これに対して、式(1)を満たす銅粒子は、酸化銅層中に含まれるCuOの結晶性が高いことに起因して、銅粒子の最表面にCuOが均一に生成しているものと考えている。CuOはCuOよりも安定であるため脂肪酸などの表面処理剤と反応しにくく、CuOより溶解し難い。そのため、コア部に含まれる金属銅が、銅粒子の外界に露出しづらくなる。その結果、銅粒子どうしが再凝集しづらくなる。
 前記式(1)の関係を満たすことを条件として、本発明の銅粒子における酸素の含有割合は0.8質量%以上1.80質量%以下であることが好ましく、0.8質量%以上1.6質量%以下であることが更に好ましく、0.8質量%以上1.5質量%以下であることが一層好ましい。酸素の含有割合がこの範囲にあることによって、製品化工程における表面処理後において、銅粒子どうしが再凝集しにくくなる。本発明の銅粒子における酸素の含有割合は、例えば後述する実施例に記載の方法で測定することができる。
 同様に前記式(1)の関係を満たすことを条件として、本発明の銅粒子は、酸化銅層に含まれるCuOの結晶子サイズが15nm以上60nm以下であることが好ましく、20nm以上60nm以下であることが更に好ましく、20nm以上55nm以下であることが一層好ましい。CuOの結晶子サイズがこの範囲にあることによって、製品化工程における表面処理後において、銅粒子どうしが再凝集しにくくなる。CuOの結晶子サイズは、粉末X線回折によって得られる回折ピークからシェラー(Scherrer)の式によって算出される。粉末X線回折による測定は後述する実施例に記載の方法にて行うことができる。
 本発明の銅粒子が式(1)の条件を満たすようにするためには、例えば後述する方法で銅粒子を製造すればよい。
 以上の説明においては、本発明の銅粒子におけるCuOの結晶子サイズについて言及したが、この結晶子サイズに加えて本発明の銅粒子においては、コア部中に含まれる金属銅の結晶子サイズDが0.060μm以上0.090μm以下であることが好ましく、0.065μm以上0.085μm以下であることが更に好ましく、0.070μm以上0.085μm以下であることが一層好ましい。金属銅の結晶子サイズDがこの範囲にあることによって、CuOの結晶子サイズも大きくすることができ、更にCuOを酸化銅層の最表面に均一に生成させることができる。金属銅の結晶子サイズは、粉末X線回折によって得られる回折ピークからシェラー(Scherrer)の式によって算出される。粉末X線回折による測定は後述する実施例に記載の方法にて行うことができる。
 銅粒子どうしの再凝集を一層効果的に防止する観点から、本発明の銅粒子は、レーザー回折散乱式粒度分布測定法による累積体積50容量%における体積累積粒径D50(μm)に対するコア部中の金属銅の結晶子サイズD(μm)の比率であるD/D50の値が0.10以上0.40以下であることが好ましく、0.10以上0.30以下であることが更に好ましく、0.20以上0.30以下であることが一層好ましい。D/D50の値がこの範囲を満たすようにするためには、例えば後述する方法で銅粒子を製造すればよい。
 本発明の銅粒子は、上述のとおり、0価の銅である金属銅と、一価の銅であるCuOと、二価の銅であるCuOとを含んでいる。銅粒子の表面におけるこれら三者の存在比率はX線光電子分光装置(XPS)を用いて測定することができる。XPS測定によれば、各種元素のX線光電子分光スペクトルが得ることができ、銅粒子の表面から約十nmまでの深さの元素成分について定量分析を行うことができる。XPSによって本発明の銅粒子の表面状態を測定して得られたX線光電子分光スペクトルにおいては、一価の銅であるCu(I)のピーク面積P1及び0価の銅であるCu(0)のピーク面積P0に対する、二価の銅であるCu(II)のピーク面積P2の比率であるP2/(P1+P0)の値が、0.30以上2.50以下であることが好ましく、0.40以上2.50以下であることが一層好ましい。本発明の銅粒子がこの比率範囲を満たしていることで、銅粒子表面に存在するCu(0)及びCu(I)の合計量と、Cu(II)の量とを銅粒子どうしの再凝集を抑制するように適切に設定することができる。XPSを用いた測定は、後述する実施例に記載の方法にて行うことができる。
 以下に、本発明の銅粒子の好適な製造方法について説明する。
<工程1.銅粒子の合成>
 これまで知られている銅粒子の製造方法としては、一般に湿式還元法、アトマイズ法及び物理気相成長法(PVD法)などが挙げられる。これらの製造方法のうち、銅粒子における酸素の含有割合、CuO及び金属銅の結晶子サイズ、並びに銅粒子のD50などが上述の範囲を容易に満たすようにするために、PVD法を採用して銅粒子を製造することが好ましい。そこで以下にPVD法を用いた銅粒子の製造方法を説明する。
 図1には、PVD法による銅粒子の製造に好適に用いられる熱プラズマ発生装置1が示されている。熱プラズマ発生装置1は、原料粉供給装置2、原料粉供給路3、プラズマ炎発生部4、プラズマガス供給装置5、チャンバー6、回収ポット7、酸素供給装置8、圧力調整装置9及び排気装置10を含んで構成されている。
 銅元素を含む原料粉(以下、単に原料粉ともいう。)は原料粉供給装置2から原料粉供給路3を介して、プラズマ炎発生部4中に導入される。プラズマ炎発生部4においては、プラズマガス供給装置5からプラズマガスが供給されることによってプラズマ炎が発生する。プラズマ炎中に導入された原料粉は蒸発気化されて気相状態の銅となった後、プラズマ炎の終端部側に存在するチャンバー6内へ放出される。気相状態の銅は、プラズマ炎から離れていくにつれて冷却され、核生成、粒成長を経て、銅粒子が生成する。生成した銅粒子はチャンバー6内の雰囲気に曝される。チャンバー6内の雰囲気に曝された後の銅粒子は、チャンバー6内部の壁面に付着するか又は回収ポット7内に蓄積する。チャンバー6内は、圧力調整装置9及び排気装置10によって原料粉供給路3よりも相対的に陰圧が保たれるように制御されており、安定してプラズマ炎を発生させるとともに原料粉をプラズマ炎発生部4中に導入できる構造となっている。チャンバー6内の雰囲気の詳細については後述する。
 本発明の銅粒子の製造に使用される原料粉の粒径に特に制限はない。熱プラズマ発生装置への供給効率の観点から、原料粉の体積累積粒径D50が3μm以上30μm以下であることが好ましい。また、原料粉の粒子の形状は特に制限されず、球状、フレーク状、板状、樹枝状など種々の形状のものを用いることができる。原料粉の銅元素の酸化状態は特に制限されず、例えば金属銅粉、酸化銅粉(例えばCuOやCuO)又はそれらの混合物などを用いることができる。原料粉の製造方法にも特に制限はない。
 本製造方法において、金属銅の結晶子サイズの大きい銅粒子を安定的に製造する観点から、原料粉の供給量は0.1g/min以上100g/min以下とすることが好ましい。
 プラズマ炎を発生させるプラズマガスは、アルゴンと窒素との混合ガスを使用することが好ましい。この混合ガスを使用することにより、原料粉により大きなエネルギーを与えることができ、これに起因して、本発明の効果を奏する上で好適な粒径及び結晶子サイズ(CuO及び金属銅)を有する銅粒子を得ることができる。特に、球形状又は略球形状の銅粒子を得る観点から、プラズマガスとしてアルゴンと窒素との混合ガスを使用することに加えて、プラズマ炎が層流状態で太く長くなるように調整することが好ましい。「略球形状」とは、完全な球形状ではないが、球として認識可能な形状をいう。プラズマ炎が層流状態であるか否かは、プラズマ炎の幅が最も太く観察される側面から観察したときの、プラズマ炎の幅に対するプラズマ炎の長さの比によって判断することができる。プラズマ炎の幅に対するプラズマ炎の長さの比が3以上である場合は層流状態と、プラズマ炎の幅に対するプラズマ炎の長さの比が3未満である場合は乱流状態と判断することができる。
 プラズマ炎の層流状態を安定的に保つ観点から、プラズマガスのガス流量は、室温において1L/min以上35L/minであることが好ましく、5L/min以上30L/min以下であることがより好ましい。この範囲のガス流量を採用することで、生成した粒子が適切な温度を維持した状態で、後述するチャンバー6内の酸素含有雰囲気と接触する。その結果、目的とするCuO及びCuOを含む酸化銅層を、コア部の表面に首尾よく形成できる。熱プラズマ発生装置のプラズマ出力は2kW以上50kW以下であることが好ましく、5kW以上35kW以下であることがより好ましい。同様の観点から、プラズマガスにおけるアルゴンと窒素との流量(L/min)比は、室温においてアルゴン:窒素=99:1~10:90であることが好ましく、95:5~70:30であることが更に好ましい。
 本製造方法においては、チャンバー6内の雰囲気が酸素含有雰囲気であることが好ましい。気相状態の銅が冷却され銅粒子が生成する過程で酸素含有雰囲気に曝されることにより、銅粒子中の酸素の含有割合を上述の範囲に保ちつつ、コア部の表面に結晶性の高いCuOを含む酸化銅層を形成させることができるからである。このとき、生成したコア部を適切な温度に設定することで、結晶性の高いCuOを含む酸化銅層を容易に形成させることができる。温度の設定は、例えば上述のとおり、プラズマガスのガス流量を調整することや、チャンバー6内へ供給する酸素の流量(これについては後述する)を調整することでコントロールできる。酸素含有雰囲気としては、酸素ガスそのものや、酸素ガスと他のガスとの混合ガスなどを用いることができる。混合ガスを用いる場合、他のガスとしては、例えばアルゴンや窒素を初めとする各種の不活性ガスを用いることができる。なお図1に示す実施形態では、チャンバーの側面に酸素供給装置8が接続されてチャンバー内に酸素が供給されているが、酸素供給装置の接続位置はチャンバー6内に安定的に酸素が供給できる位置であれば特に限定されない。
 気相状態の銅から生成した銅粒子を酸素含有雰囲気に安定的に曝す観点から、チャンバー6内へ供給する酸素の流量は、0.002L/min以上0.75L/min以下であることが好ましく、0.004L/min以上0.70L/min以下であることがより好ましい。また、結晶性の高いCuOを含む酸化銅層を形成させる観点から、チャンバー内の酸素濃度は、100ppm以上2000ppm以下であることが好ましく、200ppm以上1000ppm以下であることがより好ましい。
<工程2.酸化処理>
 前記<工程1>で生成した銅粒子は、更に酸化処理されることが好ましい。本工程を行うことによって、<工程1>で未反応であった銅粒子表面のCuOをCuOに緩やかに酸化させ、CuO及びCuOを含む酸化銅層をより厚く且つ表面全体に隙間なく生成させることができ、表面処理後において、一層再凝集しづらい銅粒子を得ることができる。
 本工程における酸化は、以下のように行われる。原料粉の供給及びプラズマ炎の発生を停止しチャンバー6内を常圧に戻した後、前記<工程1>で生成した銅粒子を回収ポット7に蓄積させてから回収し、その銅粒子を大気雰囲気下に置いて、銅粒子表面のCuOをCuOに酸化させて酸化銅層を生成させる。
 本工程は、銅粒子を大気雰囲気下に置いて行えば、銅粒子の急激な酸化反応が生じることなく、酸化銅層を生成させることができる。しかし、工業生産性の観点からは、生成した銅粒子を、篩などを用いて、凝集した粒子を解砕しながら大気雰囲気下に置くことが好ましい。
 銅粒子の酸化処理の均一性の観点から、本工程では、相対湿度が30%以上60%以下で、且つ温度が15℃以上30℃以下の大気雰囲気下に銅粒子を置くことが好ましい。この条件下で酸化反応を行うことにより、大気雰囲気に含まれる水分によって酸化銅層のCuOをCuOに緩やかに酸化させることができ、表面に安定した酸化銅層を形成させることができる。
 また、本工程の処理時間は、銅粒子の回収時における急激な酸化反応を防止する観点から、大気雰囲気の条件が上述の範囲内であることを条件として、5分以上60分以下であることが好ましく、5分以上30分以下であることがより好ましい。
 以上の製造方法によって、本発明の銅粒子を首尾よく製造することができる。このようにして得られた銅粒子は、銅粒子表面の酸化状態を維持することを目的として、非透湿性材料の容器内に密封し、室温(25℃)以下の温度で保存することが好ましい。
 また、上述の製造方法によって製造された本発明の銅粒子は、銅粒子製造後の製品化工程である湿式分散工程において、表面処理剤を使用した場合に、従来の銅粒子と比較して再凝集しづらいものとなる。また、本発明の銅粒子を用いることによって、低温での焼結性を損なうことがなく導電性ペースト等の導電性組成物を製造することができる。
 以下、実施例により本発明を更に詳細に説明する。しかしながら、本発明の範囲はかかる実施例に制限されない。特に断らない限り、「%」は「質量%」を意味する。
  〔実施例1〕
 以下の製造条件で、上述の<工程1>及び<工程2>を行い、銅粒子を製造した。
  <工程1>
 アトマイズ法によって製造された原料粉となる銅粒子(粒径D50:12μm、粒子形状:球状)を、5g/minの供給量で図1に示す熱プラズマ発生装置のプラズマ炎中に導入し、気相状態の銅とした。プラズマ炎発生の条件として、アルゴンと窒素との混合ガスをプラズマガスとして用い、プラズマガスの流量を19.0L/min、プラズマガスにおけるアルゴンと窒素との流量(L/min)比を82:18、プラズマ出力を19kWとした。
 気相状態の銅をチャンバー内で冷却によって銅粒子を生成させつつ、銅粒子が酸素含有雰囲気に曝されるようにして、コア部と酸化銅層を有する銅粒子を形成した。チャンバー内への酸素-窒素混合ガス(酸素を5体積%含む)の流量は0.20L/min(酸素の流量は0.01L/min)、チャンバー内の酸素濃度は440ppmとした。その後、銅粒子がチャンバー内に存在している状態でプラズマ炎の発生を停止させ、陰圧(-0.05MPa)となっているチャンバー内に窒素ガスを30L/minの流量で供給し、陰圧から15分かけて常圧に戻した。
  <工程2>
 <工程1>を行った後、銅粒子を回収した。その銅粒子を、相対湿度が50%で、温度が25℃の大気雰囲気下で、篩による粒子の解砕を行いつつ銅粒子の表面に酸化銅層を生成させた。大気雰囲気下に置く時間は、30分とした。
 得られた銅粒子が30質量%となるように2-プロパノールを添加した後、分散剤としてラウリン酸を銅粒子に対して5質量%添加してスラリーを調製した。このスラリーをNanomizer markII(湿式解砕装置、吉田機械興業株式会社製 品名:NM2-2000AR)で解砕(解砕条件:50MPa、5パス)した。この解砕したスラリーを、目開き1μmのフィルター(ROKI TECHNO Co.,LTD.製 品名:SBP010)でろ過した後、ろ液の上澄みを除去し、残った固形分を真空乾燥機(ADVANTEC製)で40℃にて乾燥した。その後、窒素雰囲気下で、目開き150μmの篩でふるい分けを行い、銅粒子を得た。
  〔実施例2〕
 実施例1においてチャンバー内への酸素-窒素混合ガスの流量を0.29L/min(酸素の流量は0.0145L/min)、チャンバー内の酸素濃度を640ppmとした以外は、実施例1と同様の操作を行い銅粒子を製造した。
  〔実施例3〕
 実施例1においてチャンバー内への酸素-窒素混合ガス流量を0.11L/min(酸素の流量は0.0055L/min)、チャンバー内の酸素濃度を240ppmとした以外は、実施例1と同様の操作を行い銅粒子を製造した。
  〔実施例4〕
 実施例1においてチャンバー内への酸素-窒素混合ガスの流量を0.34L/min(酸素の流量は0.017L/min)、チャンバー内の酸素濃度を750ppmとした以外は、実施例1と同様の操作を行い銅粒子を製造した。
  〔実施例5〕
 実施例1においてチャンバー内への酸素-窒素混合ガスの流量を0.09L/min(酸素の流量は0.0045L/min)、チャンバー内の酸素濃度を200ppmとした以外は、実施例1と同様の操作を行い銅粒子を製造した。
  〔実施例6〕
 実施例1においてチャンバー内への酸素-窒素混合ガスの流量を0.39L/min(酸素の流量は0.0195L/min)、チャンバー内の酸素濃度を850ppmとした以外は、実施例1と同様の操作を行い銅粒子を製造した。
  〔実施例7〕
 実施例1においてチャンバー内への酸素-窒素混合ガスの流量を0.33L/min(酸素の流量は0.0165L/min)、チャンバー内の酸素濃度を730ppmとした以外は、実施例1と同様の操作を行い銅粒子を製造した。
  〔実施例8〕
 実施例1においてチャンバー内への酸素-窒素混合ガスの流量を0.18L/min(酸素の流量は0.009L/min)、チャンバー内の酸素濃度を400ppmとした以外は、実施例1と同様の操作を行い銅粒子を製造した。
  〔実施例9〕
 実施例1においてチャンバー内への酸素-窒素混合ガスの流量を0.26L/min(酸素の流量は0.013L/min)、チャンバー内の酸素濃度を570ppmとした以外は、実施例1と同様の操作を行い銅粒子を製造した。
  〔実施例10〕
 実施例1においてチャンバー内への酸素-窒素混合ガスの流量を0.24L/min(酸素の流量は0.012L/min)、チャンバー内の酸素濃度を540ppmとした以外は、実施例1と同様の操作を行い銅粒子を製造した。
  〔比較例1〕
 実施例1においてプラズマガスの流量を36L/minとし、チャンバー内への酸素-窒素混合ガスの流量を0.74L/min(酸素の流量は0.037L/min)、チャンバー内の酸素濃度を860ppmとした以外は、実施例1と同様の操作を行い銅粒子を製造した。
  〔比較例2〕
 実施例1においてプラズマガスの流量を36L/minとし、チャンバー内への酸素-窒素混合ガスの流量を0.35L/min(酸素の流量は0.0175L/min)、チャンバー内の酸素濃度を410ppmとした以外は、実施例1と同様の操作を行い銅粒子を製造した。
  〔比較例3〕
 実施例1においてプラズマガスの流量を36L/minとし、チャンバー内への酸素-窒素混合ガスの流量を0.79L/min(酸素の流量は0.0395L/min)、チャンバー内の酸素濃度を910ppmとした以外は、実施例1と同様の操作を行い銅粒子を製造した。
  〔比較例4〕
 実施例1においてプラズマガスの流量を36L/minとし、チャンバー内に酸素-窒素混合ガスを導入しなかった以外は、実施例1と同様の操作を行い銅粒子を製造した。
  〔比較例5〕
 実施例1においてプラズマガスの流量を36L/minとし、チャンバー内への酸素-窒素混合ガスの流量を0.44L/min(酸素の流量は0.022L/min)、チャンバー内の酸素濃度を510ppmとし、<工程2>を行わなかった以外は、実施例1と同様の操作を行い銅粒子を製造した。
  〔評価〕
 実施例及び比較例で得られた銅粒子について、酸素の含有割合及びCuOの結晶子サイズを以下の方法で測定した。そして、銅粒子中の酸素の含有割合(単位:質量%)をXとし、酸化銅層に含まれるCuOの結晶子サイズ(単位:nm)をYとしたときに、各実施例及び比較例において前記式(1)の関係を満たしているか否かを確認した。その結果を表1に示した。また、XとYとの関係をグラフ化したものを図2に示した。
 更に実施例及び比較例で得られた銅粒子について、体積累積粒径D50及び金属銅の結晶子サイズDを以下の方法で測定した。そして、金属銅の結晶子サイズDを、銅粒子の体積累積粒径D50で除することによりD/D50の値を算出した。それらの結果を表1に示した。
 更に実施例及び比較例で得られた銅粒子について、XPSによって各価数の銅の存在割合を以下の方法で測定した。その結果を表1に示した。
 更に、実施例及び比較例で得られた銅粒子の凝集の程度を評価する目的で、フィルターろ過による銅粒子の回収率、及び銅粒子を含む組成物の塗膜の表面粗さを以下の方法で測定した。それらの結果を表1に示した。
  〔酸素の含有割合の測定方法〕
 LECOジャパン合同会社製の酸素・窒素分析装置TC-500を用いた。測定試料0.05gを秤量し、ニッケルカプセルに入れた後、黒鉛坩堝内で加熱する。加熱の際に、試料中の酸素と坩堝とが反応して生成した一酸化炭素及び二酸化炭素を、赤外線吸収法で検出し、酸素の含有割合(質量%)を算出した。
  〔CuOの結晶子サイズの測定〕
 銅粒子の酸化銅層中に含まれるCuOの結晶子サイズは、株式会社リガク製のSmartLabにて、CuKα1線を使用して、測定範囲2θ=20°~100°で銅粒子のX線回折強度を測定したときのCuOの結晶面(111)におけるX線回折ピークの積分幅から、下記のシェラーの式により算出した。
 シェラーの式:D=Kλ/βcosθ
 D:結晶子サイズ
 K:シェラー定数(1.333)
 λ:X線の波長
 β:積分幅[rad]
 θ:回折角
  〔銅粒子の体積累積粒径D50の測定〕
 0.1gの測定試料に、0.1%濃度のポリオキシエチレン(10)オクチルフェニルエーテル(和光純薬工業株式会社製)水溶液をスポイトで数滴添加してなじませた後、アニオン系界面活性剤(サンノプコ株式会社製 品名:SNディスパーサント5468)の0.1%水溶液80mlと混合し、超音波ホモジナイザ(日本精機製作所製 US-300T)で5分間分散させた。その後、レーザー回折散乱式粒度分布測定装置、マイクロトラック・ベル株式会社製マイクロトラックHRAを用いて、体積累積粒径D50を測定した。
  〔金属銅の結晶子サイズの測定〕
 銅粒子のコア部中に含まれる金属銅の結晶子サイズは、株式会社リガク製のSmartLabにて、CuKα1線を使用して、測定範囲2θ=20°~100°で銅粒子のX線回折強度を測定したときの金属銅の結晶面(200)におけるX線回折ピークの積分幅から、下記のシェラーの式により算出した。
 シェラーの式:D=Kλ/βcosθ
 D:結晶子サイズ
 K:シェラー定数(1.333)
 λ:X線の波長
 β:積分幅[rad]
 θ:回折角
  〔XPSによる各価数の銅の存在割合の測定〕
 アルバック・ファイ株式会社製のVersaProbeIIを用いた。測定条件は以下のとおりである。
 X線源:Mg-Kα線(1253.6eV)
 X線源の条件:400W
 Pass Energy:23eV
 エネルギーステップ:0.1eV
 検出器と試料台の角度:90°
 帯電中和:低速イオン及び電子を使用
 解析は、アルバック・ファイ株式会社製MultiPak9.0の解析ソフトを用いた。ピーク分離はMultiPak9.0のCurve Fitを用い、Cu 2p3/2のメインピークとは、930eV以上940eV以下に現れるピークのことである。使用バックグラウンドモードはShirleyである。帯電補正はC1sの結合エネルギーを234.8eVとした。
 上述のピーク面積P0、P1及びP2は、Cu(Cu(I)については930.0eV以上933.0eV以下の範囲でCu 2p3/2ピークの波形分離を行い、そのピーク面積比から算出した。
  〔フィルターろ過による銅粒子の回収率〕
 各実施例及び比較例で得られた銅粒子の製造時において、銅粒子を含むスラリーをろ過した後の目開き1μmのフィルターを真空乾燥機(ADVANTEC製)で40℃にて乾燥し、フィルター上に残存した銅粒子とフィルターとの質量を測定した。この測定質量からろ過前のフィルターの質量を差し引くことにより、フィルター上に残存した銅粒子の質量を算出した。また、各実施例及び比較例の方法で製造された銅粒子の質量を測定した。これらの質量から、フィルター上に残存した銅粒子の質量と製造された銅粒子の質量との合計量に対する、製造された銅粒子の質量の比(製造された銅粒子の質量/(フィルター上に残存した銅粒子の質量+製造された銅粒子の質量)×100)を算出し、この値を回収率(%)とした。回収率が60%以上であった場合を「○」とし、回収率が60%未満であった場合を「×」とした。
  〔銅粒子を含む組成物の塗膜の表面粗さ〕
 各実施例及び比較例で得られた銅粒子で得られた銅粒子10gと、10質量%の熱可塑性セルロースエーテル(The Dow Chemical Company製 品名:ETHOCEL STD100)を含有したターピネオール(ヤスハラケミカル株式会社製)ビヒクル1.5gとを秤量し、ヘラで予備混練した後、株式会社シンキー製の自転・公転真空ミキサーARE-500を用いて、攪拌モード(1000rpm×1分間)と脱泡モード(2000rpm×30秒間)とを1サイクルとした処理を2サイクル行い、ペースト化した。このペーストを、更に3本ロールミルを用いて合計5回処理することで更に分散混合を行い、ペーストを調製した。このように調製したペーストを、ドクターブレードを用い、ギャップを35μmに設定してスライドガラス基板上に塗布した。その後、窒素オーブンを用い、150℃で10分間加熱乾燥し塗膜を作製した。この塗膜について、表面粗さ計(TOKYO SEIMITSU製SURFCOM 480B-12)を用いて表面粗さを測定した。
Figure JPOXMLDOC01-appb-T000001
 表1に示す結果から明らかなとおり、各実施例の銅粒子はフィルター回収率が高くなっているのに対し、比較例の銅粒子はフィルター回収率が低くなっていることが判る。この理由は、実施例の銅粒子は、粒子どうしの再凝集が抑制されていることによる。
 また、回収率が高い各実施例の銅粒子から得られた塗膜の表面粗さは、フィルター回収率が増大したにもかかわらず、比較例の銅粒子から得られた塗膜の表面粗さと同等となっていることが判る。この理由も、実施例の銅粒子は、粒子どうしの凝集が抑制されていることによる。
 本発明によれば、銅粒子製造後の製品化工程である湿式分散工程において、表面処理剤を使用した場合に、粒子どうしで再凝集しづらい銅粒子が提供される。
 

Claims (6)

  1.  銅を含むコア部と、該コア部の表面に形成されたCuO及びCuOを含む酸化銅層とを有し、下記式(1)の関係を満たす銅粒子。
      Y≧36X-18 ・・・(1)
     式中、Xは銅粒子中に含まれる酸素の含有割合(質量%)であり、Yは酸化銅層中に含まれるCuOの結晶子サイズ(nm)である。
  2.  レーザー回折散乱式粒度分布測定法による累積体積50容量%における体積累積粒径D50(μm)に対する、前記コア部中に含まれる金属銅の結晶子サイズD(μm)の比率であるD/D50の値が0.10以上0.40以下である請求項1に記載の銅粒子。
  3.  酸素の含有割合が0.80質量%以上1.80質量%以下である請求項1又は2に記載の銅粒子。
  4.  前記銅粒子の表面を測定して得られるX線光電子分光スペクトルにおいて、Cu(I)のピーク面積P1及びCu(0)のピーク面積P0に対する、Cu(II)のピーク面積P2の比率であるP2/(P1+P0)の値が0.30以上2.50以下である請求項1ないし3のいずれか一項に記載の銅粒子。
  5.  銅元素を含む原料粉をプラズマ炎中に導入して気相状態の銅となし、
     前記気相状態の銅の冷却によって銅粒子を生成させつつ、生成した該銅粒子を酸素含有雰囲気に曝し、
     酸素含有雰囲気に曝された後の前記銅粒子の表面を酸化させてCuO及びCuOを含む酸化銅層を生成させる工程を有する、銅粒子の製造方法。
  6.  酸素含有雰囲気に曝された後の前記銅粒子を、相対湿度が30%以上60%以下で、且つ15℃以上30℃以下の大気雰囲気下に5分以上60分以下置き、該銅粒子の表面を酸化させて前記酸化銅層を生成させる請求項5に記載の銅粒子の製造方法。
PCT/JP2018/012780 2017-03-31 2018-03-28 銅粒子及びその製造方法 WO2018181482A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020197024034A KR102403998B1 (ko) 2017-03-31 2018-03-28 구리 입자 및 그 제조 방법
CN201880012738.6A CN110325303B (zh) 2017-03-31 2018-03-28 铜颗粒以及其制造方法
JP2019509979A JP7050756B2 (ja) 2017-03-31 2018-03-28 銅粒子及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-072054 2017-03-31
JP2017072054 2017-03-31

Publications (1)

Publication Number Publication Date
WO2018181482A1 true WO2018181482A1 (ja) 2018-10-04

Family

ID=63676352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/012780 WO2018181482A1 (ja) 2017-03-31 2018-03-28 銅粒子及びその製造方法

Country Status (5)

Country Link
JP (1) JP7050756B2 (ja)
KR (1) KR102403998B1 (ja)
CN (1) CN110325303B (ja)
TW (1) TWI803486B (ja)
WO (1) WO2018181482A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021025107A (ja) * 2019-08-07 2021-02-22 Jx金属株式会社 銅粉ペーストを用いた接合方法
JP2021025106A (ja) * 2019-08-07 2021-02-22 Jx金属株式会社 銅粉ペーストを用いた接合方法
JP2021080549A (ja) * 2019-11-22 2021-05-27 東邦チタニウム株式会社 銅粉体とその製造方法
CN113019468A (zh) * 2021-03-05 2021-06-25 昆明理工大学 一种铜基Cu-Cu2O-CuO三元复合核壳材料的制备方法
CN113165065A (zh) * 2018-12-04 2021-07-23 Mec株式会社 层叠造形用铜粉末、层叠造形用铜粉末的制造方法、层叠造形物的制造方法及层叠造形物
JP7490528B2 (ja) 2020-01-10 2024-05-27 東邦チタニウム株式会社 銅粉体

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002169273A (ja) * 2000-11-30 2002-06-14 Murata Mfg Co Ltd 感光性銅ペースト及びそれを用いた回路基板
JP2003530679A (ja) * 2000-04-10 2003-10-14 テトロニクス リミテッド ツイン・プラズマ・トーチ装置
WO2016052373A1 (ja) * 2014-10-03 2016-04-07 三井金属鉱業株式会社 銅粉

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6280641B1 (en) * 1998-06-02 2001-08-28 Mitsubishi Gas Chemical Company, Inc. Printed wiring board having highly reliably via hole and process for forming via hole
TWI359708B (en) * 2007-03-14 2012-03-11 Phibro Tech Inc Method of producing fine particle copper powders
CN102784643B (zh) * 2011-05-19 2014-09-24 中国科学院过程工程研究所 一种利用有机硅废触体回收的铜粉制备的三元铜催化剂及制备方法
CN102350499B (zh) * 2011-09-28 2013-05-08 河北工业大学 一种Cu/Cu2O核壳复合微球的制备方法
KR101353149B1 (ko) * 2011-12-27 2014-01-27 삼성전기주식회사 구리분말 제조방법
CN203495238U (zh) * 2013-10-08 2014-03-26 江苏泰禾金属工业有限公司 一种铜粉粉碎装置
CN105705276B (zh) * 2014-02-14 2018-01-19 三井金属矿业株式会社 铜粉

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003530679A (ja) * 2000-04-10 2003-10-14 テトロニクス リミテッド ツイン・プラズマ・トーチ装置
JP2002169273A (ja) * 2000-11-30 2002-06-14 Murata Mfg Co Ltd 感光性銅ペースト及びそれを用いた回路基板
WO2016052373A1 (ja) * 2014-10-03 2016-04-07 三井金属鉱業株式会社 銅粉

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113165065A (zh) * 2018-12-04 2021-07-23 Mec株式会社 层叠造形用铜粉末、层叠造形用铜粉末的制造方法、层叠造形物的制造方法及层叠造形物
JP2021025107A (ja) * 2019-08-07 2021-02-22 Jx金属株式会社 銅粉ペーストを用いた接合方法
JP2021025106A (ja) * 2019-08-07 2021-02-22 Jx金属株式会社 銅粉ペーストを用いた接合方法
JP2021080549A (ja) * 2019-11-22 2021-05-27 東邦チタニウム株式会社 銅粉体とその製造方法
WO2021100595A1 (ja) * 2019-11-22 2021-05-27 東邦チタニウム株式会社 銅粉体とその製造方法
JP7490528B2 (ja) 2020-01-10 2024-05-27 東邦チタニウム株式会社 銅粉体
CN113019468A (zh) * 2021-03-05 2021-06-25 昆明理工大学 一种铜基Cu-Cu2O-CuO三元复合核壳材料的制备方法

Also Published As

Publication number Publication date
TWI803486B (zh) 2023-06-01
KR20190132351A (ko) 2019-11-27
CN110325303B (zh) 2022-01-11
JPWO2018181482A1 (ja) 2020-02-06
TW201841702A (zh) 2018-12-01
CN110325303A (zh) 2019-10-11
KR102403998B1 (ko) 2022-05-31
JP7050756B2 (ja) 2022-04-08

Similar Documents

Publication Publication Date Title
WO2018181482A1 (ja) 銅粒子及びその製造方法
JP5937730B2 (ja) 銅粉の製造方法
JP5926644B2 (ja) 亜酸化銅粉末およびその製造方法
KR101301663B1 (ko) 미세 니켈 분말 및 그 제조방법
EP2311586A1 (en) Metal microparticle containing composition and process for production of the same
TWI716526B (zh) 鎳粉末
JP2009046708A (ja) 銀粉
CN111836915A (zh) 溅射靶用Fe-Pt-氧化物-BN系烧结体
JP4957465B2 (ja) 酸化物被覆銅微粒子とその製造方法
JP6914999B2 (ja) 表面処理銅粉
JP5003648B2 (ja) 酸化物被覆銅微粒子の製造方法
JP7194544B2 (ja) 粒子の製造方法
JP5034796B2 (ja) 酸化物被覆ニッケル微粒子とその製造方法
JP6491595B2 (ja) 白金パラジウムロジウム合金粉末の製造方法
JP6199430B2 (ja) 亜酸化銅粉末およびその製造方法
JP5136904B2 (ja) ニッケル粉の製造方法
JP5003668B2 (ja) 酸化物被覆銅微粒子の製造方法
WO2023074827A1 (ja) 銅粒子及びその製造方法
JP4154491B2 (ja) Cu・In系金属粉体およびその製法
TW201728762A (zh) 金屬複合粉末及其製造方法(二)
JP2024060334A (ja) PtAu合金粉末の製造方法
JP2021014634A (ja) 表面処理銅粉
JP5440647B2 (ja) 酸化物被覆ニッケル微粒子
JP2022180322A (ja) 銅粉末及びこれを含む導電性組成物、並びに、これを用いた配線構造及び導電性部材の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18777188

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019509979

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197024034

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18777188

Country of ref document: EP

Kind code of ref document: A1