WO2018181166A1 - 画像処理方法、装置及び画像記録装置 - Google Patents

画像処理方法、装置及び画像記録装置 Download PDF

Info

Publication number
WO2018181166A1
WO2018181166A1 PCT/JP2018/012111 JP2018012111W WO2018181166A1 WO 2018181166 A1 WO2018181166 A1 WO 2018181166A1 JP 2018012111 W JP2018012111 W JP 2018012111W WO 2018181166 A1 WO2018181166 A1 WO 2018181166A1
Authority
WO
WIPO (PCT)
Prior art keywords
correction
recording
quantization
recording element
image
Prior art date
Application number
PCT/JP2018/012111
Other languages
English (en)
French (fr)
Inventor
浩行 柴田
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to DE112018001148.8T priority Critical patent/DE112018001148T5/de
Priority to JP2019509794A priority patent/JP6831004B2/ja
Publication of WO2018181166A1 publication Critical patent/WO2018181166A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/40Picture signal circuits
    • H04N1/405Halftoning, i.e. converting the picture signal of a continuous-tone original into a corresponding signal showing only two levels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/205Ink jet for printing a discrete number of tones
    • B41J2/2054Ink jet for printing a discrete number of tones by the variation of dot disposition or characteristics, e.g. dot number density, dot shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/21Ink jet for multi-colour printing
    • B41J2/2132Print quality control characterised by dot disposition, e.g. for reducing white stripes or banding
    • B41J2/2139Compensation for malfunctioning nozzles creating dot place or dot size errors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/21Ink jet for multi-colour printing
    • B41J2/2132Print quality control characterised by dot disposition, e.g. for reducing white stripes or banding
    • B41J2/2142Detection of malfunctioning nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/21Ink jet for multi-colour printing
    • B41J2/2132Print quality control characterised by dot disposition, e.g. for reducing white stripes or banding
    • B41J2/2146Print quality control characterised by dot disposition, e.g. for reducing white stripes or banding for line print heads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K15/00Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers
    • G06K15/02Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers using printers
    • G06K15/18Conditioning data for presenting it to the physical printing elements
    • G06K15/1867Post-processing of the composed and rasterized print image
    • G06K15/1872Image enhancement
    • G06K15/1876Decreasing spatial resolution; Dithering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K15/00Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers
    • G06K15/02Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers using printers
    • G06K15/18Conditioning data for presenting it to the physical printing elements
    • G06K15/1867Post-processing of the composed and rasterized print image
    • G06K15/1872Image enhancement
    • G06K15/1881Halftoning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/40Picture signal circuits
    • H04N1/401Compensating positionally unequal response of the pick-up or reproducing head
    • H04N1/4015Compensating positionally unequal response of the pick-up or reproducing head of the reproducing head
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/40Picture signal circuits
    • H04N1/405Halftoning, i.e. converting the picture signal of a continuous-tone original into a corresponding signal showing only two levels
    • H04N1/4051Halftoning, i.e. converting the picture signal of a continuous-tone original into a corresponding signal showing only two levels producing a dispersed dots halftone pattern, the dots having substantially the same size
    • H04N1/4052Halftoning, i.e. converting the picture signal of a continuous-tone original into a corresponding signal showing only two levels producing a dispersed dots halftone pattern, the dots having substantially the same size by error diffusion, i.e. transferring the binarising error to neighbouring dot decisions

Definitions

  • the present invention relates to an image processing method, an apparatus, and an image recording apparatus, and more particularly, to a halftone processing technique that performs gradation expression by recording dots such as an inkjet recording apparatus.
  • an image is formed on a sheet by relatively moving a recording head in which a plurality of ink ejection openings (nozzles) are arranged and a printing medium (sheet) and ejecting ink droplets from the nozzle.
  • the ink jet recording apparatus includes a long line head having a nozzle array that covers the entire drawing area in the paper width direction orthogonal to the paper transport direction, and the paper is relative to the line head only once. There is a single-pass type that forms an image on a sheet by moving the sheet.
  • the density for each nozzle group is expressed in the image on the paper by quantizing the density of the continuous tone in the image to be recorded (halftone processing) and modulating the frequency of the dots.
  • the density is modulated for each nozzle group, so that the density of the input image to be quantized has a frequency characteristic corresponding to the shape of the nozzle group.
  • a visible beat beat, low frequency component
  • the beat refers to a phenomenon in which two waves having slightly different frequencies or frequencies interfere with each other to generate a composite wave whose amplitude changes slowly and periodically.
  • Human vision has a mountain-shaped spatial frequency characteristic (MTF (modulation transfer function) characteristic) that decreases in a low frequency range and a high frequency range.
  • MTF modulation transfer function
  • a rough striped pattern and a fine striped pattern are hard to see, in the case of about 5 cycles / degree, it is easy to visually recognize.
  • MTF modulation transfer function
  • Patent Document 1 the image density of a pixel column adjacent to a pixel column corresponding to a masked defective recording element is corrected, and a pixel column corresponding to a masked defective recording element and a pixel column adjacent thereto are defined.
  • Patent Document 1 specializes in non-ejection correction when the same pixel row is printed by the same nozzle. For this reason, as in the case where the same pixel row is printed by a plurality of nozzles, it cannot correspond to an arbitrary nozzle layout shape in which the correspondence relationship between the nozzles and the pixels on the paper is not one-to-one.
  • Patent Document 1 is specialized in non-ejection correction, and does not correspond to non-ejection correction other than non-ejection correction. For this reason, when performing a non-ejection correction other than the non-ejection correction, the graininess of the correction unit including the defective recording element vicinity region for performing the non-ejection correction is deteriorated, and the non-uniformity invisibility cannot be appropriately made invisible. there were.
  • the present invention has been made in view of such circumstances, and image processing that can suppress the occurrence of beats even when a non-ejection correction other than the non-ejection correction of a printing element is performed in an arbitrary nozzle layout shape. It is an object to provide a method, an apparatus, and an image recording apparatus.
  • an image processing method includes an abnormality detection step for detecting an abnormality for each recording element in the recording head in which a plurality of recording elements are arranged, and an abnormality detection step.
  • the correction recording element including the abnormal recording element is selected to correct the image defect caused by the abnormal recording element in which the abnormality is detected, and is recorded on the recording medium by the correction recording element.
  • the invisibility process for making image defects invisible by modulating the density of each pixel, and the quantization process for quantizing the image to be recorded on the recording medium, where the density is modulated by the invisibility process A quantity that positions the peak frequency component of quantization in the frequency band excluding the frequency band in the vicinity of the spatial frequency peak of the correction area, which is a pixel group recorded on the recording medium by the recording element. And a quantization step of performing reduction.
  • the first aspect by changing the peak frequency component of quantization in accordance with the spatial frequency peak of the correction region, even when stripe unevenness correction due to a printing element abnormality is applied in an arbitrary nozzle layout shape It becomes possible to suppress the occurrence of beats.
  • the image processing method further comprises an image recording step of recording an image on a recording medium by a recording head based on the quantized image in the first aspect,
  • the pixel array on the recording medium is recorded by a plurality of recording elements of the recording head.
  • the abnormal recording element in which the non-ejection of the ink is detected is masked, and relative to the masked abnormal recording element.
  • the density of the pixels recorded by the correction recording element other than the abnormal recording element is modulated according to the specific position.
  • the image processing method is the correction recording according to any one of the first to third aspects, according to the relative position from the abnormal recording element where the ink ejection curve is detected.
  • the density of the pixels recorded by the element is modulated.
  • the image processing method is the correction recording according to any one of the first to fourth aspects, according to the modulation of the abnormal recording element in which the density modulation is detected for the recorded pixel.
  • the density of the pixels recorded by the element is modulated.
  • the image processing method according to the sixth aspect of the present invention is the first to fifth aspects in which, in the quantization step, in accordance with the contents of invisibility performed for each correction recording element, for each correction recording element. In this example, different quantization is performed.
  • the abnormal recording element in which ink ejection is detected is masked, and the relative position from the masked abnormal recording element is determined. Accordingly, the density of the pixels recorded by the correction recording element other than the abnormal recording element is modulated, and in the quantization step, different quantization is performed between the abnormal recording element and the correction recording element other than the abnormal recording element. It is what I did.
  • the image processing method according to the eighth aspect of the present invention is a pixel that is recorded on a recording medium by a normal recording element other than the correction recording element in the quantization step according to any one of the first to seventh aspects. Different quantization is performed in the area and the correction area.
  • the degree of density modulation can be changed for each correction recording element in the invisibility process of the sixth aspect, and the density modulation is performed in the quantization process. Different quantization is performed for each correction area corresponding to the correction recording element having the same degree.
  • quantization is performed by applying a different threshold matrix for each invisible content applied to the correction recording element. It is a thing.
  • the image processing method according to the eleventh aspect of the present invention is common when the quantization process of the tenth aspect applies a different threshold matrix for each correction region to generate a different threshold matrix.
  • the threshold matrix is generated with reference to the pattern.
  • the threshold value matrix and the error diffusion are used together in the quantization step of the sixth aspect, and the ratio is different for each correction region.
  • a normal area which is a pixel recorded on a recording medium by a normal recording element other than the correction recording element, a correction area
  • quantization is performed by applying a different threshold matrix, and the threshold matrix applied to the correction region is generated by replacing a part of the basic threshold matrix applied to the normal region.
  • the image processing apparatus is caused by an abnormal recording element in which an abnormality is detected according to a detection result of detecting an abnormality for each recording element in a recording head in which a plurality of recording elements are arranged.
  • the correction recording element including the abnormal recording element is selected, and the density of the pixels recorded on the recording medium is modulated by the correction recording element to make the image defect invisible.
  • An invisible unit and a quantization unit that quantizes an image to be recorded on the recording medium, and a correction area space that is a pixel group recorded on the recording medium by the correction recording element whose density is modulated by the invisible unit A quantization unit that performs quantization so that a peak frequency component of quantization is located in a frequency band excluding a frequency band near the frequency peak.
  • An image recording apparatus includes a recording head for recording an image on a recording medium, and an image processing apparatus according to the fourteenth aspect.
  • the quantization peak frequency component in accordance with the spatial frequency peak of the correction region, beat irregularity can be applied even in the case of applying non-uniformity correction due to a printing element abnormality in an arbitrary nozzle layout shape. Occurrence can be suppressed.
  • FIG. 1 is a block diagram showing an image recording apparatus according to an embodiment of the present invention.
  • FIG. 2 is a flowchart showing the flow of the image processing method according to the embodiment of the present invention.
  • FIG. 3 is a diagram illustrating the positional relationship between the nozzles and the pixels on the print medium.
  • FIG. 4 is a plan view schematically showing the frequency characteristics of the correction region.
  • FIG. 5 is a diagram illustrating a preferable example of a peak frequency band in quantization.
  • FIG. 6 is a diagram illustrating a preferable example of a peak frequency band in quantization.
  • FIG. 7 is a diagram illustrating a preferable example of a peak frequency band in quantization.
  • FIG. 8 is a diagram illustrating an undesirable example of the peak frequency band in quantization.
  • FIG. 1 is a block diagram showing an image recording apparatus according to an embodiment of the present invention.
  • FIG. 2 is a flowchart showing the flow of the image processing method according to the embodiment of the present invention.
  • FIG. 9 is a diagram illustrating an undesirable example of the peak frequency band in quantization.
  • FIG. 10 is a diagram illustrating an undesirable example of the peak frequency band in quantization.
  • FIG. 11 is a diagram illustrating an undesirable example of the peak frequency band in quantization.
  • FIG. 12 is a diagram illustrating a positional relationship between nozzles and pixels on the print medium in the non-ejection correction method (1A).
  • FIG. 13 is a plan view schematically showing the frequency characteristics of the correction region in the non-ejection correction method (1A).
  • FIG. 14 is a plan view schematically showing the frequency characteristics of the normal correction region in the non-ejection correction method (1A).
  • FIG. 15 is a diagram illustrating the positional relationship between the nozzles and the pixels on the print medium in the non-ejection correction method (1B).
  • FIG. 16 is a plan view schematically showing frequency characteristics of the high density correction region in the non-ejection correction method (1B).
  • FIG. 17 is a plan view schematically showing the frequency characteristics of the medium density correction region in the non-ejection correction method (1B).
  • FIG. 18 is a diagram illustrating the positional relationship between the nozzles and the pixels on the print medium in the non-ejection correction method (1C-1).
  • FIG. 19 is a plan view schematically showing frequency characteristics of the highest density correction region in the non-ejection correction method (1C-1).
  • FIG. 20 is a plan view schematically showing the frequency characteristics of the high density correction region in the non-ejection correction method (1C-1).
  • FIG. 21 is a plan view schematically showing the frequency characteristics of the low density correction region in the non-ejection correction method (1C-1).
  • FIG. 22 is a plan view schematically showing the frequency characteristics of the normal density correction region in the non-ejection correction method (1C-1).
  • FIG. 23 is a diagram illustrating the positional relationship between the nozzles and the pixels on the print medium in the non-ejection correction method (1C-2).
  • FIG. 24 is a plan view schematically showing frequency characteristics of the high density correction region in the non-ejection correction method (1C-2).
  • FIG. 25 is a plan view schematically showing the frequency characteristics of the normal density correction region in the non-ejection correction method (1C-2).
  • FIG. 26 is a diagram illustrating the positional relationship between the nozzles and the pixels on the print medium in the non-ejection correction method (1D).
  • FIG. 27 is a plan view schematically showing frequency characteristics of the high density correction region in the non-ejection correction method (1D).
  • FIG. 28 is a plan view schematically showing frequency characteristics of the low density correction region in the non-ejection correction method (1D).
  • FIG. 29 is a plan view schematically showing frequency characteristics of the normal density correction region in the non-ejection correction method (1D).
  • FIG. 30 is a diagram illustrating the positional relationship between the nozzles and the pixels on the print medium in the ejection bending correction method (2A).
  • FIG. 31 is a plan view schematically showing the frequency characteristics of the correction region in the ejection bending correction method (2A).
  • FIG. 32 is a diagram showing the positional relationship between the nozzles and the pixels on the print medium in the ejection curve correction method (2B).
  • FIG. 33 is a plan view schematically showing the frequency characteristic of the correction region in the discharge bending correction method (2B).
  • FIG. 34 is a flowchart showing image processing and an image recording method according to this embodiment.
  • FIG. 35 is a diagram for explaining quantization according to an embodiment of the present invention.
  • FIG. 36 is a diagram illustrating the frequency characteristics of the quantization pattern.
  • FIG. 37 is a flowchart showing the quantization processing of each pixel.
  • FIG. 1 is a block diagram showing an image recording apparatus according to an embodiment of the present invention.
  • the image recording apparatus according to the present embodiment is a single-pass method capable of recording an image with a plurality of recording elements (nozzles) for one pixel row along the conveyance direction of the printing medium (paper).
  • nozzles recording elements
  • paper printing medium
  • the image recording apparatus 10 performs image processing for performing density correction (modulation) processing and quantization processing for invisibility of image unevenness and the like caused by the abnormal recording element according to the present embodiment.
  • a device 12 is included.
  • the image processing apparatus 12 includes a system control unit 14, a memory 16, an image processing unit 18, and a quantization unit 20.
  • the image recording apparatus 10 further includes an image recording unit 22 and an image inspection unit 24 in addition to the components of the image processing apparatus 12.
  • the system control unit 14 is a general control unit that controls the operation of the image recording apparatus 10.
  • the system control unit 14 includes a processor that executes various control operations by executing a control program stored in the memory 16, and outputs a control signal to each unit of the image recording apparatus 10 to control its operation.
  • the memory 16 includes a ROM (Read Only Memory) in which various control programs to be executed by the system control unit 14 and a RAM (Random Access Memory) are stored.
  • the memory 16 stores abnormal nozzle information (abnormal recording element information) D20 relating to nozzle abnormality in the print head (recording head) provided in the image recording unit 22.
  • the abnormal nozzle information D20 includes information (position information, etc.) for specifying the nozzle in which the abnormality is detected, information indicating the type of abnormality (for example, non-ejection, density change, ejection bending, etc.) and the degree of abnormality. And are included.
  • the image processing unit 18 receives input of input image data D10 for recording on a print medium (paper) and performs various image processing on the input image data D10. For example, when the input image data D10 is data of the three primary colors R (red), G (green), and B (blue), the image processing unit 18 converts the input image data D10 into ink of the image recording unit 22. The data is converted into data of each color (for example, C (cyan), M (magenta), Y (yellow), K (black)). This color conversion process can be performed by using, for example, a lookup table LUT (Look Up Table) for converting RGB three primary colors into CMYK four colors.
  • LUT Look Up Table
  • the image processing unit 18 performs a process of associating the nozzles of the image recording unit 22 with the pixels on the paper. Then, the image processing unit 18 performs gamma conversion (density modulation and unevenness correction processing) for each nozzle group.
  • the image processing unit 18 Based on the abnormal nozzle information D20, the image processing unit 18 corrects abnormal nozzles (abnormal recording elements) and defective nozzles (such as streak irregularities and artifacts) caused by the abnormal nozzles (correction recording). It functions as an invisibility unit that performs a process of reducing (invisibility) an image defect by performing mask or density modulation on the element. Specifically, the image processing unit 18 masks non-ejection nozzles (non-ejection), performs density correction (density modulation) around the masked nozzles, and results from the non-ejection nozzles. Reduce visibility of stripes. In addition, for the discharge bend nozzle, the image processing unit 18 modulates the density of the discharge bend nozzle and the surrounding nozzles according to the direction of the discharge bend, thereby confirming the visibility of an image defect caused by the discharge bend. Lower.
  • the image processing unit 18 performs density correction for the invisible processing using the parameters for density correction for the abnormal nozzle and the surrounding nozzles.
  • a pixel group recorded on a sheet by a nozzle subjected to density correction using the same parameter is referred to as a correction area (comp).
  • the quantization unit 20 performs quantization processing (halftone processing) on the input image data D10 that has been subjected to image processing such as color conversion processing and invisibility processing by the image processing unit 18 to data having a smaller number of gradations.
  • the quantization unit 20 converts the image data of 256 gradations into data of the number of gradations that can be recorded by the image recording unit 22, and creates the output dot pattern D40.
  • the number of gradations that can be recorded by the image recording unit 22 is described as four gradations (no drops, small drops, medium drops, and large drops), but the number of gradations is not limited to this. Absent. This quantization process is performed for each color that can be recorded by the image recording unit 22 (for example, for each CMYK).
  • the quantization unit 20 has a quantization peak frequency component in a frequency band excluding a frequency band in the vicinity of a spatial frequency peak of a correction area, which is a pixel group recorded on a sheet by a nozzle subjected to invisibility processing.
  • the peak frequency is a frequency at which the amplitude component in the frequency space when the two-dimensional Fourier transform is performed is relatively high (excluding the 0th frequency component which is an average value of the image). More specifically, it means a frequency band having an amplitude within about 5% from the maximum value of the amplitude value excluding the 0th frequency component in the frequency space.
  • the image recording unit 22 includes a print head (see FIG. 3A) for ejecting CMYK color inks onto a sheet (recording medium, print medium), and a conveying unit (for moving the sheet and the print head relative to each other).
  • a print head for ejecting CMYK color inks onto a sheet (recording medium, print medium)
  • a conveying unit for moving the sheet and the print head relative to each other.
  • a drum for sucking the paper and transporting the paper along the paper transport direction, a drum rotation driving mechanism, and the like are provided.
  • the image recording unit 22 ejects ink of each color from the print head onto the paper, and records an image on the paper.
  • the image inspection unit 24 includes an imaging unit for imaging the recorded image D50 recorded on the paper.
  • a scanner can be provided on the paper conveyance path.
  • the recorded image D50 captured by the image inspection unit 24 is sent to the system control unit 14.
  • the system control unit 14 analyzes the recorded image D50 captured by the image inspection unit 24, and updates the abnormal nozzle information D20 when a new abnormal nozzle is detected. Further, the system control unit 14 reflects the analysis result of the recorded image D50 in the invisibility process and the quantization process.
  • FIG. 2 is a flowchart showing the flow of the image processing method according to the embodiment of the present invention.
  • the image processing unit 18 when the input image data D10 to be recorded on the paper is input, the image processing unit 18 performs a process of associating the nozzles of the image recording unit 22 with the pixels on the paper (step S10). Then, the image processing unit 18 performs gamma conversion (density modulation and uneven stripe correction processing) for each nozzle group based on the abnormal nozzle information D20 and the density modulation information D30 (step S12, invisibility process).
  • gamma conversion density modulation and uneven stripe correction processing
  • the quantization unit 20 quantizes the input image data D10 that has been subjected to gamma conversion in step S12, and outputs an output dot pattern D40 (step S14, quantization process).
  • the image recording unit 22 records an image on a sheet according to the output dot pattern D40 (step S16, image recording step).
  • the abnormal nozzle information D20 can be created and updated by capturing an image recorded by the recorded image D50 by the image inspection unit 24 (abnormality detection step).
  • the image before quantization has frequency characteristics corresponding to the shape of the nozzle group (correction area on the paper). If this frequency characteristic and the frequency characteristic of quantization are close to each other, a visible beat is generated, and the image is deteriorated.
  • the frequency characteristics of the quantization are prevented from belonging to the frequency characteristics of the nozzle group subjected to density modulation and the frequency band in the neighborhood. As a result, it is possible to perform appropriate unevenness correction while preventing visible beat correction.
  • FIG. 3 is a diagram showing the positional relationship between the nozzles and the pixels on the print medium.
  • 3A shows the arrangement of nozzles in the print head
  • FIG. 3B is a plan view showing pixels recorded on the paper by the nozzles in FIG. 3A.
  • FIG. 3A illustrates a part of the nozzle arrangement of the print head.
  • the nozzles are arranged in a zigzag pattern in 4 rows ⁇ 4 columns.
  • this zigzag nozzle as shown in FIG. 3B, eight pixel rows are recorded on the print medium. That is, each pixel row along the paper transport direction (sub-scanning direction) is recorded by two nozzles.
  • the spatial frequency of each correction region in the example of FIG. 3 can be obtained as follows. First, parameter 1 is assigned to a pixel group in a target correction area, and parameter 0 is assigned to a non-target pixel. For example, in the example of FIG. 3A, when obtaining the spatial frequency of the correction region of the nozzle C1, 1 is assigned to C1, and 0 is assigned to other cases. Next, the spectrum is calculated by Fourier analysis of the two-dimensional array to which this parameter is assigned.
  • FIG. 4 is a plan view schematically showing the frequency characteristics of the nozzle map pattern.
  • the largest spatial frequency component is generated at the corner having the high Nyquist frequency (black dot portion A14). Then, a small component is generated by the 0 frequency in the transport direction (the region indicated by gray in the region A12) and the Nyquist frequency component.
  • the peak frequency may be arranged at the frequency characteristics of the divided correction areas and the places where they do not suffer. For this reason, quantization is performed so as to have a peak in the region A10 of FIG.
  • the frequency band that does not suffer from the frequency characteristics of the correction region is preferably a band that is at least 5 cycles / mm away from the peak of the spatial frequency of the nozzle group.
  • the frequency characteristic of the generated beat is determined by the difference between the spatial frequency of the nozzle group and the quantization peak frequency.
  • the human eye tends to visually recognize beats, particularly at frequencies in this range. Therefore, in order to avoid a strong frequency component in the correction region, the occurrence of beats can be effectively suppressed by shifting the quantization frequency peak more greatly.
  • FIGS. 8 to 11 are diagrams showing unfavorable examples of the peak frequency band in the quantization.
  • the areas Q10 to Q14 shown in FIGS. 5 to 7 are all within the area A10 shown in FIG. On the other hand, since the areas Q16 to Q22 shown in FIGS. 8 to 11 are all spread outside the area A10, visible beats are likely to occur.
  • Non-ejection correction Next, the characteristics of the nozzle group for each correction method will be described. First, a method for correcting streaks when there is a non-ejection nozzle will be described.
  • the nozzle B4 is a non-ejection nozzle, and the non-ejection nozzle B4 is masked (non-ejection).
  • the masked nozzle B4 is corrected by only one nozzle D4.
  • the density of the two nozzles A3 and A5 that record pixels adjacent to the pixel position recorded by the nozzle B4 in the conveyance vertical direction is corrected with the same parameter.
  • the areas A3 and A5, D4, and C3 and C5 corrected separately in the method (1C-1) are added together, and correction is performed by regarding the areas as the same correction area.
  • Such a change in the shape of the correction region can be implemented by changing the degree of density modulation in accordance with the relative position with the defective nozzle. Since the degree of density modulation can be changed for each gradation, for example, a method with a smaller number of correction nozzles (for example, method (1A)) is used because uneven stripes are relatively inconspicuous on the lower density side. To do. On the other hand, on the higher density side, since uneven stripes are relatively conspicuous, it is also possible to adopt a method (for example, method (1C-1) or (1C-2)) in which the number of correction nozzles and gradation are smaller. is there.
  • the frequency characteristic of the correction region when correcting by the nozzle group can be obtained as follows.
  • parameter 1 is assigned to the pixels in the target correction area, and parameter 0 is assigned to the other pixels.
  • parameter 0 is assigned to the other pixels.
  • 1 is assigned to the pixels A3, D4, and A5, and 0 is assigned to the other pixels.
  • the frequency characteristics of the nozzle group also change.
  • a quantization method a method of fixing quantization limited to a specific correction method, a method of employing a quantization method that does not generate beats for all the correction methods (for example, as shown in FIGS. 12 to 29) It is possible to take options such as having a peak component of the quantization frequency in the common part of all the regions A10 to A54) or changing the quantization method according to the correction method.
  • the defective nozzle (abnormal recording element, correction recording element) B4 is masked, and density modulation is performed on the correction nozzle (correction recording element) D4 used for density correction ( High concentration).
  • the normal nozzles (normal recording elements) A1, A3, A5, A7, B2, B6, B8, C1, C3, C5, C7, D2, D6, and D8, in which no abnormality is detected and density modulation, are performed. Not.
  • the spatial frequency characteristics of the pixel group (high density correction region) recorded by the correction nozzle D4 to be highly concentrated are as shown in FIG.
  • the spatial frequency characteristics of the pixel group (normal area) recorded by the normal nozzle are as shown in FIG.
  • the generation of beats can be suppressed by performing quantization so that the region A10 and the region A12 shown in FIGS. 13 and 14 have the peak component of the quantization frequency of the pixels recorded by each nozzle. it can.
  • the defective nozzle B4 is masked, and density modulation is performed on the correction nozzles A3 and A5 used for density correction (the density is increased). Then, density modulation is not performed for the normal nozzles other than the nozzles B4, A3, and A5.
  • the spatial frequency characteristics of the high density correction region which is a pixel group recorded by the correction nozzles A3 and A5 to be increased in density, are as shown in FIG. 16, and other than the defective nozzle B4 and the correction nozzles A3 and A5.
  • the spatial frequency characteristics of the pixel group (normal area or medium density correction area) recorded by the normal nozzle are as shown in FIG.
  • the defective nozzle B4 is masked and the density modulation is performed so that the correction nozzle D4 has the highest density.
  • the correction nozzles A3 and A5 are density-modulated so as to have the next highest density after the nozzle D4, and the correction nozzles C3 and C5 are density-modulated so that the density is lower than that of the normal nozzle.
  • the normal nozzles A1, A7, B2, B6, B8, C1, C7, D2, D6, and D8 are not subjected to density modulation.
  • the highest density correction area corresponding to the correction nozzle D4 having the highest density, the high density correction area corresponding to the correction nozzles A3 and A5 to be increased in density next to D4, and lower than the normal nozzle The spatial frequency characteristics of the low density correction area corresponding to the correction nozzles C3 and C5 to be density-enhanced and the normal density correction area corresponding to the normal nozzle are as shown in FIGS.
  • the defective nozzle B4 is masked, the correction nozzles A3, A5, C3, C5 and D4 are increased in density, and the normal nozzles A1, A7, B2, B6, B8, C1, C7, D2, D6 and D8 are not density modulated.
  • the spatial frequency characteristics of the high density correction area corresponding to the correction nozzles A3, A5, C3, C5 and D4 to be increased in density and the normal density correction area corresponding to the normal nozzle are shown in FIG. As shown in FIG.
  • the defective nozzle B4 is masked, and the correction nozzles A3, A5, C3, and C5 are increased in density. Then, the correction nozzles B2, B6, D2, and D6 have a lower density than the normal nozzle, and the correction nozzle D4 has a lower density than the correction nozzles B2, B6, D2, and D6. Normal nozzles A1, A7, B8, C1, C7 and D8 are not density modulated.
  • the spatial frequency characteristics of the normal density correction region corresponding to the normal nozzle are as shown in FIGS. Further, the spatial frequency characteristics of the correction nozzle D4 having the lowest density are the same as those in FIG.
  • the discharge bend nozzle is detected from the image recorded on the paper by the image inspection unit 24. Then, as shown in FIG. 30B, the density of the pixels drawn by the nozzles A3, C3, and B4 whose landing dot positions are separated by the discharge curve among the discharge curve nozzle D4 and the nozzle adjacent to the nozzle D4 is increased. As a result, white streaks generated by the discharge bend are filled. Further, the density of the nozzles B2, D2, A5, and C5 that are further adjacent to the nozzle having the higher density is lowered. This cancels out the increase in density due to the nozzle having a higher density.
  • the discharge bend nozzle B4 is subjected to density modulation to increase the density.
  • the correction nozzles A3, C3, and D4 adjacent to the nozzle B4 are subjected to density modulation, and the density is increased by the same parameters as the B4.
  • the correction nozzles A5, B2, C5 and D2 adjacent to the outside of the correction nozzles to be increased in density are made to have a lower density than the normal nozzles by the same parameter.
  • Normal nozzles A1, A7, B6, B8, C1, C7, D6 and D8 are not density modulated.
  • the spatial frequency characteristics as shown in FIG. 31 are obtained, so that the generation of beats can be prevented by providing the region A60 with a quantization frequency.
  • the discharge bend nozzle B4 and the correction nozzle A3 adjacent to B4 are increased in density by the same parameter.
  • the correction nozzles C3 and D4 are reduced in density by the same parameter.
  • Normal nozzles A1, A5, A7, B2, B6, B8, C1, C5, C7, D2, D6 and D8 are not density modulated.
  • the spatial frequency characteristic is as shown in FIG. 33, the occurrence of beats can be prevented by providing the region A70 with a quantization frequency.
  • FIG. 34 is a flowchart showing image processing and an image recording method according to this embodiment.
  • a method described in Japanese Patent No. 5843400 can be used as a method for correcting streaks.
  • the image processing unit 18 associates the nozzles of the print head of the image recording unit 22 with the pixels recorded on the paper. Then, the image processing unit 18 divides the pixels recorded on the paper based on the abnormal nozzle information D20 according to the criteria shown in Table 1 below (step S20).
  • step S20 according to Table 1, non-ejection, discharge bend, and nozzle abnormality are evaluated in the order of normal nozzles in the order in which stripes are conspicuous. Then, the image processing unit 18 sets an abnormal nozzle evaluated as abnormal and a nozzle in the vicinity thereof as a nozzle for correcting an abnormality. Then, the invisibility processing is performed for each area according to the result of the area division in step S20.
  • a nozzle with an ink ejection amount less than a certain value is detected as a non-ejection nozzle.
  • a nozzle that has a considerably large discharge bending amount and may cause the same unevenness as a non-discharge nozzle is also evaluated as a non-discharge nozzle regardless of the discharge amount. That is, a nozzle having a first threshold value (8 ⁇ m in the example of Table 1) larger than the second threshold value (3 ⁇ m in the example of Table 1) for detecting the discharge bending nozzle is determined as a non-ejection nozzle. Then, a nozzle group in the vicinity of the non-ejection nozzle is set as a non-ejection correction nozzle group, and the area is divided as a non-ejection nozzle area.
  • the threshold values used for the evaluation in Table 1 are merely examples, and can be changed according to the accuracy required for the paper and the recorded image.
  • “any” of the discharge bending amount in Table 1 means that it does not correspond to the first threshold value of 8 ⁇ m or more and the second threshold value of 3 ⁇ m or more.
  • the discharge amount “any” means that it does not fall below a certain value.
  • the image processing unit 18 masks the non-ejection nozzles for the non-ejection nozzles and the nozzle groups for non-ejection correction, and modulates the density of the nozzles in the vicinity of the non-ejection nozzles according to the non-ejection complementary nozzle correction LUT.
  • the non-ejection nozzle correction LUT changes the degree of modulation according to the distance from the pixel corresponding to the non-ejection nozzle on the paper. In particular, the density of the adjacent pixel of the pixel corresponding to the non-ejection nozzle is highly modulated, and the adjacent pixel on the side opposite to the non-ejection nozzle of the highly modulated pixel is weakly modulated.
  • a nozzle whose discharge bending amount is equal to or more than the second threshold and less than the first threshold is detected as a discharge bending nozzle. Then, a nozzle group in the vicinity of the discharge bend nozzle is set as a nozzle group for discharge bend correction, and the area is divided as a discharge bend nozzle region.
  • the image processing unit 18 modulates the density of the nozzle set as the discharge bend nozzle and the nozzle group for discharge bend correction according to the bend nozzle correction LUT. In particular, when a gap is generated due to nozzle bending and white stripes occur, the density of the pixels adjacent to the gap is modulated high, and the density of the adjacent pixels is modulated low.
  • a nozzle that does not correspond to either a non-ejection nozzle or a discharge bend nozzle is determined as a normal nozzle.
  • normal nozzle correction LUT it is possible to eliminate density modulation by setting 1 as a modulation coefficient.
  • a nozzle that performs linear correction with a constant coefficient may be used.
  • the three nozzle correction LUTs can be configured to determine the LUT for each abnormal nozzle by performing nozzle correction processing. It is also possible to set a fixed value without performing such processing for each nozzle.
  • nozzle correction processing for example, as in Japanese Patent No. 5597680, it is possible to carry out processing for determining parameters for flattening a chart in which a partial region is set as a non-ejection correction region in a simulated manner. .
  • the region dividing process determines a correction method for each nozzle based on the abnormal nozzle information D20.
  • a determination method other than the method according to Table 1 a configuration in which only a part of Table 1 (for example, only evaluation of non-ejection nozzles) is implemented is also conceivable.
  • Table 1 when there is a change in the density of the ink that does not lead to non-ejection, it may be detected as an abnormal nozzle.
  • the low frequency unevenness correction LUT is further applied to the density corrected by nozzle correction to modulate the density.
  • the low frequency unevenness correction LUT is generated by a separate low frequency unevenness correction process.
  • step S36 an image that is expected to have a flat density is output in a plurality of gradations, and the output image is read to measure the density.
  • tone characteristics are obtained for each region, and a value for inversely transforming the tone so that the density for each region is made uniform is stored in the low frequency unevenness correction LUT.
  • the quantization unit 20 performs quantization on each of the non-ejection nozzle region, the ejection bend region, and the normal nozzle region according to the non-ejection correction or the ejection bend correction method (steps S22 to S26), and outputs The dot pattern D40 is output.
  • the frequency characteristics of quantization are adjusted as described in the methods (1A) to (1D), (2A), and (2B).
  • the image recording unit 22 controls the print head based on the output dot pattern D40 and records (draws) an image on the paper (step S28).
  • the image inspection unit 24 captures the recorded image D50 (step S30).
  • the system control unit 14 performs an abnormal nozzle detection process based on the captured recording image D50 (step S32). If a new abnormal nozzle is detected, the system control unit 14 updates the abnormal nozzle information D20.
  • the system control unit 14 holds a history of abnormality detection in the memory 16, and based on this history, for example, an abnormality is expected to occur at a pixel position with a high frequency of abnormality detection, so that an abnormality is likely to occur. You may make it do. This makes it possible to efficiently detect abnormality.
  • the abnormal nozzle information D20 is acquired or updated.
  • the system control unit 14 performs nozzle correction processing when it is detected as a result of non-ejection correction or ejection bend correction that the uneven stripes are not sufficiently corrected based on the captured recording image D50 (Ste S34), the non-ejection nozzle correction LUT or the bent nozzle correction LUT is updated.
  • the correction nozzle may be changed instead of updating the non-ejection nozzle correction LUT or the bent nozzle correction LUT (step S34).
  • step S34 for example, when it is detected that sufficient non-uniformity correction cannot be performed in the method (1A) when non-ejection nozzles are uneven, another method (1B) or the like is performed. May be.
  • quantization Next, quantization will be described.
  • a configuration using a threshold matrix is suitable.
  • desired characteristics can be realized by providing the characteristics described in the methods (1A) to (1D), (2A), and (2B).
  • a method described in Japanese Patent No. 5189664 can be used as a method of creating a threshold matrix for realizing a specific frequency in quantization.
  • a general threshold value matrix creation method is described in paragraph No. [0062] and thereafter of Japanese Patent No. 5189664.
  • a frequency control method suitable for the present embodiment is described in paragraph [0094] and subsequent paragraphs of Japanese Patent No. 5189664.
  • it is possible to control the frequency characteristics of the pattern by convolving a real space filter as shown in FIG. 13 of Japanese Patent No. 5189664 with a filter that emphasizes low frequency components and optimizing the pattern. is there. It is also possible to realize frequency characteristics other than the frequency characteristics described in FIG. 11 of Japanese Patent No. 5189664 by changing the filter.
  • the method described in Japanese Patent No. 5901484 can be used.
  • a frequency sufficiently separated from the peak frequency of the spatial frequency corresponding to the shape of the correction region as the “reference frequency” described in Japanese Patent No. 5901484, it is possible to perform quantization suitable for this embodiment. is there. That is, as shown in FIG. 35A, a green noise-like transfer pattern is generated (binary). Then, as shown in FIG. 35B, the phase components (binary values) are combined into a quaternary value.
  • a repetitive pattern having a desired quantization peak frequency component and different phases is convoluted with the green noise pattern (FIG. 35C).
  • the component moves to the fundamental frequency portion as indicated by arrows in the wave number space on the right side of FIG. 35 (B) to FIG. 35 (C).
  • the pattern is further optimized so as to suppress the low-frequency component of the convolved pattern (FIG. 35D).
  • the low frequency component of the density change of the image is suppressed and flattened.
  • FIG. 36 shows the frequency characteristics of the quantization pattern generated by the above method.
  • the amplitude component is larger in the band indicated by white. That is, the band shown in white is the peak of the quantization frequency.
  • the correction region (nozzle mapping) shown in the present embodiment there is a spatial frequency peak corresponding to the shape of the correction region in the region A12.
  • the quantization frequency in the region A10. There is a peak.
  • the quantization pattern of this example can be generated by creating a threshold matrix using the above pattern.
  • a configuration in which the peak frequency component is changed for each correction type, nozzle group, and droplet type is suitable.
  • an example of an algorithm for changing the threshold matrix (dither) for each correction region (comp) will be shown.
  • this algorithm for an input image (two-dimensional input image) input_image [y, x], data gamma [comp] [y, x] [input_image [y, x]] and a threshold matrix after the correction region comp is subjected to gamma conversion Based on the dither relationship, the drop type of the output image is changed.
  • the various threshold matrixes that are switched according to the correction area are threshold matrixes having peaks in bands other than the frequency peak of the correction area to which the correction is applied.
  • threshold value matrices are used in areas adjacent to each other, it is preferable that they continuously change from each other.
  • One method for realizing such characteristics is to optimize a pattern by referring to a common pattern in a certain gradation as a constraint when generating a threshold matrix when generating a plurality of threshold matrices. A way to do this is conceivable. By doing in this way, it becomes possible to improve the continuity of both areas.
  • a method of creating a threshold matrix corresponding to one correction method in advance and referencing the threshold matrix when creating a threshold matrix corresponding to another correction method can be considered.
  • a portion corresponding to a normal correction area is set as a “basic threshold matrix” in Japanese Patent No. 4670696, a sub-matrix is set as a correction area close to a defect, and the basic threshold matrix is referred to.
  • the basic threshold matrix is referred to.
  • it is possible to improve the continuity between the correction areas by creating a sub-matrix that is a threshold value matrix of the correction area. In this way, it is possible to maintain continuity between threshold matrixes even in a wider gradation range.
  • FIG. 37 is a flowchart showing the quantization processing of each pixel.
  • dither [x, y] [comp] represents a component of a two-dimensional dither matrix.
  • th_edf [level] indicates an error diffusion threshold.
  • the quantization unit 20 includes the peripheral error by taking the sum of the original gradation value of the target pixel and the peripheral error diffused to the target pixel by error diffusion. A gradation value is calculated (step S50).
  • the image area is divided by comparing the dither matrix value (dither [x, y] [comp]) with the threshold th_dth [i] [level].
  • the threshold th_dth [i] [level] is set for each gradation value (level) of the target pixel and is stored in advance in a predetermined memory.
  • four regions from region A to region D using the first threshold th_dth [0] [level], the second threshold th_dth [1] [level], and the third threshold th_dth [2] [level] It is divided into.
  • the dither matrix value dither [x, y] [comp] is compared with the first threshold th_dth [0] [level] (step S52). As a result of the comparison, if the value of the dither matrix is smaller, the dot size specified by dot [0] [level] [comp] is selected (step S54).
  • step S522 when the value of the dither matrix is equal to or greater than the first threshold value, the value of the dither matrix is subsequently compared with the second threshold value th_dth [1] [level] (step S56). If the value of the dither matrix is smaller as a result of the comparison, the dot size specified by dot [1] [level] [comp] is selected (step S58).
  • step S60 if the value of the dither matrix is greater than or equal to the second threshold value, the value of the dither matrix is further compared with the third threshold value th_dth [2] [level] (step S60). If the value of the dither matrix is equal to or greater than the third threshold th_dth [2] [level], the gradation value including the peripheral error is compared with the error diffusion threshold th_edf [level] (step S62).
  • the error diffusion threshold th_edf [level] is also set for each gradation value of the target pixel and is stored in advance in a predetermined memory. If the gradation value including the peripheral error is smaller than the error diffusion threshold as a result of the comparison in step S62, the dot size specified by dot [2] [level] [comp] is selected (step S64). ).
  • step S66 when the gradation value including the peripheral error is equal to or larger than the error diffusion threshold in step S62, the dot size specified by dot [3] [level] [comp] is selected (step S66). As described above, in the region where the dither threshold is equal to or smaller than the third threshold (and equal to or greater than the second threshold), binarization processing by the error diffusion method is performed.
  • step S60 if the value of the dither matrix is larger than the third threshold, the dot size specified by dot [4] [level] [comp] is selected (step S68).
  • each dot [j] [level] [comp] can be determined as appropriate for each gradation value. For example, for a certain gradation value, dot [0] [level] is a small drop, dot [1] [level] is a medium drop, dot [2] [level] is no drop, dot [3] [level] Can be determined as a large drop and dot [4] [level] as a large drop. Basically, it is sufficient if dot [3] [level]> dot [2] [level] is satisfied, and each value is determined so that a large dot is shot when the quantization error is large and a small dot is shot when the quantization error is small.
  • the quantization error is an error generated by quantizing the gradation value including the peripheral error, and is a difference between the gradation value including the peripheral pixel and the quantization threshold.
  • a quantization threshold is associated with each dot [0] [level], dot [1] [level], dot [2] [level], dot [3] [level], and dot [4] [level]. Tone value.
  • the calculated quantization error is diffused to surrounding pixels according to a predetermined error diffusion matrix (step S72). Subsequently, the quantization target pixel is shifted to an adjacent pixel, and the same processing is performed to quantize all the pixels.
  • the recording rate of dot [0] [level], dot [1] [level], dot [4] [level] in each area corresponding to steps S54, S58, and S68 is dither.
  • the remaining area is determined by binarization using an error diffusion method (steps S70 and S72).
  • each threshold th_dth [i] [level] uses a threshold at the original gradation value of the target pixel, but a threshold at a gradation value including a peripheral error may be used.
  • each parameter can be changed according to the correction area (comp).
  • the threshold value th_dth to be compared with the threshold value matrix is compared to divide into four types of areas A, B, C, and D for each correction area (subscript above). Of these regions, only the region C determines the dot by comparison with the error diffusion threshold, and in the other regions, the dot is determined as it is. That is, the closer the ratio of the areas A, B, and D to the ratio of the generated dots, the more the pattern is determined by the threshold matrix. Conversely, if the ratio of the regions A, B, and D is far from the ratio of generated dots, the pattern is determined by error diffusion.
  • the peak component of the quantization frequency can be removed from the frequency peak in the correction region by error diffusion.
  • the error diffusion matrix can be changed for each correction area. Furthermore, it is also effective to increase the ratio of the quantization error that flows in the same correction area to the amount that flows in different correction areas (steps S70 and S72).
  • the image processing method according to the present embodiment can be applied to an image recording apparatus of an arbitrary system other than the above-described zigzag-arranged inkjet head in order to associate the nozzles with the pixels on the paper.
  • the present invention can be applied to a shuttle scan type ink jet recording apparatus in which an ink jet head is reciprocated in a main scanning direction perpendicular to the paper conveyance direction (sub scanning direction) to complete an image by several passes. It is.
  • the present embodiment can be applied to a shuttle scan type inkjet recording apparatus in which a plurality of nozzles of the same color are arranged in the sub-scanning direction.
  • the hardware structure of a processing unit that executes various types of processing (for example, an invisible unit and a quantization unit) is various types of processors as shown below.
  • the circuit configuration can be changed after manufacturing a CPU (Central Processing Unit) or FPGA (Field Programmable Gate Array) that is a general-purpose processor that functions as various processing units by executing software (programs).
  • a CPU Central Processing Unit
  • FPGA Field Programmable Gate Array
  • dedicated logic circuits such as programmable logic devices (Programmable Logic Devices: PLDs) and ASICs (Application Specific Specific Integrated Circuits) that have specially designed circuit configurations to execute specific processing. It is.
  • One processing unit may be configured by one of these various processors, or may be configured by two or more processors of the same type or different types (for example, a plurality of FPGAs or a combination of CPU and FPGA). May be. Further, the plurality of processing units may be configured by one processor. As an example of configuring a plurality of processing units with one processor, first, as represented by a computer such as a client or server, one processor is configured with a combination of one or more CPUs and software. There is a form in which the processor functions as a plurality of processing units.
  • SoC system-on-chip
  • a form of using a processor that realizes the functions of the entire system including a plurality of processing units with a single IC (integrated circuit) chip. is there.
  • various processing units are configured using one or more of the various processors as a hardware structure.
  • circuitry circuitry in which circuit elements such as semiconductor elements are combined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Ink Jet (AREA)
  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Abstract

任意のノズルレイアウト形状において、記録素子の不吐出補正以外のスジムラ補正を行った場合にもビートの発生を抑制することが可能な画像処理方法、装置及び画像記録装置を提供する。画像処理方法は、複数の記録素子が配列された記録ヘッドにおいて、記録素子ごとに異常を検知する異常検知工程と、異常検知工程における検知結果に応じて、異常が検知された異常記録素子に起因する画像の不良を補正するために、異常記録素子を含む補正用記録素子によって記録媒体に記録される画素の濃度をそれぞれ変調して、画像の不良を不可視化する不可視化工程と、記録媒体に記録する画像を量子化する量子化工程であって、不可視化工程によって濃度が変調された補正用記録素子によって記録媒体に記録される画素群である補正領域の空間周波数ピークの近傍周波数帯域を除く周波数帯域に、量子化のピーク周波数成分を位置させるように量子化を行う量子化工程とを備える。

Description

画像処理方法、装置及び画像記録装置
 本発明は画像処理方法、装置及び画像記録装置に係り、特にインクジェット記録装置等のドットの記録によって階調表現を行うハーフトーン処理技術に関する。
 インクジェット記録装置では、複数のインク吐出口(ノズル)が配列された記録ヘッドと印刷媒体(用紙)とを相対移動させ、ノズルからインク滴を吐出することにより、用紙上に画像を形成する。インクジェット記録装置としては、用紙の搬送方向に直交する用紙幅方向について描画領域の全範囲をカバーするノズル配列を備えた長尺のラインヘッドを備え、このラインヘッドに対して用紙を1回だけ相対移動させることにより、用紙上に画像を形成するシングルパス方式のものがある。
特開2014-144610号公報
 インクジェット記録装置では、ノズルごとに、不吐出、吐出曲がり等の吐出異常がある場合、用紙の搬送方向に沿ってスジムラが発生する。このようなスジムラを補正するためのスジムラ補正技術としては、異常が検知されたノズルをマスク(不吐出化)したり、ノズル群ごとに濃度を補正(変調)することにより、スジムラの視認性を下げる(又は不可視化する)方法がある。このスジムラ補正技術によれば、ノズル群ごとの濃度特性の差異が是正されるので、理想的には各ノズル群の濃度が均一化される。
 ノズル群ごとの濃度は、記録する画像における連続階調の濃度を量子化(ハーフトーン処理)し、ドットとドットの周波数を変調することにより、用紙上の画像において階調が表現される。しかし、スジムラ補正を行うと、ノズル群ごとに濃度が変調されるため、量子化対象の入力画像の濃度がこのノズル群の形状に応じた周波数特性を持つ。そして、このノズル群の形状に応じた周波数特性と、量子化の周波数特性とが互いに近しいと、視認可能なビート(うなり、低周波成分)が発生する。
 ここで、ビートとは、周波数又は振動数がわずかに異なる2つの波が干渉して、振幅がゆっくり周期的に変わる合成波を生ずる現象をいう。人間の視覚は、低周波域と高周波域で低下した山形の空間周波数特性(MTF(modulation transfer function)特性)を有する。このため、粗い縞模様や細かい縞模様は見えにくいが、約5cycles/degreeの場合に最も視認しやすい。すなわち、スジムラ補正を行った場合、濃度変調によってスジムラは補正されたとしても、スジムラ補正により濃度変調された部位に、ノズル群の形状に応じた周波数特性と量子化の周波数特性との関係によっては視認可能なビートが発生し、結果として画像の不良の補正が適切に行われないという課題がある(特許文献1参照)。
 特許文献1には、マスク処理された不良記録素子に対応する画素列に隣接する画素列の画像濃度を補正し、マスク処理された不良記録素子に対応する画素列及びこれに隣接する画素列を含む第1の画像領域(不良記録素子近傍領域)と、それ以外の第2の画像領域(正常領域)について異なる量子化を行うことにより、複数の第1の画像領域間のアーティファクトを抑制する技術が開示されている。
 しかしながら、特許文献1に記載の技術は、同一画素列が同一ノズルで印字される場合における不吐出補正に特化している。このため、同一画素列が複数のノズルで印字される場合のように、ノズルと用紙上の画素との対応関係が一対一ではない任意のノズルレイアウト形状に対応できない。
 さらに、特許文献1に記載の技術は、不吐出補正に特化しており、不吐出補正以外のスジムラ補正には対応していない。このため、不吐出補正以外のスジムラ補正を行う場合には、スジムラ補正を行う不良記録素子近傍領域を含む補正部の粒状感が悪化し、スジムラの不可視化が適切に行うことができないという課題があった。
 さらに、ノズルレイアウト形状が複雑になると、量子化の周波数特性を制御してビートを抑制する方法のみでは、周波数特性に対する制約が増大する。このため、全体的に(すなわち、非補正部を含む用紙上に記録される画像全体で)粒状感が悪化するという課題があった。
 本発明はこのような事情に鑑みてなされたもので、任意のノズルレイアウト形状において、記録素子の不吐出補正以外のスジムラ補正を行った場合にもビートの発生を抑制することが可能な画像処理方法、装置及び画像記録装置を提供することを目的とする。
 上記課題を解決するために、本発明の第1の態様に係る画像処理方法は、複数の記録素子が配列された記録ヘッドにおいて、記録素子ごとに異常を検知する異常検知工程と、異常検知工程における検知結果に応じて、異常が検知された異常記録素子に起因する画像の不良を補正するために、異常記録素子を含む補正用記録素子を選択し、補正用記録素子によって記録媒体に記録される画素の濃度をそれぞれ変調して、画像の不良を不可視化する不可視化工程と、記録媒体に記録する画像を量子化する量子化工程であって、不可視化工程によって濃度が変調された補正用記録素子によって記録媒体に記録される画素群である補正領域の空間周波数ピークの近傍周波数帯域を除く周波数帯域に、量子化のピーク周波数成分を位置させるように量子化を行う量子化工程とを備える。
 第1の態様によれば、補正領域の空間周波数ピークに応じて、量子化のピーク周波数成分を変更することにより、任意のノズルレイアウト形状において、記録素子の異常によるスジムラ補正を適用した場合にもビートの発生を抑制することが可能になる。
 本発明の第2の態様に係る画像処理方法は、第1の態様において、量子化された画像に基づいて、記録ヘッドにより記録媒体に画像を記録する画像記録工程を更に備え、画像記録工程において、記録媒体上の画素列が記録ヘッドの複数の記録素子によって記録されるようにしたものである。
 第2の態様によれば、1つの画素列が複数の記録素子で記録される場合であっても、ビートの抑制が可能になる。
 本発明の第3の態様に係る画像処理方法は、第1又は第2の態様の不可視化工程において、インクの不吐出が検知された異常記録素子をマスクし、マスクした異常記録素子からの相対的な位置に応じて、異常記録素子以外の補正用記録素子により記録される画素の濃度を変調するようにしたものである。
 本発明の第4の態様に係る画像処理方法は、第1から第3のいずれかの態様において、インクの吐出曲がりが検知された異常記録素子からの相対的な位置に応じて、補正用記録素子により記録される画素の濃度を変調するようにしたものである。
 本発明の第5の態様に係る画像処理方法は、第1から第4のいずれかの態様において、記録される画素について濃度の変調が検知された異常記録素子の変調に応じて、補正用記録素子により記録される画素の濃度を変調するようにしたものである。
 本発明の第6の態様に係る画像処理方法は、第1から第5の態様において、補正用記録素子ごとに施された不可視化の内容に応じて、量子化工程において、補正用記録素子ごとに異なる量子化を行うようにしたものである。
 本発明の第7の態様に係る画像処理方法は、第6の態様の不可視化工程において、インクの不吐出が検知された異常記録素子をマスクし、マスクした異常記録素子からの相対的な位置に応じて、異常記録素子以外の補正用記録素子により記録される画素の濃度を変調し、量子化工程において、異常記録素子と、異常記録素子以外の補正用記録素子とで異なる量子化を行うようにしたものである。
 本発明の第8の態様に係る画像処理方法は、第1から第7のいずれかの態様の量子化工程において、補正用記録素子以外の通常記録素子により記録媒体に記録される画素である通常領域と、補正領域とで、異なる量子化を行うようにしたものである。
 本発明の第9の態様に係る画像処理方法は、第6の態様の不可視化工程において、補正用記録素子ごとに濃度の変調の程度が変更可能であり、量子化工程において、濃度の変調の程度が同じ補正用記録素子に対応する補正領域ごとに異なる量子化を行うようにしたものである。
 本発明の第10の態様に係る画像処理方法は、第6の態様の量子化工程において、補正用記録素子に施された不可視化の内容ごとに異なる閾値マトリクスを適用して量子化を行うようにしたものである。
 本発明の第11の態様に係る画像処理方法は、第10の態様の量子化工程において、補正領域ごとに異なる閾値マトリクスを適用して量子化を行い、異なる閾値マトリクスを生成するときに、共通のパターンを参照して、閾値マトリクスを生成するようにしたものである。
 本発明の第12の態様に係る画像処理方法は、第6の態様の量子化工程において、閾値マトリクスと誤差拡散を併用し、その割合が補正領域ごとに異なるようにしたものである。
 本発明の第13の態様に係る画像処理方法は、第6の態様の量子化工程において、補正用記録素子以外の通常記録素子により記録媒体に記録される画素である通常領域と、補正領域とで、異なる閾値マトリクスを適用して量子化を行い、補正領域に適用される閾値マトリクスは、通常領域に適用される基本閾値マトリクスの一部を置き換えて生成されるようにしたものである。
 本発明の第14の態様に係る画像処理装置は、複数の記録素子が配列された記録ヘッドにおいて、記録素子ごとに異常を検知した検知結果に応じて、異常が検知された異常記録素子に起因する画像の不良を補正するために、異常記録素子を含む補正用記録素子を選択し、補正用記録素子によって記録媒体に記録される画素の濃度をそれぞれ変調して、画像の不良を不可視化する不可視化部と、記録媒体に記録する画像を量子化する量子化部であって、不可視化部によって濃度が変調された補正用記録素子によって記録媒体に記録される画素群である補正領域の空間周波数ピークの近傍周波数帯域を除く周波数帯域に、量子化のピーク周波数成分が位置するように量子化を行う量子化部とを備える。
 本発明の第15の態様に係る画像記録装置は、記録媒体に画像を記録するための記録ヘッドと、第14の態様に係る画像処理装置とを備える。
 本発明によれば、補正領域の空間周波数ピークに応じて、量子化のピーク周波数成分を変更することにより、任意のノズルレイアウト形状において、記録素子の異常によるスジムラ補正を適用した場合にもビートの発生を抑制することが可能になる。
図1は、本発明の一実施形態に係る画像記録装置を示すブロック図である。 図2は、本発明の一実施形態に係る画像処理方法の流れを示すフローチャートである。 図3は、ノズルと印刷媒体上の画素の位置関係を示す図である。 図4は、補正領域の周波数特性を模式的に示す平面図である。 図5は、量子化におけるピーク周波数帯域の好ましい例を示す図である。 図6は、量子化におけるピーク周波数帯域の好ましい例を示す図である。 図7は、量子化におけるピーク周波数帯域の好ましい例を示す図である。 図8は、量子化におけるピーク周波数帯域の好ましくない例を示す図である。 図9は、量子化におけるピーク周波数帯域の好ましくない例を示す図である。 図10は、量子化におけるピーク周波数帯域の好ましくない例を示す図である。 図11は、量子化におけるピーク周波数帯域の好ましくない例を示す図である。 図12は、不吐出補正方法(1A)におけるノズルと印刷媒体上の画素の位置関係を示す図である。 図13は、不吐出補正方法(1A)における補正領域の周波数特性を模式的に示す平面図である。 図14は、不吐出補正方法(1A)における通常補正領域の周波数特性を模式的に示す平面図である。 図15は、不吐出補正方法(1B)におけるノズルと印刷媒体上の画素の位置関係を示す図である。 図16は、不吐出補正方法(1B)における高濃度補正領域の周波数特性を模式的に示す平面図である。 図17は、不吐出補正方法(1B)における中濃度補正領域の周波数特性を模式的に示す平面図である。 図18は、不吐出補正方法(1C-1)におけるノズルと印刷媒体上の画素の位置関係を示す図である。 図19は、不吐出補正方法(1C-1)における最高濃度補正領域の周波数特性を模式的に示す平面図である。 図20は、不吐出補正方法(1C-1)における高濃度補正領域の周波数特性を模式的に示す平面図である。 図21は、不吐出補正方法(1C-1)における低濃度補正領域の周波数特性を模式的に示す平面図である。 図22は、不吐出補正方法(1C-1)における通常濃度補正領域の周波数特性を模式的に示す平面図である。 図23は、不吐出補正方法(1C-2)におけるノズルと印刷媒体上の画素の位置関係を示す図である。 図24は、不吐出補正方法(1C-2)における高濃度補正領域の周波数特性を模式的に示す平面図である。 図25は、不吐出補正方法(1C-2)における通常濃度補正領域の周波数特性を模式的に示す平面図である。 図26は、不吐出補正方法(1D)におけるノズルと印刷媒体上の画素の位置関係を示す図である。 図27は、不吐出補正方法(1D)における高濃度補正領域の周波数特性を模式的に示す平面図である。 図28は、不吐出補正方法(1D)における低濃度補正領域の周波数特性を模式的に示す平面図である。 図29は、不吐出補正方法(1D)における通常濃度補正領域の周波数特性を模式的に示す平面図である。 図30は、吐出曲がり補正方法(2A)におけるノズルと印刷媒体上の画素の位置関係を示す図である。 図31は、吐出曲がり補正方法(2A)における補正領域の周波数特性を模式的に示す平面図である。 図32は、吐出曲がり補正方法(2B)におけるノズルと印刷媒体上の画素の位置関係を示す図である。 図33は、吐出曲がり補正方法(2B)における補正領域の周波数特性を模式的に示す平面図である。 図34は、本実施形態に係る画像処理及び画像記録方法を示すフローチャートである。 図35は、本発明の一実施形態に係る量子化を説明するための図である。 図36は、量子化パターンの周波数特性を示す図である。 図37は、各画素の量子化処理を示すフローチャートである。
 以下、添付図面に従って本発明に係る画像処理方法、装置及び画像記録装置の実施の形態について説明する。
 [画像記録装置の概要]
 図1は、本発明の一実施形態に係る画像記録装置を示すブロック図である。なお、以下の説明では、本実施形態に係る画像記録装置を、印刷媒体(用紙)の搬送方向に沿う1つの画素列に対して複数の記録素子(ノズル)で画像を記録可能なシングルパス方式のインクジェット方式の画像記録装置に適用した例について説明する。
 図1に示すように、画像記録装置10は、本実施形態に係る異常記録素子に起因する画像のスジムラ等の不可視化するための濃度補正(変調)処理及び量子化処理を行うための画像処理装置12を含んでいる。画像処理装置12は、システム制御部14と、メモリ16と、画像処理部18と、量子化部20とを備える。画像記録装置10は、画像処理装置12の各構成に加えて、画像記録部22と、画像検査部24とを更に備える。
 システム制御部14は、画像記録装置10の動作を制御する統括制御部である。システム制御部14は、メモリ16に格納された制御プログラムを実行して各種の演算を行うプロセッサを含んでおり、画像記録装置10の各部に制御信号を出力してその動作を制御する。
 メモリ16は、システム制御部14が実行するための各種の制御プログラムが格納されるROM(Read Only Memory)と、RAM(Random Access Memory)とを含んでいる。メモリ16には、画像記録部22に設けられたプリントヘッド(記録ヘッド)におけるノズルの異常に関する異常ノズル情報(異常記録素子情報)D20が格納されている。異常ノズル情報D20には、異常が検知されたノズルを特定するための情報(位置情報等)と、異常の種類(例えば、不吐出、濃度の変化、吐出曲がり等)及び異常の程度を示す情報とが含まれている。
 画像処理部18は、印刷媒体(用紙)に記録するための入力画像データD10の入力を受け付けて、入力画像データD10に対して各種の画像処理を施す。例えば、入力画像データD10がR(赤)、G(緑)、B(青)の3原色のデータの場合には、画像処理部18は、入力画像データD10を、画像記録部22のインクの色(例えば、C(シアン)、M(マゼンタ)、Y(黄)、K(黒))の各色のデータに変換する。この色変換処理は、例えば、RGB3原色をCMYK4色に変換するためのルックアップテーブルLUT(Look Up Table)を用いて行うことができる。
 また、画像処理部18は、画像記録部22のノズルと用紙上の画素との対応づけ処理を行う。そして、画像処理部18は、ノズル群ごとにガンマ変換(濃度変調及びスジムラ補正処理)を行う。
 画像処理部18は、異常ノズル情報D20に基づいて、異常ノズル(異常記録素子)と、異常ノズルに起因する画像の不良(スジムラ、アーティファクト等)を補正するための補正用のノズル(補正用記録素子)に対して、マスク又は濃度変調を行って、画像の不良の視認性を下げる(不可視化する)処理を行う不可視化部として機能する。具体的には、画像処理部18は、不吐出のノズルをマスク(不吐出化)して、マスクしたノズルの周囲のノズルの濃度補正(濃度変調)を行って、不吐出のノズルに起因するスジムラの視認性を下げる。また、画像処理部18は、吐出曲がりのノズルについては、吐出曲がりの方向に応じて、吐出曲がりのノズル及びその周囲のノズルの濃度変調を行って、吐出曲がりに起因する画像の不良の視認性を下げる。
 ここで、画像処理部18は、異常ノズル及びその周囲のノズルについて、濃度補正のためのパラメータを用いて不可視化処理のための濃度補正を行う。本実施形態では、同一のパラメータを用いて濃度補正が行われたノズルによって用紙上に記録された画素群を補正領域(comp)という。
 量子化部20は、画像処理部18によって色変換処理、不可視化処理等の画像処理が施された入力画像データD10を、より階調数の少ないデータに量子化処理(ハーフトーン処理)を行う。量子化部20は、例えば、256階調の画像データを、画像記録部22で記録可能な階調数のデータに変換して出力ドットパターンD40を作成する。本実施形態では、画像記録部22で記録可能な階調数を4階調(滴なし、小滴、中滴、及び大滴)として説明するが、階調数はこれに限定されるものではない。なお、この量子化処理は、画像記録部22で記録可能な色ごとに(例えば、CMYKごとに)行われる。
 量子化部20は、不可視化処理が施されたノズルによって用紙に記録される画素群である補正領域の空間周波数ピークの近傍周波数帯域を除く周波数帯域に、量子化のピーク周波数成分をもつように量子化を行う。ここで、ピーク周波数とは2次元フーリエ変換を実施した際の周波数空間における振幅成分が相対的に高くなる周波数のことである(画像の平均値である第0周波数成分は除く)。より具体的には、周波数空間において第0周波数成分を除いた振幅値の最大値から約5%以内の振幅をもつ周波数帯域をいう。
 画像記録部22は、CMYKの各色のインクを用紙(記録媒体、印刷媒体)に吐出するためのプリントヘッド(図3(A)参照)と、用紙とプリントヘッドを相対移動させるための搬送手段(例えば、用紙を吸着して、用紙の搬送方向に沿って搬送するためのドラム、ドラム回転用の駆動機構等)とを備える。画像記録部22は、出力ドットパターンD40にしたがって、用紙上にプリントヘッドから各色のインクを吐出させ、用紙上に画像を記録する。
 画像検査部24は、用紙上に記録された記録画像D50を撮像するための撮像部を備える。撮像部としては、用紙の搬送経路上にスキャナを設けることができる。画像検査部24によって撮像された記録画像D50はシステム制御部14に送られる。
 システム制御部14は、画像検査部24によって撮像された記録画像D50を解析して、新たに異常ノズルを検知した場合には、異常ノズル情報D20を更新する。また、システム制御部14は、記録画像D50の解析結果を不可視化処理及び量子化処理に反映させる。
 [画像処理方法の概要]
 図2は、本発明の一実施形態に係る画像処理方法の流れを示すフローチャートである。
 図2に示すように、用紙に記録する入力画像データD10が入力されると、画像処理部18は、画像記録部22のノズルと用紙上の画素との対応づけ処理を行う(ステップS10)。そして、画像処理部18は、異常ノズル情報D20及び濃度変調情報D30に基づいてノズル群ごとにガンマ変換(濃度変調及びスジムラ補正処理)を行う(ステップS12、不可視化工程)。
 次に、量子化部20は、ステップS12においてガンマ変換が施された入力画像データD10の量子化を行い、出力ドットパターンD40を出力する(ステップS14、量子化工程)。
 画像記録部22は、出力ドットパターンD40にしたがって用紙上に画像を記録する(ステップS16、画像記録工程)。
 この記録画像D50によって記録された画像を画像検査部24によって撮像することにより、異常ノズル情報D20の作成、更新を行うことができる(異常検知工程)。
 スジムラ補正のために、ガンマ変換を含む画像処理によって、ノズル群ごとに濃度を変調させると、量子化前の画像はノズル群の形状(用紙上の補正領域)に応じた周波数特性を帯びる。この周波数特性と量子化の周波数特性が近しいと視認可能なビートが発生するので、画像が劣化する。本実施形態では、濃度変調したノズル群の周波数特性及びその近郷の周波数帯域に、量子化の周波数特性が属さないようにする。これにより、視認可能なビートの補正を防止しつつ、適切なスジムラ補正を行うことが可能になる。
 [ノズルと印刷媒体上の位置関係とノズルマップパターンの周波数特性]
 次に、ノズルと印刷媒体上の画素の位置関係とノズルマップパターンの周波数特性について説明する。以下の説明では、ノズルがジグザグ状(staggered pattern)に配列されたプリントヘッドを例として説明する。
 図3は、ノズルと印刷媒体上の画素の位置関係を示す図である。図3(A)は、プリントヘッドにおけるノズルの配置を示し、図3(B)は、図3(A)のノズルによって用紙上に記録された画素を示す平面図である。
 図3(A)のノズルに付された記号は、図3(B)の画素の記号にそれぞれ対応している。図3(A)は、プリントヘッドのノズルの配置の一部を切り出して示したものであり、ノズルが4行×4列でジグザグ状に配置されている。このジグザグ状のノズルにより、図3(B)に示すように、印刷媒体に8列の画素列が記録される。すなわち、用紙搬送方向(副走査方向)に沿う各画素列は、それぞれ2つのノズルによって記録されるようになっている。
 図3(B)において、同一の記号で記される画素群は、同一のパラメータで濃度補正が行われるものとする。以下の説明では、同一のパラメータで濃度補正された画素群により領域分けされた領域を補正領域という。
 図3の例における各補正領域の空間周波数は、以下のように求めることができる。まず、対象とする補正領域の画素群にパラメータ1を割り当て、対象外の画素にはパラメータ0を割り当てる。例えば、図3(A)の例で、ノズルC1の補正領域の空間周波数を求める場合は、C1に1を割り当て、それ以外には0を割り当てる。次に、このパラメータを割り当てられた2次元配列をフーリエ解析してスペクトルを算出する。
 図4は、ノズルマップパターンの周波数特性を模式的に示す平面図である。図3(A)のジグザグ状にノズルが配列された例においては、図4に示すように、ナイキスト周波数の高い隅(黒点部A14)にもっとも大きな空間周波数成分が発生する。そして、搬送方向の0周波数(領域A12内のグレーで示す領域)及びナイキスト周波数成分により小さな成分が発生する。
 視認可能なビートの発生を抑制するためには、領域分けされた補正領域の周波数特性と被らない箇所にピーク周波数を配置すればよい。このため、図4の領域A10内にピークをもつような量子化を行う。
 特に、黒点部A14付近には、補正領域の強い周波数成分があるので、この黒点部A14付近の領域については、量子化の周波数成分を遠ざける(抑制する)ことが好ましい。
 なお、補正領域の周波数特性と被らない周波数帯域としては、ノズル群の空間周波数のピークから少なくとも5cycle/mm以上離れた帯域であることが好ましい。発生するビートの周波数特性は、ノズル群の空間周波数と量子化のピーク周波数の差分により決まる。人間の目には、特にこの範囲の周波数においてはビートが視認されやすい。したがって、補正領域の強い周波数成分を避けるために、量子化の周波数のピークをより大きくずらすことにより、効果的にビートの発生を抑制することができる。
 図5から図7は、量子化におけるピーク周波数帯域の好ましい例を示す図であり、図8から図11は、量子化におけるピーク周波数帯域の好ましくない例を示す図である。
 図5から図11では、量子化におけるピーク周波数帯域がそれぞれ領域Q10からQ22として示されている。
 図5から図7に示す領域Q10からQ14は、いずれも図4に示す領域A10に収まっている。一方、図8から図11に示す領域Q16からQ22は、いずれも領域A10の外部に広がっているため、視認可能なビートが発生しやすくなっている。
 [不吐出補正]
 次に、補正方法ごとのノズル群の特性について説明する。まず、不吐出ノズルがある場合におけるスジムラ補正方法について説明する。以下の例では、ノズルB4が不吐出ノズルであり、不吐出ノズルB4をマスク(不吐出化)した場合を示している。
 図12に示す方法(1A)は、マスクしたノズルB4を1つのノズルD4のみで補正するものである。
 図15に示す方法(1B)は、ノズルB4により記録される画素位置に対して搬送垂直方向に隣接する画素を記録する2つのノズルA3及びA5の濃度を同一パラメータで補正している。
 図18に示す方法(1C-1)は、ノズルA3とA5、D4、C3とC5の濃度をそれぞれ同一のパラメータで補正している。
 図23に示す方法(1C-2)は、方法(1C-1)で別々に補正していたA3とA5、D4、C3とC5の領域を合算し、同一の補正領域とみなして補正を行うものである。このような補正領域の形状の変更は、不良ノズルとの相対的な位置に応じて、濃度の変調の程度を変更することで実施可能である。濃度の変調の程度は階調ごとに変更することが可能なので、例えば、より低濃度側では、スジムラが比較的目立ちにくいため、補正ノズル数がより少ない方法(例えば、方法(1A))を使用する。一方、より高濃度側では、スジムラが比較的目立ちやすいため、補正ノズルの数及び階調がより少ない方法(例えば、方法(1C-1)又は(1C-2))を採用することも可能である。
 このように、ノズル群によって補正する際の補正領域の周波数特性は、以下のようにして求めることができる。まず、対象とする補正領域の画素にパラメータ1を割り当て、それ以外の画素にパラメータ0を割り当てる。例えば、図23に示す方法(1C-2)において、濃いグレーで示した補正領域の補正領域を求める場合は、A3、D4、A5の画素に1を割り当て、それ以外の画素に0を割り当てる。
 次に、各画素に割り当てたパラメータのフーリエ解析を行う。これにより、スペクトルを算出する。
 図12から図29に示すように、補正方法(制御ノズル群の形状)を変えると、ノズル群の周波数特性も変化する。量子化方法としては、特定の補正方法に限定して量子化を固定化する方法、すべての補正方法に対してビートが発生しない量子化方法を採用する方法(例えば、図12から図29に示すすべての領域A10からA54の共通部分に量子化の周波数のピーク成分をもたせる)、又は補正方法に応じて量子化方法を変える等の選択肢を採ることが可能である。
 図12に示す方法(1A)では、不良ノズル(異常記録素子、補正用記録素子)B4がマスクされ、濃度補正に用いる補正ノズル(補正用記録素子)D4に対して濃度変調が施される(高濃度化される)。そして、異常が検知されず、濃度変調もされない通常ノズル(通常記録素子)A1、A3、A5、A7、B2、B6、B8、C1、C3、C5、C7、D2、D6、D8については濃度変調されない。
 方法(1A)では、高濃度化される補正ノズルD4によって記録される画素群(高濃度補正領域)の空間周波数特性は、図13のようになる。一方、通常ノズルによって記録される画素群(通常領域)の空間周波数特性は、図14のようになる。
 したがって、図13及び図14に示す領域A10及び領域A12に、各ノズルにより記録される画素の量子化の周波数のピーク成分をもたせるように量子化を行うことにより、ビートの発生を抑制することができる。
 図15に示す方法(1B)では、不良ノズルB4がマスクされ、濃度補正に用いる補正ノズルA3及びA5に対して濃度変調が施される(高濃度化される)。そして、ノズルB4とA3及びA5以外の通常ノズルについては濃度変調されない。
 方法(1B)では、高濃度化される補正ノズルA3及びA5によって記録される画素群である高濃度補正領域の空間周波数特性は図16のようになり、不良ノズルB4と補正ノズルA3及びA5以外の通常ノズルによって記録される画素群(通常領域又は中濃度補正領域)の空間周波数特性は図17のようになる。
 したがって、図13に示す領域A10、図16及び図17に示す領域A20及び領域A22に、各ノズルにより記録される画素の量子化の周波数のピーク成分をもたせるように量子化を行うことにより、ビートの発生を抑制することができる。
 図18に示す方法(1C-1)では、不良ノズルB4がマスクされ、補正ノズルD4が最高濃度になるように濃度変調される。補正ノズルA3及びA5がノズルD4の次に高濃度になるように濃度変調され、補正ノズルC3及びC5は通常ノズルよりも低濃度になるように濃度変調される。そして、通常ノズルA1、A7、B2、B6、B8、C1、C7、D2、D6、D8については濃度変調がされない。
 方法(1C-1)において、最高濃度になる補正ノズルD4に対応する最高濃度補正領域、D4の次に高濃度化される補正ノズルA3及びA5に対応する高濃度補正領域、通常ノズルよりも低濃度化される補正ノズルC3及びC5に対応する低濃度補正領域、通常ノズルに対応する通常濃度補正領域の空間周波数特性は、それぞれ図19から図22に示すようになる。
 したがって、図13に示す領域A10、図19から図22に示す領域A30からA36に、各ノズルにより記録される画素の量子化の周波数のピーク成分をもたせるように量子化を行うことにより、ビートの発生を抑制することができる。
 図23に示す方法(1C-2)では、不良ノズルB4がマスクされ、補正ノズルA3、A5、C3、C5及びD4が高濃度化され、通常ノズルA1、A7、B2、B6、B8、C1、C7、D2、D6及びD8については濃度変調されない。
 方法(1C-2)では、高濃度化される補正ノズルA3、A5、C3、C5及びD4に対応する高濃度補正領域、通常ノズルに対応する通常濃度補正領域の空間周波数特性は、それぞれ図24及び図25に示すようになる。
 したがって、図13に示す領域A10、図24及び図25に示す領域A40及びA42に、各ノズルにより記録される画素の量子化の周波数のピーク成分をもたせるように量子化を行うことにより、ビートの発生を抑制することができる。
 図26に示す方法(1D)では、不良ノズルB4がマスクされ、補正ノズルA3、A5、C3及びC5が高濃度化される。そして、補正ノズルB2、B6、D2及びD6が通常ノズルよりも低濃度化され、補正ノズルD4が補正ノズルB2、B6、D2及びD6よりも低濃度化される。通常ノズルA1、A7、B8、C1、C7及びD8については濃度変調されない。
 方法(1D)では、高濃度化される補正ノズルA3、A5、C3及びC5に対応する高濃度補正領域、低濃度化される補正ノズルB2、B6、D2及びD6に対応する低濃度補正領域、通常ノズルに対応する通常濃度補正領域の空間周波数特性は、それぞれ図27から図29に示すようになる。また、最低濃度になる補正ノズルD4の空間周波数特性は、図13と同様になる。
 したがって、図27から図29に示す領域A50からA54、図13に示す領域A10に、各ノズルにより記録される画素の量子化の周波数のピーク成分をもたせるように量子化を行うことにより、ビートの発生を抑制することができる。
 [吐出曲がり補正]
 次に、吐出曲がり補正の場合について説明する。以下の説明では、ノズルB4が図中右側に(ノズルA5及びC5側に)吐出曲がりが生じているものとする。
 吐出曲がりを補正する場合には、まず、画像検査部24により用紙に記録された画像から吐出曲がりノズルが検知される。そして、図30(B)に示すように、吐出曲がりノズルD4及びノズルD4に隣接するノズルのうち、吐出曲がりにより着弾ドット位置が離れるノズルA3、C3及びB4によって描画される画素の濃度を上げる。これにより、吐出曲がりによって発生した白スジを埋める。さらに、高濃度化したノズルの更に隣接ノズルB2、D2、A5及びC5の濃度を下げる。これにより、高濃度化したノズルによる濃度の上昇分を相殺する。
 本補正方法に関しても、選択するノズル群に応じて周波数特性が変化する。したがって、それぞれに対してビートを起こさないような量子化を選択する必要がある。
 図30に示す方法(2A)では、吐出曲がりノズルB4が濃度変調されて高濃度化される。また、ノズルB4に隣接する補正ノズルA3、C3、D4が濃度変調されてB4と同一のパラメータにより高濃度化される。そして、これらの高濃度化される補正ノズルの外側に隣接する補正ノズルA5、B2、C5及びD2は、同一のパラメータにより通常ノズルよりも低濃度化される。通常ノズルA1、A7、B6、B8、C1、C7、D6及びD8は濃度変調されない。
 方法(2A)では、図31に示すような空間周波数特性となるため、領域A60に量子化の周波数をもたせるようにすることで、ビートの発生を防止することができる。
 図32に示す方法(2B)では、吐出曲がりノズルB4と、B4に隣接する補正ノズルA3が同一のパラメータにより高濃度化される。そして、補正ノズルC3及びD4は同一のパラメータにより低濃度化される。通常ノズルA1、A5、A7、B2、B6、B8、C1、C5、C7、D2、D6及びD8は濃度変調されない。
 方法(2B)では、図33に示すような空間周波数特性となるため、領域A70に量子化の周波数をもたせるようにすることで、ビートの発生を防止することができる。
 [量子化方法の選択]
 濃度補正した用紙上の補正領域に関しては、濃度変調を行うノズル群の形状に応じた量子化の方法を選択するのが適切である。一方、濃度を変調しない領域(通常ノズルで打滴する通常濃度補正領域)に関しては、濃度変調する補正領域全体を1つのノズル群として扱い、これに対してビートが発生しない量子化の周波数特性を選ぶことが可能である。このようにすることで、非補正部に関しては、より高い自由度で量子化を行うことが可能である。
 [スジムラ補正方法]
 図34は、本実施形態に係る画像処理及び画像記録方法を示すフローチャートである。本実施形態では、スジムラ補正方法として、例えば、特許第5843400号公報に記載の方法を使用することができる。
 まず、画像処理部18は、画像記録部22のプリントヘッドのノズルと用紙に記録される画素との間の対応づけを行う。そして、画像処理部18は、異常ノズル情報D20に基づいて、下記の表1の基準にしたがって、用紙に記録される画素の領域分けを行う(ステップS20)。
Figure JPOXMLDOC01-appb-T000001
 ステップS20では、表1にしたがって、スジムラの目立ちやすい順に不吐出、吐出曲がり、通常ノズルの順番でノズルの異常が評価される。そして、画像処理部18は、異常と評価された異常ノズルと、その近傍のノズルを異常補正用のノズルとして設定する。そして、ステップS20の領域分けの結果に応じて、領域ごとに不可視化処理が行われる。
 まず、インクの吐出量が一定値未満のノズルが不吐出ノズルとして検知される。また、吐出曲がり量が相当大きく、不吐出ノズルと同等のスジムラが発生するおそれがあるノズルも、吐出量に関わらず、不吐出ノズルと評価される。すなわち、吐出曲がりノズルの検知用の第2の閾値(表1の例では、3μm)よりも大きい第1の閾値(表1の例では、8μm)以上のノズルを不吐出ノズルと判定する。そして、不吐出ノズルの近傍のノズル群が不吐出補正用のノズル群として設定されて、不吐出ノズル領域として領域分けが行われる。
 なお、表1における評価に用いられる閾値は、あくまで一例であり、用紙及び記録画像に必要な精度に応じて変更可能である。また、表1の吐出曲がり量の「any」は、第1の閾値8μm以上及び第2の閾値3μm以上に該当しないという意味である。吐出量の「any」は、一定値未満に該当しないという意味である。
 画像処理部18は、不吐出ノズル及び不吐出補正用のノズル群に設定されたノズルについては、不吐出ノズルをマスクし、不吐出ノズルの近傍ノズルの濃度を、不吐出補完ノズル補正LUTに従って変調する。不吐出ノズル補正LUTは、用紙上で不吐出ノズルに対応する画素からの距離に応じて変調の程度を変える。特に不吐出ノズルに対応する画素の隣接画素の濃度は高く変調し、高く変調された画素の不吐出ノズルとは逆側の隣接画素は、弱く変調する。
 次に、吐出曲がり量が第2の閾値以上かつ第1の閾値未満のノズルが吐出曲がりノズルとして検知される。そして、吐出曲がりノズルの近傍のノズル群が吐出曲がり補正用のノズル群として設定されて、吐出曲がりノズル領域として領域分けが行われる。
 画像処理部18は、吐出曲がりノズル及び吐出曲がり補正用のノズル群として設定されたノズルの濃度を、曲がりノズル補正LUTに従って変調する。特にノズル曲がりにより隙間が生じ白スジになる場合には、隙間の両隣の画素の濃度を高く変調し、その隣接画素の濃度を低く変調する。
 そして、不吐出ノズル及び吐出曲がりノズルのいずれにも該当しないノズル(吐出曲がり量が3μm未満で、かつ吐出量の条件が一定値以上のノズル)は、通常ノズルと判定される。
 さらに、上記評価に該当しないものは通常ノズルと判定し、濃度変調を行わない。通常ノズル補正LUTとしては、変調係数として1を設定することで濃度変調を行わなくすることが可能である。なお、通常ノズルLUTとしては、係数を一定値にしてリニアな補正を行うものを用いてもよい。
 上記3つのノズル補正LUT(不吐出ノズル補正LUT、曲がりノズル補正LUT及び通常ノズル補正LUT)は、それぞれノズル補正処理を行うことで、異常ノズルごとにLUTを決定する構成が可能である。また、このようなノズルごとの処理は行わずに、固定値を設定することも可能である。ノズル補正処理としては、例えば、特許第5597680号公報のように、一部の領域を模擬的に不吐出補正領域と設定したチャートを平坦化するパラメータを決定する処理を行うことで実施可能である。
 このように、ノズルごとにノズル補正処理が実施された後に、さらに低周波ムラ補正を行うことも可能である。通常、ノズル毎に濃度ムラ補正を実施するためには、ノズルの解像度程度のスキャナで出力画像を解析する必要がある。しかし、本構成のように、ノズル補正処理と低周波補正処理を分割することで、より低い解像度のスキャナでも高精度の補正をすることが可能となる。
 なお、領域分け処理は異常ノズル情報D20に基づき、各ノズルの補正方法を決定する。決定方法としては表1に従う方法以外の例として、表1の一部のみ(例えば、不吐出ノズルの評価のみ)実施する構成も考えられる。また、表1に加えて、不吐出に至らないインクの濃度の変動がある場合にも、異常ノズルとして検知するようにしてもよい。
 低周波ムラ補正では、ノズル補正で補正された濃度に対して、さらに低周波ムラ補正LUTを適用し、濃度を変調する。低周波ムラ補正LUTは、別途低周波ムラ補正処理により生成される。
 低周波ムラ補正処理(ステップS36)では、濃度が平坦であることが期待される画像を複数階調で出力し、出力された画像を読み取って濃度を測定する。これにより、領域ごとに階調特性を求め、領域ごとの濃度が均一化されるように階調を逆変換する値を低周波ムラ補正LUTに格納する。
 次に、量子化部20は、不吐出ノズル領域、吐出曲がり領域及び通常ノズル領域のそれぞれについて、不吐出補正又は吐出曲がり補正の補正方法に応じて量子化を行い(ステップS22からS26)、出力ドットパターンD40を出力する。ここでは、量子化の周波数特性を、各方法(1A)から(1D)、(2A)及び(2B)で説明したように調整する。
 画像記録部22は、この出力ドットパターンD40に基づいて、プリントヘッドの制御を行って、用紙に画像を記録(描画)する(ステップS28)。画像検査部24は、記録画像D50を撮像する(ステップS30)。
 次に、システム制御部14は、撮像した記録画像D50に基づいて、異常ノズル検知処理を行う(ステップS32)。そして、新たに異常ノズルが検知された場合には、システム制御部14は、異常ノズル情報D20を更新する。
 また、システム制御部14は、異常検知の履歴をメモリ16に保持しておき、この履歴に基づいて、例えば、異常検知の頻度が高い画素位置では、異常が生じやすいとして、異常の発生を予想するようにしてもよい。これにより、異常の検知を効率的に行うことが可能になる。この異常ノズル検知処理により、異常ノズル情報D20が取得又は更新される。
 また、システム制御部14は、撮像した記録画像D50に基づいて、不吐出補正又は吐出曲がり補正の結果、スジムラが十分に補正されていないことが検知された場合に、ノズル補正処理を行って(ステップS34)、不吐出ノズル補正LUT又は曲がりノズル補正LUTを更新する。なお、ノズル補正処理では、不吐出ノズル補正LUT又は曲がりノズル補正LUTを更新するのではなく、例えば、補正ノズルを変更するようにしてもよい(ステップS34)。ステップS34では、例えば、方法(1A)で不吐出ノズルに対するスジムラを行った場合に、十分なスジムラ補正ができなかったことが検知された場合には、別の方法(1B)等を行うようにしてもよい。
 [量子化方法]
 次に、量子化について説明する。量子化に関しては、閾値マトリクスを使用する構成が適している。閾値マトリクスの周波数特性として、各方法(1A)から(1D)、(2A)及び(2B)において説明した特性をもたせることで所望の特性を実現可能である。
 量子化において、特定の周波数を実現するための閾値マトリクスの作成方法としては、例えば、特許第5189664号公報に記載の方法を使用することができる。一般的な閾値マトリクス作成方法が、特許第5189664号公報の段落[0062]以降に記載されている。本実施形態に適した周波数の制御方法は、特許第5189664号公報の段落[0094]以降に記載されている。特に、特許第5189664号公報の図13に記載されるような実空間フィルタを、低周波成分を強調するフィルタに畳み込み、パターンを最適化することで、パターンの周波数特性を制御することが可能である。フィルタを変更することで、特許第5189664号公報の図11に記載されている周波数特性以外の周波数特性を実現することも可能である。
 特許第5189664号公報の方法よりも特定の周波数帯域に量子化の周波数のピーク成分を集中させたい場合には、例えば、特許5901584号公報に記載の方法を使用することできる。特許5901584号公報に記載の「基準周波数」として、補正領域の形状に対応する空間周波数のピーク周波数から十分離れた周波数を採用することにより、本実施形態に適した量子化を行うことが可能である。すなわち、図35(A)に示すように、グリーンノイズ状の移送パターンを生成する(2値)。そして、図35(B)に示すように、位相成分(2値)を結合して4値化する。所望の量子化のピーク周波数成分をもち、かつ位相の異なる繰り返しパターン(図35(B)の位相0~位相3と記載されたパターン)をグリーンノイズパターンに畳み込む(図35(C))。この畳み込みにより、図35(B)から図35(C)右側の波数空間に矢印で示すように、成分が基調周波数部に移動する。そして、畳み込んだパターンの低周波成分を抑制するように、さらにパターンを最適化する(図35(D))。これにより、画像の濃度変化の低周波数成分が抑制されて平坦化する。
 上述の方法で生成される量子化パターンの周波数特性を図36に示す。なお、図36において、白で示される帯域ほど振幅成分が大きい。すなわち、白で示される帯域は、量子化の周波数のピークである。本実施形態で示された補正領域(ノズルマッピング)においては、領域A12に、補正領域の形状に対応した空間周波数のピークが存在するが、図36に示す例では、領域A10に量子化の周波数ピークが存在する。このような量子化処理を行うことにより、ビートの発生を抑制することが可能になる。
 上記パターンを用いて閾値マトリクスを作成することで本例の量子化パターンを生成することができる。
 なお、本実施形態においては、補正の種別やノズル群や、滴種ごとにピーク周波数成分を変更する構成が適している。次に、補正領域(comp)ごとに閾値マトリクス(dither)を変更するアルゴリズムの例を示す。このアルゴリズムでは、入力画像(2次元入力画像)input_image[y,x]について、補正領域compをガンマ変換した後のデータgamma[comp][y,x][input_image[y,x]]と閾値マトリクスditherの関係に基づいて、出力画像の滴種が変更される。
 まず、dither[comp][large][y,x] < gamma[comp][y,x][input_image[y,x]]の場合には、output_image[y,x] = large、すなわち、「大滴」となる。
 次に、dither[comp][large][y,x] >= gamma[comp][y,x][input_image[y,x]]、かつ、dither[comp][middle][y,x] < gamma[comp][y,x][input_image[y,x]]の場合には、output_image[y,x] = middle、すなわち、「中滴」となる。
 次に、dither[comp][middle][y,x] >= gamma[comp][y,x][input_image[y,x]]、かつ、dither[comp][small][y,x] < gamma[comp][y,x][input_image[y,x]]の場合には、output_image[y,x] = small、すなわち、「小滴」となる。
 次に、dither[comp][small][y,x] >= gamma[comp][y,x][input_image[y,x]]の場合にはoutput_image[y,x] = none、すなわち、「滴なし」となる。
 このとき、補正領域に応じて切り替えられる種々の閾値マトリクスは、補正の適用される補正領域の周波数ピーク以外の帯域にピークをもつ閾値マトリクスである。
 また、これらの閾値マトリクスは互いに隣接する領域で使用されるため、互いに連続的に変化することが好ましい。このような特性を実現するための1つの方法としては、複数の閾値マトリクスを生成する際に、閾値マトリクスを生成するときの制約として、ある階調において共通のパターンを参照し、パターンを最適化する方法が考えられる。このようにすることで、両領域の連続性を高めることが可能となる。別の方法としては、1つの補正方法に対応する閾値マトリクスを事前に作成しておき、別の補正方法に対応する閾値マトリクスを作成する際に、閾値マトリクスを参照する方法が考えられる。
 例えば、特許第4670696号公報に記載されているように、通常補正領域に当たる部分を、特許第4670696号公報の「基本閾値マトリクス」とし、不良に近い補正領域としてサブマトリクスとし、基本閾値マトリクスを参照しながら、補正領域の閾値マトリクスであるサブマトリクスを作成することで、補正領域間で連続性を高めることが可能である。このようにすることで、より広い階調域においても閾値マトリクス間の連続性を維持することが可能となる。
 なお、上記では複数の閾値マトリクスを使用する方法を示したが、閾値マトリクスと誤差拡散法を併用し、両者の適合割合を変更する方法も可能である。このような方法の例は、例えば、特許第5056667号公報に開示されている。閾値マトリクスと誤差拡散の併用方式としては、以下のアルゴリズムに従って量子化を行う。
 次に、ディザマトリクス(「閾値マトリクス」と同義)と誤差拡散法を併用する量子化処理の例について説明する。図37は、各画素の量子化処理を示すフローチャートである。図37において、dither[x,y][comp]は、2次元ディザマトリクスの成分を表す。th_dth[i][level]はディザマトリクスと比較する閾値を示す(i=0,1,2)。th_edf[level]は誤差拡散閾値を示す。dot[j][level][comp]は階調値(level)ごとに{滴なし、小滴、中滴、大滴}のうちいずれかのドットサイズに対応付けられる(dot[j][level][comp]∈{滴なし,小滴,中滴,大滴}、j=0,1,2,3,4)。
 各画素量子化処理がスタートすると、まず、量子化部20は、対象画素の元の階調値と、誤差拡散により対象画素に拡散された周辺誤差の和をとることで、周辺誤差を含んだ階調値を算出する(ステップS50)。
 次に、ディザマトリクスの値(dither[x,y][comp])と閾値th_dth[i][level]とを比較することにより、画像の領域を分割する。この閾値th_dth[i][level]は、対象画素の階調値(level)ごとに設定されるものであり、予め所定のメモリに記憶されている。ここでは、第1の閾値th_dth[0][level]、第2の閾値th_dth[1][level]及び第3の閾値th_dth[2][level]を用いて、領域Aから領域Dの4領域に分割される。
 まず、ディザマトリクスの値dither[x,y][comp]と第1の閾値th_dth[0][level]との比較を行う(ステップS52)。比較の結果、ディザマトリクスの値の方が小さい場合は、dot[0][level][comp]で指定されるドットサイズが選択される(ステップS54)。
 ステップS522において、ディザマトリクスの値が第1の閾値以上の場合は、続いてディザマトリクスの値と第2の閾値th_dth[1][level]との比較を行う(ステップS56)。比較の結果、ディザマトリクスの値の方が小さい場合は、dot[1][level][comp]で指定されるドットサイズが選択される(ステップS58)。
 ステップS60において、ディザマトリクスの値が第2の閾値以上の場合は、さらにディザマトリクスの値と第3の閾値th_dth[2][level]との比較を行う(ステップS60)。ディザマトリクスの値が第3の閾値th_dth[2][level]以上の場合には、周辺誤差を含んだ階調値と誤差拡散閾値th_edf[level]との比較を行う(ステップS62)。この誤差拡散閾値th_edf[level]についても、対象画素の階調値ごとに設定されるものであり、予め所定のメモリに記憶されている。ステップS62における比較の結果、周辺誤差を含んだ階調値の方が誤差拡散閾値よりも小さい場合は、dot[2][level][comp]で指定されるドットサイズが選択される(ステップS64)。
 一方、ステップS62において、周辺誤差を含んだ階調値が誤差拡散閾値以上である場合は、dot[3][level][comp]で指定されるドットサイズが選択される(ステップS66)。このように、ディザ閾値が第3の閾値以下(かつ第2の閾値以上)の領域では、誤差拡散法による2値化の処理が行われる。
 また、ステップS60において、ディザマトリクスの値の方が第3の閾値より大きい場合は、dot[4][level][comp]で指定されるドットサイズが選択される(ステップS68)。
 なお、各dot[j][level][comp]のドットサイズは階調値ごとに適宜決めることができる。例えば、ある階調値に対して、dot[0][level]は小滴、dot[1][level]は中滴、dot[2][level]は滴無し、dot[3][level]は大滴、及びdot[4][level]は大滴のように決めることができる。基本的に、dot[3][level]>dot[2][level]を満たしていればよく、量子化誤差が大きいと大きいドットを打ち、小さいと小さいドットを打つように各値を定める。
 対象画素が不吐近傍領域に属する画素である場合には第1の閾値マトリクスが用いられ、正常領域に属する画素である場合には第2の閾値マトリクスが用いられて、量子化が行われる。以上のように対象画素のドットサイズを選択後、量子化誤差を算出する(ステップS70)。量子化誤差は、周辺誤差を含んだ階調値を量子化したことによって発生する誤差であり、周辺画素を含んだ階調値と量子化閾値との差である。量子化閾値は、各dot[0][level]、dot[1][level]、dot[2][level]、dot[3][level]、dot[4][level]にそれぞれ対応付けられた階調値である。
 この算出した量子化誤差を所定の誤差拡散マトリクスに従って周辺の画素へ拡散する(ステップS72)。続いて、量子化の対象画素を隣接画素へ移行し、同様の処理を行うことで、すべての画素の量子化を行う。
 上記の量子化処理によれば、ステップS54、S58、S68に該当する各領域のdot[0][level]、dot[1][level]、dot[4][level]の記録率は、ディザマトリクスに従って決定され、残りの領域は、誤差拡散法で2値化することによって決定される(ステップS70及びS72)。このように量子化を行うことで、4値の記録率を階調ごとに一意に決定することができる。
 本実施形態では、各閾値th_dth[i][level]は、対象画素の元の階調値における閾値を用いたが、周辺誤差を含んだ階調値における閾値を用いてもよい。
 なお、各パラメータは補正領域(comp)によって変更できる構成とした。なお、本構成に於いては、まず閾値マトリクスと比較する閾値th_dthを比較することで補正領域(上記compの添字)ごとに4種類の領域A、B、C、Dに分割される。これらの領域のうち、領域Cのみが誤差拡散閾値との比較によりドットが決定され、それ以外の領域では、そのままドットが決定される。すなわち、生成されるドットの比率に対して領域A、B、Dの割合が近ければ近いほど、閾値マトリクスによりパターンが決定される。逆に、生成されるドットの比率に対して領域A、B、Dの割合が遠ければ、誤差拡散によってパターンが決定される。
 より具体的には、特定の補正領域において、th_dth[1]の値とth_dth[2]の値を近づけると、領域Cの割合が少なくなる。このため、その補正領域は閾値マトリクスの周波数特性がより多く反映される。逆に、th_dth[1]の値とth_dth[2]の値を離すと、誤差拡散によってパターンが決定される割合が増えるので、対象補正領域は誤差拡散の特性がより多く反映される。このように補正領域ごとにth_dth[1]の値とth_dth[2]の値を変更することで、補正領域にあった量子化処理を行うことが可能となる。
 例えば、閾値マトリクスとして、ある補正領域の周波数特性のピークからずれた位置に周波数ピークをもつものを選択した場合、対応する補正領域においては、閾値マトリクスの寄与を大きくし、それ以外の領域では、誤差拡散の寄与を大きくする構成にすることで、本実施形態に適した特性を得ることができる。
 特に、このとき、異なる補正領域において共通の閾値マトリクスを異なる方法で参照し量子化を行うことで、補正領域間で連続性をもたせながらも、異なる特性を実現することができる。
 また、閾値マトリクス以外にも、誤差拡散により、量子化の周波数のピーク成分を、補正領域の周波数ピークから外すことも可能である。
 1つの実施例としては、補正領域ごとに誤差拡散マトリクスを変更することが可能である。さらに、同一補正領域に流す量子化誤差の割合を異なる補正領域に流す量に対して多くすることも効果的である(ステップS70及びS72)。
 なお、本実施形態に係る画像処理方法は、ノズルと用紙上の画素との対応づけを行うため、上記のジグザグ状配置のインクジェットヘッド以外の任意の方式の画像記録装置に適用することができる。例えば、インクジェットヘッドを用紙の搬送方向(副走査方向)と垂直な主走査方向に往復運動をさせ、何回かのパスによって画像を完成させるシャトルスキャン方式のインクジェット記録装置にも適用することが可能である。例えば、副走査方向に同色のノズルが複数配置されたシャトルスキャン方式のインクジェット記録装置にも、本実施形態を適用することが可能になる。
 上記実施形態において、(例えば、不可視化部、量子化部)といった各種の処理を実行する処理部(processing unit)のハードウェア的な構造は、次に示すような各種のプロセッサ(processor)である。各種のプロセッサには、ソフトウェア(プログラム)を実行して各種の処理部として機能する汎用的なプロセッサであるCPU(Central Processing Unit)、FPGA(Field Programmable Gate Array)などの製造後に回路構成を変更可能なプロセッサであるプログラマブルロジックデバイス(Programmable Logic Device:PLD)、ASIC(Application Specific Integrated Circuit)などの特定の処理を実行させるために専用に設計された回路構成を有するプロセッサである専用電気回路などが含まれる。
 1つの処理部は、これら各種のプロセッサのうちの1つで構成されていてもよいし、同種または異種の2つ以上のプロセッサ(例えば、複数のFPGA、あるいはCPUとFPGAの組み合わせ)で構成されてもよい。また、複数の処理部を1つのプロセッサで構成してもよい。複数の処理部を1つのプロセッサで構成する例としては、第1に、クライアントやサーバなどのコンピュータに代表されるように、1つ以上のCPUとソフトウェアの組合せで1つのプロセッサを構成し、このプロセッサが複数の処理部として機能する形態がある。第2に、システムオンチップ(System On Chip:SoC)などに代表されるように、複数の処理部を含むシステム全体の機能を1つのIC(Integrated Circuit)チップで実現するプロセッサを使用する形態がある。このように、各種の処理部は、ハードウェア的な構造として、上記各種のプロセッサを1つ以上用いて構成される。
 さらに、これらの各種のプロセッサのハードウェア的な構造は、より具体的には、半導体素子などの回路素子を組み合わせた電気回路(circuitry)である。
 10 画像記録装置
 12 画像処理装置
 14 システム制御部
 16 メモリ
 18 画像処理部
 20 量子化部
 22 画像記録部
 24 画像検査部
 D10 入力画像
 D20 異常ノズル情報
 D30 濃度変調情報
 D40 出力ドットパターン
 D50 記録画像
 S10~S16 画像処理方法の各工程
 A1~D8 ノズル
 A10~A70 領域
 Q10~Q22 量子化の周波数のピーク成分の例
 S20~S36 画像処理方法の各工程
 S50~S72 各画素量子化処理の各工程

Claims (15)

  1.  複数の記録素子が配列された記録ヘッドにおいて、前記記録素子ごとに異常を検知する異常検知工程と、
     前記異常検知工程における検知結果に応じて、前記異常が検知された異常記録素子に起因する画像の不良を補正するために、前記異常記録素子を含む補正用記録素子を選択し、前記補正用記録素子によって記録媒体に記録される画素の濃度をそれぞれ変調して、前記画像の不良を不可視化する不可視化工程と、
     前記記録媒体に記録する画像を量子化する量子化工程であって、前記不可視化工程によって前記濃度が変調された前記補正用記録素子によって前記記録媒体に記録される画素群である補正領域の空間周波数ピークの近傍周波数帯域を除く周波数帯域に、前記量子化のピーク周波数成分を位置させるように量子化を行う量子化工程と、
     を備える画像処理方法。
  2.  前記量子化された画像に基づいて、前記記録ヘッドにより前記記録媒体に前記画像を記録する画像記録工程を更に備え、
     前記画像記録工程において、前記記録媒体上の画素列が前記記録ヘッドの複数の記録素子によって記録される、
     請求項1に記載の画像処理方法。
  3.  前記不可視化工程において、
     インクの不吐出が検知された異常記録素子をマスクし、
     前記マスクした前記異常記録素子からの相対的な位置に応じて、前記異常記録素子以外の前記補正用記録素子により記録される画素の濃度を変調する、
     請求項1又は2記載の画像処理方法。
  4.  インクの吐出曲がりが検知された異常記録素子からの相対的な位置に応じて、前記補正用記録素子により記録される画素の濃度を変調する、
     請求項1から3のいずれか1項記載の画像処理方法。
  5.  記録される画素について濃度の変調が検知された異常記録素子の変調に応じて、前記補正用記録素子により記録される画素の濃度を変調する、
     請求項1から4のいずれか1項記載の画像処理方法。
  6.  前記補正用記録素子ごとに施された不可視化の内容に応じて、前記量子化工程において、前記補正用記録素子ごとに異なる量子化を行う、
     請求項1から5のいずれか1項記載の画像処理方法。
  7.  前記不可視化工程において、
     インクの不吐出が検知された異常記録素子をマスクし、
     前記マスクした前記異常記録素子からの相対的な位置に応じて、前記異常記録素子以外の前記補正用記録素子により記録される画素の濃度を変調し、
     前記量子化工程において、前記異常記録素子と、前記異常記録素子以外の前記補正用記録素子とで異なる量子化を行う、
     請求項6記載の画像処理方法。
  8.  前記量子化工程において、前記補正用記録素子以外の通常記録素子により前記記録媒体に記録される画素である通常領域と、前記補正領域とで、異なる量子化を行う、
     請求項1から7のいずれか1項記載の画像処理方法。
  9.  前記不可視化工程において、前記補正用記録素子ごとに濃度の変調の程度が変更可能であり、
     前記量子化工程において、前記濃度の変調の程度が同じ前記補正用記録素子に対応する補正領域ごとに異なる量子化を行う、
     請求項6記載の画像処理方法。
  10.  前記量子化工程において、前記補正用記録素子に施された不可視化の内容ごとに異なる閾値マトリクスを適用して量子化を行う、
     請求項6記載の画像処理方法。
  11.  前記量子化工程において、前記補正領域ごとに異なる閾値マトリクスを適用して量子化を行い、
     前記異なる閾値マトリクスを生成するときに、共通のパターンを参照して、前記閾値マトリクスを生成する、
     請求項10記載の画像処理方法。
  12.  前記量子化工程において、閾値マトリクスと誤差拡散を併用し、その割合が前記補正領域ごとに異なる、
     請求項6記載の画像処理方法。
  13.  前記量子化工程において、前記補正用記録素子以外の通常記録素子により前記記録媒体に記録される画素である通常領域と、前記補正領域とで、異なる閾値マトリクスを適用して量子化を行い、
     前記補正領域に適用される閾値マトリクスは、前記通常領域に適用される基本閾値マトリクスの一部を置き換えて生成される、
     請求項6記載の画像処理方法。
  14.  複数の記録素子が配列された記録ヘッドにおいて、前記記録素子ごとに異常を検知した検知結果に応じて、前記異常が検知された異常記録素子に起因する画像の不良を補正するために、前記異常記録素子を含む補正用記録素子を選択し、前記補正用記録素子によって記録媒体に記録される画素の濃度をそれぞれ変調して、前記画像の不良を不可視化する不可視化部と、
     前記記録媒体に記録する画像を量子化する量子化部であって、前記不可視化部によって前記濃度が変調された前記補正用記録素子によって前記記録媒体に記録される画素群である補正領域の空間周波数ピークの近傍周波数帯域を除く周波数帯域に、前記量子化のピーク周波数成分が位置するように量子化を行う量子化部と、
     を備える画像処理装置。
  15.  記録媒体に画像を記録するための記録ヘッドと、
     請求項14記載の画像処理装置と、
     を備える画像記録装置。
PCT/JP2018/012111 2017-03-30 2018-03-26 画像処理方法、装置及び画像記録装置 WO2018181166A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112018001148.8T DE112018001148T5 (de) 2017-03-30 2018-03-26 Bildverarbeitungsverfahren, bildverarbeitungsvorrichtung und bildaufzeichnungsvorrichtung
JP2019509794A JP6831004B2 (ja) 2017-03-30 2018-03-26 画像処理方法、装置及び画像記録装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017068556 2017-03-30
JP2017-068556 2017-03-30

Publications (1)

Publication Number Publication Date
WO2018181166A1 true WO2018181166A1 (ja) 2018-10-04

Family

ID=63677213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/012111 WO2018181166A1 (ja) 2017-03-30 2018-03-26 画像処理方法、装置及び画像記録装置

Country Status (4)

Country Link
US (1) US11006019B2 (ja)
JP (1) JP6831004B2 (ja)
DE (1) DE112018001148T5 (ja)
WO (1) WO2018181166A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111215354A (zh) * 2018-11-27 2020-06-02 松下知识产权经营株式会社 分选装置
WO2020263251A1 (en) * 2019-06-26 2020-12-30 Hewlett-Packard Development Company, L.P. Method and apparatus for digital printing
US11820133B2 (en) 2019-03-06 2023-11-21 Fujifilm Corporation Image processing method, apparatus, program, and image forming apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004202795A (ja) * 2002-12-25 2004-07-22 Canon Inc 画像処理装置およびその方法
JP2013233682A (ja) * 2012-05-07 2013-11-21 Fujifilm Corp 画像記録装置及び方法
JP2014144549A (ja) * 2013-01-28 2014-08-14 Fujifilm Corp 画像処理装置、方法及びプログラム、インクジェット記録装置
JP2014144610A (ja) * 2013-01-30 2014-08-14 Fujifilm Corp 画像処理装置及び方法、プログラム並びに画像形成装置
JP2014210876A (ja) * 2013-04-19 2014-11-13 京セラドキュメントソリューションズ株式会社 インクジェット記録装置用インク及び画像形成方法
US20150360491A1 (en) * 2014-06-13 2015-12-17 Electronics For Imaging, Inc. Method and apparatus for single-pass failed nozzle compensation
JP2017013513A (ja) * 2016-10-03 2017-01-19 富士フイルム株式会社 インクジェット印刷システム及びその不吐補正方法並びにプログラム

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS542955B2 (ja) 1973-09-22 1979-02-15
AT333193B (de) 1974-12-23 1976-11-10 Gao Ges Automation Org Ausschleus- und stapelvorrichtung fur flaches fordergut, wie papierbogen, belege u.dgl.
JPS5597680A (en) 1979-01-18 1980-07-25 Omron Tateisi Electronics Co Print control device
JPS5843400A (ja) 1981-09-08 1983-03-14 生駒 久三郎 無反動自動装弾装置
JPS591584A (ja) 1983-03-04 1984-01-06 Asahi Chem Ind Co Ltd 粘着テ−プ
JPH02192955A (ja) * 1989-01-20 1990-07-30 Matsushita Electric Ind Co Ltd 記録方法
JP4770138B2 (ja) * 2004-08-10 2011-09-14 ブラザー工業株式会社 インクジェット記録装置用制御装置、インクジェット記録装置用制御プログラム、インクジェット記録装置の制御方法およびインクジェット記録装置
US7616340B2 (en) * 2005-03-25 2009-11-10 Fujifilm Corporation Image processing method and apparatus, threshold value matrix creating method, image forming apparatus, sub-matrix creating method and program
JP4670696B2 (ja) * 2005-03-25 2011-04-13 富士フイルム株式会社 画像処理方法及び装置、閾値マトリクス作成方法、画像形成装置、サブマトリクス作成方法並びにプログラム
JP2011005702A (ja) 2009-06-24 2011-01-13 Canon Inc 記録装置および記録方法
JP6016588B2 (ja) * 2012-11-16 2016-10-26 キヤノン株式会社 画像処理装置、記録装置および画像処理方法
JP6021600B2 (ja) 2012-11-16 2016-11-09 キヤノン株式会社 画像処理装置および画像処理方法
JP6295680B2 (ja) * 2014-01-29 2018-03-20 セイコーエプソン株式会社 画像処理装置、ディザマスク生成方法、及びプログラム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004202795A (ja) * 2002-12-25 2004-07-22 Canon Inc 画像処理装置およびその方法
JP2013233682A (ja) * 2012-05-07 2013-11-21 Fujifilm Corp 画像記録装置及び方法
JP2014144549A (ja) * 2013-01-28 2014-08-14 Fujifilm Corp 画像処理装置、方法及びプログラム、インクジェット記録装置
JP2014144610A (ja) * 2013-01-30 2014-08-14 Fujifilm Corp 画像処理装置及び方法、プログラム並びに画像形成装置
JP2014210876A (ja) * 2013-04-19 2014-11-13 京セラドキュメントソリューションズ株式会社 インクジェット記録装置用インク及び画像形成方法
US20150360491A1 (en) * 2014-06-13 2015-12-17 Electronics For Imaging, Inc. Method and apparatus for single-pass failed nozzle compensation
JP2017013513A (ja) * 2016-10-03 2017-01-19 富士フイルム株式会社 インクジェット印刷システム及びその不吐補正方法並びにプログラム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111215354A (zh) * 2018-11-27 2020-06-02 松下知识产权经营株式会社 分选装置
US11820133B2 (en) 2019-03-06 2023-11-21 Fujifilm Corporation Image processing method, apparatus, program, and image forming apparatus
WO2020263251A1 (en) * 2019-06-26 2020-12-30 Hewlett-Packard Development Company, L.P. Method and apparatus for digital printing
US11652926B2 (en) 2019-06-26 2023-05-16 Hewlett-Packard Development Company, L.P. Method and apparatus for digital printing that calibrates misalignment of super-positioned ink layers at plural locations on sample print

Also Published As

Publication number Publication date
US20190381804A1 (en) 2019-12-19
JP6831004B2 (ja) 2021-02-17
JPWO2018181166A1 (ja) 2020-02-06
US11006019B2 (en) 2021-05-11
DE112018001148T5 (de) 2019-12-05

Similar Documents

Publication Publication Date Title
JP5916642B2 (ja) 画像処理装置及び方法、プログラム並びに画像形成装置
US10880453B2 (en) Image processing device and method, program, recording medium, and inkjet printing system
JP6516449B2 (ja) 画像処理装置、画像形成装置、画像処理方法及びプログラム
JP4736766B2 (ja) 印刷装置、印刷プログラム、印刷方法および画像処理装置、画像処理プログラム、画像処理方法、並びに前記プログラムを記録した記録媒体
JP6895821B2 (ja) 画像処理装置および画像処理方法
JP6220029B2 (ja) インクジェット印刷システム及びその不吐補正方法並びにプログラム
KR20070024421A (ko) 인쇄 장치, 인쇄 프로그램을 기록한 기록 매체, 인쇄 방법,화상 처리 장치, 화상 처리 프로그램을 기록한 기록 매체및 화상 처리 방법
WO2018181166A1 (ja) 画像処理方法、装置及び画像記録装置
JP6062832B2 (ja) インクジェット印刷システム及びその不吐補正方法並びにプログラム
US10542183B2 (en) Image processing apparatus and method setting dot arrangements to reduce differences in dispersiveness of dots between overlapping and non-overlapping recording areas
JP5901584B2 (ja) 量子化方法及び画像処理装置
WO2015029788A1 (ja) インクジェット印刷システム及びその不吐補正方法並びにプログラム
US9237254B2 (en) Image processing apparatus and image processing method for forming a high-quality image by controlling superimposition of dots to be printed in multi-pass printing
JP2016127479A (ja) 画像処理装置、画像形成装置、画像処理方法及びプログラム
JP7336255B2 (ja) 画像処理装置及びその制御方法及びプログラム
JP2015143011A (ja) インクジェット記録装置および画像処理装置
JP6971765B2 (ja) 制御装置、制御方法、およびプログラム
JP2006212907A (ja) 印刷装置、印刷プログラム、印刷方法および画像処理装置、画像処理プログラム、画像処理方法、並びに前記プログラムを記録した記録媒体
JP2020082694A (ja) ディザマトリクスの生成装置、生成方法、当該ディザマトリクスを用いた画像処理装置、画像処理方法、及びプログラム
JP6282607B2 (ja) 量子化方法、画像処理装置及び画像記録装置
US10375275B2 (en) Image processing apparatus specifying first and second pixels, and generating processed image data in which the first and second pixels have first and second colors respectively
JP2015035703A (ja) 画像処理装置、画像処理方法およびプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18777979

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019509794

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18777979

Country of ref document: EP

Kind code of ref document: A1