WO2018181075A1 - ダイカストマシン - Google Patents

ダイカストマシン Download PDF

Info

Publication number
WO2018181075A1
WO2018181075A1 PCT/JP2018/011942 JP2018011942W WO2018181075A1 WO 2018181075 A1 WO2018181075 A1 WO 2018181075A1 JP 2018011942 W JP2018011942 W JP 2018011942W WO 2018181075 A1 WO2018181075 A1 WO 2018181075A1
Authority
WO
WIPO (PCT)
Prior art keywords
molten metal
injection sleeve
injection
poured
ladle
Prior art date
Application number
PCT/JP2018/011942
Other languages
English (en)
French (fr)
Inventor
伸吾 池田
崇 井尻
Original Assignee
東洋機械金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋機械金属株式会社 filed Critical 東洋機械金属株式会社
Priority to CN201880023412.3A priority Critical patent/CN110475632A/zh
Publication of WO2018181075A1 publication Critical patent/WO2018181075A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/30Accessories for supplying molten metal, e.g. in rations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/32Controlling equipment

Definitions

  • the present invention relates to a die casting machine for injecting and filling molten metal supplied to an injection sleeve into a cavity of a mold by advance of an injection plunger.
  • the present invention relates to a die casting machine capable of measuring the amount of molten metal actually poured into an injection sleeve in order to inject and fill molten metal into a mold cavity at high speed.
  • a metal material melted in a melting furnace is pumped up by a ladle every shot, and the pumped molten metal is supplied to a hot water outlet of an injection sleeve. Then, the molten metal is injected and filled into the cavity of the mold by the forward movement of the injection plunger provided in the injection sleeve so as to be able to advance and retreat, thereby forming a cast product.
  • Patent Literature 1 and Patent Literature 2 disclose a die casting machine that measures the amount of molten metal in a ladle pumped up from a melting furnace.
  • JP 2011-143425 A Japanese Patent Laid-Open No. 2000-190060
  • the problem to be solved by the present invention is to accurately detect the amount of hot water in the injection sleeve after hot water supply and before injection with a level sensor in a die casting machine, and set injection conditions according to the actual oil supply amount. That is.
  • the amount of casting water is accurately controlled with respect to the volume of the product (that is, the cavity volume of the mold). Therefore, the optimum high-speed injection switching position is derived for each shot and the injection conditions are set based on the design high-speed injection switching position based on the product volume and mold volume. That is, when the hot water supply amount changes, the high-speed injection switching position is not necessarily a fixed position.
  • the variation in the amount of hot water supply has various factors such as adhesion of hot water to the ladle (thin skin, etc.), spilling of hot water, and adhesion to the oil level detection means of the hot water supply device. Further, even in a hot water supply method using a pump or the like, changes in the hot water level of the furnace, adhesion to the runner pipe, changes in the hot water level of the furnace, and the like are affected.
  • the amount of the molten metal pumped up by the ladle can be grasped.
  • the molten metal pumped up by the ladle is poured into the injection sleeve by tilting the ladle before being injected and filled into the cavity of the mold.
  • a part of the molten metal may remain stuck in the ladle or cause spillage. Therefore, there may be a difference between the amount of molten metal measured by the ladle and the amount of molten metal poured into the injection sleeve.
  • the present invention has been made in view of the above problems, and in order to inject and fill molten metal into a mold cavity, the amount of molten metal poured into an injection sleeve can be measured with high accuracy.
  • the purpose is to provide a die casting machine.
  • the amount of hot water actually supplied to the injection sleeve is taken in by calculating (calculating) the hot water level from the hot water level, and the high-speed injection switching position (B) and filling are completed for each shot. Judging the pressure increase switching position (C), which is the position, from the actual amount of hot water supply, and constantly setting the position to switch the operation of the die casting machine to an accurate position, stable die casting production and product quality can be maintained.
  • the hot water level sensor has a moving means such as an elevating type or a sliding type to avoid interference with the hot water supply device.
  • the die casting machine is A ladle that pumps the molten metal from the melting furnace, a cylindrical injection sleeve into which the molten metal pumped by the ladle is poured, an injection plunger that is advanced and retracted in the injection sleeve, and an advancing / retreating drive means that moves the injection plunger forward and backward
  • a molten metal level detection sensor for measuring a molten metal level height of the molten metal poured from the ladle into the injection sleeve is provided.
  • the die casting machine is: A hot water supply port through which the molten metal pumped up by the ladle is poured is provided in an upper portion of the injection sleeve, and the hot water level detection sensor is provided in an open portion of the hot water supply port facing the hot water supply port. .
  • the die casting machine is: A moving device is provided that moves the molten-metal level detection sensor to the vicinity of the hot-water supply port when measuring the molten-metal surface level of the molten metal poured into the injection sleeve.
  • the die casting machine according to the present invention is:
  • the molten metal level detection sensor for measuring the molten metal level height of the molten metal poured into the injection sleeve is a non-contact magnetostrictive molten metal level sensor.
  • the die casting machine is: The injection sleeve into which the molten metal is poured from the ladle is formed in a cylindrical shape, The molten metal poured into the injection sleeve measured by the molten metal level detection sensor is poured into the injection sleeve using the molten metal surface height poured into the injection sleeve, the inner diameter of the injection sleeve, and the length of the injection sleeve. An arithmetic means for calculating the total amount of the molten metal is provided.
  • the die casting machine is:
  • the molten metal level detection sensor measures the molten metal level height of the molten metal within 0.1 seconds to 1.0 seconds after the molten metal is poured into the injection sleeve from the ladle. It is characterized by comprising measurement time setting means.
  • the measurement of the amount of molten metal for injection filling into the mold cavity is not the amount of molten metal in the ladle (the amount of molten metal before being poured into the injection sleeve) as in the prior art, but the ladle. Since the amount of molten metal in the injection sleeve that is actually poured from is detected based on the surface height, the actual amount of molten metal that is injected and filled into the cavity of the mold is measured.
  • the high-speed injection switching position and the filling completion position can be controlled with high accuracy.
  • FIG. 1 is a schematic configuration diagram illustrating an entire die casting machine as an embodiment of the present invention.
  • FIG. 5 is an explanatory diagram showing the operation of the die casting machine as one embodiment of the present invention, showing the operation process in the order of (a) to (d). It is explanatory drawing which shows the modification of the die-casting machine as one Example of this invention. It is explanatory drawing which shows the further modification of the die-casting machine as one Example of this invention.
  • a die casting machine 1 according to this embodiment shown in FIG. 1 manufactures a molded product by injecting and filling a molten metal into a cavity of a closed mold composed of a fixed mold 2 and a movable mold 3. .
  • the die casting machine 1 has a ladle 4 for pumping a molten metal from a melting furnace (not shown), a link arm 5 for rotating and moving the ladle 4, and a hot water supply port 6 into which the molten metal pumped by the ladle 4 is poured.
  • Various controls of the cylindrical injection sleeve 7 formed in the above, an injection plunger 8 provided so as to be able to advance and retreat in the injection sleeve 7, an injection cylinder 9 which is a forward / backward drive means for moving the injection plunger 8 forward and backward, and a die casting machine 1 are controlled.
  • the control means 12 to perform is provided.
  • This control means 12 is used for die casting, such as driving of the injection cylinder 9, operation of the ladle through the link arm 5, operation control of the moving device 11 that moves up and down or slides on which a magnetostriction level sensor 10 described later is mounted. Various controls of the machine 1 are performed.
  • the injection cylinder 9 for driving the injection plunger 8 forward / backward and the working fluid supply device 13 for supplying the working fluid to the injection cylinder 9, the forward / backward movement and the forward speed of the injection plunger 8 are reduced.
  • a speed switching valve 14 that can be switched to high speed is provided.
  • the injection cylinder 9 is provided with a position sensor 15 for detecting the position of the injection plunger 8 from the stroke of the injection cylinder 9.
  • the die casting machine 1 is provided with a non-contact type magnetostrictive level sensor 10 for measuring the level h of the molten metal poured into the injection sleeve 7.
  • the magnetostrictive hot water level sensor 10 is mounted on a moving device 11 that moves up and down or slides, and is disposed above the hot water supply port 6 facing the hot water supply port 6, and the molten metal is fed from the ladle 4 into the injection sleeve 7.
  • the molten metal surface height h of the molten metal in the injection sleeve 7 is measured within 0.1 second to 1.0 second (particularly preferably after 0.5 second) after the completion of pouring.
  • the magnetostrictive hot water surface sensor 10 of the present embodiment is lowered to the vicinity of the hot water inlet 6 by the moving device 11 that moves up and down or slides.
  • control means 12 is connected to a storage means 16 in which data of dimensions such as an inner diameter d of a cylindrical injection sleeve 7 arranged in a horizontal axis direction and a length L in the injection sleeve 7 is stored. ing.
  • the calculation means 17 provided in the control means 12 includes dimensions such as a molten metal surface height h poured into the injection sleeve 7, an inner diameter d of the injection sleeve 7, and a length L within the injection sleeve 7. Is used to calculate the total molten metal amount of the actual molten metal poured from the ladle 4 into the injection sleeve 7.
  • a molten metal As shown in FIG. 2A, in the state where the injection plunger 8 is located at the retreat limit A and the magnetostrictive molten metal surface sensor 10 is located at the ascent limit, the molten metal pumped up from the melting furnace is It is poured into the injection sleeve 7 from the hot water supply port 6 in the open part. In the present embodiment, after the pouring of the molten metal into the injection sleeve 7 is completed, the molten metal surface undulates during pouring and for less than 0.1 seconds after the pouring is completed.
  • the magnetostrictive molten-metal surface sensor 10 is poured into the injection sleeve 7 after the molten-metal surface disturbance is settled.
  • the molten metal surface height h of the molten metal is measured.
  • the magnetostrictive hot water surface sensor 10 includes measurement time setting means (not shown).
  • the ladle 4 is retracted, and the magnetostrictive hot water surface sensor 10 is moved to the vicinity of the hot water inlet 6 by the moving device 11 that moves up and down or slides.
  • the calculation means 17 of the control means 12 is poured into the injection sleeve 7. Using the molten metal surface height h, the inner diameter d of the injection sleeve 7, and the dimensions such as the length L in the injection sleeve 7, the molten metal poured into the injection sleeve 7 from the ladle 4.
  • Such information includes a low-speed injection process (FIG. 2C) in which the injection plunger 8 is advanced from the backward limit A to the high-speed injection switching position B, and the injection plunger 8 is increased from the high-speed injection switching position B to the filling completion position. This is effectively used for setting the switching position in the high-speed injection process (FIG. 2 (c)) advanced to the pressure switching position C.
  • the amount of molten metal for injection filling into the mold cavity is measured in the ladle (before being poured into the injection sleeve, as in the prior art). This is based on the molten metal surface height in the injection sleeve 7 poured from the ladle 4, not the molten metal), so that the amount of molten metal injected into the mold cavity can be measured with high accuracy. Can be done. Based on such high-precision measurement results, it is possible to accurately perform operation control related to injection filling, such as an injection process, a high-speed injection process, and a pressure-injection injection process. It is possible to avoid variations in the quality of the product.
  • the present invention is not limited to the above-described embodiment, and various modifications can be made within the scope of the gist of the present invention.
  • An imaging means such as a camera may be applied in place of the detection sensor.
  • the photographing means may be a fixed type fixed to the injection sleeve 7 as indicated by reference numeral 20 in FIG. 3, or a moving type by a moving means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Abstract

【課題】金型のキャビティに溶湯を射出充填するために、射出スリーブ内に注ぎ入れられた溶湯の量を高精度で計測する。 【解決手段】溶解炉から金属溶湯を汲み上げるラドル4と、ラドル4により汲み上げられた金属溶湯が注ぎ入れられる射出スリーブ7と、射出スリーブ内で進退される射出プランジャ8と、射出プランジャ8を進退させる射出シリンダー9とを備え、射出シリンダー9により射出プランジャ8を前進させることにより、射出スリーブ内に有する金属溶湯を型閉された金型のキャビティに射出充填するダイカストマシンであって、ラドル4から射出スリーブ内に注ぎ入れられた金属溶湯の湯面高さhを測定する磁歪式湯面センサー10を備える。

Description

ダイカストマシン
 本発明は、射出スリーブに供給された溶湯を射出プランジャの前進により金型のキャビティ内へ射出充填するダイカストマシンに関する。特に、金型のキャビティ内に溶湯を高速で射出充填するために、射出スリーブ内に実際に注ぎ入れられた溶湯の量を計測することが可能なダイカストマシンに関する。
 従来から用いられている一般的なダイカストマシンにおいては、溶解炉で溶融された金属材料を1ショット毎にラドルで汲み上げ、汲み上げられた溶湯を射出スリーブの給湯口に給湯する。そして、射出スリーブ内に進退可能に設けた射出プランジャの前進動作により金型のキャビティ内へ金属溶湯を射出充填して、鋳造成形品の成形が行われている。
 こうしたダイカストマシンにおいては、ラドルにおける給湯量のバラツキは、金型のキャビティ内へ射出充填される溶湯の充填量が変動することにより、成形品の巣、湯廻り不足、強度不足等の要因となることから、射出スリーブ内の正確な溶湯充填量を知ることが望ましい。それに関連して、例えば、特許文献1及び特許文献2には、溶解炉から汲み上げられたラドルにおける溶湯量を計測するダイカストマシンが開示されている。
特開2011-143425号公報 特開2000-190060号公報
 本発明が解決しようとする課題は、ダイカストマシンにおいて、給湯後・射出前の射出スリーブ内の給湯量をレベルセンサーで正確に検知することであり、実際の給油量に応じて射出条件を設定することである。
 つまり、ダイカストマシンの射出条件で、特に、高速ストロークを的確に達成するためには、理論的には、製品の体積(つまり、金型のキャビティ容積)に対して鋳込湯量を正確に制御することが大事であり、製品の体積や金型容積により設計上の高速射出切替位置を基準に、各ショットで最適な高速射出切替位置を導き出し、射出条件を設定する。つまり、給湯量が変化した場合には、高速射出切替位置は必ずしも一定位置ではなくなるからである。
 特に、ラドルでの給湯の場合、給湯量のバラツキは、ラドルへの湯の付着(薄皮等)や、湯こぼれや、給湯装置の油面検知手段への付着等、様々な要因がある。また、ポンプ等を利用した給湯法でも、炉の湯面変化や湯道管への付着や炉の湯面変化などが影響するものである。
 このような給湯量のバラツキは、充填完了直前の増圧切替位置にも影響する。よって、給湯量のバラツキは、成形品の製品品質、つまり巣、湯廻り不足、強度不足等、多大な影響を及ぼすものである。
 特許文献1及び特許文献2に開示されているダイカストマシンにおいては、ラドルにより汲み上げられた溶湯の溶湯量を把握することができる。しかし、ラドルにより汲み上げられた溶湯は、金型のキャビティに射出充填される前に、ラドルを傾けて射出スリーブ内に注ぎ入れられるものである。その際、ラドルにおける溶湯の全てを射出スリーブ内に注ぎ入れようとしたとしても、ラドル内には溶湯の一部が固着して残存してしまっていたり、湯こぼれを起こしたりしてしまうという実情があることから、ラドルで計測された溶湯量と、射出スリーブ内に注ぎ入れられた溶湯量とでは差が生じることがあった。
 本発明は、上記課題に鑑みてなされたものであり、金型のキャビティ内に溶湯を射出充填するために、射出スリーブ内に注ぎ入れられた溶湯の量を高精度で計測することが可能なダイカストマシンを提供することを目的とする。
 本発明のダイカストマシンにおいては、実際に射出スリーブに給湯された給湯量を、給湯の湯面高さから判断(計算)して取り込み、各ショット毎に高速射出切替位置(B)及び、充填完了位置である増圧切替位置(C)を実際の給湯量から判断し、ダイカストマシンの動作を切り替える位置を常に的確な位置に設定する事で、安定した高速でのダイカスト生産と製品品質を維持するものである。ここで、湯面センサーは、昇降式またはスライド式等の移動手段を持ち給湯装置との干渉を避ける構造とする。
 本発明に係るダイカストマシンは、
 溶解炉から金属溶湯を汲み上げるラドルと、該ラドルにより汲み上げられた前記金属溶湯が注ぎ入れられる筒状の射出スリーブと、射出スリーブ内で進退される射出プランジャと、該射出プランジャを進退させる進退駆動手段とを備え、該進退駆動手段により前記射出プランジャを前進させることにより、前記射出スリーブ内に有する前記金属溶湯を型閉された金型のキャビティ内に射出充填するダイカストマシンであって、
 前記ラドルから前記射出スリーブ内に注ぎ入れられた前記金属溶湯の湯面高さを測定する湯面検出センサーを備えたことを特徴とする。
 さらに、本発明に係るダイカストマシンは、
 前記ラドルにより汲み上げられた前記金属溶湯が注がれる給湯口を前記射出スリーブの上部に設け、前記給湯口に臨んだ該給湯口の開放部に前記湯面検出センサーを設けたことを特徴とする。
 さらに、本発明に係るダイカストマシンは、
 前記射出スリーブ内に注ぎ入れられた前記金属溶湯の湯面高さを測定するときに、前記湯面検出センサーを給湯口付近まで移動させる移動装置を備えたことを特徴とする。
 さらに、本発明に係るダイカストマシンは、
 前記射出スリーブ内に注ぎ入れられた前記金属溶湯の湯面高さを測定する前記湯面検出センサーは、非接触式の磁歪式湯面センサーであることを特徴とする。
 さらに、本発明に係るダイカストマシンは、
 前記ラドルから前記金属溶湯が注ぎ入れられる射出スリーブ内は円筒状に形成されており、
 前記湯面検出センサーにより測定された前記射出スリーブ内に注ぎ入れられた前記金属溶湯の湯面高さ、前記射出スリーブの内径、前記射出スリーブ内の長さ寸法を用いて、前記射出スリーブに注ぎ入れられた前記金属溶湯の総溶湯量を演算する演算手段を備えたことを特徴とする。
 さらに、本発明に係るダイカストマシンは、
 前記湯面検出センサーは、前記金属溶湯が前記ラドルから前記射出スリーブ内に注ぎ入れられるのが完了してから0.1秒以上1.0秒以内に、前記金属溶湯の湯面高さを測定する計測時間設定手段を備えたものであることを特徴とする。
 本発明によれば、金型のキャビティに射出充填するための溶湯量の計測が、従来技術のように、ラドル内における溶湯量(射出スリーブ内に注ぎ入れられる前の溶湯量)ではなく、ラドルから実際に注ぎ入れられた射出スリーブ内の溶湯の量を湯面高さに基づいて検知するものであることから、金型のキャビティ内に射出充填される実際の溶湯量の計測し、それにより、高速射出切替位置及び充填完了位置を高精度に制御することが可能となる。そして、このような射出スリーブ内の溶湯量の高精度な計測結果に基づき、各ショット毎の射出充填に係る動作制御を行うことが可能となり、ひいては製造される成形品の品質にバラツキが生じることを回避することが可能となる。
本発明の一実施例としてのダイカストマシン全体を示す概略構成図である。 本発明の一実施例としてのダイカストマシンの動作を示す説明図であり、(a)~(d)の順に動作過程を示している。 本発明の一実施例としてのダイカストマシンの変形例を示す説明図である。 本発明の一実施例としてのダイカストマシンの更なる変形例を示す説明図である。
 以下、本発明の実施形態としてのダイカストマシンの実施例を図1乃至図4に基づき説明する。もちろん、本発明は、その発明の趣旨に反しない範囲で、本実施例において説明した具体的な実施態様に限らず、それ以外の当業者であれば容易に変更可能な構成のものに対しても容易に適用可能なことは説明を要するまでもない。
 図1に示す本実施例のダイカストマシン1は、固定金型2と移動金型3とからなる型閉された金型のキャビティ内へ金属溶湯を射出充填して成形品を製造するものである。
 ダイカストマシン1には、図示しない溶解炉から金属溶湯を汲み上げるラドル4、ラドル4を回動・移動させるリンクアーム5、ラドル4により汲み上げられた金属溶湯が注ぎ入れられる給湯口6が開放部として上部に形成された円筒状の射出スリーブ7、射出スリーブ7内で進退可能に設けられた射出プランジャ8、射出プランジャ8を前進・後退駆動する進退駆動手段たる射出シリンダー9、ダイカストマシン1の各種制御を行う制御手段12を備えている。この制御手段12は、射出シリンダー9の駆動、リンクアーム5を介してのラドルの動作、後述する磁歪式湯面センサー10の装着された昇降又はスライド等をする移動装置11の動作制御等、ダイカストマシン1の各種制御を行う。
 射出プランジャ8を前進・後退駆動するための射出シリンダー9と、当該射出シリンダー9に作動流体を供給する作動流体供給装置13との間には、射出プランジャ8の前進や後退、及び前進速度を低速や高速に切り替えることが可能な速度切替バルブ14が設けられている。また、射出シリンダー9には、当該射出シリンダー9のストロークから射出プランジャ8の位置を検出するための位置センサー15が設けられている。
 ダイカストマシン1には、射出スリーブ7内に注ぎ入れられた金属溶湯の湯面高さhを測定する非接触式の磁歪式湯面センサー10を備えている。
 磁歪式湯面センサー10は、昇降又はスライド等をする移動装置11に装着されていて、給湯口6に臨んだ該給湯口6の上方に配設され、金属溶湯がラドル4から射出スリーブ7内に注ぎ込まれるのが完了してから0.1秒以上1.0秒以内(特に好ましくは、0.5秒後)に、射出スリーブ7内の金属溶湯の湯面高さhを測定する。なお、本実施例の磁歪式湯面センサー10は測定を行うとき、昇降又はスライド等をする移動装置11により給湯口6付近まで下降される。
 また、制御手段12には、軸線方向が水平に配置された円筒状の射出スリーブ7の内径d、及び射出スリーブ7内の長さL等の寸法のデータが格納された記憶手段16が接続されている。
 制御手段12に備えた演算手段17は、射出スリーブ7内に注ぎ入れられた金属溶湯の湯面高さhと、射出スリーブ7の内径dと、射出スリーブ7内の長さL等の寸法とを用いて、ラドル4から射出スリーブ7内に注ぎ入れられた実際の金属溶湯の総溶湯量を算出する。
 次に、以上のように構成されたダイカストマシン1の動作について説明する。なお、図2において斜線で表したものは金属溶湯である。図2(a)に示すように、射出プランジャ8が後退限A、磁歪式湯面センサー10が上昇限に位置する状態において、溶解炉から汲み上げられた溶湯が、ラドル4が傾けられることにより上部開放部の給湯口6から射出スリーブ7内に注ぎ入れられる。注ぎ入れられている最中と注ぎ入れ完了後の0.1秒未満においては、湯面が波立つことから、本実施例では、溶湯が射出スリーブ7内に注ぎ入れられるのが完了してから0.1秒以上1.0秒以下の間(特に好ましくは、0.5秒後)に、湯面の乱れが収まるのを待って、磁歪式湯面センサー10は射出スリーブ7内に注ぎ入れられた溶湯の湯面高さhを測定する。そのために、磁歪式湯面センサー10は、図示しない計測時間設定手段を備えている。
 次に図2(b)に示すように、ラドル4が後退され、磁歪式湯面センサー10が昇降又はスライド等をする移動装置11により給湯口6近くまで移動される。この状態で磁歪式湯面センサー10により、射出スリーブ7内に注ぎ入れられた溶湯の湯面高さhが測定されると、制御手段12の演算手段17は、射出スリーブ7内に注ぎ入れられた金属溶湯の湯面高さhと、射出スリーブ7の内径dと、射出スリーブ7内の長さL等の寸法とを用いて、ラドル4から射出スリーブ7内に注ぎ入れられた金属溶湯の総溶湯量を算出する。そして、こうした情報は、射出プランジャ8が後退限Aから高速射出切替位置Bまで前進される低速射出工程(図2(c))や、射出プランジャ8が高速射出切替位置Bから充填完了位置で増圧切替位置Cまで前進される高速射出工程(図2(c))における切替位置の設定に効果的に利用される。
 以上のように本実施例のダイカストマシン1によれば、金型のキャビティ内に射出充填するための溶湯量の計測が、従来技術のように、ラドルにおける溶湯(射出スリーブ内に注ぎ入れられる前の溶湯)ではなく、ラドル4から注ぎ入れられた射出スリーブ7内の溶湯の湯面高さに基づくものであることから、金型のキャビティ内に射出充填される溶湯量の計測を高精度に行うことが可能となる。そして、このような高精度な計測結果に基づき、射出工程や高速射出工程や増圧射出工程等の射出充填に係る動作制御を正確に行うことが可能となることから、ひいては製造される成形品の品質にバラツキが生じることを回避することが可能となる。
 以上、本実施例の一例を詳述したが、本発明は、前記実施例に限定されるものではなく、本発明の要旨の範囲内で種々の変形実施が可能である。例えば、上記一例では、射出スリーブ7内の湯面高さを測定する手段として、非接触式の磁歪式湯面センサー10を適用した例を説明したが、磁歪式湯面センサー10等の湯面検出センサーに代えて、カメラ等の撮影手段を適用してもよい。撮影手段は、図3において符号20で示すように射出スリーブ7に固定された固定式であってもよく、または移動手段による移動式であってもよい。
 また、上記実施例では、非接触式の磁歪式湯面センサー10の移動手段として移動装置11を用いてそれに固定したが、図4に示すように、昇降式の移動装置11の代わりにスライド式の移動装置11を用いて、磁歪式湯面センサー10を給湯口6の上方の開口部に給湯機等との干渉を避けて横方向から移動させる構造としてもよい。また、移動手段としては、給湯機等との干渉を避ければ、回転等の移動手段でも良いし、移動式とせず、固定式としてもよい。
 1 ダイカストマシン
 2 固定金型
 3 移動金型
 4 ラドル
 5 リンクアーム
 6 給湯口
 7 射出スリーブ
 8 射出プランジャ
 9 射出シリンダー(進退駆動手段)
 10 磁歪式湯面センサー(湯面検出センサー)
 11 移動装置(移動手段)
 12 制御手段
 13 作動流体供給装置
 14 速度切替バルブ
 15 位置センサー
 16 記憶手段
 17 演算手段
 A 後退限
 B 高速射出切替位置
 C 充填完了位置、増圧切替位置
 d 内径
 h 湯面高さ
 L 長さ

Claims (6)

  1.  溶解炉から金属溶湯を汲み上げるラドルと、該ラドルにより汲み上げられた前記金属溶湯が注ぎ入れられる筒状の射出スリーブと、射出スリーブ内で進退される射出プランジャと、該射出プランジャを進退させる進退駆動手段とを備え、該進退駆動手段により前記射出プランジャを前進させることにより、前記射出スリーブ内に有する前記金属溶湯を型閉された金型のキャビティ内に射出充填するダイカストマシンであって、
     前記ラドルから前記射出スリーブ内に注ぎ入れられた前記金属溶湯の湯面高さを測定する湯面検出センサーを備えたことを特徴とするダイカストマシン。
  2.  前記ラドルにより汲み上げられた前記金属溶湯が注がれる給湯口を前記射出スリーブの上部に設け、前記給湯口に臨んだ該給湯口の開放部に前記湯面検出センサーを設けたことを特徴とする請求項1に記載のダイカストマシン。
  3.  前記射出スリーブ内に注ぎ入れられた前記金属溶湯の湯面高さを測定するときに、前記湯面検出センサーを給湯口付近まで移動させる移動装置を備えたことを特徴とする請求項2に記載のダイカストマシン。
  4.  前記射出スリーブ内に注ぎ入れられた前記金属溶湯の湯面高さを測定する前記湯面検出センサーは、非接触式の磁歪式湯面センサーであることを特徴とする請求項1~3の何れか1項に記載のダイカストマシン。
  5.  前記ラドルから前記金属溶湯が注ぎ入れられる射出スリーブ内は円筒状に形成されており、
     前記湯面検出センサーにより測定された前記射出スリーブ内に注ぎ入れられた前記金属溶湯の湯面高さ、前記射出スリーブの内径、前記射出スリーブ内の長さ寸法を用いて、前記射出スリーブに注ぎ入れられた前記金属溶湯の総溶湯量を演算する演算手段を備えたことを特徴とする請求項1~4の何れか1項に記載のダイカストマシン。
  6.  前記湯面検出センサーは、前記金属溶湯が前記ラドルから前記射出スリーブ内に注ぎ入れられるのが完了してから0.1秒以上1.0秒以内に、前記金属溶湯の湯面高さを測定する計測時間設定手段を備えたものであることを特徴とする請求項1~5の何れか1項に記載のダイカストマシン。
PCT/JP2018/011942 2017-03-31 2018-03-23 ダイカストマシン WO2018181075A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880023412.3A CN110475632A (zh) 2017-03-31 2018-03-23 压铸机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017070387A JP2018171626A (ja) 2017-03-31 2017-03-31 ダイカストマシン
JP2017-070387 2017-03-31

Publications (1)

Publication Number Publication Date
WO2018181075A1 true WO2018181075A1 (ja) 2018-10-04

Family

ID=63677516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/011942 WO2018181075A1 (ja) 2017-03-31 2018-03-23 ダイカストマシン

Country Status (3)

Country Link
JP (1) JP2018171626A (ja)
CN (1) CN110475632A (ja)
WO (1) WO2018181075A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113462882A (zh) * 2021-06-30 2021-10-01 唐山迪安自动化设备有限公司 退火炉内钢带位置测量传感器装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021000648A (ja) * 2019-06-21 2021-01-07 東洋機械金属株式会社 温度範囲判別手段を備えたダイカストマシン、及び、温度範囲判別手段を備えたダイカストマシンの運転方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06506396A (ja) * 1991-04-19 1994-07-21 マシーネンファブリク ミュラー−ヴァインガルテン アーゲー プレッシャダイカストマシン内の鋳造パラメータの制御のための方法
JPH09300059A (ja) * 1996-05-15 1997-11-25 Toyota Motor Corp ダイカスト鋳造における射出速度制御方法
JP2003245768A (ja) * 2002-02-25 2003-09-02 Toyota Motor Corp ダイカスト鋳造方法および射出装置
JP2005066696A (ja) * 2003-08-25 2005-03-17 Fondarex Sa ダイカスト機或いは射出成形機
JP2008207235A (ja) * 2007-02-28 2008-09-11 Toyota Motor Corp ダイカスト鋳造装置およびダイカスト鋳造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU442010A1 (ru) * 1973-01-25 1974-09-05 Предприятие П/Я Р-6382 Устройство дл дозировани расплава
EP0226830B1 (en) * 1985-11-26 1990-01-10 Akio Nakano Injection apparatus in a hot chamber type die casting machine
JPH0780621A (ja) * 1993-09-08 1995-03-28 Toshiba Mach Co Ltd 給湯制御方法
JP3439434B2 (ja) * 2000-08-09 2003-08-25 日精樹脂工業株式会社 金属材料の射出成形における材料供給及び溶解方法
CN203003110U (zh) * 2013-01-14 2013-06-19 南京云海轻金属精密制造有限公司 高精度注液冷室压铸机
EP3302849B1 (en) * 2015-06-04 2020-03-11 Disa Industries A/S Sand moulding machine and method of producing sand mould parts

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06506396A (ja) * 1991-04-19 1994-07-21 マシーネンファブリク ミュラー−ヴァインガルテン アーゲー プレッシャダイカストマシン内の鋳造パラメータの制御のための方法
JPH09300059A (ja) * 1996-05-15 1997-11-25 Toyota Motor Corp ダイカスト鋳造における射出速度制御方法
JP2003245768A (ja) * 2002-02-25 2003-09-02 Toyota Motor Corp ダイカスト鋳造方法および射出装置
JP2005066696A (ja) * 2003-08-25 2005-03-17 Fondarex Sa ダイカスト機或いは射出成形機
JP2008207235A (ja) * 2007-02-28 2008-09-11 Toyota Motor Corp ダイカスト鋳造装置およびダイカスト鋳造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113462882A (zh) * 2021-06-30 2021-10-01 唐山迪安自动化设备有限公司 退火炉内钢带位置测量传感器装置

Also Published As

Publication number Publication date
CN110475632A (zh) 2019-11-19
JP2018171626A (ja) 2018-11-08

Similar Documents

Publication Publication Date Title
JP4883557B2 (ja) スクイズピンの異常検知方法及び成形機
TWI630042B (zh) Die casting machine and method for forming solid-liquid coexisting metal
JP5657355B2 (ja) ダイカストマシン及びダイカストマシンの異常検出方法
US11911820B2 (en) Die casting machine, die casting machine equipped with dies, control device for die casting machine, and die casting process
KR20040100980A (ko) 다이 캐스팅에 의해 금속 부품들을 제조하기 위한 방법 및장치
WO2018181075A1 (ja) ダイカストマシン
JP6795716B1 (ja) 射出装置および射出制御方法
US6562100B2 (en) Material supply and melting method in injection molding of metal material
JP2020049503A (ja) 溶湯供給量に基づいたダイカストマシンの射出条件補正方法
JP3812820B2 (ja) ダイカスト鋳造機及びダイカスト鋳造方法
JP2020062671A (ja) ダイカストマシン
CN111822671A (zh) 具有能够控制熔料面位置的测量时机的熔料供给量测量装置的压铸机以及压铸成型方法
JP7308054B2 (ja) ダイカストマシン
JP2016203197A (ja) 加圧ピン制御方法及び加圧ピン制御装置
JP4367172B2 (ja) 射出装置及び射出成形方法
JP5729239B2 (ja) 射出成形装置及び射出成形方法
JPH10146667A (ja) ダイカストマシンにおける給湯量制御方法および装置
JP5491206B2 (ja) ダイカストマシン
JP3477414B2 (ja) 射出成形方法及び装置
JPH11197816A (ja) 鋳造装置
JP2017080785A (ja) 成形機の射出装置及び成形機
JP2021000648A (ja) 温度範囲判別手段を備えたダイカストマシン、及び、温度範囲判別手段を備えたダイカストマシンの運転方法
JP2021192920A (ja) 軽金属射出装置の逆流防止装置および軽金属射出装置の逆流防止方法
JP5041852B2 (ja) 溶融金属成形装置
JP4432742B2 (ja) 半溶融鋳造方法及び半溶融鋳造装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18776526

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18776526

Country of ref document: EP

Kind code of ref document: A1