WO2018180405A1 - 電極構成体固定用接着剤及び電気化学素子 - Google Patents

電極構成体固定用接着剤及び電気化学素子 Download PDF

Info

Publication number
WO2018180405A1
WO2018180405A1 PCT/JP2018/009400 JP2018009400W WO2018180405A1 WO 2018180405 A1 WO2018180405 A1 WO 2018180405A1 JP 2018009400 W JP2018009400 W JP 2018009400W WO 2018180405 A1 WO2018180405 A1 WO 2018180405A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive
layer
electrode
negative electrode
electrolytic solution
Prior art date
Application number
PCT/JP2018/009400
Other languages
English (en)
French (fr)
Inventor
耕一郎 前田
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to KR1020197028099A priority Critical patent/KR20190131499A/ko
Priority to JP2019509176A priority patent/JP7003989B2/ja
Publication of WO2018180405A1 publication Critical patent/WO2018180405A1/ja
Priority to JP2023134184A priority patent/JP2023169154A/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/049Processes for forming or storing electrodes in the battery container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J153/00Adhesives based on block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers
    • C09J153/02Vinyl aromatic monomers and conjugated dienes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2453/00Presence of block copolymer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an electrode assembly fixing adhesive and an electrochemical device, and more particularly to an electrochemical device such as a secondary battery and an adhesive for fixing an electrode configuration including an electrode in the electrochemical device. .
  • Electrochemical elements such as secondary batteries are used in various technical fields.
  • a lithium ion secondary battery can be repeatedly charged and discharged and has a high energy density. Therefore, the lithium ion secondary battery is particularly useful in fields such as a mobile phone, a notebook personal computer, and an electric vehicle.
  • Electrochemical elements such as secondary batteries usually include a positive electrode member, a separator member, and a negative electrode member having a film shape. These members usually constitute an electrode structure in a stacked or wound state, and the electrode structure is stored in an exterior body of the element.
  • an exterior body it has been proposed to use a film such as a laminate film from the viewpoint of improvement in capacity and weight reduction. Such a film is used as a so-called pouch-type exterior body.
  • Electrochemical elements having a pouch-type exterior body usually have tabs extending from the current collectors of the positive electrode member and the negative electrode member.
  • the tab extends from the inside of the device to the outside while being sandwiched between the heat-sealed film edges.
  • Such a tab can serve as a pole terminal of the element and to hold the electrode structure in a desired position inside the element.
  • the electrode structure itself is not fixed by such a structure. When such a configuration is employed, the electrode structure may be damaged by an impact applied to the device when the device is used. The occurrence of such damage can be a problem especially when the battery is large.
  • JP 2003-151512 A (corresponding publication: US Patent Application Publication No. 2004/045597) JP 2001-93576 A Japanese Patent No. 4440573 WO2016 / 080143 (corresponding publication: US Patent Application Publication No. 2017/346130)
  • the object of the present invention is to reduce the thickness of the element and achieve miniaturization, and to achieve effective fixing between the electrode structure and the pouch-type exterior body. It is to provide an agent.
  • a further object of the present invention is to provide an electrochemical device that can be easily downsized and has high durability against impact.
  • the present inventor has studied to provide an adhesive layer on the inner surface of the exterior body, thereby fixing the electrode structure, instead of fixing with the double-sided tape.
  • an adhesive layer on the inner surface of the exterior body, thereby fixing the electrode structure, instead of fixing with the double-sided tape.
  • Electrode composition including a positive electrode member, a separator member, and a negative electrode member, an electrolytic solution, and an adhesive for fixing an electrode composition used for an electrochemical element including a pouch-type exterior body that stores the electrode structure and the electrolytic solution
  • An electrode assembly fixing adhesive having a swelling degree with respect to an electrolytic solution of 50% or less.
  • the adhesive for fixing an electrode structure according to [1] comprising a styrene block copolymer and a diene polymer.
  • An electrochemical element including a positive electrode member, an electrode structure including a separator member and a negative electrode member, an electrolytic solution, and a pouch-type exterior body storing the electrode structure and the electrolytic solution,
  • the electrochemical element further includes an adhesive layer that is interposed between the inner surface of the exterior body and the electrode structure to bond them, An electrochemical element having a swelling degree of the adhesive layer with respect to the electrolytic solution of 50% or less.
  • the adhesive layer includes a styrene block copolymer and a diene polymer.
  • an adhesive for fixing an electrode structure which can reduce the thickness of the element and achieve miniaturization, and can achieve effective fixing between the electrode structure and the pouch-type exterior body;
  • an electrochemical device that can be easily downsized and has high durability against impact.
  • FIG. 1 is a top view schematically showing an example of the electrochemical device of the present invention.
  • FIG. 2 is a vertical cross-sectional view showing a cross section of the electrochemical device shown in FIG. 1 cut along a vertical cross section along line L1.
  • the adhesive for fixing an electrode structure of the present invention is used for an electrochemical element including a positive electrode member, an electrode structure including a separator member and a negative electrode member, an electrolytic solution, and a pouch-type exterior body that stores the electrode structure and the electrolytic solution. It is an adhesive.
  • the electrochemical element of the present invention is an electrochemical element including an electrode structure including a positive electrode member, a separator member, and a negative electrode member, an electrolytic solution, and a pouch-type exterior body that stores the electrode structural body and the electrolytic solution. It further includes an adhesive layer that is interposed between the inner surface of the exterior body and the electrode structure to bond them together.
  • FIG. 1 is a top view schematically showing an example of the electrochemical element of the present invention
  • FIG. 2 is a longitudinal section showing a section obtained by cutting the electrochemical element shown in FIG. 1 along a line L1.
  • FIG. 1 and 2 show a state where the electrochemical element is horizontally mounted.
  • the ratio of the thickness to the width of the element is shown larger than the actual element.
  • the electrochemical element 100 is a secondary battery, and includes an electrode structure 130 and a pouch-type exterior body that stores the electrode structure.
  • the pouch-type exterior body is an exterior body for an electrochemical element having a bag shape.
  • the bag-like shape can usually be a flat bag shape.
  • the bag shape can be formed by overlapping a pair of films and heat-sealing the edge portion.
  • the method for forming the bag shape is not limited to this, and it can be formed by any method.
  • a bag-like shape can be formed by a method of folding a sheet of film and heat-sealing the edge portion, or forming a tubular film and heat-sealing the edge portion.
  • the pouch-type exterior body includes an upper surface side exterior body 110U and a lower surface side exterior body 110D.
  • the upper surface side exterior body 110 ⁇ / b> U and the lower surface side exterior body 110 ⁇ / b> D are joined by being heat sealed in the surrounding area 111.
  • Electrochemical element 100 further includes an electrolytic solution.
  • a part of the electrolytic solution exists in a state where the gap 160 and other gaps in the element are filled, and the other part exists in a state where each component in the outer package is infiltrated.
  • the electrode assembly 130 includes a negative electrode member 131 (N), a positive electrode member 133 (P), a negative electrode member 135 (N), a positive electrode member 137 (P), and a negative electrode member.
  • 139 (N) are alternately overlapped, and a separator member 132 (S), a separator member 134 (S), a separator member 136 (S), and a separator member 138 (S) are interposed therebetween.
  • the electrode assembly can exhibit a function as an electrochemical element such as a secondary battery.
  • the structure of the electrode structure is not limited to this, and the number of positive electrode members and negative electrode members may be more or less than the example of FIG.
  • the electrode structure may have a wound body structure. For example, by winding a laminate having a layer configuration of negative electrode member / separator member / positive electrode member / separator member, a wound body structure having a structure in which the positive electrode member and the negative electrode member overlap with each other via the separator member is obtained. be able to.
  • the electrode assembly 130 further includes a binding member 141 that binds the positive electrode member, the negative electrode member, and the separator member on the outer periphery thereof.
  • the material constituting the binding member 141 may be the same material that can be used as the separator member from the viewpoint of ensuring the insulation of the electrode assembly 130.
  • the structure of the electrode structure is not limited to this.
  • the material of the binding member may be a material other than the material that can be used as the separator member.
  • the layer on the outer surface of the electrode assembly may be entirely a negative electrode member layer, the whole may be a separator member layer, or a part thereof may be a negative electrode member layer. The other part may be a layer of a separator member.
  • the electrode assembly may include a separator member binding member that further surrounds the entire periphery of the structure in which the positive electrode member, the negative electrode member, and the separator member overlap.
  • a separator member binding member that further surrounds the entire periphery of the structure in which the positive electrode member, the negative electrode member, and the separator member overlap.
  • a part or all of the layer on the outer surface of the electrode assembly may be a layer of the positive electrode member.
  • the electrochemical element 100 is interposed between the inner surface of the upper surface side exterior body 110U and the electrode structure 130, and adheres to the adhesive layer 150U, and the inner surface of the lower surface side exterior body 110D and the electrode structure 130. It further includes an adhesive layer 150D interposed between and adhering them.
  • each of the adhesive layers 150U and 150D includes only one adhesive layer.
  • the adhesive layer 150U is in direct contact with both the upper surface side exterior body 110U and the electrode structure 130, and the adhesive layer 150D is in direct contact with both the lower surface side exterior body 110D and the electrode structure 130.
  • the adhesive layer is in direct contact with both the exterior body and the electrode structure, whereby reliable adhesion with a thin layer can be achieved as compared with the adhesion with the double-sided tape in the prior art.
  • the adhesive layer is in direct contact with both the exterior body and the electrode structure, it is possible to achieve sufficient fixation of the electrode structure as compared with the adhesion by the double-sided tape in the prior art.
  • sufficient fixing of the electrode structure can be achieved by using the specific adhesive layer defined in the present invention. Thereby, it is possible to increase the durability against impact while reducing the thickness of the element and achieving miniaturization.
  • the thickness of the adhesive layer is preferably 1 ⁇ m or more, more preferably 2 ⁇ m or more, preferably 20 ⁇ m or less, more preferably 15 ⁇ m or less.
  • a sufficient shear adhesive force can be expressed.
  • the thickness is equal to or less than the upper limit, the volume and weight of the adhesive layer in the electrochemical element can be suppressed, and as a result, the capacity per volume and weight of the electrochemical element can be increased. In addition, the manufacturing cost of the electrochemical element can be reduced.
  • the adhesive layer is provided over the entire interface between the electrode assembly 130 and the exterior body, but the mode of the adhesive layer is not limited to this.
  • the adhesive layer may be provided only in a partial region of the interface between the electrode structure 130 and the exterior body. More specifically, the adhesive layer may be provided at an interval according to a predetermined pattern at the interface between the electrode structure 130 and the exterior body.
  • a part of the surface layer in contact with the adhesive layers 150U and 150D of the electrode assembly 130 is a layer of the negative electrode members 131 (N) and 139 (N), and the other part is It is a layer of the binding member 141.
  • the layer on the surface of the electrode structure that is in contact with the adhesive layer may be a separator member layer, a negative electrode member layer, or a part of the separator member. It may be a layer and the other part may be a layer of the negative electrode member.
  • a part or all of the surface layer in contact with the adhesive layer may be a layer of the positive electrode member.
  • the electrochemical device 100 further includes a positive electrode tab 120P and a negative electrode tab 120N as optional components.
  • the negative electrode tab 120N is electrically connected to the negative electrodes 131 (N), 135 (N), and 139 (N) through the lead 121, and functions as a negative electrode in the electrochemical element 100.
  • the positive electrode tab 120 ⁇ / b> P is electrically connected to the positive electrode 133 (P) and the positive electrode 137 (P) via a lead (not shown), and functions as a positive electrode in the electrochemical element 100.
  • the positive electrode tab 120P and the negative electrode tab 120N are fixed by being sandwiched between heat seals in the peripheral region 111 of the pouch-type exterior body.
  • the electrode assembly 130 is mechanically supported inside the pouch-type exterior body by the positive electrode tab 120P and the negative electrode tab 120N via leads.
  • the swelling degree with respect to the electrolyte solution of the adhesive for fixing an electrode assembly of the present invention and the adhesive layer in the electrochemical element of the present invention is within a specific range.
  • the degree of swelling of an adhesive is the degree of swelling of a film obtained by drying the adhesive. More specifically, the adhesive is dried to form a film having a thickness of about 1 mm, a rectangular test piece of 2 cm ⁇ 2 cm is cut out from the film, and the degree of swelling of the test piece is measured, whereby the adhesive is obtained. The degree of swelling can be obtained. Furthermore, this measured value can be employed as the degree of swelling of the adhesive layer in the electrochemical device using the adhesive.
  • the degree of swelling of the measurement object (adhesive or adhesive layer) of the swelling degree with respect to the electrolytic solution is the rate of change in weight caused by immersing the measurement object in the electrolytic solution.
  • the degree of swelling can be determined by performing immersion treatment for 72 hours at a temperature of 60 ° C. in a state in which a test piece to be measured is immersed in an electrolytic solution, and measuring a change in weight before and after the treatment.
  • an electrolytic solution used in an electrochemical element to be used for the adhesive of the present invention is employed.
  • the adhesive is swollen using the electrolytic solution. The degree can be measured.
  • the degree of swelling of the adhesive of the present invention with respect to the electrolytic solution is 50% or less, preferably 20% or less, and more preferably 15% or less.
  • the lower limit of the degree of swelling is ideally 0%, but can usually be 0.1% or more.
  • the adhesive having such a degree of swelling is, for example, an adhesive containing a styrene block copolymer and a diene polymer, which will be described in detail below, and parameters of each polymer (type of constituent unit, ratio, molecular weight, etc.). ) And the content ratio can be appropriately adjusted.
  • the adhesive can exhibit tackiness at ⁇ 30 ° C. to 100 ° C. By exhibiting tackiness in such a temperature range, it can be usefully used as an adhesive in an electrochemical element such as a secondary battery.
  • the glass transition temperature Tg of the adhesive layer is not particularly limited, but is preferably ⁇ 30 ° C. or lower. By having a glass transition temperature in such a range, flexibility can be maintained and adhesiveness can be maintained over a wide range of operating temperatures.
  • the lower limit of the glass transition temperature is not particularly limited, but may be, for example, ⁇ 60 ° C. or higher.
  • the adhesive layer used in the present invention exhibits a high shear adhesive force in bonding with the electrode structure in a wet state.
  • the shear adhesive strength in such a wet state is preferably 0.05 N / mm 2 or more, more preferably 0.1 N / mm 2 or more.
  • the adhesion in the wet state is an adhesion in a state where the adhesive layer and the layer to be bonded are wetted by the electrolytic solution.
  • the adhesive exhibiting such shear adhesive force is, for example, an adhesive containing a styrene block copolymer and a diene polymer, which will be described in detail below, by appropriately adjusting the parameters and content ratio of each polymer. It can be obtained.
  • the upper limit of the shear adhesive strength in the wet state is not particularly limited, but may be, for example, 10 N / mm 2 or less.
  • the shear adhesive force between the adhesive layer and the exterior material is also preferably a high value equal to or higher than the shear adhesive force between the adhesive layer and the electrode structure described above. However, normally, the shear adhesive force between the adhesive layer and the exterior material can be easily obtained sufficiently higher than the shear adhesive force between the adhesive layer and the electrode structure.
  • a test laminate was prepared by adhering the outer surface layer of the electrode assembly and the exterior material through an adhesive layer, and this was immersed in an electrolyte solution, and then a tensile test. It can obtain
  • an electrolytic solution used for the immersion an electrolytic solution used in an electrochemical element to be used with the adhesive of the present invention is employed.
  • Adhesive material The material which comprises an adhesive agent is not specifically limited, It can be set as the arbitrary materials which have the property described above.
  • the adhesive includes a styrenic block copolymer and a diene polymer.
  • Such an adhesive is usually a rubber-based adhesive.
  • the diene polymer is a polymer containing units having a structure obtained by polymerizing diene or a derivative thereof.
  • the diene polymer is not limited depending on the production method.
  • the diene polymer include natural rubber, polybutadiene, polyisoprene, polychloroprene, ethylene-propylene copolymer, and acrylonitrile-butadiene copolymer.
  • a polymer with low polarity is preferable from the viewpoint of setting the degree of swelling in the electrolyte to a desired low value.
  • polybutadiene and polyisoprene are preferable, and polybutadiene is particularly preferable.
  • the styrenic block copolymer is a multi-block type block copolymer composed of a polystyrene block and a diene polymer block that repeats AB type, ABA type, or AB.
  • a polystyrene block here is a block containing the unit which has a structure obtained by superposing
  • the polystyrene block is not limited depending on the production method.
  • styrenic block copolymers examples include styrene-butadiene AB type block copolymers, styrene-butadiene-styrene ABA type block copolymers, styrene-isoprene AB type block copolymers, and styrene-isoprene. -ABA block copolymers of styrene.
  • the proportion of the styrene block copolymer may be 1 to 50 parts by weight with respect to 100 parts by weight of the diene polymer.
  • the weight average molecular weight of the polymer constituting the adhesive is not particularly limited, but is preferably 10,000 to 1,500,000, more preferably 100,000 to 1,000,000. When the molecular weight is equal to or more than the lower limit, good shear adhesive force and cohesive force can be obtained. When the molecular weight is not more than the above upper limit, the viscosity of the adhesive can be kept at a low value suitable for coating.
  • the adhesive may be either a crosslinked type or a non-crosslinked type.
  • the cross-linking adhesive may contain a cross-linking agent in addition to the polymer.
  • the crosslinking agent can be appropriately selected according to the type of the crosslinkable functional group possessed by the polymer. Examples include epoxy crosslinking agents, isocyanate crosslinking agents, metal chelate crosslinking agents, metal alkoxide crosslinking agents, metal salt crosslinking agents, amine crosslinking agents, hydrazine crosslinking agents, aldehyde crosslinking agents, and These combinations are mentioned.
  • the ratio of the crosslinking agent in the adhesive may be 0 to 10 parts by weight with respect to 100 parts by weight of the polymer.
  • the adhesive may contain additives in addition to the components listed above.
  • additives include ultraviolet absorbers, tackifiers, softeners (plasticizers), anti-aging agents, stabilizers, fillers, pigments, dyes, and silane coupling agents.
  • tackifiers include rosin and derivatives thereof, polyterpenes, terpene phenol resins, coumarone-indene resins, petroleum resins, styrene resins, and xylene resins.
  • softeners include liquid polyethers, glycol esters, liquid polyterpenes, liquid polyacrylates, phthalic acid esters, and trimellitic acid esters. The ratio of these additives in the adhesive may be 0 to 10 parts by weight with respect to 100 parts by weight of the polymer.
  • the adhesive can contain a solvent, and the solvent can be appropriately selected according to the type of other components used. Examples thereof include toluene, xylene, mesitylene, hexane, cyclohexane, heptane, octane, isooctane and the like.
  • the ratio of the solvent in the adhesive can be appropriately adjusted so that the solid content ratio of the obtained adhesive (the ratio of the component remaining when the adhesive is dried to form the adhesive layer) is within a desired range.
  • the method for forming the adhesive layer using the adhesive is not particularly limited, and any method can be adopted.
  • the adhesive is provided on the inner surface of the exterior material, the surface of the electrode structure, or both surfaces, and the exterior material and the electrode structure are bonded via the adhesive, and further required. Accordingly, by drying the adhesive, an adhesive layer can be formed between the exterior material and the electrode structure. Drying of the adhesive may be performed prior to bonding or after bonding.
  • methods for providing an adhesive on the surface to be bonded include a printing method, a casting method, and a coating method.
  • the printing method is preferable from the viewpoint that a thin adhesive can be easily provided at a desired position on the surface to be bonded. Examples of the printing method include a stamp method and a transfer method.
  • the stamp method is a method of providing a stamp with an adhesive on a target surface by pressing the stamp onto the surface of the target.
  • the transfer method is a method in which an adhesive on a base material such as a film is attached to the surface to be bonded, and the adhesive on the base material is transferred to the target surface.
  • the material which comprises the positive electrode member which comprises an electrode structure, a negative electrode member, a separator member, and another member is not specifically limited, A known material can be selected arbitrarily.
  • the negative electrode member may be a member including a current collector and a negative electrode active material layer provided on the surface thereof.
  • the negative electrode active material layer may be a layer containing a negative electrode active material, a binder resin, and an additive.
  • the negative electrode active material include graphite such as artificial graphite when the electrochemical element is a lithium ion secondary battery.
  • the binder resin include rubber materials such as styrene-butadiene rubber.
  • Examples of the material of the separator member include resins generally used as constituent elements of the separator member, such as polyethylene resin and polypropylene resin.
  • the material which comprises an exterior material is not specifically limited, A film-form material can be selected arbitrarily.
  • the surface layer located on the inside of the element is preferably a layer having heat sealability. That is, it is preferably a layer that can be melted by heating and thereby achieve adhesion to the opposing member.
  • an exterior material including a layer having heat sealability the device can be easily manufactured.
  • the multilayer film which has a resin layer as a layer of both surfaces, and has a metal thin film layer as an internal layer is mentioned.
  • resin which comprises a resin layer resin generally used as a component of a laminate film, such as polyethylene resin and polypropylene resin, is mentioned.
  • An example of the metal thin film layer is an aluminum thin film layer.
  • an organic electrolytic solution in which a supporting electrolyte is dissolved in an organic solvent is usually used.
  • a lithium salt is used in a lithium ion secondary battery.
  • lithium salts LiPF 6 and the like.
  • the organic solvent an organic solvent capable of dissolving the supporting electrolyte can be appropriately selected. Examples of the organic solvent in the lithium ion secondary battery include ethylene carbonate (EC), diethyl carbonate (DEC), and a mixture thereof.
  • the electrochemical device of the present invention is a step of preparing an electrode structure, a step of providing an adhesive on the surface of the exterior material inside the device (the surface facing the interior of the device when used as the exterior material of the device), It can be manufactured by a manufacturing method including a step of putting the electrode structure into the exterior body, a step of filling the inside of the exterior body with an electrolytic solution, and a step of sealing the exterior body.
  • the electrode structure can be prepared by superposing the positive electrode member and the negative electrode member via a separator member, and performing a process such as bending or winding in accordance with the battery shape. By such an operation, an electrode structure having a structure such as a laminate or a wound body can be obtained. In addition, before or after these operations, a step of attaching a tab to the positive electrode member and the negative electrode member via a lead or directly can be performed.
  • the process of heat-sealing the exterior material into a bag-like shape can be performed before, after, or both of the operations of putting the electrode structure into the exterior body.
  • the tab may be sandwiched between the exterior bodies so that a part of the tab is exposed to the outside of the element through the heat seal. .
  • the opening of the pouch-type exterior body is sealed with heat to obtain an electrochemical element.
  • the heating temperature at the time of heat sealing is usually 120 to 150 ° C.
  • ⁇ Evaluation item ⁇ (1. degree of swelling)
  • the adhesive was placed in a Teflon (registered trademark) petri dish and dried to prepare a film having a thickness of about 1 mm.
  • a 2 cm ⁇ 2 cm rectangular test piece was cut out from this film, and the weight W0 of the test piece was measured.
  • a droplet of the electrolytic solution adhering to the periphery of the test piece was wiped off, and the weight W1 of the test piece was measured.
  • Spherical artificial graphite 100 parts as negative electrode active material, styrene butadiene rubber (particle diameter 180 nm, glass transition temperature ⁇ 40 ° C.) 1 part as negative electrode binder resin, 1 part carboxymethyl cellulose as thickener, An appropriate amount of water was stirred with a planetary mixer to prepare a negative electrode slurry composition.
  • a copper foil having a thickness of 15 ⁇ m was prepared as a current collector.
  • the negative electrode slurry composition was applied to both sides of a copper foil. The coating thickness was adjusted so that the coating amount after drying was 10 mg / cm 2 . After application, the slurry composition layer was dried at 60 ° C. for 20 minutes, followed by drying at 120 ° C.
  • This negative electrode original fabric was rolled with a roll press to produce a sheet-like negative electrode comprising a negative electrode active material layer and a copper foil.
  • the density of the negative electrode active material layer in the obtained negative electrode was 1.8 g / cm 3 per layer.
  • a polypropylene microporous film having a thickness of 20 ⁇ m was prepared.
  • Example 1 A rectangular sample of 15 mm ⁇ 15 mm was cut out from the negative electrode or the separator.
  • Example 3 Comparative Example 1 and Comparative Example 3
  • a negative electrode sample was used
  • Example 2 Example 4 and Comparative Example 2
  • a separator sample was used.
  • One surface of the sample was bonded to the adhesive layer of the multilayer (1). Bonding was performed by applying a load by reciprocating a 2 kg weight roller. Furthermore, the other surface of the sample was bonded to a SUS board via a double-sided tape.
  • a test laminate having a layer structure of (SUS plate) / (double-sided tape) / (sample (negative electrode or separator)) / (adhesive layer) / (exterior material) was obtained.
  • a plurality of test laminates were prepared, one part was subjected to a shear test in a dry state, and the other part was subjected to a shear test in a wet state.
  • Example 1 (3. Impact test) (3-1. Preparation of test simulation battery)
  • a negative electrode was wound around the SUS plate for one and a half times, and the end of the negative electrode was fastened with a polyimide tape to prepare a test piece (N) whose negative electrode was the outermost layer. Separately from the test piece (N), the negative electrode is wound around the SUS plate for one and a half turns, the end of the negative electrode is fastened with polyimide tape, and the separator is further wound about one and a half turns, and the end of the separator is polyimide tape.
  • the outermost layer was a separator test piece (S). In Example 1, Example 3, Comparative Example 1 and Comparative Example 3, the test piece (N) was used, and in Example 2, Example 4 and Comparative Example 2, the test piece (S) was used.
  • the same exterior material for pouch type batteries as that used in (2. Shear adhesive strength) was prepared.
  • the adhesive obtained in the examples and comparative examples is applied to a 15 cm ⁇ 15 cm region on the surface of the battery inside of the packaging material, the adhesive is dried, an adhesive layer is formed, and the packaging material with the adhesive layer is formed. Obtained.
  • the thickness of the adhesive layer was as shown in Table 1 in each of the examples and comparative examples.
  • the test piece (N) or the test piece (S) was placed in a state where the test piece (N) or the test piece (S) was interposed between the pair of outer packaging materials with an adhesive layer, and the peripheral portion of the outer packaging material was heat sealed. Before completely sealing the exterior material, 2 ml of the electrolyte was injected. As the electrolytic solution, the same one as prepared in (1. Swelling degree) was used. By this operation, a test simulation battery was produced.
  • test simulation battery (3-2. Impact test) The obtained test simulation battery was dropped on a concrete floor from a height of 1 m, thereby imposing an impact on the test simulation battery. The impact was imposed five times on one test simulation battery. After completing the impact imposition, the test simulation battery was disassembled and the electrolyte was taken out. The presence or absence of the negative electrode active material dropped in the electrolyte was observed.
  • Example 1 (Adhesive A: negative electrode) A styrene-isoprene-styrene ABA type block copolymer having a styrene content of 30 wt%, an isoprene content of 70 wt%, and a molecular weight Mw of 150,000 was prepared. 5 parts of the copolymer and 95 parts of polybutadiene having a molecular weight of 250,000 were dissolved in xylene. By this operation, an adhesive A having a solid content concentration of 10 wt% was obtained. The obtained adhesive A was subjected to the measurement of the degree of swelling, the measurement of the shear adhesive force between the exterior material and the negative electrode, and the impact test of the test simulated battery equipped with the test piece (N).
  • Example 2 (Adhesive A: Separator)
  • the adhesive A obtained in Example 1 was subjected to the measurement of the shear adhesive force between the exterior material and the separator, and the impact test of the test simulation battery equipped with the test piece (S).
  • Adhesive B negative electrode
  • An acrylic acid ester copolymer (weight average molecular weight (Mw) 450,000) obtained by polymerizing 85 parts by weight of 2-ethylhexyl acrylate and 15 parts by weight of butyl acrylate was prepared.
  • the copolymer was dissolved in xylene to obtain an adhesive B having a solid content concentration of 10 wt%.
  • the obtained adhesive B was subjected to the measurement of the degree of swelling, the measurement of the shear adhesive strength between the exterior material and the negative electrode, and the impact test of the test simulation battery equipped with the test piece (N).
  • Example 4 (Adhesive B: Separator)
  • the adhesive B obtained in Example 3 was subjected to measurement of the shear adhesive force between the exterior material and the separator, and the impact test of the test simulation battery equipped with the test piece (S).
  • Adhesive C negative electrode
  • An acrylic ester copolymer (weight average molecular weight (Mw) 500,000) obtained by polymerizing 60 parts by weight of butyl acrylate and 40 parts by weight of 2-ethylhexyl acrylate was prepared.
  • the copolymer was dissolved in xylene to prepare an adhesive C having a solid content concentration of 10 wt%.
  • the obtained adhesive C was subjected to the measurement of the degree of swelling, the measurement of the shear adhesive strength between the exterior material and the negative electrode, and the impact test of the test simulation battery equipped with the test piece (N).
  • Comparative Example 2 (Adhesive C: Separator)
  • the adhesive C obtained in Comparative Example 1 was subjected to measurement of the shear adhesive force between the exterior material and the separator, and the impact test of the test simulation battery equipped with the test piece (S).
  • Electrochemical element 110D Lower surface side exterior body 110U: Upper surface side exterior body 111: Surrounding area 120N: Negative electrode tab 120P: Positive electrode tab 121: Lead 130: Electrode structure 131 (N): Negative electrode member 132 (S): Separator Member 133 (P): Positive electrode member 134 (S): Separator member 135 (N): Negative electrode member 136 (S): Separator member 137 (P): Positive electrode member 138 (S): Separator member 139 (N): Negative electrode member 141: Bundling member 150D: Adhesive layer 150U: Adhesive layer 160: Gaps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

正極部材、セパレーター部材及び負極部材を含む電極構成体、電解液、並びに前記電極構成体及び前記電解液を格納するパウチ型外装体を含む電気化学素子に用いる電極構成体固定用接着剤であって、電解液に対する膨潤度が50%以下である電極構成体固定用接着剤;並びにそれを用いた電気化学素子。前記電極構成体固定用接着剤は、好ましくは、スチレン系ブロック共重合体及びジエン系重合体を含む。前記正極部材、前記セパレーター部材及び前記負極部材は、好ましくは積層体構造又は巻回体構造を有する。

Description

電極構成体固定用接着剤及び電気化学素子
 本発明は電極構成体固定用接着剤及び電気化学素子に関し、より詳しくは、二次電池等の電気化学素子、及び当該電気化学素子中の電極を含む電極構成体を固定するための接着剤に関する。
 二次電池等の電気化学素子は、様々な技術分野で用いられている。特に、リチウムイオン二次電池は、繰り返し充放電が可能であり、且つエネルギー密度が高いため、携帯電話、ノート型パーソナルコンピュータ、電気自動車などの分野で特に有用に利用されている。
 二次電池等の電気化学素子は、通常、フィルム状の形状を有する、正極部材、セパレーター部材および負極部材を含む。これらの部材は、通常、積層または捲回された状態で電極構成体を構成し、かかる電極構成体は、素子の外装体内に格納される。かかる外装体としては、容量の向上及び軽量化の観点から、ラミネートフィルム等のフィルムを用いることが提案されている。このようなフィルムは、所謂パウチ型の外装体として用いられる。
 パウチ型の外装体を備える電気化学素子は、通常、正極部材及び負極部材のそれぞれの集電体から延長するタブを備える。タブは、ヒートシールされたフィルム縁部に挟まれた状態で、素子内部から外部へ延長する。かかるタブは、素子の極端子を構成し、且つ電極構成体を素子内部の所望の位置に保持する役割を果たしうる。しかしながら、電極構成体自体は、かかる構成によっては固定されない。このような構成を採用した場合、素子の使用に際し素子に加えられた衝撃により電極構成体が損傷することがある。かかる損傷の発生は、電池が大型な場合特に問題となり得る。
 電極構成体の損傷の発生を低減するための技術として、電極構成体を、外装体の内側の表面に固定することが考えられる。具体的には、両面テープを用いて、かかる固定を行うことが考えられる(特許文献1~4)。このような両面テープを採用した場合、用途に応じて各面の接着剤層として適切なものを用い、有効な固定を達成することが期待されうる。
特開2003-151512号公報(対応公報:米国特許出願公開第2004/045597号明細書) 特開2001-93576号公報 特許第4440573号公報 WO2016/080143(対応公報:米国特許出願公開第2017/346130号明細書)
 しかしながら、両面テープを用いた固定では、素子の厚みが増し、素子の小型化の観点から不利である。
 したがって、本発明の目的は、素子の厚みを低減し小型化を達成することができ、且つ電極構成体とパウチ型外装体との有効な固定を達成することができる、電極構成体固定用接着剤を提供することにある。
 本発明のさらなる目的は、容易に小型化することができ、且つ衝撃に対する耐久性が高い、電気化学素子を提供することにある。
 本発明者は、上記課題を解決するために、両面テープによる固定に代えて、外装体の内側の表面上に接着剤層を設け、それにより電極構成体を固定することについて検討した。その結果、特定の性質を有する接着剤を採用することにより、かかる接着剤層による有効な固定を達成することができることを見出し、本発明を完成するに至った。
 即ち、本発明によれば、下記のものが提供される。
 〔1〕 正極部材、セパレーター部材及び負極部材を含む電極構成体、電解液、並びに前記電極構成体及び前記電解液を格納するパウチ型外装体を含む電気化学素子に用いる電極構成体固定用接着剤であって、電解液に対する膨潤度が50%以下である電極構成体固定用接着剤。
 〔2〕 スチレン系ブロック共重合体及びジエン系重合体を含む、〔1〕に記載の電極構成体固定用接着剤。
 〔3〕 前記電極構成体において、前記正極部材、前記セパレーター部材及び前記負極部材は、積層体構造又は巻回体構造を有する、〔1〕又は〔2〕に記載の電極構成体固定用接着剤。
 〔4〕 正極部材、セパレーター部材及び負極部材を含む電極構成体、電解液、並びに前記電極構成体及び前記電解液を格納するパウチ型外装体を含む電気化学素子であって、
 前記電気化学素子は、前記外装体の内側の表面と前記電極構成体との間に介在しこれらを接着する接着剤層をさらに含み、
 前記接着剤層の、前記電解液に対する膨潤度が50%以下である電気化学素子。
 〔5〕 前記接着剤層が、前記外装体及び前記電極構成体の両方に直接接する、〔4〕に記載の電気化学素子。
 〔6〕 前記接着剤層が、スチレン系ブロック共重合体及びジエン系重合体を含む、〔4〕又は〔5〕に記載の電気化学素子。
 〔7〕 前記電極構成体において、前記正極部材、前記セパレーター部材及び前記負極部材は、積層体構造又は巻回体構造を有する、〔4〕~〔6〕のいずれか1項に記載の電気化学素子。
 〔8〕 前記電極構成体の、前記接着剤層に接する表面の層が、前記セパレーター部材の層を含む、〔4〕~〔7〕のいずれか1項に記載の電気化学素子。
 〔9〕 前記電極構成体の、前記接着剤層に接する表面の層が、前記負極部材の層を含む、〔4〕~〔8〕のいずれか1項に記載の電気化学素子。
 本発明によれば、素子の厚みを低減し小型化を達成することができ、且つ電極構成体とパウチ型外装体との有効な固定を達成することができる、電極構成体固定用接着剤;並びに、容易に小型化することができ、且つ衝撃に対する耐久性が高い、電気化学素子を提供することができる。
図1は、本発明の電気化学素子の一例を概略的に示す上面図である。 図2は、図1に示す電気化学素子を、線L1に沿った縦断面で切断した断面を示す縦断面図である。
 以下、本発明について実施形態及び例示物を示して詳細に説明する。ただし、本発明は以下に示す実施形態及び例示物に限定されるものでは無く、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。
 〔1.電極構成体固定用接着剤及び電気化学素子〕
 本発明の電極構成体固定用接着剤は、正極部材、セパレーター部材及び負極部材を含む電極構成体、電解液、並びに電極構成体及び電解液を格納するパウチ型外装体を含む電気化学素子に用いる接着剤である。また、本発明の電気化学素子は、正極部材、セパレーター部材及び負極部材を含む電極構成体、電解液、並びに電極構成体及び電解液を格納するパウチ型外装体を含む電気化学素子であって、外装体の内側の表面と電極構成体との間に介在しこれらを接着する接着剤層をさらに含む。
 図1は、本発明の電気化学素子の一例を概略的に示す上面図であり、図2は、図1に示す電気化学素子を、線L1に沿った縦断面で切断した断面を示す縦断面図である。図示の便宜のため、図1及び図2においては、電気化学素子を水平に載置した状態を示す。また図2においては、素子の幅に対する厚みの割合を、実際の素子より大きくして示す。
 図1及び図2において、電気化学素子100は、二次電池であり、電極構成体130、及び電極構成体を格納するパウチ型外装体を含む。
 パウチ型の外装体とは、袋状の形状を有する、電気化学素子用の外装体である。袋状の形状は、通常、扁平な袋の形状としうる。袋状の形状は、一対のフィルムを重ね合わせ、縁の部分をヒートシールすることにより形成しうる。但し、袋状の形状の形成方法はこれに限られず、任意の方法で形成しうる。例えば、一枚のフィルムを折り畳み縁の部分をヒートシールする、筒状のフィルムを成形しこの縁の部分をヒートシールする等の方法で、袋状の形状を形成しうる。図1及び図2の例では、パウチ型外装体は、上面側外装体110U及び下面側外装体110Dからなる。上面側外装体110U及び下面側外装体110Dは、その周囲領域111においてヒートシールされることにより結合している。
 電気化学素子100はさらに電解液を含む。電解液の一部は素子内の空隙160及びその他の空隙に充填された状態で存在し、他の一部は外装体内の各構成要素に浸潤した状態で存在する。
 電極構成体においては、正極部材及び負極部材が、セパレーター部材を介して交互に重なる構造を採り得る。図2の例では、電極構成体130は、正極部材及び負極部材が、負極部材131(N)、正極部材133(P)、負極部材135(N)、正極部材137(P)、及び負極部材139(N)の順に交互に重なり、さらにそれらの間にセパレーター部材132(S)、セパレーター部材134(S)、セパレーター部材136(S)、及びセパレーター部材138(S)が介在する。このような構造を有することにより、電極構成体が、二次電池等の電気化学素子としての機能を発現することができる。但し、電極構成体の構造はこれに限られず、正極部材及び負極部材の数は図2の例より多くても少なくてもよい。また電極構成体は巻回体構造を有していてもよい。例えば負極部材/セパレーター部材/正極部材/セパレーター部材の層構成を有する積層体を巻回することにより、正極部材及び負極部材が、セパレーター部材を介して交互に重なる構造を有する巻回体構造を得ることができる。
 図2の例では、電極構成体130はさらに、正極部材、負極部材及びセパレーター部材の外周においてこれらを結束させる結束部材141を備える。結束部材141を構成する材料は、電極構成体130の絶縁を確実なものとする観点からは、セパレーター部材として用いうる材料と同じ材料としうる。但し電極構成体の構造はこれに限られず、例えば結束部材の材料はセパレーター部材として用いうる材料以外の材料であってもよい。また例えば、電極構成体の外側の表面の層は、その全体が負極部材の層であってもよく、その全体がセパレーター部材の層であってもよく、その一部が負極部材の層であって他の一部がセパレーター部材の層であってもよい。より具体的には例えば、電極構成体は、正極部材、負極部材及びセパレーター部材が重なる構造の周囲の全体をさらに囲包するセパレーター部材の結束部材を備えてもよい。また例えば、電気化学素子の機能を発現しうる限りにおいて、電極構成体の外側の表面の層の一部又は全部が正極部材の層であってもよい。
 電気化学素子100は、上面側外装体110Uの内側の表面と電極構成体130との間に介在しこれらを接着する接着剤層150U、及び下面側外装体110Dの内側の表面と電極構成体130との間に介在しこれらを接着する接着剤層150Dをさらに含む。この例において、接着剤層150U及び150Dのそれぞれは、1の接着剤層のみからなる。接着剤層150Uは、上面側外装体110U及び電極構成体130の両方に直接接し、接着剤層150Dは、下面側外装体110D及び電極構成体130の両方に直接接する。このように、接着剤層が、外装体及び電極構成体の両方に直接接することにより、従来技術における両面テープによる接着よりも、薄い層による確実な接着を達成することができる。このような、接着剤層が外装体及び電極構成体の両方に直接接する態様の接着を採用した場合、従来技術における両面テープによる接着に比べて、十分な電極構成体の固定を達成することが困難であるが、本発明者が見出したところによれば、接着剤層として、本発明において規定される特定のものを用いることにより、十分な電極構成体の固定を達成することができる。これにより、素子の厚みを低減し小型化を達成しながら、且つ衝撃に対する耐久性を高めることができる。
 接着剤層の厚みは、好ましくは1μm以上、より好ましくは2μm以上であり、好ましくは20μm以下、より好ましくは15μm以下である。厚みが前記下限以上であることにより、十分なせん断接着力を発現することができる。一方厚みが前記上限以下であることにより、電気化学素子に占める接着剤層の体積及び重量を抑制することができ、ひいては、電気化学素子の体積及び重量当たりの容量を増加させることができる。加えて、電気化学素子の製造コストを低減することもできる。
 図2に示す例では、接着剤層は、電極構成体130及び外装体との間の界面全面にわたって設けられているが、接着剤層の態様はこれには限られない。例えば、接着剤層は、電極構成体130及び外装体との間の界面の一部の領域のみに設けられていてもよい。より具体的には、接着剤層は、電極構成体130及び外装体との間の界面において、所定のパターンに従って間隔をあけて設けられていてもよい。そのような態様で接着剤層を設けることにより、接着剤層の接着力等を、適性な範囲に調整することが可能である。
 図2の例では、電極構成体130の、接着剤層150U及び150Dに接する表面の層は、その一部が負極部材131(N)及び139(N)の層であり、他の一部が結束部材141の層である。但し本発明はこれに限られず、電極構成体の、接着剤層に接する表面の層は、セパレーター部材の層であってもよく、負極部材の層であってもよく、一部がセパレーター部材の層であって他の一部が負極部材の層であってもよい。また例えば、電気化学素子の機能を発現しうる限りにおいて、接着剤層に接する表面の層の一部又は全部が正極部材の層であってもよい。
 電気化学素子100はさらに、任意の構成要素として、正極タブ120P及び負極タブ120Nを備える。負極タブ120Nは、リード121を介して負極131(N)、135(N)及び139(N)と電気的に接続し、電気化学素子100における負極として機能する。正極タブ120Pも同様に、リード(不図示)を介して正極133(P)及び正極137(P)と電気的に接続し、電気化学素子100における正極として機能する。正極タブ120P及び負極タブ120Nは、パウチ型外装体の周囲領域111において、ヒートシールに挟まれることにより固定される。さらに、電極構成体130は、リードを介して正極タブ120P及び負極タブ120Nによりパウチ型外装体内部において機械的に支持されている。
 〔2.接着剤及び接着剤層の性質〕
 本発明の電極構成体固定用接着剤、及び本発明の電気化学素子における接着剤層は、その電解液に対する膨潤度が、特定の範囲内である。本願において、接着剤の膨潤度とは、接着剤を乾燥させて膜としたものについての膨潤度である。より具体的には、接着剤を乾燥させて厚さ約1mmの膜とし、この膜から、2cm×2cmの矩形の試験片を切り出し、かかる試験片についての膨潤度を測定することにより、接着剤の膨潤度を求めうる。さらにこの測定値を、当該接着剤を用いた電気化学素子における接着剤層の膨潤度として採用しうる。
 膨潤度の測定対象(接着剤又は接着剤層)の、電解液「に対する」膨潤度とは、測定対象を、電解液に浸漬することによる重量の変化の割合である。具体的には、測定対象の試験片を電解液に浸漬した状態で、温度を60℃として72時間浸漬処理を行い、処理前後の重量の変化を測定することにより、膨潤度を求めうる。膨潤度S(%)は、浸漬処理前の試験片の重量W0及び浸漬処理後の試験片の重量W1から、式S=((W1-W0)/W0)×100により求めうる。
 膨潤度の測定に用いる電解液としては、本発明の接着剤を用いる対象となる電気化学素子において用いられる電解液を採用する。例えば、電気化学素子において用いられる電解液が、EC/DEC=1/1(体積比)に、1M LiPFを溶解してなる電解液である場合、当該電解液を用いて、接着剤の膨潤度を測定しうる。
 本発明の接着剤の電解液に対する膨潤度は、50%以下であり、好ましくは20%以下であり、より好ましくは15%以下である。かかる膨潤度を有することにより、電気化学素子内部において十分なせん断接着力を発現することができ、その結果、電極構成体とパウチ型外装体との有効な固定を達成することができる。膨潤度の下限は、理想的には0%であるが、通常0.1%以上としうる。このような膨潤度を有する接着剤は、例えば以下に詳述する、スチレン系ブロック共重合体とジエン系重合体を含む接着剤において、各重合体のパラメーター(構成単位の種類、比率、分子量等)及び含有割合を適宜調整することにより得うる。
 接着剤は、-30℃から100℃で粘着性を示すものとしうる。かかる温度範囲において粘着性を示すものとすることにより、二次電池等の電気化学素子において、接着剤として有用に用いうる。接着剤層のガラス転移温度Tgは、特に限定されないが、-30℃以下であることが好ましい。かかる範囲のガラス転移温度を有することにより、幅広い使用温度おいて柔軟性を維持し、粘着性を維持することができる。ガラス転移温度の下限は、特に限定されないが、例えば-60℃以上としうる。
 本発明に用いる接着剤層は、湿潤状態における電極構成体との接着において、高いせん断接着力を示すことが好ましい。かかる湿潤状態におけるせん断接着力は、好ましくは0.05N/mm以上、より好ましくは0.1N/mm以上である。湿潤状態における接着とは、接着剤層及び接着対象の層が、電解液により湿潤した状態における接着である。湿潤状態において高いせん断接着力を示すことにより、電気化学素子における電極構成体とパウチ型外装体との有効な固定を達成することができる。このようなせん断接着力を示す接着剤は、例えば以下に詳述する、スチレン系ブロック共重合体とジエン系重合体を含む接着剤において、各重合体のパラメーター及び含有割合を適宜調整することにより得うる。湿潤状態におけるせん断接着力の上限は、特に限定されないが、例えば10N/mm以下としうる。
 接着剤層と外装材とのせん断接着力も、上に述べた接着剤層と電極構成体とのせん断接着力と同等以上の高い値であることが好ましい。但し、通常は、接着剤層と外装材とのせん断接着力は、接着剤層と電極構成体とのせん断接着力に比べて十分高い値を容易に得ることができる。
 湿潤状態におけるせん断接着力は、電極構成体の外側の表面の層と、外装材とを接着剤層を介して接着した試験用積層体を調製し、これを電解液に浸漬し、その後引張試験機を用いて、電極構成体と外装材との間のせん断接着力を測定することにより求めうる。浸漬に用いる電解液としては、本発明の接着剤を用いる対象となる電気化学素子において用いられる電解液を採用する。
 〔3.接着剤の材料〕
 接着剤を構成する材料は、特に限定されず、上に述べた性質を有する任意の材料としうる。好ましい例において、接着剤は、スチレン系ブロック共重合体及びジエン系重合体を含む。このような接着剤は、通常、ゴム系の接着剤とされる。
 ジエン系重合体とは、ジエン又はその誘導体を重合して得られる構造を有する単位を含む重合体である。但し、ジエン系重合体は、その製造方法によっては限定されない。ジエン系重合体の例としては、例えば天然ゴム、ポリブタジエン、ポリイソプレン、ポリクロロプレン、エチレン-プロピレン共重合体、及びアクリロニトリル-ブタジエン共重合体が挙げられる。これらの中でも、極性が低い重合体が、電解液への膨潤度を所望の低い値とする観点から好ましい。具体的には、ポリブタジエン及びポリイソプレンが好ましく、特にポリブタジエンが好ましい。
 スチレン系ブロック共重合体は、ポリスチレンブロックおよびジエン系重合体ブロックからなる、AB型、ABA型、又はABを繰り返すマルチブロック型のブロック共重合体である。ここでいうポリスチレンブロックとは、スチレン又はその誘導体を重合して得られる構造を有する単位を含むブロックである。但し、ポリスチレンブロックは、その製造方法によっては限定されない。スチレン系ブロック共重合体の例としては、スチレン-ブタジエンのAB型ブロック共重合体、スチレン-ブタジエン-スチレンのABA型ブロック共重合体、スチレン-イソプレンのAB型ブロック共重合体、及びスチレン-イソプレン-スチレンのABA型ブロック共重合体が挙げられる。接着剤がスチレン系ブロック共重合体及びジエン系重合体を含む場合、スチレン系ブロック共重合体の割合は、ジエン系重合体100重量部に対して1~50重量部としうる。
 接着剤を構成する重合体の重量平均分子量は、特に限定されないが、好ましくは1万~150万、より好ましくは10万~100万である。分子量前記下限以上であることにより、良好なせん断接着力及び凝集力を得ることができる。分子量が前記上限以下であることにより、接着剤の粘度を、塗布に適した低い値に保つことができる。
 接着剤は、架橋型、非架橋型のいずれのものであってもよい。架橋型の接着剤は、上記重合体の他に架橋剤を含みうる。架橋剤は、重合体が有する架橋性官能基の種類に応じて適宜選択しうる。その例としては、エポキシ系架橋剤、イソシアナート系架橋剤、金属キレート系架橋剤、金属アルコキシド系架橋剤、金属塩系架橋剤、アミン系架橋剤、ヒドラジン系架橋剤、アルデヒド系架橋剤、及びこれらの組み合わせが挙げられる。接着剤における架橋剤の割合は、重合体100重量部に対して0~10重量部としうる。
 接着剤は、上に挙げた成分の他に、添加剤を含みうる。添加剤の例としては、紫外線吸収材、粘着付与剤、軟化剤(可塑剤)、老化防止剤、安定剤、充填剤、顔料、染料、及びシランカップリング剤が挙げられる。粘着付与剤の例としては、例えば、ロジン及びその誘導体、ポリテルペン、テルペンフェノール樹脂、クマロン-インデン樹脂、石油系樹脂、スチレン樹脂、及びキシレン樹脂が挙げられる。軟化剤の例としては、液状ポリエーテル、グリコールエステル、液状ポリテルペン、液状ポリアクリレート、フタル酸エステル、及びトリメリット酸エステルが挙げられる。接着剤におけるこれらの添加剤の割合は、重合体100重量部に対して0~10重量部としうる。
 接着剤は、溶媒を含みうる、溶媒は、使用する他の成分の種類に応じて適宜選択しうる。その例としては、トルエン、キシレン、メシチレン、ヘキサン、シクロヘキサン、ヘプタン、オクタン、イソオクタン等が挙げられる。接着剤における溶媒の割合は、得られる接着剤の固形分割合(接着剤を乾燥させて接着剤層とした際に残留する成分の割合)が所望の範囲となるよう適宜調整しうる。
 接着剤を用いて接着剤層を形成する方法は、特に限定されず、任意の方法を採用しうる。具体的には、接着剤を、外装材の内側の表面、電極構成体の表面又はこれらの両方の面上に設け、外装材及び電極構成体を接着剤を介して貼合し、さらに必要に応じて接着剤を乾燥させることにより、外装材及び電極構成体の間に接着剤層を形成しうる。接着剤の乾燥は、貼合に先立って行ってもよく、貼合の後に行ってもよい。接着対象の面上に接着剤を設ける方法の例としては、印刷法、キャスト法、及び塗布法が挙げられる。厚みの薄い接着剤を、接着対象の面上の所望の位置に容易に設けることができる観点から、印刷法が好ましい。印刷法の例としては、スタンプ法及び転写法が挙げられる。スタンプ法は、接着剤が付着したスタンプを、接着対象の面に押し付けることにより、対象の面上に設ける方法である。転写法は、フィルム等の基材の上に接着剤を付着させ、これを接着対象の面に押し付けることにより、基材上の接着剤を対象の面に転写する方法である。
 〔4.電極構成体の構成要素の材料〕
 電極構成体を構成する正極部材、負極部材、セパレーター部材及びその他の部材を構成する材料は、特に限定されず、既知の材料を任意に選択しうる。
 例えば、負極部材は、集電体と、その表面上に設けられた負極活物質層を備える部材としうる。負極活物質層は、負極活物質、結着樹脂及び添加剤を含む層としうる。負極活物質の例としては、例えば電気化学素子がリチウムイオン二次電池である場合、人造黒鉛等の黒鉛が挙げられる。結着樹脂の例としては、スチレン-ブタジエンゴム等のゴム材料が挙げられる。
 セパレーター部材の材料は、ポリエチレン樹脂、ポリプロピレン樹脂等の、セパレーター部材の構成要素として一般的に用いられる樹脂が挙げられる。
 〔5.外装材の材料〕
 外装材を構成する材料は、特に限定されず、フィルム状の材料を任意に選択しうる。
 外装材は、素子内部側に位置する表面の層がヒートシール性を有する層であることが好ましい。即ち、加熱により溶融させ、それにより対向する部材との接着を達成しうる層であることが好ましい。ヒートシール性を有する層を備える外装材を採用することにより、素子の製造を容易に行うことができる。外装材の例としては、両表面の層として樹脂層を有し、内部の層として金属薄膜層を有する複層フィルムが挙げられる。樹脂層を構成する樹脂の例としては、ポリエチレン樹脂、及びポリプロピレン樹脂等の、ラミネートフィルムの構成要素として一般的に用いられる樹脂が挙げられる。金属薄膜層の例としては、アルミニウム薄膜層が挙げられる。
 〔6.電解液〕
 電解液としては、通常、有機溶媒に支持電解質を溶解した有機電解液が用いられる。支持電解質としては、例えば、リチウムイオン二次電池においてはリチウム塩が用いられる。リチウム塩の例としては、LiPFが挙げられる。有機溶媒としては、支持電解質を溶解できる有機溶媒を適宜選択しうる。リチウムイオン二次電池における有機溶媒の例としては、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、及びこれらの混合物が挙げられる。
 〔7.電気化学素子の製造方法〕
 本発明の電気化学素子は、電極構成体を調製する工程、外装材の素子内部側の表面(素子の外装材として使用する際に、素子内部側に向ける表面)に、接着剤を設ける工程、電極構成体を外装体の内部に入れる工程、外装体の内部に電解液を充填する工程、及び外装体を封口する工程を含む製造方法により製造しうる。
 電極構成体の調製は、正極部材と負極部材とをセパレーター部材を介して重ね合わせ、これに対して電池形状に応じた折曲又は巻回等の処理を行うことにより行いうる。かかる操作により、積層体又は巻回体等の構造を有する電極構成体を得ることができる。また、これらの操作の前又は後に、正極部材及び負極部材に、リードを介して又は直接、タブを取り付ける工程を行いうる。
 電極構成体を外装体の内部に入れる操作の前、後もしくはこれらの両方において、外装材をヒートシールして袋状の形状とする工程を行いうる。ヒートシールに際しては、例えば図2に示す正極タブ120P及び負極タブ120Nのように、ヒートシールを介してタブの一部が素子の外部へ露出するよう、タブを外装体で挟んだ状態で行ないうる。
 さらに、電解液を注入したのちパウチ型外装体の開口部を熱で封口することにより電気化学素子が得られる。ヒートシールを行う際の加熱温度は、通常120~150℃である。
 以下、実施例を示して本発明について具体的に説明する。ただし、本発明は以下の実施例に限定されるものではなく、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。
 以下の説明において、量を表す「%」及び「部」は、別に断らない限り重量基準である。また、以下に説明する操作は、別に断らない限り、常温及び常圧の条件において行った。
 〔評価項目〕
 (1.膨潤度)
 接着剤をテフロン(登録商標)シャーレに入れて乾燥させて厚さ約1mmの膜を作製した。この膜から、2cm×2cmの矩形の試験片を切り出し、試験片の重量W0を測定した。
 試験片を、電解液(溶媒:EC/DEC=1/1(体積比)、LiPF 1Mを含む)に浸漬した状態で、温度を60℃とし、72時間浸漬処理を行った。
 浸漬処理終了後、試験片を電解液中で室温に冷却し、電解液から取り出した。試験片の周囲に付着した電解液の液滴をふき取り、試験片の重量W1を測定した。膨潤度S(%)を、式S=((W1-W0)/W0)×100から求めた。
 (2.せん断接着力)
 (2-1.試験用積層体の作製)
 パウチ型電池用の外装材(外層が厚さ15μmのナイロン層、バリヤ層が厚さ25μmのアルミ箔、内層が厚さ30μmのポリエチレンからなるもの)を用意した。外装材の電池内部側の表面(電池外装材として使用する際に、電池内部側に向ける、ポリエチレン層の表面)に、接着剤をコーターを用いて塗布し、接着剤を乾燥させ、厚さ5μmの接着剤層を形成した。この操作により、(接着剤層)/(外装材)の層構成を有する複層物(1)を得た。
 負極活物質として球状人造黒鉛(体積平均粒子径12μm)100部、負極用結着樹脂としてスチレンブタジエンゴム(粒子径180nm、ガラス転移温度-40℃)1部、増粘剤としてカルボキシメチルセルロース1部及び適量の水をプラネタリーミキサーにて撹拌し、負極用スラリー組成物を調製した。
 集電体として、厚さ15μmの銅箔を用意した。上記負極用スラリー組成物を銅箔の両面に塗布した。塗布厚みは、乾燥後の塗布量が10mg/cmになるよう調整した。塗布後、スラリー組成物の層を60℃で20分間乾燥させ、続いて120℃で20分間乾燥させた。その後、150℃で2時間加熱処理を行い、負極原反を得た。
 この負極原反をロールプレスで圧延し、負極活物質層及び銅箔からなるシート状の負極を作製した。得られた負極における負極活物質層の密度は、1層あたり1.8g/cmであった。
 セパレーターとして、厚さ20μmのポリプロピレン製微多孔膜を用意した。
 負極又はセパレーターから、15mm×15mmの矩形の試料を切り出した。実施例1、実施例3、比較例1及び比較例3では負極の試料を用い、実施例2、実施例4及び比較例2ではセパレーターの試料を用いた。試料の一方の面と、複層物(1)の接着剤層とを貼合した。貼合は、重量2kgのローラーを2往復させることにより荷重を加えて行った。さらに、試料の他方の面を、両面テープを介してSUS板に貼合した。この操作により、(SUS板)/(両面テープ)/(試料(負極又はセパレーター))/(接着剤層)/(外装材)の層構成を有する、試験用積層体を得た。試験用積層体は複数個調製し、一部を乾燥状態のせん断試験に供し、他の一部を湿潤状態のせん断試験に供した。
 (2-2.乾燥状態のせん断接着力)
 試験用積層体の外装材とSUS板とを支持して、引っ張り試験機を用いてせん断接着力を測定した。引っ張り速度は10mm/分とした。
 (2-3.湿潤状態のせん断接着力)
 試験用積層体を、電解液に浸漬した状態で、温度を60℃とし、72時間処理を行った。電解液としては、(1.膨潤度)で作成したものと同じものを用いた。処理終了後、試験用積層体を電解液中で室温まで冷却し、電解液から取り出した。試験用積層体の外装材とSUS板とを支持して、引っ張り試験機を用いてせん断接着力を測定した。測定の条件は、乾燥状態のせん断接着力の測定と同じとした。
 (3.衝撃試験)
 (3-1.試験用模擬電池の作製)
 2mm×18cm×18cmのSUS板、並びに(2.せん断接着力)で作製したものと同じ負極及びセパレーターを用意した。SUS板の周囲に、負極を1周半巻き付け、負極の端部をポリイミドテープで留めて、最外層が負極の試験片(N)を作製した。試験片(N)とは別に、SUS板の周囲に、負極を1周半巻き付け、負極の端部をポリイミドテープで留め、その上にさらにセパレーターを1周半巻き付け、セパレーターの端部をポリイミドテープで留めて、最外層がセパレーターの試験片(S)を作製した。実施例1、実施例3、比較例1及び比較例3では試験片(N)を用い、実施例2、実施例4及び比較例2では試験片(S)を用いた。
 (2.せん断接着力)で使用したものと同じ、パウチ型電池用の外装材を用意した。外装材の電池内部側の表面の15cm×15cmの領域に、実施例及び比較例で得た接着剤を塗布し、接着剤を乾燥させ、接着剤層を形成し、接着剤層付き外装材を得た。接着剤層の厚みは、実施例及び比較例のそれぞれにおいて、表1に示す通りとした。試験片(N)又は試験片(S)を、一対の接着剤層付き外装材の間に介在する状態で載置し、外装材の周囲部分をヒートシールした。外装材を完全に密封する前に、電解液を2ml注入した。電解液としては、(1.膨潤度)で作成したものと同じものを用いた。この操作により、試験用模擬電池を作製した。
 (3-2.衝撃試験)
 得られた試験用模擬電池を、1mの高さからコンクリート床に落下させることにより、試験用模擬電池に衝撃を賦課した。衝撃の賦課は、1つの試験用模擬電池に対して5回行った。衝撃の賦課を終了した後、試験用模擬電池を分解し、電解液を取り出した。電解液中に脱落した負極活物質の有無を観察した。
 〔実施例1〕(接着剤A:負極)
 スチレン-イソプレン-スチレンのABA型ブロック共重合体であってスチレンが30wt%イソプレンが70wt%、分子量Mwが150000の共重合体を用意した。
 前記共重合体5部と、分子量250000のポリブタジエン95部とをキシレンに溶解した。この操作により、固形分濃度10wt%の接着剤Aを得た。
 得られた接着剤Aについて、膨潤度の測定、外装材-負極間のせん断接着力の測定、及び試験片(N)を備えた試験用模擬電池の衝撃試験を行った。
 〔実施例2〕(接着剤A:セパレーター)
 実施例1で得られた接着剤Aについて、外装材-セパレーター間のせん断接着力の測定、及び試験片(S)を備えた試験用模擬電池の衝撃試験を行った。
 〔実施例3〕(接着剤B:負極)
 アクリル酸2-エチルヘキシル85重量部とアクリル酸ブチル15重量部とを重合してなるアクリル酸エステル系共重合体(重量平均分子量(Mw)45万)を用意した。前記共重合体をキシレンに溶解して、固形分濃度10wt%の接着剤Bを得た。
 得られた接着剤Bについて、膨潤度の測定、外装材-負極間のせん断接着力の測定、及び試験片(N)を備えた試験用模擬電池の衝撃試験を行った。
 〔実施例4〕(接着剤B:セパレーター)
 実施例3で得られた接着剤Bについて、外装材-セパレーター間のせん断接着力の測定、及び試験片(S)を備えた試験用模擬電池の衝撃試験を行った。
 〔比較例1〕(接着剤C:負極)
 アクリル酸ブチル60重量部とアクリル酸2-エチルヘキシル40重量部とを重合してなるアクリル酸エステル系共重合体(重量平均分子量(Mw)50万)を用意した。前記共重合体をキシレンに溶解して、固形分濃度10wt%の接着剤Cを作製した。
 得られた接着剤Cについて、膨潤度の測定、外装材-負極間のせん断接着力の測定、及び試験片(N)を備えた試験用模擬電池の衝撃試験を行った。
 〔比較例2〕(接着剤C:セパレーター)
 比較例1で得られた接着剤Cについて、外装材-セパレーター間のせん断接着力の測定、及び試験片(S)を備えた試験用模擬電池の衝撃試験を行った。
 〔比較例3〕(接着剤なし)
 対照のため、接着剤の塗布を行わなかった他は、(3.衝撃試験)と同じ操作により、試験片(N)を備えた試験用模擬電池の衝撃試験を行った。
 実施例及び比較例の結果を、表1にまとめて示す。
Figure JPOXMLDOC01-appb-T000001
 実施例及び比較例の結果から明らかな通り、本発明の要件を満たす接着剤を用いた実施例においては、良好なせん断接着力及び衝撃に対する耐久性を得ることができることが分かる。
 100:電気化学素子
 110D:下面側外装体
 110U:上面側外装体
 111:周囲領域
 120N:負極タブ
 120P:正極タブ
 121:リード
 130:電極構成体
 131(N):負極部材
 132(S):セパレーター部材
 133(P):正極部材
 134(S):セパレーター部材
 135(N):負極部材
 136(S):セパレーター部材
 137(P):正極部材
 138(S):セパレーター部材
 139(N):負極部材
 141:結束部材
 150D:接着剤層
 150U:接着剤層
 160:空隙

Claims (9)

  1.  正極部材、セパレーター部材及び負極部材を含む電極構成体、電解液、並びに前記電極構成体及び前記電解液を格納するパウチ型外装体を含む電気化学素子に用いる電極構成体固定用接着剤であって、電解液に対する膨潤度が50%以下である電極構成体固定用接着剤。
  2.  スチレン系ブロック共重合体及びジエン系重合体を含む、請求項1に記載の電極構成体固定用接着剤。
  3.  前記電極構成体において、前記正極部材、前記セパレーター部材及び前記負極部材は、積層体構造又は巻回体構造を有する、請求項1又は2に記載の電極構成体固定用接着剤。
  4.  正極部材、セパレーター部材及び負極部材を含む電極構成体、電解液、並びに前記電極構成体及び前記電解液を格納するパウチ型外装体を含む電気化学素子であって、
     前記電気化学素子は、前記外装体の内側の表面と前記電極構成体との間に介在しこれらを接着する接着剤層をさらに含み、
     前記接着剤層の、前記電解液に対する膨潤度が50%以下である電気化学素子。
  5.  前記接着剤層が、前記外装体及び前記電極構成体の両方に直接接する、請求項4に記載の電気化学素子。
  6.  前記接着剤層が、スチレン系ブロック共重合体及びジエン系重合体を含む、請求項4又は5に記載の電気化学素子。
  7.  前記電極構成体において、前記正極部材、前記セパレーター部材及び前記負極部材は、積層体構造又は巻回体構造を有する、請求項4~6のいずれか1項に記載の電気化学素子。
  8.  前記電極構成体の、前記接着剤層に接する表面の層が、前記セパレーター部材の層を含む、請求項4~7のいずれか1項に記載の電気化学素子。
  9.  前記電極構成体の、前記接着剤層に接する表面の層が、前記負極部材の層を含む、請求項4~8のいずれか1項に記載の電気化学素子。
PCT/JP2018/009400 2017-03-27 2018-03-12 電極構成体固定用接着剤及び電気化学素子 WO2018180405A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020197028099A KR20190131499A (ko) 2017-03-27 2018-03-12 전극 구성체 고정용 접착제 및 전기 화학 소자
JP2019509176A JP7003989B2 (ja) 2017-03-27 2018-03-12 電極構成体固定用接着剤及び電気化学素子
JP2023134184A JP2023169154A (ja) 2017-03-27 2023-08-21 非付着性の調理器および材料、ならびに、製造方法および使用方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-061819 2017-03-27
JP2017061819 2017-03-27

Publications (1)

Publication Number Publication Date
WO2018180405A1 true WO2018180405A1 (ja) 2018-10-04

Family

ID=63677513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/009400 WO2018180405A1 (ja) 2017-03-27 2018-03-12 電極構成体固定用接着剤及び電気化学素子

Country Status (3)

Country Link
JP (1) JP7003989B2 (ja)
KR (1) KR20190131499A (ja)
WO (1) WO2018180405A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020173949A (ja) * 2019-04-10 2020-10-22 昭和電工パッケージング株式会社 蓄電デバイス用外装材及び蓄電デバイス
JP2020202055A (ja) * 2019-06-07 2020-12-17 トヨタ自動車株式会社 積層型電池
CN113491029A (zh) * 2020-01-03 2021-10-08 宁德新能源科技有限公司 电芯及包含其的电化学装置和电子装置
WO2022024717A1 (ja) 2020-07-28 2022-02-03 日本ゼオン株式会社 電池用接着剤及び電池用接着積層体

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000149997A (ja) * 1998-08-31 2000-05-30 Toshiba Corp 非水電解液二次電池及び非水電解液二次電池の製造方法
JP2000223159A (ja) * 1999-01-29 2000-08-11 Toshiba Corp 非水電解液二次電池及び非水電解液二次電池の製造方法。
JP2011222469A (ja) * 2010-04-05 2011-11-04 Samsung Sdi Co Ltd 二次電池
JP2013513932A (ja) * 2009-12-15 2013-04-22 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 全芳香族ポリイミドのナノファイバーから実質上なるナノウェブを含むセパレータを含む電気化学的セル
JP2015015236A (ja) * 2013-07-03 2015-01-22 三星エスディアイ株式会社Samsung SDI Co.,Ltd. リチウムパウチ型電池
WO2016080143A1 (ja) * 2014-11-18 2016-05-26 日本ゼオン株式会社 電極構成体固定用両面テープおよび二次電池
JP2016170966A (ja) * 2015-03-12 2016-09-23 日立マクセル株式会社 ラミネート形電池及びその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11121013A (ja) * 1997-10-17 1999-04-30 Sekisui Chem Co Ltd 非水電解質二次電池
JP2001093576A (ja) 1999-09-27 2001-04-06 Japan Storage Battery Co Ltd 非水電解質電池とその製造方法
JP3831939B2 (ja) 2001-11-12 2006-10-11 ソニー株式会社 電池
JP4440573B2 (ja) 2002-08-06 2010-03-24 大日本印刷株式会社 リチウム電池金属端子部密封用接着性フィルム
JP6536564B2 (ja) 2014-03-07 2019-07-03 日本ゼオン株式会社 リチウムイオン二次電池用バインダー組成物、リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池多孔膜用スラリー組成物、リチウムイオン二次電池用電極、及びリチウムイオン二次電池
JPWO2015186363A1 (ja) 2014-06-04 2017-04-20 日本ゼオン株式会社 リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池用電極およびリチウムイオン二次電池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000149997A (ja) * 1998-08-31 2000-05-30 Toshiba Corp 非水電解液二次電池及び非水電解液二次電池の製造方法
JP2000223159A (ja) * 1999-01-29 2000-08-11 Toshiba Corp 非水電解液二次電池及び非水電解液二次電池の製造方法。
JP2013513932A (ja) * 2009-12-15 2013-04-22 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 全芳香族ポリイミドのナノファイバーから実質上なるナノウェブを含むセパレータを含む電気化学的セル
JP2011222469A (ja) * 2010-04-05 2011-11-04 Samsung Sdi Co Ltd 二次電池
JP2015015236A (ja) * 2013-07-03 2015-01-22 三星エスディアイ株式会社Samsung SDI Co.,Ltd. リチウムパウチ型電池
WO2016080143A1 (ja) * 2014-11-18 2016-05-26 日本ゼオン株式会社 電極構成体固定用両面テープおよび二次電池
JP2016170966A (ja) * 2015-03-12 2016-09-23 日立マクセル株式会社 ラミネート形電池及びその製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020173949A (ja) * 2019-04-10 2020-10-22 昭和電工パッケージング株式会社 蓄電デバイス用外装材及び蓄電デバイス
JP7361487B2 (ja) 2019-04-10 2023-10-16 株式会社レゾナック・パッケージング 蓄電デバイス用外装材及び蓄電デバイス
JP7532570B2 (ja) 2019-04-10 2024-08-13 株式会社レゾナック・パッケージング 蓄電デバイス用外装材及び蓄電デバイス
JP2020202055A (ja) * 2019-06-07 2020-12-17 トヨタ自動車株式会社 積層型電池
JP7136013B2 (ja) 2019-06-07 2022-09-13 トヨタ自動車株式会社 積層型電池
CN113491029A (zh) * 2020-01-03 2021-10-08 宁德新能源科技有限公司 电芯及包含其的电化学装置和电子装置
WO2022024717A1 (ja) 2020-07-28 2022-02-03 日本ゼオン株式会社 電池用接着剤及び電池用接着積層体
KR20230047077A (ko) 2020-07-28 2023-04-06 니폰 제온 가부시키가이샤 전지용 접착제 및 전지용 접착 적층체

Also Published As

Publication number Publication date
KR20190131499A (ko) 2019-11-26
JPWO2018180405A1 (ja) 2020-02-06
JP7003989B2 (ja) 2022-02-10

Similar Documents

Publication Publication Date Title
JP6635043B2 (ja) 電極構成体固定用両面テープおよび二次電池
WO2018180405A1 (ja) 電極構成体固定用接着剤及び電気化学素子
CN100472845C (zh) 电池
TWI753849B (zh) 薄型蓄電裝置及其製造方法
WO2017008269A1 (zh) 电化学储能装置及制备电化学储能装置的方法
US9985319B2 (en) Method for producing laminate battery, apparatus for producing laminate battery, and laminate battery
JP2004047439A (ja) 接着剤組成物担持電池用セパレータとそれを用いて得られる電極/セパレータ積層体
TW201911627A (zh) 電極片製造方法、全固態電池以及全固態電池製造方法
WO2022001235A1 (zh) 一种电化学装置用隔板、电化学装置及电子装置
JP6981602B2 (ja) 二次電池及びその二次電池の製造方法
JP4365791B2 (ja) 非水電解質電池用接着剤、およびこれを用いた非水電解質電池
JP2014112485A (ja) 固体電池
JP2008027771A (ja) 非水電解質電池用タブリード材、その製造方法、およびこれを用いた非水電解質電池
WO2021200581A1 (ja) 蓄電デバイス
CN105470436A (zh) 隔离物以及使用该隔离物的锂离子二次电池
JP3494607B2 (ja) リチウム二次電池
JP4954468B2 (ja) 捲回電極およびその製造方法、並びに電池の製造方法
JP2001006744A (ja) 有機電解液を用いた電池
CN114583096B (zh) 一种电极极片及其二次电池
JP6973401B2 (ja) 蓄電素子及びその製造方法
WO2024060145A1 (zh) 二次电池及包含其的电子装置
JP2000149993A (ja) フィルム状Li二次電池
JP2014135272A (ja) 全固体電池
JP2013045558A (ja) 電極及び電気デバイス
JP2009193743A (ja) 電池用セパレータのための架橋性ポリマー担持多孔質フィルムとそれより得られる電池用セパレータと電極/セパレータ接合体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18774822

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019509176

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197028099

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18774822

Country of ref document: EP

Kind code of ref document: A1