WO2018179816A1 - 亜鉛系めっき鋼板およびその製造方法 - Google Patents

亜鉛系めっき鋼板およびその製造方法 Download PDF

Info

Publication number
WO2018179816A1
WO2018179816A1 PCT/JP2018/003331 JP2018003331W WO2018179816A1 WO 2018179816 A1 WO2018179816 A1 WO 2018179816A1 JP 2018003331 W JP2018003331 W JP 2018003331W WO 2018179816 A1 WO2018179816 A1 WO 2018179816A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
zinc
oxide layer
plated steel
galvanized steel
Prior art date
Application number
PCT/JP2018/003331
Other languages
English (en)
French (fr)
Inventor
古谷 真一
松崎 晃
弘之 増岡
克弥 星野
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to MX2019011684A priority Critical patent/MX2019011684A/es
Priority to EP18775028.6A priority patent/EP3604615B1/en
Priority to CN201880022411.7A priority patent/CN110494591B/zh
Priority to KR1020197028627A priority patent/KR102334859B1/ko
Priority to US16/499,419 priority patent/US10907255B2/en
Publication of WO2018179816A1 publication Critical patent/WO2018179816A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • C23C22/53Treatment of zinc or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/18Processes for applying liquids or other fluent materials performed by dipping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/043Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/085Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment
    • C23C22/83Chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • C23C28/3225Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only with at least one zinc-based layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2202/00Metallic substrate
    • B05D2202/10Metallic substrate based on Fe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2202/00Metallic substrate
    • B05D2202/10Metallic substrate based on Fe
    • B05D2202/15Stainless steel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12583Component contains compound of adjacent metal
    • Y10T428/1259Oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12611Oxide-containing component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12611Oxide-containing component
    • Y10T428/12618Plural oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/1266O, S, or organic compound in metal component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/1266O, S, or organic compound in metal component
    • Y10T428/12667Oxide of transition metal or Al
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • Y10T428/1275Next to Group VIII or IB metal-base component
    • Y10T428/12757Fe
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12972Containing 0.01-1.7% carbon [i.e., steel]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12972Containing 0.01-1.7% carbon [i.e., steel]
    • Y10T428/12979Containing more than 10% nonferrous elements [e.g., high alloy, stainless]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • Y10T428/24967Absolute thicknesses specified
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • Y10T428/24967Absolute thicknesses specified
    • Y10T428/24975No layer or component greater than 5 mils thick
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/27Web or sheet containing structurally defined element or component, the element or component having a specified weight per unit area [e.g., gms/sq cm, lbs/sq ft, etc.]

Definitions

  • the present invention relates to a galvanized steel sheet having a small sliding resistance during press forming and having excellent press formability, and a method for producing the same.
  • Zinc-based galvanized steel sheets are widely used in a wide range of fields centering on automobile body applications.
  • the zinc-based plated steel sheet is used after being subjected to press forming.
  • the zinc-based plated steel sheet has a drawback that the press formability is inferior to that of the cold-rolled steel sheet. This is because the sliding resistance of the galvanized steel sheet in the press die is larger than that of the cold-rolled steel sheet. That is, at the portion where the sliding resistance between the mold and the bead is large, the zinc-based plated steel sheet having a large sliding resistance is difficult to flow into the press mold, and the steel sheet is likely to break.
  • Patent Document 1 discloses that an oxide film mainly composed of zinc is formed by subjecting the surface of a zinc-based plated steel sheet to electrolytic treatment, immersion treatment, coating oxidation treatment, or heat treatment. A technique for improving press workability is disclosed.
  • Patent Document 2 after hot-dip galvanizing of a steel sheet, alloying is performed by heat treatment, and after temper rolling, the steel sheet is brought into contact with an acidic solution having a pH buffering action, held for a predetermined time, and then washed with water.
  • An acidic solution having a pH buffering action held for a predetermined time, and then washed with water.
  • Patent Document 3 the hot-dip galvanized steel sheet after temper rolling is brought into contact with an acidic solution having a pH buffering action, and is kept for a predetermined time in a state where a liquid film of the acidic solution is formed on the steel sheet surface, and then washed with water and dried. And the hot dip galvanized steel plate which is excellent in press formability which formed the oxide layer in the plating surface is disclosed.
  • Patent Document 4 an electrogalvanized steel sheet is brought into contact with an acidic solution having an acid buffering action or an acidic electrogalvanizing bath, and then kept for a predetermined time, followed by washing with water and drying.
  • a formed electrogalvanized steel sheet excellent in press formability is disclosed.
  • Patent Document 5 discloses the production of a zinc-based plated steel sheet in which a zinc-based plated steel sheet is brought into contact with an acidic solution, held for a predetermined time, washed with water and dried to form an oxide layer and / or a hydroxide layer on the surface.
  • a technique for obtaining excellent press formability by including an oxide colloid in an acidic solution is disclosed.
  • the present applicants contact the zinc-based plated steel sheet with an acidic solution containing a fluororesin, hold it for a predetermined time, wash with water, and dry it, so that an oxide layer and / or water containing the fluororesin is formed on the surface.
  • Patent Document 6 A technique for forming an oxide layer and obtaining a press formability far superior to that of the prior art has been proposed (Patent Document 6).
  • Japanese Patent Laid-Open No. 2-190483 Japanese Patent No. 3807341 Japanese Patent No. 4329387 JP 2005-248262 A Japanese Patent No. 5386842 JP 2016-098380 A
  • Patent Documents 1 to 5 When the techniques described in Patent Documents 1 to 5 are applied to a high-strength galvanized steel sheet, it is not always possible to obtain a sufficient effect, and even a relatively low-strength galvanized steel sheet is complicated. It was not enough to enable proper molding.
  • the present invention has been made in view of such circumstances, and is a stable and excellent press for a high-strength galvanized steel sheet and a relatively low-strength galvanized steel sheet subjected to complicated forming.
  • An object of the present invention is to provide a zinc-based plated steel sheet having formability and no harmful fumes generated during welding, and a method for producing the same.
  • the inventors of the present invention have made extensive studies to solve the above problems. As a result, it has been found that the above problem can be solved by forming an oxide layer having an average thickness of 20 nm or more and containing Zn, S and polyethylene particles on the surface of a zinc-based plated steel sheet.
  • the present invention has been completed based on the above findings, and the gist thereof is as follows.
  • An oxide layer is provided on the surface of the zinc-based plated steel sheet, the oxide layer has an average thickness of 20 nm or more, and the oxide layer contains Zn of 30 mg / m 2 or more, S 1.0 mg / m 2 or more, the average zinc-plated steel sheet having a particle diameter containing polyethylene particles is less than 5.0 .mu.m 50 mg / m 2 or more 1000 mg / m 2 or less.
  • a method for producing a galvanized steel sheet according to any one of [1] to [4] above A method for producing a zinc-based plated steel sheet, comprising bringing a zinc-based plated steel sheet into contact with an acidic solution containing 3 g / L or more of sulfate ions, 3 g / L or more of Zn ions and 0.10 g / L or more of polyethylene particles.
  • an acidic solution containing 3 g / L or more of sulfate ions, 3 g / L or more of Zn ions and 0.10 g / L or more of polyethylene particles.
  • the zinc-based plated steel sheet is a generic term for steel sheets obtained by plating zinc on a steel sheet by various manufacturing methods such as a hot dipping method, an electroplating method, a vapor deposition plating method, and a thermal spraying method. Call it. Moreover, both the hot-dip galvanized steel sheet (GI) which has not been alloyed and the alloyed hot-dip galvanized steel sheet (GA) which has been alloyed are included in the zinc-based plated steel sheet.
  • GI hot-dip galvanized steel sheet
  • GA alloyed hot-dip galvanized steel sheet
  • a hot dip galvanized layer As a zinc-based plating layer formed on the surface of the steel sheet, a hot dip galvanized layer, an alloyed hot dip galvanized layer, a hot dip zinc-aluminum alloy plated layer, a hot dip zinc-aluminum-magnesium alloy plated layer, an electrogalvanized layer, Examples thereof include, but are not limited to, an electro-zinc-nickel alloy plating layer, and all known zinc-based plating layers containing zinc are applicable.
  • the sliding resistance at the time of press molding is small, and the galvanized steel plate which has the outstanding press formability is obtained.
  • the friction coefficient between the galvanized steel sheet and the mold is significantly reduced. For this reason, it has stable and excellent press formability even for high-strength zinc-based plated steel sheets and relatively low-strength zinc-based plated steel sheets subjected to complicated forming.
  • Even in difficult molding such as deep drawing required for complex shapes such as back doors the sliding resistance is small at the risk of cracking during press molding, and the overhanging property is good.
  • it does not contain a fluororesin there is no fear of generation of harmful fumes during welding.
  • high strength assumes a tensile strength (TS) of 440 MPa or more
  • relatively low strength assumes a TS of less than 440 MPa
  • FIG. 1 is a schematic front view showing a friction coefficient measuring apparatus.
  • FIG. 2 is a schematic perspective view showing the bead shape and dimensions in FIG.
  • FIG. 3 is a schematic perspective view showing the bead shape and dimensions in FIG.
  • an oxide layer is provided on the surface of a zinc-based plated steel sheet comprising a steel sheet and a zinc-based plated layer formed on the steel sheet, the oxide layer has an average thickness of 20 nm or more, and the oxide layer during, characterized in that Zn and 30 mg / m 2 or more, the S 1.0 mg / m 2 or more, containing polyethylene particles having an average particle size of less 5.0 .mu.m 50 mg / m 2 or more 1000 mg / m 2 or less And
  • the lubrication mechanism of the oxide layer is not clear, it can be considered as follows. During sliding, a high surface pressure is generated between the mold and the zinc-based plated steel sheet, the lubricating oil is eliminated, and a portion that directly contacts the mold and the zinc-based plated layer is generated. Furthermore, shear stress is generated on the surface of the zinc-based plating layer due to the adhesion between the mold and the zinc-based plating. In such a case, the oxide containing Zn has an adhesion suppression force that suppresses direct contact between the mold and the steel plate. S is an element used as an extreme pressure additive.
  • S has an adhesion suppressing force that suppresses adhesion between the steel sheet and the mold by adsorbing to the surface of the zinc-based plated steel sheet or the mold even in a high surface pressure state where oil is excluded. Furthermore, by including polyethylene particles in the oxide layer, the polyethylene particles bear part of the sliding between the mold and the steel plate, and the friction coefficient is significantly reduced. Due to these synergistic effects, it is considered that excellent press formability can be obtained even under high surface pressure conditions during press forming of a high-strength steel plate and complex forming of a steel plate with relatively low strength.
  • the contents of Zn and S in the oxide layer are such that Zn is 30 mg / m 2 or more and S is 1.0 mg / m 2 or more.
  • Zn content of the oxide layer is less than 30 mg / m 2 and the S content is less than 1.0 mg / m 2 , it is difficult to obtain a sufficient sliding property improving effect, that is, a press formability improving effect.
  • the Zn content exceeds 1000 mg / m 2 and the S content exceeds 100 mg / m 2 , spot weldability and chemical conversion treatment, which are important in automobile production, may be deteriorated. Therefore, the Zn content is preferably 1000 mg / m 2 or less, and the S content is preferably 100 mg / m 2 or less.
  • the average thickness of the oxide layer is 20 nm or more. If it is less than 20 nm, sufficient press formability cannot be obtained. On the other hand, when it exceeds 200 nm, the reactivity of the surface is extremely lowered, and it may be difficult to form a chemical conversion treatment film. Therefore, the average thickness of the oxide layer is preferably 200 nm or less.
  • polyethylene particles are contained in the oxide layer as a solid lubricant.
  • Polyethylene is used for general purposes and is inexpensive.
  • the sufficient sliding characteristic improvement effect is acquired by containing a polyethylene particle in an oxide layer.
  • it may be thermally decomposed during welding to generate harmful gases such as HF and PFIB.
  • harmful gases such as HF and PFIB.
  • the present invention since only C and H are contained in the molecule, there is no concern that harmful fumes are generated or no harmful gas is generated during welding.
  • an organic resin is used in the present invention, a sufficient sliding characteristic improvement effect can be obtained as compared with inorganic solid lubricants such as molybdenum disulfide and boron nitride.
  • the average particle size is 5.0 ⁇ m or less.
  • the average particle diameter exceeds 5.0 ⁇ m, it is difficult to be taken into the oxide layer.
  • a preferable average particle diameter has a lower limit of 0.1 ⁇ m and an upper limit of 1.0 ⁇ m.
  • the total content of polyethylene (PE) is 50 mg / m 2 or more and 1000 mg / m 2 or less. If it is less than 50 mg / m 2 , a sufficient lubricating effect cannot be exhibited. On the other hand, in the case of exceeding 1000 mg / m 2 , spot weldability and chemical conversion processability are lowered. Preferably, it is from 50 mg / m 2 to 400 mg / m 2 .
  • the oxide layer formed on the surface of the galvanized steel sheet in the present invention can be analyzed by the following method.
  • the thickness of the oxide layer was measured using fluorescent X-rays, and the obtained oxygen intensity was converted to a silica film thickness based on the value of a silicon wafer on which a silicon oxide film with a known thickness was formed. Can be measured. Let the average value of the value measured from this be an average thickness of an oxide layer.
  • Zn, S, and O can be analyzed using an X-ray photoelectron spectrometer.
  • the average particle diameter of the polyethylene particles is obtained by measuring and averaging the particle diameters of any 20 polyethylene particles from the SEM observation image. It is possible to calculate the content by measuring the above and integrating the density into the total volume.
  • a sulfate group and a hydroxyl group exist in the oxide layer.
  • the presence or absence of a sulfate group and a hydroxyl group can be confirmed by the method of the Example mentioned later.
  • the oxide layer preferably further contains a P 0.2 mg / m 2 or more 10 mg / m 2 or less.
  • P a P 0.2 mg / m 2 or more 10 mg / m 2 or less.
  • P is considered to adhere to the surface in the form of a phosphoric acid compound, and the OH group present in the phosphoric acid compound improves the affinity with water and improves the wettability after degreasing. it is conceivable that. If the P content is less than 0.2 mg / m 2 , a sufficient degreasing effect may not be obtained. When it exceeds 10 mg / m 2, there is a concern that spot weldability, which is important in automobile production, is reduced.
  • the P content in the oxide layer was determined by analyzing a solution in which the oxide layer was dissolved with 2% by mass of ammonium dichromate + 14% by mass of aqueous ammonia using an ICP emission analyzer, and measuring the unit area. It can obtain
  • the manufacturing method of the zinc-plated steel plate of this invention is demonstrated.
  • the steel plate is subjected to a zinc-based plating treatment.
  • the method for performing the plating treatment is not particularly limited, and general methods such as hot dip galvanization and electrogalvanization can be employed.
  • the plating treatment conditions are not particularly limited, and preferable conditions may be adopted as appropriate.
  • an alloying treatment may be performed after plating.
  • the alloying method is not particularly limited, and a general method can be adopted.
  • polyethylene particles having an average thickness of 20 nm or more, Zn of 30 mg / m 2 or more, S of 1.0 mg / m 2 or more, and an average particle diameter of 5.0 ⁇ m or less
  • An oxide layer containing 50 mg / m 2 or more and 1000 mg / m 2 or less is formed.
  • the method for forming the oxide layer include a method in which a zinc-based plated steel sheet is brought into contact with an acidic solution containing sulfate ions, Zn ions, and polyethylene particles, and then washed with water. In addition, you may dry after water washing as needed.
  • the steel sheet is brought into contact with an acidic solution containing sulfate ions: 3 g / L or more, Zn ions: 3 g / L or more, and polyethylene particles: 0.10 g / L or more, and then washed with water.
  • an acidic solution containing sulfate ions: 3 g / L or more, Zn ions: 3 g / L or more, and polyethylene particles: 0.10 g / L or more, and then washed with water.
  • the method for producing polyethylene particles is not particularly limited.
  • a polyethylene product having an average particle size of 5.0 ⁇ m or less can also be used.
  • the acidic solution preferably has a pH of 2-6. When the pH is less than 2, the zinc-based plating layer is so dissolved that the formation of the oxide layer may be suppressed.
  • the pH of the acidic solution is preferably 2 or more and 6 or less.
  • the temperature of the acidic solution is preferably 20 to 80 ° C.
  • the temperature is less than 20 ° C.
  • the oxide layer formation rate is slow.
  • the temperature exceeds 80 ° C. the amount of evaporation of the solution increases, management of the liquid concentration becomes difficult, leading to an increase in cost, which is not preferable.
  • the contact time with the acidic solution is preferably 1 second to 500 seconds. If it is less than 1 second, a film having a sufficient film thickness may not be obtained. If it exceeds 500 seconds, the processing time becomes longer and the production cost increases.
  • the acidic solution contains an oxidizing agent.
  • the oxidizing agent include nitrates such as nitric acid and sodium nitrate, hydrogen peroxide, potassium permanganate and the like.
  • the formation mechanism of the oxide layer containing Zn, S, and polyethylene particles is not clear, it can be considered as follows.
  • a steel sheet coated with a zinc-based plating layer is brought into contact with an acidic solution containing sulfate ions, Zn ions and polyethylene particles
  • the pH of the steel sheet surface rises on the steel sheet side due to the zinc dissolution reaction and hydrogen ion reduction.
  • Zn, O and S are precipitated as compounds.
  • polyethylene particles are present in the solution near the steel plate, the polyethylene particles are taken into the Zn, O, and S compounds. And it is thought that the said oxide layer forms.
  • the sulfate ion in the solution in contact with the steel sheet is 3 g / L or more, the Zn ion is 3 g / L or more, and the polyethylene particles are 0.10 g / L or more.
  • the sulfate ion and Zn ion is less than 3 g / L, the deposition rate is slow, and it may be difficult to form a sufficiently thick oxide layer.
  • the polyethylene particles are less than 0.10 g / L, the amount taken into the oxide layer may be reduced.
  • the sulfate ion is 170 g / L or more
  • the Zn ion is 120 g / L or more
  • the polyethylene particles are 100 g / L or more
  • sulfate ions are less than 170 g / L
  • Zn ions are less than 120 g / L
  • polyethylene particles are less than 100 g / L.
  • the method of bringing the acidic solution into contact with the steel sheet is not particularly limited, the method of bringing the steel sheet into contact with the acidic solution, the method of bringing the steel sheet into contact with the acidic solution, and the acidic solution on the steel sheet using a coating roll There is a method of applying the coating.
  • the oxide layer further contains P in a content of 0.2 mg / m 2 or more and 10 mg / m 2 or less
  • P ions are contained in an amount of 0.01 g / L or more.
  • the steel sheet is brought into contact with the contained solution.
  • the S-based compound among the compounds containing Zn, S, and O undergoes a substitution reaction with the P-based compound, and the P-based compound is contained in the oxide layer. Is contained. If the concentration of P ions contained in the solution to be contacted is too small, the substitution rate is lowered, and a sufficient effect may not be obtained.
  • the concentration of P ions is preferably 0.01 g / L or more.
  • the P ion is 100 g / L or more, no further increase in the deposition rate can be expected. Therefore, it is preferably less than 100 g / L in view of cost.
  • the solution containing P ions sodium phosphate, sodium pyrophosphate, sodium polyphosphate aqueous solution and the like can be used. If P ions are contained, the same effect is exhibited, and there is no particular designation of the drug to be used.
  • N, Pb, Na, Mn, Ba, Sr, Si, Zr, Al, Sn, Cu, Be, B, F, Ne, and the like are taken into the oxide layer due to impurities contained in the solution.
  • the effect of the present invention is not impaired.
  • a high-strength cold-rolled steel sheet (TS: 590 MPa) having a thickness of 1.2 mm was subjected to electrogalvanizing (EG), hot-dip galvanizing (GI), and alloying treatment (GA) after hot-dip galvanizing.
  • EG electrogalvanizing
  • GI hot-dip galvanizing
  • GA alloying treatment
  • the steel sheet was immersed in the acid solution adjusted to the conditions shown in Table 1 under the conditions shown in Table 1. Next, it was washed with water and dried. About some steel plates, the steel plates were further immersed in the sodium pyrophosphate decahydrate solution at the concentrations, temperatures, and immersion times shown in Table 1. Next, after sufficiently washing with water, it was dried and P was contained in the oxide layer in an amount of 0.2 mg / m 2 to 10 mg / m 2 .
  • the Zn content, S content, P content, polyethylene particle content, and average thickness of the oxide layer contained in the oxide layer on the surface of the high-strength cold-rolled steel sheet obtained above were measured. In addition, the presence or absence of hydroxyl groups and sulfate groups was confirmed. Further, as a method for evaluating press formability, a friction coefficient was measured to evaluate sliding characteristics. In addition, the Zn content, the S content, the P content, the polyethylene particle content, the average thickness of the oxide layer, the presence form of Zn, S, and O in the surface layer of the high-strength cold-rolled steel sheet
  • the evaluation method of press formability (sliding characteristics) is as follows.
  • a silicon wafer on which a silicon oxide film having a thickness of 96 nm, 54 nm, and 24 nm cleaved to an appropriate size is set on the sample stage together with these series of samples.
  • the intensity of K ⁇ rays can be calculated.
  • a calibration curve between the oxide layer thickness and the O—K ⁇ ray intensity was prepared, and the thickness of the oxide layer of the test material was calculated as the oxide layer thickness in terms of silicon oxide film. Let the average value of the value measured from this be an average thickness of an oxide layer.
  • composition analysis of oxide layer Using a 2% ammonium dichromate solution + 14% by weight aqueous ammonia solution, the oxide layer alone was dissolved, and the solution was quantified for Zn, S, and P using an ICP emission spectrometer. Analysis was performed. The measured value was converted into the content per unit area, and the value was defined as the content.
  • Presence form of Zn, S, O Presence / absence of hydroxyl group and sulfate group
  • the presence forms of Zn, S, and O were analyzed using an X-ray photoelectron spectrometer. Using an Al Ka monochromatic radiation source, narrow measurement of the spectrum corresponding to Zn LMM, S 2p was performed.
  • (2) Evaluation method of press formability (sliding characteristic) In order to evaluate press formability, the friction coefficient of each test material was measured as follows.
  • FIG. 1 is a schematic front view showing a friction coefficient measuring apparatus.
  • a friction coefficient measurement sample 1 collected from a test material is fixed to a sample table 2, and the sample table 2 is fixed to the upper surface of a slide table 3 that can move horizontally.
  • a slide table support 5 having a roller 4 in contact with the slide table 3 is provided on the lower surface of the slide table 3, and when this is pushed up, a pressing load N applied to the friction coefficient measurement sample 1 by the bead 6.
  • a first load cell 7 is attached to the slide table support 5.
  • a second load cell 8 for measuring a sliding resistance force F for moving the slide table 3 in the horizontal direction in a state where the pressing force is applied is attached to one end of the slide table 3.
  • cleaning oil Preton R352L for press made from Sugimura Chemical Industry Co., Ltd. was apply
  • FIG. 2 and 3 are schematic perspective views showing the shape and dimensions of the beads used.
  • the bead 6 slides with its lower surface pressed against the surface of the sample 1.
  • the shape of the bead 6 shown in FIG. 2 is 10 mm in width, 5 mm in the sliding direction length of the sample, the lower part at both ends in the sliding direction is formed by curved surfaces with a curvature of 1.0 mmR, and the bottom surface of the bead to which the sample is pressed is 10 mm in width and sliding It has a plane with a direction length of 3 mm.
  • 3 has a width of 10 mm, a length of 59 mm in the sliding direction of the sample, and a lower portion at both ends in the sliding direction is formed by a curved surface having a curvature of 4.5 mmR. It has a plane with a direction length of 50 mm.
  • (3) Degreasing evaluation method Degreasing properties of some steel plates were evaluated. Degreasing was evaluated by the water wetting rate after degreasing. The prepared test piece was coated with 2.0 g / m 2 of cleaning oil Preton R352L for press made by Sugimura Chemical Co., Ltd., and then an alkaline degreasing solution of FC-E6403 made by Nihon Parkerizing Co., Ltd. was used. The sample was degreased.
  • the deterioration of the alkaline degreasing liquid in the automobile production line was simulated by adding 10 g / L of pre-cleaning oil Preton R352L for press produced by Sugimura Chemical Co., Ltd. to the degreasing liquid.
  • the degreasing time was 60 seconds, and the temperature was 37 ° C.
  • the degreasing solution was stirred with a propeller having a diameter of 10 cm at a speed of 150 rpm.
  • Degreasing was evaluated by measuring the water wetting rate of the test piece 20 seconds after the completion of degreasing.
  • No. 8-15, 17-20, 22-35, 40-43, 47-53 are invention examples. Sufficient Zn, S, and polyethylene particles are contained in the oxide layer, and the press moldability is excellent.
  • the comparative example is inferior in press formability.
  • the steel sheet of the present invention is excellent in press formability, it can be applied in a wide range of fields mainly for automobile body applications.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Laminated Bodies (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

高強度の亜鉛系めっき鋼板および複雑な成形を施される比較的強度の低い亜鉛系めっき鋼板に対して、安定的に優れたプレス成形性を有し、かつ溶接時に有害ヒュームが発生することのない亜鉛系めっき鋼板およびその製造方法を提供する。 亜鉛系めっき鋼板の表面に酸化物層を有し、酸化物層は、平均厚さが20nm以上であり、酸化物層中には、Znを30mg/m2以上、Sを1.0mg/m2以上、平均粒子径が5.0μm以下であるポリエチレン粒子を50mg/m2以上1000mg/m2以下含有する。

Description

亜鉛系めっき鋼板およびその製造方法
 本発明は、プレス成形時の摺動抵抗が小さく、優れたプレス成形性を有する亜鉛系めっき鋼板およびその製造方法に関する。
 亜鉛系めっき鋼板は自動車車体用途を中心に広範な分野で広く利用される。通常、亜鉛系めっき鋼板は、プレス成形を施した後に使用に供される。しかし、亜鉛系めっき鋼板は、冷延鋼板に比べてプレス成形性が劣るという欠点を有する。これはプレス金型での亜鉛系めっき鋼板の摺動抵抗が冷延鋼板に比べて大きいことが原因である。すなわち、金型とビードでの摺動抵抗が大きい部分で、摺動抵抗が大きい亜鉛系めっき鋼板がプレス金型に流入しにくくなり、鋼板の破断が起こりやすい。
 そのため、亜鉛系めっき鋼板使用時のプレス成形性を向上させる方法として、高粘度の潤滑油を塗布する方法が広く用いられる。しかし、この方法では、潤滑油が高粘性であるため、塗装工程で脱脂不良による塗装欠陥が発生する。また、プレス時の油切れにより、プレス性能が不安定になる等の問題がある。このため、亜鉛系めっき鋼板自身のプレス成形性の改善が要求されている。
 上記の問題を解決する方法として、特許文献1には、亜鉛系めっき鋼板の表面に電解処理、浸漬処理、塗布酸化処理、または加熱処理を施すことにより、亜鉛を主体とする酸化膜を形成させてプレス加工性を向上させる技術が開示されている。
 特許文献2には、鋼板を溶融亜鉛めっき後、加熱処理により合金化し、さらに調質圧延を施した後にpH緩衝作用を有する酸性溶液と接触させ、所定時間保持した後水洗することでめっき表層に酸化物層を形成させ、プレス成形性を向上させる技術が開示されている。
 特許文献3には、調質圧延後の溶融亜鉛めっき鋼板を、pH緩衝作用を有する酸性溶液と接触させ、鋼板表面に酸性溶液の液膜が形成された状態で所定時間保持した後水洗、乾燥し、めっき表面に酸化物層を形成したプレス成形性に優れる溶融亜鉛めっき鋼板が開示されている。
 特許文献4には、電気亜鉛めっき鋼板を、pH緩衝作用を有する酸性溶液もしくは酸性の電気亜鉛めっき浴と接触させ、その後に所定時間保持した後水洗、乾燥し、めっき表面にZn系酸化物を形成した、プレス成形性に優れる電気亜鉛めっき鋼板が開示されている。
 特許文献5には、亜鉛系めっき鋼板を酸性溶液に接触させ、所定時間保持し、水洗・乾燥を行うことにより表面に酸化物層及び/又は水酸化物層を形成する亜鉛系めっき鋼板の製造方法において、酸性溶液中に酸化物コロイドを含有させることにより、優れたプレス成形性を得る技術が開示されている。
 また、本出願人らは亜鉛系めっき鋼板をフッ素樹脂を含む酸性溶液に接触させ、所定時間保持し、水洗・乾燥を行うことにより、表面に、フッ素樹脂を含有する酸化物層及び/又は水酸化物層を形成し従来よりも格段に優れたプレス成形性を得る技術を提案した(特許文献6)。
特開平2-190483号公報 特許第3807341号公報 特許第4329387号公報 特開2005-248262号公報 特許第5386842号公報 特開2016-098380号公報
 上記特許文献1~5に記載の技術を適用した場合、通常の亜鉛系めっき鋼板と比較すると良好なプレス成形性を得ることができる。しかし、近年では自動車車体の軽量化の観点から高強度の亜鉛系めっき鋼板が広く用いられるようになり、従来以上のプレス成形性が求められるようになっている。
 また、比較的強度の低い亜鉛系めっき鋼板に対しても、より複雑な成形を可能とするため、更なるプレス成形性の向上が必要である。
 上記特許文献1~5に記載の技術を高強度の亜鉛系めっき鋼板に適用した場合には必ずしも十分な効果を得ることができず、比較的強度の低い亜鉛系めっき鋼板に対しても、複雑な成形を可能とするには十分ではなかった。
 特許文献6に記載の技術では、皮膜中にフッ素樹脂を含むため、場合によっては溶接時に有害ヒュームが発生する可能性があり、ヒューム対策を施す必要があった。
 本発明は、かかる事情に鑑みてなされたものであって、高強度の亜鉛系めっき鋼板および複雑な成形を施される比較的強度の低い亜鉛系めっき鋼板に対して、安定的に優れたプレス成形性を有し、かつ溶接時に有害ヒュームが発生することのない亜鉛系めっき鋼板およびその製造方法を提供することを目的とする。
 本発明者らは、上記課題を解決するために鋭意研究を重ねた。その結果、亜鉛系めっき鋼板の表面に、平均厚さが20nm以上であり、Zn、Sおよびポリエチレン粒子を含有する酸化物層を形成することで、上記課題を解決できることを見出した。
 本発明は、以上の知見に基づき完成されたものであり、その要旨は以下の通りである。
[1]亜鉛系めっき鋼板の表面に酸化物層を有し、前記酸化物層は、平均厚さが20nm以上であり、前記酸化物層中には、Znを30mg/m以上、Sを1.0mg/m以上、平均粒子径が5.0μm以下であるポリエチレン粒子を50mg/m以上1000mg/m以下含有する亜鉛系めっき鋼板。
[2]前記酸化物層には、硫酸基及び水酸基が存在する上記[1]に記載の亜鉛系めっき鋼板。
[3]前記酸化物層中に、さらに、Pを0.2mg/m以上10mg/m以下含有する上記[1]または[2]に記載の亜鉛系めっき鋼板。
[4]前記亜鉛系めっき鋼板は、合金化溶融亜鉛めっき鋼板、溶融亜鉛めっき鋼板、電気亜鉛めっき鋼板のいずれかである上記[1]~[3]のいずれかに記載の亜鉛系めっき鋼板。
[5]上記[1]~[4]のいずれかに記載の亜鉛系めっき鋼板の製造方法であって、
亜鉛系めっき鋼板を、硫酸イオンを3g/L以上、Znイオンを3g/L以上およびポリエチレン粒子を0.10g/L以上含有する酸性溶液に接触させる亜鉛系めっき鋼板の製造方法。
[6]前記酸性溶液は、pHが2~6であり、温度が20℃~80℃である上記[5]に記載の亜鉛系めっき鋼板の製造方法。
[7]前記酸性溶液は、酸化剤を含有する上記[5]または[6]に記載の亜鉛系めっき鋼板の製造方法。
[8]前記亜鉛系めっき鋼板と前記酸性溶液との接触時間は1秒以上500秒以下である上記[5]~[7]のいずれかに記載の亜鉛系めっき鋼板の製造方法。
[9]酸性溶液に接触後、Pイオンを0.01g/L以上含有する溶液に亜鉛系めっき鋼板を接触させる上記[5]~[8]のいずれかに記載の亜鉛系めっき鋼板の製造方法。
 本発明において、亜鉛系めっき鋼板とは、例えば溶融めっき法、電気めっき法、蒸着めっき法、溶射法などの各種の製造方法により鋼板上に亜鉛をめっきした鋼板を総称して亜鉛系めっき鋼板と呼称する。また、合金化処理を施していない溶融亜鉛めっき鋼板(GI)、合金化処理を施す合金化溶融亜鉛めっき鋼板(GA)のいずれも亜鉛系めっき鋼板に含まれる。また、鋼板の表面に形成される亜鉛系めっき層として、溶融亜鉛めっき層、合金化溶融亜鉛めっき層、溶融亜鉛-アルミニウム合金めっき層、溶融亜鉛-アルミニウム-マグネシウム合金めっき層、電気亜鉛めっき層、電気亜鉛-ニッケル合金めっき層などが例示されるが、これらに限定されるものではなく、亜鉛を含む公知の亜鉛系めっき層すべてが適用可能である。
 本発明によれば、プレス成形時の摺動抵抗が小さく、優れたプレス成形性を有する亜鉛系めっき鋼板が得られる。
亜鉛系めっき鋼板と金型等との摩擦係数が顕著に低下する。このため、高強度の亜鉛系めっき鋼板や、複雑な成形を施される比較的強度の低い亜鉛系めっき鋼板に対しても安定的に優れたプレス成形性を有することになる。バックドアなどの複雑形状化に必要とされる深絞り加工などの難成形時においても、プレス成形時の割れ危険部位での摺動抵抗が小さく張り出し性が良好である。
また、フッ素樹脂を含有しないため、溶接時にも有害ヒューム発生の懸念がない。
 なお、上記において、「高強度」とは引張強度(TS)が440MPa以上を想定しており、「比較的強度の低い」とはTSが440MPa未満を想定している。
図1は、摩擦係数測定装置を示す概略正面図である。 図2は、図1中のビード形状・寸法を示す概略斜視図である。 図3は、図1中のビード形状・寸法を示す概略斜視図である。
 以下、本発明の実施形態について説明する。
 本発明では、鋼板と鋼板上に形成された亜鉛系めっき層とを備える亜鉛系めっき鋼板の表面に酸化物層を有し、酸化物層は、平均厚さが20nm以上であり、酸化物層中には、Znを30mg/m以上、Sを1.0mg/m以上、平均粒子径が5.0μm以下であるポリエチレン粒子を50mg/m以上1000mg/m以下含有することを特徴とする。
 上記酸化物層の潤滑メカニズムについては明確ではないが、以下のように考えることができる。摺動時には、金型と亜鉛系めっき鋼板の間には高い面圧が生じ、潤滑油が排除され、金型と亜鉛系めっき層には直接的に接触する部分が生じる。さらに金型と亜鉛系めっきの凝着力から亜鉛系めっき層の表面にはせん断応力が生じる。このような場合において、Znを含む酸化物には、金型と鋼板の直接的な接触を抑制する凝着抑制力がある。また、Sは極圧添加剤として使用される元素である。Sには、油が排除されるような高面圧状態においても、亜鉛系めっき鋼板表面あるいは金型に吸着することで、鋼板と金型の凝着を抑制する凝着抑制力がある。さらに、酸化物層中にポリエチレン粒子を含むことにより、ポリエチレン粒子が金型と鋼板の間の摺動の一部を担い、摩擦係数は著しく低下する。これらの相乗効果により、高強度鋼板のプレス成形時の高面圧条件や比較的強度の低い鋼板の複雑成形時においても、優れたプレス成形性を有することが可能となると考えられる。
 酸化物層中のZnおよびSの含有量は、Znが30mg/m以上、Sが1.0mg/m以上である。酸化物層のZn含有量が30mg/m未満、S含有量が1.0mg/m未満では十分な摺動特性向上効果、すなわち、プレス成形性向上効果を得ることが難しい。一方、Zn含有量が1000mg/m超え、S含有量が100mg/m超えになると、自動車製造の際に重要となるスポット溶接性や化成処理性が低下する場合がある。そのため、Zn含有量は1000mg/m以下、S含有量は100mg/m以下が好ましい。
 酸化物層の平均厚さは、20nm以上とする。20nm未満では十分なプレス成形性が得られない。一方、200nmを超えると表面の反応性が極端に低下し、化成処理皮膜を形成するのが困難になる場合がある。よって、酸化物層の平均厚さは200nm以下とするのが好ましい。
 本発明では、固体潤滑剤として、酸化物層中にポリエチレン粒子を含有する。ポリエチレンは汎用的に使用されコストが安い。また、酸化物層中にポリエチレン粒子を含有することで十分な摺動特性向上効果が得られる。また、フッ素樹脂を含む場合、溶接時に熱分解し、HFやPFIBなどの有害なガスが発生する可能性がある。これに対して、本発明では、分子中にCおよびHしか含まないため、溶接時に有害ヒュームが発生する懸念や有害ガスが発生する懸念がない。また、本発明では有機樹脂を使用するため、二硫化モリブデンや窒化ホウ素のような無機固体潤滑剤に比べ十分な摺動特性向上効果が得られる。
 酸化物層中にポリエチレン粒子を効率よく含有させるためには、平均粒子径は5.0μm以下とする。平均粒子径が5.0μmを超えると、酸化物層中に取り込まれ難くなる。また、酸化物層との密着性が劣る傾向がある。好ましい平均粒子径は、下限が0.1μmであり、上限が1.0μmである。
 ポリエチレン(PE)の含有量は、合計で50mg/m以上1000mg/m以下とする。50mg/m未満では十分な潤滑効果を発揮できない。一方、1000mg/m超えの場合には、スポット溶接性や化成処理性が低下する。好ましくは、50mg/m~以上400mg/m以下である。
 本発明で亜鉛系めっき鋼板の表面に形成させる酸化物層は下記の方法で分析することが可能である。
酸化物層中のZn含有量、S含有量については、重クロム酸アンモニウム2質量%+アンモニア水14質量%溶液で、酸化物層を溶解した溶液を、ICP発光分析装置を用いて分析することで定量することが可能である。
 酸化物層の厚さについては、蛍光X線を用いて測定し、得られた酸素強度を、厚さが既知である酸化シリコン皮膜を形成したシリコンウエハーの値を基準として、シリカ膜厚に換算し測定することができる。これから測定した値の平均値を酸化物層の平均厚さとする。
 Zn、S、Oの存在形態はX線光電子分光装置を用いて分析することが可能である。
 酸化物層中のポリエチレン粒子については、SEM観察像から、任意の20個のポリエチレン粒子の粒径を測定し平均することでポリエチレン粒子の平均粒子径を求め、一定面積にあるポリエチレン粒子の存在数を測定し全体積に密度を積算することで含有量を算出することが可能である。
 酸化物層中には、硫酸基及び水酸基が存在することが酸化物層の安定性の観点で好ましい。なお、硫酸基及び水酸基が存在の有無は、後述する実施例の方法にて確認することができる。
 さらに、本発明では、酸化物層中に、さらに、Pを0.2mg/m以上10mg/m以下含有することが好ましい。酸化物層中にPを含有することで、自動車製造における脱脂工程において、鋼板表面に付着した油を除去する脱脂性を向上させることができる。Pを酸化物層中に含有しない場合、脱脂液が劣化した場合や、鋼板の塗油量が極端に多い場合に、脱脂工程において、十分に油を除去することができず、水はじきを生じ、化成処理、塗装など後工程に悪影響を及ぼす可能性がある。これに対して、Pはリン酸化合物の形態で表面に付着していると考えられ、リン酸化合物に存在するOH基が水との親和性を向上させ脱脂後の水濡れ性が向上するものと考えられる。P含有量が0.2mg/m未満では十分な脱脂性向上効果が得られない場合がある。10mg/m超えになると、自動車製造の際に重要となるスポット溶接性が低下することが懸念される。
 酸化物層中のP含有量は、重クロム酸アンモニウム2質量%+アンモニア水14質量%溶液で酸化物層を溶解した溶液を、ICP発光分析装置を用いて分析し、測定した値を単位面積あたりの含有量に換算することで求めることができる。
 本発明の亜鉛系めっき鋼板の製造方法について説明する。
まず、鋼板に、亜鉛系めっき処理を施す。めっき処理を施す方法は特に限定されず、溶融亜鉛めっき、電気亜鉛めっき等の一般的な方法を採用可能である。また、めっきの処理条件は特に限定されず、適宜好ましい条件を採用すればよい。さらに、めっき後に、合金化処理を施してもよい。なお、合金化処理の方法は特に限定されず、一般的な方法を採用可能である。
 次に、亜鉛系めっき鋼板の表面に、平均厚さが20nm以上であり、Znを30mg/m以上、Sを1.0mg/m以上、平均粒子径が5.0μm以下であるポリエチレン粒子を50mg/m以上1000mg/m以下含有する酸化物層を形成する。
酸化物層を形成する方法としては、亜鉛系めっき鋼板を、硫酸イオン、Znイオン、ポリエチレン粒子を含有する酸性溶液に接触させ、その後水洗を行う方法が挙げられる。なお、必要に応じて、水洗後に乾燥を行ってもよい。具体的には、鋼板を、硫酸イオン:3g/L以上、Znイオン:3g/L以上およびポリエチレン粒子:0.10g/L以上含有する酸性溶液と接触させた後、水洗を行う。平均粒子径が5.0μm以下であるポリエチレン粒子を用いるにあたって、ポリエチレン粒子の製造方法は特に限定しない。平均粒子径が5.0μm以下のポリエチレン製品を用いることもできる。
酸性溶液はpHが2~6であることが好ましい。pHが2未満では亜鉛系めっき層の溶解が激しく、酸化物層の生成が抑制される場合がある。一方、pHが6超えの酸性溶液では溶液中のZnイオンが析出し、スラッジが発生してしまう場合があり、好ましくなく、酸化物の形成も十分ではない場合がある。よって、酸性溶液のpHは2以上6以下が好ましい。
 酸性溶液の温度は20~80℃が好ましい。温度が20℃未満では酸化物層形成速度が遅い。一方、温度が80℃を超えると溶液の蒸発量が増加し、液濃度の管理が困難になり、コスト増大に繋がるため好ましくない。
 酸性溶液との接触時間は1秒以上500秒以下が好ましい。1秒未満では十分な膜厚の皮膜が得られない場合がある。500秒を超えると処理時間が長時間化し、生産コストが増大する。
 酸性溶液には酸化剤を含有することが好ましい。酸化剤の例として、硝酸や硝酸ナトリウムなどの硝酸塩、過酸化水素、過マンガン酸カリウムなどが挙げられる。酸性溶液に酸化剤を含有することにより、酸化物層の形成が促進され、短時間での酸化物層の形成が可能となる。
 Zn、S、およびポリエチレン粒子を含有する酸化物層の形成メカニズムについては明確ではないが、次のように考えることができる。亜鉛系めっき層を被覆した鋼板を硫酸イオン、Znイオンおよびポリエチレン粒子を含有する酸性溶液に接触させると、鋼板側では亜鉛の溶解反応と水素イオンの還元による水素発生が生じ鋼板表面のpHが上昇する。このときpHが上昇した鋼板表面付近の溶液中に硫酸イオンとZnイオンが存在するとZn、O、Sが化合物として沈殿析出する。また、同時に鋼板付近の溶液中にポリエチレン粒子が存在すると、Zn、O、Sの化合物にポリエチレン粒子が取り込まれる。そして、上記酸化物層が形成すると考えられる。
 上記形成メカニズムの観点から、鋼板を接触させる溶液中の硫酸イオンは3g/L以上、Znイオンは3g/L以上、ポリエチレン粒子は0.10g/L以上含有することが好ましい。硫酸イオンおよびZnイオンがそれぞれ3g/L未満の場合、析出速度が遅く、十分な厚さの酸化物層形成が困難となる場合がある。ポリエチレン粒子が0.10g/L未満の場合、酸化物層に取り込まれる量が少なくなる可能性がある。一方、硫酸イオンが170g/L以上、Znイオンが120g/L以上、ポリエチレン粒子が100g/L以上となると、それ以上の析出速度の増加は期待できない。そのため、コストとの兼ね合いから、硫酸イオンは170g/L未満、Znイオンは120g/L未満、ポリエチレン粒子は100g/L未満であることが好ましい。
 上記酸性溶液を上記鋼板に接触させる方法は特に限定されず、鋼板を酸性溶液に浸漬させて接触させる方法、鋼板に酸性溶液をスプレーして接触させる方法、塗布ロールを用いて鋼板上に酸性溶液を塗布する方法等がある。
 酸性溶液に接触後、水洗を行う。なお、必要に応じて、その後、乾燥を行ってもよい。なお、水洗、乾燥の方法は特に限定されず、一般的な方法を採用可能である。
 さらに、酸化物層中にさらにPを含有量0.2mg/m以上10mg/m以下含有する場合は、水洗、必要に応じて乾燥を行った後に、Pイオンを0.01g/L以上含有する溶液に鋼板を接触させる。水洗、乾燥後、Pを含有する溶液に鋼板を接触させることで、Zn、S、Oを含有する化合物のうちのS系化合物がP系化合物と置換反応し、酸化物層中にP系化合物が含有される。接触させる溶液中に含まれるPイオンの濃度が少なすぎると置換速度が低下し、十分な効果が得られない可能性があるため、Pイオンの濃度は0.01g/L以上が好ましい。一方、Pイオンが100g/L以上となると、それ以上の析出速度の増加は期待できないため、コストとの兼ね合いから100g/L未満であることが好ましい。Pイオンを含有する溶液としてはリン酸ナトリウム、ピロリン酸ナトリウム、ポリリン酸ナトリウム水溶液などが用いることができる。Pイオンを含有していれば、同様の効果を発現し、特段、使用する薬剤を指定するものでは無い。
 なお、溶液中に不純物が含まれることによりN、Pb、Na、Mn、Ba、Sr、Si、Zr、Al、Sn、Cu、Be、B、F、Neなどが酸化物層中に取り込まれても、本発明の効果が損なわれるものではない。
 以下、本発明を実施例により説明する。なお、本発明は以下の実施例に限定されない。
 板厚1.2mmの高強度冷延鋼板(TS:590MPa)に対して、電気亜鉛めっき(EG)、溶融亜鉛めっき(GI)および溶融亜鉛めっき後に合金化処理(GA)を施した。引き続き、表1に示す条件に調整した酸性溶液に鋼板を表1に示す条件で浸漬した。次に、水洗を行った後、乾燥した。一部の鋼板については、さらに、表1に示す濃度、温度、浸漬時間で、ピロリン酸ナトリウム10水和物の溶液に鋼板を浸漬した。次に、十分水洗を行った後、乾燥させ、酸化物層中に、Pを0.2mg/m以上10mg/m以下含有させた。
 上記により得られた高強度冷延鋼板に対して表面の酸化物層中に含まれるZn含有量、S含有量、P含有量、ポリエチレン粒子含有量、酸化物層の平均厚さを測定した。また、水酸基および硫酸基の存在の有無を確認した。また、プレス成形性を評価する手法として摩擦係数の測定を実施し摺動特性を評価した。なお、高強度冷延鋼板表層のZn含有量、S含有量、P含有量、ポリエチレン粒子含有量、酸化物層の平均厚さ、Zn、S、Oの存在形態の測定方法(水酸基および硫酸基の存在の有無確認)、プレス成形性(摺動特性)の評価方法は以下の通りである。
 (1)酸化物層の分析
 酸化物層の平均厚さの測定
 亜鉛系めっき鋼板に形成された酸化物層の厚みの測定には蛍光X線分析装置を使用した。測定時の管球の電圧および電流は30kVおよび100mAとし、分光結晶はTAPに設定してO-Kα線を検出した。O-Kα線の測定に際しては、そのピーク位置に加えてバックグラウンド位置での強度も測定し、O-Kα線の正味の強度が算出できるようにした。なお、ピーク位置およびバックグラウンド位置での積分時間は、それぞれ20秒とした。
 また、試料ステージには、これら一連の試料と一緒に、適当な大きさに劈開した膜厚96nm、54nm及び24nmの酸化シリコン皮膜を形成したシリコンウエハーをセットし、これらの酸化シリコン皮膜からもO-Kα線の強度を算出できるようにした。これらのデータを用いて酸化物層厚さとO-Kα線強度との検量線を作成し、供試材の酸化物層の厚さを酸化シリコン皮膜換算での酸化物層厚さとして算出した。これから測定した値の平均値を酸化物層の平均厚さとする。
 酸化物層の組成分析
 重クロム酸アンモニウム2%+アンモニア水14質量%溶液を用いて、酸化物層のみを溶解し、その溶液を、ICP発光分析装置を用いて、Zn、S、Pの定量分析を実施した。
測定した値を単位面積あたりの含有量に換算し、その値を含有量とした。
 ポリエチレン粒子の含有量分析
 走査型電子顕微鏡を用いて、加速電圧5kV、作動距離8.5mm、倍率5000倍でランダムに抽出した5視野を観察し、ポリエチレン粒子の平均粒子径、個数を求めた。観察視野中の単位面積当たりのポリエチレン粒子の合計体積を求め、密度と掛け合わせることで含有量を算出し、5視野の平均値を求めてポリエチレン粒子の含有量とした。
 Zn、S、Oの存在形態(水酸基および硫酸基の存在の有無)
 X線光電子分光装置を用いて、Zn、S、Oの存在形態について分析した。Al Ka モノクロ線源を使用し、Zn LMM、 S 2pに相当するスペクトルのナロー測定を実施した。

 (2)プレス成形性(摺動特性)の評価方法 プレス成形性を評価するために、各供試材の摩擦係数を以下のようにして測定した。
 図1は、摩擦係数測定装置を示す概略正面図である。同図に示すように、供試材から採取した摩擦係数測定用試料1が試料台2に固定され、試料台2は、水平移動可能なスライドテーブル3の上面に固定されている。スライドテーブル3の下面には、これに接したローラ4を有する上下動可能なスライドテーブル支持台5が設けられ、これを押上げることにより、ビード6による摩擦係数測定用試料1への押付荷重Nを測定するための第1ロードセル7が、スライドテーブル支持台5に取付けられている。上記押し付け力を作用させた状態でスライドテーブル3を水平方向へ移動させるための摺動抵抗力Fを測定するための第2ロードセル8が、スライドテーブル3の一方の端部に取付けられている。なお、潤滑油として、スギムラ化学工業(株)製のプレス用洗浄油プレトンR352Lを試料1の表面に塗布して試験を行った。
 図2、図3は使用したビードの形状・寸法を示す概略斜視図である。ビード6の下面が試料1の表面に押し付けられた状態で摺動する。図2に示すビード6の形状は幅10mm、試料の摺動方向長さ5mm、摺動方向両端の下部は曲率1.0mmRの曲面で構成され、試料が押し付けられるビード下面は幅10mm、摺動方向長さ3mmの平面を有する。図3に示すビード6の形状は幅10mm、試料の摺動方向長さ59mm、摺動方向両端の下部は曲率4.5mmRの曲面で構成され、試料が押し付けられるビード下面は幅10mm、摺動方向長さ50mmの平面を有する。
 摩擦係数測定試験は以下に示す2条件で行った。
[条件1]
 図2に示すビードを用い、押し付け荷重N:400kgf、試料の引き抜き速度(スライドテーブル3の水平移動速度):100cm/minとした。
[条件2]
 図3に示すビードを用い、押し付け荷重N:400kgf、試料の引き抜き速度(スライドテーブル3の水平移動速度):20cm/minとした。
 供試材とビードとの間の摩擦係数μは、式:μ=F/Nで算出した。
(3)脱脂性の評価方法
 一部の鋼板については脱脂性の評価を行った。脱脂性の評価は、脱脂後の水濡れ率で評価を行った。作成した試験片に、スギムラ化学工業(株)製のプレス用洗浄油プレトンR352Lを片面2.0g/m塗油したのち、日本パーカライジング(株)製のFC-E6403のアルカリ脱脂液を用いてサンプルの脱脂を行った。脱脂液にスギムラ化学工業(株)製のプレス用洗浄油プレトンR352Lを10g/Lを予め添加することで自動車生産ラインにおけるアルカリ脱脂液の劣化をシミュレートした。ここで、脱脂時間は60秒とし、温度は37℃とした。脱脂時は脱脂液を直径10cmのプロペラを150rpmの速度で攪拌した。脱脂完了から20秒後の試験片の水濡れ率を測定することで、脱脂性の評価を行った。
 以上より得られた結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1、2より以下の事項がわかる。
 No.8~15、17~20、22~35、40~43、47~53は発明例である。酸化物層に十分なZn、S、ポリエチレン粒子が含まれ、プレス成形性に優れる。
 一方、比較例はプレス成形性に劣る。
 No.12について詳細な酸化物層分析を行ったところ、X線光電子分光装置を用いて、分析した結果、Zn LMMに相当するピークが987eV付近に観察され、Znは水酸化亜鉛の状態として存在していることが分かった。同様に、S 2pに相当するピークが171eV付近に観察され、Sは硫酸塩として存在していることが分かった。他の実施例についても、同様の手順で水酸化亜鉛、硫酸塩を含有するかどうかについて調査した。存在、及び含有が確認されたものについては○、確認されなかったものには×として、調査した結果を表2中に示した。本発明例は、No.12と同様に、水酸化亜鉛、硫酸塩を含有していることがわかる。
 また、脱脂性の評価の結果から、皮膜中にPを含有するNo.51~53は、Pイオンを含有する液で処理していないNo.12に比べて良好な脱脂性を有していることがわかる。
 本発明の鋼板はプレス成形性に優れることから、自動車車体用途を中心に広範な分野で適用できる。
1 摩擦係数測定用試料
2 試料台
3 スライドテーブル
4 ローラ
5 スライドテーブル支持台
6 ビード
7 第1ロードセル
8 第2ロードセル
9 レール
N 押付荷重
F 摺動抵抗力

Claims (9)

  1.  亜鉛系めっき鋼板の表面に酸化物層を有し、
    前記酸化物層は、平均厚さが20nm以上であり、
    前記酸化物層中には、Znを30mg/m以上、Sを1.0mg/m以上、平均粒子径が5.0μm以下であるポリエチレン粒子を50mg/m以上1000mg/m以下含有する亜鉛系めっき鋼板。
  2.  前記酸化物層には、硫酸基及び水酸基が存在する請求項1に記載の亜鉛系めっき鋼板。
  3.  前記酸化物層中に、さらに、Pを0.2mg/m以上10mg/m以下含有する請求項1または2に記載の亜鉛系めっき鋼板。
  4.  前記亜鉛系めっき鋼板は、合金化溶融亜鉛めっき鋼板、溶融亜鉛めっき鋼板、電気亜鉛めっき鋼板のいずれかである請求項1~3のいずれかに記載の亜鉛系めっき鋼板。
  5.  請求項1~4のいずれかに記載の亜鉛系めっき鋼板の製造方法であって、
    亜鉛系めっき鋼板を、硫酸イオンを3g/L以上、Znイオンを3g/L以上およびポリエチレン粒子を0.10g/L以上含有する酸性溶液に接触させる亜鉛系めっき鋼板の製造方法。
  6.  前記酸性溶液は、pHが2~6であり、温度が20℃~80℃である請求項5に記載の亜鉛系めっき鋼板の製造方法。
  7.  前記酸性溶液は、酸化剤を含有する請求項5または6に記載の亜鉛系めっき鋼板の製造方法。
  8.  前記亜鉛系めっき鋼板と前記酸性溶液との接触時間は1秒以上500秒以下である請求項5~7のいずれかに記載の亜鉛系めっき鋼板の製造方法。
  9.  酸性溶液に接触後、Pイオンを0.01g/L以上含有する溶液に亜鉛系めっき鋼板を接触させる請求項5~8のいずれかに記載の亜鉛系めっき鋼板の製造方法。
PCT/JP2018/003331 2017-03-30 2018-02-01 亜鉛系めっき鋼板およびその製造方法 WO2018179816A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
MX2019011684A MX2019011684A (es) 2017-03-30 2018-02-01 Lamina de acero galvanizada y metodo de fabricacion para la misma.
EP18775028.6A EP3604615B1 (en) 2017-03-30 2018-02-01 Zinc-plated steel sheet and production method therefor
CN201880022411.7A CN110494591B (zh) 2017-03-30 2018-02-01 镀锌系钢板及其制造方法
KR1020197028627A KR102334859B1 (ko) 2017-03-30 2018-02-01 아연계 도금 강판 및 그의 제조 방법
US16/499,419 US10907255B2 (en) 2017-03-30 2018-02-01 Galvanized steel sheet and manufacturing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-066483 2017-03-30
JP2017066483 2017-03-30

Publications (1)

Publication Number Publication Date
WO2018179816A1 true WO2018179816A1 (ja) 2018-10-04

Family

ID=63249964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003331 WO2018179816A1 (ja) 2017-03-30 2018-02-01 亜鉛系めっき鋼板およびその製造方法

Country Status (7)

Country Link
US (1) US10907255B2 (ja)
EP (1) EP3604615B1 (ja)
JP (1) JP6376305B1 (ja)
KR (1) KR102334859B1 (ja)
CN (1) CN110494591B (ja)
MX (1) MX2019011684A (ja)
WO (1) WO2018179816A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02190483A (ja) 1989-01-19 1990-07-26 Nippon Steel Corp プレス成形性に優れた亜鉛めっき鋼板
JPH062161A (ja) * 1992-06-15 1994-01-11 Nkk Corp 成形性、成形後外観性および耐食性に優れた亜鉛系めっき鋼板
JPH1015483A (ja) * 1996-07-05 1998-01-20 Nkk Corp 潤滑性、耐コイル変形性および耐食性に優れた亜鉛系めっき鋼板
JP2005248262A (ja) 2004-03-04 2005-09-15 Jfe Steel Kk 電気亜鉛めっき鋼板、その製造方法及び製造装置
JP3807341B2 (ja) 2002-04-18 2006-08-09 Jfeスチール株式会社 合金化溶融亜鉛めっき鋼板の製造方法
JP4329387B2 (ja) 2002-04-18 2009-09-09 Jfeスチール株式会社 プレス成形性に優れた溶融亜鉛めっき鋼板とその製造方法
JP2009235431A (ja) * 2008-03-26 2009-10-15 Jfe Steel Corp 亜鉛系めっき鋼板およびその製造方法
JP2013060624A (ja) * 2011-09-13 2013-04-04 Nisshin Steel Co Ltd 化成処理めっき鋼板およびその製造方法
JP2016098380A (ja) 2014-11-18 2016-05-30 Jfeスチール株式会社 亜鉛系めっき鋼板およびその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69934780T2 (de) * 1998-11-08 2007-10-18 Jfe Steel Corp. Oberflächenbehandeltes stahlblech mit hervorragendem korrosionwiderstand
JP5463609B2 (ja) * 2005-03-31 2014-04-09 Jfeスチール株式会社 クロムフリー表面処理亜鉛系めっき鋼板およびその製造方法ならびに表面処理液
KR101360802B1 (ko) 2008-12-16 2014-02-10 제이에프이 스틸 가부시키가이샤 아연계 도금 강판의 제조 방법
WO2015129283A1 (ja) 2014-02-27 2015-09-03 Jfeスチール株式会社 亜鉛系めっき鋼板およびその製造方法
EP3112501B1 (en) * 2014-02-27 2020-11-04 JFE Steel Corporation Galvanized steel sheet and method for manufacturing the same
CN105255338B (zh) * 2015-10-27 2018-10-02 宝山钢铁股份有限公司 具有优异表面耐磨损性、耐蚀性和耐酸碱性的镀锌钢板及水性表面处理剂

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02190483A (ja) 1989-01-19 1990-07-26 Nippon Steel Corp プレス成形性に優れた亜鉛めっき鋼板
JPH062161A (ja) * 1992-06-15 1994-01-11 Nkk Corp 成形性、成形後外観性および耐食性に優れた亜鉛系めっき鋼板
JPH1015483A (ja) * 1996-07-05 1998-01-20 Nkk Corp 潤滑性、耐コイル変形性および耐食性に優れた亜鉛系めっき鋼板
JP3807341B2 (ja) 2002-04-18 2006-08-09 Jfeスチール株式会社 合金化溶融亜鉛めっき鋼板の製造方法
JP4329387B2 (ja) 2002-04-18 2009-09-09 Jfeスチール株式会社 プレス成形性に優れた溶融亜鉛めっき鋼板とその製造方法
JP2005248262A (ja) 2004-03-04 2005-09-15 Jfe Steel Kk 電気亜鉛めっき鋼板、その製造方法及び製造装置
JP2009235431A (ja) * 2008-03-26 2009-10-15 Jfe Steel Corp 亜鉛系めっき鋼板およびその製造方法
JP5386842B2 (ja) 2008-03-26 2014-01-15 Jfeスチール株式会社 亜鉛系めっき鋼板およびその製造方法
JP2013060624A (ja) * 2011-09-13 2013-04-04 Nisshin Steel Co Ltd 化成処理めっき鋼板およびその製造方法
JP2016098380A (ja) 2014-11-18 2016-05-30 Jfeスチール株式会社 亜鉛系めっき鋼板およびその製造方法

Also Published As

Publication number Publication date
EP3604615A4 (en) 2020-04-29
JP2018172787A (ja) 2018-11-08
US10907255B2 (en) 2021-02-02
CN110494591A (zh) 2019-11-22
EP3604615A1 (en) 2020-02-05
KR102334859B1 (ko) 2021-12-02
US20200024744A1 (en) 2020-01-23
CN110494591B (zh) 2022-02-25
JP6376305B1 (ja) 2018-08-22
MX2019011684A (es) 2019-11-01
EP3604615B1 (en) 2021-07-14
KR20190120338A (ko) 2019-10-23

Similar Documents

Publication Publication Date Title
EP3112501B1 (en) Galvanized steel sheet and method for manufacturing the same
JP5884206B2 (ja) 亜鉛系めっき鋼板およびその製造方法
KR101788950B1 (ko) 아연계 도금 강판의 제조 방법
JP6079079B2 (ja) 冷延鋼板およびその製造方法
JP6610421B2 (ja) 鋼板およびその製造方法
JP6376305B1 (ja) 亜鉛系めっき鋼板およびその製造方法
JP6610597B2 (ja) 鋼板およびその製造方法
JP2010242188A (ja) 亜鉛系めっき鋼板
JP4930182B2 (ja) 合金化溶融亜鉛めっき鋼板
JP4539255B2 (ja) 合金化溶融亜鉛めっき鋼板
JP2024001900A (ja) 鋼板およびその製造方法
JP6610420B2 (ja) 鋼板およびその製造方法
JP5124928B2 (ja) 合金化溶融亜鉛めっき鋼板およびその製造方法
JP2005226159A (ja) 亜鉛系めっき鋼板
JP2005113264A (ja) 合金化溶融亜鉛めっき鋼板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18775028

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197028627

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018775028

Country of ref document: EP

Effective date: 20191030