WO2018179774A1 - 電源装置 - Google Patents

電源装置 Download PDF

Info

Publication number
WO2018179774A1
WO2018179774A1 PCT/JP2018/002674 JP2018002674W WO2018179774A1 WO 2018179774 A1 WO2018179774 A1 WO 2018179774A1 JP 2018002674 W JP2018002674 W JP 2018002674W WO 2018179774 A1 WO2018179774 A1 WO 2018179774A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery module
power supply
battery
battery modules
gate signal
Prior art date
Application number
PCT/JP2018/002674
Other languages
English (en)
French (fr)
Inventor
成晶 後藤
直樹 柳沢
恭佑 種村
修二 戸村
Original Assignee
株式会社豊田中央研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田中央研究所 filed Critical 株式会社豊田中央研究所
Priority to US16/495,696 priority Critical patent/US11560060B2/en
Priority to CN201880022076.0A priority patent/CN110476320B/zh
Priority to EP18778201.6A priority patent/EP3588733B1/en
Publication of WO2018179774A1 publication Critical patent/WO2018179774A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/22Balancing the charge of battery modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • It relates to a power supply device that controls SOC.
  • a power supply device is used in which a plurality of battery modules are connected in series to supply power (power running) to a load.
  • the battery included in the battery module is a secondary battery, the battery can be charged (regenerated) from the load side.
  • a configuration including a switching circuit for connecting or disconnecting each battery module to a load based on a gate signal has been proposed.
  • voltage control is performed by driving the switching circuit of each battery module with a gate signal via a delay circuit.
  • a technique has been proposed in which a balance circuit is provided in each battery module to eliminate the unbalance of the charging rate (SOC) between the battery modules.
  • the charging rate (SOC) of the secondary battery can be estimated with high accuracy if the open circuit voltage can be measured. Therefore, a method for estimating the SOC by measuring the voltage after stopping the charge / discharge has been proposed.
  • a power supply device used as a vehicle power supply such as an EV
  • it is difficult to make an opportunity to completely stop charging and discharging during traveling Therefore, it is difficult to estimate the SOC by measuring the open circuit voltage during traveling. Therefore, an estimation method for accurately estimating even when a current is flowing has been proposed.
  • the battery module measured current value integration result ⁇ I is used to calculate the remaining capacity estimated value SOC I of the battery module, and the internal resistance value Rdc is estimated from the current change amount ⁇ I and the voltage change amount ⁇ V.
  • the battery module with a small battery capacity has a lower SOC than the others, and reaches the lower limit SOC. There was a problem that it could not be used. Also, if the battery capacity varies greatly due to deterioration, etc., in the configuration where the batteries are connected in series, the voltage of the battery with less capacity drops quickly, and the capacity remains in the other batteries after reaching the lower limit voltage. There was also a problem that it could not be used.
  • One aspect is a power supply device including a plurality of battery modules each having a secondary battery, wherein the battery modules are connected in series according to a gate signal, and the battery modules are connected in series regardless of the gate signal.
  • a disconnecting unit forcibly disconnecting from the connection is provided, and when the power output is powering, the disconnecting unit forcibly disconnects some of the battery modules from the series connection, thereby discharging more per unit time than the other battery modules.
  • the power supply device is characterized in that control is performed so that the integrated current amount becomes small.
  • Another aspect is a power supply device including a plurality of battery modules each having a secondary battery, wherein the battery modules are connected in series according to a gate signal, and the battery modules are connected in series regardless of the gate signal.
  • the power supply device is characterized in that the charging current integrated amount is controlled to be large.
  • Another aspect is a power supply device including a plurality of battery modules each having a secondary battery, wherein the battery modules are connected in series according to a gate signal, and the battery modules are connected in series regardless of the gate signal.
  • a disconnecting unit forcibly disconnecting from the connection, and when the power output is regenerative, the disconnecting unit forcibly disconnects some of the battery modules from the series connection to charge per unit time more than the other battery modules.
  • the power supply device is characterized in that control is performed so that the integrated current amount becomes small.
  • Another aspect is a power supply device including a plurality of battery modules each having a secondary battery, wherein the battery modules are connected in series according to a gate signal, and the battery modules are connected in series regardless of the gate signal.
  • Connecting means for forcibly connecting to the connection, and when the power output is powering, by the connecting means forcibly connecting some of the battery modules to the series connection, the unit per unit time than other battery modules It is a power supply device characterized by controlling so that the discharge current integrated quantity of this may become large.
  • a phase difference is provided in the gate signals for driving each of the battery modules, and the battery signals are sequentially transmitted to the battery modules with a delay time so that the battery modules are connected in series. Is preferably connected or disconnected.
  • a power supply device including a plurality of battery modules
  • SOC imbalance of the battery modules can be suppressed.
  • the power supply device 100 includes a battery module 102 and a control unit 104 as shown in FIG.
  • the power supply apparatus 100 includes a plurality of battery modules 102 (102a, 102b,... 102n).
  • the plurality of battery modules 102 can be connected in series with each other under the control of the control unit 104.
  • the plurality of battery modules 102 included in the power supply apparatus 100 supplies power (power running) to a load (not shown) connected to the terminals T1 and T2, or a power source (shown) connected to the terminals T1 and T2. Power) can be charged (regenerated).
  • the battery module 102 includes a battery 10, a choke coil 12, a capacitor 14, a first switch element 16, a second switch element 18, a delay circuit 20, an AND element 22, an OR element 24, and a NOT element 26.
  • each battery module 102 has the same configuration.
  • the battery 10 includes at least one secondary battery.
  • the battery 10 may have a configuration in which, for example, a plurality of lithium ion batteries, nickel hydride batteries, or the like are connected in series or / and in parallel.
  • the choke coil 12 and the capacitor 14 constitute a smoothing circuit (low-pass filter circuit) that smoothes and outputs the output from the battery 10. That is, since a secondary battery is used as the battery 10, in order to suppress deterioration of the battery 10 due to an increase in internal resistance loss, an RLC filter is formed by the battery 10, the choke coil L, and the capacitor 14 to equalize the current. I am trying.
  • the choke coil 12 and the capacitor 14 are not essential components and need not be provided. Further, the arrangement position (connection position) of the choke coil L and the battery 10 in the battery module 102 may be switched. Further, the second switch element 18 may be disposed on the opposite side of the output terminal with respect to the first switch element 16. In other words, any configuration is possible as long as the voltage of the battery 10 (capacitor 14) can be output to the output terminal by the switching operation of the first switch element 16 and the second switch element 18, and the arrangement of each element and electrical component is appropriately changed. Can do.
  • the first switch element 16 includes a switching element for short-circuiting the output terminal of the battery 10.
  • the first switch element 16 has a configuration in which a freewheeling diode is connected in parallel to a field effect transistor that is a switching element.
  • the second switch element 18 is connected in series with the battery 10 between the battery 10 and the first switch element 16.
  • the second switch element 18 has a configuration in which a freewheeling diode is connected in parallel to a field effect transistor that is a switching element.
  • the first switch element 16 and the second switch element 18 are switching-controlled by a gate signal from the control unit 104.
  • the first switch element 16 and the second switch element 18 are field effect transistors, but other switching elements may be applied.
  • the delay circuit 20 is a circuit that delays the gate signal input from the control unit 104 to the battery module 102a by a predetermined time.
  • each battery module 102 (102a, 102b,... 102n) is provided with a delay circuit 20, and these are connected in series. Therefore, the gate signal input from the control unit 104 is sequentially input to each battery module 102 (102a, 102b,... 102n) while being delayed by a predetermined time.
  • the AND element 22 constitutes a cutting means for forcibly disconnecting the battery module 102a from the serial connection state in response to a forced disconnection signal from the control unit 104.
  • the OR element 24 constitutes connection means for forcibly connecting the battery module 102a in a serial connection state in accordance with a forced connection signal from the control unit 104.
  • the delay circuit 20 is arranged before the AND element 22 and the OR element 24.
  • the delay circuit 20 may be arranged after the AND element 22 and the OR element 24.
  • the gate signal may be configured to be sequentially transmitted to the delay circuit 20 of each battery module 102 after being delayed by a predetermined time.
  • FIG. 2 shows a time chart regarding the operation of the battery module 102a.
  • the pulse waveform of the gate signal D1 for driving the battery module 102a the rectangular wave D2 indicating the switching state of the first switch element 16, the rectangular wave D3 indicating the switching state of the second switch element 18, and the battery
  • the waveform D4 of the voltage V mod output by the module 102a is shown.
  • the first switch element 16 In the initial state of the battery module 102a, that is, in the state where the gate signal is not output, the first switch element 16 is in the on state and the second switch element 18 is in the off state.
  • the battery module 102a When a gate signal is input from the control unit 104 to the battery module 102a, the battery module 102a is switching-controlled by PWM control. In this switching control, the first switch element 16 and the second switch element 18 are alternately switched to the on / off state.
  • the first switch element 16 and the second switch element 18 of the battery module 102a are driven according to the gate signal D1.
  • the first switch element 16 switches from the on state to the off state in response to the fall of the signal from the NOT element 26 in response to the rise of the gate signal D1. Further, the first switch element 16 switches from the off state to the on state with a slight delay (dead time dt) from the fall of the gate signal D1.
  • the second switch element 18 is switched from the off state to the on state with a slight delay (dead time dt) from the rise of the gate signal D1.
  • the second switch element 18 is switched from the on state to the off state simultaneously with the fall of the gate signal D1.
  • the first switch element 16 and the second switch element 18 are subjected to switching control so that the ON state / OFF state are alternately switched.
  • the first switch element 16 operates with a slight delay (dead time dt) when the gate signal D1 falls, and the second switch element 18 has a slight time (dead time dt) when the gate signal D1 rises.
  • the delaying operation is to prevent the first switch element 16 and the second switch element 18 from operating simultaneously. That is, the first switch element 16 and the second switch element 18 are prevented from being simultaneously turned on and short-circuited.
  • the dead time dt for delaying this operation is set to 100 ns, for example, but can be set as appropriate. During the dead time dt, the diode is circulated, and the state is the same as when the switching element in parallel with the circulated diode is turned on.
  • the battery module 102a causes the capacitor 14 to be disconnected from the output terminal of the battery module 102a when the gate signal D1 is off (that is, the first switch element 16 is on and the second switch element 18 is off). . Therefore, no voltage is output from the battery module 102a to the output terminal. In this state, as shown in FIG. 3A, the battery 10 (capacitor 14) of the battery module 102a is bypassed.
  • the capacitor 14 is connected to the output terminal of the battery module 102a. Therefore, a voltage is output from the battery module 102a to the output terminal. In this state, as shown in FIG. 3 (b), the voltage V mod is outputted to the output terminal via a capacitor 14 in the battery module 102a.
  • control of the power supply device 100 by the control unit 104 will be described.
  • the control unit 104 controls the entire battery module 102. That is, the plurality of battery modules 102a, 102b,... 102n are controlled to control the output voltage as the power supply apparatus 100.
  • the control unit 104 includes a gate circuit that outputs a rectangular-wave gate signal to each battery module 102.
  • the gate signal is sequentially transmitted to the delay circuit 20 included in the battery module 102a, the delay circuit 20 included in the battery module 102b, and the subsequent battery module 102. That is, the gate signal is delayed by a predetermined delay time in order from the most upstream side of the battery modules 102 connected in series in the power supply device 100 and transmitted to the downstream side.
  • a high (H) level forced disconnection signal is input from the control unit 104 to the AND element 22, and a low (L) level forced connection signal is input from the control unit 104 to the OR element 24. Therefore, the gate signal output from the delay circuit 20 of each battery module 102 is input to the gate terminal of the second switch element 18 as it is, and a signal obtained by inverting the gate signal is input to the gate terminal of the first switch element 16. Is done. Accordingly, the first switch element 16 is turned off and the second switch element 18 are turned on when the gate signal is high (H) level, and the first switch element 16 is turned on when the gate signal is low (L) level. The state and the second switch element 18 are turned off.
  • the battery module 102 when the gate signal is at a high (H) level, the battery module 102 is connected in series with another battery module 102, and when the gate signal is at a low (L) level, the battery module 102 is in another battery module. Through state separated from 102 is obtained.
  • FIG. 4 shows a control sequence in which a predetermined number of battery modules 102a, 102b,.
  • the battery modules 102a, 102b,... 102n are driven one after another from the upstream side to the downstream side with a certain delay time in accordance with the gate signal.
  • the first switch element 16 of the battery modules 102a, 102b,... 102n is turned off, the second switch element 18 is turned on, and the battery modules 102a, 102b,.
  • the battery modules 102a, 102b,... 102n are sequentially driven with a certain delay time.
  • the cycle F of the gate signal is set by summing the delay times of the battery modules 102a, 102b,. For this reason, the longer the delay time, the lower the frequency of the gate signal. Conversely, the shorter the delay time, the higher the frequency of the gate signal. Further, the delay time for delaying the gate signal is appropriately set according to the specifications required for the power supply apparatus 100.
  • the total voltage of the battery modules 102a, 102b,... 102n is represented by a value obtained by multiplying the battery voltage of the battery module 102 by the number of battery modules 102 in a connected state. If the output voltage of the power supply apparatus 100 is a value divisible by the battery voltage of one battery module 102, the other battery module 102 switches from the connected state to the through state at the moment when the battery module 102 switches from the through state to the connected state. Therefore, there is no change in the overall output voltage of the battery module 102.
  • the output voltage of the power supply apparatus 100 is a value that cannot be divided by the battery voltage of each battery module 102, the output voltage of the power supply apparatus 100 and the total voltage of the battery modules 102a, 102b,. .
  • the output voltage (total output voltage) of the power supply apparatus 100 varies.
  • the fluctuation amplitude at this time is a voltage for one battery module, and the fluctuation period is the period F of the gate signal / the number of battery modules 102. If several tens of battery modules 102 are connected in series, the parasitic inductance of the power supply apparatus 100 as a whole becomes a large value, and this voltage fluctuation is filtered to obtain a stable output voltage of the power supply apparatus 100 as a result. Can do.
  • the desired output voltage as the power supply device 100 is 400V
  • the battery voltage of each battery module 102 is 15V
  • the number of battery modules 102a, 102b,... 102n is 40
  • the delay time is 200 ns.
  • the capacitor current waveform J1 becomes a rectangular wave as shown in FIG.
  • the battery 10 and the capacitor 14 form an RLC filter, the filtered and leveled current J2 flows through the power supply device 100.
  • the current waveforms are uniform in all the battery modules 102a, 102b,... 102n, and the current can be output uniformly from all the battery modules 102a, 102b,.
  • the gate signal output to the battery module 102a on the most upstream side is output to the battery module 102b on the downstream side after being delayed for a certain time, and this gate signal is further output. Since the battery modules 102a, 102b,... 102n are sequentially transmitted to the downstream battery modules 102 with a certain time delay, the voltages are sequentially output with a certain time delay. And the voltage as the power supply device 100 is output by summing up these voltages. Thereby, a desired voltage can be output from the power supply device 100.
  • a booster circuit is not required, the circuit configuration can be simplified, and the size and cost can be reduced. Further, a balance circuit or the like that causes power loss is unnecessary, and the efficiency of the power supply apparatus 100 can be improved. Further, since the voltages are output substantially uniformly from the plurality of battery modules 102a, 102b,... 102n, the drive does not concentrate on the specific battery module 102, and the internal resistance loss of the power supply apparatus 100 is reduced. be able to.
  • the on-time ratio G1 it is possible to easily cope with a desired voltage, and to improve the versatility as the power supply apparatus 100.
  • the normal battery module 102 is used by excluding the failed battery module 102.
  • a desired voltage can be obtained by resetting the period F of the gate signal, the on-time ratio G1, and the delay time. That is, even if a failure occurs in the battery modules 102a, 102b,... 102n, output of a desired voltage can be continued.
  • the delay time for delaying the gate signal becomes long, so that the switching frequency of the first switch element 16 and the second switch element 18 is also reduced, and the switching loss is reduced. Power conversion efficiency can be improved.
  • the frequency of the gate signal becomes high, so that the frequency of voltage fluctuation increases, filtering becomes easy, and a stable voltage can be obtained.
  • the delay circuit 20 is provided in each battery module 102 to transmit the gate signal while delaying it.
  • the configuration may be such that the delay circuit 20 is not provided in each battery module 102.
  • the gate signal may be individually output from the control unit 104 to the AND element 22 and the OR element 24 of each battery module 102. That is, the control unit 104 outputs a gate signal to the battery modules 102a, 102b,. At this time, with respect to the battery modules 102a, 102b,... 102n, the battery modules 102a, 102b,. The number of battery modules 102 to be connected by outputting a gate signal every time is controlled.
  • a gate signal may be output to the battery module 102b to drive the battery module 102b, and control may be performed so that, after a certain period of time, the gate signal is output to the battery module 102a to drive the battery module 102a.
  • the delay circuit 20 is unnecessary, the configuration of the power supply device 100 can be further simplified, and the manufacturing cost and power consumption can be suppressed.
  • control for forcibly disconnecting a selected one of the plurality of battery modules 102 (102a, 102b,... 102n) will be described.
  • the control unit 104 outputs a low (L) level forced disconnection signal to the AND element 22 of the battery module 102 to be forcibly disconnected. Further, the control unit 104 outputs a low (L) level forced connection signal to the OR element 24 of the battery module 102.
  • a low (L) level is output from the AND element 22, and a high (H) level is input to the gate terminal of the first switch element 16 via the OR element 24 by the NOT element 26.
  • a low (L) level is input to the gate terminal of the element 18. Therefore, the first switch element 16 is always on, the second switch element 18 is always off, and the battery module 102 is forcibly disconnected (through state) regardless of the state of the gate signal.
  • FIG. 5 shows a flowchart of SOC balance adjustment control.
  • control for suppressing the SOC imbalance of the battery module 102 during power running will be described with reference to FIG.
  • step S10 the SOCs of all battery modules 102 included in the power supply apparatus 100 are estimated.
  • the control unit 104 is provided in each battery module 102 to detect and output the output voltage of the battery module 102, the current sensor 32 that detects and outputs the output current of the power supply device 100, and the output of the power supply device 100.
  • a process of estimating the SOC of each battery module 102 based on the output from the voltage sensor 34 that detects and outputs the voltage is performed. The SOC estimation process will be described later.
  • step S12 the SOC of each battery module 102 is compared, and the battery module 102 having a relatively low SOC is selected.
  • the control unit 104 compares the SOC of each battery module 102 estimated in step S ⁇ b> 10 and selects a battery module 102 having a relatively low SOC from all the battery modules 102.
  • the selection method of the battery module 102 is not limited to these, and may be any method that is effective for suppressing SOC imbalance.
  • the voltage of each battery module 102 may be measured, and the battery modules 102 may be selected in ascending order of voltage.
  • step S14 it is determined whether the power output of the power supply apparatus 100 is in a power running state or a regenerative state.
  • the control unit 104 determines whether the power is being supplied from the power supply apparatus 100 to the load or the regenerative state in which power is being input from the external power supply to the power supply apparatus 100 based on the direction of the current detected by the current sensor 32. . If it is in a power running state, the process proceeds to step S16, and if it is in a regenerative state, the process is terminated.
  • step S16 the battery module 102 is forcibly disconnected.
  • the controller 104 outputs a low (L) level forced disconnection signal to the AND element 22 of the battery module 102 selected in step S12.
  • L low
  • the selected battery module 102 is forcibly disconnected from the serial connection and does not contribute to the output of the power supply apparatus 100.
  • the battery module 102 having a relatively low SOC among the battery modules 102 included in the power supply apparatus 100 has a reduced power consumption (amount of accumulated discharge current per unit time), thus eliminating the SOC imbalance. can do. As a result, it is possible to efficiently use up the charging energy of all the battery modules 102 included in the power supply apparatus 100.
  • control to eliminate the SOC imbalance when in the regenerative state instead of the power running state.
  • control to forcibly disconnect the battery module 102 having a relatively high SOC is performed, and power is preferentially regenerated to the battery module 102 having a relatively low SOC, thereby eliminating the SOC imbalance.
  • FIG. 6 shows a flowchart of SOC balance adjustment control.
  • control for suppressing the SOC imbalance of the battery module 102 during regeneration will be described with reference to FIG.
  • step S20 the SOCs of all the battery modules 102 included in the power supply apparatus 100 are estimated.
  • the control unit 104 is provided in each battery module 102 to detect and output the output voltage of the battery module 102, the current sensor 32 that detects and outputs the output current of the power supply device 100, and the output of the power supply device 100.
  • a process of estimating the SOC of each battery module 102 based on the output from the voltage sensor 34 that detects and outputs the voltage is performed. The SOC estimation process will be described later.
  • step S22 the SOC of each battery module 102 is compared, and the battery module 102 having a relatively high SOC is selected.
  • the control unit 104 compares the SOC of each battery module 102 estimated in step S ⁇ b> 20 and selects a battery module 102 having a relatively high SOC from all the battery modules 102.
  • the battery modules 102 may be selected in descending order of SOC by a predetermined number from all the battery modules 102 included in the power supply apparatus 100.
  • the SOC reference value may be determined, and the battery module 102 having an SOC equal to or higher than the reference value may be selected.
  • the selection method of the battery module 102 is not limited to these, and may be any method that is effective for suppressing SOC imbalance.
  • step S24 it is determined whether the power output of the power supply apparatus 100 is in a power running state or a regenerative state.
  • the control unit 104 determines whether the power is being supplied from the power supply apparatus 100 to the load or the regenerative state in which power is being input from the external power supply to the power supply apparatus 100 based on the direction of the current detected by the current sensor 32. . If it is in the regenerative state, the process proceeds to step S26, and if it is in the power running state, the process is terminated.
  • step S26 the battery module 102 is forcibly disconnected.
  • Control unit 104 outputs a low (L) level forced disconnection signal to AND element 22 of battery module 102 selected in step S22.
  • L low
  • the selected battery module 102 is forcibly disconnected from the serial connection, and regenerative power is not supplied to the power supply device 100.
  • the power supply (charge current integrated amount per unit time) to the battery module 102 having a relatively high SOC among the battery modules 102 included in the power supply device 100 is reduced, and the SOC imbalance is eliminated. can do.
  • all the battery modules 102 included in the power supply apparatus 100 can be charged in a balanced manner.
  • overcharging of the battery module 102 having a small charge capacity can be prevented.
  • the delay time of the gate signal is set to 0 in the forced disconnection control.
  • the duty D of the gate signal is set according to Equation (1).
  • Vmod is the voltage of the battery module 102
  • Vmod_disconnection is the voltage of the battery module 102 to be forcibly disconnected.
  • control for forcibly connecting selected ones of the plurality of battery modules 102 (102a, 102b,... 102n) will be described.
  • the control unit 104 outputs a high (H) level forced connection signal to the OR element 24 of the battery module 102 to be forcibly connected.
  • a high (H) level is output from the OR element 24, a low (L) level is input to the gate terminal of the first switch element 16 by the NOT element 26, and a gate terminal of the second switch element 18 is input.
  • a high (H) level is input. Therefore, the first switch element 16 is always off, the second switch element 18 is always on, and the battery module 102 is forcibly connected in series regardless of the state of the gate signal.
  • FIG. 7 shows a flowchart of SOC balance adjustment control.
  • control for suppressing the SOC imbalance of the battery module 102 during regeneration will be described with reference to FIG.
  • step S30 the SOCs of all battery modules 102 included in the power supply apparatus 100 are estimated.
  • the control unit 104 is provided in each battery module 102 to detect and output the output voltage of the battery module 102, the current sensor 32 that detects and outputs the output current of the power supply device 100, and the output of the power supply device 100.
  • a process of estimating the SOC of each battery module 102 based on the output from the voltage sensor 34 that detects and outputs the voltage is performed. The SOC estimation process will be described later.
  • step S32 the SOC of each battery module 102 is compared, and the battery module 102 having a relatively low SOC is selected.
  • the control unit 104 compares the SOC of each battery module 102 estimated in step S30, and selects a battery module 102 having a relatively low SOC from all the battery modules 102. Specifically, the same process as in step S12 may be performed.
  • step S34 it is determined whether the power output of the power supply apparatus 100 is in a power running state or a regenerative state.
  • the control unit 104 determines whether the power is being supplied from the power supply apparatus 100 to the load or the regenerative state in which power is being input from the external power supply to the power supply apparatus 100 based on the direction of the current detected by the current sensor 32. . If it is in the regenerative state, the process proceeds to step S36, and if it is in the power running state, the process is terminated.
  • step S36 the battery module 102 is forcibly connected.
  • the control unit 104 outputs a high (H) level forced connection signal to the OR element 24 of the battery module 102 selected in step S32.
  • H high
  • the selected battery module 102 is forcibly connected in series and contributes to charging of the power supply device 100 with regenerative power.
  • the battery module 102 having a relatively low SOC among the battery modules 102 included in the power supply device 100 is preferentially charged with regenerative power, and the amount of charge current integrated per unit time increases. , SOC imbalance can be eliminated. As a result, all the battery modules 102 included in the power supply apparatus 100 can be charged in a balanced manner.
  • control to eliminate the SOC imbalance when not in the regenerative state but in the power running state it is possible to perform control to eliminate the SOC imbalance when not in the regenerative state but in the power running state. In this case, control to forcibly connect the battery module 102 having a relatively high SOC is performed, and the power consumption of the battery module 102 having a relatively high SOC is increased, thereby eliminating the SOC imbalance.
  • FIG. 8 shows a flowchart of SOC balance adjustment control.
  • control for suppressing the SOC imbalance of the battery module 102 during power running will be described with reference to FIG.
  • step S40 the SOCs of all the battery modules 102 included in the power supply apparatus 100 are estimated.
  • the control unit 104 is provided in each battery module 102 to detect and output the output voltage of the battery module 102, the current sensor 32 that detects and outputs the output current of the power supply device 100, and the output of the power supply device 100.
  • a process of estimating the SOC of each battery module 102 based on the output from the voltage sensor 34 that detects and outputs the voltage is performed. The SOC estimation process will be described later.
  • step S42 the SOC of each battery module 102 is compared, and the battery module 102 having a relatively high SOC is selected.
  • the control unit 104 compares the SOC of each battery module 102 estimated in step S40, and selects a battery module 102 having a relatively high SOC from all the battery modules 102. Specifically, it may be the same as the processing in step S22.
  • step S44 it is determined whether the power output of the power supply apparatus 100 is in a power running state or a regenerative state.
  • the control unit 104 determines whether the power is being supplied from the power supply apparatus 100 to the load or the regenerative state in which power is being input from the external power supply to the power supply apparatus 100 based on the direction of the current detected by the current sensor 32. . If it is in the power running state, the process proceeds to step S46, and if it is in the regenerative state, the process is terminated.
  • step S46 the battery module 102 is forcibly connected.
  • the control unit 104 outputs a high (H) level forced connection signal to the OR element 24 of the battery module 102 selected in step S42.
  • the selected battery module 102 is forcibly connected in series and contributes to power supply from the power supply device 100.
  • the power supply from the battery module 102 having a relatively high SOC among the battery modules 102 included in the power supply apparatus 100 is increased, and the SOC imbalance is eliminated. can do. As a result, it is possible to efficiently use up the charging energy of all the battery modules 102 included in the power supply apparatus 100.
  • the delay time of the gate signal is set to zero. Further, the duty D of the gate signal is set according to Equation (2).
  • Vmod is the voltage of the battery module 102
  • Vmod_forced connection is the voltage of the battery module 102 that is the target of forced connection.
  • FIG. 9 shows a flowchart of the SOC estimation process in the present embodiment.
  • step S50 the output current Iout of the power supply device 100 is measured.
  • the control unit 104 acquires the output current Iout of the power supply device 100 measured by the current sensor 32.
  • step S52 a process of estimating the module current Imod of each battery module 102 is performed.
  • the control unit 104 calculates a current (module current) Imod from each of the battery modules 102 contributing to the current output.
  • the control unit 104 acquires an output voltage (module voltage) Vmod [i] from the voltage sensor 30 for each of the battery modules 102 currently connected in series, that is, each of the battery modules 102 contributing to the current output.
  • i indicates the i-th battery module 102.
  • the duty ratio D can be calculated by Equation (3).
  • the module current Imod can be calculated by Equation (4). However, the module current Imod is defined as discharging when taking a positive value and charging when taking a negative value.
  • the process of calculating the module current Imod using the duty ratio D is performed.
  • a configuration may be adopted in which the current sensor 32 is provided in each battery module 102 and the module current Imod is directly measured.
  • step S54 processing for calculating the SOC of each battery module 102 is performed.
  • the control unit 104 calculates the SOC of each battery module 102 using Equation (5) based on the module current Imod obtained in step S52.
  • Q [i] is the battery full charge capacity of the i-th battery module 102
  • SOC ini [i] is the initial SOC at the start of current integration (when the power supply device 100 is started or the i-th battery module 102 is disconnected) SOCv obtained on the basis of the open circuit voltage measured with the charge / discharge current at time zero.
  • the relationship between the open circuit voltage of the battery module 102 and the SOC is a one-to-one relationship as shown in FIG. That is, by measuring the open circuit voltage of the i-th battery module 102, SOC ini [i] can be obtained based on the open circuit voltage.
  • the forced disconnection signal of all battery modules 102 is set to a high (H) level.
  • the duty ratio D is low (even if the number of battery modules 102 connected to the load is small).
  • the forced disconnection signal for the specific battery module 102 is set to the low (L) level. As a result, the specific battery module 102 is disconnected from the load (detachment period in FIG. 11).
  • the control unit 104 can acquire the open circuit voltage from the voltage sensor 30 of the battery module 102. Thereby, the control part 104 can obtain
  • the open-circuit voltage is measured after a predetermined time when the terminal voltage is stabilized after the battery module 102 is disconnected from the load, or the voltage is measured using a voltage behavior model after charge / discharge is stopped as in the prior art. You may estimate an open circuit voltage from the voltage before stabilizing.
  • the open circuit voltage can be measured by disconnecting the battery module 102 from the load. Therefore, the SOC of the specific battery module 102 can be obtained using the measured open-circuit voltage, and SOC ini [i] in Expression (5) can be replaced. At this time, it is also preferable to reset the current integration of Expression (5) to 0.
  • the process of measuring the open circuit voltage for each battery module 102 and estimating the SOC from the open circuit voltage has been described. It is good also as a structure which estimates SOC of the said several battery module 102 from an open circuit voltage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

ゲート信号に関わらず、電池モジュールを直列接続から強制的に切り離す切断手段(AND素子)を備え、電源出力が力行時において切断手段(AND素子)によって一部の電池モジュールを直列接続から強制的に切り離すことで他の電池モジュールよりも単位時間当たりの放電電流積算量が小さくなるように制御する。

Description

電源装置
 SOCを制御する電源装置に関する。
 複数の電池モジュールを直列に接続して、負荷に電力を供給(力行)する電源装置が利用されている。電池モジュールに含まれる電池を二次電池とした場合、負荷側から電池へ充電(回生)を行うこともできる。
 このような電源装置において、ゲート信号に基づいて各電池モジュールを負荷に接続したり、切り離したりするスイッチング回路を備えた構成が提案されている。このような回路構成において、遅延回路を介したゲート信号で各電池モジュールのスイッチング回路を駆動させることで電圧制御を行っている。また、バランス回路を各電池モジュールに設けることで電池モジュール間の充電率(SOC)のアンバランスを解消する技術も提案されている。
 また、二次電池の充電率(SOC)は、開放電圧を測定することが出来れば精度よく推定することが可能であることが知られている。そこで、充放電を停止した後の電圧を測定することでSOCを推定する手法が提案されている。しかしながら、EVなどの車両用電源として用いられる電源装置の場合、走行中に充放電を完全に停止する機会を作ることが難しい。したがって、走行中に開放電圧を測定してSOC推定することが困難である。そこで、電流が流れている状態でも精度よく推定するための推定手法についても提案されている。例えば、電池モジュールの測定電流値の積算結果ΣIを用いて電池モジュールの残容量推定値SOCを算出し、電流変化量ΔIと電圧変化量ΔVから内部抵抗値Rdcを推定した上で、電流が流れている状態での電池モジュール電圧を用いてオームの法則により求めた開放電圧の推定値Vaから残容量推定値SOCを算出し、残容量出力値SOCOUT=w×SOC+(1-w)×SOCによって残容量出力値を求める。
 バランス回路を用いずに電源装置の制御を行った場合、各電池モジュールに流れる電流は同じになるため、電池容量の少ない電池モジュールでは他よりも早くSOCが低下してしまい、下限SOCに到達すると使用することが出来なくなるという問題があった。また、劣化等により電池容量が大きくばらついた場合、電池が直列に接続された構成では容量の少ない電池は早く電圧が低下してしまい、下限電圧に到達した後は他の電池に容量が残っていたとしても使用できなくなるという問題もあった。
 これに対して、バランス回路を各電池モジュールに設けるとSOCのアンバランスを解消することができるが、バランス回路の電流容量を大きくする必要があり、電源装置のコストが増加するという問題もある。
 また、SOCを推定する際に従来技術を適用した場合、内部抵抗の推定誤差の影響を完全には無くせないという問題があった。
 1つの態様は、二次電池を有する電池モジュールを複数含み、ゲート信号に応じて前記電池モジュールが相互に直列接続される電源装置であって、前記ゲート信号に関わらず、前記電池モジュールを前記直列接続から強制的に切り離す切断手段を備え、電源出力が力行時において前記切断手段によって一部の前記電池モジュールを前記直列接続から強制的に切り離すことで他の前記電池モジュールよりも単位時間当たりの放電電流積算量が小さくなるように制御することを特徴とする電源装置である。
 別の態様は、二次電池を有する電池モジュールを複数含み、ゲート信号に応じて前記電池モジュールが相互に直列接続される電源装置であって、前記ゲート信号に関わらず、前記電池モジュールを前記直列接続に強制的に接続する接続手段を備え、電源出力が回生時において前記接続手段によって一部の前記電池モジュールを前記直列接続に強制的に接続することで他の前記電池モジュールよりも単位時間当たりの充電電流積算量が大きくなるように制御することを特徴とする電源装置である。
 別の態様は、二次電池を有する電池モジュールを複数含み、ゲート信号に応じて前記電池モジュールが相互に直列接続される電源装置であって、前記ゲート信号に関わらず、前記電池モジュールを前記直列接続から強制的に切り離す切断手段を備え、電源出力が回生時において前記切断手段によって一部の前記電池モジュールを前記直列接続から強制的に切り離すことで他の前記電池モジュールよりも単位時間当たりの充電電流積算量が小さくなるように制御することを特徴とする電源装置である。
 別の態様は、二次電池を有する電池モジュールを複数含み、ゲート信号に応じて前記電池モジュールが相互に直列接続される電源装置であって、前記ゲート信号に関わらず、前記電池モジュールを前記直列接続に強制的に接続する接続手段を備え、電源出力が力行時において前記接続手段によって一部の前記電池モジュールを前記直列接続に強制的に接続することで他の前記電池モジュールよりも単位時間当たりの放電電流積算量が大きくなるように制御することを特徴とする電源装置である。
 ここで、前記電池モジュールの各々を駆動するための前記ゲート信号に位相差を設けており、前記ゲート信号が前記電池モジュールに対して遅延時間をもって順次伝送されることにより前記電池モジュールが前記直列接続に対して接続又は切り離されることが好適である。
 複数の電池モジュールを備える電源装置において、電池モジュールのSOCのアンバランスを抑制することができる。
実施の形態における電源装置の構成を示す図である。 実施の形態における電池モジュールの制御を説明するタイムチャートである。 実施の形態における電池モジュールの作用を示す図である。 実施の形態における電源装置の制御を説明するタイムチャートである。 実施の形態における力行状態における強制切断制御のフローチャートである。 実施の形態における回生状態における強制切断制御のフローチャートである。 実施の形態における回生状態における強制接続制御のフローチャートである。 実施の形態における力行状態における強制接続制御のフローチャートである。 実施の形態におけるSOCの推定方法のフローチャートである。 電池モジュールの開放電圧とSOCとの関係例を示す図である。 実施の形態における電池モジュールの開放電圧の測定方法を説明する図である。
 本実施の形態における電源装置100は、図1に示すように、電池モジュール102及び制御部104を含んで構成される。電源装置100は、複数の電池モジュール102(102a,102b,・・・102n)を含んで構成される。複数の電池モジュール102は、制御部104による制御によって互いに直列に接続可能である。電源装置100に含まれる複数の電池モジュール102は、端子T1及びT2に接続される負荷(図示しない)に対して電力を供給(力行)し、又は、端子T1及びT2に接続される電源(図示しない)から電力を充電(回生)することができる。
 電池モジュール102は、電池10、チョークコイル12、コンデンサ14、第1スイッチ素子16、第2スイッチ素子18、遅延回路20、AND素子22、OR素子24及びNOT素子26を含んで構成される。本実施の形態において、各電池モジュール102は同一の構成を備える。
 電池10は、少なくとも1つの二次電池を含む。電池10は、例えば、リチウムイオン電池、ニッケル水素電池等を複数直列又は/及び並列接続した構成とすることができる。チョークコイル12及びコンデンサ14は、電池10からの出力を平滑化して出力する平滑回路(ローパスフィルタ回路)を構成する。すなわち、電池10として二次電池を使用しているので、内部抵抗損失の増加による電池10の劣化を抑制するため、電池10、チョークコイルL及びコンデンサ14によってRLCフィルタを形成して電流の平準化を図っている。
 なお、チョークコイル12及びコンデンサ14は、必須の構成ではなく、これらを設けなくてもよい。また、電池モジュール102においてチョークコイルLと電池10との配置位置(接続位置)を入れ替えてもよい。また、第2スイッチ素子18を、第1スイッチ素子16に対して出力端子の反対側に配置してもよい。すなわち、第1スイッチ素子16と第2スイッチ素子18とのスイッチング動作により電池10(コンデンサ14)の電圧を出力端子に出力できる構成であればよく、各素子、電気部品の配置を適宜変更することができる。
 第1スイッチ素子16は、電池10の出力端を短絡するためのスイッチング素子を含む。本実施の形態では、第1スイッチ素子16は、スイッチング素子である電界効果トランジスタに対して並列に環流ダイオードを接続した構成としている。第2スイッチ素子18は、電池10と第1スイッチ素子16との間において電池10に直列接続される。本実施の形態では、第2スイッチ素子18は、スイッチング素子である電界効果トランジスタに対して並列に環流ダイオードを接続した構成としている。第1スイッチ素子16及び第2スイッチ素子18は、制御部104からのゲート信号によってスイッチング制御される。なお、本実施の形態では、第1スイッチ素子16及び第2スイッチ素子18は、電界効果トランジスタとしたが、これ以外のスイッチング素子を適用してもよい。
 遅延回路20は、制御部104から電池モジュール102aに入力されるゲート信号を所定の時間だけ遅延させる回路である。電源装置100では、各電池モジュール102(102a,102b,・・・102n)にそれぞれ遅延回路20が設けられており、それらが直列接続されている。したがって、制御部104から入力されたゲート信号は所定の時間ずつ遅延させられながら各電池モジュール102(102a,102b,・・・102n)に順次入力されることになる。
 AND素子22は、制御部104からの強制切断信号に応じて電池モジュール102aを直列接続状態から強制的に切り離す切断手段を構成する。また、OR素子24は、制御部104からの強制接続信号に応じて電池モジュール102aを直列接続状態に強制的に接続する接続手段を構成する。
 なお、本実施の形態では、遅延回路20をAND素子22及びOR素子24の前段に配置したが、AND素子22及びOR素子24の後段に配置してもよい。すなわち、各電池モジュール102の遅延回路20に対してゲート信号が所定時間だけ遅延されて順に伝送される構成であればよい。
[通常制御]
 以下、電源装置100の制御について図2を参照して説明する。通常制御時において、各電池モジュール102(102a,102b,・・・102n)のAND素子22に対して制御部104からハイ(H)レベルの強制切断信号が入力される。また、各電池モジュール102(102a,102b,・・・102n)のOR素子24に対して制御部104からロー(L)レベルの強制接続信号が入力される。したがって、第1スイッチ素子16のゲート端子には遅延回路20からの出力信号がNOT素子26を介して反転信号として入力され、第2スイッチ素子18のゲート端子には遅延回路20からの出力信号がそのまま入力される。
 図2は、電池モジュール102aの動作に関するタイムチャートを示す。また、図2では、電池モジュール102aを駆動するゲート信号D1のパルス波形、第1スイッチ素子16のスイッチング状態を示す矩形波D2、第2スイッチ素子18のスイッチング状態を示す矩形波D3、及び、電池モジュール102aにより出力される電圧Vmodの波形D4を示している。
 電池モジュール102aの初期状態、すなわち、ゲート信号が出力されていない状態では、第1スイッチ素子16はオン状態、第2スイッチ素子18はオフ状態である。そして、制御部104からゲート信号が電池モジュール102aに入力されると、電池モジュール102aはPWM制御によってスイッチング制御される。このスイッチング制御では、第1スイッチ素子16と第2スイッチ素子18とが交互にオン状態/オフ状態にスイッチングされる。
 図2に示すように、制御部104からゲート信号D1が出力されると、このゲート信号D1に応じて、電池モジュール102aの第1スイッチ素子16及び第2スイッチ素子18が駆動される。第1スイッチ素子16は、ゲート信号D1の立ち上がりに応じたNOT素子26からの信号の立ち下がりによって、オン状態からオフ状態に切り替わる。また、第1スイッチ素子16は、ゲート信号D1の立ち下がりから僅かな時間(デッドタイムdt)遅れて、オフ状態からオン状態に切り替わる。
 一方、第2スイッチ素子18は、ゲート信号D1の立ち上がりから僅かな時間(デッドタイムdt)遅れて、オフ状態からオン状態に切り替わる。また、第2スイッチ素子18は、ゲート信号D1の立ち下がりと同時に、オン状態からオフ状態に切り替わる。このように、第1スイッチ素子16と第2スイッチ素子18とは交互にオン状態/オフ状態が切り替わるようにスイッチング制御される。
 なお、第1スイッチ素子16がゲート信号D1の立ち下がり時に僅かな時間(デッドタイムdt)遅れて動作することと、第2スイッチ素子18がゲート信号D1の立ち上がり時に僅かな時間(デッドタイムdt)遅れて動作することは、第1スイッチ素子16と第2スイッチ素子18とが同時に動作することを防止するためである。すなわち、第1スイッチ素子16と第2スイッチ素子18とが同時にオンして短絡することを防止している。この動作を遅らせているデッドタイムdtは、例えば、100nsに設定しているが、適宜設定することができる。なお、デッドタイムdt中はダイオードを還流し、その還流したダイオードと並列にあるスイッチング素子がオンしたときと同じ状態になる。
 このような制御によって、電池モジュール102aは、ゲート信号D1がオフ時(すなわち、第1スイッチ素子16がオン、第2スイッチ素子18がオフ)では、コンデンサ14が電池モジュール102aの出力端子から切り離される。したがって、出力端子には電池モジュール102aから電圧が出力されない。この状態では、図3(a)に示すように、電池モジュール102aの電池10(コンデンサ14)がバイパスされたスルー状態となっている。
 また、ゲート信号D1がオン時(すなわち、第1スイッチ素子16がオフ、第2スイッチ素子18がオン)では、コンデンサ14が電池モジュール102aの出力端子に接続される。したがって、出力端子には電池モジュール102aから電圧が出力される。この状態では、図3(b)に示すように、電池モジュール102aにおけるコンデンサ14を介して電圧Vmodが出力端子に出力されている。
 図1に戻り、制御部104による電源装置100の制御について説明する。制御部104は、電池モジュール102の全体を制御する。すなわち、複数の電池モジュール102a,102b,・・・102nを制御して電源装置100としての出力電圧を制御する。
 制御部104は、各電池モジュール102に対して矩形波のゲート信号を出力するゲート回路を備える。ゲート信号は、電池モジュール102aに含まれる遅延回路20、電池モジュール102bに含まれる遅延回路20・・・と順次後段の電池モジュール102へと伝達される。すなわち、電源装置100において直列に接続されている電池モジュール102の最上流側から順に所定の遅延時間ずつゲート信号が遅延されて下流側へと伝達される。
 通常制御時においては、AND素子22に対して制御部104からハイ(H)レベルの強制切断信号が入力され、OR素子24に対して制御部104からロー(L)レベルの強制接続信号が入力されているので、各電池モジュール102の遅延回路20から出力されたゲート信号がそのまま第2スイッチ素子18のゲート端子に入力され、ゲート信号を反転した信号が第1スイッチ素子16のゲート端子に入力される。したがって、ゲート信号がハイ(H)レベルのときに第1スイッチ素子16がオフ状態及び第2スイッチ素子18がオン状態となり、ゲート信号がロー(L)レベルのときに第1スイッチ素子16がオン状態及び第2スイッチ素子18がオフ状態となる。
 すなわち、ゲート信号がハイ(H)レベルのときに電池モジュール102は他の電池モジュール102と直列に接続された状態となり、ゲート信号がロー(L)レベルのときに電池モジュール102は他の電池モジュール102と切り離されたスルー状態となる。
 図4は、電池モジュール102a,102b,・・・102nのうち所定の個数を順次直列に接続して電力を出力する制御シーケンスを示す。図4に示すように、ゲート信号に応じて、電池モジュール102a,102b,・・・102nが、一定の遅延時間を持って上流側から下流側に次々と駆動される。図4において、期間E1は、電池モジュール102a,102b,・・・102nの第1スイッチ素子16がオフ、第2スイッチ素子18がオンして、電池モジュール102a,102b,・・・102nが出力端子から電圧を出力している状態(接続状態)を示している。また、期間E2は、電池モジュール102a,102b,・・・102nの第1スイッチ素子16がオン、第2スイッチ素子18がオフして、電池モジュール102a,102b,・・・102nが出力端子から電圧を出力していない状態(スルー状態)を示す。このように、電池モジュール102a,102b,・・・102nは、一定の遅延時間を持って順次駆動される。
 図4を参照して、ゲート信号やゲート信号の遅延時間の設定について説明する。ゲート信号の周期Fは、電池モジュール102a,102b,・・・102nの遅延時間を合計することによって設定される。このため、遅延時間を長くするほどゲート信号の周波数を低周波にする。逆に、遅延時間を短くするほどゲート信号の周波数を高周波にする。また、ゲート信号を遅延する遅延時間は、電源装置100に求められる仕様に応じて適宜設定される。
 ゲート信号の周期Fにおけるオン時比率G1(デューティ比D)、すなわち、周期Fのうちのゲート信号がハイ(H)レベルにある時間の比率は、電源装置100の出力電圧/電池モジュール102a,102b,・・・102nの合計電圧(電池モジュール102の電池電圧×電池モジュール数)により算出される。すなわち、各電池モジュール102の電圧が等しい場合は、オン時比率G1=(電源装置100の出力電圧)/(電池モジュール102の電池電圧×電池モジュール102の数)となる。なお、厳密には、デッドタイムdtだけオン時比率がずれてしまうので、チョッパ回路で一般的に行われているようにフィードバックまたはフィードフォワードでオン時比率の補正を行うことが好適である。
 電池モジュール102a,102b,・・・102nの合計電圧は、上述したように、電池モジュール102の電池電圧に接続状態にある電池モジュール102の数を乗算した値によって表される。電源装置100の出力電圧が、一つの電池モジュール102の電池電圧で割り切れる値であれば、電池モジュール102がスルー状態から接続状態に切り替わる瞬間に、他の電池モジュール102が接続状態からスルー状態に切り替わるので、電池モジュール102の全体の出力電圧に変動はない。
 しかし、電源装置100の出力電圧が、各電池モジュール102の電池電圧で割り切れない値であれば、電源装置100の出力電圧と、電池モジュール102a,102b,・・・102nの合計電圧とは整合しない。換言すると、電源装置100の出力電圧(全体の出力電圧)が変動してしまう。ただし、このときの変動振幅は1つの電池モジュール分の電圧であり、また、この変動周期は、ゲート信号の周期F/電池モジュール102の数となる。数十個の電池モジュール102を直列接続すれば、電源装置100全体の寄生インダクタンスは大きな値となっており、この電圧変動はフィルタされて結果的には安定した電源装置100の出力電圧を得ることができる。
 次に、具体例について説明する。図4において、例えば、電源装置100としての所望の出力電圧が400V、各電池モジュール102の電池電圧が15V、電池モジュール102a,102b,・・・102n数が40個、遅延時間が200nsであるとする。なお、この場合は、電源装置100の出力電圧(400V)が、電池モジュール102の電池電圧(15V)で割り切れない場合に相当する。
 これらの数値に基づくと、ゲート信号の周期Fは、遅延時間×電池モジュール数により算出されるので200ns×40個=8μsとなる。したがって、ゲート信号は125kHz相当の周波数の矩形波とされる。また、ゲート信号のオン時比率G1は、電源装置100の出力電圧/(電池モジュール102の電池電圧×電池モジュール102の数)により算出されるので、オン時比率G1は、400V/(15V×40個)≒0.67となる。
 これらの数値に基づいて、電池モジュール102a,102b,・・・102nを順次駆動すると、電源装置100として、図4中、矩形波状の出力電圧H1が得られる。この出力電圧H1は、390Vと405Vとの間で変動する。すなわち、出力電圧H1は、ゲート信号の周期F/電池モジュール数により算出される周期、すなわち8μs/40個=200ns(5MHz相当)で変動する。この変動は、電池モジュール102a,102b,・・・102nの配線による寄生インダクタンスでフィルタリングされ、電源装置100全体としては約400Vの出力電圧H2として出力される。
 なお、各電池モジュール102のコンデンサ14には、接続状態の場合に電流が流れ、図4に示すように、コンデンサ電流波形J1は矩形波になる。また、電池10とコンデンサ14はRLCフィルタを形成しているので、電源装置100にはフィルタリングされて平準化された電流J2が流れる。このように、全ての電池モジュール102a,102b,・・・102nにおいて電流波形は一様であり、また、全ての電池モジュール102a,102b,・・・102nから均等に電流を出力することができる。
 以上説明したように、電源装置100を制御する際、最上流側の電池モジュール102aに出力したゲート信号を、下流側の電池モジュール102bに一定時間遅延して出力して、さらに、このゲート信号を一定時間遅延して下流側の電池モジュール102に順次伝達するので、電池モジュール102a,102b,・・・102nは、一定時間遅延しながら順次電圧をそれぞれ出力する。そして、これらの電圧が合計されることによって、電源装置100としての電圧が出力される。これにより、電源装置100から所望の電圧を出力させることができる。
 電源装置100によれば、昇圧回路が不要になり、回路構成を簡素化することができ、小型化、低コスト化することができる。また、電力損失を生ずるバランス回路等も不要であり、電源装置100の効率を向上させることができる。さらに、複数の電池モジュール102a,102b,・・・102nから略均等に電圧を出力しているので、特定の電池モジュール102に駆動が集中することもなく、電源装置100の内部抵抗損失を低減することができる。
 また、オン時比率G1を調整することによって、所望の電圧に容易に対応することができ、電源装置100としての汎用性を向上することができる。特に、電池モジュール102a,102b,・・・102nに故障が発生して、使用困難な電池モジュール102が発生した場合でも、その故障した電池モジュール102を除外して、正常な電池モジュール102を使用して、ゲート信号の周期F、オン時比率G1、遅延時間を再設定することによって、所望の電圧を得ることができる。すなわち、電池モジュール102a,102b,・・・102nに故障が発生しても所望の電圧の出力を継続することができる。
 さらに、ゲート信号を遅延する遅延時間を長く設定することによって、ゲート信号の周波数が低周波になるので、第1スイッチ素子16及び第2スイッチ素子18のスイッチング周波数も低くなり、スイッチング損失を低減することができ、電力変換効率を向上することができる。逆に、ゲート信号を遅延する遅延時間を短くすることによって、ゲート信号の周波数が高周波になるので、電圧変動の周波数が高くなり、フィルタリングが容易になって、安定した電圧を得ることができる。また、電流変動をRLCフィルタによって平準化することも容易になる。このように、ゲート信号を遅延する遅延時間を調整することによって、求められる仕様、性能に応じた電源装置100を提供することができる。
 なお、本実施の形態では、各電池モジュール102に遅延回路20を設けてゲート信号を遅延させつつ伝送させる構成としたが、これに限定されるものではない。例えば、各電池モジュール102に遅延回路20を設けない構成としてもよい。この場合、制御部104から各電池モジュール102のAND素子22及びOR素子24に対してゲート信号を個別に出力すればよい。すなわち、制御部104から電池モジュール102a,102b,・・・102nに対してゲート信号を一定時間毎にそれぞれ出力する。このとき、電池モジュール102a,102b,・・・102nに対して、電池モジュール102a,102b,・・・102nの配置位置にとらわれず、任意の順序で電池モジュール102a,102b,・・・102nを一定時間毎にゲート信号を出力して接続状態とする電池モジュール102の数を制御する。例えば、最初に、電池モジュール102bにゲート信号を出力して電池モジュール102bを駆動させ、その一定時間後に、電池モジュール102aにゲート信号を出力して電池モジュール102aを駆動させるように制御を行えばよい。
 当該構成とすることによって、遅延回路20が不要となり、電源装置100の構成をさらに簡素化することができ、製造コストや消費電力を抑制することができる。
[強制切り離し制御]
 次に、複数の電池モジュール102(102a,102b,・・・102n)のうち選択されたものを強制的に切り離す制御について説明する。制御部104は、強制的に切り離す対象とする電池モジュール102のAND素子22に対してロー(L)レベルの強制切断信号を出力する。また、制御部104は、当該電池モジュール102のOR素子24に対してはロー(L)レベルの強制接続信号を出力する。
 これによって、AND素子22からはロー(L)レベルが出力され、OR素子24を介して、第1スイッチ素子16のゲート端子にはNOT素子26によってハイ(H)レベルが入力され、第2スイッチ素子18のゲート端子にはロー(L)レベルが入力される。したがって、第1スイッチ素子16は常時オン状態となり、第2スイッチ素子18は常時オフ状態とされ、電池モジュール102はゲート信号の状態によらず強制的に切り離された状態(スルー状態)となる。
 このような強制切り離し制御は、電源装置100における電池モジュール102のSOCのアンバランスを抑制する制御に利用することができる。図5は、SOCのバランス調整制御のフローチャートを示す。以下、図5を参照しつつ、力行時における電池モジュール102のSOCのアンバランスを抑制する制御について説明する。
 ステップS10では、電源装置100に含まれるすべての電池モジュール102のSOCを推定する。制御部104は、各電池モジュール102に設けられて電池モジュール102の出力電圧を検出して出力する電圧センサ30、電源装置100の出力電流を検出して出力する電流センサ32及び電源装置100の出力電圧を検出して出力する電圧センサ34からの出力に基づいて各電池モジュール102のSOCを推定する処理を行う。SOCの推定処理については後述する。
 ステップS12では、各電池モジュール102のSOCを比較し、相対的にSOCが低い電池モジュール102を選択する。制御部104は、ステップS10にて推定された各電池モジュール102のSOCを比較し、すべての電池モジュール102の中から相対的にSOCが低い電池モジュール102を選択する。
 例えば、電源装置100に含まれるすべての電池モジュール102の中から所定の数だけSOCが小さい順に電池モジュール102を選択すればよい。また、SOCの基準値を決めておき、当該基準値以下のSOCである電池モジュール102を選択するようにしてもよい。ただし、電池モジュール102の選択方法はこれらに限定されるものではなく、SOCのアンバランスを抑制するために効果的なものであればよい。例えば、各電池モジュール102の電圧を測定し、電圧の低い順に電池モジュール102を選択してもよい。
 ステップS14では、電源装置100の電源出力が力行状態であるか回生状態であるかが判定される。制御部104は、電流センサ32で検出された電流の向きから電源装置100から負荷へ電力が供給されている力行状態か外部電源から電源装置100へ電力が入力されている回生状態かを判定する。力行状態であればステップS16に処理を移行させ、回生状態であれば処理を終了させる。
 ステップS16では、電池モジュール102の強制的な切り離し処理が行われる。制御部104は、ステップS12にて選択された電池モジュール102のAND素子22に対してロー(L)レベルの強制切断信号を出力する。これにより、選択された電池モジュール102は直列接続から強制的に切り離され、電源装置100の出力に寄与しなくなる。
 以上の制御によって、電源装置100に含まれる電池モジュール102の中からSOCが相対的に低い電池モジュール102は電力消費量(単位時間当たりの放電電流積算量)が少なくなり、SOCのアンバランスを解消することができる。その結果、電源装置100に含まれるすべての電池モジュール102の充電エネルギーを効率良く使い切ることが可能となる。
 また、力行状態でなく、回生状態のときにSOCのアンバランスを解消する制御を行うこともできる。この場合、SOCが相対的に高い電池モジュール102を強制的に切り離す制御を行い、SOCが相対的に低い電池モジュール102へ優先的に電力を回生させることでSOCのアンバランスを解消させる。
 図6は、SOCのバランス調整制御のフローチャートを示す。以下、図6を参照しつつ、回生時における電池モジュール102のSOCのアンバランスを抑制する制御について説明する。
 ステップS20では、電源装置100に含まれるすべての電池モジュール102のSOCを推定する。制御部104は、各電池モジュール102に設けられて電池モジュール102の出力電圧を検出して出力する電圧センサ30、電源装置100の出力電流を検出して出力する電流センサ32及び電源装置100の出力電圧を検出して出力する電圧センサ34からの出力に基づいて各電池モジュール102のSOCを推定する処理を行う。SOCの推定処理については後述する。
 ステップS22では、各電池モジュール102のSOCを比較し、相対的にSOCが高い電池モジュール102を選択する。制御部104は、ステップS20にて推定された各電池モジュール102のSOCを比較し、すべての電池モジュール102の中から相対的にSOCが高い電池モジュール102を選択する。
 例えば、電源装置100に含まれるすべての電池モジュール102の中から所定の数だけSOCが高い順に電池モジュール102を選択すればよい。また、SOCの基準値を決めておき、当該基準値以上のSOCである電池モジュール102を選択するようにしてもよい。ただし、電池モジュール102の選択方法はこれらに限定されるものではなく、SOCのアンバランスを抑制するために効果的なものであればよい。
 ステップS24では、電源装置100の電源出力が力行状態であるか回生状態であるかが判定される。制御部104は、電流センサ32で検出された電流の向きから電源装置100から負荷へ電力が供給されている力行状態か外部電源から電源装置100へ電力が入力されている回生状態かを判定する。回生状態であればステップS26に処理を移行させ、力行状態であれば処理を終了させる。
 ステップS26では、電池モジュール102の強制的な切り離し処理が行われる。制御部104は、ステップS22にて選択された電池モジュール102のAND素子22に対してロー(L)レベルの強制切断信号を出力する。これにより、選択された電池モジュール102は直列接続から強制的に切り離され、電源装置100への回生電力が供給されなくなる。
 以上の制御によって、電源装置100に含まれる電池モジュール102の中からSOCが相対的に高い電池モジュール102への電力供給(単位時間当たりの充電電流積算量)が少なくなり、SOCのアンバランスを解消することができる。その結果、電源装置100に含まれるすべての電池モジュール102に対してバランスよく充電することができる。また、充電容量の小さい電池モジュール102の過充電を防止することができる。
 なお、強制切り離し制御時において、ゲート信号の遅延時間は0に設定される。また、ゲート信号のデューティDは数式(1)によって設定される。ここで、Vmodは電池モジュール102の電圧、Vmod_切り離しは、強制切り離しの対象となる電池モジュール102の電圧である。
Figure JPOXMLDOC01-appb-M000001
[強制接続制御]
 次に、複数の電池モジュール102(102a,102b,・・・102n)のうち選択されたものを強制的に接続する制御について説明する。制御部104は、強制的に接続する対象とする電池モジュール102のOR素子24にハイ(H)レベルの強制接続信号を出力する。
 これによって、OR素子24からはハイ(H)レベルが出力され、第1スイッチ素子16のゲート端子にはNOT素子26によってロー(L)レベルが入力され、第2スイッチ素子18のゲート端子にはハイ(H)レベルが入力される。したがって、第1スイッチ素子16は常時オフ状態となり、第2スイッチ素子18は常時オン状態とされ、電池モジュール102はゲート信号の状態によらず強制的に直列接続に繋がれた状態となる。
 このような強制接続制御は、電源装置100における電池モジュール102のSOCのアンバランスを抑制する制御に利用することができる。図7は、SOCのバランス調整制御のフローチャートを示す。以下、図7を参照しつつ、回生時における電池モジュール102のSOCのアンバランスを抑制する制御について説明する。
 ステップS30では、電源装置100に含まれるすべての電池モジュール102のSOCを推定する。制御部104は、各電池モジュール102に設けられて電池モジュール102の出力電圧を検出して出力する電圧センサ30、電源装置100の出力電流を検出して出力する電流センサ32及び電源装置100の出力電圧を検出して出力する電圧センサ34からの出力に基づいて各電池モジュール102のSOCを推定する処理を行う。SOCの推定処理については後述する。
 ステップS32では、各電池モジュール102のSOCを比較し、相対的にSOCが低い電池モジュール102を選択する。制御部104は、ステップS30にて推定された各電池モジュール102のSOCを比較し、すべての電池モジュール102の中から相対的にSOCが低い電池モジュール102を選択する。具体的には、上記ステップS12の処理と同様にすればよい。
 ステップS34では、電源装置100の電源出力が力行状態であるか回生状態であるかが判定される。制御部104は、電流センサ32で検出された電流の向きから電源装置100から負荷へ電力が供給されている力行状態か外部電源から電源装置100へ電力が入力されている回生状態かを判定する。回生状態であればステップS36に処理を移行させ、力行状態であれば処理を終了させる。
 ステップS36では、電池モジュール102の強制的な接続処理が行われる。制御部104は、ステップS32にて選択された電池モジュール102のOR素子24に対してハイ(H)レベルの強制接続信号を出力する。これにより、選択された電池モジュール102は直列接続に強制的に接続され、電源装置100への回生電力による充電に寄与する。
 以上の制御によって、電源装置100に含まれる電池モジュール102の中からSOCが相対的に低い電池モジュール102への回生電力による充電が優先的に行われ、単位時間当たりの充電電流積算量が多くなり、SOCのアンバランスを解消することができる。その結果、電源装置100に含まれるすべての電池モジュール102に対してバランスよく充電することができる。
 また、回生状態でなく、力行状態のときにSOCのアンバランスを解消する制御を行うこともできる。この場合、SOCが相対的に高い電池モジュール102を強制的に接続する制御を行い、SOCが相対的に高い電池モジュール102の消費電力量を大きくすることでSOCのアンバランスを解消させる。
 図8は、SOCのバランス調整制御のフローチャートを示す。以下、図8を参照しつつ、力行時における電池モジュール102のSOCのアンバランスを抑制する制御について説明する。
 ステップS40では、電源装置100に含まれるすべての電池モジュール102のSOCを推定する。制御部104は、各電池モジュール102に設けられて電池モジュール102の出力電圧を検出して出力する電圧センサ30、電源装置100の出力電流を検出して出力する電流センサ32及び電源装置100の出力電圧を検出して出力する電圧センサ34からの出力に基づいて各電池モジュール102のSOCを推定する処理を行う。SOCの推定処理については後述する。
 ステップS42では、各電池モジュール102のSOCを比較し、相対的にSOCが高い電池モジュール102を選択する。制御部104は、ステップS40にて推定された各電池モジュール102のSOCを比較し、すべての電池モジュール102の中から相対的にSOCが高い電池モジュール102を選択する。具体的には、上記ステップS22の処理と同様にすればよい。
 ステップS44では、電源装置100の電源出力が力行状態であるか回生状態であるかが判定される。制御部104は、電流センサ32で検出された電流の向きから電源装置100から負荷へ電力が供給されている力行状態か外部電源から電源装置100へ電力が入力されている回生状態かを判定する。力行状態であればステップS46に処理を移行させ、回生状態であれば処理を終了させる。
 ステップS46では、電池モジュール102の強制的な接続処理が行われる。制御部104は、ステップS42にて選択された電池モジュール102のOR素子24に対してハイ(H)レベルの強制接続信号を出力する。これにより、選択された電池モジュール102は直列接続に強制的に接続され、電源装置100からの電力供給へ寄与する。
 以上の制御によって、電源装置100に含まれる電池モジュール102の中からSOCが相対的に高い電池モジュール102からの電力供給(単位時間当たりの放電電流積算量)が大きくなり、SOCのアンバランスを解消することができる。その結果、電源装置100に含まれるすべての電池モジュール102の充電エネルギーを効率良く使い切ることが可能となる。
 なお、強制接続制御時において、ゲート信号の遅延時間は0に設定される。また、ゲート信号のデューティDは数式(2)によって設定される。ここで、Vmodは電池モジュール102の電圧、Vmod_強制接続は、強制接続の対象となる電池モジュール102の電圧である。
Figure JPOXMLDOC01-appb-M000002
[SOC推定処理]
 以下、電源装置100におけるSOC推定処理について説明する。図9は、本実施の形態におけるSOC推定処理のフローチャートを示す。
 ステップS50では、電源装置100の出力電流Ioutを測定する。制御部104は、電流センサ32によって測定された電源装置100の出力電流Ioutを取得する。
 ステップS52では、各電池モジュール102のモジュール電流Imodを推定する処理を行う。制御部104は、デューティ比Dに基づいて、現在出力に寄与している電池モジュール102の各々からの電流(モジュール電流)Imodを算出する。制御部104は、現在直列接続されている電池モジュール102、すなわち現在出力に寄与している電池モジュール102の各々について電圧センサ30から出力電圧(モジュール電圧)Vmod[i]を取得する。ここで、iは、i番目の電池モジュール102を示す。
 デューティ比Dは、数式(3)により算出することができる。そして、モジュール電流Imodは、数式(4)により算出することができる。ただし、モジュール電流Imodは、正の値をとる場合を放電、負の値をとる場合を充電と定義する。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 なお、本実施の形態ではデューティ比Dを用いてモジュール電流Imodを算出する処理を行ったが、各電池モジュール102に電流センサ32を設けて、モジュール電流Imodを直接測定する構成としてもよい。
 ステップS54では、各電池モジュール102のSOCを算出する処理が行われる。制御部104は、ステップS52で得られたモジュール電流Imodに基づいて数式(5)を用いて各電池モジュール102のSOCを算出する。ただし、Q[i]はi番目の電池モジュール102の電池満充電容量、SOCini[i]は電流積算開始時点での初期SOC(電源装置100の起動時又はi番目の電池モジュール102を切り離した時の充放電電流が0の状態で測定された開放電圧を基に得られたSOCv)である。
Figure JPOXMLDOC01-appb-M000005
 なお、電池モジュール102の開放電圧とSOCとの関係は、図10に示すような1対1の関係となる。すなわち、i番目の電池モジュール102の開放電圧を測定することで、当該開放電圧に基づいてSOCini[i]を求めることができる。
 以下、電池モジュール102を切り離した時の開放電圧の測定方法について説明する。上記のように、通常制御時には、すべての電池モジュール102の強制切断信号をハイ(H)レベルに設定するが、例えばデューティ比Dが低い状況(負荷に接続する電池モジュール102の数が少なくてもよく、常時切り離された電池モジュール102があったとしても要求する出力電圧を出力可能な状況)において、特定の電池モジュール102に対する強制切断信号をロー(L)レベルとする。これにより、当該特定の電池モジュール102は負荷から切り離された状態となる(図11の切り離し期間)。
 特定の電池モジュール102が負荷から切り離されると、当該電池モジュール102のモジュール電流Imodは0になる。したがって、制御部104は、当該電池モジュール102の電圧センサ30から開放電圧を取得することが可能となる。これにより、制御部104は、図10の開放電圧とSOCの関係に基づいて取得された開放電圧に対応するSOCを求めることができる。
 なお、開放電圧の測定は、電池モジュール102を負荷から切り離した後に端子電圧が安定する所定時間後に測定するか、又は従来技術のように充放電を停止した後の電圧挙動モデルを用いて電圧が安定する前の電圧から開放電圧を推定してもよい。
 このように、負荷に対して電力を供給している状態においても電池モジュール102を負荷から切り離すことで開放電圧を測定することができる。したがって、測定された開放電圧を用いて特定の電池モジュール102のSOCを求め、数式(5)のSOCini[i]を置き換えることができる。なお、このとき、数式(5)の電流積算についても0にリセットすることが好適である。
 数式(5)を用いたモジュール電流の積算値に基づくSOCの推定では、電流センサ32の測定誤差の影響等により積算値において誤差が蓄積される傾向があるが、開放電圧に基づいて初期値であるSOCini[i]を適宜更新することによって誤差の影響を抑制でき、SOCの推定精度を向上させることができる。
 なお、本実施の形態では、1つの電池モジュール102毎に開放電圧を測定し、当該開放電圧からSOCを推定する処理について説明したが、複数の電池モジュール102を纏めて開放電圧を測定し、当該開放電圧から当該複数の電池モジュール102のSOCを推定する構成としてもよい。
 10 電池、12 チョークコイル、14 コンデンサ、16 第1スイッチ素子、18 第2スイッチ素子、20 遅延回路、22 AND素子、24 OR素子、26 NOT素子、30 電圧センサ、32 電流センサ、34 電圧センサ、100 電源装置、102(102a,102b,・・・102n) 電池モジュール。

Claims (8)

  1.  電源装置であって、
     二次電池を有する電池モジュールを複数含み、ゲート信号に応じて前記電池モジュールが相互に直列接続され、
     前記ゲート信号に関わらず、前記電池モジュールを前記直列接続から強制的に切り離す切断手段を備え、
     電源出力が力行時において前記切断手段によって一部の前記電池モジュールを前記直列接続から強制的に切り離すことで他の前記電池モジュールよりも単位時間当たりの放電電流積算量が小さくなるように制御する。
  2.  電源装置であって、
     二次電池を有する電池モジュールを複数含み、ゲート信号に応じて前記電池モジュールが相互に直列接続され、
     前記ゲート信号に関わらず、前記電池モジュールを前記直列接続に強制的に接続する接続手段を備え、
     電源出力が回生時において前記接続手段によって一部の前記電池モジュールを前記直列接続に強制的に接続することで他の前記電池モジュールよりも単位時間当たりの充電電流積算量が大きくなるように制御する。
  3.  電源装置であって、
     二次電池を有する電池モジュールを複数含み、ゲート信号に応じて前記電池モジュールが相互に直列接続され、
     前記ゲート信号に関わらず、前記電池モジュールを前記直列接続から強制的に切り離す切断手段を備え、
     電源出力が回生時において前記切断手段によって一部の前記電池モジュールを前記直列接続から強制的に切り離すことで他の前記電池モジュールよりも単位時間当たりの充電電流積算量が小さくなるように制御する。
  4.  電源装置であって、
     二次電池を有する電池モジュールを複数含み、ゲート信号に応じて前記電池モジュールが相互に直列接続され、
     前記ゲート信号に関わらず、前記電池モジュールを前記直列接続に強制的に接続する接続手段を備え、
     電源出力が力行時において前記接続手段によって一部の前記電池モジュールを前記直列接続に強制的に接続することで他の前記電池モジュールよりも単位時間当たりの放電電流積算量が大きくなるように制御する。
  5.  請求項1に記載の電源装置であって、
     前記電池モジュールの各々を駆動するための前記ゲート信号に位相差を設けており、
     前記ゲート信号が前記電池モジュールに対して遅延時間をもって順次伝送されることにより前記電池モジュールが前記直列接続に対して接続又は切り離される。
  6.  請求項2に記載の電源装置であって、
     前記電池モジュールの各々を駆動するための前記ゲート信号に位相差を設けており、
     前記ゲート信号が前記電池モジュールに対して遅延時間をもって順次伝送されることにより前記電池モジュールが前記直列接続に対して接続又は切り離される。
  7.  請求項3に記載の電源装置であって、
     前記電池モジュールの各々を駆動するための前記ゲート信号に位相差を設けており、
     前記ゲート信号が前記電池モジュールに対して遅延時間をもって順次伝送されることにより前記電池モジュールが前記直列接続に対して接続又は切り離される。
  8.  請求項4に記載の電源装置であって、
     前記電池モジュールの各々を駆動するための前記ゲート信号に位相差を設けており、
     前記ゲート信号が前記電池モジュールに対して遅延時間をもって順次伝送されることにより前記電池モジュールが前記直列接続に対して接続又は切り離される。
     
PCT/JP2018/002674 2017-03-31 2018-01-29 電源装置 WO2018179774A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/495,696 US11560060B2 (en) 2017-03-31 2018-01-29 Power supply device
CN201880022076.0A CN110476320B (zh) 2017-03-31 2018-01-29 电源装置
EP18778201.6A EP3588733B1 (en) 2017-03-31 2018-01-29 Power supply device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-069613 2017-03-31
JP2017069613A JP7056005B2 (ja) 2017-03-31 2017-03-31 電源装置

Publications (1)

Publication Number Publication Date
WO2018179774A1 true WO2018179774A1 (ja) 2018-10-04

Family

ID=63674918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/002674 WO2018179774A1 (ja) 2017-03-31 2018-01-29 電源装置

Country Status (5)

Country Link
US (1) US11560060B2 (ja)
EP (1) EP3588733B1 (ja)
JP (1) JP7056005B2 (ja)
CN (1) CN110476320B (ja)
WO (1) WO2018179774A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018174029A (ja) * 2017-03-31 2018-11-08 株式会社豊田中央研究所 電源装置及びそれにおけるsoc推定方法
JP2020060404A (ja) * 2018-10-09 2020-04-16 株式会社豊田中央研究所 電源装置の満充電容量推定装置
EP3648291A1 (en) * 2018-10-31 2020-05-06 Toyota Jidosha Kabushiki Kaisha Power supply system
EP3648289A1 (en) * 2018-10-31 2020-05-06 Toyota Jidosha Kabushiki Kaisha Power supply device
JP2020072545A (ja) * 2018-10-31 2020-05-07 株式会社豊田中央研究所 電源装置
JP2020072544A (ja) * 2018-10-31 2020-05-07 株式会社豊田中央研究所 電源装置
JP2020089174A (ja) * 2018-11-29 2020-06-04 トヨタ自動車株式会社 電源システム
US11635469B2 (en) 2018-10-31 2023-04-25 Toyota Jidosha Kabushiki Kaisha Power supply device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190033351A (ko) * 2017-09-21 2019-03-29 삼성전자주식회사 배터리 제어 장치 및 방법
CN111381654B (zh) * 2018-12-29 2022-01-11 成都海光集成电路设计有限公司 负载探测电路、soc系统、及负载探测电路的配置方法
JP7318227B2 (ja) * 2019-02-12 2023-08-01 株式会社豊田中央研究所 電源装置
US11664538B2 (en) 2019-08-28 2023-05-30 SparkCharge, Inc. Battery module with smart electronic isolation systems
JP7079236B2 (ja) 2019-12-25 2022-06-01 株式会社豊田中央研究所 電源装置
US11349316B2 (en) 2020-04-20 2022-05-31 The Boeing Company System and method for controlling a high-voltage battery system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009142071A (ja) * 2007-12-06 2009-06-25 Honda Motor Co Ltd 充電制御装置及びセル電圧均等化装置
JP2010136603A (ja) * 2008-12-08 2010-06-17 Green Solution Technology Inc 電池充電コントローラおよび電池バランス充電コントローラ
JP2013162633A (ja) * 2012-02-06 2013-08-19 Yazaki Corp 均等化装置
JP2016154423A (ja) * 2015-02-20 2016-08-25 有限会社アイ・アール・ティー 電圧バランス装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0773414B2 (ja) * 1993-02-17 1995-08-02 日本電気株式会社 充放電回路
JPH09203773A (ja) * 1996-01-26 1997-08-05 Nissan Motor Co Ltd 組電池の残存容量計
FR2758666B1 (fr) * 1997-01-23 1999-02-12 Alsthom Cge Alcatel Procede de regie pour ensemble accumulateur d'energie electrique et agencement de commande pour l'application de ce procede
JP4089157B2 (ja) 2000-12-28 2008-05-28 新神戸電機株式会社 電源システム
JP2005117765A (ja) * 2003-10-07 2005-04-28 Nissan Motor Co Ltd 組電池の保護制御装置および組電池の保護制御方法
JP5321080B2 (ja) 2009-01-20 2013-10-23 日産自動車株式会社 電力供給装置
JP5480520B2 (ja) 2009-03-27 2014-04-23 伊藤忠商事株式会社 電池制御装置、車両、及び電池制御方法
JP5525743B2 (ja) 2009-03-30 2014-06-18 株式会社日本総合研究所 電池制御装置、電池制御方法、及び車両
US9197081B2 (en) * 2009-08-28 2015-11-24 The Charles Stark Draper Laboratory, Inc. High-efficiency battery equalization for charging and discharging
EP2660924B1 (en) 2010-12-28 2015-07-08 LG Chem, Ltd. Method and device for managing battery system
JP5677261B2 (ja) * 2011-09-30 2015-02-25 株式会社日立製作所 蓄電システム
FR2982089B1 (fr) * 2011-10-26 2013-11-01 Renault Sa Procede d'equilibrage du niveau de charge et de decharge d'une batterie par commutation de ses blocs de cellules
JP5748689B2 (ja) 2012-02-28 2015-07-15 三菱重工業株式会社 電池システム
JP2014025739A (ja) 2012-07-25 2014-02-06 Sanyo Electric Co Ltd 電池状態推定装置
JP2014025738A (ja) 2012-07-25 2014-02-06 Sanyo Electric Co Ltd 残容量推定装置
WO2014070831A1 (en) * 2012-10-30 2014-05-08 Board Of Trustees Of The University Of Alabama Distributed battery power electronics architecture and control
JP6124271B2 (ja) * 2013-05-08 2017-05-10 エルジー・ケム・リミテッド バッテリー予熱システム及びそれを用いたバッテリー予熱方法
US9525290B2 (en) * 2013-10-25 2016-12-20 Saft Bypassable battery modules
US9403443B2 (en) * 2014-01-14 2016-08-02 Ford Global Technologies, Llc Charge balance system and method
JP6322810B2 (ja) * 2014-06-13 2018-05-16 パナソニックIpマネジメント株式会社 均等化処理装置
JP6531745B2 (ja) 2016-10-27 2019-06-19 株式会社豊田中央研究所 電源装置及び電源装置の制御方法
EP3580828A4 (en) * 2017-02-08 2020-12-09 Relectrify Holdings Pty Ltd BATTERY SYSTEM

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009142071A (ja) * 2007-12-06 2009-06-25 Honda Motor Co Ltd 充電制御装置及びセル電圧均等化装置
JP2010136603A (ja) * 2008-12-08 2010-06-17 Green Solution Technology Inc 電池充電コントローラおよび電池バランス充電コントローラ
JP2013162633A (ja) * 2012-02-06 2013-08-19 Yazaki Corp 均等化装置
JP2016154423A (ja) * 2015-02-20 2016-08-25 有限会社アイ・アール・ティー 電圧バランス装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3588733A4 *

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018174029A (ja) * 2017-03-31 2018-11-08 株式会社豊田中央研究所 電源装置及びそれにおけるsoc推定方法
JP2020060404A (ja) * 2018-10-09 2020-04-16 株式会社豊田中央研究所 電源装置の満充電容量推定装置
CN111025167A (zh) * 2018-10-09 2020-04-17 丰田自动车株式会社 电源装置的满充电容量推定装置
CN111025167B (zh) * 2018-10-09 2022-03-08 丰田自动车株式会社 电源装置的满充电容量推定装置
US11196271B2 (en) 2018-10-09 2021-12-07 Toyota Jidosha Kabushiki Kaisha Full-charge-capacity estimating device for power supply device
CN111130163A (zh) * 2018-10-31 2020-05-08 丰田自动车株式会社 电源系统
EP3648291A1 (en) * 2018-10-31 2020-05-06 Toyota Jidosha Kabushiki Kaisha Power supply system
JP2020072548A (ja) * 2018-10-31 2020-05-07 株式会社豊田中央研究所 電源装置
JP2020072544A (ja) * 2018-10-31 2020-05-07 株式会社豊田中央研究所 電源装置
KR20200049542A (ko) * 2018-10-31 2020-05-08 도요타지도샤가부시키가이샤 전원 장치
CN111130165A (zh) * 2018-10-31 2020-05-08 丰田自动车株式会社 电源装置
CN111130342A (zh) * 2018-10-31 2020-05-08 丰田自动车株式会社 电源设备
JP2020072545A (ja) * 2018-10-31 2020-05-07 株式会社豊田中央研究所 電源装置
US11757291B2 (en) 2018-10-31 2023-09-12 Toyota Jidosha Kabushiki Kaisha Power supply device
KR102318121B1 (ko) * 2018-10-31 2021-10-28 도요타지도샤가부시키가이샤 전원 장치
EP3648289A1 (en) * 2018-10-31 2020-05-06 Toyota Jidosha Kabushiki Kaisha Power supply device
JP2020072546A (ja) * 2018-10-31 2020-05-07 株式会社豊田中央研究所 電源装置
US11302970B2 (en) 2018-10-31 2022-04-12 Toyota Jidosha Kabushiki Kaisha Power supply system
JP7077204B2 (ja) 2018-10-31 2022-05-30 株式会社豊田中央研究所 電源装置
US11349156B2 (en) 2018-10-31 2022-05-31 Toyota Jidosha Kabushiki Kaisha Power supply device
JP7328750B2 (ja) 2018-10-31 2023-08-17 株式会社豊田中央研究所 電源装置
US11476688B2 (en) 2018-10-31 2022-10-18 Toyota Jidosha Kabushiki Kaisha Power supply device having sequentially connected battery modules
US11635469B2 (en) 2018-10-31 2023-04-25 Toyota Jidosha Kabushiki Kaisha Power supply device
CN111130342B (zh) * 2018-10-31 2023-08-04 丰田自动车株式会社 电源设备
JP7089673B2 (ja) 2018-11-29 2022-06-23 トヨタ自動車株式会社 電源システム
JP2020089174A (ja) * 2018-11-29 2020-06-04 トヨタ自動車株式会社 電源システム

Also Published As

Publication number Publication date
CN110476320A (zh) 2019-11-19
US20200076206A1 (en) 2020-03-05
JP2018174607A (ja) 2018-11-08
EP3588733B1 (en) 2023-01-04
JP7056005B2 (ja) 2022-04-19
CN110476320B (zh) 2023-06-20
EP3588733A1 (en) 2020-01-01
EP3588733A4 (en) 2021-01-06
US11560060B2 (en) 2023-01-24

Similar Documents

Publication Publication Date Title
WO2018179774A1 (ja) 電源装置
JP6898904B2 (ja) 電源装置
JP7328750B2 (ja) 電源装置
CN111025167B (zh) 电源装置的满充电容量推定装置
JP7077204B2 (ja) 電源装置
JP2020072549A (ja) 電源装置
JP6922337B2 (ja) 電源装置及びそれにおけるsoc推定方法
JP5718702B2 (ja) バランス補正装置および蓄電システム
JP7318227B2 (ja) 電源装置
JP2020072550A (ja) 電源装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18778201

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018778201

Country of ref document: EP

Effective date: 20190923