WO2018179573A1 - パワー半導体モジュール - Google Patents

パワー半導体モジュール Download PDF

Info

Publication number
WO2018179573A1
WO2018179573A1 PCT/JP2017/041164 JP2017041164W WO2018179573A1 WO 2018179573 A1 WO2018179573 A1 WO 2018179573A1 JP 2017041164 W JP2017041164 W JP 2017041164W WO 2018179573 A1 WO2018179573 A1 WO 2018179573A1
Authority
WO
WIPO (PCT)
Prior art keywords
base plate
metal base
semiconductor element
power semiconductor
substrate
Prior art date
Application number
PCT/JP2017/041164
Other languages
English (en)
French (fr)
Inventor
柳浦 聡
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to DE112017007351.0T priority Critical patent/DE112017007351B4/de
Priority to US16/483,970 priority patent/US10892203B2/en
Priority to JP2018513694A priority patent/JP6395173B1/ja
Priority to CN201780088342.5A priority patent/CN110447098B/zh
Publication of WO2018179573A1 publication Critical patent/WO2018179573A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/296Organo-silicon compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/04Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls
    • H01L23/053Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having an insulating or insulated base as a mounting for the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/16Fillings or auxiliary members in containers or encapsulations, e.g. centering rings
    • H01L23/18Fillings characterised by the material, its physical or chemical properties, or its arrangement within the complete device
    • H01L23/24Fillings characterised by the material, its physical or chemical properties, or its arrangement within the complete device solid or gel at the normal operating temperature of the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/562Protection against mechanical damage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04026Bonding areas specifically adapted for layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/07Structure, shape, material or disposition of the bonding areas after the connecting process
    • H01L2224/08Structure, shape, material or disposition of the bonding areas after the connecting process of an individual bonding area
    • H01L2224/081Disposition
    • H01L2224/0812Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/08151Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding the bonding area connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/08221Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding the bonding area connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/08225Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding the bonding area connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/32227Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the layer connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49113Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting different bonding areas on the semiconductor or solid-state body to a common bonding area outside the body, e.g. converging wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49177Combinations of different arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/80001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by connecting a bonding area directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/802Applying energy for connecting
    • H01L2224/80201Compression bonding
    • H01L2224/80205Ultrasonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/80001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by connecting a bonding area directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/8038Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/80399Material
    • H01L2224/804Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/80438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/80455Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83399Material
    • H01L2224/834Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/83438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/83455Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • H01L2224/8382Diffusion bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/49Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions wire-like arrangements or pins or rods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/60Protection against electrostatic charges or discharges, e.g. Faraday shields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/07Structure, shape, material or disposition of the bonding areas after the connecting process
    • H01L24/08Structure, shape, material or disposition of the bonding areas after the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1203Rectifying Diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]

Definitions

  • the present invention relates to a power semiconductor module in which a semiconductor element disposed in a case is sealed with a potting sealant.
  • a transfer sealing type often found in small power semiconductor modules
  • a potting sealing type also referred to as a case type
  • a conventional potting-sealed power semiconductor module has a case composed of a metal base plate and a frame-like case wall surrounding the metal base plate, an electrode, and is fixed on the metal base plate and disposed in the case Ceramic substrate, a semiconductor element mounted on the ceramic substrate, a wire for electrically connecting the electrode of the ceramic substrate and the semiconductor element, and filling in the case to seal each component in the case
  • a silicone gel that is a potting sealant and a lid that closes the opening at the top of the case are provided.
  • a leakage current generated inside the element is suppressed by disposing an insulating low-charge material lower in charge than the sealant around the wire to suppress charge injection from the wire to the sealant.
  • production of this was suppressed (for example, refer patent document 1).
  • the potting sealant has two layers, and the semiconductive particles are dispersed in the lower layer (element, substrate side), so that the insulation resistance has non-linearity, and the electric field can be relaxed in a portion where the electric field is high (for example, see Patent Document 2).
  • the ionic gel to which the ionic liquid is added is applied to the intersection between the main surface of the insulating substrate and the side surface of the conductor plate disposed on the main surface of the insulating substrate, and then the entire gel is added with no ionic liquid added.
  • the electric field on the creeping surface of the insulating substrate is relaxed, and discharge at that portion can be suppressed (for example, see Patent Document 3).
  • the present invention has been made to solve such a problem, and can suppress generation of cracks in an insulating substrate and a decrease in withstand voltage of the module, suppress electric field concentration on the guard ring, It is an object of the present invention to provide an inexpensive power semiconductor module that can reduce an in-element leakage current generated inside and can maintain the electric field relaxation force of a potting sealant for a long period of time.
  • the power semiconductor module according to the present invention includes a metal base plate, an insulating substrate disposed on the metal base plate and having electrodes, a semiconductor element disposed on the insulating substrate, the insulating substrate, and the semiconductor A case disposed on the metal base plate so as to surround the element, and a potting sealant that fills a space surrounded by the metal base plate and the case and seals the insulating substrate and the semiconductor element
  • the potting sealant includes a silicone gel and a conductivity imparting agent that is added to the silicone gel and includes a silicon atom and an ionic group.
  • the potting sealant it is not necessary to make the potting sealant into two layers, so that it is inexpensive.
  • the concentration of the conductivity-imparting agent contained in the silicone gel is uniform, there is no decrease in the ion concentration in the silicone gel due to diffusion, and the electric field relaxation force of the potting sealant is maintained for a long time. Since the potting sealant is a gel, the generation of cracks in the insulating substrate can be suppressed. Since the potting agent is made by adding a conductivity-imparting agent to the gel, the interface insulation resistance between the potting sealant and the semiconductor element is lowered, the amount of accumulated charge at the interface is reduced, and the element leakage current inside the element Can be reduced. In addition, the conductivity of the potting sealant is not so great as to reduce the insulation of the module, but rather acts to alleviate the electric field concentration, and the reduction in the withstand voltage of the module itself is suppressed.
  • FIG. 1 is a sectional view showing a power semiconductor module according to an embodiment of the present invention
  • FIG. 2 is a top view showing a semiconductor element in the power semiconductor module according to an embodiment of the present invention.
  • a power semiconductor module 100 is disposed by being bonded to a metal base plate 5, a DBC (Direct Bond Copper) substrate 3 that is bonded and disposed on the metal base plate 5, and a DBC substrate 3.
  • a potting sealant 1 that fills a space formed by the metal base plate 5 and the case 7 and seals components such as the DBC substrate 3 and the semiconductor element 6 and the upper opening of the case 7 are closed.
  • a lid 8 8
  • the DBC substrate 3 is configured by directly joining circuit layers formed of copper or a copper alloy on both surfaces of the insulating substrate 3a.
  • the insulating substrate 3a is composed of a ceramic substrate or the like.
  • the circuit network disposed on the upper surface of the insulating substrate 3a is the upper electrode 3b, and the circuit network disposed on the lower surface of the insulating substrate 3a is the lower electrode 3c.
  • the semiconductor element 6 is a power semiconductor element such as an IGBT or a MOSFET.
  • Bonding between the metal base plate 5 and the DBC substrate 3 and bonding between the DBC substrate 3 and the semiconductor element 6 include bonding using solder, bonding using metal nanoparticles, bonding by metal diffusion, and bonding by ultrasonic waves. Used. Between the semiconductor elements 6, the semiconductor element 6 and the upper electrode 3 b of the DBC substrate 3 are electrically connected by wire bonding, that is, by wires 9.
  • an electric field relaxation pattern called a guard ring 11 is formed.
  • the guard ring 11 is composed of a plurality of conductive rings spaced apart from each other and formed around the outer peripheral edge of the surface of the semiconductor element 6.
  • the electrode 10 is formed in a region surrounded by the guard ring 11 on the surface of the semiconductor element 6.
  • the number of guard rings 11 is appropriately set depending on the type of semiconductor element 6.
  • a semiconductive SinSiN film sini-insulating silicon nitride film for electric field relaxation is formed between the conductive rings of the guard ring 11 on the surface of the semiconductor element 6 by CVD.
  • the potting sealant 1 is configured by adding a conductivity-imparting agent to the gel, and lowers the interface insulation resistance between the potting sealant 1 and the semiconductor element 6.
  • the gel has a high viscosity due to the dispersoid network, loses fluidity, and becomes a solid as a whole system.
  • the gel of the potting sealant 1 has a low stress acting on the wire 9 and preferably uses a low elastic modulus material from the viewpoint of ensuring long-term reliability of wire bonding.
  • a silicone gel is used. .
  • the silicone gel may be an addition type or a condensation type.
  • the silicone gel may be dimethylpolysiloxane or methylphenylpolysiloxane.
  • the conductivity imparting agent needs to be compatible with the silicone gel
  • a silicone-modified ionic liquid is preferable. That is, the conductivity-imparting agent includes silicon atoms and ionic groups.
  • the silicone-modified ionic liquid is compatible with the silicone gel before being cured, but has a property of collecting on the surface of the semiconductor element and the substrate when the silicone gel is cured. Therefore, since only the interfacial insulation resistance between the potting sealant 1 and the semiconductor element and the potting sealant 1 and the substrate can be lowered without excessively reducing the volume insulation resistance of the potting sealant 1, the silicone-modified ion The amount of the functional liquid added is small.
  • the potting sealant 1 is configured by adding a conductivity imparting agent to a silicone gel, the potting sealant 1 does not have a non-linear insulation resistance. Therefore, it is possible to suppress the occurrence of a decrease in withstand voltage of the module itself due to the dispersion of the nonconductive particles, which is a problem in Patent Document 2.
  • the potting sealant 1 is not so large as to reduce the insulation of the module, but rather acts to alleviate electric field concentration. Thereby, the withstand voltage fall of module itself can be suppressed.
  • the potting sealant 1 filled in the space formed by the metal base plate 5 and the case 7 is not covered with a gel containing no ionic liquid.
  • the concentration of the conductivity-imparting agent in the potting sealant 1 is uniform. Therefore, a decrease in the concentration of the conductivity imparting agent in the potting sealant 1 is suppressed, and the electric field relaxation force is maintained for a long period.
  • the conductivity-imparting agent that is not silicone-modified is not compatible with the silicone gel and is therefore separated.
  • Enstat PR-IL1 product name of Kaken Sangyo Co., Ltd.
  • an ionic liquid that is a conductivity imparting agent not modified with silicone was added to the silicone gel, it was not compatible with the silicone gel.
  • FIG. 3 is a cross-sectional view of a principal part for explaining the charge accumulation around the guard ring and the state of the depletion layer boundary line in the power semiconductor module of the comparative example
  • FIG. 4 is around the guard ring in the power semiconductor module according to one embodiment of the present invention. It is principal part sectional drawing explaining the electric charge accumulation and the state of a depletion layer boundary.
  • the element 6 is sealed with a silicone gel 20 as a potting sealant to which no conductivity imparting agent is added.
  • a semiconductor element 6 configured in the same manner is sealed with a potting sealant 1 obtained by adding a conductivity-imparting agent to silicone gel.
  • the silicone gel 20 is the same as the silicone gel constituting the potting sealant 1.
  • the deformation of the void layer boundary 19 causes non-uniformity of the electric field between the aluminum electrodes 12 constituting the guard ring 11, that is, electric field concentration. In the portion where the electric field is concentrated, there is a possibility of causing dielectric breakdown.
  • the electrical resistance increases at a low temperature because the temperature dependence of the electrical resistance of the SinSiN film is large. Therefore, in the power semiconductor module 200 of the comparative example, when the temperature becomes low and the SinSiN film has a high resistance, the charges emitted from the wires 9 and reaching the region of the guard ring 11 do not move, and the charge accumulation is promoted. As a result, in the low temperature region, the in-element leakage current generated in the element internal vacancy layer of the semiconductor element 6 is further increased.
  • the potting sealant 1 is in contact with the surface of the semiconductor element 6 and the guard ring 11 at the outer peripheral edge of the surface of the semiconductor element 6. Therefore, the conductivity imparting agent added to the silicone gel gathers on the surface of the semiconductor element 6, and the interfacial insulation resistance between the semiconductor element 6 and the potting sealant 1 is lowered. As a result, the electric charges emitted from the wire 9 and reaching the area of the guard ring 11 move quickly, and the accumulation of the electric field is alleviated. That is, as shown in FIG. 4, in the region between the aluminum electrodes 12 constituting the guard ring 11, the charge accumulated at the interface between the semiconductor element 6 and the potting sealant 1 is relaxed and reduced. Therefore, the depletion layer boundary 19 maintains a normal shape, and an increase in the element leakage current that occurs in the element depletion layer is suppressed.
  • FIG. 5 is a diagram showing a result of measuring element leakage current of an IGBT element potted with a silicone gel to which no conductivity-imparting agent is added
  • FIG. 6 is an IGBT element potted with a silicone gel to which a conductivity-imparting agent is added. It is a figure which shows the result of having measured the element leak current.
  • the element leakage current was measured with one chip at room temperature. The evaluation here is not performed by separately measuring only the leakage current in the element. That is, the element leakage current here includes the element leakage current.
  • the present applicant conducts electricity by interfacial insulation resistance (current value) between the potting sealant and the substrate in a configuration in which the comb-shaped electrode substrate having the comb-shaped counter electrode pattern formed on the surface of the ceramic substrate is sealed with the potting sealant.
  • current value interfacial insulation resistance
  • the present applicant has determined that the range of the optimum addition amount of the conductivity-imparting agent can be defined not by the addition amount but by the range of the interface insulation resistance between the potting sealant and the substrate after the addition of the conductivity-imparting agent. .
  • FIG. 7 is a top view showing a comb-shaped electrode substrate
  • FIG. 8 is a schematic diagram for explaining a method of measuring the interfacial insulation resistance of the comb-shaped electrode substrate
  • FIG. FIG. 8 is a schematic diagram for explaining a method of measuring the interfacial insulation resistance of the comb-shaped electrode substrate
  • the comb-shaped electrode substrate 21 as an evaluation substrate is subjected to nickel plating on one surface of a DBC substrate formed by bonding copper to one surface of an insulating substrate 22, patterned by etching, and comb-shaped opposing
  • the electrode pattern 23 is formed and manufactured. Therefore, the comb-shaped counter electrode pattern 23 has a two-layer structure of nickel and copper.
  • the insulating substrate 22 is a 45.2 mm ⁇ 34 mm ⁇ 0.635 mm silicon nitride substrate.
  • the comb-shaped counter electrode pattern 23 is a pattern in which combs of a pair of electrodes are alternately arranged 1 mm apart.
  • the interface insulation resistance was measured in a state where the comb-shaped electrode substrate 21 was housed in a case 24 and sealed with a potting sealant 25 as shown in FIG.
  • the electrode lines 27 and 28 drawn from the electrode lead portions 23 a of the comb-shaped counter electrode pattern 23 of the comb-shaped electrode substrate 21 are connected to the high resistance meter 26.
  • a DC voltage of 1 kV was applied to the electrode lines 27 and 28 to measure the interdigital electrode interface leakage current between the interdigital electrode substrate 21 and the potting sealant 25, and the result is shown in FIG. In FIG.
  • a potting sealant 25 is used which is prepared by adding 0.00005 wt% of X-40-2450 (product name of Shin-Etsu Chemical Co., Ltd.) to SE-1885 (product name of Toray Dow Corning Co., Ltd.). The case is shown by a solid line, and the case where only silicone gel is used as the potting sealant 25 is shown by a dotted line. SE-1885 is cured into a silicone gel.
  • X-40-2450 is an ionic group-containing silicone oligomer (silicone-modified ionic liquid) obtained by modifying an ionic liquid with silicone. The ionic group is bistrifluoromethanesulfonimide and functions as a conductivity-imparting agent. To do.
  • FIG. 10 is a top view showing a state in which a semiconductor element is mounted on the metal base plate of the evaluation module
  • FIG. 11 is a cross-sectional view showing the module assembly of the evaluation module
  • FIG. 12 is sealed with a potting sealant used in the evaluation module.
  • FIG. 13 is a figure which shows the evaluation result of an evaluation module.
  • the metal base plate 5 was a 190 mm ⁇ 140 mm ⁇ 3 mm copper plate.
  • a substrate in which a network made of copper was directly bonded to both surfaces of an insulating substrate 3a made of silicon nitride of 51 mm ⁇ 30 mm ⁇ 1 mm was used.
  • an IGBT 6a and an FWD (Free Wheeling Diode) 6b are used.
  • the gel for the potting sealant 1 SE-1885, which was cured to become a silicone gel, was used.
  • X-40-2450 was used as the conductivity-imparting agent.
  • each DBC substrate 3 was mounted on the metal base plate 5, and three IGBTs 6 a and FWDs 6 b were mounted on each DBC substrate 3.
  • the DBC substrates 3 were electrically connected by wire bonding.
  • the frame-like case 7 was attached to the metal base plate 5 so as to surround the DBC substrate 3, thereby producing a module assembly 110.
  • the amount of X-40-2450 added is 0.1 wt%, 0.05 wt%, 0.005 wt%, 0.001 wt%, 0.0005 wt%, 0.0001 wt%, 0.00005 wt%, 0.005 wt%
  • 0.1 wt%, 0.05 wt%, 0.005 wt%, 0.001 wt%, 0.0005 wt%, 0.0001 wt%, 0.00005 wt%, 0.005 wt% Nine types of evaluation modules were produced with a concentration of 00001 wt% and 0.000001 wt%.
  • the evaluation module was evaluated with two items of element leakage current at room temperature and partial discharge by alternating current, and the evaluation results are shown in FIG.
  • the element leakage current was evaluated by applying a DC voltage of 5200 V to the evaluation module and measuring the element leakage current at room temperature. Then, in consideration of the examination results of FIGS. 5 and 6, the case where the measured value of the element leakage current was less than 20 mA was determined to be acceptable.
  • the partial discharge was evaluated by increasing the voltage applied to the evaluation module at 5 kV steps at 30-second intervals and measuring the discharge charge. And the case where the voltage from which the measured value of the discharge charge is 10 pC or more is 11.5 kV or less was regarded as acceptable. Even when no discharge occurred, that is, when the voltage was 11.5 kV or less, the insulation test was rejected if the current value was 50 mA or more.
  • the comb-shaped electrode substrate 21 shown in FIG. 7 is sealed with nine types of potting sealants 1 with different amounts of X-40-2450 added, and the comb-shaped electrode on the comb-shaped electrode substrate 21 is measured by the measurement method shown in FIG.
  • the interface leakage current was measured, and the measurement result is shown in FIG.
  • FIG. 13 shows measured values of interdigital electrode interface leakage current 300 seconds after the voltage was applied to the interdigital electrode substrate 21.
  • the measured value of the interdigital electrode interface leakage current is the current value of the insulation resistance of the interface using the potting sealant 1.
  • the element leakage current is less than 20 mA, but when the addition amount is 0.000001 wt% or less, It was found that the element leakage current was 20 mA or more. This is because when the addition amount is 0.000001 wt% or less, the interfacial insulation resistance becomes too low, the electric charge that has been released from the wire 9 and reaches the region of the guard ring 11 is accumulated, and the element leakage current increases. It is inferred.
  • FIG. 13 shows that partial discharge and insulation failure occur when the added amount of the conductivity imparting agent X-40-2450 exceeds 0.005 wt%. This is presumably due to the fact that when the addition amount is more than 0.005 wt%, the interfacial insulation resistance becomes too high, and current leaks at the interface between the gel and the half-layer element, the creepage of the substrate, etc.
  • the addition amount is more than 0.005 wt%, the interfacial insulation resistance becomes too high, and current leaks at the interface between the gel and the half-layer element, the creepage of the substrate, etc.
  • the addition amount of the conductivity imparting agent X-40-2450 is 0.005 Wt% or less and 0.00001 wt% or more.
  • the interdigital electrode interface leakage current is 1.5 ⁇ 10 ⁇ 8 A, and when the added amount of X-40-2450 is 0.00001 Wt%.
  • the interdigital electrode interface leakage current was 4.2 ⁇ 10 ⁇ 10 A.
  • the addition amount of the conductivity imparting agent may be adjusted so that the interdigital electrode interface leakage current is 1.5 ⁇ 10 ⁇ 8 A or less and 4.2 ⁇ 10 ⁇ 10 A or more.
  • X-40-2450 was used as the conductivity-imparting agent, but the conductivity-imparting agent is not limited to X-40-2450, and an ionic liquid compatible with the silicone gel, that is, a silicone-modified ionic solution. If it is.
  • the silicone gel was used as the gel, the gel is not limited to the silicone gel, and may be a low elastic modulus gel.
  • the conductivity imparting agent may be an ionic liquid that is compatible with the gel, and is not necessarily modified with silicone.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

本発明によるパワー半導体モジュールは、金属ベース板と、上記金属ベース板上に配設され、電極を有する絶縁基板と、上記絶縁基板上に配設された半導体素子と、上記絶縁基板および上記半導体素子を取り囲むように上記金属ベース板に配設されたケースと、上記金属ベース板と上記ケースに囲まれた空間内に充填されて、上記絶縁基板および上記半導体素子を封止するポッティング封止剤と、を備え、上記ポッティング封止剤は、シリコーンゲルと、上記ゲルに添加された、シリコン原子とイオン性基を含む導電性付与剤と、を備える。

Description

パワー半導体モジュール
 この発明は、ケース内に配設された半導体素子をポッティング封止剤により封止してなるパワー半導体モジュールに関する。
 パワー半導体モジュールには、小型のパワー半導体モジュールに多く見られるトランスファー封止型と、中型以上のパワー半導体モジュールに多く見られるポッティング封止型(ケース型とも言う)がある。
 従来のポッティング封止型のパワー半導体モジュールは、金属ベース板と金属ベース板を囲む枠状のケース壁とからなるケースと、電極を有し、金属ベース板上に固定されてケース内に配設されたセラミック基板と、セラミック基板上に取りつけられた半導体素子と、セラミック基板の電極と半導体素子とを電気的に接続するワイヤと、ケース内に充填されて、ケース内の各部品を封止するポッティング封止剤であるシリコーンゲルと、ケース上部の開口部を塞ぐ蓋と、を備えている。
 近年、パワー半導体モジュールの高耐電圧化が進んでおり、現在6.5kV耐圧の製品が電車などに適用されている。素子内リーク電流を小さくして耐電圧を向上する手法として、通常、素子の周囲にガードリングを設け、その部分で電界緩和しながら半導体素子表面での電荷蓄積を小さくする手法がとられていた。また、コストを下げるため、素子サイズを小型化する検討もなされている。素子サイズを小型化する手段として、素子周辺のガードリングを縮小することが考えられるが、その結果、素子内部でのリーク電流が増大することが考えられる。さらに、電圧が高くなると、電荷がワイヤから継続的に放出されるため、ガードリングの形成領域に電荷が蓄積され、十分な電界緩和ができなくなることも課題である。
 このような状況を鑑み、封止剤より低帯電の絶縁性の低帯電材をワイヤの周囲に配設して、ワイヤから封止剤への電荷注入を抑制し、素子内部で発生するリーク電流の発生を抑制していた(例えば、特許文献1参照)。
 また、ポッティング封止剤を2層にし、下層(素子、基板側)に半導電性粒子を分散させることで、絶縁抵抗に非線形性を持たせ、電界の高い部分の電界緩和を可能としていた(例えば、特許文献2参照)。
 また、イオン液体が添加されたイオンゲルを絶縁基板の主面と絶縁基板の主面上に配置された導体板の側面との交差部に塗布し、その後、イオン液体が添加されていないゲルで全体を被覆することで、絶縁基板の沿面の電界を緩和し、その部分での放電の抑制を可能としていた(例えば、特許文献3参照)。
特開2007-305757号公報 特開平10-270609号公報 特開20017-28132号公報
 特許文献1に記載のものでは、低帯電材をワイヤの周囲に配設しているが、多数本のワイヤは密集して配線されているため、ワイヤの周囲に低帯電材を配設する作業が煩雑であり、実用的ではなかった。
 特許文献2に記載のものでは、ポッティング封止剤を2層化する必要があるためコストが高くなるという課題があった。また、半導電性粒子を分散させたポッティング封止剤は絶縁抵抗に非線形性を有するため、電界集中している場所でしか電界緩和できず、しかもある電界を超えると急激に絶縁抵抗が低下するので、モジュール自体の耐電圧低下を起こしてしまう課題があった。さらに、ポッティング封止剤としてエポキシ樹脂を用いているので、半導電性粒子が添加されたエポキシ樹脂における硬化収縮の影響でセラミック基板にクラックを発生させてしまうという課題があった。
 特許文献3に記載のものでは、イオン液体が添加されていないゲルがイオンゲルを覆っている。そのため、イオンゲルに含まれるイオン液体が、イオン液体が添加されていないゲルに拡散し、イオンゲル中のイオン濃度が徐々に低下し、本来の電界緩和力が失われてしまうという課題があった。また、特許文献3に記載のものにおけるイオンゲルの塗布位置では、半導体素子のガードリング上に蓄積される電荷を減少させることはできない。
 この発明は、このような課題を解決するためになされたものであり、絶縁基板のクラック発生およびモジュールの耐電圧低下を抑制でき、ガードリング上での電界集中を抑制し、素子内部空欠層内で発生する素子内リーク電流を低減できるとともに、ポッティング封止剤の電界緩和力を長期的に維持できる、安価なパワー半導体モジュールを提供することを目的とする。
 この発明に係るパワー半導体モジュールは、金属ベース板と、上記金属ベース板上に配設され、電極を有する絶縁基板と、上記絶縁基板上に配設された半導体素子と、上記絶縁基板および上記半導体素子を取り囲むように上記金属ベース板に配設されたケースと、上記金属ベース板と上記ケースに囲まれた空間内に充填されて、上記絶縁基板および上記半導体素子を封止するポッティング封止剤と、を備え、上記ポッティング封止剤は、シリコーンゲルと、上記シリコーンゲルに添加された、シリコン原子とイオン性基を含む導電性付与剤と、を備える。
 この発明に係るパワー半導体モジュールによれば、ポッティング封止剤を2層化する必要がないので、安価となる。シリコーンゲルに含まれる導電性付与剤の濃度が均一であり、拡散によるシリコーンゲル中のイオン濃度の低下がなく、ポッティング封止剤の電界緩和力が長期的に維持される。ポッティング封止剤がゲルであるので、絶縁基板のクラック発生を抑制できる。ポッティング剤がゲルに導電性付与剤を添加して構成されているので、ポッティング封止剤と半導体素子との界面絶縁抵抗が下がり、界面での蓄積電荷量が低減し、素子内部の素子リーク電流を低減できる。また、ポッティング封止剤の導電性は、モジュールの絶縁を低下させるほど大きくなく、むしろ電界集中を緩和させるように作用し、モジュール自体の耐電圧の低下が抑制される。
この発明の一実施の形態に係るパワー半導体モジュールを示す断面図である。 この発明の一実施の形態に係るパワー半導体モジュールにおける半導体素子を示す上面図である。 比較例のパワー半導体モジュールにおけるガードリング周りの電荷蓄積と空乏層境界線の状態を説明する要部断面図である。 この発明の一実施の形態に係るパワー半導体モジュールにおけるガードリング周りの電荷蓄積と空乏層境界の状態を説明する要部断面図である。 導電性付与剤が未添加のシリコーンゲルでポッティングされたIGBT素子の素子リーク電流を測定した結果を示す図である。 導電性付与剤が添加されたシリコーンゲルでポッティングされたIGBT素子の素子リーク電流を測定した結果を示す図である。 櫛形電極基板を示す上面図である。 櫛形電極基板の界面絶縁抵抗の測定方法を説明する模式図である。 櫛形電極基板における櫛形電極界面リーク電流と電圧印加時間との関係を示す図である。 評価モジュールにおける金属ベース板に半導体素子が実装された状態を示す上面図である。 評価モジュールのモジュール組立体を示す断面図である。 評価モジュールに用いられるポッティング封止剤で封止された櫛形電極基板における櫛形電極界面リーク電流と電圧印加時間との関係を示す図である。 評価モジュールの評価結果を示す図である。
 実施の形態.
 図1はこの発明の一実施の形態に係るパワー半導体モジュールを示す断面図、図2はこの発明の一実施の形態に係るパワー半導体モジュールにおける半導体素子を示す上面図である。
 図1において、パワー半導体モジュール100は、金属ベース板5と、金属ベース板5上に接合されて配設されたDBC(Direct Bond Copper)基板3と、DBC基板3上に接合されて配設された半導体素子6と、外部と電気的に接続するための複数の外部端子2と、外部端子2、DBC基板3、半導体素子6などの部品を取り囲むように金属ベース板5上に取りつけられたケース7と、金属ベース板5とケース7とで構成される空間内に充填されて、DBC基板3、半導体素子6などの部品を封止するポッティング封止剤1と、ケース7の上部開口を塞ぐ蓋8と、を備える。
 DBC基板3は、絶縁基板3aの両面に、銅又は銅合金で形成された回路層を直接接合して構成されている。絶縁基板3aは、セラミックス基板などにより構成されている。絶縁基板3aの上面に配設されている回路網が上電極3bであり、絶縁基板3aの下面に配設されている回路網が下電極3cである。半導体素子6は、IGBT、MOSFETなどパワー半導体素子である。
 金属ベース板5とDBC基板3との接合、DBC基板3と半導体素子6との接合には、半田を用いた接合、金属ナノ粒子を用いた接合、金属拡散による接合、超音波による接合などが用いられる。半導体素子6の間、半導体素子6とDBC基板3の上電極3bとの間は、ワイヤボンディングにより、すなわちワイヤ9により電気的に接続されている。
 半導体素子6には、ガードリング11と呼ばれる電界緩和パターンが形成されている。ガードリング11は、図2に示されるように、半導体素子6の表面の外周縁部を周回するように形成された、互いに離間する複数本の導電性リングにより構成されている。電極10が、半導体素子6の表面のガードリング11に囲まれた領域に形成されている。ガードリング11の本数は、半導体素子6の種類により適宜設定される。さらに、電界緩和用の半導電性のSinSiN膜(semi-insulating Silicon Nitride膜)がCVDにより半導体素子6の表面のガードリング11の導電性リング間に成膜されている。
 ポッティング封止剤1は、ゲルに導電性付与剤を添加して構成され、ポッティング封止剤1と半導体素子6との界面絶縁抵抗を下げている。ゲルは、分散質のネットワークにより高い粘性を持ちかつ流動性を失い、系全体としては固体状になったものである。ポッティング封止剤1のゲルは、ワイヤ9に作用する応力が小さく、ワイヤボンディングの長期信頼性を確保する観点から、低弾性率の材料を用いることが好ましく、ここでは、シリコーンゲルを用いている。シリコーンゲルは、付加型でも、縮合型でもよい。また、シリコーンゲルは、ジメチルポリシロキサン系でも、メチルフェニルポリシロキサン系でもよい。
 導電性付与剤は、シリコーンゲルと相溶する必要があるので、シリコーン変性イオン性液体が好ましい。つまり、導電性付与剤は、シリコン原子と、イオン性基と、を含んでいる。シリコーン変性イオン性液体は、硬化前のシリコーンゲルと相溶するが、シリコーンゲルが硬化すると、半導体素子および基板の表面に集まる特性を持つ。そこで、ポッティング封止剤1の体積絶縁抵抗を過度に下げることなく、ポッティング封止剤1と半導体素子およびポッティング封止剤1と基板との界面絶縁抵抗だけを下げることができるので、シリコーン変性イオン性液体の添加量が少なくてすむ。
 ポッティング封止剤1はシリコーンゲルに導電性付与剤を添加して構成されているので、ポッティング封止剤1は絶縁抵抗に非線形を有していない。そこで、特許文献2で課題となっている非導電性粒子を分散させることに起因するモジュール自体の耐電圧低下の発生を抑制することができる。また、ポッティング封止剤1は、モジュールの絶縁を低下させるほど大きくなく、むしろ電界集中を緩和するように作用する。これにより、モジュール自体の耐電圧低下を抑制することができる。
 金属ベース板5とケース7とで構成される空間内に充填されたポッティング封止剤1は、イオン性液体を含まないゲルにより覆われていない。また、ポッティング封止剤1中の導電性付与剤の濃度は均一である。そのため、ポッティング封止剤1中の導電性付与剤の濃度の低下が抑制され、電界緩和力が長期的に維持される。
 なお、シリコーン変性していない導電性付与剤は、シリコーンゲルと相溶しないため、分離してしまう。例えば、シリコーン変性していない導電性付与剤であるイオン性液体のエンスタットPR-IL1(化研産業株式会社の製品名)をシリコーンゲルに添加した場合、シリコーンゲルと相溶しなかった。
 つぎに、本発明に係るパワー半導体モジュールによる素子内リーク電流の低減効果、および耐電圧向上について図3および図4を参照しつつ説明する。図3は比較例のパワー半導体モジュールにおけるガードリング周りの電荷蓄積と空乏層境界線の状態を説明する要部断面図、図4はこの発明の一実施の形態に係るパワー半導体モジュールにおけるガードリング周りの電荷蓄積と空乏層境界の状態を説明する要部断面図である。
 比較例のパワー半導体モジュール200では、図3に示されるように、アルミ電極12、P層13、N-層14、N+層15、SiO2、PSGおよびSinSiNからなる層間膜16により構成された半導体素子6が、導電性付与剤が添加されていないポッティング封止剤としてのシリコーンゲル20により封止されている。本願のパワー半導体モジュール100では、図4に示されるように、同様に構成された半導体素子6が、導電性付与剤をシリコーンゲルに添加してなるポッティング封止剤1により封止されている。なお、シリコーンゲル20は、ポッティング封止剤1を構成するシリコーンゲルと同じものである。
 比較例のパワー半導体モジュール200では、電荷がワイヤから継続的に放出されるため、ワイヤ9から放出されてガードリング11の領域に到達した電荷が移動せず、蓄積される。つまり、図3に示されるように、アルミ電極12からなるガードリング11の領域において、+可動イオン17および-可動イオン18からなる電荷が、半導体素子6とシリコーンゲル20との界面に蓄積される。この蓄積された電荷が、空欠層境界19を外側に押し込む。これにより、半導体素子6の素子内部空欠層内で発生する素子内リーク電流が大きくなる。また、空欠層境界19の変形が、ガードリング11を構成するアルミ電極12間の電界の不均一、すなわち電界集中を招く。電界が集中した部分では、絶縁破壊を発生する可能性がある。
 本出願人が検討したところ、SinSiN膜の電気抵抗の温度依存性が大きいため、低温で電気抵抗が上がることが確認された。そこで、比較例のパワー半導体モジュール200では、低温となり、SinSiN膜が高抵抗となると、ワイヤ9から放出されてガードリング11の領域に到達した電荷が移動せず、電荷の蓄積が促進される。これにより、低温域では、半導体素子6の素子内部空欠層内で発生する素子内リーク電流が一層大きくなってしまう。
 本願のパワー半導体モジュール100では、ポッティング封止剤1が半導体素子6の表面および半導体素子6の表面の外周縁部にあるガードリング11に接している。そこで、シリコーンゲルに添加された導電性付与剤が半導体素子6の表面に集まり、半導体素子6とポッティング封止剤1との間の界面絶縁抵抗が下がっている。これにより、ワイヤ9から放出されてガードリング11の領域に到達した電荷が速やかに移動し、電界の蓄積が緩和される。つまり、図4に示されるように、ガードリング11を構成するアルミ電極12間の領域において、半導体素子6とポッティング封止剤1との界面に蓄積される電荷が、緩和され、少なくなる。そこで、空欠層境界19が正常な形を保持し、素子内部空欠層内で発生する素子内リーク電流の増大が抑制される。
 また、仮に低温となっても、低温となることに起因するSinSiN膜の抵抗の上昇は、半導体素子6とポッティング封止剤1との間の界面絶縁抵抗の低下により補完される。そこで、半導体素子6とポッティング封止剤1との界面に蓄積される電荷が、緩和され、少なくなる。これにより、低温域でも、素子内部空欠層内で発生する素子内リーク電流の増大が抑制される。
 つぎに、半導体素子であるIGBT素子の素子リーク電流を測定した結果を図5および図6に示す。図5は導電性付与剤が未添加のシリコーンゲルでポッティングされたIGBT素子の素子リーク電流を測定した結果を示す図、図6は導電性付与剤が添加されたシリコーンゲルでポッティングされたIGBT素子の素子リーク電流を測定した結果を示す図である。なお、素子リーク電流の測定は、室温で1チップで行った。ここでの評価は、素子内リーク電流だけを分けて測定して行うものではない。すなわち、ここでの素子リーク電流は、素子内リーク電流を包含している。
 ポッティング封止剤として導電性付与剤が未添加のシリコーンゲルを用いた場合、図5に示されるように、電圧印加後約1fsで、素子リーク電流が20mAを超えていた。一方、ポッティング封止剤として導電性付与剤が添加されたシリコーンゲルを用いた場合、図6に示されるように、素子リーク電流は約5mAを超えることがなかった。このように、ポッティング封止剤として導電性付与剤をゲルに添加して、ポッティング封止剤と素子との界面絶縁抵抗を下げることで、素子リーク電流を低減できることが確認された。
 ここで、ゲルに添加する導電性付与剤の最適値は、導電性付与剤の化学構造、ゲルの化学構造などによって異なるため、最適値を添加量で規定することは困難となる。そこで、本出願人は、セラミック基板の表面に櫛形対向電極パターンを形成した櫛形電極基板をポッティング封止剤で封止する構成におけるポッティング封止剤と基板との界面絶縁抵抗(電流値)で導電性付与剤の最適値を規定することに着眼した。また、界面絶縁抵抗が過度に低くなると、ポッティング封止剤と基板との界面で電流が流れて、絶縁不良を引き起こすことになる。そこで、本出願人は、導電性付与剤の最適添加量の範囲を添加量ではなく、導電性付与剤の添加後のポッティング封止剤と基板との界面絶縁抵抗の範囲で規定できると判断した。
 つぎに、ポッティング封止剤と基板との界面絶縁抵抗の範囲について検討する。図7は櫛形電極基板を示す上面図、図8は櫛形電極基板の界面絶縁抵抗の測定方法を説明する模式図、図9は櫛形電極基板における櫛形電極界面リーク電流と電圧印加時間との関係を示す図である。
 評価基板である櫛形電極基板21は、図7に示されるように、絶縁基板22の一面に銅を接合して構成されたDBC基板の一面にニッケルめっきを施し、エッチングによりパターニングして、櫛形対向電極パターン23を形成して、作製される。そこで、櫛形対向電極パターン23はニッケルと銅の2層構造となっている。絶縁基板22は、45.2mm×34mm×0.635mmの窒化ケイ素基板である。櫛形対向電極パターン23は、一対の電極の櫛が1mm離間して交互に配列されたパターンである。
 界面絶縁抵抗の測定は、図8に示されるように、櫛形電極基板21がケース24内に収納され、ポッティング封止剤25により封止された状態で行った。そして、櫛形電極基板21の櫛形対向電極パターン23の各電極引き出し部23aから引き出された電極線27,28がハイレジスタンスメータ26に接続される。そして、電極線27,28に1kVの直流電圧を印加して、櫛形電極基板21とポッティング封止剤25の櫛形電極界面リーク電流を測定し、その結果を図9に示す。図9では、SE-1885(東レ・ダウコーニング株式会社の製品名)にX-40-2450(信越化学工業の製品名)を0.00005重量%添加してなるポッティング封止剤25を用いた場合を実線で示し、ポッティング封止剤25としてシリコーンゲルのみを用いた場合を点線で示した。なお、SE-1885は、硬化してシリコーンゲルとなる。また、X-40-2450は、イオン性液体をシリコーン変性したイオン性基含有シリコーンオリゴマー(シリコーン変性イオン性液体)であり、イオン性基はビストリフルオロメタンスルホンイミドであり、導電性付与剤として機能する。
 図9から、ポッティング封止剤25として、導電性付与剤がシリコーンゲルに添加された封止剤を用いた場合、電圧印加後、櫛形電極界面リーク電流は、時間と共に小さくなった後、ほぼ一定の値に安定していることがわかった。これにより、少量の導電性付与剤の添加で界面絶縁抵抗が下がることがわかった。
 また、図9から、ポッティング封止剤25として、導電性付与剤が未添加のシリコーンゲルを用いた場合、電圧印加直後では大きな櫛形電極界面リーク電流が流れ、その後櫛形電極界面リーク電流が徐々に小さくなり、300秒後にほぼ一定の値に安定することがわかった。すなわち、経時変化を考慮して、300秒後の櫛形電極界面リーク電流値で界面絶縁抵抗値を判断することが好ましい。これにより、吸収電流の影響を受けることなく、界面絶縁抵抗値を判断できる。
 以下、導電性付与剤の添加量を変えてパワー半導体モジュールを作製し、それらの性能を評価した結果を説明する。図10は評価モジュールの金属ベース板に半導体素子が実装された状態を示す上面図、図11は評価モジュールのモジュール組立体を示す断面図、図12は評価モジュールに用いられるポッティング封止剤で封止された櫛形電極基板における櫛形電極界面リーク電流と電圧印加時間との関係を示す図、図13は評価モジュールの評価結果を示す図である。
 金属ベース板5は、190mm×140mm×3mmの銅板を用いた。DBC基板3は、51mm×30mm×1mmの窒化ケイ素からなる絶縁基板3aの両面に銅により形成された回路網が直接接合されたものを用いた。DBC基板3に搭載する半導体素子6は、IGBT6aとFWD(Free Wheeling Diode)6bを用いた。ポッティング封止剤1のゲルには、硬化してシリコーンゲルとなるSE-1885を用いた。導電性付与剤は、X-40-2450を用いた。
 そして、図10に示されるように、6枚のDBC基板3を金属ベース板5上に実装し、IGBT6aとFWD6bとを各DBC基板3に3つずつ実装した。ワイヤボンディングによりDBC基板3間などを電気的に接続した。図11に示されるように、枠状のケース7を、DBC基板3を取り囲むように、金属ベース板5に取りつけて、モジュール組立体110を作製した。
 SE-1885のA液とB液とを200gずつ計量し、攪拌混合した。ついで、X-40-2450の所定量を攪拌混合されたSE-1885に添加し、2分間減圧脱泡した。ついで、X-40-2450が添加されたSE-1885をモジュール組立体に減圧注入し、100℃のオーブンに入れて1時間加熱し、X-40-2450が添加されたSE-1885を硬化させた。この固化物がポッティング封止剤1であり、SE-1885の固化物がシリコーンゲルである。ついで、モジュール組立体110の上部開口を蓋8で塞ぎ、図1に示されるパワー半導体モジュール100と同等の評価モジュールを作製した。ここでは、X-40-2450の添加量を、0.1wt%、0.05wt%、0.005wt%、0.001wt%、0.0005wt%、0.0001wt%、0.00005wt%、0.00001wt%、0.000001wt%とした9種類の評価モジュールを作製した。
 室温での素子リーク電流と交流による部分放電との2項目で評価モジュールの評価を行い、その評価結果を図13に示した。素子リーク電流の評価は、室温で、評価モジュールに5200VのDC電圧を印加して素子リーク電流を計測して行った。そして、図5および図6の検討結果を考慮して、素子リーク電流の計測値が20mA未満の場合を合格とした。部分放電の評価は、評価モジュールに印加する電圧を、5kVステップで、30秒インターバルで昇圧させ、放電電荷を計測して行った。そして、放電電荷の計測値が10pC以上になる電圧が11.5kV以下の場合を合格とした。また、放電が発生しない場合でも、すなわち電圧が11.5kV以下の場合でも、電流値が50mA以上であれば、絶縁試験不合格とした。
 X-40-2450の添加量を変えた9種類のポッティング封止剤1により図7に示される櫛形電極基板21を封止し、図8に示される測定方法により、櫛形電極基板21における櫛形電極界面リーク電流を測定し、その測定結果を図12に示す。また、櫛形電極基板21に電圧を印加してから300秒後の櫛形電極界面リーク電流の測定値を図13に示した。この櫛形電極界面リーク電流の測定値は、ポッティング封止剤1を用いた界面の絶縁抵抗を電流値で表したものである。
 図12から、導電性付与剤であるX-40-2450の添加量が多くなるほど、櫛形電極界面リーク電流が大きくなることがわかった。すなわち、導電性付与剤であるX-40-2450の添加量を多くするほど、界面の絶縁抵抗が低くなることが確認できた。
 図13から、導電性付与剤であるX-40-2450の添加量が0.00001wt%以上であると、素子リーク電流が20mA未満であったが、添加量が0.000001wt%以下となると、素子リーク電流が20mA以上となることがわかった。これは、添加量を0.000001wt%以下とすることで、界面絶縁抵抗が低くなりすぎ、ワイヤ9から放出されてガードリング11の領域に到達した電荷が蓄積されて、素子リーク電流が増加したものと、推考される。
 図13から、導電性付与剤であるX-40-2450の添加量が0.005wt%より多くなると、部分放電および絶縁不良が発生することがわかった。これは、添加量を0.005wt%より多くすることで、界面絶縁抵抗が高くなりすぎ、ゲルと半層体素子との界面、基板の沿面などで電流がリークしたことによるものと、推考される。
 これらのことから、導電性付与剤であるX-40-2450の添加量を、0.005Wt%以下、0.00001wt%以上とすることが好ましい。また、X-40-2450の添加量が0.005Wt%のとき、櫛形電極界面リーク電流は1.5×10-8Aであり、X-40-2450の添加量が0.00001Wt%のとき、櫛形電極界面リーク電流は4.2×10-10Aであった。
 しかし、導電性付与剤の添加量の最適値は、導電性付与剤の化学構造、ゲルの化学構造などによって異なる。そこで、櫛形電極界面リーク電流が、1.5×10-8A以下、4.2×10-10A以上となるように、導電性付与剤の添加量を調整すればよい。
 ここでは、導電性付与剤としてX-40-2450を用いたが、導電性付与剤は、X-40-2450に限定されず、シリコーンゲルと相溶するイオン性液体、すなわちシリコーン変性イオン性溶液であればよい。
 また、ゲルとしてシリコーンゲルを用いたが、ゲルはシリコーンゲルに限定されず、低弾性率のゲルであればよい。この場合、導電性付与剤は、ゲルと相溶するイオン性液体を用いればよく、必ずしもシリコーン変性している必要はない。
 1 ポッティング封止剤、3 絶縁基板、5 金属ベース板、6 半導体素子、7 ケース、11 ガードリング、21 櫛形電極基板(評価基板)、22 絶縁基板(窒化ケイ素基板)、23 櫛形対向電極パターン。

Claims (4)

  1.  金属ベース板と、上記金属ベース板上に配設され、電極を有する絶縁基板と、上記絶縁基板上に配設された半導体素子と、上記絶縁基板および上記半導体素子を取り囲むように上記金属ベース板に配設されたケースと、上記金属ベース板と上記ケースに囲まれた空間内に充填されて、上記絶縁基板および上記半導体素子を封止するポッティング封止剤と、を備えたパワー半導体モジュールにおいて、
     上記ポッティング封止剤は、シリコーンゲルと、上記シリコーンゲルに添加された、シリコン原子とイオン性基を含む導電性付与剤と、を備えるパワー半導体モジュール。
  2.  上記ポッティング封止剤は、前記半導体素子の表面の外周縁部にあるガードリングに接している請求項1記載のパワー半導体モジュール。
  3.  上記ポッティング封止剤は、櫛を1mm間隔で交互に配列してなる櫛形対向電極パターンが窒化ケイ素基板上に形成されている評価基板が上記ポッティング封止剤で封止されている状態で、上記櫛形対向電極パターンの電極間に1kVの直流電圧を印加してから300秒後の櫛形電極界面リーク電流が、1.5×10-8A以下、4.2×10-10A以上である請求項1又は請求項2記載のパワー半導体モジュール。
  4.  上記イオン性基は、ビストリフルオロメタンスルホンイミドである請求項1から請求項3のいずれか1項に記載のパワー半導体モジュール。
PCT/JP2017/041164 2017-03-29 2017-11-15 パワー半導体モジュール WO2018179573A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112017007351.0T DE112017007351B4 (de) 2017-03-29 2017-11-15 Leistungshalbleitermodul
US16/483,970 US10892203B2 (en) 2017-03-29 2017-11-15 Power semiconductor module
JP2018513694A JP6395173B1 (ja) 2017-03-29 2017-11-15 パワー半導体モジュール
CN201780088342.5A CN110447098B (zh) 2017-03-29 2017-11-15 功率半导体模块

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017064797 2017-03-29
JP2017-064797 2017-03-29

Publications (1)

Publication Number Publication Date
WO2018179573A1 true WO2018179573A1 (ja) 2018-10-04

Family

ID=63674609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/041164 WO2018179573A1 (ja) 2017-03-29 2017-11-15 パワー半導体モジュール

Country Status (4)

Country Link
US (1) US10892203B2 (ja)
CN (1) CN110447098B (ja)
DE (1) DE112017007351B4 (ja)
WO (1) WO2018179573A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10173101A (ja) * 1996-12-10 1998-06-26 Toshiba Corp 半導体装置
JP2007305757A (ja) * 2006-05-11 2007-11-22 Mitsubishi Electric Corp 半導体装置
JP2013245236A (ja) * 2012-05-23 2013-12-09 Shin-Etsu Chemical Co Ltd シリコーンゴム組成物
JP2015511969A (ja) * 2012-01-04 2015-04-23 モメンティブ パフォーマンス マテリアルズ インコーポレイテッド イオン性シリコーンの硬化性組成物
JP2015207731A (ja) * 2014-04-23 2015-11-19 三菱電機株式会社 半導体装置
JP2017028132A (ja) * 2015-07-23 2017-02-02 富士電機株式会社 半導体モジュール及び半導体モジュールの製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3223835B2 (ja) 1997-03-28 2001-10-29 三菱電機株式会社 パワー半導体装置及びその製造方法
JP3703978B2 (ja) 1998-11-13 2005-10-05 株式会社東芝 半導体装置
US20110287316A1 (en) * 2010-05-21 2011-11-24 Ada Technologies, Inc. High performance carbon nano-tube composites for electrochemical energy storage devices
US8963321B2 (en) * 2011-09-12 2015-02-24 Infineon Technologies Ag Semiconductor device including cladded base plate
US8519532B2 (en) * 2011-09-12 2013-08-27 Infineon Technologies Ag Semiconductor device including cladded base plate
JP5987297B2 (ja) * 2011-11-10 2016-09-07 富士電機株式会社 パワー半導体装置の製造方法
US20130172192A1 (en) * 2012-01-04 2013-07-04 Momentive Performance Materials Inc. Ionically cross-linked silicone composition
WO2018047551A1 (ja) * 2016-09-09 2018-03-15 富士電機株式会社 半導体装置製造方法及び半導体装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10173101A (ja) * 1996-12-10 1998-06-26 Toshiba Corp 半導体装置
JP2007305757A (ja) * 2006-05-11 2007-11-22 Mitsubishi Electric Corp 半導体装置
JP2015511969A (ja) * 2012-01-04 2015-04-23 モメンティブ パフォーマンス マテリアルズ インコーポレイテッド イオン性シリコーンの硬化性組成物
JP2013245236A (ja) * 2012-05-23 2013-12-09 Shin-Etsu Chemical Co Ltd シリコーンゴム組成物
JP2015207731A (ja) * 2014-04-23 2015-11-19 三菱電機株式会社 半導体装置
JP2017028132A (ja) * 2015-07-23 2017-02-02 富士電機株式会社 半導体モジュール及び半導体モジュールの製造方法

Also Published As

Publication number Publication date
US20200091024A1 (en) 2020-03-19
DE112017007351B4 (de) 2023-02-23
CN110447098B (zh) 2022-11-25
DE112017007351T5 (de) 2019-12-12
CN110447098A (zh) 2019-11-12
US10892203B2 (en) 2021-01-12

Similar Documents

Publication Publication Date Title
JP6540324B2 (ja) 半導体モジュール及び半導体モジュールの製造方法
US7868436B2 (en) Semiconductor device
CN109743882B (zh) 半导体装置以及电力变换装置
JP6398270B2 (ja) 半導体装置
US9754855B2 (en) Semiconductor module having an embedded metal heat dissipation plate
CN101438403A (zh) 半导体装置及其制造方法
Waltrich et al. Enhancement of the partial discharge inception voltage of ceramic substrates for power modules by trench coating
JP2018182330A (ja) 半導体装置
JP2015115382A (ja) 半導体装置
US20180068918A1 (en) Power module
JP6395173B1 (ja) パワー半導体モジュール
WO2018179573A1 (ja) パワー半導体モジュール
Abdelmalik et al. Electric field enhancement control in active junction of IGBT power module
JP5826443B1 (ja) 半導体装置及びその製造方法
JP7325674B2 (ja) 半導体パワーモジュール
CN111033723B (zh) 功率半导体模块
JP2017224778A (ja) 半導体装置
JP3903850B2 (ja) インバーターモジュール
JP2006108437A (ja) 樹脂で被覆した高耐電圧半導体装置及びその製造方法
JP4824318B2 (ja) 半導体装置
JP7019883B1 (ja) 半導体装置および半導体装置の製造方法
JP7503508B2 (ja) パワー半導体装置
US20240178126A1 (en) Double-side cooled power modules
CN108987350B (zh) 一种半导体器件封装结构和方法
CN108630649A (zh) 一种半导体器件封装结构及封装方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018513694

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17903548

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17903548

Country of ref document: EP

Kind code of ref document: A1