WO2018177407A1 - 聚能生热高温热风机 - Google Patents

聚能生热高温热风机 Download PDF

Info

Publication number
WO2018177407A1
WO2018177407A1 PCT/CN2018/081295 CN2018081295W WO2018177407A1 WO 2018177407 A1 WO2018177407 A1 WO 2018177407A1 CN 2018081295 W CN2018081295 W CN 2018081295W WO 2018177407 A1 WO2018177407 A1 WO 2018177407A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
casing
heat generating
generator
energy
Prior art date
Application number
PCT/CN2018/081295
Other languages
English (en)
French (fr)
Inventor
林钧浩
Original Assignee
烟台通天达风机制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 烟台通天达风机制造有限公司 filed Critical 烟台通天达风机制造有限公司
Priority to US16/499,741 priority Critical patent/US20200132341A1/en
Priority to DE112018001816.4T priority patent/DE112018001816T5/de
Priority to KR1020197032375A priority patent/KR102220933B1/ko
Priority to RU2019130580A priority patent/RU2723539C1/ru
Priority to JP2019571677A priority patent/JP6808205B2/ja
Publication of WO2018177407A1 publication Critical patent/WO2018177407A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H3/00Air heaters
    • F24H3/02Air heaters with forced circulation
    • F24H3/06Air heaters with forced circulation the air being kept separate from the heating medium, e.g. using forced circulation of air over radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24VCOLLECTION, PRODUCTION OR USE OF HEAT NOT OTHERWISE PROVIDED FOR
    • F24V40/00Production or use of heat resulting from internal friction of moving fluids or from friction between fluids and moving bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H3/00Air heaters
    • F24H3/02Air heaters with forced circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/0052Details for air heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/18Arrangement or mounting of grates or heating means
    • F24H9/1854Arrangement or mounting of grates or heating means for air heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/16Waste heat
    • F24D2200/30Friction

Definitions

  • the invention relates to a collecting energy heat generating high temperature hot air fan, belonging to a thermal working machine and a gas machine.
  • the object of the present invention is to provide a high-temperature hot air, which has a large amount of hot air, high hot air pressure, energy saving, low noise, wide function, wide application range, and can meet various needs of high-temperature hot air for people's production and life. Gathering heat and high temperature hot air blower.
  • a muffler heat generating high temperature hot air blower including a casing, a casing air inlet, a casing air outlet, a casing outlet, an impeller, an impeller air inlet, a time wheel air outlet,
  • the blade, the leaf disc, the impeller bushing, the inner flow passage of the impeller, the inner flow passage of the casing, and the side wall of the inner flow passage of the casing are characterized in that a collecting energy heater is arranged on the side wall of the inner flow passage of the casing, and the collecting heat is generated.
  • the device is composed of a heat conduction conduction protection cover, a heat generating device friction heat generating body, and a heat insulating insulation wall of the heat generator.
  • the heat transfer protection cover of the heat generator is disposed outside the heat collecting heat generator, and the heat generating body side surface is attached with the heat generating device.
  • the heat generating device of the heat generating device is disposed on the inner side of the heat generating heat generator, and the two sides thereof are respectively connected with the heat conducting conduction shielding cover and the heat insulating insulating wall of the heat generator, and the heat insulating insulation wall of the heat generator is connected. It is disposed outside the shaped heat generator and is closely attached to the side of the heat generating body of the heat generating device.
  • the entire collecting heat generating device is closely connected with the side wall of the inner flow channel of the casing through the heat insulating partition wall of the heat generator.
  • the outer side surface of the blade of the present invention is provided with a collecting heat generator, and the collecting heat generating device is attached to the blade by the heat insulating partition wall of the heat generator.
  • the air inlet of the casing of the present invention is provided with a collecting heat generator, and the collecting heat generating device is closely connected with the inner side of the air inlet of the casing through the heat insulating partition wall of the heat generator.
  • the air outlet of the casing of the present invention is provided with a collecting heat generating device, and the collecting heat generating device is closely connected with the inner side of the air outlet of the casing through the heat insulating partition wall of the heat generator.
  • the side of the conductive protective cover of the shaped heat generator of the present invention is provided in the form of a smooth flat structure.
  • the side surface of the heat transfer conduction shield of the shaped heat generator of the present invention is provided in the form of a rugged structure.
  • the upper side of the frictional heat generating body of the shaped heat generator of the present invention is provided in the form of a flat structure.
  • the upper side of the heat generating material of the heat generating heat generator of the present invention is in the form of a rugged structure.
  • the heat generating device of the heat generating heat generator of the present invention is provided with a heat conducting element inside, and the heat conducting element is connected to the heat generating device through the heat generating device by friction generating the heat generating body.
  • the side or side wall of the impeller to which the central axis of the impeller is directed, the side or side wall of the casing are referred to as axial side or axial side walls.
  • the side of the impeller or the body facing the motor (or other power component) is the axial rear side, and the other side corresponding to it is the axial front side, the axial rear and the axial front reference and so on.
  • the impeller axis Near the impeller axis is the radial front part of the impeller, the front end is the radial front end of the impeller, the outer circumference of the impeller is the radial rear part of the impeller, and the outer peripheral edge is the radial end of the impeller (the relevant part of the casing refers to This type of push).
  • the direction of rotation of the impeller is axial, and the direction of rotation of the forward impeller is the front of the rotation or the front of the axial direction.
  • the direction of rotation of the impeller is the rear of the rotation or the rear of the axial direction.
  • the direction of the rotation of the vane in the direction of the vane is the axial front side, facing away from the impeller.
  • One side of the rotation direction is the axial rear side of the blade, and the reference of other relevant parts of the body is similar.
  • the orientation of the air inlet of the casing refers to: the inlet of the air inlet of the casing is the front, the outlet of the air inlet of the casing is the rear, and the other directions in the air inlet of the casing are referred to by analogy.
  • the radial inlet of the blade that is, the airflow inlet formed by the radial front end of the blade.
  • the axial inlet of the blade that is, the airflow inlet formed by the axial side of the blade.
  • the back pressure fan impeller negative pressure gap after the synchronous flow fan impeller synchronous downstream air inlet.
  • the blade working face the side of the blade that is turned along the axial direction of the impeller is the blade working face, and the front side of the blade is also referred to as the blade working face.
  • the impeller flow passage refers to the inner flow passage of the impeller and the vane flow passage; the vane is a flow passage member, and the vane flow passage is the vane itself.
  • the flow passage component in the machine body refers to the components through which the gas to be processed and processed passes, such as the air inlet of the casing, the impeller, the air inlet of the impeller, the air outlet of the impeller, the impeller blade, the inner flow passage of the casing, and the air outlet of the casing.
  • the energy collecting heat high temperature hot air fan of the invention adopts the principle of pneumatic energy conversion heat generation, directly processes the cold air into hot air, and does not need any heat source heat medium (electric heating wire, electric heating pipe, electric heating plate, coal furnace, oil furnace, gas furnace, etc.)
  • the mechanical energy is converted into heat energy only by the operation of the fan itself, and then discharged by the air outlet of the hot air blower.
  • the energy-generating heat-generating high-temperature hot air blower of the invention adopts the principle of gas collision friction stagnation heat generation to promote energy conversion, converts mechanical energy into heat energy, generates heat, raises gas temperature, and forms high temperature hot air.
  • gas collision stagnation heat generation principle refers to the pressure energy of one or several high-speed airflow collisions or cross-jet collisions or jet collisions on the runner components, or the mechanical energy of the airflows to cause internal friction of the runner components, decelerating and decompressing, and reducing the airflow.
  • the speed energy kinetic energy
  • heat energy which generates heat and becomes a hot air at a high temperature.
  • the existing various ventilators, blowers, compressors, compressors, etc. are all cold chillers.
  • the concentrating heat generating high temperature hot air blower is a hot air blower, that is, the hot air blower is opposite to the cold air blower.
  • the heat blower is suitable for use in the production and living areas where hot air is required.
  • the hot air blower of the present invention is similar to various existing air coolers such as air blowers and blowers, and has different sizes, models, small tens of watts, large tens of kilowatts, several hundred kilowatts, several thousand kilowatts, and the like.
  • the air volume can be several cubic meters per second, several tens of cubic meters per second, several hundred cubic meters per second;
  • the generated hot air pressure can be several tens of Pa, several hundred Pa, several thousand Pa, tens of thousands of Pa;
  • the generated hot air temperature can It is a few degrees Celsius, a few dozen degrees, a few Baidu.
  • the hot air blower of the invention has many functions, wide application, wide application range, is favorable to environmental protection, adapts to various fields of production and life, heating, heat preservation, drying, baking food processing, agricultural fruit and vegetable greenhouse, livestock breeding, fishery aquatic products. Breeding and other insulation, industrial high-temperature painting, product processing, etc., in many industries, in many industries, can be used instead of air-cooled ventilation.
  • the hot air blower of the invention is more energy-saving than the cold air blower and is environmentally friendly.
  • the invention is provided with a collecting energy heat generating device on the side wall of the inner flow passage of the casing, and the collecting heat generating device is composed of a heat generating conductive protective cover, a heat generating device friction heat generating body and a heat insulating insulating wall, and the heat generating device is provided with a protective cover. It is arranged on the outer side of the energy-generating heat generator, and is connected with the heat-generating friction heat generating body side; the heat-conducting conductive protective cover is made of tough and elastic material with good thermal conductivity (such as plastic plate, nylon plate, nylon cloth, synthetic Fabric, plush, ceramic, cotton, gold silk, leather, liquid glue, paint, etc.
  • the heat conduction shield of the heat generator blocks the high-speed airflow from directly colliding with the friction heat generating body of the heat generator, and protects the friction heat generator of the heat generator from being worn away by abrasion.
  • the heat conduction shield of the heat generator directly receives the collision of the high-speed airflow, and directly drives the high speed.
  • the mechanical energy transmitted by the airflow is transmitted to the heat generating device to generate heat, which causes the heat generating device to frictionally generate heat in the inner layer of the heat generating body, and can also heat the heat generated by the heat generating device to the heat generating body from inside to outside. It is transmitted to the gas in the inner channel of the casing to raise the temperature of the gas and form a hot air at high temperature.
  • the heat generating device of the heat generating device is disposed on the inner side of the heat generating heat generator, and the outer side surface is closely connected with the heat conducting protective cover of the heat generator, and the bottom side is closely connected with the heat insulating partition wall of the heat generator.
  • the heat generating device of the heat generating device is composed of a soft and elastic damping material (soft rubber, sponge, soft plastic foam film, cotton wool, fluff, ceramic cotton, etc.).
  • the heat generating device of the heat generating device has a larger thickness and larger volume than the heat-conducting heat-conducting protective cover and the heat-insulating partition wall of the heat generating device, and has a good damping function.
  • the heat generating device of the heat generating device is the main core component of the heat generating heat generator.
  • the energy-generating heat generator mainly relies on the heat generator to rub the heat generating body to generate heat and raise the temperature of the gas.
  • the heat insulating partition wall of the heat generator is disposed outside the bottom surface of the heat generating heat generator, and one side thereof is closely connected with the bottom surface of the heat generating device of the heat generating device, and the other side surface of the heat sink is connected with the side wall of the side flow channel (or The other parts of the body are attached and joined together.
  • the entire energy-generating heat generator is connected to the side wall of the flow channel inside the casing (or the exterior of other parts of the body) by means of the heat insulating partition wall of the heat generator.
  • the heat insulator insulation wall is composed of a tough insulating material (such as heat insulating rubber, heat insulating tape, glass wool, etc.).
  • the heat insulator insulation wall is disposed between the side wall of the inner flow passage of the casing (or the exterior of other parts of the machine body), and can block the heat generated by the heat generating body of the heat generator from being transmitted to the side wall of the inner flow passage of the casing (or other body)
  • the outer part of the component is transmitted out of the outside of the body, and the heat generated by the heat generating body of the heat generating device is transmitted from the heat conduction conduction cover of the heat generating device to the flow channel gas inside the casing to raise the gas temperature of the flow channel inside the casing.
  • the high-pressure high-speed airflow discharged from the fan impeller directly impacts the heat-conducting conduction protection cover of the energy-generating heat-generating device on the side wall of the flow channel on the inner side of the casing, prompting the heat-conducting device to transmit the protective cover and squeeze the heat generating device to generate heat.
  • the body is a heat generating body that frictionally generates heat, and conducts pressure and kinetic energy. After the heat generating body absorbs the pressure and dynamic mechanical energy, the heat generating body absorbs the pressure and dynamic mechanical energy, and causes the internal layer to violently rub the heat, and the mechanical energy is heat energy and generates heat.
  • the heat generated by the heat generating body friction heat generating body will not be transmitted to the inner side of the flow channel of the casing and is lost to the outside of the machine body, and the heat generated by the heat generating device friction heat generating body will be It is mainly transmitted to the high-pressure high-speed airflow in the inner channel of the casing through the heat-conducting protective cover, which causes the temperature to rise and form a high-temperature hot air.
  • the pressure dynamic mechanical energy carried by the high-pressure high-speed airflow can be concentrated in the heat generating device of the heat generating device in the heat generating heat generator, and is converted into heat energy by friction to generate heat. Therefore, the hot air blower is called a heat generating heat generating high temperature hot air blower.
  • a collecting energy heater is arranged on the side wall of the inner flow passage of the casing, which means that a collecting energy heater can be arranged on the radial side wall (including the volute tongue) of the inner flow passage of the casing, and the flow channel shaft can be separately arranged on the inner side of the casing.
  • a collecting heat generator is disposed on the side wall, and a collecting heat generator can be disposed on the axial side wall of the radial side wall of the flow channel inside the casing at the same time.
  • a collecting heat generator is arranged on the radial side wall of the inner flow passage of the casing or the axial side wall of the inner flow passage of the casing, and the high-pressure high-speed airflow of the impeller arranged in the inner flow passage of the casing is impacted by one side or two sides thereof.
  • the heat generating device can convert part of the mechanical energy of the part of the airflow of the high-pressure high-speed airflow of the impeller to the inner flow passage of the casing into heat energy.
  • a large-capacity heat generator is arranged on the radial side wall and the axial side wall of the inner flow passage of the casing, and most of the high-pressure high-speed air flow of the impeller in the inner flow passage of the casing hits the energy-generating heat generator at the same time, and most of the pressure dynamic mechanical energy It is converted into heat by friction, so that more heat can be generated, causing the gas temperature to rise higher.
  • the present invention can also provide a collecting heat generator on the inner side of the leaf disc, and the structure of the collecting heat generator disposed on the side wall of the inner flow passage of the casing.
  • the performance characteristics are the same.
  • the shaped heat generator is attached to the inner side of the leaf disc to block the high-pressure high-speed airflow directly impacting the outer side of the impeller, directly receiving the impact impact of the high-pressure high-speed airflow, and absorbing the pressure dynamic mechanical energy to generate heat by friction.
  • the invention can also provide a collecting heat generator on the outer side of the blade, the collecting heat generator wrapping the blade and being closely connected with the blade, the structure, performance and function of the collecting heat generator are on the side wall of the inner flow channel of the casing
  • the structured heat generator has the same structure, performance and function.
  • both the inner side of the impeller and the outer side of the vane are provided with a concentrating heat generator, the inner flow passage of the impeller is completely constituted by the concentrating heat generator.
  • the high-speed airflow processed by the vane passes through the inner flow passage of the impeller.
  • the impact energy collector is impacted from four or three sides (with no front blade impeller), so that the side wall around the inner flow passage of the impeller can absorb mechanical energy to generate heat and generate heat.
  • the present invention can also be provided with a collecting and generating heat generator respectively at the air inlet of the casing and the air outlet of the casing, and the energy generating heat generating device is respectively arranged on the air inlet of the casing and the inner side of the air outlet of the casing, the structure of the energy generating device, The performance, function and structure of the shaped heat generator on the side wall of the inner channel of the casing are the same.
  • the outer surface structure of the heat conduction shielding cover of the heat generator can adopt a smooth and flat structure form. It is also possible to adopt an uneven structure.
  • the heat-conducting conductive protective cover has a smooth surface and a flat structure. When working, the high-pressure high-speed airflow can be smoothly passed from the surface thereof, which can cause the heat generating device to frictionally heat the internal layer of the heat generating body to generate heat.
  • the surface of the heat-conducting protective cover is rugged and structured, and when working, it can generate a large resistance to the high-pressure high-speed airflow. The frictional heat generation effect generates heat, which causes the temperature of the gas in the flow channel inside the casing to rise a little.
  • the outer surface of the heat generating body of the heat generating heat generating device may be in the form of a flat structure, and may be in the form of a rugged structure, if the heat generating device rubs the uneven surface structure on the outer surface of the heat generating body, and the protruding portion (protruding)
  • the part is called the friction heat generating body convex point
  • the concave part is called the friction heat generating body concave point
  • the height is too high
  • the convex point surface is uneven
  • the heat generating device protective cover is also corresponding to the unevenness.
  • the entire energy-generating heat generator when working, the entire energy-generating heat generator will be able to pass through the heat-conducting heat-conducting protective cover, the heat generating device to rub the inside of the heat generating body, and the internal and external portions of the heat generating body convex point to be intensely rubbed, thereby generating The heat is more and the gas temperature can rise even higher.
  • the energy-generating heat-generating high-temperature hot air fan can effectively and effectively decompress the high-pressure high-speed airflow processed by the fan impeller by means of the energy-generating heat generator and the heat generator of the energy-generating heat generator. Deceleration generates heat and forms hot air at high temperatures.
  • the damping function of the friction heat generating body can also fully and effectively reduce the noise of the fan.
  • the noise sound wave excited by the hot air fan has a certain mechanical energy, and when the sound wave hits the energy generating heat generator, the inside of the energy generating heat generator can be promoted.
  • the heat of the friction device generates heat, which generates heat, and the mechanical energy is heat energy, so that part of the sound waves can be weakened or eliminated, and as a result, the noise is reduced or eliminated.
  • the energy collector can reduce the probability of noise generated by high-pressure high-speed airflow, and the control fan can only form a limited Low noise.
  • the energy-generating heat generator can control the fan to produce only a limited low noise, and can further reduce and reduce the noise caused by the fan airflow to form lower noise.
  • the energy-generating heat generator can not only generate heat from the fan, but also reduce the noise of the fan.
  • the improved energy-generating heat generator technology can develop a concentrated energy-generating high-temperature hot air blower product with energy saving and emission reduction.
  • the invention can be provided with a collecting heat generator respectively on the side wall of the flow channel on the inner side of the casing, on the blade disc, on the blade, in the air inlet of the casing, in the air outlet of the casing, or at the same time.
  • the high-pressure high-speed airflow can produce better collision friction effect on the energy-generating heat generator, generate more heat, form a higher temperature hot air, and at the same time be more effective. Reduce noise.
  • the present invention can also provide a special heat transfer element inside the heat generating body of the heat generating device (heat transfer) Good performance wire or metal sheet, etc.).
  • the heat transfer element is also directly connected to the heat transfer conduction shield.
  • the heat transfer conduction cover absorbs the heat generated by the heat generator friction heat generating body through the special heat transfer element and then conducts the gas conducted to the flow channel inside the casing.
  • Figure 1 is a schematic view showing the structure of a first embodiment of the present invention.
  • FIG. 2 is a schematic view showing the structure of the inner flow passage of the casing according to the first embodiment of the present invention.
  • FIG 3 is a schematic structural view of a concentrating heat generator according to a first embodiment of the present invention.
  • FIG. 4 is a schematic structural view of a heat conduction conduction shield of a heat generator according to a first embodiment of the present invention.
  • FIG. 5 is a schematic structural view of a heat insulating partition wall of a heat generator according to a first embodiment of the present invention.
  • Fig. 6 is a schematic view showing the structure of a friction heat generating body of a heat generator according to a first embodiment of the present invention.
  • Figure 7 is a schematic view showing the structure of a second embodiment of the present invention.
  • FIG 8 is a schematic view showing the structure of an impeller according to a second embodiment of the present invention.
  • Figure 9 is a schematic view showing the structure of a third embodiment of the present invention.
  • Figure 10 is a schematic view showing the structure of the inner flow passage of the casing according to the third embodiment of the present invention.
  • Figure 11 is a schematic view showing the structure of a concentrating heat generator according to a third embodiment of the present invention.
  • Figure 12 is a schematic view showing the structure of a friction heat generating body of a heat generator according to a third embodiment of the present invention.
  • Figure 13 is a schematic view showing the structure of a conductive protective cover according to a third embodiment of the present invention.
  • Figure 14 is a schematic view showing the structure of a fourth embodiment of the present invention.
  • Figure 15 is a schematic view showing the structure of the inner flow passage of the casing according to the fourth embodiment of the present invention.
  • Figure 16 is a schematic view showing the structure of a wind-proof heat generator according to a fourth embodiment of the present invention.
  • Figure 17 is a schematic view showing the structure of a friction heat generating body according to a fifth embodiment of the present invention.
  • a collecting heat generating high temperature hot air blower includes a casing 1, a casing air inlet 2, a casing air outlet 3, an impeller 4, an impeller air inlet 5, an impeller air outlet 6, and a blade.
  • the impeller 4 is a single According to the leaf disc structure, the entire impeller 4 is not provided with a front leaf disc, the vane 7 is a rear flow fan impeller vane, and the radial inner casing inner flow passage side wall 12 (including the volute tongue) and the inner side of the axial casing of the inner flow passage 11 of the casing A collecting heat generator 13 is attached to the side wall 12 of the flow path.
  • the heat generating heat generator 13 comprises a heat-conducting heat-conducting protective cover 14 made of a nylon sheet which is flexible and has good elastic heat conductivity, a heat generating material friction heat generating body made of a soft rubber slab having a good elastic damping property, and a toughness strength.
  • the heat insulating partition wall 16 is made of a heat generating sheet made of a thin rubber sheet.
  • the heat transfer protection cover 14 is disposed outside the heat collecting heat generator 13 and is frictionally attached to the heat generating body 15 to be loosely attached and bonded together.
  • the heat generating material friction heat generating body 15 is disposed on the inner side of the energy collecting heat generator 13 , and the outer side surface thereof is adhered and adhered together with the heat generating material protective cover 14 , and the bottom side surface is adhered and adhered to the heat insulating heat insulating partition wall 16 .
  • the heat insulator insulating wall 16 is provided on the outer side of the bottom surface of the heat generating heat generator 13, and the upper side thereof is pasted with the heat generating body friction heat generating body 15, and the bottom side thereof is pasted with the bottom surface of the flow side wall 12 of the inner side of the casing. Together, the entire collecting heat generator 13 is connected to the inner flow passage of the casing by means of the heat insulator insulating wall 16 of the heat generator.
  • the casing is generally low-heat and large-flow structure, the axial dimension of the casing is large, the air inlet 2 and the air outlet 3 of the casing are relatively large, and the motor 21 shaft is connected with the impeller bushing 9.
  • the motor 21 drives the impeller 4 to rotate at a high speed, and the impeller that rotates at a high speed is sucked into the cold air through the impeller inlet 5 and the casing inlet 2 to be processed into a high-pressure high-speed airflow, and the high-pressure high-speed airflow is discharged from the impeller outlet 6 to the casing.
  • the inner flow passage 11, the high-pressure high-speed airflow flowing in the inner flow passage 11 of the casing will continuously collide with the heat accumulation heat generated on the side wall 12 of the inner side of the radial casing and the side wall 12 of the inner side of the axial casing.
  • the heat generator of the device 13 conducts the protective cover 14 to urge the heat generating device to conduct the protective cover 14 to squeeze the heat generating device to heat the heat generating body 15 to conduct the pressure generating power for the heat generating device of the heat generating device.
  • the body 15 absorbs the pressure and dynamic mechanical energy, it causes the internal layer to violently rub the heat and change the mechanical energy into heat energy to generate heat.
  • the heat generated by the heat generating body friction heat generating body will not be transmitted to the inner side of the casing flow path side wall 12 and lost to the outside of the machine body.
  • the heat generated by the heat generating device friction heat generating body 15 is transmitted to the high-pressure high-speed gas of the inner flow passage 11 of the casing through the heat-conductor conduction protection cover 14 to promote the temperature rise to form a high-temperature hot air, and the high-temperature hot air flows to the casing.
  • the air outlet 3 is discharged from the body and is used for other purposes.
  • the heat transfer conduction cover 14 of the heat generating heat generator 13 is loose, soft and elastic, and the heat generating body friction heat generating body 15 is soft and elastic and has a large thickness.
  • the heat generating device conducts a protective cover. 14 will continuously squeeze the heat generating device friction heat generating body 15 contraction friction, which can promote high-speed airflow decompression and deceleration to continue one-way flow, does not cause the unidirectional airflow to generate reverse flow due to collision friction, resulting in reverse airflow and forward The airflow collides with each other to generate noise.
  • the noise sound wave originally excited by the high-pressure high-speed airflow has a certain mechanical energy
  • the noise sound wave hits the soft and elastic heat-generating heat-conducting protective cover 14 The noise sonic mechanical energy will pass the heat generating device to the heat generating device to transfer the heat generating body 15 to cause the heat generating device to frictionally generate heat inside the heat generating body 15 and change the mechanical energy into heat energy, thereby reducing and eliminating part of the noise sound wave.
  • the fan noise is reduced.
  • the required high temperature hot air can be processed, the hot air processing effect is good, the efficiency is high, the processing noise is low, and the environment is favorable.
  • This example is suitable for the production of high-pressure and high-flow heat-generating high-temperature hot air blowers for heating and greenhouse breeding.
  • the provided energy-generating heat generator 13 can be directly made of a soft rubber plate, and the bottom side of the soft rubber plate is coated with a layer of high-temperature resistant liquid glue or paint, through liquid glue or paint machine.
  • the side wall of the inner side of the shell is bonded together.
  • the liquid glue or paint is the heat insulating partition wall 15 of the heat generator.
  • the thick rubber plate is coated with a layer of liquid rubber or paint with high temperature resistance and high heat conductivity, or a thick rubber plate is covered with a layer of stainless steel mesh.
  • the liquid glue paint or stainless steel mesh is the heat transfer protection cover 14 of the heat generator.
  • Embodiment 2 referring to FIG. 7 and FIG. 8, this example is basically the same as that of the example 1. The difference is that the impeller blades 7 and the leaf discs 8 of the present embodiment are provided with a collecting energy generator 13, and the two types of collecting heat generators are provided. 13 has the same structure, function and function as the collecting heat generator 13 on the side wall 12 of the inner flow passage of the casing.
  • the collecting heat generator 13 on the blade encloses the blade 7, and the collecting heat generator 13 on the leaf disc is bonded to the inner side surface of the blade disc, and the collecting heat generator 13 on the blade and the collecting heat generator 13 on the leaf disc 13 A new impeller inner flow passage 10 is formed.
  • the high-speed high-speed airflow processed by the blade 7 anytime and anywhere impacts the energy-generating heat generator 13 on the blade 7 and the leaf disk 8 anytime and anywhere, and heat is generated anywhere in the inner flow channel 10 of the entire impeller to raise the temperature of the gas and form a high-pressure high-speed.
  • High-temperature hot air the high-pressure high-speed hot air is discharged through the impeller air outlet 6 to the inner flow passage 11 of the casing, and then impacts the collecting heat generator 13 on the axial side wall of the radial side wall of the inner flow passage of the casing to promote the energy generating heater 13
  • the inner layer is heated by friction and heat is generated to further increase the temperature of the gas.
  • the high-speed airflow processed by the impeller is cooled by the frictional decompression and heat generation through the impeller inner flow passage 10 and the inner wall flow passage 11 of the casing, and the generated heat has a higher temperature rise.
  • the damping effect of the heat generating heat shield 14 and the heat generating friction heat generating body 15 of the heat generating heat generator 13 is low, and the noise generated during the operation of the present example is also low, and noise pollution is not caused.
  • This example is suitable for the production of general heating fan heating and heating and the use of greenhouse heating.
  • Embodiment 3 with reference to FIG. 9 to FIG. 13, this example is basically the same as that of the example 1, except that the heat generating heat shield 14 of the collecting heat generator 13 on the side wall 12 of the inner flow passage of the present case is concave and convex. Uneven structure (wear-resistant artifacts).
  • the second difference is that the air inlet 2 and the air outlet 3 of the casing are provided with a collecting heat generator 13, and the heat generating heat shield 14 of the collecting heat generator 13 in the air inlet 2 of the casing is In the form of a rugged structure, the heat generating heat shield 14 of the collecting heat generator 13 in the air outlet 3 of the casing is in the form of a smooth flat structure, and the collecting heat generator 13 in the air inlet of the casing and the air in the air outlet of the casing
  • the heat generating device 13 is respectively disposed on the inner side wall of the casing air inlet 2 and the casing air outlet 3, and is adhered to the air inlet of the casing and the inner side wall of the air outlet of the casing.
  • the suction cold air enters the air inlet of the casing at a high speed
  • the high-speed cold air enters the air inlet 2 of the casing
  • the uneven heat generating device in the air inlet 2 of the casing impacts.
  • the cover 14, the uneven heat-generating protective cover 14 absorbs the pressure dynamic mechanical energy transmitted by the high-pressure high-speed airflow, on the one hand, causes the self-violent friction to generate heat, and on the other hand, squeezes the heat generating device to generate heat.
  • the heat exchanger friction heat generating body transfers mechanical energy, causing the heat generating device to frictionally generate heat in the inner layer of the heat generating body, generating heat, and the heat generated by the two causes the high-pressure high-speed airflow entering the air inlet 2 of the casing to become a high-temperature hot air.
  • the high-temperature hot air is discharged to the impeller 4, processed by the impeller 4 to increase the speed of the pressurization, and then discharged into the inner flow passage 11 of the casing, and is arranged in the inner flow passage 11 of the casing to collide with the side wall of the inner flow passage of the casing.
  • the heat generator of the heat generator 13 conducts the protective cover 14 to promote the uneven heat generating heat shield 14 to generate heat, (the artificial wool and the wool, the wool and the gas rub against the gas), causing the heat generator to rub the heat generating body 15 violent friction generates heat, generates heat, and raises the hot air temperature.
  • the high-temperature hot air enters the air outlet 3 of the casing, and then the heat generating body of the heat generating device 13 in the air outlet 3 of the casing 3 frictionally generates heat, generates heat, and raises the temperature of the hot air again to form a higher temperature.
  • the high temperature hot air is then discharged to the body for other uses.
  • the cold air entering the machine body experiences the heat transfer conduction cover 14 of the heat accumulator 13 of the heat storage device 13 of the casing inner air inlet 11 and the casing air outlet 3, and the heat generating device friction heat generation
  • the inner layer of the body is multi-layered to generate heat, which generates more heat and the gas temperature rises higher (>100 ° C).
  • the noise generated during the work of this example is very low and does not pollute the environment.
  • This example is suitable for the production of ultra-high temperature hot air blowers.
  • Embodiment 4 with reference to FIG. 14 to FIG. 16, this example is basically the same as that of the third embodiment.
  • the difference is that the energy distribution in the side wall 12 of the inner side of the casing of the present embodiment, the air inlet 2 of the casing, and the air outlet 3 of the casing are different.
  • the heat generator friction heat generating body 15 of the heater 13 is composed of a high temperature resistant sponge product.
  • the upper surface of the sponge friction heat generating body 15 is in the form of an uneven structure without grinding teeth.
  • the heat transfer heat shield 14 on the heat generating heat generator 13 is composed of a high-strength wear-resistant nylon thread fabric, and the nylon fabric heat spreader protective cover 14 is in the form of a nest-folded structure, and the socket shape and the sponge are formed.
  • the shape of the upper surface of the heat generating frictional heat generating body 15 corresponds to the shape of the tooth.
  • the heat insulator insulating wall 16 on the heat generating heat generator 13 is composed of artificial leather having high temperature
  • the second difference is that the windshield heat generator 19 is disposed in the inner flow passage 11 of the casing, and the heat generating device 13 is disposed on the windshield heat generator 19, and the heat generating device 13 is heated by the heat generating device.
  • the heat generating body 15 is composed of a flat sponge, and the heat generator conductive protective cover 14 on the collecting heat generator 13 is composed of a stainless steel mesh.
  • the high-speed cold air sucked in by the casing air inlet 2 passes through the sponge heat generator on the energy collecting device 13 in the air inlet 2 of the casing, and the inner surface of the heat generating body 15 and the heat conduction protection cover 14 are generated.
  • the processing becomes a warm wind, and the high-temperature hot air is further increased into a high-pressure high-speed warm air by the impeller, and the high-pressure high-speed warm air enters the inner flow passage 11 of the casing, and passes through the side wall 12 of the inner flow passage of the casing.
  • the heat generator friction heat generating body 15 of the heat generating heat generator 13 and the heat generating heat shield 14 again process the heat generated by the heat generating heat, and the high pressure high speed hot air also hits the wind heat generating device 19 in the inner flow passage 11 of the casing.
  • the collecting energy generating device 13 on the heat generating device 13 on the collecting heat generator 19 is again processed by the heat generating body friction generating heat generating body 15 and the heat generating heat shield 14 to generate heat, thereby generating heat. Ultra-high temperature hot air at a higher temperature.
  • the high-pressure high-speed ultra-high temperature hot air is again processed by the heat generator friction heat generating body 15 and the heat generator conduction protection cover 14 on the collecting heat generator 13 in the air outlet 3 of the casing to generate heat, and further increase
  • the temperature becomes a superheated hot air of a higher temperature and is discharged to the body.
  • the friction heat generating body 15 on all the energy generating heat generators 13 of the present example is composed of a high temperature resistant sponge product, and the damping friction heat generating effect and the sound reducing effect are better, so that more heat is generated and the temperature rises even more.
  • High >200 ° C
  • This example is suitable for the production of ultra-high temperature hot air blowers (>200 ° C) for food processing, industrial product processing and so on.
  • Embodiment 5 with reference to Fig. 17, this example is basically the same as Example 1, except that the heat generating material friction heat generating body 15 of the present energy collecting heat generator 13 is made of thick wool.
  • the heat generating device of the thick wool pile energy generating heat generating device 15 is provided with a heat conducting property containing a gold steel coil spring heat conducting element 17, and the coil spring heat conducting element 17 is transversely passed through the wool pile heat generating device. It is connected with a thin nylon plate heat generator conduction protection cover 14.
  • the heat generated by the heat generating device of the heat accumulator of the heat sink 13 on the inner side of the casing is transmitted to the heat transfer conduction cover of the heat generator, and then the heat shield transmits the protective cover to the flow path of the casing.
  • the gas in the 11 causes the gas in the flow channel inside the casing to rapidly heat up and quickly becomes a hot air at a high temperature.
  • this example is suitable for the production of general high-temperature hot air fans for heating, ecological greenhouse heating and warmth.
  • the shaped energy heat-generating high-temperature heat blower of the present invention rubs the damping function of the heat generating body by means of the energy generating heat generator and the heat generator of the energy collecting heat generator, and can fully decompress and decompress heat generated by the high-pressure high-speed airflow processed by the fan impeller. , the formation of high temperature hot air.
  • the utility model provides a high-energy heat and high-temperature heat which can generate high-temperature hot air, has large hot air volume, high hot air pressure, energy saving, low noise, wide function, wide application range, and can meet various needs of high-temperature hot air for people's production and life. Fan.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Wind Motors (AREA)

Abstract

一种聚能生热高温热风机,包括机壳(1),机壳(1)内设有机壳内侧流道侧壁(12),机壳内侧流道侧壁(12)上设有聚能生热器(13),聚能生热器(13)包括生热器传导保护罩(14)、生热器摩擦生热体(15)和生热器绝热隔离壁(16);生热器传导保护罩(14)和生热器绝热隔离壁(16)分别设于生热器摩擦生热体(15)两侧,并分别与生热器摩擦生热体(15)侧面贴合;聚能生热器(13)通过生热器绝热隔离壁(16)与机壳内侧流道侧壁(12)贴合连接。该聚能生热高温热风机能够产生高温热风,具有热风量大、热风压高、节省能源、噪音低、功能多和使用范围宽广的优点,能够满足人们生产生活对高温热风的多种使用需要。

Description

聚能生热高温热风机 技术领域
本发明涉及一种聚能生热高温热风机,属于热工机械和气体机械。
背景技术
现在人们使用的各种通风机、鼓风机、压气机、压缩机等气体机械只能加工出冷气体,不能加工出热气体;人们正在使用的几种气动生热型热风机,虽然能加工出高温热风机,但是加工有效热效率低耗能多,噪音大,不利于环保。由此,现有的各种气体机械不能满足人们生产生活中对高温热风的多种使用需要。
发明的公开
本发明的目的在于:提供一种能够产生高温热风,并且热风量大、热风压高、节省能源、噪音低、功能多、使用范围宽广、能够满足人们生产生活对高温热风的多种使用需要的聚能生热高温热风机。
本发明的目的可以通过如下技术措施来达到:一种消音生热高温热风机、包括机壳、机壳进风口、机壳出风口、机壳出口、叶轮、叶轮进风口、时轮出风口、叶片、叶盘、叶轮轴套、叶轮内侧流道、机壳内侧流道、机壳内侧流道侧壁,其特点是,机壳内侧流道侧壁上设有聚能生热器,聚能生热器由生热器传导保护罩、生热器摩擦生热体、生热器绝热隔离壁组成,生热器传热保护罩设于聚能生热器外侧,跟生热器摩擦生热体侧面贴合连接在一起,生热器摩擦生热体设于聚能生热器内侧,其两侧面分别跟生热器传导保护罩和生热器绝热隔离壁贴合连接在一起,生热器绝热隔离壁设于聚能生热器外侧,跟生热器摩擦生热体侧面贴合连接在一起,整个聚能生热器通过生热器绝热隔离壁跟机壳内侧流道侧壁贴合连接在一起。
为了进一步实现本发明的目的,本发明的叶片外侧面上设有聚能生热 器,聚能生热器通过生热器绝热隔离壁跟叶片贴合连接在一起。
为了进一步实现本发明的目的,本发明的机壳进风口内设有聚能生热器,聚能生热器通过生热器绝热隔离壁跟机壳进风口内侧面贴合连接在一起。
为了进一步实现本发明的目的,本发明的机壳出风口内设有聚能生热器,聚能生热器通过生热器绝热隔离壁跟机壳出风口内侧面贴合连接在一起。
为了进一步实现本发明的目的,本发明的聚能生热器的传导保护罩侧面设置为光滑平整结构形式。
为了进一步实现本发明的目的,本发明的聚能生热器的生热器传导保护罩侧面设置为凹凸不平结构形式。
为了进一步实现本发明的目的,本发明的聚能生热器的摩擦生热体上侧面设置为平整结构形式。
为了进一步实现本发明的目的,本发明的聚能生热器的生热器摩擦生热体上侧面为凹凸不平结构形式。
为了进一步实现本发明的目的,本发明的聚能生热器的生热器摩擦生热体内部设有导热元件,导热元件穿过生热器摩擦生热体而跟生热器传导保护罩连接。
为了叙述方便,表达准确,在此先解释几个相关词语:
叶轮中轴线指向的叶轮侧面或侧壁、机壳侧面或侧壁称为轴向侧面或轴向侧壁。
叶轮或机体向着电机(或其它动力部件)一侧为轴向后侧,与之对应的另一侧为轴向前侧,轴向后方和轴向前方指称依此类推。
靠近叶轮轴心处为叶轮径向前部,其前部末端为叶轮径向前端,靠近叶轮外圆处为叶轮径向后部,其外圆边缘为叶轮径向末端(机壳相关部位指称依此类推)。
叶轮旋转方向为轴向,顺向叶轮旋转方向为旋转前方或轴向前方,背着 叶轮旋转方向为旋转后方或轴向后方,叶片顺向叶旋转方向一侧面为轴向前侧面,背向叶轮旋转方向一侧面为叶片轴向后侧面,机体其他相关部位的指称依此类推。
机壳进风口方位指称:机壳进风口进口为前,机壳进风口出口为后,机壳进风口内其他方位指称依此类推。
叶片径向进口,即叶片径向前端构成的气流进口。
叶片轴向进口,即叶片轴向侧面构成的气流进口。如后流风机叶轮负压间隙,同步后流风机叶轮同步顺流进风口等。
叶片工作面,沿轴向顺向叶轮转向的叶片侧面为叶片工作面,也可称叶片轴向前侧面为叶片工作面。
叶轮流道是指,叶轮内侧流道、叶片流道;叶片是通流部件,叶片流道就是叶片本身。
机体内通流部件是指待加工和加工后的气体通过的部件,如机壳进风口、叶轮、叶轮进风口、叶轮出风口、叶轮叶片、机壳内侧流道、机壳出风口等部件。
本发明聚能生热高温热风机,采用气动能量转换生热原理,直接将冷风加工成热风,不需要任何热源热介质(电热丝、电热管、电热板、煤炉、油炉、气炉等),只靠风机自身运转,将机械能转换成热能,然后由热风机出风口排出去使用。本发明聚能生热高温热风机是采用气体碰撞摩擦滞止生热原理促使能量转换,变机械能为热能,产生热量,提升气体温度,形成高温热风。
所谓气体碰撞滞止生热原理,是指一股或几股高速气流相对或交叉喷射碰撞或对流道部件喷射碰撞,或气流机械能促使流道部件内部摩擦,减速减压,气流降低下来的压力能将速度能(动能)转换为热能,产生热量,成为高温热风。
现有的各种通风机、鼓风机、压气机、压缩机等都是冷风机,相对于上述各种机器,聚能生热高温热风机是热风机,即:热风机相对于冷风机。热 风机适应于需要热风的生产生活领域使用。
本发明热风机跟现有的各种通风机、鼓风机等冷风机一样,也具有大中小不同规格型号,小的几十瓦、大的至几十千瓦、几百千瓦、几千千瓦,产生的风量可以是几立方米/秒,几十立方米/秒,几百立方米/秒;产生的热风压可以是几十Pa,几百Pa,几千Pa,几万Pa;产生的热风温度可以是摄氏几度,几十度,几百度。本发明热风机功能多,用途广,使用范围宽广,有利于环保,适应人们生产生活多种领域多种行业取暖保温、烘干、烘烤食品加工、农业果蔬大棚、禽畜养殖、渔业水产品养殖等保温催生,工业高温喷漆、产品加工等使用需要,在很多领域很多行业中,可以代替冷风机通风鼓风使用。本发明热风机比冷风机更加节省能源,有利于环保。
本发明在机壳内侧流道侧壁上设有聚能生热器,聚能生热器由生热传导保护罩、生热器摩擦生热体和生热器绝热隔离壁组成,生热器传导保护罩设于聚能生热器外侧,跟生热器摩擦生热体外侧面贴合连接在一起;生热器传导保护罩由坚韧富有弹性导热性能好的材料(如塑料板、尼龙板、尼龙布、合成纤维织品、毛绒、陶瓷、棉布、金丝织品、皮革、液体胶、油漆等)构成。生热器传导保护罩阻挡高速气流直接碰撞冲击生热器摩擦生热体,保护生热器摩擦生热器不被磨损磨破,生热器传导保护罩直接接受高速气流的冲撞,直接将高速气流传递的机械能量传递给生热器摩擦生热体,促使生热器摩擦生热体内部层次摩擦生热产生热量,同时还可以把生热器摩擦生热体产生的热量由里到外迅速传递给机壳内侧流道气体,提升气体温度,形成高温热风。
生热器摩擦生热体设于聚能生热器内侧,其外侧面跟生热器传导保护罩贴合连接在一起,其底侧面跟生热器绝热隔离壁贴合连接在一起。生热器摩擦生热体由柔软富有弹性的阻尼材料(松软橡胶、海绵、软塑料泡膜、棉絮、绒毛、陶瓷棉等)构成。生热器摩擦生热体结构比生热器传导保护罩和生热器绝热隔离壁厚度大、体积大,具有良好的阻尼功能,吸收外力后可以造成自身内部层次剧烈摩擦生热,变机械能为热能,产生热量。生热器摩擦生热 体是聚能生热器的主体核心部件。聚能生热器主要依靠生热器摩擦生热体产生热量,提升气体温度。
生热器绝热隔离壁设于聚能生热器底表外侧,其一侧面跟生热器摩擦生热体底表贴合连接在一起,其另一侧面跟机壳由侧流道侧壁(或机体其他部件外表)贴合连接在一起,整个聚能生热器就是依靠生热器绝热隔离壁跟机壳内侧流道侧壁(或机体其他部件外表)连接在一起。生热器绝热隔离壁由坚韧强度大的绝热材料(如绝热橡胶、绝热胶带、玻璃丝织品等)构成。生热器绝热隔离壁设于机壳内侧流道侧壁(或机体其他部件外表)之间,可以阻挡生热器摩擦生热体产生的热量传导于机壳内侧流道侧壁(或机体其他部件外表),传导出机体外侧,保证生热器摩擦生热体产生的热量都由生热器传导保护罩传导于机壳内侧流道气体,提升机壳内侧流道气体温度。
工作时,风机叶轮排出的高压高速气流直接冲击碰撞着机壳内侧流道侧壁上的聚能生热器的生热器传导保护罩,促使生热器传导保护罩挤压生热器摩擦生热体,为生热器摩擦生热体,传导压力动力能,生热器摩擦生热体吸收压力动力机械能后,促使其内部层次剧烈摩擦生热,变机械能为热能,产生热量。依靠生热器绝热隔离壁的绝热隔离作用,生热器摩擦生热体产生的热量将不会传导给机壳内侧流道侧壁散失于机体外,生热器摩擦生热体产生的热量将主要通过生热器传导保护罩传导给机壳内侧流道高压高速气流,促使其温度升高,形成高温热风。
叶轮排于机壳内侧流道的气流压力越大速度越高,生热器摩擦生热体内层摩擦越厉害,产生的热量就越多,机壳内侧流道气流获得的热量就越多,温度提升的就越高。生热器摩擦生热体越是柔软而又富有弹性,其阻尼系数就越大,聚能生热器阻尼系数越大,阻尼摩擦生热效果就越好,产生的热量就越多,气体温升就越高。
高压高速气流携带的压力动力机械能聚集于聚能生热器内的生热器摩擦生热体,通过摩擦转换为热能,产生热量。因而该热风机称为聚能生热高温热风机。
机壳内侧流道侧壁上设有聚能生热器,是指可以单独在机壳内侧流道径向侧壁(包括蜗舌)上设置聚能生热器,可以单独在机壳内侧流道轴向侧壁设置聚能生热器,可以同时在机壳内侧流道径向侧壁轴向侧壁上都设置聚能生热器。
单在机壳内侧流道径向侧壁或机壳内侧流道轴向侧壁上设置聚能生热器,叶轮排于机壳内侧流道的高压高速气流由其一个侧面或两个侧面撞击聚能生热器,叶轮排于机壳内侧流道的高压高速气流的部分气流的部分机械能转换为热能。机壳内侧流道径向侧壁和轴向侧壁上都设置聚能生热器,则叶轮排于机壳内侧流道的大部分高压高速气流同时都撞击聚能生热器,大部分压力动力机械能经摩擦转换为热能,从而就可以产生更多的热量,致使气体温度升得更高。
为了进一步增强生热效果,产生更多的热量,本发明还可以在叶盘内侧面设置聚能生热器,该聚能生热器跟机壳内侧流道侧壁上设置的聚能生热器结构原理性能特点一样,该聚能生热器跟叶盘内侧面贴合连接在一起,阻挡高压高速气流直接冲击叶轮外侧面,直接接受高压高速气流的碰撞冲击,吸收压力动力机械能摩擦生热,产生热量。
本发明还可以在叶片外侧设置聚能生热器,该聚能生热器包裹着叶片,跟叶片贴合连接在一起,该聚能生热器结构、性能、功能作用跟机壳内侧流道侧壁上设置的聚能生热器结构、性能、作用一样。
如果在叶轮的叶盘内侧面和叶片外侧面同时都设置聚能生热器,则叶轮内侧流道就完全由聚能生热器衬托构成,工作时,由叶片加工的高速气流通过叶轮内侧流道将从四面或三面(无前叶盘叶轮)碰撞冲击聚能生热器,致使用叶轮内侧流道周围侧壁能够吸收机械能摩擦生热,产生热量。
本发明还可以分别或同时在机壳进风口和机壳出风口设置聚能生热器,该聚能生热器分别衬托于机壳进风口和机壳出风口内侧面,该聚能生热器结构、性能、作用和机壳内侧流道侧壁上的聚能生热器的结构、性能、作用一样。
本发明,无论是机壳内侧流道侧壁还是叶盘叶片机壳进风口和出风口内侧设置的聚能生热器,其生热器传导保护罩外表面结构形式都可以采用光滑平整结构形式,也都可以采用凹凸不平结构形式。生热器传导保护罩表面光滑,平整结构式的,工作时,可以使高压高速气流顺利从其表面通过,可以促使生热器摩擦生热体内部层次剧烈摩擦生热,产生热量。生热器传导保护罩表面凹凸不平结构式的,工作时,可以对高压高速气流产生较大的阻力。摩擦生热效果,产生热量,促使机壳内侧流道内的气体温度升高一点。
聚能生热器的生热器摩擦生热体外侧表面可以是平整结构形式,可以是凹凸不平结构形式,如果生热器摩擦生热体外侧表面上凹凸不平结构形式,而凸出部位(凸出部位称为摩擦生热体凸出点,凹陷部位称为摩擦生热体凹点)过高过大,凸出点表面又是凹凸不平,而生热器传导保护罩也是与之对应的凹凸不平结构形式,工作时,整个聚能生热器将可以通过生热器传导保护罩、生热器摩擦生热体内部、摩擦生热体凸出点内部外部等四个层次剧烈摩擦生热,因而产生的热量更多,气体温度可以升得更高。
综合以上所述可见,聚能生热高温热风机借助聚能生热器、借助聚能生热器的生热器摩擦生热体的阻尼功能、能够使风机叶轮加工出的高压高速气流充分有效地减压减速产生热量,形成高温热风。
利用摩擦生热体的阻尼功能还能充分有效地降低风机噪音,热风机工作时激发出的噪音声波具有一定的机械能,该声波撞击到聚能生热器时,可以促使聚能生热器内部(生热器摩擦生热体)摩擦生热,产生热量,变机械能为热能,从而可以减弱或消除部分声波,结果使噪音降低或被消除。
另外,由于聚能生热器柔软富有弹性的生热器传导保护罩后的坚韧富有弹性,受到高压高速气流冲击,可以有效地降压生热器摩擦生热体,可以使气流减压减速继续单向流动,不会由于碰撞而产生反向气流、不会造成反向正向气流碰撞摩擦产生噪音,也就是说,聚能生热器可以降低高压高速气流产生噪音的几率,控制风机只能形成有限的低噪音。
聚能生热器既能控制风机只能产生有限的低噪音,又可以使风机气流造 成的有限低噪音进一步吸收降低,形成更低噪音。
综合以上所述可见,聚能生热器既能使风机产生热量,又可以使风机降低噪音,完善聚能生热器技术可以研发出节能减排完美的聚能生热高温热风机产品。
本发明可以在机壳内侧流道侧壁上、叶盘上、叶片上、机壳进风口里、机壳出风口里等流道部位上分别或同时都设聚能生热器。
本发明,如果风机机壳内侧流道里已经设置了挡风生热器,而再在挡风生热器设置聚能生热器(聚能生热器侧壁跟挡风生热器侧壁贴合连接在一起,或包裹挡风生热器),则高压高速气流对该聚能生热器可以产生更好的碰撞摩擦效果,产生更多的热量,形成更高温度的高温热风,同时也能更有效地降低噪音。
为了使聚能生热器的生热器摩擦生热体产生的热量能够尽快传导给机壳内侧流道里的气体,本发明还可以在生热器摩擦生热体内部设置专用传热元件(传热性能好的金属丝或金属片等)。该传热元件还直接跟生热器传导保护罩连接,生热器传导保护罩通过专用传热元件吸收生热器摩擦生热体产生的热量再给传导于机壳内侧流道的气体。
附图的简要说明
图1为本发明第一种实施方式结构示意图。
图2为本发明第一种实施方式机壳内侧流道结构示意图。
图3为本发明第一种实施方式聚能生热器结构示意图。
图4为本发明第一种实施方式生热器传导保护罩结构示意图。
图5为本发明第一种实施方式生热器绝热隔离壁结构示意图。
图6为本发明第一种实施方式生热器摩擦生热体结构示意图。
图7为本发明第二种实施方式结构示意图。
图8为本发明第二种实施方式叶轮结构示意图。
图9为本发明第三种实施方式结构示意图。
图10为本发明第三种实施方式机壳内侧流道结构示意图。
图11为本发明第三种实施方式聚能生热器结构示意图。
图12为本发明第三种实施方式生热器摩擦生热体结构示意图。
图13为本发明第三种实施方式传导保护罩结构示意图。
图14为本发明第四种实施方式结构示意图。
图15为本发明第四种实施方式机壳内侧流道结构示意图。
图16为本发明第四种实施方式挡风生热器结构示意图。
图17为本发明第五种实施方式摩擦生热体结构示意图。
主要元件符号说明:
1机壳,2机壳进风口,3机壳出风口,4叶轮,5叶轮进风口,6叶轮出风口,7叶片,8叶盘,9叶轮轴套,10叶轮内侧流道,11机壳内侧流道,12机壳内侧流道侧壁,13聚能生热器,14生热器传导保护罩,15生热器摩擦生热体,16生热器绝热隔离壁,17聚能生热器凸部,18聚能生热器凹部,19挡风生热器,20专用导热元件,21电机。
实现本发明的最佳方式
下面结合附图详细说明本发明的技术方案:
实施例1、参考图1至6,一种聚能生热高温热风机,包括机壳1,机壳进风口2,机壳出风口3,叶轮4,叶轮进风口5,叶轮出风口6,叶片7,叶盘8,叶轮轴套9,叶轮内侧流道10,机壳内侧流道11,径向机壳内侧流道侧壁12和轴向机壳内侧流道侧壁12,叶轮4为单叶盘结构式,整个叶轮4不设前叶盘,叶片7为后流风机叶轮叶片,机壳内侧流道11的径向机壳内侧流道侧壁12(包括蜗舌)和轴向机壳内侧流道侧壁12上都粘贴着聚能生热器13。聚能生热器13包括柔韧富有弹性导热性能好的尼龙薄板制作的生热器传导保护罩14、柔软富有弹性阻尼性能良好的松软橡胶厚板制成的生热器摩擦生热体15、坚韧强度大绝热性能好薄橡胶板制成的生热器绝热隔离壁16。生热器传导保护罩14设于聚能生热器13外侧、跟生热器摩擦 生热体15宽松贴合粘贴在一起。生热器摩擦生热体15设于聚能生热器13内侧,其外侧面跟生热器传导保护罩14贴合粘贴在一起,其底侧面跟生热器绝热隔离壁16贴合粘贴在一起。生热器绝热隔离壁16设聚能生热器13底表外侧,它的上侧面跟生热器摩擦生热体15粘贴在一起,它的底侧面跟机壳内侧流道侧壁12底表粘贴在一起;整个聚能生热器13依靠生热器绝热隔离壁16跟机壳内侧流道连接在一起。
本例机壳为一般低热大流量结构式,机壳轴向尺寸较大、机壳进风口2和出风口3口径比较大,电机21轴跟叶轮轴套9连接。
工作时,电机21驱动叶轮4高速旋转,高速旋转的叶轮通过其叶轮进风口5和机壳进风口2吸进冷空气加工成高压高速气流,高压高速气流再由叶轮出风口6排于机壳内侧流道11,高压高速气流在机壳内侧流道11内流动过程将不断地碰撞冲击着径向机壳内侧流道侧壁12和轴向机壳内侧流道侧壁12上的聚能生热器13的生热器传导保护罩14,促使生热器传导保护罩14挤压生热器摩擦生热体15,为生热器摩擦生热体15传导压力动力能,生热器摩擦生热体15吸收压力动力机械能后,促使其内部层次剧烈摩擦生热变机械能为热能,产生热量。依靠生热器绝热隔离壁16的绝热隔离作用,生热器摩擦生热体产生的热量将不会传导给机壳内侧流道侧壁12散失于机体外。生热器摩擦生热体15产生的热量将通过生热器传导保护罩14传导给机壳内侧流道11的高压高速气体,促使其温度升高,形成高温热风,该高温热风再往机壳出风口3被排出机体,引作他用。
本例由于聚能生热器13的生热器传导保护罩14宽松柔软富有弹性,生热器摩擦生热体15柔软富有弹性厚度又大,当受到高压高速气流冲击碰撞,生热器传导保护罩14将不断挤压生热器摩擦生热体15收缩摩擦,从而可以促使高速气流减压减速继续单向流动,不会使单向气流由于碰撞摩擦产生反向气流,而造成反向气流和正向气流互相碰撞摩擦产生噪音。另一方面,由于生热器摩擦生热体具有良好的阻尼功能,高压高速气流本来激发出的噪音声波具有一定的机械能,该噪音声波撞击柔软富有弹性的生热器传导保护罩 14时,其噪音声波机械能将通过生热器传导保护罩14传递生热器摩擦生热体15,促使生热器摩擦生热体15内部层次摩擦生热,变机械能为热能,从而降低和消除部分噪音声波,结果使用风机噪音降低。
本例借助聚能生热器13的聚能摩擦生热功能,可以加工出需要的高温热风,加工热风效果好,效率高,加工过程噪音低,有利于环保。
本例适宜制作低压大流量的聚能生热高温热风机,供取暖、大棚养殖等场所使用。
本例为了简单,加工方便,所设置的聚能生热器13可以直接采用一层软橡胶板制,该软橡胶板底侧涂有一层耐高温绝热液体胶或油漆,通过液体胶或油漆跟机壳内侧流道侧壁粘贴在一起该液体胶或油漆就是生热器绝热隔离壁15。厚橡胶板上侧面涂有一层耐高温导热性能好液体橡胶或油漆,或用一层不锈钢网罩住厚橡胶板,该层液体胶油漆或不锈钢网就是生热器传导保护罩14。
实施例2,参考图7、图8,本例跟例1基本一样,所不同的是,本例叶轮叶片7、叶盘8上设有聚能生热器13,这两处的聚能生热器13跟机壳内侧流道侧壁12上的聚能生热器13的结构、功能、作用一样。
叶片上的聚能生热器13包裹着叶片7,叶盘上的聚能生热器13跟叶盘内侧面粘贴结合在一起,叶片上的聚能生热器13和叶盘上的聚能生热器13构成新的叶轮内侧流道10。
工作时,叶片7随时随地加工成的高压高速气流随时随地冲击叶片7上和叶盘8上的聚能生热器13,整个叶轮内侧流道10内随时随地产生热量,提升气体温度,形成高压高速高温热风,该高压高速高温热风经叶轮出风口6排于机壳内侧流道11,再冲击机壳内侧流道径向侧壁轴向侧壁上的聚能生热器13,促使聚能生热器13内层剧烈摩擦生热,产生热量,进一步提升气体温度。
本例叶轮加工的高速气流经叶轮内侧流道10和机壳内壁流道11两次摩擦减压减速生热,产生的热量更多气体温升更高。
同例1一样,借助聚能生热器13的生热器传导保护罩14和生热器摩擦生热体15的阻尼作用,本例工作过程中产生的噪音也很低,不会造成噪声污染。
本例适宜制作一般暖风机供暖取暖和和态养殖大棚保温催生使用。
实施例3,参考图9至13,本例跟例1基本一致,所不同的是,本例机壳内侧流道侧壁12上的聚能生热器13的生热器传导保护罩14为凹凸不平结构形式(耐磨损的人造制品)。第二个不同点是本例机壳进风口2和机壳出风口3内都设有聚能生热器13,机壳进风口2内的聚能生热器13的生热器传导保护罩14为凹凸不平结构形式,机壳出风口3内的聚能生热器13的生热器传导保护罩14为光滑平整结构形式,机壳进风口内的聚能生热器13和机壳出风口内的聚能生热器13分别衬托于机壳进风口2和机壳出风口3内侧壁上,跟机壳进风口和机壳出风口内侧壁粘贴在一起。
工作时,由于机壳进风口2负压大,抽吸冷风高速进入机壳进风口,高速冷风进入机壳进风口2内,剧烈冲击机壳进风口2内的凹凸不平的生热器传导保护罩14,凹凸不平的生热器保护罩14吸收高压高速气流传递的压力动力机械能,一方面促使其自身剧烈摩擦生热产生热量,一方面又挤压生热器摩擦生热体15,为生热器摩擦生热体传递机械能,促使生热器摩擦生热体内部层次剧烈摩擦生热,产生热量,两者产生的热量,致使进入机壳进风口2的高压高速气流成为高温热风。该高温热风再被排于叶轮4,经叶轮4加工增压增速,再被排于机壳内侧流道11内,排于机壳内侧流道11内冲击机壳内侧流道侧壁的聚能生热器13的生热器传导保护罩14,促使凹凸不平的生热器传导保护罩14生热,(人造毛毛丝与毛丝、毛丝与气体剧烈摩擦)促使生热器摩擦生热体15剧烈摩擦生热,产生热量,提升热风温度。该高温热风进入机壳出风口3,再经机壳出风口3内的聚能生热器13的生热器摩擦生热体15剧烈摩擦生热,产生热量,再次提升热风温度,形成更高温度的高温热风,再被排出机体引作他用。
本例工作时,进入机体内的冷风经历机壳进风口2机壳内侧流道11和 机壳出风口3三处聚能生热器13的生热器传导保护罩14、生热器摩擦生热体内部层次多次多层摩擦生热,产生的热量更多,气体温度升得更高(>100℃)。
同例1一样,本例工作过程中产生的噪音很低,不会污染环境。
本例适宜制作超高温热风机使用。
实施例4,参考图14至16,本例同例3基本一致,所不同的是本例机壳内侧流道侧壁12上、机壳进风口2和机壳出风口3内设置的聚能生热器13的生热器摩擦生热体15都是耐高温海绵制品构成的。海绵摩擦生热体15上表面都是没有磨齿似的凹凸不平结构形式。聚能生热器13上的生热器传导保护罩14是由高强度耐磨的尼龙线织品构成的,尼龙织品生热器传导保护罩14成窝折不平结构形式,其窝折形状跟海绵生热器摩擦生热体15上表面磨齿形状相对应。聚能生热器13上的生热器绝热隔离壁16由耐高温绝热性能好的人造革构成。
第二个不同点是本例机壳内侧流道11内设有挡风生热器19,挡风生热器19上设有聚能生热器13,聚能生热器13上的生热器摩擦生热体15由平整的海绵构成,聚能生热器13上的生热器传导保护罩14由不锈钢网构成。
工作时,由机壳进风口2吸进的高速冷风经机壳进风口2内的聚能生热器13上的海绵生热器摩擦生热体15内层上表和生热器传导保护罩14加工,成为温热风,该高温热风再经叶轮给加压增速成为高压高速温热风,该高压高速温热风进入机壳内侧流道11,经过机壳内侧流道侧壁12上的聚能生热器13的生热器摩擦生热体15和生热器传导保护罩14再次加工生热产生热量,该高压高速热风同时还撞击机壳内侧流道11里的挡风生热器19上的聚能生热器13,经挡风生热器19上的聚能生热器13上的生热器摩擦生热体15和生热器传导保护罩14又一次加工生热,产生热量,形成更高温度的超高温热风。该高压高速超高温热风再经机壳出风口3内的聚能生热器13上的生热器摩擦生热体15和生热器传导保护罩14再一次加工生热,产生热量,再进一步提升温度,成为更高温度的超高温热风,被排出机体使用。
本例所有聚能生热器13上的摩擦生热体15,都是采用耐高温海绵制品构成,其阻尼摩擦生热效果和降音效果更好,因此,产生的热量更多,气温升得更高(>200℃),形成更高温度的超高温热风,本例工作过程中,产生的噪音很低,不会造成噪音污染。
本例适宜制作超高温热风机(>200℃),供食品加工、工业产品加工等使用。
实施例5,参考图17,本例同例1基本一样,所不同的是本例聚能生热器13的生热器摩擦生热体15采用厚羊毛绒制成。厚羊毛绒聚能生热器的生热器摩擦生热体15内部设有导热性能好含金钢螺旋弹簧导热元件17,螺旋弹簧导热元件17横向穿过羊毛绒生热器摩擦生热体跟薄尼龙板生热器传导保护罩14连接。
工作时,机壳内侧流道侧壁聚能生热器13的生热器摩擦生热体产生的热量传给生热器传导保护罩,再由生热器传递保护罩迅速传给机壳流道11内的气体,促使机壳内侧流道气体迅速生温,迅速成为高温热风。
与例1一样,本例适宜制作一般高温热风机供取暖、生态大棚供热保暖催生使用。
工业应用性
本发明的聚能生热高温热风机借助聚能生热器、借助聚能生热器的生热器摩擦生热体的阻尼功能、能够使风机叶轮加工出的高压高速气流充分有效地减压减速产生热量,形成高温热风。提供了一种能够产生高温热风,并且热风量大、热风压高、节省能源、噪音低、功能多、使用范围宽广、能够满足人们生产生活对高温热风的多种使用需要的聚能生热高温热风机。

Claims (10)

  1. 聚能生热高温热风机,包括机壳(1),所述机壳(1)内设有机壳内侧流道侧壁(12),其特征在于:所述机壳内侧流道侧壁(12)上设有聚能生热器(13),所述聚能生热器(13)包括生热器传导保护罩(14)、生热器摩擦生热体(15)和生热器绝热隔离壁(16);所述生热器传导保护罩(14)和生热器绝热隔离壁(16)分别设于生热器摩擦生热体(15)两侧,并分别与生热器摩擦生热体(15)侧面贴合;所述聚能生热器(13)通过生热器绝热隔离壁(16)与机壳内侧流道侧壁(12)贴合连接。
  2. 根据权利要求1所述的聚能生热高温热风机,还包括叶盘(8),其特征在于:所述叶盘(8)内侧壁上设有聚能生热器(13),聚能生热器(13)通过生热器绝热隔离壁(16)与叶盘(8)内侧面贴合连接。
  3. 根据权利要求1所述的聚能生热高温热风机,还包括叶片(7),其特征在于:所述叶片(7)外侧面上设有聚能生热器(13),聚能生热器(13)通过生热器绝热隔离壁(16)与叶片(7)贴合连接。
  4. 根据权利要求1所述的聚能生热高温热风机,还包括机壳进风口(2),其特征在于:所述机壳进风口(2)内设有聚能生热器(13),聚能生热器(13)通过生热器绝热隔离壁(16)与机壳进风口(2)内侧面贴合连接。
  5. 根据权利要求1所述的聚能生热高温热风机,还包括机壳出风口(3),其特征在于:所述机壳出风口(3)内设有聚能生热器(13),聚能生热器(13)通过生热器绝热隔离壁(16)与机壳出风口(3)内侧面贴合连接。
  6. 根据权利要求1至5任一所述的聚能生热高温热风机,其特征在于:所述生热器摩擦生热体(15)内部设有导热元件(20),所述导热元件(20)穿过生热器摩擦生热体(15)与生热器传导保护罩(14)相连接。
  7. 根据权利要求1至5任一所述的聚能生热高温热风机,其特征在于:所述生热器传热保护罩(14)侧面为光滑平整结构形式或凹凸不平结构形式。
  8. 根据权利要求6所述的聚能生热高温热风机,其特征在于:所述生热器传热保护罩(14)侧面为光滑平整结构形式或凹凸不平结构形式。
  9. 根据权利要求1至5任一所述的聚能生热高温热风机,其特征在于:所述生热器摩擦生热体(15)上侧面为平整结构形式或凹凸不平结构形式。
  10. 根据权利要求6所述的聚能生热高温热风机,其特征在于:所述生热器摩擦生热体(15)上侧面为平整结构形式或凹凸不平结构形式。
PCT/CN2018/081295 2017-04-01 2018-03-30 聚能生热高温热风机 WO2018177407A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/499,741 US20200132341A1 (en) 2017-04-01 2018-03-30 High-temperature hot air blower capable of gathering energy and generating heat
DE112018001816.4T DE112018001816T5 (de) 2017-04-01 2018-03-30 Hochtemperatur-Heißluftgebläse, das zur Energiegewinnung und Wärmeerzeugung imstande ist
KR1020197032375A KR102220933B1 (ko) 2017-04-01 2018-03-30 에너지를 수집하고 열을 발생시킬 수 있는 고온 열풍기
RU2019130580A RU2723539C1 (ru) 2017-04-01 2018-03-30 Высокотемпературный вентиляторный воздухонагреватель, способный аккумулировать энергию и генерировать тепло
JP2019571677A JP6808205B2 (ja) 2017-04-01 2018-03-30 エネルギーを集めて熱量を発生させる高温熱風機

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710212671.8 2017-04-01
CN201710212671.8A CN106931638B (zh) 2017-04-01 2017-04-01 聚能生热高温热风机

Publications (1)

Publication Number Publication Date
WO2018177407A1 true WO2018177407A1 (zh) 2018-10-04

Family

ID=59425540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/081295 WO2018177407A1 (zh) 2017-04-01 2018-03-30 聚能生热高温热风机

Country Status (7)

Country Link
US (1) US20200132341A1 (zh)
JP (1) JP6808205B2 (zh)
KR (1) KR102220933B1 (zh)
CN (1) CN106931638B (zh)
DE (1) DE112018001816T5 (zh)
RU (1) RU2723539C1 (zh)
WO (1) WO2018177407A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106931638B (zh) * 2017-04-01 2023-03-10 烟台通天达风机制造有限公司 聚能生热高温热风机
CN108518858B (zh) * 2018-03-26 2023-10-27 烟台通天达风机制造有限公司 振荡生热高温热风机
CN109373621A (zh) * 2018-11-23 2019-02-22 烟台通天达风机制造有限公司 感应振荡生热高温热风机
CN113142657B (zh) * 2021-04-08 2024-05-03 三明学院 一种旋转摩擦组件、加热不燃烧烟草装置及其控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6361270B1 (en) * 1999-09-01 2002-03-26 Coltec Industries, Inc. Centrifugal pump for a gas turbine engine
CN102313392A (zh) * 2011-04-15 2012-01-11 林钧浩 气动摩擦生热高温热风机
CN104747475A (zh) * 2015-03-23 2015-07-01 林钧浩 气动生热高温热风机
CN105020170A (zh) * 2015-07-22 2015-11-04 林钧浩 滞止生热高温热风机
CN106931638A (zh) * 2017-04-01 2017-07-07 烟台通天达风机制造有限公司 聚能生热高温热风机
CN206609151U (zh) * 2017-04-01 2017-11-03 烟台通天达风机制造有限公司 聚能生热高温热风机

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB666519A (en) * 1949-05-23 1952-02-13 Integral Ltd Improvements in or relating to impulse-type air heaters
US4842908A (en) * 1987-09-15 1989-06-27 Venture Tape Corp. Insulation with tape adhering surface
CN2053312U (zh) * 1989-08-16 1990-02-21 宁春岩 摩擦生热器
CN1024033C (zh) * 1990-04-02 1994-03-16 北京市西城新开通用试验厂 一种燃气热风机
CN2364255Y (zh) * 1999-03-18 2000-02-16 范崇棉 低噪声高温排烟风机
JP2000304361A (ja) * 1999-04-14 2000-11-02 Futoshi Oki 熱装置
RU2224913C2 (ru) * 1999-09-02 2004-02-27 Общество с ограниченной ответственностью "Технобум" Вентилятор-теплообменник
US6457955B1 (en) * 2001-01-10 2002-10-01 Yen Sun Technology Corp. Composite heat dissipation fan
US6916149B2 (en) * 2003-07-01 2005-07-12 Un-Fei Liou Vortex blower
CN101117958A (zh) * 2007-09-01 2008-02-06 陈正茂 旋板式空气压缩机
CN102022352B (zh) * 2010-11-30 2013-01-30 林钧浩 离心式隔离分流吸排物料通风机
CN202304046U (zh) * 2011-04-15 2012-07-04 林钧浩 气动摩擦生热高温热风机
CN102182696A (zh) * 2011-04-15 2011-09-14 林钧浩 向心增压生热通风压缩机
CN202082156U (zh) * 2011-05-27 2011-12-21 巴克约根森风机(宁波)有限公司 一种风机
KR20130059727A (ko) * 2011-11-29 2013-06-07 (주)아이코스 운동에너지를 이용한 보일러
CN102873867A (zh) * 2012-10-23 2013-01-16 青岛利东机械有限公司 立式浮力管内部隔盘摩擦焊接装置
CN103148195A (zh) * 2013-03-21 2013-06-12 江苏保捷锻压有限公司 一种耐高温的齿轮
CN106032814A (zh) * 2015-03-21 2016-10-19 重庆东宏鑫科技有限公司 一种离心通风机
CN105065294B (zh) * 2015-07-22 2017-09-22 林钧浩 双叶轮生热高温热风机
CN105135663B (zh) * 2015-08-18 2017-11-03 上海海事大学 一种内外套接式电磁搅拌阻尼型风力致热装置
CN205779795U (zh) * 2016-05-18 2016-12-07 林钧浩 挡风导流生热高温热风机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6361270B1 (en) * 1999-09-01 2002-03-26 Coltec Industries, Inc. Centrifugal pump for a gas turbine engine
CN102313392A (zh) * 2011-04-15 2012-01-11 林钧浩 气动摩擦生热高温热风机
CN104747475A (zh) * 2015-03-23 2015-07-01 林钧浩 气动生热高温热风机
CN105020170A (zh) * 2015-07-22 2015-11-04 林钧浩 滞止生热高温热风机
CN106931638A (zh) * 2017-04-01 2017-07-07 烟台通天达风机制造有限公司 聚能生热高温热风机
CN206609151U (zh) * 2017-04-01 2017-11-03 烟台通天达风机制造有限公司 聚能生热高温热风机

Also Published As

Publication number Publication date
CN106931638A (zh) 2017-07-07
DE112018001816T5 (de) 2019-12-12
RU2723539C1 (ru) 2020-06-15
JP6808205B2 (ja) 2021-01-06
KR102220933B1 (ko) 2021-02-26
CN106931638B (zh) 2023-03-10
US20200132341A1 (en) 2020-04-30
JP2020516848A (ja) 2020-06-11
KR20200015468A (ko) 2020-02-12

Similar Documents

Publication Publication Date Title
WO2018177407A1 (zh) 聚能生热高温热风机
CN207830179U (zh) 一种耐高温的新型风机
CN111397206A (zh) 一种风力生热高温热风机
CN206609151U (zh) 聚能生热高温热风机
CN108518858B (zh) 振荡生热高温热风机
CN207428677U (zh) 一种吹风机的消音进风结构
CN209840409U (zh) 气动高温生热器
CN209692502U (zh) 一种低噪音电机外壳
CN106979613B (zh) 引风生热高温热风机
CN206724470U (zh) 引风生热高温热风机
CN209459254U (zh) 感应振荡生热高温热风机
CN210348399U (zh) 一种cvd金刚石硬盘散热片结构
CN205260372U (zh) 一种散热式高温引风机
CN217185128U (zh) 吹风装置
CN207677551U (zh) 一种快速散热电机
CN206618178U (zh) 一种湿热试验箱循环风冷保护装置
CN206962643U (zh) 伺服电机主轴散热装置
CN110500315A (zh) 一种扇叶及应用该扇叶的冷暖两用风扇
CN212299416U (zh) 循环振荡生热高温热风机
CN209763272U (zh) 一种提高空调内机换热效率的结构
CN217582593U (zh) 一种用于风机的散热装置
CN109373621A (zh) 感应振荡生热高温热风机
CN209324907U (zh) 一种气动制动器排气散热装置
CN220582463U (zh) 一种炉膛水冷壁水力吹灰器
CN220760244U (zh) 一种高温高压清洗机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18777973

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019571677

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197032375

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18777973

Country of ref document: EP

Kind code of ref document: A1