WO2018173434A1 - 加工条件設定方法及び加工条件設定装置 - Google Patents

加工条件設定方法及び加工条件設定装置 Download PDF

Info

Publication number
WO2018173434A1
WO2018173434A1 PCT/JP2018/000997 JP2018000997W WO2018173434A1 WO 2018173434 A1 WO2018173434 A1 WO 2018173434A1 JP 2018000997 W JP2018000997 W JP 2018000997W WO 2018173434 A1 WO2018173434 A1 WO 2018173434A1
Authority
WO
WIPO (PCT)
Prior art keywords
tool
upper limit
removal volume
workpiece
cutting
Prior art date
Application number
PCT/JP2018/000997
Other languages
English (en)
French (fr)
Inventor
謙吾 河合
静雄 西川
守弘 秀田
浩司 飯山
Original Assignee
Dmg森精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dmg森精機株式会社 filed Critical Dmg森精機株式会社
Publication of WO2018173434A1 publication Critical patent/WO2018173434A1/ja

Links

Images

Definitions

  • the present invention uses a machine tool, and when machining a workpiece with the rotary tool, a machining condition setting method and a machining condition setting capable of realizing machining with a maximum load allowed on the rotary tool. Relates to the device.
  • the rotary tool is mounted on a spindle hole of the machine tool through the tool holder while being held by a tool holder.
  • tool holders There are various types of tool holders, and various types of tool holders are used depending on the tool that holds the tool holder, but in general, a mode in which the shank portion of the tool is gripped from outside with a predetermined pressure is adopted. It has been.
  • a tool holder disclosed in Japanese Patent Laid-Open No. 2010-162684 (the following Patent Document 1) is known.
  • the tool holder includes a collet chuck body having a tapered hole tapered toward the rear end in the axial direction at the tip, a tool insertion hole extending in the axial direction, and a tapered hole.
  • a taper collet having a main taper surface to be fitted to the main taper surface, a taper collet located on the tip end side in the axial direction with respect to the main taper surface and tapering toward the tip end in the axial direction;
  • a cylindrical lock nut that has a threaded female thread and reduces the diameter of the tool insertion hole by pressing the taper collet against the taper hole, and a tapered contact surface that fits into the tapered end surface.
  • the tip tapered member that is pushed toward the rear end of the direction and the plane that is perpendicular to the pushing direction of the lock nut And a plain bearing which is interposed between the path member.
  • the plain bearing since the plain bearing is provided between the lock nut and the tip tapered member, the plain bearing reduces the frictional resistance between the lock nut and the tip tapered member. For this reason, even if the lock nut is tightened with a strong force, the tip tapered member can be displaced in the direction perpendicular to the axis by the action of the plain bearing. Since it is tightened while following the tapered hole, the axis of the taper collet is consistent with the axis of the collet chuck body, and the tool runout accuracy is stable even if the lock nut is tightened with a strong force.
  • the tip tapered member has a tapered contact surface at the inner peripheral tip that fits the tip tapered surface of the taper collet
  • the tapered contact surface of the tip tapered member is tapered by tightening the lock nut with a strong force. It is said that the tool is not misaligned because the tip tapered member is closely fitted to the tip tapered surface of the collet and the tip tapered member can support the tip of the tapered collet on the tip side of the gauge line.
  • a cutting force (cutting resistance) in the rotational direction acts on the tool, so that the gripping force (holding force) of the tool holder resists the cutting force in the rotational direction. It must be possible. If the holding force of the tool holder cannot resist the cutting force in the rotational direction, the tool rotates relative to the tool holder, causing a problem that the tool and the tool holder are damaged, and the machine tool itself This causes problems such as adversely affecting the workpiece and the workpiece to be machined becoming defective.
  • the operator since the operator does not have knowledge about how much cutting load is applied, the operator may perform processing with a load exceeding the limit. There has been a problem that the tool and the tool holder are damaged, and a problem that the workpiece to be processed becomes a defective product. If such a problem occurs frequently, the influence on the machine tool becomes serious.
  • the present invention has been made in view of the above circumstances, and is a method for setting machining conditions capable of realizing machining with the maximum load allowed for the rotary tool without depending on trial and error of actual machining.
  • the object is to provide a machining condition setting device.
  • the present invention provides a tool holder that holds a rotating tool mounted on a rotating shaft of a machine tool and rotates the tool so that the rotating tool and a workpiece disposed in a machining area of the machine tool are relatively Is a method of setting machining conditions when machining the workpiece by moving to In relation to the tool to be used and the tool holder, the load that becomes the upper limit that can be applied to the tool based on the acquired holding torque by acquiring the holding torque of the tool holder when the tool is held While setting the torque, In relation to the tool used and the workpiece to be machined, the specific cutting resistance when machining the workpiece using the tool is obtained, Then, based on the set upper limit load torque and the acquired specific cutting resistance, the removal volume which is the upper limit at which the workpiece can be removed by the tool is calculated according to the following equation.
  • Vmax (n ⁇ Tmax) / k c
  • Vmax is the upper limit removal volume [mm 3 / min]
  • n is the rotational speed of the tool [min -1 ]
  • Tmax is the upper limit load torque [N ⁇ mm]
  • k c is the specific cutting resistance [N / mm 2 ].
  • a tool holder holding a rotating tool is mounted on a rotating shaft of a machine tool and rotated, and the rotating tool and a workpiece arranged in a machining area of the machine tool are moved relatively to each other.
  • An apparatus for setting machining conditions when machining a workpiece In relation to the tool used in the machine tool and the tool holder, a load torque that is an upper limit that can be applied to the tool is stored in association with information on the tool and the tool holder, and the tool
  • a data storage unit that stores the specific cutting resistance when machining the workpiece using the tool in association with information on the tool and the workpiece material; Accepts information on the tool, tool holder and workpiece material input from the outside, and refers to the data storage unit to recognize the upper limit load torque and specific cutting resistance corresponding to the input tool, tool holder and workpiece material
  • an upper limit removal volume calculation processing unit that calculates a removal volume that is an upper limit at which the workpiece can be removed by the tool based on the
  • the holding torque of the tool holder when the tool is properly held is acquired, and the tool is determined based on the acquired holding torque.
  • the load torque that is the upper limit that can be applied is set.
  • the upper limit load torque set in this way is stored in the data storage unit in association with information related to the corresponding tool and tool holder.
  • the holding torque is a torque having a magnitude that causes the tool to slide and rotate when torque acts on the tool held in the tool holder.
  • the gripping force of each tool holder is measured by a measuring instrument using a pressure sensor, and the sliding torque, that is, the holding torque is calculated based on the obtained gripping force.
  • the slip torque is theoretically calculated from the coefficient of friction between the tool and the tool holder.
  • the holding torque can be obtained by applying a torque to the blade portion of the tool held by the tool holder and measuring the torque value at the time of sliding rotation with a measuring instrument as appropriate. It can also be obtained by creating a test tool, holding it on a tool holder, applying a torque to the portion corresponding to the blade portion, and measuring the torque value at the time of sliding rotation with the measuring instrument.
  • the upper limit load torque is an upper limit load torque that does not cause sliding rotation of the tool, and can be calculated by multiplying the holding torque by a coefficient (safety factor) (for example, 0.8) as appropriate.
  • this holding torque can be set as the upper limit load torque.
  • a specific cutting resistance k c when machining the workpiece using the tool is acquired and stored in the data storage unit in association with information related to the tool and the workpiece.
  • the specific cutting resistance k c [N / mm 2 ] can be calculated from the power (electric power) P c applied to the spindle motor when the workpiece is machined using the tool by the following formula 2. Alternatively, it can be obtained from a tool manufacturer.
  • k c (P c ⁇ 60 ⁇ 10 6) / (a p ⁇ A e ⁇ v f)
  • a p is the cutting depth [mm]
  • a e is cut width [mm]
  • v f is the feed rate of the tool [mm / min].
  • the upper limit removal volume calculation processing unit receives information on the tool, tool holder and workpiece material input from the outside, and refers to the data storage unit to input the tool, tool holder and workpiece material.
  • the corresponding upper limit load torque and specific cutting resistance are recognized, and the removal volume Vmax, which is the upper limit at which the workpiece can be removed by the tool, is calculated according to the above formula 1, based on the recognized upper limit load torque and specific cutting resistance.
  • the rotation speed n [min -1 ] of the tool is calculated from the diameter of the tool and an appropriate cutting speed that can be realized.
  • the removed volume can be calculated theoretically according to the above equation. Therefore, unlike conventional methods, it is not necessary to repeat trial and error such as performing processing with gradually increasing cutting load in order to increase processing efficiency, and efficient processing can be realized in a short time.
  • a general operator does not have an objective knowledge about how much cutting load can be realized in a combination of a tool and a tool holder to be used.
  • the machining condition setting device According to the machining condition setting device according to the invention, even an operator who does not have such knowledge can input the information on the tool to be used, the tool holder, and the workpiece material, and the upper limit at which the workpiece can be removed by the tool. A removed volume can be obtained.
  • the processing condition setting device includes a display device that displays a screen, and a processing condition display that causes the display device to display information on the upper limit removal volume calculated by the upper limit removal volume calculation processing unit as a processing condition. And a processing unit.
  • this processing condition setting device information related to the upper limit removal volume calculated by the upper limit removal volume calculation processing unit is displayed on the display device by the processing condition display processing unit.
  • the cutting depth a p [mm] of the tool capable of removing the upper removal volume and the cutting width A e [mm], rotational speed n [min -1 ], and feed amount per blade f [mm / blade] are set to values that satisfy the following Expression 3.
  • such a process is performed by the condition setting processing unit.
  • Vmax ap * Ae * n * f * z
  • z is the number of blades of the tool.
  • the cutting depth a p [mm], the cutting width A e [mm], the rotational speed n [min ⁇ 1 ] and 1 set by the condition setting processing unit are set.
  • the feed amount per blade [mm / blade] may be displayed on the display device by the processing condition display processing unit. In this way, the operator can set the cutting depth a p [mm], the cutting width A e [mm], and the rotational speed n as the most efficient machining conditions related to the input tool, tool holder and workpiece material. [min ⁇ 1 ] and the feed amount f [mm / blade] per blade can be recognized through a screen displayed on the display device.
  • the above equation 3 is satisfied based on the removal volume that is the upper limit, and the correlation line between the rotational speed of the tool and the limit cutting depth that causes regenerative chatter in the tool.
  • the stability limit diagram which is a diagram, the cutting depth of the tool, the cutting width, so that the relationship between the rotational speed of the tool and the cutting depth is within a stable region in which regenerative chatter does not occur in the tool. It is preferable to set the rotation speed and the feed amount per blade. And in the processing condition setting apparatus which concerns on this invention, such a process is performed by the said condition setting process part.
  • this machining condition setting method and machining condition setting apparatus it is possible to easily set machining conditions with high machining efficiency and stable in a short time.
  • the machining condition setting device information relating to the cutting depth, cutting width, rotation speed, and feed amount of the tool input from the outside is received and removed according to the following Equation 4 based on the received information. While calculating the volume, it is evaluated whether or not the calculated removal volume exceeds the upper limit removal volume calculated by the upper limit removal volume calculation processing unit, and if it exceeds the upper limit removal volume, it indicates that it is ineligible You may further provide the condition evaluation process part which displays a display on the said display apparatus.
  • V a p ⁇ A e ⁇ n ⁇ f ⁇ z
  • V is the removal volume [mm 3 / min]
  • ap is the depth of cut [mm]
  • Ae is the width of cut [mm]
  • n is the rotational speed of the tool [min -1 ]
  • f is one blade of the tool Feed per mm [mm / tooth]
  • z is the number of blades of the tool.
  • the operator can easily recognize whether or not the machining condition set by the operator is a condition that can be machined. Since it is clearly stated, it is possible to prevent the machining from being performed under the machining conditions exceeding the upper limit, thereby preventing the tool, the tool holder and the workpiece, and the machine tool from being damaged. can do.
  • the processing condition setting device is: When a tool holder holding a rotary tool is mounted on a rotating shaft of a machine tool and rotated, and the rotary tool and a workpiece arranged in a machining area of the machine tool are relatively moved to process the workpiece.
  • An apparatus for displaying an upper limit removal volume set as workable Determined in relation to the tool used in the machine tool and the tool holder, and determined in relation to the upper limit load torque that can be applied to the tool and the material of the tool and the workpiece, Based on the specific cutting resistance at the time of machining the workpiece using the tool, the removal volume that is the upper limit for removing the workpiece by the tool, calculated according to the mathematical formula 1, is the tool, the tool holder, and An upper limit removal volume storage unit stored in association with information related to the workpiece material; A display device for screen display; Receiving information on the tool, tool holder and workpiece material input from the outside, referring to the upper limit removal volume storage unit, recognizing the upper limit removal volume corresponding to the input tool, tool holder and workpiece material, A mode including a processing condition display processing unit that displays information on the recognized upper limit removal volume on the display device as a processing condition can be adopted.
  • the machining condition display processing unit refers to the upper limit removal volume storage unit, and the tool, tool holder, An upper limit removal volume corresponding to the workpiece material is recognized, and information on the recognized upper limit removal volume is displayed on the display device as a processing condition.
  • the present invention it is possible to theoretically calculate a removal volume that is an upper limit for removing a workpiece by the tool according to a tool and a tool holder to be used and a workpiece material to be machined. Therefore, it is not necessary to perform trial and error test processing in order to increase processing efficiency as in the conventional case, and efficient processing can be realized in a short time.
  • the machining condition setting device According to the machining condition setting device according to the present invention, a general operator who does not have specialized knowledge about how much cutting load can be realized in a combination of a tool and a tool holder to be used.
  • the upper limit removal volume (working condition) that allows the workpiece to be removed by the tool can be obtained only by inputting information on the tool to be used, the tool holder and the workpiece material, and the obtained upper limit removal volume. Based on the above, various processing conditions such as the cutting depth, cutting width, rotation speed and feed amount of the tool can be obtained.
  • FIG. 1 is a block diagram showing a schematic configuration of a machining condition setting apparatus according to the present embodiment.
  • the machining condition setting device 1 of this example includes an arithmetic device 2, an input device 10, and a display device 11.
  • the computing device 2 includes an input processing unit 3, a display processing unit 4, a machining condition data storage unit 5, a stability limit diagram data storage unit 6, an upper limit removal volume calculation processing unit 7, a machining condition evaluation processing unit 8, and a machining condition.
  • the setting processing unit 9 is configured.
  • the arithmetic device 2 includes a computer including a CPU, a RAM, a ROM, and the like, and includes the input processing unit 3, display processing unit 4, upper limit removal volume calculation processing unit 7, processing condition evaluation processing unit 8, and processing condition setting.
  • Each function of the processing unit 9 is realized by a computer program, and executes processing to be described later.
  • the machining condition data storage unit 5 and the stability limit diagram data storage unit 6 are each composed of an appropriate storage medium such as a RAM.
  • the machining condition setting device 1 can be appropriately incorporated in a control device of a machine tool.
  • the input device 10 and the display device 11 can be configured by a touch panel of an operation panel.
  • the machining condition data storage 5 stores the type of tool, the number of teeth z, the tool diameter D [mm], the type of tool holder that holds the tool, and the upper limit load torque Tmax [N ⁇ mm], specific cutting resistance k c [N / mm 2 ], upper limit cutting speed v c max [mm / min] and upper limit feed amount fmax [mm / tooth] per tooth And stored as the data table shown in FIG.
  • the said upper limit load torque is set from the holding torque of the tool holder when the said tool is hold
  • the holding torque is a torque having a magnitude that causes the tool to slide when the torque is applied to the tool held by the tool holder.
  • the gripping force of each tool holder is measured by a measuring instrument using a pressure sensor, and the sliding torque, that is, the holding torque is calculated based on the obtained gripping force.
  • the slip torque is theoretically calculated from the friction coefficient between the tool and the tool holder.
  • the holding torque can be obtained by applying a torque to the blade portion of the tool held by the tool holder and measuring the torque value at the time of sliding rotation with a measuring instrument as appropriate. It can also be obtained by creating a test tool, holding it on a tool holder, applying a torque to the portion corresponding to the blade portion, and measuring the torque value at the time of sliding rotation with the measuring instrument.
  • the upper limit load torque is an upper limit load torque that does not cause sliding rotation of the tool, and can be calculated by multiplying the holding torque by a coefficient (safety factor) (for example, 0.8) as appropriate.
  • this holding torque can be set as the upper limit load torque.
  • the specific cutting resistance is a cutting force (cutting resistance) required when cutting a workpiece with a cross-sectional area of 1 [mm 2 ].
  • the target workpiece is processed using a target tool.
  • it can be calculated by the following Equation 5 based on the power (electric power) Pc supplied to the spindle motor.
  • Pc power supplied to the spindle motor.
  • k c (P c ⁇ 60 ⁇ 10 6) / (a p ⁇ A e ⁇ v f)
  • a p is the cutting depth [mm]
  • a e is cut width [mm]
  • v f is the feed rate of the tool [mm / min].
  • this specific cutting resistance is determined by the type of tool and the material of the workpiece, and is acquired in advance according to the type of tool and the material of the workpiece.
  • the data related to the specific cutting force is generally possessed by a tool maker and can be obtained from the tool maker.
  • the upper limit cutting speed and the upper limit feed amount per blade are similarly determined by the type of tool and the material of the workpiece, and these values can be obtained by original test processing. Generally, it can be obtained from a tool manufacturer.
  • the data regarding the upper limit load torque, specific cutting resistance, upper limit cutting speed, and upper limit feed amount per tooth acquired as described above holds the tool type, the number of blades, the tool diameter, and the tool.
  • the data is input from the input device 10 together with data relating to the type of tool holder and workpiece material, and stored in the machining condition data storage unit 5 by the input processing unit 3.
  • the stability limit diagram data storage unit 6 is a data (stable limit diagram) related to the stability limit diagram as shown in FIG. 3 showing the correlation between the rotation speed of the tool and the limit cutting depth that causes regenerative chatter in the tool. Data). This stability limit diagram varies depending on the natural frequency of the tool. Therefore, the stability limit diagram is input from the input device 10 in association with the tool, and is input to the stability limit diagram data storage unit 6 by the input processing unit 3. Stored.
  • the stability limit diagram is a diagram according to the so-called stability pocket theory, and the data is acquired in advance as follows.
  • ⁇ x is the natural frequency [rad / sec] of the tool T in the x-axis direction
  • ⁇ y the natural frequency [rad / sec] of the tool T in the y-axis direction
  • ⁇ x is the x-axis direction ( (Feed direction) damping ratio [%]
  • ⁇ y is the y axis direction (cutting direction) damping ratio [%].
  • m x is the x-axis direction of the equivalent mass [kg]
  • m y is the equivalent mass of the y-axis direction [kg]
  • F x is the x-axis direction of the cutting force acting on the tool T [N]
  • F y is a cutting power [N] acting on the tool T in the y-axis direction.
  • x ′′ and y ′′ represent the second derivative of time
  • x ′ and y ′ represent the first derivative of time, respectively.
  • the cutting powers F x and F y are the thickness at which the cutting edge cuts off the workpiece W, h ( ⁇ ) [m 2 ], the cutting depth is a p [mm], and the specific cutting force of the main component force is K t [N / m 2 ], and the ratio between the main component force and the back component force is K r [%], it can be calculated by the following formulas 8 and 9.
  • Cutting power F x, F y since changes the rotation angle of the tool T ⁇ [rad], the cutting force F x between the angle phi ex to end cutting and angle phi st to start cutting, the F y It is obtained by integrating and calculating the average. Further, the angle ⁇ st and the angle ⁇ ex can be obtained geometrically depending on the diameter D [mm] of the tool T, the cutting width Ae [mm], the feed direction, and the upper cut or the down cut.
  • the eigenvalue ⁇ according to the above formulas 6 and 7 is expressed by the following formula 10, where the vibration frequency of chatter vibration is ⁇ c .
  • ⁇ (a 1 ⁇ (a 1 2 ⁇ 4a 0 ) 1/2 ) / 2a 0
  • a 0 ⁇ xx (i ⁇ c ) ⁇ yy (i ⁇ c ) ( ⁇ xx ⁇ yy - ⁇ xy ⁇ yx )
  • ⁇ yy (i ⁇ c) 1 / (m y (- ⁇ c 2 + 2i ⁇ x ⁇ c ⁇ x + ⁇ x 2))
  • the real part ⁇ R of the eigenvalue ⁇ and the imaginary part of ⁇ I are calculated in accordance with the above formula 10, and then the values of ⁇ c and k are arbitrarily changed using formula 11 and formula 12.
  • the natural frequencies ⁇ x and ⁇ y of the tool T can be obtained by hammering, and the damping ratios ⁇ x and ⁇ y are based on the natural frequencies ⁇ x and ⁇ y of the tool T. For example, it can be calculated by the following formulas 13 and 14.
  • ⁇ x ( ⁇ 1x ⁇ 2x ) / 2 ⁇ x
  • ⁇ y ( ⁇ 1y ⁇ 2y ) / 2 ⁇ y
  • G x and G y the vibration frequencies are equivalent to G x / 2 1/2 and G y / 2 1/2, and the vibration frequencies when the compliance takes the maximum values G x and G y are These are the natural frequencies ⁇ x and ⁇ y of the tool T.
  • m x, m y can be calculated by the following formula 15 and formula 16.
  • m x 1 / (2G x ⁇ x ⁇ x 2 )
  • m y 1 / (2G y ⁇ y ⁇ y 2 )
  • the upper limit removal volume calculation processing unit 7 receives data on the tool, tool holder, and workpiece material input from the input device 10 via the input processing unit 3, and refers to the machining condition data storage unit 5.
  • the upper limit load torque Tmax [N ⁇ mm] and specific cutting resistance k c [N / mm 2 ] corresponding to the input tool, tool holder and workpiece material are recognized, and the recognized upper limit load torque Tmax and specific cutting are recognized.
  • n v c max / ( ⁇ ⁇ D)
  • the cutting speed used to calculate the rotational speed n is not necessarily the upper limit cutting speed v c max, and may be an appropriate value below this, for example, a generally recommended cutting speed. If the data relating to such recommended cutting speeds, may be stored in the machining condition data storage unit 5 in place of the upper cutting speed v c max.
  • the machining condition setting processing unit 9 refers to the machining condition data storage unit 5 based on the data relating to the tool, tool holder, and workpiece material input from the input device 10, and the tool, tool holder Further, the number z of blades of the tool and the upper limit feed amount fmax per blade corresponding to the workpiece material are read out, the read number z of blades is used, and the upper limit feed amount fmax per blade is used as the feed amount f per blade. As described above, the depth of cut a p and the width of cut A e are set as appropriate so as to satisfy the above formula 19.
  • the feed amount f per tooth may be an arbitrary value less than or equal to the upper limit feed amount fmax, for example, a generally recommended feed amount. In this case, data relating to such a recommended feed amount is used as the upper limit feed amount.
  • the machining condition data storage unit 5 may store it.
  • the method for setting the depth of cut a p and cut width A e is not limited in any way, for example, the generally recommended width A e cut depth a p to the reference notch is Conversely, the cutting depth a p can be set based on the generally recommended cutting width Ae .
  • the machining condition setting processing unit 9 refers to the stability limit diagram data storage unit 6 on the basis of the data relating to the tool input from the input device 10, and displays the stability limit diagram corresponding to the tool. Obtain such data, and verify whether the cutting depth ap and the rotation speed n set as described above are within the stable region based on the data obtained, and those within the stable region In this case, the machining condition setting processing unit 9 sends the data relating to the set cutting depth a p , the cutting width A e , the rotation speed n, and the feed amount f per tooth through the display processing unit 4. Display on the display device 11.
  • the cut depth ap and the rotation speed n are not within the stable region, the cut depth ap is corrected so that it is within the stable region, and the modified cut depth a is corrected.
  • the cut width Ae is set again so as to satisfy the above-described Expression 19. Then, the machining condition setting processing unit 9 transmits the data related to the set cutting depth a p , the cutting width A e , the rotation speed n, and the feed amount f per blade through the display processing unit 4. 11 is displayed.
  • the rotational speed n can be corrected so that they are within the stable region.
  • the upper limit removal volume Vmax needs to be recalculated in the upper limit removal volume calculation processing unit 7, and the processing condition setting processing unit 9 satisfies the above formula 19 based on the obtained upper limit removal volume Vmax.
  • the feed amount f, the cutting depth a p and the cutting width A e are set again, and whether or not the reset cutting depth ap and the rotation speed n are within the stable region. Since it is necessary to re-verify, it is necessary to repeat many processes until the set cutting depth ap and rotation speed n are within the stable region, which is not efficient.
  • the machining condition evaluation processing unit 8 receives data related to the tool, tool holder, and workpiece material from the input device 10, and further has a cutting depth a p [mm], a cutting width A e [mm], and rotation.
  • the removal volume V [mm 3 / min] is calculated according to the following equation 20 and the calculated removal It is evaluated whether or not the volume V exceeds the upper limit removal volume Vmax [mm 3 / min] calculated by the upper limit removal volume calculation processing unit 7, and if it exceeds the upper limit removal volume Vmax, it is ineligible.
  • a display to be displayed is displayed on the display device 11 via the display processing unit 4.
  • V a p ⁇ A e ⁇ n ⁇ f ⁇ z
  • f is the feed amount per blade of the tool [mm / blade]
  • z is the number of blades of the tool. Therefore, f ⁇ z is a feed amount [mm / rev] per one rotation of the tool.
  • the feed amount of the tool input from the input device 10 does not have to be a feed amount per rotation, and may be a feed amount f [mm / blade] per blade.
  • the machining condition evaluation processing unit 8 recognizes the number z of blades of the tool by referring to the machining condition data storage unit 5 based on the data related to the tool input from the input device 10, and recognizes the recognized blade. Based on the number z and the input feed amount f [mm / tooth] per blade, the feed amount [mm / rev] per rotation of the tool is calculated. Or you may make it input the feed amount [mm / blade] per blade of a tool, and the number z of blades of a tool from the input device 10, respectively.
  • each input data is passed through the input processing unit 3.
  • the processing condition data storage unit 5 is referred to, the input tool, with the upper limit load torque Tmax and the specific cutting force k c is recognized corresponding to the tool holder and the workpiece material, Based on the recognized upper limit load torque Tmax and specific cutting resistance k c , the upper limit removal volume Vmax that can be removed is calculated according to the above Equation 17, and data relating to the calculated upper limit removal volume Vmax and the rotational speed n of the tool is obtained. The image is displayed on the display device 11 via the display processing unit 4.
  • the machining condition setting device 1 of this example the data regarding the upper limit removal volume Vmax and the rotation speed n of the tool calculated by the upper limit removal volume calculation processing unit 7, the tool, the tool holder, and the data input from the input device 10 Based on the data related to the workpiece material, in the machining condition setting processing unit 9, the cutting depth a p [mm], the cutting width A e [mm], and the feed amount per tooth, which are more specific machining conditions f [mm / blade] is set.
  • the machining condition setting processing unit 9 refers to the stability limit diagram data storage unit 6 on the basis of the data related to the tool, acquires data related to the stability limit diagram corresponding to the tool, and obtains the income. On the basis of the obtained data, it is verified whether or not the cutting depth ap and the rotational speed n set as described above are within the stable region. Data relating to the cut depth a p , the cut width A e , the rotation speed n, and the feed amount f per blade is displayed on the display device 11 via the display processing unit 4.
  • the cutting depth ap is corrected so as to be within the stable region, and the modified cutting depth is obtained. Based on this, the cutting width Ae is reset, and the data related to the reset cutting depth a p , the cutting width A e , the rotation speed n, and the feed amount f is transmitted via the display processing unit 4. It is displayed on the display device 11.
  • the machining condition evaluation processing unit 8 receives data related to the tool, the tool holder, and the workpiece material from the input device 10, and further, the tool cutting depth a p , the cutting width A e , the rotation speed n, and the tool rotation.
  • the removal volume V is calculated according to the above formula 20 based on these data, and the calculated removal volume V is the upper limit calculated by the upper limit removal volume calculation processing unit 7. It is evaluated whether or not the removal volume Vmax is exceeded. When the upper limit removal volume Vmax is exceeded, a display indicating that the removal volume Vmax is inadequate is displayed on the display device 11 via the display processing unit 4.
  • the upper limit removal volume that allows the workpiece to be removed by the tool is theoretically input by inputting the tool and tool holder to be used and the workpiece material to be machined. Therefore, it is not necessary to repeat trial and error such as gradually increasing the cutting load in order to increase the processing efficiency as in the past, so that efficient processing can be realized in a short time. Can do.
  • the operator can easily recognize the calculated upper limit removal volume through the screen displayed on the display device 11. .
  • a general operator does not have an objective knowledge about how much cutting load can be realized in the combination of a tool and a tool holder to be used. According to the apparatus 1, even an operator who does not have such knowledge can recognize an upper limit removal volume that can be removed by simply inputting information on a tool to be used, a tool holder, and a workpiece material.
  • the operator can obtain the most efficient and stable machining conditions with respect to the input tool, tool holder and workpiece material, and the tool cutting depth a p , the cutting width A e, and the rotational speed n.
  • the feed amount can be recognized through the screen displayed on the display device 11.
  • the operator inputs the machining conditions set by the operator, and the machining condition evaluation processing unit 8 evaluates whether or not the machining conditions are processable conditions. It is possible to easily recognize whether it is possible or not, and it is possible to prevent machining under machining conditions exceeding such an upper limit, thereby enabling machine tools as well as tools, tool holders, and workpieces to be machined. Damage can be prevented.
  • the upper limit removal volume calculation processing unit 7 calculates the upper limit removal volume Vmax.
  • the upper limit removal volume Vmax determined in step 1 is calculated according to the above Equation 17, and the data related to the calculated upper limit removal volume Vmax is stored in the machining condition data storage unit 5 in association with the corresponding tool, tool holder, and workpiece material.
  • the display processing unit 4 refers to the machining condition data storage unit 5 to determine the tool, tool holder, and workpiece material.
  • Data corresponding to the corresponding upper limit removal volume Vmax is read out, and the read data related to the upper limit removal volume Vmax is displayed on the display device 11. It may be configured.
  • the machining condition evaluation apparatus 8 in the above example is configured to reset the machining conditions so that the inputted machining conditions are evaluated as being inadequate, so that they are within the upper limit removal volume Vmax. May be.
  • the operator sets three elements among the four elements of the cutting depth a p , the cutting width A e , the rotational speed n, and the feed amount per one rotation of the tool, and inputs from the input device 10, Even if the machining condition evaluation device 8 is configured to determine the remaining one element and display the data of the four elements set in this way on the display device 11 via the display processing unit 4. good.
  • the machining conditions set by the machining condition setting device 1 of the present example are all machine tools configured to mount and rotate the tool holder holding the rotary tool on the rotary shaft, for example,
  • a rotating tool can be mounted on a turret (tool post), and the present invention can be applied to processing of a lathe or the like configured to process a workpiece with the rotating tool.

Landscapes

  • Automatic Control Of Machine Tools (AREA)
  • Numerical Control (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Abstract

加工条件設定装置(1)は、工具に負荷可能な上限負荷トルクを工具及び工具ホルダと関連付けて記憶し、工具によってワークを加工する際の比切削抵抗を工具及びワーク材質に関連付けて記憶したデータ記憶部(5)と、入力された工具、工具ホルダ及びワーク材質に係る情報を基にデータ記憶部(5)を参照して、これらに対応した上限負荷トルク及び比切削抵抗を認識し、認識した上限負荷トルク及び比切削抵抗に基づいて、ワークを工具によって除去加工可能な上限となる除去体積を、下式に従って算出する上限除去体積算出処理部(7)とを備える。 Vmax=(n×Tmax)/kc 但し、Vmaxは上限除去体積[mm3/min]、nは工具の回転速度[min-1]、Tmaxは上限負荷トルク[N・mm]、kcは比切削抵抗[N/mm2]である。

Description

加工条件設定方法及び加工条件設定装置
 本発明は、工作機械を用い、その回転工具によってワークを加工する際に、当該回転工具に許容される最大の負荷をかけた加工を実現することができる加工条件の設定方法、及び加工条件設定装置に関する。
 一般に、工作機械を用いた加工の分野では、前記回転工具は工具ホルダに保持された状態で、この工具ホルダを介して前記工作機械の主軸穴に装着される。この工具ホルダには各種のものがあり、その保持形態も保持する工具によって各種のものが採用されているが、一般的には、工具のシャンク部を外部から所定の圧力で把持する形態が採られている。従来、この種の工具ホルダの一例として、特開2010-162684号公報(下記特許文献1)に開示された工具ホルダが知られている。
 上記特開2010-162684号公報によれば、この工具ホルダは、先端部に軸線方向後端に向かって先細りとなるテーパ穴を有するコレットチャック本体と、軸線方向に延びる工具挿入孔と、テーパ穴に嵌合する主テーパ面と、主テーパ面よりも軸線方向先端側に位置し軸線方向先端に向かって先細りとなる先端テーパ面とを有するテーパコレットと、コレットチャック本体の先端部外周の雄ねじに螺合する雌ねじを有しテーパコレットをテーパ穴に押し付けることにより工具挿入孔を縮径させる筒状のロックナットと、先端テーパ面に嵌合するテーパ状当接面を有し、ロックナットによって軸線方向後端に向かって押し込まれる先端テーパ部材と、ロックナットの押し込み方向に対して直交する面内に位置し、ロックナットと先端テーパ部材との間に介挿されるプレーンベアリングとを備えている。
 このような構成を備えた工具ホルダによれば、ロックナットと先端テーパ部材との間に介挿されるプレーンベアリングを備えることから、プレーンベアリングがロックナットと先端テーパ部材と間の摩擦抵抗を低減することが可能となり、このため、ロックナットを強い力で締め付けても、かかるプレーンベアリングの作用により先端テーパ部材は軸線直角方向に変位することが可能で、先端テーパ部材はテーパコレットとともにコレットチャック本体のテーパ穴に倣いながら締め付けられるため、テーパコレットの軸線がコレットチャック本体の軸線と安定して一致し、強い力でロックナットを締め付けても工具の振れ精度が安定する、とのことである。
 また、先端テーパ部材がテーパコレットの先端テーパ面と嵌合するテーパ状当接面を内周先端に有することから、ロックナットを強い力で締め付けることによって先端テーパ部材のテーパ状当接面がテーパコレットの先端テーパ面と密嵌合し、先端テーパ部材がゲージラインよりも先端側にあるテーパコレット先端を支持することが可能になるため、工具の位置ずれが生じない、とのことである。
特開2010-1622684号公報
 ところで、エンドミルやフェイスミルといった回転工具による加工では、当該工具に回転方向の切削力(切削抵抗)が作用するため、前記工具ホルダの把持力(保持力)は、この回転方向の切削力に抗し得るものでなければならない。工具ホルダの保持力が回転方向の切削力に抗することができなければ、工具が工具ホルダに対し相対的に回転して、当該工具及び工具ホルダが損傷するという問題を生じるとともに、工作機械自体に悪影響を与えるといった問題や、加工対象のワークが不良品になるという問題を生じる。
 また、エンドミルの外周刃を用いた加工の場合には、当該エンドミルに、工具ホルダから抜け出る軸方向の切削力が作用するため、工具ホルダの保持力がこの軸方向の切削力に勝っていなければ、工具が軸方向に変位して、加工精度が悪化するという問題を生じる。
 そこで、従来、当該工具ホルダの分野では、上述した保持精度のみならず、その保持力を高めるべく、保持構造などについて鋭意研究がなされている。
 一方、加工の現場では、絶えず加工の効率化が求められており、特に荒加工においては、上述した工具ホルダの保持力に係る問題が生じない範囲で、可及的な重切削、即ち、当該回転工具に許容される最大の負荷をかけた加工が試みられている。
 ところが、一般的なオペレータは、使用する工具及び工具ホルダの組み合わせにおいて、どの程度の切削負荷をかけた加工が実現できるかについて、その客観的な知見を有していないのが現状であり、このため、加工効率を高めるためには、徐々に、切削負荷が高くなるような加工条件に設定して実加工を行うといった試行錯誤を行わなければならず、加工の効率化を実現するために、長時間を要するという課題があった。
 また、オペレータは、どの程度の切削負荷をかけた加工が限界であるかについての知見を持たないため、ともすれば、限界以上の負荷をかけた加工を行うことがあり、このため、上述した工具及び工具ホルダが損傷するという問題や、加工対象のワークが不良品になるという問題が生じていた。そして、このような問題が頻発すると、工作機械への影響が深刻なものとなる。
 本発明は以上の実情に鑑みなされたものであって、実加工の試行錯誤に依存することなく、回転工具に許容される最大の負荷をかけた加工を実現することができる加工条件の設定方法及び加工条件設定装置の提供を、その目的とする。
 上記課題を解決するための本発明は、回転工具を保持した工具ホルダを工作機械の回転軸に装着して回転させ、前記回転工具と前記工作機械の加工領域に配置されたワークとを相対的に移動させて該ワークを加工する際の加工条件を設定する方法であって、
 使用する工具と工具ホルダとの関連において、前記工具を保持した際の前記工具ホルダの保持トルクを取得し、取得された保持トルクを基に、前記工具に作用させることが可能な上限となる負荷トルクを設定するとともに、
 使用工具と加工対象のワークとの関連において、該工具を用いてワークを加工する際の比切削抵抗を取得し、
 ついで、設定された前記上限負荷トルクと、取得された比切削抵抗に基づき、前記ワークを前記工具によって除去加工可能な上限となる除去体積を、下式に従って算出するようにした加工条件設定方法に係る。
(数式1)
Vmax=(n×Tmax)/k
但し、Vmaxは上限除去体積[mm3/min]、nは工具の回転速度[min-1]、Tmaxは上限負荷トルク[N・mm]、kは比切削抵抗[N/mm2]である。
 また、本発明は、回転工具を保持した工具ホルダを工作機械の回転軸に装着して回転させ、前記回転工具と前記工作機械の加工領域に配置されたワークとを相対的に移動させて該ワークを加工する際の加工条件を設定する装置であって、
 前記工作機械で使用される工具と工具ホルダとの関連において、前記工具に作用させることが可能な上限となる負荷トルクを、前記工具及び工具ホルダに係る情報と関連付けて記憶するとともに、前記工具と前記ワークの材質との関連において、前記工具を用いて前記ワークを加工する際の比切削抵抗を、前記工具及びワーク材質に係る情報と関連付けて記憶したデータ記憶部と、
 外部から入力される前記工具、工具ホルダ及びワーク材質に係る情報を受け付け、前記データ記憶部を参照して、入力された工具、工具ホルダ及びワーク材質に対応した上限負荷トルク及び比切削抵抗を認識するとともに、認識した上限負荷トルク及び比切削抵抗に基づいて、前記ワークを前記工具によって除去加工可能な上限となる除去体積を、上記数式1に従って算出する上限除去体積算出処理部とを備えた加工条件設定装置に係る。
 本発明によれば、まず、使用する工具と工具ホルダとの関連において、前記工具を適正に保持したときの前記工具ホルダの保持トルクを取得し、取得された保持トルクを基に、前記工具に作用させることが可能な上限となる負荷トルクを設定する。そして、このように設定された上限負荷トルクを対応する工具及び工具ホルダに係る情報と関連付けて前記データ記憶部に格納する。
 前記保持トルクは、工具ホルダに保持された工具にトルクが作用した際に、当該工具が滑り回転を生じる大きさのトルクである。この保持トルクは、まず、各工具ホルダの把持力を、圧力センサを用いた計測器によって測定し、得られた把持力を基に滑りトルク、即ち、保持トルクを算出する。尚、滑りトルクの算出は、工具と工具ホルダとの間の摩擦係数等から理論的に算出される。
 或いは、前記保持トルクは、工具ホルダに保持された工具の刃部にトルクを作用させ、その滑り回転時のトルク値を適宜計測器により測定することによっても得られ、また、工具と同じ形状のテストツールを作成して、これを工具ホルダに保持し、その刃部に相当する部分にトルクを作用させて、その滑り回転時のトルク値を前記計測器により測定することによっても得られる。
 そして、上述したように、取得された工具ホルダの保持トルクを基に、当該工具ホルダに作用させることが可能な上限となる負荷トルクを設定する。この上限負荷トルクは、工具に滑り回転を生じない上限となる負荷トルクであって、例えば、前記保持トルクに適宜係数(安全率)(例えば、0.8)を乗じることにより算出することができ、或いは、この保持トルクを上限負荷トルクとすることもできる。
 また、使用工具と加工対象のワークとの関連において、該工具を用いてワークを加工する際の比切削抵抗kを取得し、当該工具及びワークに係る情報と関連付けて前記データ記憶部に格納する。尚、この比切削抵抗k[N/mm2]は、当該工具を用いてワークを加工した際に主軸モータに掛けられた動力(電力)Pから下記数式2により算出することができ、或いは、工具メーカから入手することができる。
(数式2)
=(P×60×10)/(a×A×v
但し、aは切り込み深さ[mm]、Aは切り込み幅[mm]、vは工具の送り速度[mm/min]である。
 そして、前記上限除去体積算出処理部は、外部から入力される前記工具、工具ホルダ及びワーク材質に係る情報を受け付け、前記データ記憶部を参照して、入力された工具、工具ホルダ及びワーク材質に対応した上限負荷トルク及び比切削抵抗を認識するとともに、認識した上限負荷トルク及び比切削抵抗に基づいて、前記ワークを前記工具によって除去加工可能な上限となる除去体積Vmaxを上記数式1に従って算出する。尚、工具の回転速度n[min-1]は当該工具の直径、及び実現可能な適宜切削速度から算出される。
 斯くして、本発明によれば、使用する工具及び工具ホルダ、並びに加工対象のワーク材質が分かれば、当該工具、工具ホルダ及びワーク材質の関係において、当該工具によってワークを除去加工可能な上限となる除去体積を上式に従って理論的に算出することができる。したがって、従来のように、加工効率を高めるために、徐々に切削負荷を高くした加工を行うといった試行錯誤を繰り返す必要が無く、効率の良い加工を短時間で実現することができる。
 また、上述したように、一般的なオペレータは、使用する工具及び工具ホルダの組み合わせにおいて、どの程度の切削負荷をかけた加工が実現できるかについての客観的な知見を有していないが、本発明に係る加工条件設定装置によれば、このような知見を有しないオペレータでも、使用する工具、工具ホルダ及びワーク材質に係る情報を入力するだけで、当該工具によってワークを除去加工可能な上限となる除去体積を得ることができる。
 また、本発明に係る加工条件設定装置は、画面表示する表示装置と、前記上限除去体積算出処理部によって算出された上限除去体積に係る情報を、加工条件として前記表示装置に表示させる加工条件表示処理部とを更に備える。この加工条件設定装置によれば、上限除去体積算出処理部により算出された上限除去体積に係る情報が、加工条件表示処理部によって表示装置に表示される。斯くして、オペレータは、入力した工具、工具ホルダ及びワーク材質に係る上限除去体積を、表示装置に表示された画面を通じて認識することができる。
 また、本発明に係る加工条件設定方法では、上述のようにして得られた上限除去体積を基に、この上限除去体積を除去加工可能な工具の切り込み深さa[mm]、切り込み幅A[mm]、回転速度n[min-1]及び1刃当たりの送り量f[mm/刃]について、下記数式3を満足するような値に設定する。そして、本発明に係る加工条件設定装置では、このような処理を、条件設定処理部によって行う。
(数式3)
Vmax=a×A×n×f×z
但し、zは工具の刃数である。
尚、工具の回転速度nを、上限除去体積Vmaxを算出した際の回転速度から変更する場合には、再度上限除去体積Vmaxを算出し直した後、改めて、切り込み深さa[mm]、切り込み幅A[mm]及び1刃当たりの送り量f[mm/刃]を設定する。
 そして、本発明に係る加工条件設定装置では、前記条件設定処理部によって設定された工具の切り込み深さa[mm]、切り込み幅A[mm]、回転速度n[min-1]及び1刃当たりの送り量[mm/刃]が、前記加工条件表示処理部によって前記表示装置に表示されるように構成されていても良い。このようにすれば、オペレータは、入力した工具、工具ホルダ及びワーク材質に係る最も効率の良い加工条件としての工具の切り込み深さa[mm]、切り込み幅A[mm]、回転速度n[min-1]及び1刃当たりの送り量f[mm/刃]を、表示装置に表示された画面を通じて認識することができる。
 また、本発明に係る加工条件設定方法では、前記上限となる除去体積に基づいて、上記数式3を満足するとともに、前記工具の回転速度と前記工具に再生びびりを生じる限界切り込み深さとの相関線図である安定限界線図を参照して、前記工具の回転速度と切り込み深さとの関係が、工具に再生びびりが生じない安定領域内となるように、前記工具の切り込み深さ、切り込み幅、回転速度及び1刃当たりの送り量を設定するのが好ましい。そして、本発明に係る加工条件設定装置では、このような処理を、前記条件設定処理部によって行う。
 この加工条件設定方法及び加工条件設定装置によれば、加工効率が高く、しかも安定した加工条件を短時間で容易に設定することができる。
 また、本発明に係る加工条件設定装置では、外部から入力される前記工具の切り込み深さ、切り込み幅、回転速度及び送り量に係る情報を受け付け、受け付けた情報を基に、下記数式4に従って除去体積を算出するとともに、算出した除去体積が、前記上限除去体積算出処理部によって算出された上限除去体積を超えているかどうかを評価し、上限除去体積を超える場合には不適格であることを示す表示を、前記表示装置に表示する条件評価処理部を、更に備えていても良い。
(数式4)
V=a×A×n×f×z
但し、Vは除去体積[mm3/min]、aは切り込み深さ[mm]、Aは切り込み幅[mm]、nは工具の回転速度[min-1]、fは工具の1刃当たりの送り量[mm/刃]、zは工具の刃数である。
 この加工条件設定装置によれば、オペレータは、自身が設定した加工条件が、加工可能な条件であるか否かを容易に認識することができるとともに、上限を超える加工条件の場合には、その旨が明示されるので、このような上限を超えた加工条件で加工が行なわれるのを未然に防止することができ、これにより、工具、工具ホルダ及びワーク、並びに工作機械が損傷するのを防止することができる。
 また、本発明に係る加工条件設定装置は、
 回転工具を保持した工具ホルダを工作機械の回転軸に装着して回転させ、前記回転工具と前記工作機械の加工領域に配置されたワークとを相対的に移動させて該ワークを加工する際に、加工可能として設定される上限の除去体積を表示する装置であって、
 前記工作機械で使用される工具と工具ホルダとの関連において決定される、前記工具に作用させることが可能な上限となる負荷トルクと、前記工具と前記ワークの材質との関連において決定される、前記工具を用いて前記ワークを加工する際の比切削抵抗とに基づいて、上記数式1に従って算出される、前記ワークを前記工具により除去可能な上限となる除去体積を、前記工具、工具ホルダ及びワーク材質に係る情報と関連付けて記憶した上限除去体積記憶部と、
 画面表示する表示装置と、
 外部から入力される前記工具、工具ホルダ及びワーク材質に係る情報を受け付け、前記上限除去体積記憶部を参照して、入力された工具、工具ホルダ及びワーク材質に対応した上限除去体積を認識し、認識された上限除去体積に係る情報を加工条件として前記表示装置に表示させる加工条件表示処理部とを備えた態様を採ることができる。
 この構成を備えた加工条件設定装置によれば、工具、工具ホルダ及びワーク材質に係る情報が入力されると、加工条件表示処理部により上限除去体積記憶部が参照され、当該工具、工具ホルダ及びワーク材質に対応した上限除去体積が認識され、認識された上限除去体積に係る情報が加工条件として前記表示装置に表示される。
 斯くして、この加工条件設定装置によっても、オペレータは、使用する工具、工具ホルダ及びワーク材質に係る情報を入力するだけで、当該工具によってワークを除去加工可能な上限となる除去体積を得ることができ、従来のように、加工効率を高めるために、徐々に切削負荷を高くした加工を行うといった試行錯誤を繰り返す必要が無く、効率の良い加工を短時間で実現することができる。
 本発明によれば、使用する工具及び工具ホルダ、並びに加工対象のワーク材質に応じて、当該工具によりワークを除去加工可能な上限となる除去体積を理論的に算出することができる。したがって、従来のように、加工効率を高めるために、試行錯誤的な試験加工を行う必要が無く、効率の良い加工を短時間で実現することができる。
 また、本発明に係る加工条件設定装置によれば、使用する工具及び工具ホルダの組み合わせにおいて、どの程度の切削負荷をかけた加工が実現できるかについての専門的な知識を有しない一般的なオペレータでも、使用する工具、工具ホルダ及びワーク材質に係る情報を入力するだけで、当該工具によってワークを除去加工可能な上限除去体積(加工条件)を得ることができ、また、得られた上限除去体積を基に、工具の切り込み深さ、切り込み幅、回転速度及び送り量といった加工上の諸条件を得ることができる。
本発明の一実施形態に係る加工条件設定装置の概略構成を示したブロック図である。 本実施形態に係るデータ記憶部に格納されるデータを示したデータテーブルである。 本実施形態に係る安定限界線図データ記憶部に格納されるデータを線図形式で示した説明図である。 2自由度系の切削モデルを示した説明図である。 減衰比の算出を説明するための説明図である。
 以下、本発明の具体的な実施の形態について、図面を参照しながら説明する。図1は、本実施形態に係る加工条件設定装置の概略構成を示したブロック図である。同図1に示すように、本例の加工条件設定装置1は、演算装置2、入力装置10及び表示装置11から構成される。
 また、演算装置2は、入力処理部3、表示処理部4、加工条件データ記憶部5、安定限界線図データ記憶部6、上限除去体積算出処理部7、加工条件評価処理部8及び加工条件設定処理部9から構成される。尚、この演算装置2は、CPU、RAM、ROMなどを含むコンピュータから構成され、前記入力処理部3、表示処理部4、上限除去体積算出処理部7、加工条件評価処理部8及び加工条件設定処理部9は、それぞれコンピュータプログラムによってその機能が実現され、後述する処理を実行する。また、前記加工条件データ記憶部5及び安定限界線図データ記憶部6は、それぞれRAMなどの適宜記憶媒体から構成される。
 また、この加工条件設定装置1は、適宜工作機械の制御装置に組み込むことができ、この場合、前記入力装置10及び表示装置11は操作盤のタッチパネルで構成することができる。
 前記加工条件データ記憶部5は、工具の種別、その刃数z、工具径D[mm]、当該工具を保持する工具ホルダの種別、当該工具に作用させることができる上限負荷トルクTmax[N・mm]、ワークの材質に応じた当該工具の比切削抵抗k[N/mm2]、上限切削速度vmax[mm/min]及び1刃当たりの上限送り量fmax[mm/刃]を、図2に示したデータテーブルとして記憶する。
 尚、前記上限負荷トルクは、工具とこれを保持する工具ホルダとの関連において、当該工具を適正に保持したときの工具ホルダの保持トルクから設定される。保持トルクは、工具ホルダに保持された工具にトルクが作用した際に、当該工具が滑り回転を生じる大きさのトルクである。この保持トルクは、まず、各工具ホルダの把持力を、圧力センサを用いた計測器によって測定し、得られた把持力を基に滑りトルク、即ち、保持トルクを算出する。滑りトルクの算出は、工具と工具ホルダとの間の摩擦係数等から理論的に算出される。
 或いは、前記保持トルクは、工具ホルダに保持された工具の刃部にトルクを作用させ、その滑り回転時のトルク値を適宜計測器により測定することによっても得られ、また、工具と同じ形状のテストツールを作成して、これを工具ホルダに保持し、その刃部に相当する部分にトルクを作用させて、その滑り回転時のトルク値を前記計測器により測定することによっても得られる。
 そして、上述したように、取得された工具ホルダの保持トルクを基に、当該工具ホルダに作用させることが可能な上限となる負荷トルクを設定する。この上限負荷トルクは、工具に滑り回転を生じない上限となる負荷トルクであって、例えば、前記保持トルクに適宜係数(安全率)(例えば、0.8)を乗じることにより算出することができ、或いは、この保持トルクを上限負荷トルクとすることができる。
 また、前記比切削抵抗は、ワークを、断面積1[mm2]で切削する際に必要とされる切削力(切削抵抗)であり、例えば、対象の工具を用いて対象のワークを加工したときに、主軸モータに供給される動力(電力)Pを基に、下記数式5によって算出することができる。
(数式5)
=(P×60×10)/(a×A×v
但し、aは切り込み深さ[mm]、Aは切り込み幅[mm]、vは工具の送り速度[mm/min]である。
 この比切削抵抗の値は、工具の種類及びワークの材質によって決定されるものであり、工具の種類及びワークの材質に応じて予め取得される。或いは、この比切削抵抗に係るデータは、一般的に、工具メーカによって所持されており、この工具メーカから入手することもできる。
 また、前記上限切削速度及び1刃当たりの上限送り量についても同様に、工具の種類及びワークの材質によって決定されるものであり、これらの値を独自の試験加工によって取得することができるが、一般的には、工具メーカから入手することができる。
 そして、以上のようにして取得された上限負荷トルク、比切削抵抗、上限切削速度及び1刃当たりの上限送り量に係るデータは、工具の種類、その刃数、工具径、当該工具を保持する工具ホルダの種類、及びワーク材質に係るデータと共に前記入力装置10から入力され、前記入力処理部3によって前記加工条件データ記憶部5に格納される。
 前記安定限界線図データ記憶部6は、工具の回転速度と、工具に再生びびりを生じる限界切り込み深さとの相関を示す、図3に示すような安定限界線図に係るデータ(安定限界線図データ)を記憶する。この安定限界線図は、工具の固有振動数によって異なるものであり、したがって、工具に対応付けて、前記入力装置10から入力され、前記入力処理部3によって前記安定限界線図データ記憶部6に格納される。
 尚、この安定限界線図は、所謂、安定ポケット理論に従った線図であり、そのデータは、以下のようにして予め取得される。
 図4に示したモデルは、工具TとワークWとをx軸及びy軸の2つの送り軸方向に相対移動させるように構成された2自由度系の物理モデルである。このモデルから、再生びびり振動の発生する条件を、Y・Altintasの考案した解析方法を用いて求める。
 このモデルにおいて、工具Tの運動方程式は、それぞれ以下の数式6及び数式7で表わされる。
(数式6)
x"+2ζxωxx'+ωx 2x=Fx/mx
(数式7)
y"+2ζyωyy'+ωy 2y=Fy/my
ここで、ωxは工具Tのx軸方向の固有振動数[rad/sec]、ωyは工具Tのy軸方向の固有振動数[rad/sec]であり、ζxはx軸方向(送り方向)の減衰比[%]、ζyはy軸方向(切り込み方向)の減衰比[%]である。また、mxはx軸方向の等価質量[kg]、myはy軸方向の等価質量[kg]であり、Fxは工具Tに作用するx軸方向の切削動力[N]であり、Fyは工具Tに作用するy軸方向の切削動力[N]である。また、x"及びy"はそれぞれ時間の2階微分を示し、x'及びy'はそれぞれ時間の1階微分を示す。
 切削動力Fx,Fyは、切れ刃がワークWを切り取る厚さをh(φ)[m2]、切り込み深さをap[mm]、主分力の比切削抵抗をKt[N/m2]、主分力と背分力の比をKr[%]とすると、次式数式8及び数式9によって算出することができる。
(数式8)
x=-Ktph(φ)cos(φ)-Krtph(φ)sin(φ)
(数式9)
y=+Ktph(φ)sin(φ)-Krtph(φ)cos(φ)
 切削動力Fx,Fyは、工具Tの回転角φ[rad]によって変化するので、切削を開始する角度φstと切削を終了する角度φexとの間で切削動力Fx,Fyを積分し、その平均を求めることによって得られる。また、角度φst及び角度φexは、工具Tの直径D[mm]、切り込み幅Ae[mm]、送り方向、アッパーカットかダウンカットかによって幾何学的に求めることができる。
 上記数式6及び数式7に係る固有値Λは、びびり振動の振動数をωcとすると、次式数式10によって表される。
(数式10)
Λ=-(a1±(a1 2-4a01/2)/2a0
但し、
0=Φxx(iωcyy(iωc)(αxxαyy-αxyαyx)
1=αxxΦxx(iωc)+αyyΦyy(iωc)
Φxx(iωc)=1/(mx(-ωc 2+2iζxωcωx+ωx 2))
Φyy(iωc)=1/(my(-ωc 2+2iζyωcωy+ωy 2))
αxx=[(cos2φex-2Krφex+Krsin2φex)-(cos2φst-2Krφst+Krsin2φst)]/2
αxy=[(-sin2φex-2φex+Krcos2φex)-(-sin2φst-2φst+Krcos2φst)]/2
αyx=[(-sin2φex+2φex+Krcos2φex)-(-sin2φst+2φst+Krcos2φst)]/2
αyy=[(-cos2φex-2Krφex-Krsin2φex)-(cos2φst-2Krφst-Krsin2φst)]/2
 そして、前記固有値Λの実部をΛR、虚部をΛIとすると、安定限界における切り込み深さaplim、及び主軸の回転速度nlimは、それぞれ次の数式11及び数式12によって表される。
(数式11)
plim=2πΛR(1+(ΛIR)2)/(NKt)
(数式12)
lim=60ωc/(N(2kπ+π-2tan-1IR)))
但し、Nは工具Tの刃数、kは整数である。
 斯くして、前記固有振動数ωx,ωy、主分力の比切削抵抗Kt、主分力と背分力の比Kr、減衰比ζx,ζy及び等価質量mx,myを基に、上記数式10に従って、固有値Λの実部ΛR、及び虚部をΛIを算出し、ついで、数式11及び数式12を用いて、そのωc及びkの値を任意に変化させながらそのときの限界切り込み深さaplim、及び主軸の回転速度nlimを算出することで、安定限界線図に係るデータを得ることができる。
 尚、工具Tの固有振動数をωx、ωyは、それぞれハンマリングによって取得することができ、前記減衰比ζx及びζyは、工具Tの固有振動数をωx、ωyを基に、例えば、次の数式13及び数式14によって算出することができる。
(数式13)
ζx=(ω1x-ω2x)/2ωx
(数式14)
ζy=(ω1y-ω2y)/2ωy
但し、ω1x,ω1y及びω2x,ω2yは、図5に示すように、x軸方向及びy軸方向の各コンプライアンス(変位(=出力)/切削動力(=入力))の最大値がGx及びGyであるときに、Gx/21/2,Gy/21/2に相当する振動数であり、コンプライアンスが最大値Gx,Gyをとるときの振動数が、当該工具Tの固有振動数ωx,ωyである。
 また、等価質量はmx、myは次の数式15及び数式16によって算出することができる。
(数式15)
x=1/(2Gxζxωx 2)
(数式16)
y=1/(2Gyζyωy 2)
 前記上限除去体積算出処理部7は、入力装置10から入力される前記工具、工具ホルダ及びワーク材質に係るデータを、前記入力処理部3を介して受け付け、前記加工条件データ記憶部5を参照して、入力された工具、工具ホルダ及びワーク材質に対応した上限負荷トルクTmax[N・mm]及び比切削抵抗k[N/mm]を認識するとともに、認識した上限負荷トルクTmax及び比切削抵抗kに基づいて、前記ワークを前記工具によって除去加工可能な上限除去体積Vmax[mm/min]を下記数式17に従って算出し、算出した上限除去体積Vmax及び工具の回転速度n[min-1]に係るデータを前記加工条件設定処理部9に送信するとともに、前記表示処理部4を介して前記表示装置11に表示させる。
(数式17)
Vmax=(n×Tmax)/k
但し、工具の回転速度nは、前記加工条件データ記憶部5に格納された当該工具の直径D、及び上限切削速度vmax[mm/min]から下式数式18によって算出される。
(数式18)
n=vmax/(π×D)
尚、回転速度nを算出するために用いる切削速度は、必ずしも上限切削速度vmaxである必要はなく、これ以下の適宜値、例えば一般的に推奨される切削速度であっても良く、この場合、このような推奨切削速度に係るデータを、前記上限切削速度vmaxに代えて前記加工条件データ記憶部5に格納すると良い。
 前記加工条件設定処理部9は、前記入力装置10から入力された前記工具、工具ホルダ及びワーク材質に係るデータを、前記入力処理部3を介して受け付けるとともに、前記上限除去体積算出処理部7によって算出された上限除去体積Vmax及び工具の回転速度nに係るデータを当該上限除去体積処理部7から受信し、受信した工具、工具ホルダ及びワーク材質、並びに上限除去体積Vmax及び工具の回転速度nに係るデータを基に、下式数式19を満足するような工具の切り込み深さa[mm]、切り込み幅A[mm]及び1刃当たり送り量f[mm/刃]を設定する。
(数式19)
Vmax=a×A×n×f×z
但し、zは工具の刃数である。
 その際、加工条件設定処理部9は、前記入力装置10から入力された工具、工具ホルダ及びワーク材質に係るデータを基に、前記加工条件データ記憶部5を参照して、当該工具、工具ホルダ及びワーク材質に対応した工具の刃数z及び1刃当たりの上限送り量fmaxを読み出し、読み出した刃数zを用い、また、1刃当たりの上限送り量fmaxを1刃当たりの前記送り量fとして、上記数式19を満足するような、切り込み深さa及び切り込み幅Aを適宜設定する。或いは、1刃当たり送り量fを上限送り量fmax以下の任意の値、例えば、一般的に推奨される送り量としても良く、この場合、このような推奨送り量に係るデータを、前記上限送り量fmaxに代えて前記加工条件データ記憶部5に格納すると良い。
 また、前記切り込み深さa及び切り込み幅Aを設定する手法については、何ら限定されるものではないが、例えば、一般的に推奨される切り込み深さaを基準に切り込み幅Aを設定することができ、逆に、一般的に推奨される切り込み幅Aを基準に切り込み深さaを設定することができる。このような手法をとる場合、工具及びワーク材質に応じた推奨切り込み深さa、及び/又は推奨切り込み幅Aを前記加工条件データ記憶部5に格納すると良い。
 そして、加工条件設定処理部9は、前記入力装置10から入力された工具に係るデータを基に、前記安定限界線図データ記憶部6を参照して、当該工具に対応した安定限界線図に係るデータを取得し、所得されたデータを基に、上記のようにして設定した切り込み深さa及び回転速度nが安定領域内のものであるか否かを検証し、安定領域内のものである場合には、加工条件設定処理部9は、設定した切り込み深さa、切り込み幅A、回転速度n及び1刃当たりの送り量fに係るデータを、前記表示処理部4を介して前記表示装置11に表示させる。
 一方、設定した切り込み深さa及び回転速度nが安定領域内のもので無い場合には、安定領域内のものとなるように、切り込み深さaを修正し、修正した切り込み深さaを基に、上記数式19を満足するような切り込み幅Aを再設定する。そして、加工条件設定処理部9は、設定した切り込み深さa、切り込み幅A、回転速度n及び1刃当たりの送り量fに係るデータを、前記表示処理部4を介して前記表示装置11に表示させる。
 尚、設定した切り込み深さa及び回転速度nが安定領域内に無い場合には、これらが安定領域内のものとなるように、回転速度nを修正することができるが、この場合には、上限除去体積算出処理部7において上限除去体積Vmaxを再算出する必要があり、また、得られた上限除去体積Vmaxを基に、前記加工条件設定処理部9において、上記数式19を満足するような、1刃当たりの送り量f、切り込み深さa及び切り込み幅Aを再度設定し、更に、再設定した切り込み深さa及び回転速度nが安定領域内のものなったか否かを再検証する必要があるため、設定した切り込み深さa及び回転速度nが安定領域内のものとなるまでに、多くの処理を繰り返す必要があり、効率的ではない。
 前記加工条件評価処理部8は、前記入力装置10から工具、工具ホルダ及びワーク材質に係るデータが入力され、更に、工具の切り込み深さa[mm]、切り込み幅A[mm]、回転速度n[min-1]及び工具1回転あたりの送り量[mm/rev]に係るデータが入力されると、下記数式20に従って除去体積V[mm/min]を算出するとともに、算出した除去体積Vが、前記上限除去体積算出処理部7によって算出された上限除去体積Vmax[mm/min]を超えているかどうかを評価し、上限除去体積Vmaxを超える場合には不適格であることを示す表示を、前記表示処理部4を介して前記表示装置11に表示する。
(数式20)
V=a×A×n×f×z
但し、fは工具の1刃当たりの送り量[mm/刃]、zは工具の刃数である。したがって、f×zは工具の1回転あたりの送り量[mm/rev]となる。
 尚、前記入力装置10から入力される工具の送り量は、1回転あたりの送り量である必要はなく、1刃当たりの送り量f[mm/刃]であっても良い。この場合、加工条件評価処理部8は、入力装置10から入力された工具に係るデータを基に、前記加工条件データ記憶部5を参照して当該工具の刃数zを認識し、認識した刃数z及び入力された1刃当たりの送り量f[mm/刃]を基に、工具の1回転あたりの送り量[mm/rev]を算出する。或いは、工具の1刃当たりの送り量[mm/刃]、及び工具の刃数zを、それぞれ入力装置10から入力するようにしても良い。
 以上の構成を備えた本例の加工条件設定装置1によれば、入力装置10から工具、工具ホルダ及びワーク材質に係るデータが入力されると、入力された各データが入力処理部3を介して上限除去体積算出処理部7に送信される。そして、上限除去体積算出処理部7において、加工条件データ記憶部5が参照され、入力された工具、工具ホルダ及びワーク材質に対応した上限負荷トルクTmax及び比切削抵抗kが認識されるとともに、認識された上限負荷トルクTmax及び比切削抵抗kに基づいて、除去加工可能な上限除去体積Vmaxが上記数式17に従って算出され、算出された上限除去体積Vmax及び工具の回転速度nに係るデータが前記表示処理部4を介して前記表示装置11に表示される。
 そして、本例の加工条件設定装置1では、上限除去体積算出処理部7によって算出された上限除去体積Vmax及び工具の回転速度nに係るデータ、並びに入力装置10から入力された工具、工具ホルダ及びワーク材質に係るデータを基に、加工条件設定処理部9において、より具体的な加工条件である工具の切り込み深さa[mm]、切り込み幅A[mm]及び1刃当たりの送り量f[mm/刃]が設定される。
 また、加工条件設定処理部9では、当該工具に係るデータを基に、安定限界線図データ記憶部6が参照されて、当該工具に対応した安定限界線図に係るデータが取得され、所得されたデータを基に、上記のようにして設定された切り込み深さa及び回転速度nが安定領域内のものであるか否かが検証され、安定領域内のものである場合には、設定された切り込み深さa、切り込み幅A、回転速度n及び1刃当たりの送り量fに係るデータが、前記表示処理部4を介して前記表示装置11に表示される。
 一方、設定された切り込み深さa及び回転速度nが安定領域内のもので無い場合には、安定領域内のものとなるように、切り込み深さaが修正され、修正された切り込み深さを基に、切り込み幅Aが再設定され、再設定された切り込み深さa、切り込み幅A、回転速度n及び送り量fに係るデータが、前記表示処理部4を介して前記表示装置11に表示される。
 また、加工条件評価処理部8では、入力装置10から工具、工具ホルダ及びワーク材質に係るデータが入力され、更に、工具の切り込み深さa、切り込み幅A、回転速度n及び工具1回転あたりの送り量に係るデータが入力されると、これらのデータを基に上記数式20に従って除去体積Vが算出され、算出された除去体積Vが、上限除去体積算出処理部7によって算出された上限除去体積Vmaxを超えているかどうかが評価され、上限除去体積Vmaxを超える場合には不適格であることを示す表示が、前記表示処理部4を介して前記表示装置11に表示される。
 斯くして、本例の加工条件設定装置1によれば、使用する工具及び工具ホルダ、並びに加工対象のワーク材質を入力することで、当該工具によってワークを除去加工可能な上限除去体積を理論的に算出することができるので、従来のように、加工効率を高めるために、徐々に切削負荷を高くした加工を行うといった試行錯誤を繰り返す必要が無く、効率の良い加工を短時間で実現することができる。
 また、算出された上限除去体積に係るデータが前記表示装置11に表示されるので、オペレータは、算出された上限除去体積を、表示装置11に表示された画面を通じて、容易に認識することができる。
 また、一般的なオペレータは、使用する工具及び工具ホルダの組み合わせにおいて、どの程度の切削負荷をかけた加工が実現できるかについての客観的な知見を有していないが、本例の加工条件設定装置1によれば、このような知見を有しないオペレータでも、使用する工具、工具ホルダ及びワーク材質に係る情報を入力するだけで、除去加工可能な上限除去体積を認識することができる。
 また、オペレータは、入力した工具、工具ホルダ及びワーク材質に係る最も効率が良く、しかも再生びびりが生じない安定した加工条件である、工具の切り込み深さa、切り込み幅Ae、回転速度n及び送り量を、表示装置11に表示された画面を通じて認識することができる。
 また、オペレータは、自身が設定した加工条件を入力することで、加工条件評価処理部8により、当該加工条件が加工可能な条件であるか否かが評価されるので、当該加工条件による加工の可否を容易に認識することができるとともに、このような上限を超えた加工条件で加工が行なわれるのを未然に防止することができ、これにより、工具、工具ホルダ、ワークの他、工作機械が損傷するのを防止することができる。
 以上、本発明の一具体的な実施形態について説明したが、本発明が採り得る態様は、何らこれに限定されるものではない。
 例えば、上例の加工条件設定装置1では、上限除去体積算出処理部7において上限除去体積Vmaxを算出するようにしたが、これに限られるものではなく、予め工具、工具ホルダ及びワーク材質の関連において決定される上限除去体積Vmaxを、上記数式17に従って算出して、算出した上限除去体積Vmaxに係るデータを、対応する工具、工具ホルダ及びワーク材質と関連付けて上記加工条件データ記憶部5に格納し、前記入力装置10から工具、工具ホルダ及びワーク材質に係るデータが入力されたとき、前記表示処理部4により前記加工条件データ記憶部5を参照して、当該工具、工具ホルダ及びワーク材質に対応した上限除去体積Vmaxに係るデータを読み出し、読み出した上限除去体積Vmaxに係るデータを表示装置11に表示させるように構成されていても良い。
 また、上例の加工条件評価装置8は、入力された加工条件が不適格な条件であると評価された場合に、上限除去体積Vmax以内となるように、加工条件を再設定するように構成されていても良い。この場合、切り込み深さa、切り込み幅A、回転速度n及び工具1回転あたりの送り量の4要素の内、3つの要素をオペレータが設定して前記入力装置10から入力することにより、加工条件評価装置8は、残りの1つの要素について決定し、このようにして設定された4要素のデータを前記表示処理部4を介して前記表示装置11に表示するように構成されていても良い。
 また、言うまでもないが、本例の加工条件設定装置1によって設定される加工条件は、回転工具を保持した工具ホルダを回転軸に装着して回転させるように構成された全ての工作機械、例えば、所謂マシニングセンタの他、タレット(刃物台)に回転工具を装着可能に構成され、当該回転工具によってワークを加工可能に構成された旋盤などの加工に適用することができる。
 1  加工条件設定装置
 2  演算装置
 3  入力処理部
 4  表示処理部
 5  加工条件データ記憶部
 6  安定限界線図データ記憶部
 7  上限除去体積算出処理部
 8  加工条件評価処理部
 9  加工条件設定処理部
 10 入力装置
 11 表示装置
 

Claims (10)

  1.  回転工具を保持した工具ホルダを工作機械の回転軸に装着して回転させ、前記回転工具と前記工作機械の加工領域に配置されたワークとを相対的に移動させて該ワークを加工する際の加工条件を設定する方法であって、
     使用する工具と工具ホルダとの関連において、前記工具を保持した際の前記工具ホルダの保持トルクを取得し、取得された保持トルクを基に、前記工具に作用させることが可能な上限となる負荷トルクを設定するとともに、
     使用工具と加工対象のワークとの関連において、該工具を用いてワークを加工する際の比切削抵抗を取得し、
     ついで、設定された前記上限負荷トルクと、取得された比切削抵抗に基づき、前記ワークを前記工具によって除去加工可能な上限となる除去体積を、下式に従って算出するようにしたことを特徴とする加工条件設定方法。
    Vmax=(n×Tmax)/k
    但し、Vmaxは上限除去体積[mm/min]、nは工具の回転速度[min-1]、Tmaxは上限負荷トルク[N・mm]、kは比切削抵抗[N/mm]である。
  2.  更に、前記上限となる除去体積に基づいて、下式を満足するように、工具の切り込み深さ、切り込み幅、回転速度及び送り量を設定するようにしたことを特徴とする請求項1記載の加工条件設定方法。
    Vmax=a×A×n×f×z
    但し、Vmaxは上限除去体積[mm/min]、aは切り込み深さ[mm]、Aは切り込み幅[mm]、nは工具の回転速度[min‐1]、fは工具の1刃当たりの送り量[mm/刃]、zは工具の刃数である。
  3.  更に、前記上限となる除去体積に基づいて、下式を満足するとともに、前記工具の回転速度と前記工具に再生びびりを生じる限界切り込み深さとの相関線図である安定限界線図を参照して、前記工具の回転速度と切り込み深さとの関係が、工具に再生びびりが生じない安定領域内となるように、前記工具の切り込み深さ、切り込み幅、回転速度及び送り量を設定するようにしたことを特徴とする請求項1記載の加工条件設定方法。
    Vmax=a×A×n×f×z
    但し、Vmaxは上限除去体積[mm/min]、aは切り込み深さ[mm]、Aは切り込み幅[mm]、nは工具の回転速度[min‐1]、fは工具の1刃当たりの送り量[mm/刃]、zは工具の刃数である。
  4.  回転工具を保持した工具ホルダを工作機械の回転軸に装着して回転させ、前記回転工具と前記工作機械の加工領域に配置されたワークとを相対的に移動させて該ワークを加工する際の加工条件を設定する装置であって、
     前記工作機械で使用される工具と工具ホルダとの関連において、前記工具に作用させることが可能な上限となる負荷トルクを、前記工具及び工具ホルダに係る情報と関連付けて記憶するとともに、前記工具と前記ワークの材質との関連において、前記工具を用いて前記ワークを加工する際の比切削抵抗を、前記工具及びワーク材質に係る情報と関連付けて記憶したデータ記憶部と、
     外部から入力される前記工具、工具ホルダ及びワーク材質に係る情報を受け付け、前記データ記憶部を参照して、入力された工具、工具ホルダ及びワーク材質に対応した上限負荷トルク及び比切削抵抗を認識するとともに、認識した上限負荷トルク及び比切削抵抗に基づいて、前記ワークを前記工具によって除去加工可能な上限となる除去体積を、下式に従って算出する上限除去体積算出処理部とを備えていることを特徴とする加工条件設定装置。
    Vmax=(n×Tmax)/k
    但し、Vmaxは上限除去体積[mm/min]、nは工具の回転速度[min-1]、Tmaxは上限負荷トルク[N・mm]、kは比切削抵抗[N/mm]である。
  5.  画面表示する表示装置と、
     前記上限除去体積算出処理部によって算出された上限除去体積に係る情報を加工条件として前記表示装置に表示させる加工条件表示処理部とを更に備えていることを特徴とする請求項4記載の加工条件設定装置。
  6.  画面表示する表示装置と、
     外部から入力される前記工具の切り込み深さ、切り込み幅、回転速度及び送り量に係る情報を受け付け、受け付けた情報を基に、下式に従って除去体積を算出するとともに、算出した除去体積が、前記上限除去体積算出処理部によって算出された上限除去体積を超えているかどうかを評価し、上限除去体積を超える場合には、不適格であることを示す表示を前記表示装置に表示する条件評価処理部とを、更に備えていることを特徴とする請求項4記載の加工条件設定装置。
    V=a×A×n×f×z
    但し、Vは除去体積[mm/min]、aは切り込み深さ[mm]、Aは切り込み幅[mm]、nは工具の回転速度[min-1]、fは工具の1刃当たりの送り量[mm/刃]、zは工具の刃数である。
  7.  更に、前記上限除去体積算出処理部によって算出された上限除去体積に基づいて、下式を満足するように、工具の切り込み深さ、切り込み幅、回転速度及び送り量を設定する条件設定処理部を備えていることを特徴とする請求項4記載の加工条件設定装置。
    Vmax=a×A×n×f×z
    但し、Vmaxは上限除去体積[mm/min]、aは切り込み深さ[mm]、Aは切り込み幅[mm]、nは工具の回転速度[min-1]、fは工具の1刃当たりの送り量[mm/刃]、zは工具の刃数である。
  8.  更に、前記上限除去体積算出処理部によって算出された上限除去体積に基づいて、下式を満足するとともに、前記工具の回転速度と前記工具に再生びびりを生じる限界切り込み深さとの相関関係において、前記工具の回転速度と切り込み深さとの関係が、前記工具に再生びびりを生じない安定領域内となるような、前記工具の切り込み深さ、切り込み幅、回転速度及び送り量を設定する条件設定処理部を備えていることを特徴とする請求項4記載の加工条件設定装置。
    Vmax=a×A×n×f×z
    但し、Vmaxは上限除去体積[mm/min]、aは切り込み深さ[mm]、Aは切り込み幅[mm]、nは工具の回転速度[min-1]、fは工具の1刃当たりの送り量[mm/刃]、zは工具の刃数である。
  9.  画面表示する表示装置と、
     前記条件設定部によって設定された工具の切り込み深さ、切り込み幅、回転速度及び送り量を加工条件として前記表示装置に表示させる加工条件表示処理部とを更に備えていることを特徴とする請求項7又は8記載の加工条件設定装置。
  10.  回転工具を保持した工具ホルダを工作機械の回転軸に装着して回転させ、前記回転工具と前記工作機械の加工領域に配置されたワークとを相対的に移動させて該ワークを加工する際に、加工可能として設定される上限の除去体積を表示する装置であって、
     前記工作機械で使用される工具と工具ホルダとの関連において決定される、前記工具に作用させることが可能な上限となる負荷トルクと、前記工具と前記ワークの材質との関連において決定される、前記工具を用いて前記ワークを加工する際の比切削抵抗とに基づいて、下式に従って算出される、前記ワークを前記工具により除去加工可能な上限となる除去体積を、前記工具、工具ホルダ及びワーク材質に係る情報と関連付けて記憶した上限除去体積記憶部と、
     画面表示する表示装置と、
     外部から入力される前記工具、工具ホルダ及びワーク材質に係る情報を受け付け、前記上限除去体積記憶部を参照して、入力された工具、工具ホルダ及びワーク材質に対応した上限除去体積を認識し、認識された上限除去体積に係る情報を加工条件として前記表示装置に表示させる加工条件表示処理部とを備えていることを特徴とする加工条件表示装置。
    Vmax=(n×Tmax)/k
    但し、Vmaxは上限除去体積[mm/min]、nは工具の回転速度[min-1]、Tmaxは上限負荷トルク[N・mm]、kは比切削抵抗[N/mm]である。
     
PCT/JP2018/000997 2017-03-24 2018-01-16 加工条件設定方法及び加工条件設定装置 WO2018173434A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-058487 2017-03-24
JP2017058487A JP6473772B2 (ja) 2017-03-24 2017-03-24 加工条件設定方法及び加工条件設定装置

Publications (1)

Publication Number Publication Date
WO2018173434A1 true WO2018173434A1 (ja) 2018-09-27

Family

ID=63584255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/000997 WO2018173434A1 (ja) 2017-03-24 2018-01-16 加工条件設定方法及び加工条件設定装置

Country Status (2)

Country Link
JP (1) JP6473772B2 (ja)
WO (1) WO2018173434A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021015064A1 (ja) * 2019-07-25 2021-01-28 シチズン時計株式会社 工具情報設定装置及び工作機械
CN115291564A (zh) * 2022-10-08 2022-11-04 成都飞机工业(集团)有限责任公司 一种基于切削体积的数控加工刀具寿命评价方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7094509B1 (ja) * 2021-09-13 2022-07-04 広島県 情報処理装置、制御プログラムおよび情報処理方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000105606A (ja) * 1998-09-29 2000-04-11 Okuma Corp 数値制御装置
JP2004237441A (ja) * 2003-01-17 2004-08-26 Fuji Electric Systems Co Ltd 最適化装置、制御プログラム生成装置、プログラム
JP2005074569A (ja) * 2003-09-01 2005-03-24 Mitsubishi Heavy Ind Ltd プログラム、コンピュータ装置、多軸加工機、ncプログラムの生成方法、ワークの加工方法
JP2005293226A (ja) * 2004-03-31 2005-10-20 Mazda Motor Corp 工作機械の送り速度設定方法
JP2012155473A (ja) * 2011-01-25 2012-08-16 Okuma Corp 数値制御情報作成装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000105606A (ja) * 1998-09-29 2000-04-11 Okuma Corp 数値制御装置
JP2004237441A (ja) * 2003-01-17 2004-08-26 Fuji Electric Systems Co Ltd 最適化装置、制御プログラム生成装置、プログラム
JP2005074569A (ja) * 2003-09-01 2005-03-24 Mitsubishi Heavy Ind Ltd プログラム、コンピュータ装置、多軸加工機、ncプログラムの生成方法、ワークの加工方法
JP2005293226A (ja) * 2004-03-31 2005-10-20 Mazda Motor Corp 工作機械の送り速度設定方法
JP2012155473A (ja) * 2011-01-25 2012-08-16 Okuma Corp 数値制御情報作成装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021015064A1 (ja) * 2019-07-25 2021-01-28 シチズン時計株式会社 工具情報設定装置及び工作機械
CN114127649A (zh) * 2019-07-25 2022-03-01 西铁城时计株式会社 工具信息设定装置和机床
EP4006664A4 (en) * 2019-07-25 2023-08-02 Citizen Watch Co., Ltd. TOOL AND MACHINE TOOL INFORMATION SETTING DEVICE
JP7434326B2 (ja) 2019-07-25 2024-02-20 シチズン時計株式会社 工具情報設定装置及び工作機械
CN115291564A (zh) * 2022-10-08 2022-11-04 成都飞机工业(集团)有限责任公司 一种基于切削体积的数控加工刀具寿命评价方法
CN115291564B (zh) * 2022-10-08 2023-01-10 成都飞机工业(集团)有限责任公司 一种基于切削体积的数控加工刀具寿命评价方法

Also Published As

Publication number Publication date
JP6473772B2 (ja) 2019-02-20
JP2018158432A (ja) 2018-10-11

Similar Documents

Publication Publication Date Title
JP4177028B2 (ja) 小径エンドミルによる加工方法及び加工条件決定方法
JP5908342B2 (ja) 工作機械の加工振動抑制方法及び加工振動抑制装置
JP6578195B2 (ja) 切削工具の固有振動数導出方法及び安定限界曲線作成方法、並びに切削工具の固有振動数導出装置
WO2018173434A1 (ja) 加工条件設定方法及び加工条件設定装置
JP5368232B2 (ja) 振動抑制装置
CN103769945B (zh) 颤振抑制方法和机床
JP5802062B2 (ja) 工作機械の制御装置及び制御方法
JP5908386B2 (ja) 工作機械
US9651936B2 (en) Machining method
JP2512454Y2 (ja) 回転工具
JP2012196741A (ja) 回転速度表示装置
JP6700061B2 (ja) 旋削加工方法及びそれを用いた工作機械
US10386831B2 (en) Machining status display apparatus
US20140121817A1 (en) Machine tool
Suzuki et al. Effect of cross transfer function on chatter stability in plunge cutting
WO2016039018A1 (ja) 中空回転シャフト仕上げ方法及び中空回転シャフト
JP5937891B2 (ja) 工作機械
JP6802054B2 (ja) 加工状態表示装置
WO2016170532A1 (en) Adjustable deburring tool and adapter therefor
JP5666397B2 (ja) 工作機械
JP5767931B2 (ja) 工作機械の振動抑制方法および振動抑制装置
JP2009190160A (ja) 振動抑制方法及び装置
JPH10238594A (ja) 回転体のバランス調整装置
WO2024127622A1 (ja) 数値制御装置
JP2744874B2 (ja) 軸穴加工装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18770954

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18770954

Country of ref document: EP

Kind code of ref document: A1