WO2018168542A1 - 光学積層体および光学積層体の製造方法 - Google Patents

光学積層体および光学積層体の製造方法 Download PDF

Info

Publication number
WO2018168542A1
WO2018168542A1 PCT/JP2018/008280 JP2018008280W WO2018168542A1 WO 2018168542 A1 WO2018168542 A1 WO 2018168542A1 JP 2018008280 W JP2018008280 W JP 2018008280W WO 2018168542 A1 WO2018168542 A1 WO 2018168542A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
polarizing film
optical laminate
polyvinyl alcohol
pva
Prior art date
Application number
PCT/JP2018/008280
Other languages
English (en)
French (fr)
Inventor
大介 濱本
咲美 石丸
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to CN201880017243.2A priority Critical patent/CN110402405B/zh
Priority to JP2019505887A priority patent/JP6774556B2/ja
Priority to KR1020197025371A priority patent/KR102225345B1/ko
Publication of WO2018168542A1 publication Critical patent/WO2018168542A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/005Shaping by stretching, e.g. drawing through a die; Apparatus therefor characterised by the choice of materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/042Coating with two or more layers, where at least one layer of a composition contains a polymer binder
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2429/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2429/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2429/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers

Definitions

  • the present invention relates to an optical laminate having a resin base material and a polarizing film provided on one side of the resin base material.
  • a method has been proposed in which a polarizing film is obtained by forming a polyvinyl alcohol-based resin layer on a resin substrate and stretching and dyeing the laminate (for example, Patent Document 1). According to such a method, a polarizing film having a small thickness can be obtained, and thus, for example, it has been attracting attention as being able to contribute to a reduction in thickness of an image display device.
  • the polarizing film can be used as it is laminated on the resin base material.
  • the polarizing film and the resin base material are required to have sufficient adhesion.
  • the polyvinyl alcohol-based resin layer does not peel from the resin substrate, the polarizing film and the resin substrate do not peel at the time of rework, For example, it is required that the polarizing film or the resin base material is not lifted upon impact during use or punching.
  • Patent Document 2 a method of providing an undercoat layer containing a polyvinyl alcohol-based material between a resin base material and a polyvinyl alcohol-based resin layer has been proposed (Patent Document 2).
  • Patent Document 2 a method of providing an undercoat layer containing a polyvinyl alcohol-based material between a resin base material and a polyvinyl alcohol-based resin layer has been proposed (Patent Document 2).
  • the adhesion is unevenly improved. As a result, it is between the peeling force when peeling the resin substrate from the laminate and the peeling force when peeling the polarizing film from the laminate. A large difference (peeling anisotropy) occurs.
  • the polarizing film can be peeled from the laminate with a peel force that is significantly smaller than the peel force required to peel the resin substrate from the laminate.
  • the polarizing film when a roll-shaped laminate is cut into a single-sized product having a predetermined size, the polarizing film may be peeled off if it is cut from the resin substrate side toward the polarizing film side. Moreover, when taking out one sheet at a time after the sheets are stacked and stored, the polarizing film may be peeled off due to the influence of blocking.
  • the present invention has been made in order to solve the above-mentioned problems, and its main purpose is an optical laminate excellent in adhesion between a resin substrate and a polarizing film, and the optical laminate can be used as a resin substrate. It is an object of the present invention to provide an optical laminate in which the difference between the peeling force when peeling the film and the peeling force when peeling the polarizing film is reduced.
  • the optical laminated body which has a resin base material and the polarizing film provided in the one side of this resin base material is provided.
  • the optical layered body of the present invention peels the resin base material from the optical layered body by peeling at 90 degrees and the peeling force P1 (N / 15 mm) upon peeling from the optical layered body by 90 degree peeling.
  • the peeling force P2 (N / 15 mm) at the time satisfies the following relational expression (1).
  • the optical laminate is selected from a polyolefin-based component and a polyester-based component between the polarizing film and the resin base material and / or as a part of the polarizing film on the resin base material side. And having an intermediate region that includes at least one component.
  • the intermediate region further includes a polyvinyl alcohol-based component.
  • the polyvinyl alcohol-based component includes acetoacetyl-modified polyvinyl alcohol.
  • the intermediate region has a thickness of 100 nm to 1000 nm.
  • the constituent material of the resin base material includes a polyethylene terephthalate resin.
  • the manufacturing method of an optical laminated body comprises a step of applying an undercoat layer-forming composition comprising at least one component selected from a polyolefin-based component and a polyester-based component on one side of a resin substrate to form an undercoat layer; A step of applying a coating liquid containing a polyvinyl alcohol-based resin on the surface of the layer to form a polyvinyl alcohol-based resin layer; and a step of stretching and staining the polyvinyl alcohol-based resin layer to produce a polarizing film.
  • the undercoat layer forming composition further includes a polyvinyl alcohol-based component.
  • the polyvinyl alcohol-based component includes acetoacetyl-modified polyvinyl alcohol.
  • the thickness of the undercoat layer is 500 nm to 3000 nm.
  • an optical laminate having excellent adhesion between a resin substrate and a polarizing film, the peeling force when peeling the resin substrate from the optical laminate and the peeling force when peeling the polarizing film An optical laminate having a reduced difference from the above can be obtained.
  • the peeling force P1 (N / 15 mm) is, for example, 0.8 N or more, preferably 1.2 N or more, more preferably 1.5 N or more.
  • the upper limit value of the peeling force P1 is not particularly limited, and can be, for example, about 5.0N.
  • the peeling force P2 (N / 15 mm) is, for example, 0.4 N or more, preferably 0.6 N or more, more preferably 0.8 N or more, and further preferably 1.0 N or more.
  • the upper limit value of the peeling force P2 is not particularly limited, and can be, for example, about 5.0N.
  • the peeling force P1 means a force (N / 15 mm) required when the resin substrate is started up at an angle of 90 ° with respect to the polarizing film surface and peeled at a peeling speed of 3000 mm / min.
  • the peeling force P2 means a force (N / 15 mm) required for raising the polarizing film at an angle of 90 ° with respect to the resin substrate surface and peeling at a peeling speed of 3000 mm / min.
  • the optical laminate of the present invention is typically at least selected from a polyolefin-based component and a polyester-based component between the polarizing film and the resin base material and / or as a part of the polarizing film on the resin base material side. It has an intermediate region containing one component. Specifically, the intermediate region may exist as a layer different from the polarizing film, may exist as a part of the polarizing film on the resin substrate side, or both.
  • FIG. 1 is a schematic cross-sectional view of an optical layered body in one embodiment of the present invention.
  • the optical laminated body 10a illustrated in FIG. 1 includes a resin base material 11, an intermediate region 13, and a polarizing film 12 in this order.
  • the intermediate region 13 exists as a layer different from the polarizing film 12.
  • the intermediate region 13 can substantially correspond to an undercoat layer described later.
  • FIG. 2 is a schematic cross-sectional view of an optical layered body according to another embodiment of the present invention.
  • An optical laminate 10b illustrated in FIG. 2 includes a resin base material 11 and a polarizing film 12 provided on one side of the resin base material 11, from the surface of the polarizing film 12 on the resin base material side to a predetermined thickness.
  • the portion is an intermediate region 13.
  • the intermediate region 13 can be a compatible region of a PVA resin layer and an undercoat layer described later.
  • Resin Base Material Any appropriate material can be adopted as a constituent material of the resin base material. Examples thereof include ester resins such as polyethylene terephthalate resins, cycloolefin resins, olefin resins such as polypropylene, (meth) acrylic resins, polyamide resins, polycarbonate resins, and copolymer resins thereof.
  • ester resins such as polyethylene terephthalate resins, cycloolefin resins, olefin resins such as polypropylene, (meth) acrylic resins, polyamide resins, polycarbonate resins, and copolymer resins thereof.
  • a polyethylene terephthalate resin is used.
  • amorphous polyethylene terephthalate resin is preferably used.
  • amorphous polyethylene terephthalate resin examples include a copolymer further containing isophthalic acid as a dicarboxylic acid, and a copolymer further containing cyclohexanedimethanol as a glycol.
  • the glass transition temperature (Tg) of the resin base material is preferably 170 ° C. or lower.
  • Tg polyvinyl alcohol
  • the glass transition temperature of the resin substrate is preferably 60 ° C. or higher.
  • the laminate can be stretched at a suitable temperature (eg, about 60 ° C. to 70 ° C.).
  • a glass transition temperature lower than 60 ° C. may be used as long as the resin base material does not deform when applying and drying a coating solution containing a PVA-based resin.
  • the glass transition temperature (Tg) is a value determined according to JIS K 7121.
  • the resin base material preferably has a water absorption rate of 0.2% or more, and more preferably 0.3% or more.
  • a resin base material absorbs water, and the water can act as a plasticizer to be plasticized.
  • the stretching stress can be greatly reduced in stretching in water, and the stretchability can be excellent.
  • the water absorption rate of the resin base material is preferably 3.0% or less, more preferably 1.0% or less.
  • the thickness of the resin base material is preferably 20 ⁇ m to 300 ⁇ m, more preferably 30 ⁇ m to 200 ⁇ m.
  • the surface of the resin substrate may be subjected in advance to a surface modification treatment (for example, corona treatment), or an easy adhesion layer may be formed. Such treatment can further improve the adhesion.
  • a surface modification treatment for example, corona treatment
  • an easy adhesion layer may be formed.
  • the polarizing film is substantially a PVA resin layer in which a dichroic substance is adsorbed and oriented.
  • the polarizing film preferably exhibits absorption dichroism at any wavelength of 380 nm to 780 nm.
  • the single transmittance of the polarizing film is preferably 40.0% or more, more preferably 41.0% or more, still more preferably 42.0% or more, and particularly preferably 43.0% or more.
  • the polarization degree of the polarizing film is preferably 99.8% or more, more preferably 99.9% or more, and further preferably 99.95% or more.
  • any appropriate resin can be adopted as the PVA resin for forming the PVA resin layer.
  • Examples thereof include polyvinyl alcohol and ethylene-vinyl alcohol copolymer.
  • Polyvinyl alcohol is obtained by saponifying polyvinyl acetate.
  • the ethylene-vinyl alcohol copolymer can be obtained by saponifying an ethylene-vinyl acetate copolymer.
  • the degree of saponification of the PVA-based resin is usually 85 mol% to 100 mol%, preferably 95.0 mol% to 99.95 mol%, more preferably 99.0 mol% to 99.93 mol%. .
  • the degree of saponification can be determined according to JIS K 6726-1994. By using a PVA-based resin having such a saponification degree, a polarizing film having excellent durability can be obtained. If the degree of saponification is too high, there is a risk of gelation.
  • the average degree of polymerization of the PVA resin can be appropriately selected according to the purpose.
  • the average degree of polymerization is usually 1000 to 10,000, preferably 1200 to 4500, and more preferably 1500 to 4300.
  • the average degree of polymerization can be determined according to JIS K 6726-1994.
  • the intermediate region includes at least one component selected from a polyolefin-based component and a polyester-based component.
  • the presence or absence of a polyolefin-based component or a polyester-based component can be confirmed by, for example, time-of-flight secondary ion mass spectrometry (TOF-SIMS) or infrared spectroscopy (IR).
  • the intermediate region further includes a polyvinyl alcohol-based component. Details of the polyolefin-based component, the polyester-based component, and the polyvinyl alcohol-based component will be described later.
  • a step of forming an undercoat layer by applying a composition for forming an undercoat layer containing at least one component selected from a polyolefin-based component and a polyester-based component on one side of a resin substrate, and this undercoat It is manufactured by a method including a step of forming a PVA-based resin layer by applying a coating solution containing a PVA-based resin on the surface of the layer and a step of stretching and dyeing the PVA-based resin layer to prepare a polarizing film.
  • the composition for forming an undercoat layer includes at least one component selected from a polyolefin-based component and a polyester-based component, and preferably at least selected from a polyvinyl alcohol-based component, a polyolefin-based component, and a polyester-based component.
  • One component By setting it as such a composition, the adhesiveness of a polarizing film and a resin base material can be improved, suppressing peeling anisotropy.
  • Any appropriate PVA-based resin can be used as the polyvinyl alcohol-based component. Specific examples include polyvinyl alcohol and modified polyvinyl alcohol.
  • modified polyvinyl alcohol examples include polyvinyl alcohol modified with an acetoacetyl group, a carboxylic acid group, an acrylic group and / or a urethane group.
  • acetoacetyl-modified PVA is preferably used.
  • a polymer having at least a repeating unit represented by the following general formula (I) is preferably used.
  • the ratio of n to l + m + n is preferably 1% to 10%.
  • the average degree of polymerization of the acetoacetyl-modified PVA is preferably 1000 to 10,000, and preferably 1200 to 5,000.
  • the saponification degree of acetoacetyl-modified PVA is preferably 97 mol% or more.
  • the pH of a 4% by weight aqueous solution of acetoacetyl-modified PVA is preferably 3.5 to 5.5.
  • the average polymerization degree and saponification degree can be determined according to JIS K 6726-1994.
  • any appropriate polyolefin resin can be used as the polyolefin component.
  • the olefin component that is a main component of the polyolefin resin include olefin hydrocarbons having 2 to 6 carbon atoms such as ethylene, propylene, isobutylene, 1-butene, 1-pentene, and 1-hexene. These may be used alone or in combination of two or more. Among these, olefinic hydrocarbons having 2 to 4 carbon atoms such as ethylene, propylene, isobutylene and 1-butene are preferable, and ethylene is more preferably used.
  • the proportion of the olefin component in the monomer component constituting the polyolefin resin is preferably 50% by weight to 95% by weight.
  • the polyolefin-based resin preferably has a carboxyl group and / or an anhydride group thereof.
  • a polyolefin resin can be dispersed in water, and the undercoat layer can be formed well.
  • the monomer component having such a functional group include unsaturated carboxylic acids and anhydrides thereof, half esters and half amides of unsaturated dicarboxylic acids. Specific examples thereof include acrylic acid, methacrylic acid, maleic acid, maleic anhydride, itaconic acid, itaconic anhydride, fumaric acid and crotonic acid.
  • the molecular weight of the polyolefin resin is, for example, 5000 to 80000.
  • polyester-based resin Any appropriate polyester-based resin may be used as the polyester-based component.
  • Specific examples of the polyester-based resin include a copolymer obtained by polycondensation of a dicarboxylic acid component and a glycol component.
  • the dicarboxylic acid component constituting the polyester resin is not particularly limited.
  • Alicyclic dicarboxylic acids such as unsaturated aliphatic dicarboxylic acids such as dimer acid, 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, tetrahydrophthalic acid
  • the glycol component constituting the polyester resin is not particularly limited.
  • alicyclic glycols such as 1,4-cyclohexanedimethanol and 1,3-cyclobutanedimethanol.
  • the molecular weight of the polyester resin is, for example, 5000 to 80000.
  • the blending ratio (solid content, former: latter) of the polyvinyl alcohol-based component and at least one component selected from the polyolefin-based component and the polyester-based component is preferably 5: 95-60. : 40, more preferably 20:80 to 50:50.
  • adhesiveness may not fully be acquired. Specifically, the peeling force required when peeling the PVA-based resin layer from the resin base material may be reduced, and sufficient adhesion may not be obtained.
  • the undercoat layer forming composition is preferably water-based.
  • the undercoat layer forming composition may contain an organic solvent. Examples of the organic solvent include ethanol and isopropanol.
  • the solid content concentration of the composition for forming the undercoat layer is preferably 1.0% by weight to 10% by weight.
  • An additive may be added to the undercoat layer forming composition.
  • the additive include a crosslinking agent.
  • the crosslinking agent include methylol compounds such as oxazoline, boric acid, and trimethylolmelamine, carbodiimide, isocyanate compounds, and epoxy compounds.
  • the compounding quantity of the additive in the undercoat layer forming composition can be appropriately set according to the purpose and the like.
  • the blending amount of the crosslinking agent is preferably 10 parts by weight or less, more preferably 0 with respect to 100 parts by weight in total of the polyvinyl alcohol component, at least one component selected from the polyolefin component and the polyester component. 0.01 parts by weight to 10 parts by weight, more preferably 0.1 parts by weight to 5 parts by weight.
  • Arbitrary appropriate methods can be employ
  • examples thereof include a roll coating method, a spin coating method, a wire bar coating method, a dip coating method, a die coating method, a curtain coating method, a spray coating method, a knife coating method (comma coating method and the like).
  • the undercoat layer forming composition is preferably applied so that the thickness of the obtained undercoat layer (that is, after drying) is 500 nm to 3000 nm, and more preferably 800 nm to 2000 nm. If the thickness of the undercoat layer is too thin, sufficient adhesion may not be obtained. On the other hand, if the thickness of the undercoat layer is too thick, problems such as repelling and unevenness in the resulting coating film may occur during the formation of the PVA-based resin layer described later.
  • the surface of the undercoat layer to which the coating solution containing the PVA-based resin is applied may be subjected to surface modification treatment (for example, corona treatment). Such treatment can further improve the adhesion.
  • surface modification treatment for example, corona treatment
  • Additives may be added to the coating solution.
  • the additive include a plasticizer and a surfactant.
  • the plasticizer include polyhydric alcohols such as ethylene glycol and glycerin.
  • the surfactant include nonionic surfactants. These can be used for the purpose of further improving the uniformity, dyeability and stretchability of the resulting PVA-based resin layer.
  • an easily bonding component is mentioned, for example. Adhesion can be further improved by using an easily adhesive component.
  • modified PVA such as acetoacetyl-modified PVA is used.
  • examples of the additive include halides such as potassium iodide, sodium iodide, lithium iodide and sodium chloride, urea and the like. By adding these, optical characteristics (for example, single transmittance) can be improved.
  • the blending amount of the additive can be appropriately set according to the purpose and the like.
  • the coating method of the coating liquid the same method as the coating method of the above undercoat layer forming composition can be adopted. After application, the coating film can be dried.
  • the drying temperature is, for example, 50 ° C. or higher.
  • the thickness of the PVA resin layer is typically 20 ⁇ m or less, preferably 3 ⁇ m to 15 ⁇ m.
  • the polarizing film is produced by subjecting the PVA resin layer formed on the surface of the undercoat layer to stretching treatment and dyeing treatment.
  • the PVA resin layer can be appropriately subjected to a treatment for making the PVA resin layer a polarizing film.
  • the treatment for forming the polarizing film include insolubilization treatment, crosslinking treatment, and washing treatment. These processes can be selected according to the purpose. In addition, processing conditions such as processing order, processing timing, processing frequency, and the like can be set as appropriate. Each process will be described below.
  • the dyeing process is typically performed by dyeing the PVA resin layer with a dichroic substance.
  • it is performed by adsorbing a dichroic substance to the PVA resin layer.
  • the adsorption method include a method of immersing the PVA resin layer in a dye solution containing a dichroic substance, a method of applying the dye solution to the PVA resin layer, and spraying the dye solution onto the PVA resin layer. And the like.
  • it is a method of immersing the PVA resin layer in the staining solution. It is because a dichroic substance can adsorb
  • the immersion of the PVA resin layer in the staining solution preferably dyes the PVA resin layer in a state of being laminated on the resin substrate (that is, a laminate in which the PVA resin layer is laminated on one side of the resin substrate). It is performed by immersing in a liquid.
  • the dichroic substance examples include iodine and organic dyes. These may be used alone or in combination of two or more.
  • the dichroic material is preferably iodine.
  • the staining solution is preferably an iodine aqueous solution.
  • the amount of iodine is preferably 0.1 to 0.5 parts by weight with respect to 100 parts by weight of water. In order to increase the solubility of iodine in water, it is preferable to add an iodide to the aqueous iodine solution.
  • Examples of the iodide include potassium iodide, lithium iodide, sodium iodide, zinc iodide, aluminum iodide, lead iodide, copper iodide, barium iodide, calcium iodide, tin iodide, and titanium iodide. Etc. Among these, potassium iodide is preferable.
  • the amount of iodide is preferably 0.02 to 20 parts by weight, more preferably 0.1 to 10 parts by weight, per 100 parts by weight of water.
  • the liquid temperature during staining of the staining liquid is preferably 20 ° C. to 50 ° C. in order to suppress dissolution of the PVA resin.
  • the immersion time is preferably 5 seconds to 5 minutes in order to ensure the transmittance of the PVA resin layer.
  • the staining conditions can be set so that the polarization degree or single transmittance of the finally obtained polarizing film is within a predetermined range. In one embodiment, immersion time is set so that the polarization degree of the polarizing film obtained may be 99.98% or more. In another embodiment, the immersion time is set so that the obtained polarizing film has a single transmittance of 40% to 44%.
  • any appropriate method can be adopted as a stretching method of the PVA-based resin layer (a laminate in which the PVA-based resin layer is laminated on one side of the resin base material). Specifically, it may be fixed end stretching (for example, a method using a tenter stretching machine) or free end stretching (for example, a method of uniaxial stretching through a laminate between rolls having different peripheral speeds). Moreover, simultaneous biaxial stretching (for example, a method using a simultaneous biaxial stretching machine) or sequential biaxial stretching may be used.
  • the stretching of the laminate may be performed in one stage or in multiple stages. When performed in multiple stages, the draw ratio (maximum draw ratio) of the laminate described later is the product of the draw ratios of the respective stages.
  • the stretching treatment may be an underwater stretching method performed by immersing the laminate in a stretching bath, or an air stretching method.
  • the underwater stretching treatment is performed at least once, and preferably the underwater stretching treatment and the air stretching treatment are combined.
  • the PVA resin layer can be stretched at a temperature lower than the glass transition temperature (typically about 80 ° C.) of the resin base material and the PVA resin layer while suppressing the crystallization. It can be stretched at a high magnification. As a result, a polarizing film having excellent polarization characteristics can be manufactured.
  • any appropriate direction can be selected as the stretching direction of the laminate. In one embodiment, it extends
  • the liquid temperature of the stretching bath is preferably 40 ° C. to 85 ° C., more preferably 50 ° C. to 85 ° C. If it is such temperature, it can extend
  • the glass transition temperature (Tg) of the resin base material is preferably 60 ° C. or higher in relation to the formation of the PVA-based resin layer.
  • the stretching temperature is lower than 40 ° C., there is a possibility that the stretching cannot be satisfactorily performed even in consideration of plasticization of the resin base material with water.
  • the higher the temperature of the stretching bath the higher the solubility of the PVA-based resin layer, and there is a possibility that excellent polarization characteristics cannot be obtained.
  • the laminate When employing an underwater stretching method, it is preferable to stretch the laminate by immersing it in an aqueous boric acid solution (stretching in boric acid in water).
  • an aqueous boric acid solution as the stretching bath, the PVA resin layer can be provided with rigidity that can withstand the tension applied during stretching and water resistance that does not dissolve in water.
  • boric acid can form a tetrahydroxyborate anion in an aqueous solution and crosslink with a PVA resin by hydrogen bonding.
  • rigidity and water resistance can be imparted to the PVA-based resin layer, the film can be stretched satisfactorily, and a polarizing film having excellent polarization characteristics can be produced.
  • the boric acid aqueous solution is preferably obtained by dissolving boric acid and / or borate in water as a solvent.
  • the boric acid concentration is preferably 1 to 10 parts by weight with respect to 100 parts by weight of water. By setting the boric acid concentration to 1 part by weight or more, dissolution of the PVA resin layer can be effectively suppressed, and a polarizing film having higher characteristics can be produced.
  • an aqueous solution obtained by dissolving a boron compound such as borax, glyoxal, glutaraldehyde, or the like in a solvent can also be used.
  • iodide is blended in the stretching bath (boric acid aqueous solution).
  • the stretching bath boric acid aqueous solution
  • concentration of iodide is preferably 0.05 to 15 parts by weight, more preferably 0.5 to 8 parts by weight with respect to 100 parts by weight of water.
  • the draw ratio (maximum draw ratio) of the laminate is preferably 4.0 times or more, more preferably 5.0 times or more with respect to the original length of the laminate. Such a high draw ratio can be achieved, for example, by employing an underwater drawing method (boric acid underwater drawing).
  • the “maximum stretch ratio” refers to a stretch ratio immediately before the laminate is ruptured. Separately, a stretch ratio at which the laminate is ruptured is confirmed, and a value that is 0.2 lower than that value. .
  • the crosslinking treatment is typically performed by immersing the PVA resin layer in a boric acid aqueous solution. By performing the crosslinking treatment, water resistance can be imparted to the PVA resin layer.
  • the concentration of the boric acid aqueous solution is preferably 1 to 4 parts by weight with respect to 100 parts by weight of water.
  • blend an iodide by performing a crosslinking process after the said dyeing
  • the blending amount of iodide is preferably 1 to 5 parts by weight with respect to 100 parts by weight of water.
  • the liquid temperature of the crosslinking bath is preferably 20 ° C. to 50 ° C.
  • the crosslinking treatment is performed before the underwater stretching treatment.
  • the dyeing process, the crosslinking process and the underwater stretching process are performed in this order.
  • the cleaning treatment is typically performed by immersing the PVA resin layer in an aqueous potassium iodide solution.
  • the drying temperature in the drying treatment is preferably 30 ° C. to 100 ° C.
  • the optical layered body may have a protective film disposed on the side opposite to the side on which the resin base material of the polarizing film is disposed.
  • the material for forming the protective film include (meth) acrylic resins, cellulose resins such as diacetyl cellulose and triacetyl cellulose, cycloolefin resins, olefin resins such as polypropylene, and ester resins such as polyethylene terephthalate resins. , Polyamide resins, polycarbonate resins, and copolymer resins thereof.
  • the thickness of the protective film is preferably 10 ⁇ m to 100 ⁇ m.
  • the protective film may be laminated on the polarizing film via an adhesive layer, or may be laminated in close contact (without an adhesive layer).
  • the adhesive layer is typically formed of an adhesive or a pressure-sensitive adhesive.
  • the optical layered body can be mounted on, for example, a liquid crystal display device.
  • the polarizing film is mounted so as to be disposed closer to the liquid crystal cell than the resin base material. According to such a structure, the influence which the phase difference which a resin base material can have on the image characteristic of the liquid crystal display device obtained can be excluded.
  • Example 1 As the resin substrate, an amorphous isophthalic acid copolymerized polyethylene terephthalate (IPA copolymerized PET) film (thickness: 100 ⁇ m) having a long water absorption rate of 0.75% and Tg of 75 ° C. was used.
  • One side of the resin base material is subjected to corona treatment, and this corona treatment surface is subjected to acetoacetyl-modified PVA (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name “Gosefimer Z200”, polymerization degree 1200, saponification degree 99.0 mol.
  • PVA acetoacetyl-modified polyVA
  • the surface of the undercoat layer was subjected to corona treatment, and polyvinyl alcohol (polymerization degree 4200, saponification degree 99.2 mol%) and acetoacetyl-modified PVA (polymerization degree 1200, acetoacetyl modification degree 4.
  • An aqueous solution containing 6%, a saponification degree of 99.0 mol% or more, manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name “Gosefimer Z200”) at a ratio of 9: 1 was applied and dried at 25 ° C., and the thickness was 11 ⁇ m.
  • a PVA-based resin layer was formed. Thus, a laminate was produced.
  • the obtained laminate was uniaxially stretched in the longitudinal direction (longitudinal direction) 2.0 times between rolls having different peripheral speeds in an oven at 120 ° C. (air-assisted stretching).
  • the laminate was immersed in an insolubilization bath (a boric acid aqueous solution obtained by blending 4 parts by weight of boric acid with respect to 100 parts by weight of water) for 30 seconds (insolubilization treatment).
  • an insolubilization bath a boric acid aqueous solution obtained by blending 4 parts by weight of boric acid with respect to 100 parts by weight of water
  • insolubilization treatment a dyeing bath having a liquid temperature of 30 ° C. while adjusting the iodine concentration and the immersion time so that the obtained polarizing film had a predetermined transmittance.
  • iodine 0.2 parts by weight was blended with 100 parts by weight of water, and immersed in an aqueous iodine solution obtained by blending 1.0 part by weight of potassium iodide (dyeing treatment). . Subsequently, it was immersed for 30 seconds in a crosslinking bath having a liquid temperature of 30 ° C. (a boric acid aqueous solution obtained by blending 3 parts by weight of potassium iodide and 3 parts by weight of boric acid with respect to 100 parts by weight of water). (Crosslinking treatment).
  • the laminate was immersed in a boric acid aqueous solution (an aqueous solution obtained by blending 4 parts by weight of boric acid and 5 parts by weight of potassium iodide with respect to 100 parts by weight of water) at a liquid temperature of 70 ° C.
  • a boric acid aqueous solution an aqueous solution obtained by blending 4 parts by weight of boric acid and 5 parts by weight of potassium iodide with respect to 100 parts by weight of water
  • a cleaning bath an aqueous solution obtained by blending 4 parts by weight of potassium iodide with respect to 100 parts by weight of water
  • Example 2 An optical layered body was obtained in the same manner as in Example 1 except that the mixed solution was applied so that the thickness after drying was 1000 nm.
  • Example 3 An optical layered body was obtained in the same manner as in Example 1 except that the mixed solution was applied so that the thickness after drying was 500 nm.
  • Example 4 An optical laminate was obtained in the same manner as in Example 1 except that the solid content ratio of acetoacetyl-modified PVA and modified polyolefin in the mixed solution was 50:50.
  • Example 5 When forming the undercoat layer, a 4.0% aqueous solution of acetoacetyl-modified PVA (Gosefimer Z200) and an aqueous dispersion of a modified polyolefin resin (trade name “Arrow Base SD1030N”, solid content concentration 22%) manufactured by Unitika Ltd.) and pure An optical layered body was obtained in the same manner as in Example 1 except that a mixed liquid (solid content concentration: 4.0%) mixed with water was used.
  • a mixed liquid solid content concentration: 4.0% mixed with water was used.
  • Example 6 In forming the undercoat layer, a 4.0% aqueous solution of acetoacetyl-modified PVA (Gosefimer Z200) and an aqueous dispersion of a modified polyolefin resin (trade name “Arrow Base SE1035NJ2”, solid content concentration 22%, manufactured by Unitika) and pure An optical layered body was obtained in the same manner as in Example 4 except that a mixed liquid (solid content concentration: 4.0%) mixed with water was used.
  • a mixed liquid solid content concentration: 4.0% mixed with water was used.
  • Example 7 In forming the undercoat layer, acetoacetyl-modified PVA (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name “Gosefimer Z410”, polymerization degree 2200, saponification degree 97.5 to 98.5%, acetoacetyl modification degree 4.6 %) And a modified polyolefin resin aqueous dispersion (trade name “Arrow Base SE1030N”, solid content concentration 22%, manufactured by Unitika Ltd.) and pure water (solid content concentration 4.0). %) was used in the same manner as in Example 1 except that an optical laminate was obtained.
  • acetoacetyl-modified PVA manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name “Gosefimer Z410”, polymerization degree 2200, saponification degree 97.5 to 98.5%, acetoacetyl modification degree 4.6
  • a modified polyolefin resin aqueous dispersion trade name “Arrow Base SE
  • Example 8 Example 3 except that a mixed liquid obtained by mixing 10 g of a 4.0% aqueous solution of acetoacetyl-modified PVA (Gosephimer Z200) and 62.5 g of a polyester aqueous emulsion resin (Eritel KT0507E6) was used for forming the undercoat layer. In the same manner, an optical laminate was obtained.
  • the solid content blending ratio of acetoacetyl-modified PVA and polyester in the mixed solution was 50:50.
  • Example 9 Example 1 except that a mixed solution of 10 g of 4.0% aqueous solution of acetoacetyl-modified PVA (Gosefimer Z200) and 62.5 g of polyester aqueous emulsion resin (Eritel KT0507E6) was used for forming the undercoat layer. In the same manner, an optical laminate was obtained.
  • the solid content blending ratio of acetoacetyl-modified PVA and polyester in the mixed solution was 50:50.
  • a slit is made between the polarizing film of this measurement sample and the resin base material with a cutter knife, the resin base material is raised so as to form an angle of 90 ° with respect to the polarizing film surface, and peeled at a peeling speed of 3000 mm / min.
  • the force (N / 15 mm) required for the measurement was measured by the “VPA-2”.
  • PVA peel strength: P2 The optical laminate obtained on the glass plate is coated with an adhesive on the resin substrate surface side and bonded together, and a reinforcing polyimide tape (manufactured by Nitto Denko Corporation, polyimide adhesive tape No. 360A) is attached to the polarizing film surface.
  • the sample for a measurement was produced by bonding.
  • a forced peeling tape 50 (Sekisui Chemical Co., Ltd.). Manufactured by Sekisei Serotape (No, 252), 24 mm wide).
  • the tape 50 affixed as shown in FIG. 3B was pulled at the same time in the opposite direction until it was peeled off, and whether or not the optical laminate was peeled at that time was evaluated.
  • the evaluation criteria are as follows. Good: No peeling occurred. Defect: Peeling occurred.
  • the optical laminates of Examples satisfying the relationship of 0.5 ⁇ P1 / P2 ⁇ 5 are excellent in operability. In addition, sufficient adhesion is maintained even when the film is stretched in water. On the other hand, the optical laminated body of the comparative example that does not satisfy the relationship of 0.5 ⁇ P1 / P2 ⁇ 5 has a problem in operability.
  • the optical layered body of the present invention is suitably used for an image display device, for example.
  • LCD TVs, LCDs, mobile phones, digital cameras, video cameras, portable game machines, car navigation systems, copy machines, printers, fax machines, watches, microwave ovens, etc., anti-reflection plates for organic EL devices Etc. are suitably used.

Abstract

本発明は、樹脂基材と偏光膜との密着性に優れた光学積層体であって、該光学積層体から樹脂基材を剥離する際の剥離力と偏光膜を剥離する際の剥離力との差が低減された光学積層体を提供する。本発明の光学積層体は、樹脂基材と該樹脂基材の片側に設けられた偏光膜とを有する光学積層体であって、該樹脂基材を90度剥離で該光学積層体から剥離する際の剥離力P1(N/15mm)と該偏光膜を90度剥離で該光学積層体から剥離する際の剥離力P2(N/15mm)とが、下記関係式(1)を満たす。 式(1): 0.5<P1/P2<5

Description

光学積層体および光学積層体の製造方法
 本発明は、樹脂基材と該樹脂基材の片側に設けられた偏光膜とを有する光学積層体に関する。
 樹脂基材上にポリビニルアルコール系樹脂層を形成し、この積層体を延伸、染色することにより偏光膜を得る方法が提案されている(例えば、特許文献1)。このような方法によれば、厚みの薄い偏光膜が得られるため、例えば、画像表示装置の薄型化に寄与し得るとして注目されている。
 上記偏光膜は、上記樹脂基材に積層された状態のままで用いられ得る。このような実施形態においては、偏光膜と樹脂基材とが十分な密着性を有することが求められる。具体的には、偏光膜の製造において(例えば、延伸、搬送において)ポリビニルアルコール系樹脂層が樹脂基材から剥離しないこと、リワーク時に偏光膜と樹脂基材とが剥離しないこと、加工(例えば、打ち抜き)時や使用中の衝撃に対して偏光膜または樹脂基材の浮きが発生しないこと等が求められる。
 上記密着性を向上させるため、樹脂基材とポリビニルアルコール系樹脂層との間にポリビニルアルコール系材料を含む下塗り層を設ける方法が提案されている(特許文献2)。しかし、このような下塗り層によれば上記密着性が偏って向上される結果、樹脂基材を積層体から剥離する際の剥離力と偏光膜を積層体から剥離する際の剥離力との間に大きな差(剥離異方性)が生じる。具体的には、偏光膜は、樹脂基材を積層体から剥離する際に要する剥離力に比べて顕著に小さい剥離力で積層体から剥離され得る。そのため、例えば、ロール状の積層体を所定のサイズの枚葉品に切断加工する際に、樹脂基材側から偏光膜側に向かって切断すると、偏光膜の剥離が生じるおそれがある。また、枚葉品を重ねて保管した後で一枚ずつ取り出す際に、ブロッキングの影響によって偏光膜の剥離が生じるおそれがある。
特開2000-338329号公報 特許第4950357号
 本発明は、上記問題を解決するためになされたものであり、その主たる目的は、樹脂基材と偏光膜との密着性に優れた光学積層体であって、該光学積層体から樹脂基材を剥離する際の剥離力と偏光膜を剥離する際の剥離力との差が低減された光学積層体を提供することにある。
 本発明によれば、樹脂基材と該樹脂基材の片側に設けられた偏光膜とを有する光学積層体が提供される。本発明の光学積層体は、該樹脂基材を90度剥離で該光学積層体から剥離する際の剥離力P1(N/15mm)と該偏光膜を90度剥離で該光学積層体から剥離する際の剥離力P2(N/15mm)とが、下記関係式(1)を満たす。
   式(1): 0.5<P1/P2<5
 1つの実施形態において、上記光学積層体は、上記偏光膜と上記樹脂基材との間におよび/または上記偏光膜の上記樹脂基材側の一部として、ポリオレフィン系成分およびポリエステル系成分から選択される少なくとも1つの成分を含む中間領域を有する。
 1つの実施形態において、上記中間領域が、ポリビニルアルコール系成分をさらに含む。
 1つの実施形態において、上記ポリビニルアルコール系成分が、アセトアセチル変性ポリビニルアルコールを含む。
 1つの実施形態において、上記中間領域の厚みが、100nm~1000nmである。
 1つの実施形態において、上記樹脂基材の構成材料が、ポリエチレンテレフタレート系樹脂を含む。
 本発明の別の局面によれば、光学積層体の製造方法が提供される。本発明の製造方法は、樹脂基材の片側にポリオレフィン系成分およびポリエステル系成分から選択される少なくとも1つの成分を含む下塗り層形成用組成物を塗布して下塗り層を形成する工程と、該下塗り層表面にポリビニルアルコール系樹脂を含む塗布液を塗布してポリビニルアルコール系樹脂層を形成する工程と、該ポリビニルアルコール系樹脂層を延伸および染色して偏光膜を作製する工程と、を含む。
 1つの実施形態において、上記下塗り層形成用組成物が、ポリビニルアルコール系成分をさらに含む。
 1つの実施形態において、上記ポリビニルアルコール系成分が、アセトアセチル変性ポリビニルアルコールを含む。
 1つの実施形態において、上記下塗り層の厚みが、500nm~3000nmである。
 本発明によれば、樹脂基材と偏光膜との密着性に優れた光学積層体であって、光学積層体から樹脂基材を剥離する際の剥離力と偏光膜を剥離する際の剥離力との差が低減された光学積層体を得ることができる。
本発明の1つの実施形態における光学積層体の概略断面図である。 本発明の別の実施形態における光学積層体の概略断面図である。 (a)および(b)はそれぞれ、操作性の評価方法を説明する概略図である。
 以下、本発明の実施形態について説明するが、本発明はこれらの実施形態には限定されない。
A.光学積層体
 本発明の光学積層体は、樹脂基材と該樹脂基材の片側に設けられた偏光膜とを有する。本発明の光学積層体において、樹脂基材を90度剥離で光学積層体から剥離する際の剥離力P1(N/15mm)と偏光膜を90度剥離で光学積層体から剥離する際の剥離力P2(N/15mm)とは、0.5<P1/P2<5の関係を満たす。このような関係を満たす光学積層体は、従来の光学積層体に比べて剥離異方性が低減されており、結果として、上記偏光膜の剥離の問題が解消され得る。P1/P2は、好ましくは0.7以上、より好ましくは0.8以上である。また、P1/P2は、好ましくは4.0以下であり、より好ましくは3.5以下、さらに好ましくは3.0以下である。
 上記剥離力P1(N/15mm)は、例えば0.8N以上、好ましくは1.2N以上、より好ましくは1.5N以上である。剥離力P1が該範囲であれば、リワーク時、加工(例えば、打ち抜き)時、使用中等における偏光膜または樹脂基材の剥離や浮きを防止し得る。剥離力P1の上限値は、特に制限されるものではなく、例えば5.0N程度にすることができる。
 上記剥離力P2(N/15mm)は、例えば0.4N以上、好ましくは0.6N以上、より好ましくは0.8N以上、さらに好ましくは1.0N以上である。剥離力P2が該範囲であれば、リワーク時、加工(例えば、打ち抜き)時、使用中等における偏光膜または樹脂基材の剥離や浮きを防止し得る。剥離力P2の上限値は、特に制限されるものではなく、例えば5.0N程度にすることができる。
 なお、上記剥離力P1は、樹脂基材を偏光膜面に対して90°の角度をなすように立ち上げ、剥離速度3000mm/minで剥離する際に要する力(N/15mm)を意味する。また、上記剥離力P2は、偏光膜を樹脂基材面に対して90°の角度をなすように立ち上げ、剥離速度3000mm/minで剥離する際に要する力(N/15mm)を意味する。
 本発明の光学積層体は、代表的には、偏光膜と樹脂基材との間におよび/または偏光膜の樹脂基材側の一部として、ポリオレフィン系成分およびポリエステル系成分から選択される少なくとも1つの成分を含む中間領域を有する。具体的には、中間領域は、偏光膜と異なる層として存在してもよく、偏光膜の樹脂基材側の一部として存在してもよく、その両方であってもよい。
 図1は、本発明の1つの実施形態における光学積層体の概略断面図である。図1に図示される光学積層体10aは、樹脂基材11と中間領域13と偏光膜12とをこの順に有する。当該実施形態においては、中間領域13が、偏光膜12と異なる層として存在している。当該実施形態においては、中間領域13は、実質的に後述の下塗り層に相当し得る。図2は、本発明の別の実施形態における光学積層体の概略断面図である。図2に図示される光学積層体10bは、樹脂基材11と樹脂基材11の片側に設けられた偏光膜12とを有し、偏光膜12の樹脂基材側表面から所定の厚みまでの部分が中間領域13とされている。当該実施形態においては、中間領域13は、後述のPVA系樹脂層と下塗り層との相溶領域であり得る。
A-1.樹脂基材
 上記樹脂基材の構成材料としては、任意の適切な材料が採用され得る。例えば、ポリエチレンテレフタレート系樹脂等のエステル系樹脂、シクロオレフィン系樹脂、ポリプロピレン等のオレフィン系樹脂、(メタ)アクリル系樹脂、ポリアミド系樹脂、ポリカーボネート系樹脂、これらの共重合体樹脂が挙げられる。好ましくは、ポリエチレンテレフタレート系樹脂が用いられる。中でも、非晶質のポリエチレンテレフタレート系樹脂が好ましく用いられる。非晶質のポリエチレンテレフタレート系樹脂の具体例としては、ジカルボン酸としてイソフタル酸をさらに含む共重合体や、グリコールとしてシクロヘキサンジメタノールをさらに含む共重合体が挙げられる。
 樹脂基材のガラス転移温度(Tg)は、好ましくは170℃以下である。このような樹脂基材を用いることにより、後述のポリビニルアルコール(PVA)系樹脂層の結晶化を抑制しながら、延伸性を十分に確保することができる。水による樹脂基材の可塑化と、水中延伸を良好に行うことを考慮すると、120℃以下であることがさらに好ましい。1つの実施形態においては、樹脂基材のガラス転移温度は、好ましくは60℃以上である。このような樹脂基材を用いることにより、後述のPVA系樹脂を含む塗布液を塗布・乾燥する際に、樹脂基材が変形(例えば、凹凸やタルミ、シワ等の発生)する等の不具合を防止することができる。また、積層体の延伸を、好適な温度(例えば、60℃~70℃程度)にて行うことができる。別の実施形態においては、PVA系樹脂を含む塗布液を塗布・乾燥する際に、樹脂基材が変形しなければ、60℃より低いガラス転移温度であってもよい。なお、ガラス転移温度(Tg)は、JIS K 7121に準じて求められる値である。
 1つの実施形態においては、樹脂基材は、吸水率が0.2%以上であることが好ましく、さらに好ましくは0.3%以上である。このような樹脂基材は水を吸収し、水が可塑剤的な働きをして可塑化し得る。その結果、水中延伸において延伸応力を大幅に低下させることができ、延伸性に優れ得る。一方、樹脂基材の吸水率は、好ましくは3.0%以下、さらに好ましくは1.0%以下である。このような樹脂基材を用いることにより、製造時に樹脂基材の寸法安定性が著しく低下して、得られる積層体の外観が悪化するなどの不具合を防止することができる。また、水中延伸時に破断したり、樹脂基材からPVA系樹脂膜が剥離したりするのを防止することができる。なお、吸水率は、JIS K 7209に準じて求められる値である。
 樹脂基材の厚みは、好ましくは20μm~300μm、さらに好ましくは30μm~200μmである。
 樹脂基材表面には、予め、表面改質処理(例えば、コロナ処理等)が施されていてもよいし、易接着層が形成されていてもよい。このような処理によれば、密着性をさらに向上させ得る。
A-2.偏光膜
 上記偏光膜は、実質的に、二色性物質が吸着配向したPVA系樹脂層である。偏光膜は、好ましくは波長380nm~780nmのいずれかの波長で吸収二色性を示す。この場合、偏光膜の単体透過率は、好ましくは40.0%以上、より好ましくは41.0%以上、さらに好ましくは42.0%以上、特に好ましくは43.0%以上である。偏光膜の偏光度は、好ましくは99.8%以上、より好ましくは99.9%以上、さらに好ましくは99.95%以上である。
 上記PVA系樹脂層を形成するPVA系樹脂としては、任意の適切な樹脂が採用され得る。例えば、ポリビニルアルコール、エチレン-ビニルアルコール共重合体が挙げられる。ポリビニルアルコールは、ポリ酢酸ビニルをケン化することにより得られる。エチレン-ビニルアルコール共重合体は、エチレン-酢酸ビニル共重合体をケン化することにより得られる。PVA系樹脂のケン化度は、通常85モル%~100モル%であり、好ましくは95.0モル%~99.95モル%、さらに好ましくは99.0モル%~99.93モル%である。ケン化度は、JIS K 6726-1994に準じて求めることができる。このようなケン化度のPVA系樹脂を用いることによって、耐久性に優れた偏光膜が得られ得る。ケン化度が高すぎる場合には、ゲル化してしまうおそれがある。
 PVA系樹脂の平均重合度は、目的に応じて適切に選択され得る。平均重合度は、通常1000~10000であり、好ましくは1200~4500、さらに好ましくは1500~4300である。なお、平均重合度は、JIS K 6726-1994に準じて求めることができる。
 偏光膜の厚みは、好ましくは10μm以下、より好ましくは8μm以下、さらに好ましくは7μm以下、特に好ましくは6μm以下である。一方、偏光膜の厚みは、好ましくは1.0μm以上、さらに好ましくは2.0μm以上である。
A-3.中間領域
 上記中間領域は、ポリオレフィン系成分およびポリエステル系成分から選択される少なくとも1つの成分を含む。偏光膜と樹脂基材との間におよび/または偏光膜の樹脂基材側の一部としてこのような中間領域が形成されていることにより、樹脂基材と偏光膜との密着性を、剥離異方性を抑えつつ向上させることができる。中間領域の厚みは、例えば100nm~1000nmである。中間領域は、例えば、光学積層体の断面を走査型電子顕微鏡(SEM)で観察することにより確認することができる。また、ポリオレフィン系成分またはポリエステル系成分の有無は、例えば、飛行時間型2次イオン質量分析法(TOF-SIMS)や赤外分光法(IR)により確認することができる。1つの実施形態においては、中間領域は、ポリビニルアルコール系成分をさらに含む。なお、ポリオレフィン系成分、ポリエステル系成分、ポリビニルアルコール系成分の詳細については、後述する。
B.製造方法
 本発明の光学積層体は、上記構成が得られる限り、任意の適切な方法により製造され得る。1つの実施形態においては、樹脂基材の片側にポリオレフィン系成分およびポリエステル系成分から選択される少なくとも1つの成分を含む下塗り層形成用組成物を塗布して下塗り層を形成する工程と、この下塗り層表面にPVA系樹脂を含む塗布液を塗布してPVA系樹脂層を形成する工程と、このPVA系樹脂層を延伸および染色して偏光膜を作製する工程とを含む方法により製造される。
B-1.下塗り層の形成
 上記下塗り層形成用組成物は、ポリオレフィン系成分およびポリエステル系成分から選択される少なくとも1つの成分を含み、好ましくはポリビニルアルコール系成分とポリオレフィン系成分およびポリエステル系成分から選択される少なくとも1つの成分とを含む。このような組成とすることにより、偏光膜と樹脂基材との密着性を剥離異方性を抑えつつ向上させることができる。ポリビニルアルコール系成分としては、任意の適切なPVA系樹脂が用いられ得る。具体的には、ポリビニルアルコール、変性ポリビニルアルコールが挙げられる。変性ポリビニルアルコールとしては、例えば、アセトアセチル基、カルボン酸基、アクリル基および/またはウレタン基で変性されたポリビニルアルコールが挙げられる。これらの中でも、アセトアセチル変性PVAが好ましく用いられる。アセトアセチル変性PVAとしては、下記一般式(I)で表わされる繰り返し単位を少なくとも有する重合体が好ましく用いられる。
Figure JPOXMLDOC01-appb-C000001
 上記式(I)において、l+m+nに対するnの割合は、好ましくは1%~10%である。
 アセトアセチル変性PVAの平均重合度は、好ましくは1000~10000であり、好ましくは1200~5000である。アセトアセチル変性PVAのケン化度は、好ましくは97モル%以上である。アセトアセチル変性PVAの4重量%水溶液のpHは、好ましくは3.5~5.5である。なお、平均重合度およびケン化度は、JIS K 6726-1994に準じて求めることができる。
 上記ポリオレフィン系成分としては、任意の適切なポリオレフィン系樹脂が用いられ得る。ポリオレフィン系樹脂の主成分であるオレフィン成分としては、例えば、エチレン、プロピレン、イソブチレン、1-ブテン、1-ペンテン、1-ヘキセン等の炭素数2~6のオレフィン系炭化水素が挙げられる。これらは単独で、または、二種以上組み合わせて用いることができる。これらの中でも、エチレン、プロピレン、イソブチレン、1-ブテン等の炭素数2~4のオレフィン系炭化水素が好ましく、さらに好ましくはエチレンが用いられる。
 上記ポリオレフィン系樹脂を構成するモノマー成分のうち、オレフィン成分の占める割合は、好ましくは50重量%~95重量%である。
 上記ポリオレフィン系樹脂は、カルボキシル基および/またはその無水物基を有することが好ましい。このようなポリオレフィン系樹脂は水に分散し得、下塗り層が良好に形成され得る。このような官能基を有するモノマー成分としては、例えば、不飽和カルボン酸およびその無水物、不飽和ジカルボン酸のハーフエステル、ハーフアミドが挙げられる。これらの具体例としては、アクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、イタコン酸、無水イタコン酸、フマル酸、クロトン酸が挙げられる。
 ポリオレフィン系樹脂の分子量は、例えば5000~80000である。
 上記ポリエステル系成分としては、任意の適切なポリエステル系樹脂が用いられ得る。ポリエステル系樹脂の具体例としては、ジカルボン酸成分とグリコール成分とが重縮合してなる共重合体が挙げられる。
 上記ポリエステル系樹脂を構成するジカルボン酸成分としては、特に限定はされず、例えば、テレフタル酸、イソフタル酸、フタル酸、無水フタル酸、2,6-ナフタレンジカルボン酸、3-tert-ブチルイソフタル酸、シュウ酸、コハク酸、無水コハク酸、アジピン酸、アゼライン酸、セバシン酸、ドデカン二酸、アイコサン二酸、フマル酸、マレイン酸、無水マレイン酸、イタコン酸、無水イタコン酸、シトラコン酸、無水シトラコン酸、ダイマー酸等の不飽和脂肪族ジカルボン酸、1,4-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,2-シクロヘキサンジカルボン酸、テトラヒドロフタル酸およびその無水物等の脂環式ジカルボン酸が挙げられる。
 上記ポリエステル系樹脂を構成するグリコール成分としては、特に限定はされず、例えば、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール、2-メチル-1,3-プロパンジオール、1,5-ペンタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、1,9-ノナンジオール、2-エチル-2-ブチルプロパンジオール等の脂肪族グリコール、1,4-シクロヘキサンジメタノール、1,3-シクロブタンジメタノール等の脂環族グリコールが挙げられる。 
 ポリエステル系樹脂の分子量は、例えば5000~80000である。
 上記下塗り層形成用組成物において、ポリビニルアルコール系成分とポリオレフィン系成分およびポリエステル系成分から選択される少なくとも1つの成分との配合比(固形分、前者:後者)は、好ましくは5:95~60:40、さらに好ましくは20:80~50:50である。ポリビニルアルコール系成分が多すぎると密着性が十分に得られないおそれがある。具体的には、PVA系樹脂層を樹脂基材から剥離する際に要する剥離力が低下して、十分な密着性が得られないおそれがある。
 下塗り層形成用組成物は、好ましくは水系である。下塗り層形成組成物は、有機溶剤を含み得る。有機溶剤としては、例えば、エタノール、イソプロパノール等が挙げられる。下塗り層形成用組成物の固形分濃度は、好ましくは1.0重量%~10重量%である。
 下塗り層形成用組成物に添加剤を配合してもよい。添加剤としては、例えば、架橋剤等が挙げられる。架橋剤としては、例えば、オキサゾリン、ホウ酸、トリメチロールメラミン等のメチロール化合物、カルボジイミド、イソシアネート化合物、エポキシ化合物等が挙げられる。下塗り層形成用組成物における添加物の配合量は、目的等に応じて適切に設定され得る。例えば、架橋剤の配合量は、ポリビニルアルコール系成分とポリオレフィン系成分およびポリエステル系成分から選択される少なくとも1つの成分との合計100重量部に対して、好ましくは10重量部以下、より好ましくは0.01重量部~10重量部、さらに好ましくは0.1重量部~5重量部である。
 下塗り層形成用組成物の塗布方法としては、任意の適切な方法を採用することができる。例えば、ロールコート法、スピンコート法、ワイヤーバーコート法、ディップコート法、ダイコート法、カーテンコート法、スプレーコート法、ナイフコート法(コンマコート法等)等が挙げられる。
 下塗り層形成用組成物は、得られる(すなわち、乾燥後の)下塗り層の厚みが500nm~3000nmとなるように塗布することが好ましく、さらに好ましくは800nm~2000nmである。下塗り層の厚みが薄すぎると、十分な密着性が得られないおそれがある。一方、下塗り層の厚みが厚すぎると、後述のPVA系樹脂層の形成の際に、ハジキが発生する、得られる塗布膜にムラが生じる等の不具合が発生し得る。
 下塗り層形成用組成物の塗布後、塗布膜は乾燥され得る。乾燥温度は、例えば50℃以上である。
B-2.PVA系樹脂層の形成
 上記PVA系樹脂を含む塗布液を塗布する下塗り層表面は、予め、表面改質処理(例えば、コロナ処理等)が施されていてもよい。このような処理によれば、密着性をさらに向上させ得る。
 上記PVA系樹脂を含む塗布液としては、代表的には、上記PVA系樹脂を溶媒に溶解させた溶液が用いられる。溶媒としては、例えば、水、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、各種グリコール類、トリメチロールプロパン等の多価アルコール類、エチレンジアミン、ジエチレントリアミン等のアミン類が挙げられる。これらは単独で、または、二種以上組み合わせて用いることができる。これらの中でも、好ましくは、水である。塗布液のPVA系樹脂濃度は、溶媒100重量部に対して、好ましくは3重量部~20重量部である。このような樹脂濃度であれば、均一な塗布膜を形成することができる。
 塗布液に、添加剤を配合してもよい。添加剤としては、例えば、可塑剤、界面活性剤等が挙げられる。可塑剤としては、例えば、エチレングリコールやグリセリン等の多価アルコールが挙げられる。界面活性剤としては、例えば、非イオン界面活性剤が挙げられる。これらは、得られるPVA系樹脂層の均一性や染色性、延伸性をより一層向上させる目的で使用され得る。また、添加剤としては、例えば、易接着成分が挙げられる。易接着成分を用いることにより、密着性をさらに向上させ得る。易接着成分としては、例えば、アセトアセチル変性PVAなどの変性PVAが用いられる。さらにまた、添加剤としては、ヨウ化カリウム、ヨウ化ナトリウム、ヨウ化リチウム、塩化ナトリウム等のハロゲン化物、尿素等が挙げられる。これらを添加することにより、光学特性(例えば、単体透過率)を向上させ得る。添加剤の配合量は、目的等に応じて適切に設定され得る。
 塗布液の塗布方法は、上記下塗り層形成用組成物の塗布方法と同様の方法が採用され得る。塗布後、塗布膜は乾燥され得る。乾燥温度は、例えば50℃以上である。
 PVA系樹脂層の厚みは、代表的には20μm以下、好ましくは3μm~15μmである。
 上記PVA系樹脂層の形成(塗布液の塗布および乾燥)過程において、下塗り層の全部または一部がPVA系樹脂層に溶出することによって、PVA系樹脂層の樹脂基材側に下塗り層との相溶領域としての中間領域が形成され得る。ここで、下塗り層の一部のみがPVA系樹脂層に溶出した場合には、偏光膜と異なる層としての中間領域と、偏光膜の樹脂基材側の一部としての中間領域とが併存し得る。
B-3.偏光膜の作製
 偏光膜は、代表的には、上記下塗り層表面に形成されたPVA系樹脂層に延伸処理および染色処理を施すことによって作製される。PVA系樹脂層には、延伸処理および染色処理以外に、PVA系樹脂層を偏光膜とするための処理が、適宜施され得る。該偏光膜とするための処理としては、例えば、不溶化処理、架橋処理、洗浄処理等が挙げられる。これらの処理は、目的に応じて選択することができる。また、処理順序、処理のタイミング、処理回数等の処理条件を、適宜設定することができる。以下、各々の処理について説明する。
(染色処理)
 上記染色処理は、代表的には、PVA系樹脂層を二色性物質で染色することにより行う。好ましくは、PVA系樹脂層に二色性物質を吸着させることにより行う。当該吸着方法としては、例えば、二色性物質を含む染色液にPVA系樹脂層を浸漬させる方法、PVA系樹脂層に当該染色液を塗工する方法、当該染色液をPVA系樹脂層に噴霧する方法等が挙げられる。好ましくは、染色液にPVA系樹脂層を浸漬させる方法である。二色性物質が良好に吸着し得るからである。染色液へのPVA系樹脂層の浸漬は、好ましくは樹脂基材上に積層された状態のPVA系樹脂層(すなわち、樹脂基材の片側にPVA系樹脂層が積層された積層体)を染色液に浸漬させることによって行われる。
 上記二色性物質としては、例えば、ヨウ素、有機染料が挙げられる。これらは単独で、または、二種以上組み合わせて用いることができる。二色性物質は、好ましくは、ヨウ素である。二色性物質としてヨウ素を用いる場合、上記染色液は、好ましくは、ヨウ素水溶液である。ヨウ素の配合量は、水100重量部に対して、好ましくは0.1重量部~0.5重量部である。ヨウ素の水に対する溶解度を高めるため、ヨウ素水溶液にヨウ化物を配合することが好ましい。ヨウ化物としては、例えば、ヨウ化カリウム、ヨウ化リチウム、ヨウ化ナトリウム、ヨウ化亜鉛、ヨウ化アルミニウム、ヨウ化鉛、ヨウ化銅、ヨウ化バリウム、ヨウ化カルシウム、ヨウ化錫、ヨウ化チタン等が挙げられる。これらの中でも、好ましくは、ヨウ化カリウムである。ヨウ化物の配合量は、水100重量部に対して、好ましくは0.02重量部~20重量部、さらに好ましくは0.1重量部~10重量部である。
 染色液の染色時の液温は、PVA系樹脂の溶解を抑制するため、好ましくは20℃~50℃である。染色液にPVA系樹脂層を浸漬させる場合、浸漬時間は、PVA系樹脂層の透過率を確保するため、好ましくは5秒~5分である。また、染色条件(濃度、液温、浸漬時間)は、最終的に得られる偏光膜の偏光度もしくは単体透過率が所定の範囲となるように、設定することができる。1つの実施形態においては、得られる偏光膜の偏光度が99.98%以上となるように、浸漬時間を設定する。別の実施形態においては、得られる偏光膜の単体透過率が40%~44%となるように、浸漬時間を設定する。
(延伸処理)
 PVA系樹脂層(樹脂基材の片側にPVA系樹脂層が積層された積層体)の延伸方法としては、任意の適切な方法を採用することができる。具体的には、固定端延伸(例えば、テンター延伸機を用いる方法)でもよいし、自由端延伸(例えば、周速の異なるロール間に積層体を通して一軸延伸する方法)でもよい。また、同時二軸延伸(例えば、同時二軸延伸機を用いる方法)でもよいし、逐次二軸延伸でもよい。積層体の延伸は、一段階で行ってもよいし、多段階で行ってもよい。多段階で行う場合、後述の積層体の延伸倍率(最大延伸倍率)は、各段階の延伸倍率の積である。
 延伸処理は、積層体を延伸浴に浸漬させながら行う水中延伸方式であってもよいし、空中延伸方式であってもよい。1つの実施形態においては、水中延伸処理を少なくとも1回施し、好ましくは、水中延伸処理と空中延伸処理を組み合わせる。水中延伸によれば、上記樹脂基材やPVA系樹脂層のガラス転移温度(代表的には、80℃程度)よりも低い温度で延伸し得、PVA系樹脂層を、その結晶化を抑えながら、高倍率に延伸することができる。その結果、優れた偏光特性を有する偏光膜を製造することができる。
 積層体の延伸方向としては、任意の適切な方向を選択することができる。1つの実施形態においては、長尺状の積層体の長手方向に延伸する。具体的には、積層体を長手方向に搬送し、その搬送方向(MD)である。別の実施形態においては、長尺状の積層体の幅方向に延伸する。具体的には、積層体を長手方向に搬送し、その搬送方向(MD)と直交する方向(TD)である。
 積層体の延伸温度は、樹脂基材の形成材料、延伸方式等に応じて、任意の適切な値に設定することができる。空中延伸方式を採用する場合、延伸温度は、好ましくは樹脂基材のガラス転移温度(Tg)以上であり、さらに好ましくは樹脂基材のガラス転移温度(Tg)+10℃以上、特に好ましくはTg+15℃以上である。一方、積層体の延伸温度は、好ましくは170℃以下である。このような温度で延伸することで、PVA系樹脂の結晶化が急速に進むのを抑制して、当該結晶化による不具合(例えば、延伸によるPVA系樹脂層の配向を妨げる)を抑制することができる。
 延伸方式として水中延伸方式を採用する場合、延伸浴の液温は、好ましくは40℃~85℃、さらに好ましくは50℃~85℃である。このような温度であれば、PVA系樹脂層の溶解を抑制しながら高倍率に延伸することができる。具体的には、上述のように、樹脂基材のガラス転移温度(Tg)は、PVA系樹脂層の形成との関係で、好ましくは60℃以上である。この場合、延伸温度が40℃を下回ると、水による樹脂基材の可塑化を考慮しても、良好に延伸できないおそれがある。一方、延伸浴の温度が高温になるほど、PVA系樹脂層の溶解性が高くなって、優れた偏光特性が得られないおそれがある。
 水中延伸方式を採用する場合、積層体をホウ酸水溶液中に浸漬させて延伸することが好ましい(ホウ酸水中延伸)。延伸浴としてホウ酸水溶液を用いることで、PVA系樹脂層に、延伸時にかかる張力に耐える剛性と、水に溶解しない耐水性とを付与することができる。具体的には、ホウ酸は、水溶液中でテトラヒドロキシホウ酸アニオンを生成してPVA系樹脂と水素結合により架橋し得る。その結果、PVA系樹脂層に剛性と耐水性とを付与して、良好に延伸することができ、優れた偏光特性を有する偏光膜を作製することができる。
 上記ホウ酸水溶液は、好ましくは、溶媒である水にホウ酸および/またはホウ酸塩を溶解させることにより得られる。ホウ酸濃度は、水100重量部に対して、好ましくは1重量部~10重量部である。ホウ酸濃度を1重量部以上とすることにより、PVA系樹脂層の溶解を効果的に抑制することができ、より高特性の偏光膜を作製することができる。なお、ホウ酸またはホウ酸塩以外に、ホウ砂等のホウ素化合物、グリオキザール、グルタルアルデヒド等を溶媒に溶解して得られた水溶液も用いることができる。
 好ましくは、上記延伸浴(ホウ酸水溶液)にヨウ化物を配合する。ヨウ化物を配合することにより、PVA系樹脂層に吸着させたヨウ素の溶出を抑制することができる。ヨウ化物の具体例は、上述のとおりである。ヨウ化物の濃度は、水100重量部に対して、好ましくは0.05重量部~15重量部、さらに好ましくは0.5重量部~8重量部である。
 積層体の延伸浴への浸漬時間は、好ましくは15秒~5分である。好ましくは、水中延伸処理は染色処理の後に行う。
 積層体の延伸倍率(最大延伸倍率)は、積層体の元長に対して、好ましくは4.0倍以上、さらに好ましくは5.0倍以上である。このような高い延伸倍率は、例えば、水中延伸方式(ホウ酸水中延伸)を採用することにより、達成し得る。なお、本明細書において「最大延伸倍率」とは、積層体が破断する直前の延伸倍率をいい、別途、積層体が破断する延伸倍率を確認し、その値よりも0.2低い値をいう。
(不溶化処理)
 上記不溶化処理は、代表的には、ホウ酸水溶液にPVA系樹脂層を浸漬させることにより行う。特に水中延伸方式を採用する場合、不溶化処理を施すことにより、PVA系樹脂層に耐水性を付与することができる。当該ホウ酸水溶液の濃度は、水100重量部に対して、好ましくは1重量部~4重量部である。不溶化浴(ホウ酸水溶液)の液温は、好ましくは20℃~40℃である。好ましくは、不溶化処理は、積層体作製後、染色処理や水中延伸処理の前に行う。
(架橋処理)
 上記架橋処理は、代表的には、ホウ酸水溶液にPVA系樹脂層を浸漬させることにより行う。架橋処理を施すことにより、PVA系樹脂層に耐水性を付与することができる。当該ホウ酸水溶液の濃度は、水100重量部に対して、好ましくは1重量部~4重量部である。また、上記染色処理後に架橋処理を行う場合、さらに、ヨウ化物を配合することが好ましい。ヨウ化物を配合することにより、PVA系樹脂層に吸着させたヨウ素の溶出を抑制することができる。ヨウ化物の配合量は、水100重量部に対して、好ましくは1重量部~5重量部である。ヨウ化物の具体例は、上述のとおりである。架橋浴(ホウ酸水溶液)の液温は、好ましくは20℃~50℃である。好ましくは、架橋処理は水中延伸処理の前に行う。好ましい実施形態においては、染色処理、架橋処理および水中延伸処理をこの順で行う。
(洗浄処理)
 上記洗浄処理は、代表的には、ヨウ化カリウム水溶液にPVA系樹脂層を浸漬させることにより行う。
(乾燥処理)
 乾燥処理における乾燥温度は、好ましくは30℃~100℃である。
B-4.その他
 上記光学積層体は、偏光膜の樹脂基材が配置されている側とは反対側に配置された保護フィルムを有していてもよい。保護フィルムの形成材料としては、例えば、(メタ)アクリル系樹脂、ジアセチルセルロース、トリアセチルセルロース等のセルロース系樹脂、シクロオレフィン系樹脂、ポリプロピレン等のオレフィン系樹脂、ポリエチレンテレフタレート系樹脂等のエステル系樹脂、ポリアミド系樹脂、ポリカーボネート系樹脂、これらの共重合体樹脂等が挙げられる。保護フィルムの厚みは、好ましくは10μm~100μmである。保護フィルムは、偏光膜に接着層を介して積層してもよいし、密着させて(接着層を介さずに)積層してもよい。接着層は、代表的には、接着剤または粘着剤で形成される。
 光学積層体は、例えば、液晶表示装置に搭載され得る。この場合、偏光膜が樹脂基材よりも液晶セル側に配置されるように搭載されることが好ましい。このような構成によれば、樹脂基材が有し得る位相差が、得られる液晶表示装置の画像特性に及ぼす影響を排除することができる。
 以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。なお、厚みの測定方法は以下の通りである。また、下記実施例および比較例における「部」および「%」は、それぞれ「重量部」および「重量%」を表す。
(厚み)
 デジタルマイクロメーター(アンリツ社製、製品名「KC-351C」)を用いて測定した。
[実施例1]
 樹脂基材として、長尺状で、吸水率0.75%、Tg75℃の非晶質のイソフタル酸共重合ポリエチレンテレフタレート(IPA共重合PET)フィルム(厚み:100μm)を用いた。
 樹脂基材の片面に、コロナ処理を施し、このコロナ処理面に、アセトアセチル変性PVA(日本合成化学工社製、商品名「ゴーセファイマーZ200」、重合度1200、ケン化度99.0モル%以上、アセトアセチル変性度4.6%)の4.0%水溶液と変性ポリオレフィン樹脂水性分散体(ユニチカ社製、商品名「アローベースSE1030N」、固形分濃度22%)と純水を混合した混合液(固形分濃度4.0%)を、乾燥後の厚みが2000nmになるように塗布し、60℃で3分間乾燥し、下塗り層を形成した。ここで、混合液におけるアセトアセチル変性PVAと変性ポリオレフィンとの固形分配合比は30:70であった。
 次いで、下塗り層表面に、コロナ処理を施し、このコロナ処理面に、ポリビニルアルコール(重合度4200、ケン化度99.2モル%)およびアセトアセチル変性PVA(重合度1200、アセトアセチル変性度4.6%、ケン化度99.0モル%以上、日本合成化学工業社製、商品名「ゴーセファイマーZ200」)を9:1の比で含む水溶液を25℃で塗布および乾燥して、厚み11μmのPVA系樹脂層を形成した。こうして、積層体を作製した。
 得られた積層体を、120℃のオーブン内で周速の異なるロール間で縦方向(長手方向)に2.0倍に自由端一軸延伸した(空中補助延伸)。
 次いで、積層体を、液温30℃の不溶化浴(水100重量部に対して、ホウ酸を4重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(不溶化処理)。
 次いで、液温30℃の染色浴に、得られる偏光膜が所定の透過率となるようにヨウ素濃度、浸漬時間を調整しながら浸漬させた。本実施例では、水100重量部に対して、ヨウ素を0.2重量部配合し、ヨウ化カリウムを1.0重量部配合して得られたヨウ素水溶液に60秒間浸漬させた(染色処理)。
 次いで、液温30℃の架橋浴(水100重量部に対して、ヨウ化カリウムを3重量部配合し、ホウ酸を3重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(架橋処理)。
 その後、積層体を、液温70℃のホウ酸水溶液(水100重量部に対して、ホウ酸を4重量部配合し、ヨウ化カリウムを5重量部配合して得られた水溶液)に浸漬させながら、周速の異なるロール間で縦方向(長手方向)に総延伸倍率が5.5倍となるように一軸延伸を行った(水中延伸)。
 その後、積層体を液温30℃の洗浄浴(水100重量部に対して、ヨウ化カリウムを4重量部配合して得られた水溶液)に浸漬させた(洗浄処理)。
 こうして、厚み30μmの樹脂基材の片側に厚み5μmの偏光膜が形成された光学積層体(偏光板)を得た。
[実施例2]
 上記混合液を乾燥後の厚みが1000nmになるように塗布したこと以外は実施例1と同様にして、光学積層体を得た。
[実施例3]
 上記混合液を乾燥後の厚みが500nmになるように塗布したこと以外は実施例1と同様にして、光学積層体を得た。
[実施例4]
 混合液におけるアセトアセチル変性PVAと変性ポリオレフィンとの固形分配合比を50:50としたこと以外は実施例1と同様にして、光学積層体を得た。
[実施例5]
 下塗り層の形成に際し、アセトアセチル変性PVA(ゴーセファイマーZ200)の4.0%水溶液と変性ポリオレフィン樹脂水性分散体(ユニチカ社製、商品名「アローベースSD1030N」、固形分濃度22%)と純水を混合した混合液(固形分濃度4.0%)を用いたこと以外は実施例1と同様にして、光学積層体を得た。
[実施例6]
 下塗り層の形成に際し、アセトアセチル変性PVA(ゴーセファイマーZ200)の4.0%水溶液と変性ポリオレフィン樹脂水性分散体(ユニチカ社製、商品名「アローベースSE1035NJ2」、固形分濃度22%)と純水を混合した混合液(固形分濃度4.0%)を用いたこと以外は実施例4と同様にして、光学積層体を得た。
[実施例7]
 下塗り層の形成に際し、アセトアセチル変性PVA(日本合成化学工社製、商品名「ゴーセファイマーZ410」、重合度2200、ケン化度97.5~98.5%、アセトアセチル変性度4.6%)の4.0%水溶液と変性ポリオレフィン樹脂水性分散体(ユニチカ株式会社製、商品名「アローベースSE1030N」、固形分濃度22%)と純水を混合した混合液(固形分濃度4.0%)を用いたこと以外は実施例1と同様にして、光学積層体を得た。
[実施例8]
 下塗り層の形成に際し、アセトアセチル変性PVA(ゴーセファイマーZ200)の4.0%水溶液10gとポリエステル水性エマルション樹脂(エリーテルKT0507E6)62.5gとを混合した混合液を用いたこと以外は実施例3と同様にして、光学積層体を得た。ここで、混合液におけるアセトアセチル変性PVAとポリエステルとの固形分配合比は50:50であった。
[実施例9]
 下塗り層の形成に際し、アセトアセチル変性PVA(ゴーセファイマーZ200)の4.0%水溶液10gとポリエステル水性エマルション樹脂(エリーテルKT0507E6)62.5gとを混合した混合液を用いたこと以外は実施例1と同様にして、光学積層体を得た。ここで、混合液におけるアセトアセチル変性PVAとポリエステルとの固形分配合比は50:50であった。
[比較例1]
 下塗り層を形成することなく、樹脂基材上に直接PVA系樹脂層を形成したこと以外は実施例1と同様にして、光学積層体を得た。
[比較例2]
 下塗り層の形成に際し、アセトアセチル変性PVA(ゴーセファイマーZ200)の4.0%水溶液を用いたこと以外は実施例3と同様にして、光学積層体を得た。
[比較例3]
 下塗り層の形成に際し、アセトアセチル変性PVA(ゴーセファイマーZ200)の4.0%水溶液を用いたこと以外は実施例2と同様にして、光学積層体を得た。
[比較例4]
 下塗り層の形成に際し、アセトアセチル変性PVA(ゴーセファイマーZ200)の4.0%水溶液を用いたこと以外は実施例1と同様にして、光学積層体を得た。
[比較例5]
 下塗り層の形成に際し、アセトアセチル変性PVA(ゴーセファイマーZ200)の4.0%水溶液を用いたこと、および、空中補助延伸の延伸倍率を4.0倍とし、不溶化処理および水中延伸を行わなかったこと以外は実施例2と同様にして、厚み37μmの樹脂基材の片側に厚み6μmの偏光膜が形成された光学積層体を得た。
(評価)
 上記実施例および比較例について、以下の評価を行った。評価結果を表1にまとめる。
1.90度剥離力
 光学積層体から樹脂基材を90度剥離する際の剥離力(基材剥離力:P1)および光学積層体から偏光膜を90度剥離する際の剥離力(PVA剥離力:P2)を以下に記載する方法によって測定した。
(基材剥離力:P1)
 ガラス板に、得られた光学積層体を偏光膜面側に粘着剤を塗布して貼り合わせて、測定用サンプルを作製した。この測定用サンプルの偏光膜と樹脂基材との間にカッターナイフで切込みを入れ、樹脂基材を偏光膜面に対して90°の角度をなすように立ち上げ、剥離速度3000mm/minで剥離する際に要する力(N/15mm)を上記「VPA-2」により測定した。
(PVA剥離力:P2)
 ガラス板に得られた光学積層体を樹脂基材面側に粘着剤を塗布して貼り合わせ、偏光膜面に補強用のポリイミドテープ(日東電工(株)製、ポリイミド粘着テープNo.360A)を貼り合わせて、測定用サンプルを作製した。この測定用サンプルの偏光膜と樹脂基材との間にカッターナイフで切込みを入れ、偏光膜および補強用のポリイミドテープを樹脂基材面に対して90°の角度をなすように立ち上げ、剥離速度3000mm/minで剥離する際に要する力(N/15mm)を角度自在タイプ粘着・皮膜剥離解析装置「VPA-2」(共和界面化学株式会社製)により測定した。
2.操作性
 得られた光学積層体を切断して、10cm×10cmのサイズの試験片を得た。次いで、得られた試験片10’の樹脂基材11面および偏光膜12面の角部に、図3(a)および(b)に示すように強制剥離用テープ50(積水化学工業(株)製:セキスイセロテ-プ(No,252)24mm幅)を貼付した。次いで、図3(b)に示すように貼付したテープ50を同時に逆方向に剥がれるまで引っ張り、その際に光学積層体に剥がれが発生するかどうかを評価した。評価基準は以下のとおりである。
 良好:剥がれが発生しなかった。
 不良:剥がれが発生した。
Figure JPOXMLDOC01-appb-T000002
 表1に示すように、0.5<P1/P2<5の関係を満たす実施例の光学積層体は操作性に優れる。また、水中延伸を施しても十分な密着性が保持されている。一方、0.5<P1/P2<5の関係を満たさない比較例の光学積層体は操作性に問題がある。
 本発明の光学積層体は、例えば、画像表示装置に好適に用いられる。具体的には、液晶テレビ、液晶ディスプレイ、携帯電話、デジタルカメラ、ビデオカメラ、携帯ゲーム機、カーナビゲーション、コピー機、プリンター、ファックス、時計、電子レンジ等の液晶パネル、有機ELデバイスの反射防止板等として好適に用いられる。
10  光学積層体
11  樹脂基材
12  偏光膜
13  中間領域

Claims (10)

  1.  樹脂基材と該樹脂基材の片側に設けられた偏光膜とを有する光学積層体であって、
     該樹脂基材を90度剥離で該光学積層体から剥離する際の剥離力P1(N/15mm)と該偏光膜を90度剥離で該光学積層体から剥離する際の剥離力P2(N/15mm)とが、下記関係式(1)を満たす、光学積層体。
       式(1): 0.5<P1/P2<5
  2.  前記偏光膜と前記樹脂基材との間におよび/または前記偏光膜の前記樹脂基材側の一部として、ポリオレフィン系成分およびポリエステル系成分から選択される少なくとも1つの成分を含む中間領域を有する、請求項1に記載の光学積層体。
  3.  前記中間領域が、ポリビニルアルコール系成分をさらに含む、請求項2に記載の光学積層体。
  4.  前記ポリビニルアルコール系成分が、アセトアセチル変性ポリビニルアルコールを含む、請求項3に記載の光学積層体。
  5.  前記中間領域の厚みが、100nm~1000nmである、請求項2から4のいずれかに記載の光学積層体。
  6.  前記樹脂基材の構成材料が、ポリエチレンテレフタレート系樹脂を含む、請求項1から5のいずれかに記載の光学積層体。
  7.  樹脂基材の片側にポリオレフィン系成分およびポリエステル系成分から選択される少なくとも1つの成分を含む下塗り層形成用組成物を塗布して下塗り層を形成する工程と、
     該下塗り層表面にポリビニルアルコール系樹脂を含む塗布液を塗布してポリビニルアルコール系樹脂層を形成する工程と、
     該ポリビニルアルコール系樹脂層を延伸および染色して偏光膜を作製する工程と、
     を含む、光学積層体の製造方法。
  8.  前記下塗り層形成用組成物が、ポリビニルアルコール系成分をさらに含む、請求項7に記載の光学積層体の製造方法。
  9.  前記ポリビニルアルコール系成分が、アセトアセチル変性ポリビニルアルコールを含む、請求項8に記載の光学積層体の製造方法。
  10.  前記下塗り層の厚みが、500nm~3000nmである、請求項7から9のいずれかに記載の光学積層体の製造方法。

     
     
PCT/JP2018/008280 2017-03-15 2018-03-05 光学積層体および光学積層体の製造方法 WO2018168542A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880017243.2A CN110402405B (zh) 2017-03-15 2018-03-05 光学层叠体及光学层叠体的制造方法
JP2019505887A JP6774556B2 (ja) 2017-03-15 2018-03-05 光学積層体および光学積層体の製造方法
KR1020197025371A KR102225345B1 (ko) 2017-03-15 2018-03-05 광학 적층체 및 광학 적층체의 제조방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017049412 2017-03-15
JP2017-049412 2017-03-15

Publications (1)

Publication Number Publication Date
WO2018168542A1 true WO2018168542A1 (ja) 2018-09-20

Family

ID=63523458

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008280 WO2018168542A1 (ja) 2017-03-15 2018-03-05 光学積層体および光学積層体の製造方法

Country Status (5)

Country Link
JP (1) JP6774556B2 (ja)
KR (1) KR102225345B1 (ja)
CN (1) CN110402405B (ja)
TW (1) TWI720296B (ja)
WO (1) WO2018168542A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020064276A (ja) * 2018-10-15 2020-04-23 日東電工株式会社 位相差層付偏光板およびそれを用いた画像表示装置
JP2020064298A (ja) * 2018-10-15 2020-04-23 日東電工株式会社 位相差層付偏光板およびそれを用いた画像表示装置
JP2020064277A (ja) * 2018-10-15 2020-04-23 日東電工株式会社 位相差層付偏光板およびそれを用いた画像表示装置
JP2020064295A (ja) * 2018-10-15 2020-04-23 日東電工株式会社 位相差層付偏光板およびそれを用いた画像表示装置
JP2020064294A (ja) * 2018-10-15 2020-04-23 日東電工株式会社 位相差層付偏光板およびそれを用いた画像表示装置
JP2020064293A (ja) * 2018-10-15 2020-04-23 日東電工株式会社 位相差層付偏光板およびそれを用いた画像表示装置
JP2020064296A (ja) * 2018-10-15 2020-04-23 日東電工株式会社 位相差層付偏光板およびそれを用いた画像表示装置
JP2020064297A (ja) * 2018-10-15 2020-04-23 日東電工株式会社 位相差層付偏光板およびそれを用いた画像表示装置
JP2020076968A (ja) * 2018-10-15 2020-05-21 日東電工株式会社 位相差層付偏光板およびそれを用いた画像表示装置
TWI833820B (zh) 2018-10-15 2024-03-01 日商日東電工股份有限公司 附相位差層之偏光板及使用其之影像顯示裝置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022038978A (ja) * 2020-08-27 2022-03-10 日東電工株式会社 光学積層体および該光学積層体を用いた偏光板の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011081359A (ja) * 2009-09-09 2011-04-21 Nitto Denko Corp 偏光板の製造方法
JP2012159753A (ja) * 2011-02-02 2012-08-23 Toyobo Co Ltd 偏光子保護用易接着性ポリエステルフィルム
JP2014182359A (ja) * 2013-03-21 2014-09-29 Fujifilm Corp 偏光板および液晶表示装置
JP2016189028A (ja) * 2013-12-27 2016-11-04 住友化学株式会社 偏光板用保護フィルム及びそれを用いた偏光板
US20170031073A1 (en) * 2014-05-22 2017-02-02 Lg Chem, Ltd. Polarizing plate comprising polyethylene terephthalate protective film, method for manufacturing same, and image display device and liquid-crystal display device comprising same

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4279944B2 (ja) 1999-06-01 2009-06-17 株式会社サンリッツ 偏光板の製造方法
CN1926213B (zh) * 2004-03-03 2011-01-26 日本化药株式会社 偏光元件用水基粘合剂和用其得到的偏振器
CN102325852B (zh) * 2009-02-20 2014-03-26 Lg化学株式会社 改性聚乙烯醇树脂以及包含该树脂的粘合剂、偏光片和显示器件
KR101609153B1 (ko) * 2009-07-17 2016-04-05 동우 화인켐 주식회사 접착제 조성물 및 이를 이용한 편광판
CN104212386B (zh) * 2010-03-05 2017-01-11 日东电工株式会社 偏振板用胶粘剂、偏振板及其制造方法、光学膜、以及图像显示装置
JP2012123229A (ja) * 2010-12-09 2012-06-28 Sumitomo Chemical Co Ltd 偏光性積層フィルムおよび偏光板の製造方法
WO2012077824A1 (ja) 2010-12-09 2012-06-14 住友化学株式会社 偏光性積層フィルムおよび偏光板の製造方法
CN202443142U (zh) * 2011-11-16 2012-09-19 旭化成电子材料株式会社 层叠体
KR20130101780A (ko) * 2012-03-06 2013-09-16 동우 화인켐 주식회사 편광판용 접착제 조성물 및 이를 포함하는 편광판
TWI586533B (zh) * 2013-12-25 2017-06-11 日東電工股份有限公司 偏光板及偏光板之製造方法
KR20150122934A (ko) * 2014-04-24 2015-11-03 동우 화인켐 주식회사 접착제 조성물 및 이를 포함하는 편광판
TWI560053B (en) * 2014-05-22 2016-12-01 Lg Chemical Ltd Polarizing plate, method for manufacturing the same, image display and liquid crystal display
KR20160086634A (ko) * 2015-01-12 2016-07-20 동우 화인켐 주식회사 편광자용 접착제 조성물
JP6680533B2 (ja) * 2015-12-25 2020-04-15 日東電工株式会社 積層体および積層体の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011081359A (ja) * 2009-09-09 2011-04-21 Nitto Denko Corp 偏光板の製造方法
JP2012159753A (ja) * 2011-02-02 2012-08-23 Toyobo Co Ltd 偏光子保護用易接着性ポリエステルフィルム
JP2014182359A (ja) * 2013-03-21 2014-09-29 Fujifilm Corp 偏光板および液晶表示装置
JP2016189028A (ja) * 2013-12-27 2016-11-04 住友化学株式会社 偏光板用保護フィルム及びそれを用いた偏光板
US20170031073A1 (en) * 2014-05-22 2017-02-02 Lg Chem, Ltd. Polarizing plate comprising polyethylene terephthalate protective film, method for manufacturing same, and image display device and liquid-crystal display device comprising same

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020064276A (ja) * 2018-10-15 2020-04-23 日東電工株式会社 位相差層付偏光板およびそれを用いた画像表示装置
JP2020064298A (ja) * 2018-10-15 2020-04-23 日東電工株式会社 位相差層付偏光板およびそれを用いた画像表示装置
JP2020064277A (ja) * 2018-10-15 2020-04-23 日東電工株式会社 位相差層付偏光板およびそれを用いた画像表示装置
JP2020064295A (ja) * 2018-10-15 2020-04-23 日東電工株式会社 位相差層付偏光板およびそれを用いた画像表示装置
JP2020064294A (ja) * 2018-10-15 2020-04-23 日東電工株式会社 位相差層付偏光板およびそれを用いた画像表示装置
JP2020064293A (ja) * 2018-10-15 2020-04-23 日東電工株式会社 位相差層付偏光板およびそれを用いた画像表示装置
JP2020064296A (ja) * 2018-10-15 2020-04-23 日東電工株式会社 位相差層付偏光板およびそれを用いた画像表示装置
JP2020064297A (ja) * 2018-10-15 2020-04-23 日東電工株式会社 位相差層付偏光板およびそれを用いた画像表示装置
JP2020076968A (ja) * 2018-10-15 2020-05-21 日東電工株式会社 位相差層付偏光板およびそれを用いた画像表示装置
JP7321005B2 (ja) 2018-10-15 2023-08-04 日東電工株式会社 位相差層付偏光板およびそれを用いた画像表示装置
JP7321004B2 (ja) 2018-10-15 2023-08-04 日東電工株式会社 位相差層付偏光板およびそれを用いた画像表示装置
JP7348799B2 (ja) 2018-10-15 2023-09-21 日東電工株式会社 位相差層付偏光板の製造方法
JP7355584B2 (ja) 2018-10-15 2023-10-03 日東電工株式会社 位相差層付偏光板およびそれを用いた画像表示装置
JP7355583B2 (ja) 2018-10-15 2023-10-03 日東電工株式会社 位相差層付偏光板およびそれを用いた画像表示装置
JP7355587B2 (ja) 2018-10-15 2023-10-03 日東電工株式会社 位相差層付偏光板およびそれを用いた画像表示装置
JP7355582B2 (ja) 2018-10-15 2023-10-03 日東電工株式会社 位相差層付偏光板およびそれを用いた画像表示装置
JP7355586B2 (ja) 2018-10-15 2023-10-03 日東電工株式会社 位相差層付偏光板およびそれを用いた画像表示装置
JP7355585B2 (ja) 2018-10-15 2023-10-03 日東電工株式会社 位相差層付偏光板およびそれを用いた画像表示装置
TWI833820B (zh) 2018-10-15 2024-03-01 日商日東電工股份有限公司 附相位差層之偏光板及使用其之影像顯示裝置

Also Published As

Publication number Publication date
TWI720296B (zh) 2021-03-01
JPWO2018168542A1 (ja) 2019-12-26
JP6774556B2 (ja) 2020-10-28
CN110402405A (zh) 2019-11-01
KR20190127700A (ko) 2019-11-13
KR102225345B1 (ko) 2021-03-09
CN110402405B (zh) 2022-02-11
TW201841759A (zh) 2018-12-01

Similar Documents

Publication Publication Date Title
WO2018168542A1 (ja) 光学積層体および光学積層体の製造方法
JP6784839B2 (ja) 積層体および積層体の製造方法
JP4975186B1 (ja) 偏光膜の製造方法
JP6893762B2 (ja) 偏光板
CN108780171B (zh) 偏振片
JP6921953B2 (ja) 積層体、積層体の製造方法、偏光板、および偏光板の製造方法
WO2017110750A1 (ja) 積層体および積層体の製造方法
KR20200066300A (ko) 편광판, 화상 표시 장치 및 편광판의 제조 방법
JP6357069B2 (ja) 積層体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18767256

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019505887

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197025371

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18767256

Country of ref document: EP

Kind code of ref document: A1