WO2018168158A1 - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置 Download PDF

Info

Publication number
WO2018168158A1
WO2018168158A1 PCT/JP2017/047111 JP2017047111W WO2018168158A1 WO 2018168158 A1 WO2018168158 A1 WO 2018168158A1 JP 2017047111 W JP2017047111 W JP 2017047111W WO 2018168158 A1 WO2018168158 A1 WO 2018168158A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
refrigeration cycle
compressor
passage portion
cycle apparatus
Prior art date
Application number
PCT/JP2017/047111
Other languages
English (en)
French (fr)
Inventor
亮 瀧澤
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2018168158A1 publication Critical patent/WO2018168158A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat

Definitions

  • the present disclosure relates to a vapor compression refrigeration cycle apparatus.
  • Patent Document 1 in the refrigeration cycle apparatus, when a part of the liquid refrigerant is introduced from the refrigerant outlet side of the high pressure condenser to the refrigerant inlet side of the low pressure compressor, from the refrigerant outlet side of the condenser.
  • a decompression mechanism is essential for the bypass circuit that guides the refrigerant to the refrigerant suction side of the compressor.
  • a capillary tube is used as a pressure reducing mechanism disposed in the bypass circuit.
  • the pressure difference between the refrigerant outlet side of the condenser and the refrigerant suction side of the compressor is large, the length of the capillary tube is small. It gets bigger. This is not preferable because it becomes a factor that hinders downsizing of the refrigeration cycle apparatus.
  • This disclosure is intended to provide a refrigeration cycle apparatus that can suppress a temperature rise of refrigerant discharged from a compressor with a compact configuration.
  • the refrigeration cycle apparatus includes: A compressor that compresses and discharges the refrigerant; A condenser for condensing the refrigerant discharged from the compressor; An expansion valve for expanding the refrigerant flowing out of the condenser; An evaporator for evaporating the refrigerant flowing out of the expansion valve; A bypass passage portion for flowing the refrigerant flowing out from the expansion valve to the refrigerant suction side of the compressor, bypassing the evaporator; A solenoid valve that opens and closes the bypass passage; An electromagnetic valve controller that controls the electromagnetic valve so that the bypass passage is opened when the temperature of the refrigerant discharged from the compressor exceeds a predetermined opening reference temperature; Is provided.
  • bypass passage is connected to the relatively close parts of the refrigerant outlet side of the expansion valve and the refrigerant suction side of the compressor, a pressure reducing mechanism for reducing the pressure of the refrigerant with respect to the bypass passage is unnecessary. It becomes.
  • the refrigeration cycle apparatus includes an internal heat exchanger.
  • the internal heat exchanging unit has a high temperature side heat exchanging unit through which the refrigerant flowing out of the condenser flows and a low temperature side heat exchanging unit through which the refrigerant flowing out of the evaporator flows, and the refrigerant flowing through the high temperature side heat exchanging unit and the low temperature side heat
  • the refrigerant flowing through the exchange unit is configured to exchange heat.
  • the refrigerant inflow portion into which the refrigerant flows is provided between the refrigerant outlet side of the expansion valve and the refrigerant inlet side of the evaporator, and the refrigerant outflow portion from which the refrigerant flows out of the low temperature side heat exchange portion It is provided between the refrigerant outlet side and the refrigerant suction side of the compressor.
  • the enthalpy on the refrigerant outlet side of the condenser is reduced, and the refrigerant outlet side of the evaporator Since the enthalpy difference from the refrigerant inlet side increases, the refrigeration capacity can be improved.
  • the refrigerant outflow portion of the bypass passage portion is provided between the refrigerant outlet side of the low temperature side heat exchange portion and the refrigerant suction side of the compressor. According to this, since the low temperature refrigerant flowing out from the expansion valve is introduced to the refrigerant suction side of the compressor, the temperature rise of the refrigerant sucked into the compressor is suppressed, so that the compressor is sufficiently cooled. Can do.
  • 1 is a schematic configuration diagram of a refrigeration cycle apparatus according to a first embodiment. It is typical sectional drawing which shows the connection site
  • the refrigeration cycle apparatus 10 of the present embodiment functions as a refrigerator that cools the blown air that is blown into a freezer that is a space to be cooled until it reaches an extremely low temperature of about -30 ° C to -10 ° C.
  • the refrigeration cycle apparatus 10 constitutes a vapor compression refrigeration cycle.
  • the refrigeration cycle apparatus 10 includes a compressor 12 that compresses and discharges a refrigerant.
  • the compressor 12 is configured to be driven by a rotational driving force output from an engine (not shown).
  • the compressor 12 may be configured to be driven by a rotational driving force from an electric motor.
  • a condenser 14 is connected to the refrigerant discharge side of the compressor 12.
  • the condenser 14 is a radiator that condenses the high-temperature and high-pressure gas refrigerant discharged from the compressor 12 by exchanging heat with outside air blown by an outdoor fan (not shown).
  • a receiver 16 is connected to the refrigerant outlet side of the condenser 14.
  • the receiver 16 separates the gas-liquid refrigerant flowing out of the condenser 14 and derives the liquid refrigerant.
  • the receiver 16 of the present embodiment is configured by a gas-liquid separator with a liquid storage function that stores excess liquid refrigerant in the cycle.
  • the expansion valve 18 is connected to the refrigerant
  • the expansion valve 18 is a decompression device that decompresses and expands the gas refrigerant flowing out from the receiver 16.
  • the expansion valve 18 is composed of an electromagnetic valve whose valve opening can be adjusted in accordance with a control signal from a control device 50 described later.
  • the expansion valve 18 is controlled by the control device 50 so that the degree of superheat on the refrigerant outlet side of the evaporator 20 becomes a predetermined value.
  • the expansion valve 18 has, for example, a temperature sensing part arranged on the refrigerant outlet side of the evaporator 20, and the valve opening degree is adjusted so that the degree of superheat on the refrigerant outlet side of the evaporator 20 becomes a predetermined value.
  • a mechanical expansion valve may be used.
  • An evaporator 20 is connected to the refrigerant outlet side of the expansion valve 18.
  • the evaporator 20 is a heat absorber that evaporates the refrigerant by exchanging heat between the low-temperature and low-pressure refrigerant decompressed and expanded by the expansion valve 18 and the interior air blown by an indoor fan (not shown).
  • the internal air is cooled to a desired temperature by the endothermic action of the refrigerant in the evaporator 20.
  • the refrigerant flow downstream of the evaporator 20 is connected to the internal heat exchanger 22.
  • the internal heat exchanger 22 is a heat exchanger that exchanges heat between the high-temperature and high-pressure refrigerant flowing out from the receiver 16 and the low-temperature and low-pressure refrigerant flowing out from the evaporator 20.
  • the internal heat exchanger 22 includes a high-temperature side heat exchange unit 221 through which high-temperature and high-pressure refrigerant flowing out from the receiver 16 flows, and a low-temperature side heat exchange unit 222 through which low-temperature and low-pressure refrigerant flowing out from the evaporator 20 flows.
  • the internal heat exchanger 22 is composed of a double-pipe heat exchanger in which the high-temperature and high-pressure refrigerant flow passage covers the outside of the low-temperature and low-pressure refrigerant flow passage. Note that the internal heat exchanger 22 may be configured by a stacked heat exchanger in which high-temperature and high-pressure refrigerant flow paths and low-temperature and low-pressure refrigerant flow paths are alternately stacked.
  • the refrigerant outlet side of the low temperature side heat exchanging part 222 of the internal heat exchanger 22 is connected to the refrigerant suction side of the compressor 12.
  • the refrigerant that has flowed out of the low temperature side heat exchanging unit 222 is sucked into the compressor 12 and then compressed, and is discharged toward the refrigerant inlet side of the condenser 14.
  • the temperature of the refrigerant discharged from the compressor 12 may rise excessively during high load operation.
  • the temperature of the refrigerant discharged from the compressor 12 rises excessively, problems such as deterioration of refrigerating machine oil contained in the refrigerant easily occur. For this reason, in the refrigeration cycle apparatus 10, the compressor 12 needs to be cooled and protected.
  • the refrigeration cycle apparatus 10 includes a bypass passage portion 30 that causes the low-temperature and low-pressure refrigerant that has flowed out of the expansion valve 18 to flow around the evaporator 20 to the refrigerant suction side of the compressor 12. Yes.
  • the bypass passage portion 30 is connected to a branch portion 32 provided in the first low-pressure passage portion 24, and the other end side is connected to a junction portion 34 provided in the second low-pressure passage portion 26.
  • the first low-pressure passage portion 24 is a main refrigerant passage portion that connects the refrigerant outlet side of the expansion valve 18 and the refrigerant inlet side of the evaporator 20 in the refrigeration cycle apparatus 10.
  • the second low-pressure passage portion 26 is a downstream-side refrigerant passage portion that connects the refrigerant outlet side of the evaporator 20 and the refrigerant suction side of the compressor 12 in the refrigeration cycle apparatus 10.
  • a branch portion 32 is provided between the refrigerant outlet side of the expansion valve 18 and the refrigerant inlet side of the evaporator 20. Further, in the refrigeration cycle apparatus 10 of the present embodiment, a merging section 34 is provided between the refrigerant outlet side of the low temperature side heat exchanging section 222 of the internal heat exchanger 22 and the refrigerant suction side of the compressor 12.
  • the part connected to the branch part 32 in the bypass passage part 30 constitutes the refrigerant inflow part 320 into which the refrigerant flows, and the part connected to the junction part 34 in the bypass passage part 30 flows out of the refrigerant.
  • the refrigerant outflow part 340 is configured.
  • bypass passage 30 By the way, if the bypass passage 30 is always open, the low-temperature and low-pressure refrigerant that has flowed out of the expansion valve 18 flows into the bypass passage 30, thereby reducing the mass flow rate of the refrigerant flowing into the evaporator 20. This is not preferable because it causes a decrease in the refrigeration capacity of the refrigeration cycle apparatus 10.
  • the refrigeration cycle apparatus 10 of the present embodiment is provided with a bypass valve 36 that opens and closes the bypass passage 30 with respect to the bypass passage 30.
  • the bypass valve 36 is configured by an electromagnetic valve that is controlled to open and close in response to a control signal from a control device 50 described later.
  • the bypass valve 36 is controlled to be in an open state at the time of abnormality such that the temperature of the refrigerant discharged from the compressor 12 excessively increases. For this reason, as the bypass valve 36, it is desirable to employ a normally-closed electromagnetic valve that is closed when not energized.
  • the refrigeration cycle apparatus 10 of the present embodiment is based on the dryness of the refrigerant that has flowed out of the expansion valve 18 with respect to the bypass passage 30 in order to suppress a decrease in the refrigeration capacity when the refrigerant flows into the bypass passage 30.
  • a refrigerant having a large dryness flows in. That is, in the refrigeration cycle apparatus 10 of the present embodiment, the refrigerant inflow portion 320 has the first refrigerant inflow portion 320 such that the bypass passage 30 has a dryness greater than the dryness of the refrigerant flowing through the first low pressure passage portion 24. 1 It is connected to the low pressure passage 24.
  • the liquid-rich refrigerant flows to the evaporator 20 side rather than the bypass passage portion 30 side.
  • the liquid refrigerant has a higher density than the gas refrigerant. For this reason, the liquid refrigerant is less likely to flow in the direction against gravity, that is, the direction toward the upper side in the vertical direction DRud, as compared with the gas refrigerant.
  • the flow direction of the refrigerant flowing into the refrigerant inflow portion 320 of the bypass passage portion 30 is directed upward in the vertical direction DRud.
  • the refrigerant inflow portion 320 is connected to the first low pressure passage portion 24.
  • the bypass passage portion 30 has a flow direction F1 of the refrigerant flowing into the refrigerant inflow portion 320 that is higher in the vertical direction DRud than the flow direction F2 of the refrigerant flowing through the branch portion 32 of the first low-pressure passage portion 24. It is connected to the first low-pressure passage portion 24 so as to be close to the direction of heading.
  • the first low-pressure passage portion 24 of the present embodiment is configured such that a portion near the branch portion 32 extends along the horizontal direction DRh.
  • path part 30 of this embodiment becomes a structure where the refrigerant
  • the liquid-rich refrigerant flows toward the first low-pressure passage portion 24 and the gas-rich refrigerant easily flows into the bypass passage portion 30. That is, the refrigerant having a dryness greater than the dryness of the refrigerant flowing through the first low-pressure passage portion 24 easily flows into the bypass passage portion 30.
  • path part 24 may be the structure where the site
  • the bypass passage portion 30 may be configured to extend along a direction in which the refrigerant inflow portion 320 is slightly inclined with respect to the vertical direction DRud.
  • the refrigerant flow downstream side of the branching portion 32 in the first low-pressure passage portion 24 includes the low temperature side heat exchange portion 222 of the evaporator 20 and the internal heat exchanger 22, and therefore, compared to the bypass passage portion 30 side, The flow resistance of the refrigerant increases. For this reason, when the bypass valve 36 is controlled to be in the open state, there is a concern that the refrigerant flows excessively with respect to the bypass passage portion 30.
  • the inner diameter D1 of the bypass passage 30 is smaller than the inner diameter D2 of the first low-pressure passage 24 in order to prevent the refrigerant from flowing excessively with respect to the bypass passage 30. .
  • the length of the bypass passage portion 30 is made larger than the lengths of the first low-pressure passage portion 24 and the second low-pressure passage portion 26. Can be considered.
  • the internal diameter D1 of the bypass passage portion 30 is made smaller than the inner diameter D2 of the first low-pressure passage portion 24, thereby suppressing the refrigerant from flowing excessively with respect to the bypass passage portion 30. It is desirable that
  • the control device 50 constituting the electric control unit of the refrigeration cycle apparatus 10 will be described with reference to FIG.
  • the control device 50 includes a known microcomputer including a processor, a storage unit, and the like and peripheral circuits thereof.
  • the storage unit of the control device 50 is configured by a non-transitional tangible storage medium.
  • the control device 50 is connected to its input side with various sensors such as a discharge temperature sensor 52 that detects the temperature of the refrigerant discharged from the compressor 12.
  • the control device 50 can acquire detection signals from various sensors such as the discharge temperature sensor 52.
  • the temperature of the refrigerant discharged from the compressor 12 may be referred to as a discharge refrigerant temperature Td.
  • control device 50 is connected to various devices to be controlled such as the compressor 12, the expansion valve 18 and the bypass valve 36 on the output side.
  • the operations of various devices to be controlled such as the compressor 12, the expansion valve 18, and the bypass valve 36 are controlled according to a control signal from the control device 50.
  • the control device 50 configured as described above performs arithmetic processing on various signals input from various sensors in accordance with a program stored in the storage unit in advance, and is connected to the output side based on the result of the arithmetic processing. Control various controlled devices.
  • the control device 50 according to the present embodiment controls the operation of the bypass valve 36 according to the detection value of the discharge temperature sensor 52.
  • control device 50 includes a processing execution unit configured by hardware and software for executing various arithmetic processes, a control unit configured by hardware and software for controlling various devices to be controlled, and the like. ing.
  • a control unit configured by hardware and software for controlling various devices to be controlled, and the like.
  • an electromagnetic valve control unit 500 that controls the opening / closing operation of the bypass valve 36 is integrated.
  • control processing executed by the control device 50 of the refrigeration cycle apparatus 10 of the present embodiment will be described with reference to the flowchart of FIG.
  • the control device 50 executes the control process shown in FIG.
  • each control step of the control process shown in FIG. 3 constitutes a function realization unit that realizes various functions executed by the control device 50.
  • the control device 50 acquires various signals input from various sensors in step S10. Then, in step S20, the control device 50 determines whether or not the discharge refrigerant temperature Td detected by the discharge temperature sensor 52 has exceeded a predetermined open reference temperature Ttho.
  • the open reference temperature Ttho is set to a value close to the allowable heat-resistant temperature of various components on the high-pressure side of the refrigeration cycle apparatus 10, refrigerant, refrigeration oil, and the like.
  • control device 50 controls the bypass valve 36 to be closed so that the bypass passage 30 is closed in step S30.
  • the refrigeration cycle apparatus 10 becomes a refrigerant circuit in which the refrigerant flowing out from the expansion valve 18 does not flow into the bypass passage portion 30.
  • the compressor 12 When the compressor 12 is operated in this refrigerant circuit, the refrigerant is compressed and discharged by the compressor 12.
  • the state of the refrigerant at this time is point A1 in FIG.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 12 is condensed by exchanging heat with the outside air blown from the outdoor fan in the condenser 14. Further, the refrigerant flowing out of the condenser 14 is gas-liquid separated by the receiver 16. That is, the state of the refrigerant shifts from point A1 to point A2 in FIG.
  • the liquid refrigerant that has flowed out of the receiver 16 is further cooled by the high temperature side heat exchange section 221 of the internal heat exchanger 22 to be in a supercooled state. That is, the state of the refrigerant shifts from point A2 to point A3 in FIG.
  • the liquid refrigerant that has flowed out of the high temperature side heat exchange part 221 of the internal heat exchanger 22 is expanded under reduced pressure by the expansion valve 18, thereby becoming a gas-liquid two-phase state. That is, the state of the refrigerant shifts from point A3 to point A4 in FIG.
  • the refrigerant that has flowed out of the expansion valve 18 flows into the evaporator 20 through the first low-pressure passage 24 because the bypass passage 30 is closed by the bypass valve 36.
  • coolant which flowed into the evaporator 20 absorbs heat from the internal air blown from an indoor fan, evaporates, and will be in a gaseous-phase state. That is, the state of the refrigerant shifts from point A4 to point A5 in FIG.
  • the temperature of the refrigerant that has flowed out of the evaporator 20 rises due to heat exchange with the refrigerant flowing through the high temperature side heat exchange unit 221 at the low temperature side heat exchange unit 222 of the internal heat exchanger 22. That is, the state of the refrigerant shifts from point A5 to point A6 in FIG.
  • the refrigerant that has flowed out from the low temperature side heat exchanging section 222 of the internal heat exchanger 22 is sucked into the compressor 12 and compressed again. That is, the state of the refrigerant shifts from point A6 in FIG. 4 to point A1.
  • the refrigeration cycle apparatus 10 cools the internal air by the refrigerant exhibiting an endothermic effect in the evaporator 20.
  • control device 50 opens the bypass valve 36 so that the bypass passage 30 is opened in step S40. Control to the state.
  • the refrigeration cycle apparatus 10 becomes a refrigerant circuit in which a part of the refrigerant flowing out from the expansion valve 18 flows into the bypass passage portion 30.
  • the compressor 12 is operated in this refrigerant circuit, the refrigerant is compressed and discharged by the compressor 12.
  • the state of the refrigerant at this time is point B1 in FIG.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 12 is condensed by exchanging heat with the outside air blown from the outdoor fan in the condenser 14. Further, the refrigerant flowing out of the condenser 14 is gas-liquid separated by the receiver 16. That is, the state of the refrigerant shifts from point B1 to point B2 in FIG.
  • the liquid refrigerant that has flowed out of the receiver 16 is further cooled by the high temperature side heat exchange section 221 of the internal heat exchanger 22 to be in a supercooled state. That is, the state of the refrigerant shifts from point B2 to point B3 in FIG.
  • the liquid refrigerant that has flowed out of the high temperature side heat exchange part 221 of the internal heat exchanger 22 is expanded under reduced pressure by the expansion valve 18, thereby becoming a gas-liquid two-phase state. That is, the state of the refrigerant shifts from point B3 to point B4 in FIG.
  • the refrigerant flowing out of the expansion valve 18 flows into the evaporator 20 through the first low-pressure passage 24 and also into the bypass passage 30 because the bypass passage 30 is opened by the bypass valve 36.
  • the refrigerant inflow portion 320 of the bypass passage portion 30 is connected to the branch portion 32 of the first low pressure passage portion 24 so that the refrigerant having a dryness larger than the dryness of the refrigerant flowing through the first low pressure passage portion 24 flows.
  • the liquid-rich refrigerant having a lower dryness than the refrigerant flowing into the bypass passage portion 30 flows into the evaporator 20.
  • coolant which flowed into the evaporator 20 absorbs heat from the internal air blown from an indoor fan, evaporates, and will be in a gaseous-phase state. That is, the state of the refrigerant shifts from point B4 to point B5 in FIG.
  • the temperature of the refrigerant that has flowed out of the evaporator 20 rises due to heat exchange with the refrigerant flowing through the high temperature side heat exchange unit 221 at the low temperature side heat exchange unit 222 of the internal heat exchanger 22. That is, the state of the refrigerant shifts from point B5 to point B6 in FIG.
  • the refrigerant that has flowed out from the low temperature side heat exchanging part 222 of the internal heat exchanger 22 joins the refrigerant that flows through the bypass passage part 30 at the joining part 34.
  • the refrigerant flowing through the bypass passage portion 30 receives almost no heat from the outside, and thus has a lower temperature than the refrigerant that flows out from the low temperature side heat exchange portion 222 of the internal heat exchanger 22.
  • the refrigerant that has flowed out of the low-temperature side heat exchanging part 222 of the internal heat exchanger 22 is merged with the refrigerant that flows through the bypass passage part 30 at the joining part 34, so that the temperature is lowered.
  • the refrigerant when the discharged refrigerant temperature Td is higher than the open reference temperature Ttho, the refrigerant exerts an endothermic effect in the evaporator 20 to cool the internal air.
  • the low-temperature refrigerant that has flowed out of the expansion valve 18 flows into the refrigerant suction side of the compressor 12 through the bypass passage 30, whereby the compressor 12 is cooled. Thereby, the temperature of the refrigerant
  • the control device 50 determines whether or not the discharged refrigerant temperature Td is higher than a predetermined closing reference temperature Tthc in step S50.
  • the closing reference temperature Tthc is set to a temperature lower than the opening reference temperature Ttho by a predetermined temperature ⁇ .
  • the predetermined temperature ⁇ is a hysteresis width for preventing hunting of opening and closing of the bypass valve 36.
  • the control device 50 If the discharged refrigerant temperature Td exceeds the closing reference temperature Tthc, the control device 50 maintains the bypass valve 36 in the open state in step S40. On the other hand, when the discharged refrigerant temperature Td is equal to or lower than the closing reference temperature Tthc, the control device 50 controls the bypass valve 36 to be closed so that the bypass passage 30 is closed in step S60.
  • the refrigeration cycle apparatus 10 of the present embodiment described above is provided with the bypass passage portion 30 for flowing the refrigerant flowing out from the expansion valve 18 to the refrigerant suction side of the compressor 12 and the bypass valve 36 for opening and closing the bypass passage portion 30.
  • the refrigeration cycle apparatus 10 is configured such that the bypass valve 36 is controlled to be opened by the control device 50 when the discharged refrigerant temperature Td exceeds the open reference temperature Ttho.
  • bypass passage 30 is connected to a portion of the refrigerant outlet side of the expansion valve 18 and the refrigerant suction side of the compressor 12 that are relatively close to each other, the pressure of the refrigerant is reduced with respect to the bypass passage 30. A decompression mechanism becomes unnecessary.
  • the refrigeration cycle apparatus 10 capable of suppressing the temperature rise of the refrigerant discharged from the compressor 12 can be realized with a compact configuration.
  • the refrigeration cycle apparatus 10 of the present embodiment includes an internal heat exchanger 22 that exchanges heat between the refrigerant flowing out of the condenser 14 and the refrigerant flowing out of the evaporator 20.
  • the refrigerant inflow portion 320 is provided between the refrigerant outlet side of the expansion valve 18 and the refrigerant inlet side of the evaporator 20, and the refrigerant outflow portion 340 is in the low temperature side heat exchange of the internal heat exchanger 22. It is provided between the refrigerant outlet side of the section 222 and the refrigerant suction side of the compressor 12.
  • the enthalpy on the refrigerant outlet side of the condenser 14 is reduced, and the enthalpy difference ⁇ i between the refrigerant outlet side and the refrigerant inlet side of the evaporator 20 is increased. Improvements can be made.
  • the refrigerant outflow portion 340 of the bypass passage portion 30 is connected between the refrigerant outlet side of the low temperature side heat exchange unit 222 and the refrigerant suction side of the compressor 12. Yes. According to this, since the low-temperature refrigerant that has flowed out of the expansion valve 18 is introduced to the refrigerant suction side of the compressor 12, an increase in the temperature of the refrigerant sucked into the compressor 12 is suppressed. Can be cooled to.
  • the refrigeration cycle apparatus 10 capable of suppressing the decrease in the refrigeration capacity when suppressing the temperature rise of the refrigerant discharged from the compressor 12 can be realized with a compact configuration.
  • the refrigerant inflow portion 320 enters the first low pressure passage portion 24 so that the refrigerant having a dryness greater than the dryness of the refrigerant flowing through the first low pressure passage portion 24 flows. It is connected.
  • a refrigerant having a high dryness that does not contribute much to the heat absorption capability of the evaporator 20 flows into the bypass passage portion 30, whereby a liquid-rich refrigerant flows to the evaporator 20.
  • a liquid-rich refrigerant has a smaller pressure loss than a refrigerant having a high degree of dryness, so that the pressure loss in the evaporator 20 is suppressed.
  • the pressure loss in the evaporator 20 is suppressed, the pressure on the refrigerant outlet side of the evaporator 20 increases, and a high-density refrigerant flows on the refrigerant suction side of the compressor 12.
  • the refrigerating capacity is improved as compared with the configuration in which the refrigerant having a low dryness flows through the bypass passage portion 30.
  • the bypass passage 30 is configured such that the flow direction of the refrigerant flowing into the refrigerant inflow portion 320 is higher in the vertical direction DRud than the flow direction of the refrigerant flowing through the branch portion 32 of the first low-pressure passage portion 24. It is connected to the first low-pressure passage 24 so as to be close to the direction toward In this way, by devising a connection mode between the bypass passage 30 and the first low-pressure passage 24, it is possible to flow a refrigerant with a high degree of dryness through the bypass passage. This greatly contributes to downsizing of the refrigeration cycle apparatus 10.
  • Liquid refrigerant has a higher density than gas refrigerant. For this reason, liquid refrigerant tends to go straight ahead by inertial force compared to gas refrigerant.
  • the liquid refrigerant is an outer wall portion having a large curvature radius in the bending passage portion 240. It becomes easy to flow to 240a.
  • the gas refrigerant easily flows to the inner wall portion 240b having a smaller radius of curvature than the outer wall portion 240a in the bending passage portion 240.
  • the refrigerant inflow portion 320 of the bypass passage portion 30 has an inner wall having a smaller radius of curvature than the outer wall portion 240 a on the refrigerant outlet side of the bending passage portion 240. It is connected to a portion that continues to the portion 240b.
  • the gas-liquid two-phase refrigerant that has flowed out of the expansion valve 18 is liable to flow into the first low-pressure passage 24 and the gas-rich refrigerant into the bypass passage 30.
  • the refrigerating capacity is improved as compared with the configuration in which the refrigerant having a low dryness flows through the bypass passage portion 30 as in the first embodiment.
  • an accumulator 28 is provided between the refrigerant outlet side of the low temperature side heat exchanging unit 222 of the internal heat exchanger 22 and the refrigerant suction side of the compressor 12. Is provided.
  • the accumulator 28 separates the gas-liquid refrigerant flowing out from the low temperature side heat exchanging section 222 of the internal heat exchanger 22 and causes the gas refrigerant to flow out to the refrigerant suction side of the compressor 12.
  • the accumulator 28 according to the present embodiment is composed of a gas-liquid separator with a liquid storage function for storing a liquid refrigerant that becomes excessive in the cycle.
  • a merging portion 34 is provided on the refrigerant inlet side of the accumulator 28 in the second low-pressure passage portion 26.
  • the refrigerant outflow portion 340 of the bypass passage portion 30 is connected to the junction portion 34. That is, in the bypass passage portion 30 of the present embodiment, the refrigerant outflow portion 340 is connected between the refrigerant outlet side of the low temperature side heat exchanging portion 222 of the internal heat exchanger 22 and the refrigerant inlet side of the accumulator 28.
  • refrigeration cycle apparatus 10 of the present embodiment are the same as those of the first embodiment.
  • the refrigeration cycle apparatus 10 of the present embodiment can obtain the same effects as those of the first embodiment with the same configuration as that of the first embodiment.
  • the bypass passage portion 30 is connected to the refrigerant inlet side of the accumulator 28.
  • the refrigerant outflow portion 340 of the bypass passage 30 is connected to the refrigerant inlet side of the accumulator 28, liquid refrigerant is prevented from being sucked into the compressor 12 (so-called liquid back). Can do.
  • the present embodiment is different from the first embodiment in that the internal heat exchanger 22 in the refrigeration cycle apparatus 10 is abolished and in that the expansion valve 18 is formed of a temperature-sensitive expansion valve.
  • the present embodiment portions that are different from the first embodiment will be mainly described, and description of portions that are similar to the first embodiment may be omitted.
  • the internal heat exchanger 22 is abolished in the refrigeration cycle apparatus 10 of the present embodiment. That is, the refrigeration cycle apparatus 10 is configured such that the refrigerant outlet side of the expansion valve 18 is connected to the refrigerant inlet side of the evaporator 20, and the refrigerant outlet side of the evaporator 20 is connected to the refrigerant suction side of the compressor 12.
  • the expansion valve 18 is not a solenoid valve but a temperature-sensitive expansion valve.
  • the expansion valve 18 of the present embodiment includes a valve mechanism 181 that decompresses and expands the refrigerant that has flowed out of the condenser 14, and a temperature sensing unit 182 that detects the degree of superheat of the refrigerant on the refrigerant outlet side of the evaporator 20. have.
  • the expansion valve 18 of this embodiment is comprised so that the valve opening degree of the valve mechanism 181 may be adjusted so that the superheat degree of the refrigerant
  • a branch portion 32 is provided between the refrigerant outlet side of the expansion valve 18 and the refrigerant inlet side of the evaporator 20, and the refrigerant outlet side of the evaporator 20 and the compressor 12.
  • a junction 34 is provided between the refrigerant suction side. The junction 34 is located downstream of the refrigerant flow in the second low-pressure passage 26 between the refrigerant outlet side of the evaporator 20 and the refrigerant suction side of the compressor 12 with respect to the location where the temperature sensing part 182 of the expansion valve 18 is installed. Is provided.
  • the bypass passage portion 30 of the present embodiment has one end side connected to a branch portion 32 provided in the first low-pressure passage portion 24 and the other end side connected to a junction portion 34 provided in the second low-pressure passage portion 26. .
  • the refrigerant flowing out of the evaporator 20 and the refrigerant flowing through the bypass passage portion 30 are on the downstream side of the refrigerant flow with respect to the installation location of the temperature sensing portion 182 in the second low-pressure passage portion 26. It is configured to be mixed in.
  • refrigeration cycle apparatus 10 of the present embodiment are the same as those of the first embodiment.
  • the refrigeration cycle apparatus 10 of the present embodiment can obtain the same effects as those of the first embodiment with the same configuration as that of the first embodiment.
  • the refrigerant that has flowed out of the evaporator 20 and the refrigerant that flows through the bypass passage 30 are mixed on the upstream side of the refrigerant flow with respect to the location where the temperature sensing unit 182 is installed in the second low-pressure passage 26. It is also possible to adopt a configuration.
  • the temperature sensing unit 182 detects the degree of superheat of the refrigerant after the refrigerant flowing out of the evaporator 20 and the refrigerant flowing through the bypass passage 30 are mixed.
  • the valve opening degree of the valve mechanism 181 of the expansion valve 18 is adjusted so that the superheat degree of the refrigerant sucked into the compressor 12 becomes a predetermined value, the refrigerant sucked into the compressor 12 It is difficult to lower the temperature.
  • the refrigerant flowing out of the evaporator 20 and the refrigerant flowing through the bypass passage 30 flow in the second low-pressure passage 26 more than the place where the temperature sensing unit 182 is installed. It is configured to be mixed on the downstream side. In such a configuration, the temperature sensing unit 182 detects the degree of superheat of the refrigerant before the refrigerant flowing out of the evaporator 20 and the refrigerant flowing through the bypass passage 30 are mixed.
  • the refrigerant after the superheat degree is adjusted to a predetermined value on the refrigerant outlet side of the evaporator 20 is mixed with the refrigerant flowing through the bypass passage 30, so that the temperature of the refrigerant sucked into the compressor 12 is lowered. be able to.
  • the temperature rise of the compressor 12 can be suppressed as compared with the configuration in which the merging portion 34 is installed on the upstream side of the refrigerant flow of the temperature sensing portion 182 of the expansion valve 18. .
  • the refrigeration cycle apparatus 10 shown in the above-described third embodiment may be configured to include the internal heat exchanger 22 as in the first embodiment.
  • the temperature sensing part 182 of the expansion valve 18 may be installed, for example, between the refrigerant outlet side of the evaporator 20 and the refrigerant inlet side of the low temperature side heat exchange part 222.
  • the refrigeration cycle apparatus 10 desirably includes an internal heat exchanger 22 that exchanges heat between the refrigerant flowing out of the condenser 14 and the refrigerant flowing out of the evaporator 20.
  • an internal heat exchanger 22 that exchanges heat between the refrigerant flowing out of the condenser 14 and the refrigerant flowing out of the evaporator 20.
  • the refrigeration cycle apparatus 10 may be configured not to include the internal heat exchanger 22, for example.
  • the bypass passage portion 30 has the refrigerant inflow portion 320 formed of the first low pressure passage portion so that the refrigerant having a dryness larger than the dryness of the refrigerant flowing into the first low pressure passage portion 24 flows.
  • the present invention is not limited to this.
  • the refrigerant inflow portion 320 is connected to the first low pressure passage portion 24 so that the refrigerant having a dryness equal to or smaller than the dryness of the refrigerant flowing through the first low pressure passage portion 24 flows. It may be configured.
  • the refrigeration cycle apparatus 10 of the present disclosure can be applied to various devices such as a vehicle air conditioner that air-conditions a vehicle interior, an air conditioner that air-conditions a house interior, and a hot water supply device that generates hot water.
  • the refrigeration cycle apparatus is configured so that when the temperature of the refrigerant discharged from the compressor exceeds the open reference temperature, the bypass passage portion is used.
  • the low-temperature refrigerant flowing out from the expansion valve is introduced to the refrigerant suction side of the compressor.
  • the refrigeration cycle apparatus includes a valve mechanism in which the expansion valve decompresses and expands the refrigerant flowing out of the condenser, and a temperature sensing unit for detecting the degree of superheat of the refrigerant on the refrigerant outlet side of the evaporator.
  • the expansion valve is configured such that the valve opening degree of the valve mechanism is adjusted so that the degree of superheat of the refrigerant on the refrigerant outlet side of the evaporator becomes a predetermined value.
  • the bypass passage portion is provided with a refrigerant inflow portion into which the refrigerant flows in between the refrigerant outlet side of the expansion valve and the refrigerant inlet side of the evaporator, and the refrigerant outflow portion through which the refrigerant flows out is the location where the temperature sensing unit is installed. And the refrigerant suction side of the compressor. According to this, the temperature rise of the compressor 12 can be sufficiently suppressed.
  • the refrigeration cycle apparatus includes an internal heat exchanger that exchanges heat between the refrigerant flowing out of the condenser and the refrigerant flowing out of the evaporator.
  • the refrigerant inflow portion into which the refrigerant flows is provided between the refrigerant outlet side of the expansion valve and the refrigerant inlet side of the evaporator, and the refrigerant outflow portion from which the refrigerant flows out of the low temperature side heat exchange portion It is provided between the refrigerant outlet side and the refrigerant suction side of the compressor.
  • the refrigeration cycle apparatus includes an accumulator that separates the gas-liquid refrigerant before being sucked into the compressor and causes the gas refrigerant to flow out to the refrigerant suction side of the compressor.
  • the refrigerant outflow portion from which the refrigerant flows out is connected to the refrigerant inlet side of the accumulator.
  • the refrigeration cycle apparatus includes a main refrigerant passage portion that connects the refrigerant outlet side of the expansion valve and the refrigerant inlet side of the evaporator.
  • the refrigerant inflow portion into which the refrigerant flows is connected to the main refrigerant passage portion so that the refrigerant having a dryness larger than the dryness of the refrigerant flowing in the main refrigerant passage portion flows in.
  • a refrigerant with a high dryness that does not contribute much to the heat absorption capability of the evaporator flows into the bypass passage portion, so that a liquid-rich refrigerant flows to the evaporator. Since the liquid rich refrigerant has a smaller pressure loss than a refrigerant having a high dryness, the pressure loss in the evaporator is suppressed. When the pressure loss in the evaporator is suppressed, the pressure on the refrigerant outlet side of the evaporator increases, and a high-density refrigerant flows on the refrigerant suction side of the compressor.
  • the mass flow rate of the refrigerant flowing into the evaporator increases, the refrigerating capacity is improved as compared with the configuration in which the refrigerant having a low dryness flows in the bypass passage portion.
  • the mass flow rate is defined as the mass of the refrigerant that passes through a predetermined surface per unit time.
  • the bypass passage portion of the refrigeration cycle apparatus is such that the flow direction of the refrigerant flowing into the refrigerant inflow portion is higher in the vertical direction than the flow direction of the refrigerant flowing through the main refrigerant passage portion. It is connected to the main refrigerant passage part so that it may become near to the direction which goes to.
  • the refrigerant inflow portion of the bypass passage portion is connected to the main refrigerant passage so that the flow direction of the refrigerant flowing into the refrigerant inflow portion of the bypass passage portion is directed upward in the vertical direction.
  • the refrigeration cycle apparatus is configured such that the main refrigerant passage portion includes a bending passage portion that changes the flow direction of the refrigerant.
  • the bypass passage portion is connected to a portion where the refrigerant inflow portion continues to the inner wall portion having a smaller radius of curvature than the outer wall portion on the refrigerant outlet side of the bending passage portion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

冷凍サイクル装置(10)は、冷媒を圧縮して吐出する圧縮機(12)と、圧縮機から吐出された冷媒を凝縮させる凝縮器(14)と、凝縮器から流出した冷媒を膨張させる膨張弁(18)と、膨張弁から流出した冷媒を蒸発させる蒸発器(20)と、を備える。また、冷凍サイクル装置は、膨張弁から流出した冷媒を、蒸発器を迂回して圧縮機の冷媒吸入側に流すバイパス通路部と、バイパス通路部を開閉する電磁弁と、を備える。さらに、冷凍サイクル装置は、圧縮機から吐出された冷媒の温度が、所定の開放基準温度を上回った際に、バイパス通路部が開放されるように電磁弁を制御する電磁弁制御部(500)を備える。

Description

冷凍サイクル装置 関連出願への相互参照
 本出願は、2017年3月17日に出願された日本出願番号2017-53144号に基づくものであって、ここにその記載内容を援用する。
 本開示は、蒸気圧縮式の冷凍サイクル装置に関する。
 従来、冷凍サイクル装置としては、凝縮器を通過した後の液冷媒の一部を圧縮機の冷媒吸入側に導入して、圧縮機から吐出された冷媒の吐出温度の過度な上昇を抑制するものが知られている(例えば、特許文献1参照)。
特開2014-102051号公報
 しかしながら、特許文献1の如く、冷凍サイクル装置において、圧力の高い凝縮器の冷媒出口側から液冷媒の一部を圧力の低い圧縮機の冷媒吸入側に導入する場合、凝縮器の冷媒出口側から圧縮機の冷媒吸入側に冷媒を導くバイパス回路に減圧機構が必須となる。特許文献1では、バイパス回路に配置する減圧機構として、キャピラリチューブを採用しているが、凝縮器の冷媒出口側と圧縮機の冷媒吸入側との圧力差が大きいため、キャピラリチューブの長さが大きくなってしまう。このことは、冷凍サイクル装置のコンパクト化を妨げる要因となることから好ましくない。
 本開示は、コンパクトな構成で、圧縮機から吐出された冷媒の温度上昇を抑制可能な冷凍サイクル装置を提供することを目的とする。
 本開示の1つの観点によれば、冷凍サイクル装置は、
 冷媒を圧縮して吐出する圧縮機と、
 圧縮機から吐出された冷媒を凝縮させる凝縮器と、
 凝縮器から流出した冷媒を膨張させる膨張弁と、
 膨張弁から流出した冷媒を蒸発させる蒸発器と、
 膨張弁から流出した冷媒を、蒸発器を迂回して圧縮機の冷媒吸入側に流すバイパス通路部と、
 バイパス通路部を開閉する電磁弁と、
 圧縮機から吐出された冷媒の温度が、所定の開放基準温度を上回った際に、バイパス通路部が開放されるように電磁弁を制御する電磁弁制御部と、
 を備える。
 これによると、圧縮機から吐出された冷媒の温度が開放基準温度を上回った際に、バイパス通路部を介して、膨張弁から流出した低温の冷媒が圧縮機の冷媒吸入側に導入されることで、圧縮機が冷却される。これにより、圧縮機から吐出された冷媒の温度上昇が抑制される。
 さらに、バイパス通路部が、膨張弁の冷媒出口側および圧縮機の冷媒吸入側という比較的圧力の近い部位に接続されているので、バイパス通路部に対して冷媒の圧力を減圧する減圧機構が不要となる。
 従って、本開示によれば、圧縮機から吐出された冷媒の温度上昇を抑制可能な冷凍サイクル装置をコンパクトな構成で実現することができる。
 また、本開示の別の観点によれば、冷凍サイクル装置は、内部熱交換器を備える。この内部熱交換部は、凝縮器から流出した冷媒が流れる高温側熱交換部および蒸発器から流出した冷媒が流れる低温側熱交換部を有し、高温側熱交換部を流れる冷媒と低温側熱交換部を流れる冷媒とを熱交換させるように構成されている。そして、バイパス通路部は、冷媒が流入する冷媒流入部が膨張弁の冷媒出口側と蒸発器の冷媒入口側との間に設けられると共に、冷媒が流出する冷媒流出部が低温側熱交換部の冷媒出口側と圧縮機の冷媒吸入側との間に設けられている。
 このように、凝縮器から流出した冷媒と蒸発器から流出した冷媒とを熱交換させる内部熱交換器を備える構成では、凝縮器の冷媒出口側のエンタルピが減少し、蒸発器の冷媒出口側と冷媒入口側とのエンタルピ差が拡大するので冷凍能力の向上を図ることができる。
 ところが、内部熱交換器を備える構成では、低温側熱交換部から流出した冷媒の温度が上昇してしまうため、圧縮機に吸入される冷媒の温度が上昇し、圧縮機の冷却効果が低下してしまうことが懸念される。
 これに対して、本構成の冷凍サイクル装置では、バイパス通路部の冷媒流出部が低温側熱交換部の冷媒出口側と圧縮機の冷媒吸入側との間に設けられている。これによると、膨張弁から流出した低温の冷媒が圧縮機の冷媒吸入側に導入されることで、圧縮機に吸入される冷媒の温度上昇が抑制されるため、圧縮機を充分に冷却することができる。
 従って、本構成によれば、圧縮機から吐出された冷媒の温度上昇を抑える際の冷凍能力の低下を抑制可能な冷凍サイクル装置をコンパクトな構成で実現することができる。
第1実施形態に係る冷凍サイクル装置の概略構成図である。 第1実施形態に係る冷凍サイクル装置の第1低圧通路部とバイパス通路部との接続部位を示す模式的な断面図である。 第1実施形態に係る冷凍サイクル装置の制御装置が実行する制御処理の流れを示すフローチャートである。 第1実施形態に係る冷凍サイクル装置のバイパス通路部の閉鎖時における冷媒の状態を示すモリエル線図である。 第1実施形態に係る冷凍サイクル装置のバイパス通路部の開放時における冷媒の状態を示すモリエル線図である。 第1実施形態の変形例となる冷凍サイクル装置の第1低圧通路部とバイパス通路部との接続部位を示す模式的な断面図である。 第2実施形態に係る冷凍サイクル装置の概略構成図である。 第3実施形態に係る冷凍サイクル装置の概略構成図である。
 以下、本開示の実施形態について図面を参照して説明する。なお、以下の実施形態において、先行する実施形態で説明した事項と同一もしくは均等である部分には、同一の参照符号を付し、その説明を省略する場合がある。また、実施形態において、構成要素の一部だけを説明している場合、構成要素の他の部分に関しては、先行する実施形態において説明した構成要素を適用することができる。以下の実施形態は、特に組み合わせに支障が生じない範囲であれば、特に明示していない場合であっても、各実施形態同士を部分的に組み合わせることができる。
 (第1実施形態)
 本実施形態について、図1~図5を参照して説明する。本実施形態では、本開示の冷凍サイクル装置10を、トレーラ等に搭載される冷凍庫に適用した例について説明する。本実施形態の冷凍サイクル装置10は、冷却対象空間である冷凍庫内へ送風する送風空気を-30℃~-10℃程度の極低温となるまで冷却する冷凍機として機能する。冷凍サイクル装置10は、蒸気圧縮式の冷凍サイクルを構成している。
 図1に示すように、冷凍サイクル装置10は、冷媒を圧縮して吐出する圧縮機12を備えている。圧縮機12は、図示しないエンジンから出力される回転駆動力によって駆動する構成となっている。なお、圧縮機12は、電動モータから回転駆動力によって駆動する構成となっていてもよい。
 圧縮機12の冷媒吐出側には、凝縮器14が接続されている。凝縮器14は、圧縮機12から吐出された高温高圧のガス冷媒を、図示しない室外ファンによって送風される外気と熱交換させて凝縮させる放熱器である。
 凝縮器14の冷媒出口側には、レシーバ16が接続されている。レシーバ16は、凝縮器14から流出した冷媒の気液を分離し、液冷媒を導出するものである。本実施形態のレシーバ16は、サイクル内で余剰となる液冷媒を溜める液溜め機能付きの気液分離器で構成されている。
 レシーバ16の冷媒出口側には、後述する内部熱交換器22の高温側熱交換部221を介して、膨張弁18が接続されている。膨張弁18は、レシーバ16から流出したガス冷媒を減圧膨張させる減圧機器である。膨張弁18は、後述する制御装置50からの制御信号に応じて弁開度が調整可能な電磁弁で構成されている。膨張弁18は、蒸発器20の冷媒出口側の過熱度が所定値となるように制御装置50によって制御される。なお、膨張弁18は、例えば、蒸発器20の冷媒出口側に配置された感温部を有し、蒸発器20の冷媒出口側の過熱度が所定値となるように弁開度が調整される機械式の膨張弁で構成されていてもよい。
 膨張弁18の冷媒出口側には、蒸発器20が接続されている。蒸発器20は、膨張弁18で減圧膨張された低温低圧の冷媒を図示しない室内ファンによって送風される庫内空気と熱交換させて、冷媒を蒸発させる吸熱器である。庫内空気は、蒸発器20における冷媒の吸熱作用によって所望の温度まで冷却される。
 蒸発器20の冷媒流れ下流側には、内部熱交換器22に接続されている。内部熱交換器22は、レシーバ16から流出した高温高圧の冷媒と、蒸発器20から流出した低温低圧の冷媒とを熱交換させる熱交換器である。内部熱交換器22は、レシーバ16から流出した高温高圧の冷媒が流れる高温側熱交換部221、蒸発器20から流出した低温低圧の冷媒が流れる低温側熱交換部222を有している。
 内部熱交換器22は、高温高圧の冷媒の流通路が低温低圧の冷媒の流通路の外側を覆う二重管方式の熱交換器で構成されている。なお、内部熱交換器22は、高温高圧の冷媒の流通路と低温低圧の冷媒の流通路とが交互に積層された積層方式の熱交換器で構成されていてもよい。
 内部熱交換器22の低温側熱交換部222の冷媒出口側には、圧縮機12の冷媒吸入側に接続されている。低温側熱交換部222から流出した冷媒は、圧縮機12に吸入された後に圧縮され、凝縮器14の冷媒入口側に向けて吐出される。
 ところで、冷凍サイクル装置10では、例えば、高負荷運転時に、圧縮機12から吐出された冷媒の温度が過度に上昇することがある。圧縮機12から吐出された冷媒の温度が過度に上昇すると、冷媒に含まれる冷凍機油の劣化等の不具合が生じ易くなる。このため、冷凍サイクル装置10では、圧縮機12を冷却して保護する必要がある。
 これに対して、本実施形態の冷凍サイクル装置10は、膨張弁18から流出した低温低圧の冷媒を、蒸発器20を迂回して圧縮機12の冷媒吸入側に流すバイパス通路部30を備えている。
 バイパス通路部30は、一端側が第1低圧通路部24に設けられた分岐部32に接続され、他端側が第2低圧通路部26に設けられた合流部34に接続されている。なお、第1低圧通路部24は、冷凍サイクル装置10において、膨張弁18の冷媒出口側と蒸発器20の冷媒入口側とを接続する主冷媒通路部である。また、第2低圧通路部26は、冷凍サイクル装置10において、蒸発器20の冷媒出口側と圧縮機12の冷媒吸入側とを接続する下流側冷媒通路部である。
 本実施形態の冷凍サイクル装置10では、膨張弁18の冷媒出口側と蒸発器20の冷媒入口側との間に分岐部32が設けられている。また、本実施形態の冷凍サイクル装置10では、内部熱交換器22の低温側熱交換部222の冷媒出口側と圧縮機12の冷媒吸入側との間に合流部34が設けられている。
 本実施形態では、バイパス通路部30における分岐部32に接続された部位が、冷媒が流入する冷媒流入部320を構成し、バイパス通路部30における合流部34に接続された部位が、冷媒が流出する冷媒流出部340を構成している。
 ところで、バイパス通路部30が常時開放されていると、膨張弁18から流出した低温低圧の冷媒が、バイパス通路部30に流れることで、蒸発器20に流れる冷媒の質量流量が減少してしまう。このことは、冷凍サイクル装置10における冷凍能力が低下する要因となることから好ましくない。
 そこで、本実施形態の冷凍サイクル装置10には、バイパス通路部30に対してバイパス通路部30を開閉するバイパス弁36が設けられている。バイパス弁36は、後述する制御装置50からの制御信号に応じて開閉制御される電磁弁で構成されている。
 バイパス弁36は、圧縮機12から吐出された冷媒の温度が過度に上昇するといった異常時に開状態に制御されるものである。このため、バイパス弁36としては、非通電時に閉状態となるノーマルクローズ型の電磁弁を採用することが望ましい。
 また、本実施形態の冷凍サイクル装置10は、バイパス通路部30に冷媒が流れる際の冷凍能力の低下を抑制するために、バイパス通路部30に対して膨張弁18から流出した冷媒の乾き度よりも大きい乾き度となる冷媒が流入する構成となっている。すなわち、本実施形態の冷凍サイクル装置10は、バイパス通路部30が、第1低圧通路部24を流れる冷媒の乾き度よりも大きい乾き度となる冷媒が流入するように、冷媒流入部320が第1低圧通路部24に接続されている。
 ここで、冷凍サイクル装置10の冷凍能力の低下を抑制する観点では、バイパス通路部30側よりも蒸発器20側に対して、液リッチな冷媒が流れることが望ましい。液冷媒は、ガス冷媒に比べて密度が高い。このため、液冷媒は、ガス冷媒に比べて、重力に逆らう方向、すなわち、鉛直方向DRudにおける上方側に向かう方向に流れ難い。
 この点に着眼し、本実施形態では、図2に示すように、バイパス通路部30の冷媒流入部320に流入する冷媒の流れ方向が、鉛直方向DRudにおける上方側に向かう方向となるように、冷媒流入部320が第1低圧通路部24に接続されている。つまり、バイパス通路部30は、冷媒流入部320に流入する冷媒の流れ方向F1が、第1低圧通路部24の分岐部32を流れる冷媒の流れ方向F2に比べて、鉛直方向DRudにおける上方側に向かう方向に近くなるように、第1低圧通路部24に接続されている。
 より具体的には、本実施形態の第1低圧通路部24は、分岐部32付近の部位が、水平方向DRhに沿って延びる構成となっている。そして、本実施形態のバイパス通路部30は、第1低圧通路部24と直交するように、冷媒流入部320が鉛直方向DRudに沿って延びる構成となっている。
 これによると、膨張弁18から流出した気液二相状態の冷媒は、液リッチな冷媒が第1低圧通路部24側に流れ、ガスリッチな冷媒がバイパス通路部30に流れ易くなる。すなわち、バイパス通路部30には、第1低圧通路部24を流れる冷媒の乾き度よりも大きい乾き度となる冷媒が流入し易くなる。なお、第1低圧通路部24は、分岐部32付近の部位が、水平方向DRhに対して若干傾斜した方向に沿って延びる構成となっていてもよい。また、バイパス通路部30は、冷媒流入部320が鉛直方向DRudに対して若干傾斜する方向に沿って延びる構成となっていてもよい。
 ここで、第1低圧通路部24における分岐部32の冷媒流れ下流側は、蒸発器20および内部熱交換器22の低温側熱交換部222が存在するため、バイパス通路部30側に比べて、冷媒の流通抵抗が高くなる。このため、バイパス弁36が開状態に制御された際に、バイパス通路部30に対して過剰に冷媒が流れることが懸念される。
 そこで、本実施形態では、バイパス通路部30に対して過剰に冷媒が流れることを抑制するために、バイパス通路部30の内径D1が、第1低圧通路部24における内径D2よりも小さくなっている。
 なお、バイパス通路部30に対して過剰に冷媒が流れることを抑制する方法としては、バイパス通路部30の長さを第1低圧通路部24および第2低圧通路部26の長さよりも大きくすることが考えられる。
 しかしながら、バイパス通路部30の長さを大きくすることは、冷凍サイクル装置10の大型化を招く要因となる。このため、本実施形態の如く、バイパス通路部30の内径D1を第1低圧通路部24における内径D2よりも小さくすることで、バイパス通路部30に対して過剰に冷媒が流れることを抑制する構成となっていることが望ましい。
 次に、冷凍サイクル装置10の電気制御部を構成する制御装置50について、図1を参照して説明する。制御装置50は、プロセッサ、記憶部等を含む周知のマイクロコンピュータとその周辺回路から構成されている。なお、制御装置50の記憶部は、非遷移的実体的記憶媒体で構成される。
 制御装置50は、その入力側に、圧縮機12から吐出された冷媒の温度を検出する吐出温度センサ52等の各種センサが接続されている。そして、制御装置50は、吐出温度センサ52等の各種センサの検出信号を取得可能となっている。なお、説明の便宜上、以下では、圧縮機12から吐出された冷媒の温度を吐出冷媒温度Tdと呼ぶことがある。
 また、制御装置50は、その出力側に、圧縮機12、膨張弁18、バイパス弁36等の各種制御対象機器が接続されている。圧縮機12、膨張弁18、バイパス弁36等の各種制御対象機器は、制御装置50からの制御信号に応じて、その作動が制御される。
 このように構成された制御装置50は、各種センサから入力された各種信号等を、予め記憶部に記憶されたプログラムに従って演算処理し、当該演算処理の結果等に基づいて、出力側に接続された各種制御対象機器を制御する。本実施形態の制御装置50は、吐出温度センサ52の検出値に応じて、バイパス弁36の作動を制御する。
 ここで、制御装置50には、各種演算処理を実行するハードウェアおよびソフトフェアで構成される処理実行部、各種制御対象機器を制御するハードウェアおよびソフトフェアで構成される制御部等が集約されている。制御装置50には、例えば、バイパス弁36の開閉作動を制御する電磁弁制御部500が集約されている。
 次に、本実施形態の冷凍サイクル装置10の制御装置50が実行する制御処理について、図3のフローチャートを参照して説明する。制御装置50は、図示しない冷凍サイクル装置10の作動スイッチがオンされると、図3に示す制御処理を実行する。なお、図3に示す制御処理の各制御ステップは、制御装置50が実行する各種機能を実現する機能実現部を構成している。
 図3に示すように、制御装置50は、ステップS10で、各種センサから入力された各種信号を取得する。そして、制御装置50は、ステップS20で、吐出温度センサ52で検出された吐出冷媒温度Tdが、所定の開放基準温度Tthoを上回ったか否かを判定する。なお、開放基準温度Tthoは、冷凍サイクル装置10の高圧側の各種構成機器、冷媒、冷凍機油等の耐熱許容温度に近い値に設定される。
 そして、吐出冷媒温度Tdが開放基準温度Ttho以下となる場合、制御装置50は、ステップS30で、バイパス通路部30が閉鎖されるように、バイパス弁36を閉状態に制御する。
 これにより、冷凍サイクル装置10は、膨張弁18から流出した冷媒がバイパス通路部30に流れない冷媒回路となる。この冷媒回路において圧縮機12が稼働されると、圧縮機12によって冷媒が圧縮して吐出される。この時の冷媒の状態は、図4のA1点となる。
 圧縮機12から吐出された高温高圧のガス冷媒は、凝縮器14にて、室外ファンから送風された外気と熱交換して凝縮する。さらに、凝縮器14から流出した冷媒は、レシーバ16にて気液分離される。すなわち、冷媒の状態は、図4のA1点からA2点に移行する。
 レシーバ16から流出した液冷媒は、内部熱交換器22の高温側熱交換部221にて、さらに冷却されて過冷却状態となる。すなわち、冷媒の状態は、図4のA2点からA3点に移行する。
 また、内部熱交換器22の高温側熱交換部221から流出した液冷媒は、膨張弁18にて減圧膨張されることで、気液二相状態となる。すなわち、冷媒の状態は、図4のA3点からA4点に移行する。
 膨張弁18から流出した冷媒は、バイパス弁36によってバイパス通路部30が閉鎖されているので、第1低圧通路部24を介して蒸発器20に流入する。そして、蒸発器20に流入した冷媒は、室内ファンから送風される庫内空気から吸熱して蒸発し、気相状態となる。すなわち、冷媒の状態は、図4のA4点からA5点に移行する。
 蒸発器20から流出した冷媒は、内部熱交換器22の低温側熱交換部222にて高温側熱交換部221を流れる冷媒との熱交換によって温度が上昇する。すなわち、冷媒の状態は、図4のA5点からA6点に移行する。
 内部熱交換器22の低温側熱交換部222から流出した冷媒は、圧縮機12に吸入され、再び圧縮される。すなわち、冷媒の状態は、図4のA6点からA1点に移行する。
 以上の如く、吐出冷媒温度Tdが開放基準温度Ttho以下となる場合、冷凍サイクル装置10は、冷媒が蒸発器20において吸熱作用を発揮することによって、庫内空気が冷却される。
 図3に戻り、ステップS20にて、吐出冷媒温度Tdが開放基準温度Tthoを上回っている場合、制御装置50は、ステップS40で、バイパス通路部30が開放されるように、バイパス弁36を開状態に制御する。
 これにより、冷凍サイクル装置10は、膨張弁18から流出した冷媒の一部がバイパス通路部30に流れる冷媒回路となる。この冷媒回路において圧縮機12が稼働されると、圧縮機12によって冷媒が圧縮して吐出される。この時の冷媒の状態は、図5のB1点となる。
 圧縮機12から吐出された高温高圧のガス冷媒は、凝縮器14にて、室外ファンから送風された外気と熱交換して凝縮する。さらに、凝縮器14から流出した冷媒は、レシーバ16にて気液分離される。すなわち、冷媒の状態は、図5のB1点からB2点に移行する。
 レシーバ16から流出した液冷媒は、内部熱交換器22の高温側熱交換部221にて、さらに冷却されて過冷却状態となる。すなわち、冷媒の状態は、図5のB2点からB3点に移行する。
 また、内部熱交換器22の高温側熱交換部221から流出した液冷媒は、膨張弁18にて減圧膨張されることで、気液二相状態となる。すなわち、冷媒の状態は、図5のB3点からB4点に移行する。
 膨張弁18から流出した冷媒は、バイパス弁36によってバイパス通路部30が開放されているので、第1低圧通路部24を介して蒸発器20に流入すると共に、バイパス通路部30にも流入する。
 この際、バイパス通路部30の冷媒流入部320は、第1低圧通路部24を流れる冷媒の乾き度よりも乾き度の大きい冷媒が流れるように、第1低圧通路部24の分岐部32に接続されている。このため、蒸発器20には、バイパス通路部30に流入する冷媒よりも乾き度の小さい液リッチな冷媒が流入する。そして、蒸発器20に流入した冷媒は、室内ファンから送風される庫内空気から吸熱して蒸発し、気相状態となる。すなわち、冷媒の状態は、図5のB4点からB5点に移行する。
 蒸発器20から流出した冷媒は、内部熱交換器22の低温側熱交換部222にて高温側熱交換部221を流れる冷媒との熱交換によって温度が上昇する。すなわち、冷媒の状態は、図5のB5点からB6点に移行する。
 そして、内部熱交換器22の低温側熱交換部222から流出した冷媒は、合流部34にて、バイパス通路部30を流れる冷媒と合流する。この際、バイパス通路部30を流れる冷媒は、外部から殆ど受熱していないので、内部熱交換器22の低温側熱交換部222から流出した冷媒よりも低温となる。このため、内部熱交換器22の低温側熱交換部222から流出した冷媒は、合流部34にてバイパス通路部30を流れる冷媒と合流することで、その温度が低下する。すなわち、冷媒の状態は、図5のB6点からB7点に移行する。そして、合流部34から流出した冷媒は、圧縮機12に吸入され、再び圧縮される。すなわち、冷媒の状態は、図5のB7点からB1点に移行する。
 以上の如く、吐出冷媒温度Tdが開放基準温度Tthoを上回っている場合、冷媒が蒸発器20において吸熱作用を発揮することによって、庫内空気が冷却される。加えて、膨張弁18から流出した低温の冷媒がバイパス通路部30を介して圧縮機12の冷媒吸入側に流入することによって、圧縮機12が冷却される。これにより、圧縮機12から吐出される冷媒の温度が低下する。
 図3に戻り、制御装置50は、ステップS40でバイパス弁36を開状態に制御した後、ステップS50で、吐出冷媒温度Tdが、所定の閉鎖基準温度Tthcを上回っているか否かを判定する。この閉鎖基準温度Tthcは、開放基準温度Tthoよりも所定温度α低い温度に設定されている。なお、所定温度αは、バイパス弁36の開閉のハンチング防止のためのヒステリシス幅である。
 そして、吐出冷媒温度Tdが閉鎖基準温度Tthcを上回っている場合、制御装置50は、ステップS40で、バイパス弁36を開状態に維持する。一方、吐出冷媒温度Tdが閉鎖基準温度Tthc以下である場合、制御装置50は、ステップS60で、バイパス通路部30が閉鎖されるように、バイパス弁36を閉状態に制御する。
 以上説明した本実施形態の冷凍サイクル装置10は、膨張弁18から流出した冷媒を圧縮機12の冷媒吸入側に流すバイパス通路部30、バイパス通路部30を開閉するバイパス弁36が設けられている。そして、冷凍サイクル装置10は、吐出冷媒温度Tdが開放基準温度Tthoを上回った際に、制御装置50によって、バイパス弁36が開状態に制御される構成となっている。
 これによると、吐出冷媒温度Tdが開放基準温度Tthoを上回った際に、バイパス通路部30を介して、膨張弁18から流出した低温の冷媒が圧縮機12の冷媒吸入側に導入されることで、圧縮機12が冷却される。これにより、圧縮機12から吐出された冷媒の温度上昇が抑制される。
 さらに、バイパス通路部30が、膨張弁18の冷媒出口側および圧縮機12の冷媒吸入側という比較的圧力の近い部位に接続されているので、バイパス通路部30に対して冷媒の圧力を減圧する減圧機構が不要となる。
 従って、本実施形態によれば、圧縮機12から吐出された冷媒の温度上昇を抑制可能な冷凍サイクル装置10をコンパクトな構成で実現することができる。
 本実施形態の冷凍サイクル装置10は、凝縮器14から流出した冷媒と蒸発器20から流出した冷媒とを熱交換させる内部熱交換器22を備えている。そして、バイパス通路部30は、冷媒流入部320が膨張弁18の冷媒出口側と蒸発器20の冷媒入口側との間に設けられ、冷媒流出部340が内部熱交換器22の低温側熱交換部222の冷媒出口側と圧縮機12の冷媒吸入側との間に設けられている。
 このように、内部熱交換器22を備える構成では、凝縮器14の冷媒出口側のエンタルピが減少し、蒸発器20の冷媒出口側と冷媒入口側とのエンタルピ差Δiが拡大するので冷凍能力の向上を図ることができる。
 ところが、単に内部熱交換器22を備える構成では、低温側熱交換部222から流出した冷媒の温度が上昇してしまうため、圧縮機12に吸入される冷媒の温度が上昇し、圧縮機12の冷却効果が低下してしまうことが懸念される。
 これに対して、本実施形態の冷凍サイクル装置10では、バイパス通路部30の冷媒流出部340が低温側熱交換部222の冷媒出口側と圧縮機12の冷媒吸入側との間に接続されている。これによると、膨張弁18から流出した低温の冷媒が圧縮機12の冷媒吸入側に導入されることで、圧縮機12に吸入される冷媒の温度上昇が抑制されるため、圧縮機12を充分に冷却することができる。
 従って、本実施形態によれば、圧縮機12から吐出された冷媒の温度上昇を抑える際の冷凍能力の低下を抑制可能な冷凍サイクル装置10をコンパクトな構成で実現することができる。
 さらに、本実施形態のバイパス通路部30は、第1低圧通路部24に流れる冷媒の乾き度よりも大きい乾き度となる冷媒が流入するように、冷媒流入部320が第1低圧通路部24に接続されている。
 これによると、蒸発器20における吸熱能力にあまり寄与しない乾き度の大きい冷媒がバイパス通路部30に流れることで、蒸発器20に対して液リッチな冷媒が流れる。液リッチな冷媒は、乾き度の大きい冷媒に比べて圧力損失が小さいため、蒸発器20における圧力損失が抑制される。蒸発器20における圧力損失が抑制されると、蒸発器20の冷媒出口側の圧力が高くなり、圧縮機12の冷媒吸入側に密度の高い冷媒が流れる。この結果、蒸発器20に流入する冷媒の質量流量が増加するので、バイパス通路部30に乾き度の小さい冷媒が流れる構成に比べて、冷凍能力が向上する。
 具体的には、バイパス通路部30は、冷媒流入部320に流入する冷媒の流れ方向が、第1低圧通路部24の分岐部32を流れる冷媒の流れ方向に比べて、鉛直方向DRudにおける上方側に向かう方向に近くなるように、第1低圧通路部24に接続されている。このように、バイパス通路部30と第1低圧通路部24との接続態様を工夫することで、バイパス通路部部に乾き度の大きい冷媒を流すことが可能となる。このことは、冷凍サイクル装置10のコンパクト化に大きく寄与する。
 (第1実施形態の変形例)
 上述の第1実施形態では、冷媒流入部320に流入する冷媒の流れ方向が、鉛直方向DRudにおける上方側に向かう方向となるように、バイパス通路部30を第1低圧通路部24に接続する例について説明したが、これに限定されない。
 液冷媒は、ガス冷媒に比べて密度が高い。このため、液冷媒は、ガス冷媒に比べて、慣性力によって直進し易い傾向がある。例えば、図6に示すように、第1低圧通路部24に冷媒の流れ方向を転向させる曲げ通路部240が含まれている場合、液冷媒は、曲げ通路部240における曲率半径が大きい外側壁部240aに流れ易くなる。逆に、ガス冷媒は、曲げ通路部240における外側壁部240aよりも曲率半径が小さい内側壁部240bに流れ易くなる。
 この点に着眼し、本変形例では、図6に示すように、バイパス通路部30の冷媒流入部320が、曲げ通路部240の冷媒出口側における外側壁部240aよりも曲率半径が小さい内側壁部240bに連なる部位に接続されている。
 これによっても、膨張弁18から流出した気液二相状態の冷媒は、液リッチな冷媒が第1低圧通路部24側に流れ、ガスリッチな冷媒がバイパス通路部30に流れ易くなる。このため、本変形例の構成によれば、第1実施形態と同様に、バイパス通路部30に乾き度の小さい冷媒が流れる構成に比べて、冷凍能力が向上する。
 (第2実施形態)
 次に、第2実施形態について、図7を参照して説明する。本実施形態では、冷凍サイクル装置10に対してアキュムレータ28が追加されている点が第1実施形態と相違している。
 図7に示すように、本実施形態の冷凍サイクル装置10には、内部熱交換器22の低温側熱交換部222の冷媒出口側と圧縮機12の冷媒吸入側との間に、アキュムレータ28が設けられている。アキュムレータ28は、内部熱交換器22の低温側熱交換部222から流出した冷媒の気液を分離して、ガス冷媒を圧縮機12の冷媒吸入側に流出させるものである。本実施形態のアキュムレータ28は、サイクル内で余剰となる液冷媒を溜める液溜め機能付きの気液分離器で構成されている。
 また、本実施形態の冷凍サイクル装置10は、第2低圧通路部26におけるアキュムレータ28の冷媒入口側に合流部34が設けられている。そして、合流部34に対してバイパス通路部30の冷媒流出部340が接続されている。すなわち、本実施形態のバイパス通路部30は、冷媒流出部340が、内部熱交換器22の低温側熱交換部222の冷媒出口側とアキュムレータ28の冷媒入口側との間に接続されている。
 本実施形態の冷凍サイクル装置10の他の構成は、第1実施形態と同様である。本実施形態の冷凍サイクル装置10は、第1実施形態と共通の構成から奏される作用効果を第1実施形態と同様に得ることができる。
 特に、本実施形態の冷凍サイクル装置10は、バイパス通路部30が、アキュムレータ28の冷媒入口側に接続されている。このように、バイパス通路部30の冷媒流出部340をアキュムレータ28の冷媒入口側に接続する構成とすれば、圧縮機12に液冷媒が吸入されてしまうこと(いわゆる、液バック)を防止することができる。
 (第3実施形態)
 次に、第3実施形態について、図8を参照して説明する。本実施形態では、冷凍サイクル装置10における内部熱交換器22が廃止されている点、および膨張弁18が感温式膨張弁で構成されている点が第1実施形態と相違している。本実施形態では、第1実施形態と相違している部分について主に説明し、第1実施形態と同様の部分について説明を省略することがある。
 図8に示すように、本実施形態の冷凍サイクル装置10は、内部熱交換器22が廃止されている。すなわち、冷凍サイクル装置10は、膨張弁18の冷媒出口側が蒸発器20の冷媒入口側に接続され、蒸発器20の冷媒出口側が圧縮機12の冷媒吸入側に接続される構成になっている。
 また、本実施形態の冷凍サイクル装置10は、膨張弁18が電磁弁ではなく、感温式膨張弁で構成されている。具体的には、本実施形態の膨張弁18は、凝縮器14から流出した冷媒を減圧膨張させる弁機構181、蒸発器20の冷媒出口側における冷媒の過熱度を検知するための感温部182を有している。そして、本実施形態の膨張弁18は、感温部182で検知された冷媒の過熱度が所定値に近づくように弁機構181の弁開度が調整されるように構成されている。
 さらに、本実施形態の冷凍サイクル装置10は、膨張弁18の冷媒出口側と蒸発器20の冷媒入口側との間に分岐部32が設けられ、蒸発器20の冷媒出口側と圧縮機12の冷媒吸入側との間に合流部34が設けられている。この合流部34は、蒸発器20の冷媒出口側と圧縮機12の冷媒吸入側との間の第2低圧通路部26において、膨張弁18の感温部182の設置箇所よりも冷媒流れ下流側に設けられている。
 本実施形態のバイパス通路部30は、一端側が第1低圧通路部24に設けられた分岐部32に接続され、他端側が第2低圧通路部26に設けられた合流部34に接続されている。これにより、本実施形態の冷凍サイクル装置10は、蒸発器20から流出した冷媒とバイパス通路部30を流れる冷媒とが第2低圧通路部26における感温部182の設置箇所よりも冷媒流れ下流側で混合される構成になっている。
 本実施形態の冷凍サイクル装置10の他の構成は、第1実施形態と同様である。本実施形態の冷凍サイクル装置10は、第1実施形態と共通の構成から奏される作用効果を第1実施形態と同様に得ることができる。
 ここで、冷凍サイクル装置10としては、蒸発器20から流出した冷媒とバイパス通路部30を流れる冷媒とが第2低圧通路部26における感温部182の設置箇所よりも冷媒流れ上流側で混合される構成とすることも可能である。
 ところが、このような構成では、蒸発器20から流出した冷媒とバイパス通路部30を流れる冷媒とが混合された後の冷媒の過熱度が感温部182で検知されることになる。この場合、圧縮機12に吸入される冷媒の過熱度が所定値となるように膨張弁18の弁機構181の弁開度が小さくなるように調整されるので、圧縮機12に吸入される冷媒の温度を低下させることが難しい。
 これに対して、本実施形態の冷凍サイクル装置10は、蒸発器20から流出した冷媒とバイパス通路部30を流れる冷媒とが第2低圧通路部26における感温部182の設置箇所よりも冷媒流れ下流側で混合される構成になっている。このような構成では、蒸発器20から流出した冷媒とバイパス通路部30を流れる冷媒とが混合される前の冷媒の過熱度が感温部182で検知されることになる。この場合、蒸発器20の冷媒出口側において過熱度が所定値に調整された後の冷媒がバイパス通路部30を流れる冷媒と混合されるので、圧縮機12に吸入される冷媒の温度を低下させることができる。このため、本実施形態の冷凍サイクル装置10では、合流部34を膨張弁18の感温部182の冷媒流れ上流側に設置する構成に比べて、圧縮機12の温度上昇を抑制することができる。
 (第3実施形態の変形例)
 上述の第3実施形態では、内部熱交換器22が廃止された例について説明したが、これに限定されない。上述の第3実施形態に示す冷凍サイクル装置10は、第1実施形態と同様に内部熱交換器22を備える構成になっていてもよい。この場合、膨張弁18の感温部182については、例えば、蒸発器20の冷媒出口側と低温側熱交換部222の冷媒入口側との間に設置すればよい。
 (他の実施形態)
 以上、本開示の代表的な実施形態について説明したが、本開示は、上述の実施形態に限定されることなく、例えば、以下のように種々変形可能である。
 上述の各実施形態の如く、冷凍サイクル装置10は、凝縮器14から流出した冷媒と蒸発器20から流出した冷媒とを熱交換させる内部熱交換器22を備える構成となっていることが望ましいが、これに限定されない。冷凍サイクル装置10は、例えば、内部熱交換器22を備えない構成となっていてもよい。
 上述の各実施形態の如く、バイパス通路部30は、第1低圧通路部24に流れる冷媒の乾き度よりも大きい乾き度となる冷媒が流入するように、冷媒流入部320が第1低圧通路部24に接続される構成となっていることが望ましいが、これに限定されない。バイパス通路部30は、例えば、第1低圧通路部24に流れる冷媒の乾き度と同等または小さい乾き度となる冷媒が流入するように、冷媒流入部320が第1低圧通路部24に接続される構成となっていてもよい。
 上述の各実施形態では、本開示の冷凍サイクル装置10を、トレーラ等に搭載される冷凍庫に適用する例について説明したが、これに限定されない。本開示の冷凍サイクル装置10は、例えば、車室内を空調する車両用空調装置、家屋の室内を空調する空調装置、温水を生成する給湯装置等の様々な装置に適用可能である。
 上述の実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。
 上述の実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されない。
 上述の実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されない。
 (まとめ)
 上述の実施形態の一部または全部で示された第1の観点によれば、冷凍サイクル装置は、圧縮機から吐出された冷媒の温度が開放基準温度を上回った際に、バイパス通路部を介して膨張弁から流出した低温の冷媒が圧縮機の冷媒吸入側に導入される構成となっている。
 また、第2の観点によれば、冷凍サイクル装置は、膨張弁が凝縮器から流出した冷媒を減圧膨張させる弁機構、蒸発器の冷媒出口側における冷媒の過熱度を検知するための感温部を有している。膨張弁は、蒸発器の冷媒出口側における冷媒の過熱度が所定値となるように弁機構の弁開度が調整されるように構成されている。そして、バイパス通路部は、冷媒が流入する冷媒流入部が膨張弁の冷媒出口側と蒸発器の冷媒入口側との間に設けられると共に、冷媒が流出する冷媒流出部が感温部の設置箇所と圧縮機の冷媒吸入側との間に設けられている。これによれば、圧縮機12の温度上昇を充分に抑制することができる。
 また、第3の観点によれば、冷凍サイクル装置は、凝縮器から流出した冷媒と蒸発器から流出した冷媒とを熱交換させる内部熱交換器を備える。そして、バイパス通路部は、冷媒が流入する冷媒流入部が膨張弁の冷媒出口側と蒸発器の冷媒入口側との間に設けられると共に、冷媒が流出する冷媒流出部が低温側熱交換部の冷媒出口側と圧縮機の冷媒吸入側との間に設けられている。
 また、第4の観点によれば、冷凍サイクル装置は、圧縮機に吸入される前の冷媒の気液を分離してガス冷媒を圧縮機の冷媒吸入側に流出させるアキュムレータを備える。そして、バイパス通路部は、冷媒が流出する冷媒流出部が、アキュムレータの冷媒入口側に接続されている。このように、バイパス通路部の冷媒流出部をアキュムレータの冷媒入口側に接続する構成とすれば、圧縮機に液冷媒が吸入されてしまうこと(いわゆる、液バック)を防止することができる。
 また、第5の観点によれば、冷凍サイクル装置は、膨張弁の冷媒出口側と蒸発器の冷媒入口側とを接続する主冷媒通路部を備える。そして、バイパス通路部は、主冷媒通路部に流れる冷媒の乾き度よりも大きい乾き度となる冷媒が流入するように、冷媒が流入する冷媒流入部が主冷媒通路部に接続されている。
 これによると、蒸発器における吸熱能力にあまり寄与しない乾き度の大きい冷媒がバイパス通路部に流れることで、蒸発器に対して液リッチな冷媒が流れる。液リッチな冷媒は、乾き度の大きい冷媒に比べて圧力損失が小さいため、蒸発器における圧力損失が抑制される。蒸発器における圧力損失が抑制されると、蒸発器の冷媒出口側の圧力が高くなり、圧縮機の冷媒吸入側に密度の高い冷媒が流れる。この結果、蒸発器に流入する冷媒の質量流量が増加するので、バイパス通路部に乾き度の小さい冷媒が流れる構成に比べて、冷凍能力が向上する。なお、質量流量は、単位時間当たりに所定の面を通過する冷媒の質量として定義される。
 また、第6の観点によれば、冷凍サイクル装置のバイパス通路部は、冷媒流入部に流入する冷媒の流れ方向が、主冷媒通路部を流れる冷媒の流れ方向に比べて、鉛直方向における上方側に向かう方向に近くなるように主冷媒通路部に接続されている。
 このように、バイパス通路部部の冷媒流入部に流入する冷媒の流れ方向が、鉛直方向における上方側に向かう方向となるように、バイパス通路部部の冷媒流入部を主冷媒通路に対して接続することで、バイパス通路部部に乾き度の大きい冷媒を流すことが可能となる。
 また、第7の観点によれば、冷凍サイクル装置は、主冷媒通路部が、冷媒の流れ方向を転向させる曲げ通路部を含んで構成されている。バイパス通路部は、冷媒流入部が曲げ通路部の冷媒出口側における外側壁部よりも曲率半径が小さい内側壁部に連なる部位に接続されている。
 このように、バイパス通路部部の冷媒流入部を、主冷媒通路部の曲げ通路部における内側壁部に対して接続することで、バイパス通路部部に乾き度の大きい冷媒を流すことが可能となる。

Claims (7)

  1.  蒸気圧縮式の冷凍サイクル装置であって、
     冷媒を圧縮して吐出する圧縮機(12)と、
     前記圧縮機から吐出された冷媒を凝縮させる凝縮器(14)と、
     前記凝縮器から流出した冷媒を膨張させる膨張弁(18)と、
     前記膨張弁から流出した冷媒を蒸発させる蒸発器(20)と、
     前記膨張弁から流出した冷媒を、前記蒸発器を迂回して前記圧縮機の冷媒吸入側に流すバイパス通路部(30)と、
     前記バイパス通路部を開閉する電磁弁(36)と、
     前記圧縮機から吐出された冷媒の温度が、所定の開放基準温度を上回った際に、前記バイパス通路部が開放されるように前記電磁弁を制御する電磁弁制御部(500)と、
     を備える冷凍サイクル装置。
  2.  前記膨張弁は、前記凝縮器から流出した冷媒を減圧膨張させる弁機構(181)、前記蒸発器の冷媒出口側における冷媒の過熱度を検知するための感温部(182)を有し、前記蒸発器の冷媒出口側における冷媒の過熱度が所定値となるように前記弁機構の弁開度が調整されるように構成されており、
     前記バイパス通路部は、冷媒が流入する冷媒流入部(320)が前記膨張弁の冷媒出口側と前記蒸発器の冷媒入口側との間に設けられると共に、冷媒が流出する冷媒流出部(340)が前記感温部の設置箇所と前記圧縮機の冷媒吸入側との間に設けられている請求項1に記載の冷凍サイクル装置。
  3.  前記凝縮器から流出した冷媒が流れる高温側熱交換部(221)および前記蒸発器から流出した冷媒が流れる低温側熱交換部(222)を有し、前記高温側熱交換部を流れる冷媒と前記低温側熱交換部を流れる冷媒とを熱交換させる内部熱交換器(22)を備え、
     前記バイパス通路部は、冷媒が流入する冷媒流入部(320)が前記膨張弁の冷媒出口側と前記蒸発器の冷媒入口側との間に設けられると共に、冷媒が流出する冷媒流出部(340)が前記低温側熱交換部の冷媒出口側と前記圧縮機の冷媒吸入側との間に設けられている請求項1または2に記載の冷凍サイクル装置。
  4.  前記圧縮機に吸入される前の冷媒の気液を分離してガス冷媒を前記圧縮機の冷媒吸入側に流出させるアキュムレータ(28)を備え、
     前記バイパス通路部は、冷媒が流出する冷媒流出部(340)が、前記アキュムレータの冷媒入口側に接続されている請求項1ないし3のいずれか1つに記載の冷凍サイクル装置。
  5.  前記膨張弁の冷媒出口側と前記蒸発器の冷媒入口側とを接続する主冷媒通路部(24)を備え、
     前記バイパス通路部は、前記主冷媒通路部に流れる冷媒の乾き度よりも大きい乾き度となる冷媒が流入するように、冷媒が流入する冷媒流入部(320)が前記主冷媒通路部に接続されている請求項1ないし4のいずれか1つに記載の冷凍サイクル装置。
  6.  前記バイパス通路部は、前記冷媒流入部に流入する冷媒の流れ方向が、前記主冷媒通路部における前記冷媒流入部が接続された接続部位を流れる冷媒の流れ方向に比べて、鉛直方向における上方側に向かう方向に近くなるように、前記主冷媒通路部に接続されている請求項5に記載の冷凍サイクル装置。
  7.  前記主冷媒通路部には、前記冷媒の流れ方向を転向させる曲げ通路部(240)を含んで構成されており、
     前記バイパス通路部は、前記冷媒流入部が前記曲げ通路部の冷媒出口側における外側壁部(240a)よりも曲率半径が小さい内側壁部(240b)に連なる部位に接続されている請求項5に記載の冷凍サイクル装置。
PCT/JP2017/047111 2017-03-17 2017-12-27 冷凍サイクル装置 WO2018168158A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017053144A JP2018155451A (ja) 2017-03-17 2017-03-17 冷凍サイクル装置
JP2017-053144 2017-03-17

Publications (1)

Publication Number Publication Date
WO2018168158A1 true WO2018168158A1 (ja) 2018-09-20

Family

ID=63522038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/047111 WO2018168158A1 (ja) 2017-03-17 2017-12-27 冷凍サイクル装置

Country Status (2)

Country Link
JP (1) JP2018155451A (ja)
WO (1) WO2018168158A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1163694A (ja) * 1997-08-21 1999-03-05 Zexel Corp 冷却サイクル
JP2011247473A (ja) * 2010-05-26 2011-12-08 Mitsubishi Electric Corp 気液分離器および冷凍サイクル装置
JP2012122637A (ja) * 2010-12-07 2012-06-28 Panasonic Corp 冷凍サイクル装置
JP2013011391A (ja) * 2011-06-29 2013-01-17 Panasonic Corp 冷凍サイクル装置およびそれを備えた温水生成装置
WO2015002086A1 (ja) * 2013-07-02 2015-01-08 三菱電機株式会社 冷媒回路および空気調和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1163694A (ja) * 1997-08-21 1999-03-05 Zexel Corp 冷却サイクル
JP2011247473A (ja) * 2010-05-26 2011-12-08 Mitsubishi Electric Corp 気液分離器および冷凍サイクル装置
JP2012122637A (ja) * 2010-12-07 2012-06-28 Panasonic Corp 冷凍サイクル装置
JP2013011391A (ja) * 2011-06-29 2013-01-17 Panasonic Corp 冷凍サイクル装置およびそれを備えた温水生成装置
WO2015002086A1 (ja) * 2013-07-02 2015-01-08 三菱電機株式会社 冷媒回路および空気調和装置

Also Published As

Publication number Publication date
JP2018155451A (ja) 2018-10-04

Similar Documents

Publication Publication Date Title
JP4779928B2 (ja) エジェクタ式冷凍サイクル
JP4626531B2 (ja) エジェクタ式冷凍サイクル
US7370493B2 (en) Vapor compression refrigerating systems
JP4408413B2 (ja) 冷凍装置及びこれを用いた空気調和機
JP4776438B2 (ja) 冷凍サイクル
JP2008032336A (ja) 二段膨張冷凍装置
JP2005069566A (ja) 冷凍装置
JP4462435B2 (ja) 冷凍装置
KR102170528B1 (ko) 공조기
JP2008057807A (ja) 冷凍サイクル及びそれを用いた空気調和機、冷蔵庫
JP4462436B2 (ja) 冷凍装置
JPH09229497A (ja) 冷凍サイクル
JP4952830B2 (ja) エジェクタ式冷凍サイクル
JPH0796973B2 (ja) エコノマイザ付冷凍装置及びその運転制御方法
JP5659909B2 (ja) ヒートポンプ装置
JP4767340B2 (ja) ヒートポンプ装置の制御装置
JPWO2018096580A1 (ja) 冷凍サイクル装置
JP2006234207A (ja) 冷凍サイクル用減圧装置
WO2018168158A1 (ja) 冷凍サイクル装置
WO2018016219A1 (ja) エジェクタ式冷凍サイクル
JP5021326B2 (ja) エジェクタ式冷凍サイクル
WO2019159638A1 (ja) 冷凍サイクル装置
JP2005098635A (ja) 冷凍サイクル
JP2008164256A (ja) 冷凍サイクル装置
JP6183223B2 (ja) ヒートポンプサイクル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17901117

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17901117

Country of ref document: EP

Kind code of ref document: A1