WO2018168073A1 - 回転機の状態監視システム、回転機の状態監視方法、プログラムおよび記録媒体 - Google Patents

回転機の状態監視システム、回転機の状態監視方法、プログラムおよび記録媒体 Download PDF

Info

Publication number
WO2018168073A1
WO2018168073A1 PCT/JP2017/041273 JP2017041273W WO2018168073A1 WO 2018168073 A1 WO2018168073 A1 WO 2018168073A1 JP 2017041273 W JP2017041273 W JP 2017041273W WO 2018168073 A1 WO2018168073 A1 WO 2018168073A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotating machine
value
sensor
temperature
vibration
Prior art date
Application number
PCT/JP2017/041273
Other languages
English (en)
French (fr)
Inventor
晃司 横田
幸義 山本
泰平 安田
伊彦 小川
昂洋 中村
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Priority to US16/472,931 priority Critical patent/US20190339120A1/en
Priority to KR1020197017923A priority patent/KR20190086526A/ko
Priority to CN201780080405.2A priority patent/CN110100158A/zh
Priority to EP17900796.8A priority patent/EP3598087B1/en
Publication of WO2018168073A1 publication Critical patent/WO2018168073A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H17/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H1/00Measuring characteristics of vibrations in solids by using direct conduction to the detector
    • G01H1/003Measuring characteristics of vibrations in solids by using direct conduction to the detector of rotating machines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/02Means for indicating or recording specially adapted for thermometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts

Definitions

  • the present invention relates to a rotating machine state monitoring system, a rotating machine state monitoring method, a program for causing a computer to execute the method, and a recording medium storing the program.
  • Patent Document 1 discloses an apparatus and method for diagnosing an abnormality in a bearing portion of a rotating machine.
  • the abnormality diagnosis device measures the vibration generated in the bearing part of the rotating machine and compares the representative value calculated from the measured vibration data with a pre-registered diagnostic threshold value to detect the abnormality in the bearing part. judge.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2007-10415 (Patent Document 1), only the vibration value is used in determining the abnormality of the rotating machine. However, in the case of the determination based only on the vibration value, there is a problem that the reliability of the determination result is low.
  • An object of the present invention is to provide a technology related to the state monitoring of a rotating machine for determining the abnormality determination of the rotating machine with high reliability.
  • a state monitoring system for a rotating machine is provided in a sensor head, a preamplifier, a main body, and a preamplifier or a main body that can be attached to the rotating machine, and measures the ambient temperature of the rotating machine. And a second temperature sensor that outputs an ambient temperature value.
  • the sensor head includes an acceleration sensor that measures the vibration of the rotating machine and outputs a vibration value, and a first temperature sensor that measures the surface temperature of the rotating machine and outputs the surface temperature value of the rotating machine.
  • the preamplifier relays the vibration value from the acceleration sensor and the rotating machine surface temperature value from the first temperature sensor.
  • the main body includes a processing unit that compares the current vibration value with a determination threshold value to determine the state of the rotating machine, a display unit that displays the vibration value, the rotating machine surface temperature value, and the ambient temperature value, and a determination result of the processing unit And a communication unit that receives the determination threshold value from the host system and transmits the current vibration value and the determination result to the host system.
  • the second temperature sensor is built in the preamplifier.
  • the preamplifier amplifies an analog signal output from each of the acceleration sensor, the first temperature sensor, and the second temperature sensor, and converts the amplified analog signal into a digital signal.
  • the second temperature sensor is built in the main body.
  • the preamplifier amplifies the analog signal output from each of the acceleration sensor and the first temperature sensor, and converts the amplified analog signal into a digital signal.
  • the main body amplifies the analog signal output from the second temperature sensor and converts the amplified analog signal into a digital signal.
  • the rotating machine state monitoring system includes a cable for transmitting an analog signal output from the sensor head to the preamplifier, and a connector capable of connecting the sensor head to the cable and detaching the sensor head from the cable. Further prepare.
  • a state monitoring method for a rotating machine includes a sensor head that includes an acceleration sensor that measures vibration of the rotating machine and a first temperature sensor that measures a surface temperature of the rotating machine, and is attachable to the rotating machine.
  • the processing unit acquires the vibration value and the rotating machine surface temperature value, and the processing unit acquires the ambient temperature value from the second temperature sensor that measures the ambient temperature of the rotating machine, and the processing unit. Comparing the current vibration value with the determination threshold value to determine the state of the rotating machine, the display unit displaying the vibration value, the rotating machine surface temperature value, and the ambient temperature value, and the output unit processing A step of outputting the determination result of the unit, and a step of receiving the determination threshold value from the host system by the communication unit.
  • a program includes a computer that includes an acceleration sensor that measures vibration of a rotating machine and a first temperature sensor that measures a surface temperature of the rotating machine, and a sensor head that can be attached to the rotating machine.
  • the vibration value and the surface temperature value of the rotating machine are acquired, the step of acquiring the ambient temperature value from the second temperature sensor that measures the ambient temperature of the rotating machine, and the current vibration value is compared with a determination threshold value and rotated.
  • the determination threshold value is received by the communication unit.
  • a recording medium is a computer-readable recording medium on which the above program is recorded.
  • the temperature of the rotating machine itself and the ambient temperature of the rotating machine can be measured simultaneously.
  • the temperature of the rotating machine and the ambient temperature of the rotating machine can be taken into consideration. Therefore, the reliability of the abnormality determination of the rotating machine can be improved.
  • FIG. 1 is a block diagram of a state monitoring system according to an embodiment of the present invention. It is a flowchart for demonstrating the monitoring process and abnormality determination process which are performed by a state monitoring system.
  • FIG. 1 is a schematic diagram of a configuration of a state monitoring system for a rotating machine according to an embodiment of the present invention.
  • the state monitoring system 100 includes a sensor head 2, a preamplifier 4, and a main body 6.
  • the sensor head 2 is connected to the preamplifier 4 via the connector 3 and the cable 4a.
  • the preamplifier 4 is connected to the main body 6 by a cable 4b.
  • Sensor head 2 is attached to the surface of motor (rotating machine) 1 and measures the frequency of motor 1 and the surface temperature of motor 1.
  • the sensor head 2 outputs vibration data representing the frequency of the motor 1 and temperature data representing the surface temperature of the motor 1 in the form of an analog signal.
  • the preamplifier 4 receives a power supply voltage from the main body 6 through the cable 4b.
  • the preamplifier 4 receives vibration data and temperature data from the sensor head 2 and converts these data into digital data.
  • the preamplifier 4 further measures the ambient temperature of the motor 1.
  • the preamplifier 4 transmits vibration data representing the frequency of the motor 1, temperature data representing the surface temperature of the motor 1, and temperature data representing the ambient temperature of the motor 1 to the main body 6 via the cable 4b.
  • the main unit 6 has a display unit 7.
  • the display unit 7 displays data regarding the frequency of the motor 1, temperature data regarding the surface temperature of the motor 1, and temperature data regarding the ambient temperature of the motor 1. Furthermore, the main body 6 compares the vibration data with a determination threshold value and determines whether the motor 1 is normal. The main unit 6 can display the determination result on the display unit 7.
  • the main unit 6 is connected to the host system 10 and receives a determination threshold value from the host system 10. For example, the determination threshold is input from the user to the host system 10 and sent from the host system 10 to the main body 6. On the other hand, the main body 6 transmits the current vibration value and the current temperature value to the host system 10. Further, the main body 6 transmits a determination result relating to the state of the motor 1 to the host system 10.
  • FIG. 2 is a diagram showing an example of the sensor head shown in FIG. As shown in FIG. 2, the sensor head 2 has a screw portion 5 for attaching the sensor head 2 to the surface of the motor 1. As will be described later, an acceleration sensor and a temperature sensor are built in the sensor head 2. By attaching the sensor head 2 to the surface of the motor 1, the acceleration sensor and the temperature sensor come into contact with the surface of the motor 1. In consideration of the installation environment of the motor 1, the sensor head 2 employs a protective structure having dust resistance, waterproofness and oil resistance.
  • the sensor head 2 can be connected to the cable 4a by the connector 3 and can be detached from the cable 4a.
  • the sensor head 2 When the sensor head 2 is attached to the motor 1 or when the sensor head 2 is detached from the motor 1, the sensor head 2 needs to be rotated.
  • the cable 4a When the sensor head 2 remains connected to the cable 4a, the cable 4a may be twisted by rotating the sensor head 2.
  • the cable 4a By rotating the sensor head 2 with the sensor head 2 removed from the connector 3, the cable 4a can be prevented from being twisted. Therefore, for example, even when the cable 4a is wired in the duct, the sensor head 2 can be easily replaced.
  • FIG. 3 is a block diagram of the state monitoring system 100 shown in FIG.
  • the sensor head 2 includes an acceleration sensor 11 and a temperature sensor 12.
  • the acceleration sensor 11 is a sensor for detecting the vibration of the motor 1.
  • the acceleration sensor 11 can detect, for example, a vibration frequency up to 10 kHz, a vibration acceleration in the range of 0.5 G to 10 G, and a vibration speed in the range of 0.5 m / s to 100 m / s.
  • the temperature sensor 12 is a sensor for detecting the surface temperature of the motor 1.
  • the preamplifier 4 includes filters 21 and 22, a temperature sensor 23, amplifiers 24, 25 and 26, an A / D converter 27, and a communication circuit 28.
  • the filter 21 removes noise included in an analog signal (vibration data) sent from the acceleration sensor 11 via the cable 4a.
  • the filter 22 removes noise included in an analog signal (temperature data) sent from the temperature sensor 12 via the cable 4a.
  • the amplifiers 24 and 25 amplify the analog signals that have passed through the filters 21 and 22, respectively. Therefore, it can be said that the preamplifier 4 relays the vibration value from the acceleration sensor 11 and the rotating machine surface temperature value from the temperature sensor 12.
  • the temperature sensor 23 detects the ambient temperature of the motor 1 and outputs an analog signal representing the detected temperature.
  • the amplifier 26 amplifies the analog signal output from the temperature sensor 23.
  • the A / D converter 27 converts the analog signal output from each of the amplifiers 24, 25, and 26 into a digital signal.
  • the communication circuit 28 transmits the digital signal output from the A / D converter 27 to the main body 6 via the cable 4b.
  • the main unit 6 includes a display unit 7, a processing unit 31, communication circuits 32 and 33, a drive circuit 34, an output unit 35, a power supply circuit 36, and a storage unit 37.
  • the processing unit 31 is realized by an arithmetic device (computer) such as a CPU (Central Processing Unit), for example, reads a program from the storage unit 37, and executes the program.
  • the communication circuit 32 receives digital signals (vibration data and temperature data) from the preamplifier 4 via the cable 4b.
  • the processing unit 31 causes the display unit 7 to display vibration data and temperature data.
  • the processing unit 31 compares the vibration data with the determination threshold value to determine whether the motor 1 is abnormal.
  • the processing unit 31 displays the determination result on the display unit 7 and outputs it to the host system via the communication circuit 33.
  • the processing unit 31 controls the drive circuit 34 to drive the output unit 35. For example, when it is determined that the state of the motor 1 is abnormal, the output unit 35 generates an output indicating the abnormality.
  • the power supply circuit 36 supplies internal power for operating the main body 6 to the main body 6 and also supplies internal power for operating the preamplifier 4 to the preamplifier 4 through the cable 4b.
  • the storage unit 37 is a recording medium in which a program for operating the processing unit 31 is stored in a nonvolatile manner.
  • the program may be provided from the host system to the main unit 6 via the communication circuit 33, or may be provided to the main unit 6 through another recording medium (for example, a USB memory). Furthermore, the storage unit 37 may be integrated with the processing unit 31.
  • the state monitoring system can have one or both of the two modes described below for state monitoring.
  • FIG. 4 is a diagram illustrating a first mode out of two modes of state monitoring.
  • the trend of vibration acceleration is monitored in the first mode.
  • a value (initial value) when the motor 1 is in a new state is compared with a current value.
  • the vibration acceleration value increases as the motor usage time elapses.
  • Two determination thresholds are set for the ratio of the current value to the initial value.
  • the first threshold value (threshold value (1)) is set to a value that is three times the initial value
  • the second threshold value (threshold value (2)) is a value that is five times the initial value.
  • FIG. 5 is a diagram for explaining a second mode of the two modes of state monitoring.
  • the state of the motor 1 is determined by comparing the vibration level value with a standard (for example, ISO standard or JIS standard) or an independently set standard.
  • a standard for example, ISO standard or JIS standard
  • FIG. 5A regarding the determination of the state of the motor 1 other than the bearing, whether the current level of the motor belongs to any of A to D according to the value of the vibration speed. Determined. “Class I” to “Class IV” in FIG. 5A represent classifications based on motor ratings and the like.
  • vibration acceleration is monitored. The vibration acceleration with respect to the product of the shaft diameter and the rotational speed is determined according to the reference. In this mode, the state of the motor 1 can be determined even if the vibration speed or vibration acceleration when the motor 1 is new is unknown.
  • the determination threshold value may be a predetermined value. In this case, the determination threshold value is only a guide value. The user may adjust the determination threshold according to the usage state of the motor 1.
  • the accuracy of threshold setting can be increased by considering the temperature value.
  • the vibration value and the motor surface temperature are the following values immediately after the start of driving and after driving for a certain period of time.
  • the following numerical value is shown as an example and does not limit the present invention.
  • Vibration value 1.75 m / s 2 Motor surface temperature: 5 ° C.
  • Vibration value 0.46 m / s 2 Motor temperature: 40 ° C. (saturated)
  • This example shows that the vibration value depends on the surface temperature of the motor (motor temperature).
  • the reason why the vibration value changes depending on the motor temperature is assumed to be that the viscosity of the lubricating oil in the bearing portion changes with temperature. Immediately after the start of driving of the motor, the viscosity of the lubricating oil is high, so that vibration is easily transmitted to the motor casing. For this reason, it is considered that the vibration value is high.
  • the state monitoring system of the rotating machine can simultaneously measure the temperature of the rotating machine itself and the ambient temperature of the rotating machine in addition to the vibration value.
  • the user can appropriately determine a determination threshold value in consideration of the temperature of the rotating machine itself and the ambient temperature of the rotating machine. Thereby, the reliability of the abnormality determination of a rotating machine can be improved.
  • a determination threshold value in consideration of the temperature of the rotating machine itself and the ambient temperature of the rotating machine.
  • FIG. 6 is a graph showing changes in vibration values with respect to the operating time of the two motors.
  • FIG. 7 is a table showing a first example of surface temperatures (motor temperatures) and ambient temperatures of two motors in a table format. Referring to FIGS. 6 and 7, it is assumed that two motors A and B of the same type are introduced into two devices having the same specification at the same time.
  • motor A has a higher motor temperature than motor B.
  • the difference between the motor temperature and the ambient temperature is also 5 ° C.
  • the loads of the motors A and B are the same, and it can be determined that the motor temperature is affected by the ambient temperature.
  • the user can determine that the determination threshold of the motor A needs to be lower than the determination threshold of the motor B. Thereby, the determination threshold value of the motor A can be adjusted appropriately.
  • FIG. 8 is a table showing a second example of the surface temperature (motor temperature) and ambient temperature of two motors in a table format.
  • the surface temperature of motor A is higher than that of motor B.
  • the ambient temperature is the same between the two motors A and B. In this case, it is estimated that the load on the motor A is higher than the load on the motor B.
  • the vibration value is affected by temperature. Therefore, it is considered that the frequency of the motor A tends to decrease as the motor temperature rises. In this case, the user can determine that the determination threshold value of the motor A needs to be lower than the determination threshold value of the motor B. Thereby, the determination threshold value of the motor A can be adjusted appropriately.
  • FIG. 9 is a diagram illustrating an example of the tendency of the vibration value, the motor temperature, and the ambient temperature.
  • the data shown in FIG. 9 is obtained at a certain time of the day. According to FIG. 9, although the vibration value is high when the motor temperature is low, the ambient temperature hardly changes. This is considered to indicate a state in which the load on the motor is light or the start of the motor is started at the data acquisition time.
  • the operating state of the motor at the data acquisition time may vary from day to day depending on the operating state of the apparatus. Therefore, the user can recognize the necessity of changing the data acquisition timing in accordance with the operation state of the motor. For example, by acquiring data at a timing when the temperature of the motor surface is low, an abnormality of the motor can be detected at an early stage.
  • FIG. 10 is a block diagram of the state monitoring system 100 according to the embodiment of the present invention.
  • the temperature sensor 23 may be provided in the main body 6.
  • an amplifier 26 that amplifies the output of the temperature sensor 23 and an A / D converter 38 that converts the output signal of the amplifier 26 into a digital signal are provided in the main body 6.
  • the processing unit 31 receives a digital signal from the A / D converter 38.
  • FIG. 11 is a flowchart for explaining monitoring processing and abnormality determination processing executed by the state monitoring system 100.
  • the processing unit 31 of the main body unit 6 calls and executes a program stored in the storage unit 37. Thereby, the processing shown in FIG. 11 is executed.
  • step S ⁇ b> 10 processing unit 31 detects the vibration value of motor 1, the value of the motor temperature of motor 1 detected by acceleration sensor 11, temperature sensor 12, and temperature sensor 23. The value of the ambient temperature of the motor 1 is acquired.
  • step S11 the processing unit 31 acquires a determination threshold value from the higher system.
  • the timing at which the process of step S11 is executed is not particularly limited.
  • the determination threshold may be transmitted from the host system to the main body 6 triggered by the user inputting the determination threshold to the host system.
  • step S12 the processing unit 31 compares the vibration value with a determination threshold value to determine the state of the motor 1.
  • step S ⁇ b> 13 the processing unit 31 displays the determination result on the display unit 7.
  • the display unit 7 displays the state of the motor 1.
  • the display mode is not particularly limited.
  • step S ⁇ b> 14 the processing unit 31 outputs the determination result to the outside of the main body unit 6.
  • the processing unit 31 causes the output unit 35 to output a signal representing the determination result to the outside of the main body unit 6.
  • the processing unit 31 may transmit the determination result of the processing unit 31 to the host system via the communication circuit 33. Thereafter, the process returns from step S14 to step S10. Note that only one of steps S13 and S14 may be executed.
  • step S15 the processing unit 31 causes the display unit 7 to display the vibration value, the surface temperature value of the motor 1 and the ambient temperature of the motor 1 acquired in step S11.
  • the display process in step S13 and the display process in step S15 may be performed simultaneously. Alternatively, the display process in step S13 and the display process in step S15 may be switchable depending on user settings. After step S15, the process returns to step S10.
  • the surface temperature of the motor itself and the ambient temperature of the motor are simultaneously measured, so that the reliability of the motor abnormality determination can be determined. Can be improved.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

回転機の状態監視システム(100)は、センサヘッド(2)と、プリアンプ(4)と、本体部(6)と、プリアンプ(4)に設けられて、モータ(1)の周囲温度を計測して周囲温度値を出力する温度センサ(23)とを備える。センサヘッド(2)は、モータの振動を計測して振動値を出力する加速度センサ(11)と、モータ(1)の表面温度を計測して、回転機表面温度値を出力する温度センサ(12)とを含む。本体部(6)は、現在の振動値を判定閾値と比較してモータ(1)の状態を判定する処理部(31)と、振動値、回転機表面温度値および周囲温度値を表示する表示部(7)と、処理部(31)の判定結果を出力する出力部(35)と、上位システムから判定閾値を受信するとともに、上位システムに、現在の振動値および判定結果を送信する通信部(33)とを備える。

Description

回転機の状態監視システム、回転機の状態監視方法、プログラムおよび記録媒体
 本発明は、回転機の状態監視システム、回転機の状態監視方法、その方法をコンピュータに実行させるためのプログラム、およびそのプログラムを記憶する記録媒体に関する。
 回転機の異常を診断する技術が知られている。たとえば、特開2007-10415号公報(特許文献1)は、回転機の軸受部分の異常を診断するための装置および方法を開示する。異常診断装置は、回転機の軸受部分に発生する振動を測定して、測定した振動データから算出された代表値と、事前に登録された診断閾値とを比較することにより、軸受部分の異常を判定する。
特開2007-10415号公報
 特開2007-10415号公報(特許文献1)に開示されるように、回転機の異常の判定においては振動値のみが用いられていた。しかしながら振動値のみに基づく判定の場合には、判定結果の信頼性が低いという課題があった。
 本発明の目的は、回転機の異常判定を高い信頼性で判定するための、回転機の状態監視に関する技術を提供することである。
 本発明のある局面に係る回転機の状態監視システムは、回転機に取り付け可能なセンサヘッドと、プリアンプと、本体部と、プリアンプまたは本体部に設けられて、回転機の周囲温度を計測して周囲温度値を出力する第2の温度センサとを備える。センサヘッドは、回転機の振動を計測して振動値を出力する加速度センサと、回転機の表面温度を計測して、回転機表面温度値を出力する第1の温度センサとを含む。プリアンプは、加速度センサからの振動値と、第1の温度センサからの回転機表面温度値とを中継する。本体部は、現在の振動値を判定閾値と比較して回転機の状態を判定する処理部と、振動値、回転機表面温度値および周囲温度値を表示する表示部と、処理部の判定結果を出力する出力部と、上位システムから判定閾値を受信するとともに、上位システムに、現在の振動値および判定結果を送信する通信部とを備える。
 好ましくは、第2の温度センサは、プリアンプに内蔵される。プリアンプは、加速度センサ、第1の温度センサおよび第2の温度センサの各々から出力されたアナログ信号を増幅するとともに、増幅されたアナログ信号をデジタル信号に変換する。
 好ましくは、第2の温度センサは、本体部に内蔵される。プリアンプは、加速度センサ、第1の温度センサの各々から出力されたアナログ信号を増幅するとともに、増幅されたアナログ信号をデジタル信号に変換する。本体部は、第2の温度センサから出力されたアナログ信号を増幅するとともに、増幅されたアナログ信号をデジタル信号に変換する。
 好ましくは、回転機の状態監視システムは、センサヘッドから出力されたアナログ信号をプリアンプに伝達するためのケーブルと、センサヘッドをケーブルに接続可能であるとともに、センサヘッドをケーブルから取り外し可能なコネクタをさらに備える。
 本発明のある局面に従う回転機の状態監視方法は、回転機の振動を計測する加速度センサと、回転機の表面温度を計測する第1の温度センサとを含み、回転機に取り付け可能なセンサヘッドから、処理部が、振動値と、回転機表面温度値とを取得するとともに、処理部が、回転機の周囲温度を計測する第2の温度センサから周囲温度値を取得するステップと、処理部が、現在の振動値を判定閾値と比較して回転機の状態を判定するステップと、表示部が、振動値、回転機表面温度値および周囲温度値を表示するステップと、出力部が、処理部の判定結果を出力するステップと、通信部が、上位システムから判定閾値を受信するステップとを備える。
 本発明のある局面に従うプログラムは、コンピュータに、回転機の振動を計測する加速度センサと、回転機の表面温度を計測する第1の温度センサとを含み、回転機に取り付け可能なセンサヘッドから、振動値と、回転機表面温度値とを取得するとともに、回転機の周囲温度を計測する第2の温度センサから周囲温度値を取得するステップと、現在の振動値を判定閾値と比較して回転機の状態を判定するステップと、振動値、回転機表面温度値および周囲温度値を表示部により表示させるステップと、判定するステップにより得られた判定結果を出力部により出力させるステップと、上位システムから判定閾値を通信部により受信させるステップとを実行させる、プログラムである。
 本発明のある局面に従う記録媒体は、上記のプログラムを記録した、コンピュータ読み取り可能な記録媒体である。
 本発明によれば、回転機の振動値に加えて、回転機自体の温度および回転機の周囲温度を同時に測定することができる。振動値に基づいて回転機の状態が異常であるかどうかを判断する際に、回転機の温度および回転機の周囲温度を考慮することができる。したがって、回転機の異常判定の信頼性を向上させることができる。
本発明の一実施形態に係る回転機の状態監視システムの構成の概略図である。 図1に示したセンサヘッドの例を示した図である。 図1に示した状態監視システムのブロック図である。 状態監視の2つのモードのうちの第1のモードを説明する図である。 状態監視の2つのモードのうちの第2のモードを説明する図である。 2つのモータの稼働時間に対する振動値の変化を示したグラフである。 2つのモータの表面温度(モータ温度)および周囲温度の第1の例を表形式で示した図である。 2つのモータの表面温度(モータ温度)および周囲温度の第2の例を表形式で示した図である。 振動値、モータ温度、および周囲温度の傾向の例を示した図である。 本発明の実施の形態に係る状態監視システムのブロック図である。 状態監視システムにより実行される監視処理および異常判定処理を説明するためのフローチャートである。
 本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中の同一または相当部分については、同一符号を付してその説明は繰り返さない。
 図1は、本発明の一実施形態に係る回転機の状態監視システムの構成の概略図である。図1に示されるように、状態監視システム100は、センサヘッド2と、プリアンプ4と、本体部6とを備える。センサヘッド2は、コネクタ3およびケーブル4aを介してプリアンプ4に接続される。プリアンプ4は、ケーブル4bにより本体部6に接続される。
 センサヘッド2は、モータ(回転機)1の表面に取り付けられて、モータ1の振動数およびモータ1の表面温度を測定する。センサヘッド2は、モータ1の振動数を表す振動データおよび、モータ1の表面温度を表す温度データをアナログ信号の形式で出力する。
 プリアンプ4は、ケーブル4bを介して本体部6から電源電圧を受ける。プリアンプ4は、センサヘッド2から振動データおよび温度データを受けて、それらのデータをデジタルデータに変換する。
 プリアンプ4は、さらに、モータ1の周囲温度を測定する。プリアンプ4は、モータ1の振動数を表す振動データ、モータ1の表面温度を表す温度データおよびモータ1の周囲温度を表す温度データをケーブル4bを介して本体部6に送信する。
 本体部6は、表示部7を有する。表示部7は、モータ1の振動数に関するデータ、モータ1の表面温度に関する温度データおよびモータ1の周囲温度に関する温度データを表示する。さらに、本体部6は、振動データを判定閾値と比較して、モータ1が正常であるかどうかを判定する。本体部6は、その判定結果を表示部7により表示することができる。
 本体部6は、上位システム10に接続されて、上位システム10から判定閾値を受信する。判定閾値は、たとえばユーザから上位システム10に入力されて、上位システム10から本体部6に送られる。一方、本体部6は、現在の振動値および現在の温度値を上位システム10に送信する。さらに本体部6は、モータ1の状態に関する判定結果を上位システム10に送信する。
 図2は、図1に示したセンサヘッドの例を示した図である。図2に示されるように、センサヘッド2は、センサヘッド2をモータ1の表面に取り付けるためのネジ部5を有する。後述するように、センサヘッド2の内部には、加速度センサおよび温度センサが内蔵される。センサヘッド2をモータ1の表面に取り付けることによって、加速度センサおよび温度センサはモータ1の表面に接触する。なお、モータ1の設置環境を考慮して、センサヘッド2には防塵性、防水性および耐油性を有する保護構造が採用される。
 この実施の形態によれば、センサヘッド2は、コネクタ3によって、ケーブル4aに接続可能であるとともに、ケーブル4aから取り外し可能である。センサヘッド2をモータ1に取り付ける際、あるいは、センサヘッド2をモータ1から外す際にはセンサヘッド2を回転させる必要がある。センサヘッド2がケーブル4aに接続されたままの場合には、センサヘッド2を回転させることによってケーブル4aがねじれる可能性がある。センサヘッド2をコネクタ3から外した状態でセンサヘッド2を回転させることにより、ケーブル4aがねじれることを防ぐことができる。したがって、たとえばケーブル4aをダクト内に配線している場合にもセンサヘッド2を容易に交換することができる。
 図3は、図1に示した状態監視システム100のブロック図である。図3に示されるように、センサヘッド2は、加速度センサ11と、温度センサ12とを含む。加速度センサ11はモータ1の振動を検出するためのセンサである。加速度センサ11は、たとえば10kHzまでの振動周波数、0.5G~10Gの範囲の振動加速度、および0.5m/s~100m/sの範囲の振動速度を検出できる。温度センサ12は、モータ1の表面温度を検出するためのセンサである。
 プリアンプ4は、フィルタ21,22と、温度センサ23と、アンプ24,25,26と、A/Dコンバータ27と、通信回路28とを含む。フィルタ21は、加速度センサ11からケーブル4aを介して送られるアナログ信号(振動データ)に含まれるノイズを除去する。フィルタ22は、温度センサ12からケーブル4aを介して送られるアナログ信号(温度データ)に含まれるノイズを除去する。アンプ24,25は、それぞれ、フィルタ21,22を通過したアナログ信号を増幅する。したがってプリアンプ4は、加速度センサ11からの振動値と、温度センサ12からの回転機表面温度値とを中継するものであると言うこともできる。
 温度センサ23は、モータ1の周囲温度を検出して、その検出された温度を表すアナログ信号を出力する。アンプ26は、温度センサ23から出力されたアナログ信号を増幅する。
 A/Dコンバータ27は、アンプ24,25,26の各々から出力されたアナログ信号をデジタル信号に変換する。通信回路28は、A/Dコンバータ27から出力されたデジタル信号を、ケーブル4bを介して本体部6に送信する。
 本体部6は、表示部7と、処理部31と、通信回路32,33と、ドライブ回路34と、出力部35と、電源回路36と、記憶部37とを含む。処理部31は、たとえばCPU(Central Processing Unit)等の演算装置(コンピュータ)により実現され、記憶部37からプログラムを読み出して、そのプログラムを実行する。通信回路32は、ケーブル4bを介して、プリアンプ4からデジタル信号(振動データおよび温度データ)を受ける。処理部31は、振動データおよび温度データを表示部7に表示させる。処理部31は、振動データと判定閾値とを比較して、モータ1の異常の有無を判定する。処理部31は、その判定結果を表示部7に表示させるとともに、通信回路33を介して上位システムに出力する。
 処理部31は、ドライブ回路34を制御して、出力部35を駆動する。たとえば、モータ1の状態が異常であると判定された場合、出力部35は、その異常を表す出力を発生させる。
 電源回路36は、本体部6を動作させるための内部電源を本体部6に供給するとともに、プリアンプ4を動作させるための内部電源を、ケーブル4bを通じてプリアンプ4に供給する。
 記憶部37は、処理部31を動作させるプログラムを不揮発的に記憶した記録媒体である。プログラムは、通信回路33を介して上位システムから本体部6に提供されてもよく、他の記録媒体(たとえばUSBメモリ等)を通じて本体部6に提供されてもよい。さらに、記憶部37は、処理部31に統合されていてもよい。
 この実施の形態によれば、状態監視システムは、状態監視について、以下に説明する2つのモードのうちの一方または両方を有することができる。図4は、状態監視の2つのモードのうちの第1のモードを説明する図である。
 図4に示されるように、第1のモードでは振動加速度の傾向が監視される。第1のモードでは、振動加速度について、モータ1が新品の状態である時の値(初期値)と、現在の値とが比較される。
 モータの使用時間が経過するに従って振動加速度の値が増大する。初期値に対する現在の値の比率について、2つの判定閾値が設定される。図4に示した例では、第1の閾値(閾値(1))は、初期値の3倍の値に設定され、第2の閾値(閾値(2))は、初期値の5倍の値に設定される。現在の値が閾値(1)を超えた場合に、モータ1の状態が注意レベルにあると判定される。さらに、現在の値が閾値(2)を超えた場合に、モータ1の状態が異常状態のレベルにあると判定される。
 図5は、状態監視の2つのモードのうちの第2のモードを説明する図である。図5に示されるように、振動レベル値と、規格(たとえばISO規格あるいはJIS規格等)あるいは独自に設定した基準とを比較することにより、モータ1の状態が判定される。たとえば、図5(a)に示されるように、軸受以外のモータ1の部分の状態の判定については、振動速度の値に応じて、モータの現状のレベルがA~Dのいずれに属するかが判定される。図5(a)における「クラスI」~「クラスIV」は、モータの定格等に基づく分類を表す。軸受の状態の判定については、たとえば図5(b)に示されるように、振動加速度が監視される。軸径と回転数との積に対する振動加速度が、基準に従って判定される。このモードでは、モータ1の新品の時の振動速度あるいは振動加速度が不明であっても、モータ1の状態を判定することができる。
 これら2つのモードにおいては、判定閾値は、予め定められた値であってもよい。その場合の判定閾値は、あくまでも目安値である。ユーザは、モータ1の使用状態に合わせて判定閾値を調整してもよい。
 上述の2つのモードにおいて、温度値を考慮することにより、閾値設定の精度を高めることができる。たとえば、新品でないモータにおいて、振動値およびモータの表面温度が駆動開始直後と、一定時間の駆動後とでは次の値であるとする。なお、下記の数値は例として示したものであり、本発明を限定するものではない。
 駆動開始直後 :振動値 1.75m/s、モータの表面温度:5℃
 一定時間経過後:振動値 0.46m/s、モータの温度:40℃(飽和)
 この例は、振動値がモータの表面温度(モータ温度)に依存することを示したものである。振動値がモータ温度に依存して変化する理由としては、軸受部の潤滑油の粘性が温度により変化したためと想定される。モータの駆動開始直後においては潤滑油の粘度が高いため振動がモータの筐体に伝わりやすい。このため振動値が高いと考えられる。
 一方で、このモータが周囲温度の高い環境下に設置されている場合には、上述した振動値の変化が顕著に生じない可能性がある。周囲温度が高く、かつ、回転機自身の温度も高い場合には、低温時に比べて潤滑油の粘度は低い。このため振動値は低くなる傾向にある。温度の影響を考慮することなく振動値のみに基づいて異常判定の閾値を設定した場合には、異常のある回転機の状態を正常状態と判定する可能性がある。
 本発明の実施の形態によれば、回転機の状態監視システムは、振動値に加えて回転機自体の温度および回転機の周囲温度を同時に測定することができる。ユーザは、振動値に加えて、回転機自体の温度および回転機の周囲温度を考慮して、判定の閾値を適切に定めることができる。これにより回転機の異常判定の信頼性を高めることができる。以下に、判定閾値の設定例について説明する。
 図6は、2つのモータの稼働時間に対する振動値の変化を示したグラフである。図7は、2つのモータの表面温度(モータ温度)および周囲温度の第1の例を表形式で示した図である。図6および図7を参照して、同じ仕様の2つの装置に、同一の型式の2つのモータA,Bが、同時期に導入されたとする。
 第1の例では、モータAのほうがモータBよりも、モータ温度が高い。しかしながら2つのモータの間では、モータ温度と周囲温度との差は同じく5℃である。この場合には、モータA,Bの負荷は同じであり、モータ温度は周囲温度の影響を受けていると判断することができる。ユーザは、モータAの判定閾値をモータBの判定閾値よりも下げる必要があると判断することができる。これによりモータAの判定閾値を適切に調整することができる。
 図8は、2つのモータの表面温度(モータ温度)および周囲温度の第2の例を表形式で示した図である。第2の例ではモータAのほうがモータBよりも表面温度が高い。一方、周囲温度は2つのモータA,Bの間で同じである。この場合にはモータAの負荷がモータBの負荷より高いと推定される。
 上記の例で説明したように、振動値は温度による影響を受ける。したがって、モータ温度の上昇に伴い、モータAの振動数が小さくなる傾向にあると考えられる。この場合、ユーザは、モータAの判定閾値をモータBの判定閾値よりも下げる必要があると判断することができる。これによりモータAの判定閾値を適切に調整することができる。
 さらに、本発明の実施の形態によれば、温度の影響を考慮してデータ取得のタイミングを変更することができる。図9は、振動値、モータ温度、および周囲温度の傾向の例を示した図である。図9に示されたデータは、1日のうちのある決まった時刻に取得されたものである。図9によれば、モータ温度が低い時に振動値が高いものの、周囲温度はほとんど変化していない。これは、データ取得時刻において、モータの負荷が軽い状態あるいはモータの始動が開始された状態を示すと考えられる。
 このように、装置の稼働状態などにより、データ取得時刻におけるモータの運転状態は、日ごとに異なる可能性がある。したがってユーザは、モータの運転状態にあわせて、データ取得のタイミングを変える必要性に気づくことができる。たとえばモータ表面の温度が低いタイミングでデータを取得することにより、モータの異常を早期に検出することができる。
 図3に示した構成では、モータ1の周囲温度を測定するための温度センサ23は、プリアンプ4に設けられる。しかし本発明の実施の形態はこのように限定されるものではない。図10は、本発明の実施の形態に係る状態監視システム100のブロック図である。
 図10に示すように、温度センサ23が本体部6に設けられてもよい。図10に示された構成では、温度センサ23の出力を増幅するアンプ26、および、アンプ26の出力信号をデジタル信号に変換するためのA/Dコンバータ38は、本体部6に設けられる。処理部31は、A/Dコンバータ38からデジタル信号を受ける。
 図11は、状態監視システム100により実行される監視処理および異常判定処理を説明するためのフローチャートである。本体部6の処理部31は記憶部37に記憶されたプログラムを呼び出して実行する。これにより図11に示された処理が実行される。
 図3および図11を参照して、ステップS10において、処理部31は、加速度センサ11、温度センサ12および温度センサ23によってそれぞれ検出された、モータ1の振動値、モータ1のモータ温度の値およびモータ1の周辺温度の値を取得する。ステップS11において、処理部31は、上位システムから判定閾値を取得する。ステップS11の処理が実行されるタイミングは特に限定されない。たとえばユーザが上位システムに判定閾値を入力したことをトリガとして、上位システムから本体部6に判定閾値が送信されてもよい。
 ステップS12において、処理部31は、振動値を判定閾値と比較して、モータ1の状態を判定する。ステップS13において、処理部31は、その判定結果を表示部7に表示させる。表示部7は、モータ1の状態を表示する。なお、表示の態様は特に限定されない。さらにステップS14において、処理部31は、その判定結果を本体部6の外部に出力する。たとえば処理部31は、出力部35により、判定結果を表す信号を本体部6の外部に出力する。処理部31は、通信回路33を介して、上位システムに処理部31の判定結果を送信してもよい。その後、処理は、ステップS14からステップS10へと戻る。なお、ステップS13,S14のいずれか一方のみの処理が実行されてもよい。
 さらに、処理部31は、ステップS15において、ステップS11において取得された振動値、モータ1の表面温度の値およびモータ1の周囲温度を表示部7に表示させる。ステップS13における表示処理と、ステップS15における表示処理とは同時に実行されてもよい。あるいは、ユーザの設定により、ステップS13における表示処理と、ステップS15における表示処理とが切替可能であってもよい。ステップS15の後、処理はステップS10に戻る。
 以上のように、本発明の実施の形態によれば、モータ(回転機)の振動値に加えて、モータ自体の表面温度およびモータの周囲温度を同時に測定することにより、モータの異常判定の信頼性を向上させることができる。
 今回開示された実施の形態はすべての点で例示であって制限的なものでないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1 モータ、2 センサヘッド、3 コネクタ、4 プリアンプ、4a,4b ケーブル、5 ネジ部、6 本体部、7 表示部、10 上位システム、11 加速度センサ、12,23 温度センサ、21,22 フィルタ、24,25,26 アンプ、27,38 A/Dコンバータ、28,32,33 通信回路、31 処理部、34 ドライブ回路、35 出力部、36 電源回路、37 記憶部、100 状態監視システム、S10,S11,S12,S13,S14,S15 ステップ。

Claims (7)

  1.  回転機の振動を計測して振動値を出力する加速度センサと、前記回転機の表面温度を計測して、回転機表面温度値を出力する第1の温度センサとを含み、前記回転機に取り付け可能なセンサヘッドと、
     前記加速度センサからの前記振動値と、前記第1の温度センサからの前記回転機表面温度値とを中継するプリアンプと、
     本体部と、
     前記プリアンプまたは前記本体部に設けられて、前記回転機の周囲温度を計測して周囲温度値を出力する第2の温度センサとを備え、
     前記本体部は、
     現在の振動値を判定閾値と比較して前記回転機の状態を判定する処理部と、
     前記振動値、前記回転機表面温度値および前記周囲温度値を表示する表示部と、
     前記処理部の判定結果を出力する出力部と、
     上位システムから前記判定閾値を受信するとともに、前記上位システムに、前記現在の振動値および前記判定結果を送信する通信部とを備える、回転機の状態監視システム。
  2.  前記第2の温度センサは、前記プリアンプに内蔵され、
     前記プリアンプは、前記加速度センサ、前記第1の温度センサおよび前記第2の温度センサの各々から出力されたアナログ信号を増幅するとともに、増幅されたアナログ信号をデジタル信号に変換する、請求項1に記載の回転機の状態監視システム。
  3.  前記第2の温度センサは、前記本体部に内蔵され、
     前記プリアンプは、前記加速度センサ、前記第1の温度センサの各々から出力されたアナログ信号を増幅するとともに、増幅されたアナログ信号をデジタル信号に変換し、
     前記本体部は、前記第2の温度センサから出力されたアナログ信号を増幅するとともに、増幅されたアナログ信号をデジタル信号に変換する、請求項1に記載の回転機の状態監視システム。
  4.  前記センサヘッドから出力されたアナログ信号を前記プリアンプに伝達するためのケーブルと、
     前記センサヘッドを前記ケーブルに接続可能であるとともに、前記センサヘッドを前記ケーブルから取り外し可能なコネクタをさらに備える、請求項1から請求項3のいずれか1項に記載の回転機の状態監視システム。
  5.  回転機の振動を計測する加速度センサと、前記回転機の表面温度を計測する第1の温度センサとを含み、前記回転機に取り付け可能なセンサヘッドから、処理部が、振動値と、回転機表面温度値とを取得するとともに、前記処理部が、前記回転機の周囲温度を計測する第2の温度センサから周囲温度値を取得するステップと、
     前記処理部が、現在の振動値を判定閾値と比較して前記回転機の状態を判定するステップと、
     表示部が、前記振動値、前記回転機表面温度値および前記周囲温度値を表示するステップと、
     出力部が、前記処理部の判定結果を出力するステップと、
     通信部が、上位システムから前記判定閾値を受信するステップとを備える、回転機の状態監視方法。
  6.  コンピュータに、
     回転機の振動を計測する加速度センサと、前記回転機の表面温度を計測する第1の温度センサとを含み、前記回転機に取り付け可能なセンサヘッドから、振動値と、回転機表面温度値とを取得するとともに、前記回転機の周囲温度を計測する第2の温度センサから周囲温度値を取得するステップと、
     現在の振動値を判定閾値と比較して前記回転機の状態を判定するステップと、
     前記振動値、前記回転機表面温度値および前記周囲温度値を表示部により表示させるステップと、
     前記判定するステップにより得られた判定結果を出力部により出力させるステップと、
     上位システムから前記判定閾値を通信部により受信させるステップとを実行させる、プログラム。
  7.  請求項6に記載のプログラムを記録した、コンピュータ読み取り可能な記録媒体。
PCT/JP2017/041273 2017-03-13 2017-11-16 回転機の状態監視システム、回転機の状態監視方法、プログラムおよび記録媒体 WO2018168073A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/472,931 US20190339120A1 (en) 2017-03-13 2017-11-16 State Monitoring System for Rotating Machine, Method of Monitoring State of Rotating Machine, Program, and Recording Medium
KR1020197017923A KR20190086526A (ko) 2017-03-13 2017-11-16 회전기의 상태 감시 시스템, 회전기의 상태 감시 방법, 프로그램 및 기록 매체
CN201780080405.2A CN110100158A (zh) 2017-03-13 2017-11-16 旋转机的状态监视系统、旋转机的状态监视方法、程序以及存储介质
EP17900796.8A EP3598087B1 (en) 2017-03-13 2017-11-16 State monitoring system for rotating machine, method of monitoring state of rotating machine, program, and recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-047083 2017-03-13
JP2017047083A JP6852476B2 (ja) 2017-03-13 2017-03-13 回転機の状態監視システム、回転機の状態監視方法、プログラムおよび記録媒体

Publications (1)

Publication Number Publication Date
WO2018168073A1 true WO2018168073A1 (ja) 2018-09-20

Family

ID=63523402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/041273 WO2018168073A1 (ja) 2017-03-13 2017-11-16 回転機の状態監視システム、回転機の状態監視方法、プログラムおよび記録媒体

Country Status (7)

Country Link
US (1) US20190339120A1 (ja)
EP (1) EP3598087B1 (ja)
JP (1) JP6852476B2 (ja)
KR (1) KR20190086526A (ja)
CN (1) CN110100158A (ja)
TW (1) TWI660256B (ja)
WO (1) WO2018168073A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7280703B2 (ja) 2019-01-31 2023-05-24 住友重機械工業株式会社 診断システム
JP7436169B2 (ja) * 2019-09-18 2024-02-21 ファナック株式会社 診断装置および診断方法
JP6762631B1 (ja) * 2020-01-10 2020-09-30 メインマーク・ストラクチュアル・コンサルティング株式会社 状態解析プログラム、装置、及びシステム
KR102533532B1 (ko) * 2020-11-30 2023-05-16 재단법인한국조선해양기자재연구원 모터의 온도성능 시험방법
CN116661531B (zh) * 2023-08-02 2023-11-10 通达电磁能股份有限公司 一种减振散热设备的控制方法、控制器及减振散热设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63145923A (ja) * 1986-12-10 1988-06-18 Toshiba Corp 振動変位検出装置
JPH07243682A (ja) * 1994-03-03 1995-09-19 Takasago Thermal Eng Co Ltd ファンフィルタユニット及びクリーンルーム
JPH08289376A (ja) * 1995-04-18 1996-11-01 Kanden Kogyo Kk 機器運転データ測定監視システム
JPH10227700A (ja) * 1997-02-14 1998-08-25 Toyobo Co Ltd 振動・温度検出用一体型センサ
JP2007010415A (ja) 2005-06-29 2007-01-18 Toshiba Corp 軸受異常診断システム、軸受異常診断装置及び軸受異常診断方法
JP2009229090A (ja) * 2008-03-19 2009-10-08 Fuji Electric Systems Co Ltd 加速度センサ
JP2017166960A (ja) * 2016-03-16 2017-09-21 中国電力株式会社 計測診断装置、及び計測診断方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5726911A (en) * 1996-08-22 1998-03-10 Csi Technology, Inc. Electric motor monitor
US6694285B1 (en) * 1999-03-13 2004-02-17 Textron System Corporation Method and apparatus for monitoring rotating machinery
JP2002272172A (ja) * 2001-03-15 2002-09-20 Toshiba Corp 流体軸受けスピンドルモータを備えたディスク記憶装置及び同スピンドルモータの異常検出方法
KR100415325B1 (ko) * 2002-02-04 2004-01-24 이윤호 모터 모니터링 시스템
DE102007015102A1 (de) * 2007-03-29 2008-10-02 Robert Bosch Gmbh Motoranordnung
CN101920470B (zh) * 2010-08-02 2011-12-07 西安交通大学 一种机床主轴集成监测环装置
CN202255643U (zh) * 2011-08-29 2012-05-30 江阴康强电子有限公司 一种用于旋转机械的监控保护装置
CN202734956U (zh) * 2012-08-07 2013-02-13 成都威尔森科技发展有限责任公司 一种具有温度测量功能的振动传感器
CN104061178A (zh) * 2013-03-21 2014-09-24 北京奇宏科技研发中心有限公司 风扇轴承寿命的监控装置
US20150310723A1 (en) * 2014-04-29 2015-10-29 Aktiebolaget Skf Trending machine health data using rfid transponders
CN204128709U (zh) * 2014-04-30 2015-01-28 苏州新代数控设备有限公司 用于马达的温度监控装置
EP3163074B1 (en) * 2014-06-24 2020-04-22 NTN Corporation Condition monitoring system and wind power generation system using same
JP2016024007A (ja) * 2014-07-18 2016-02-08 Ntn株式会社 機械部品診断システムおよびそのサーバ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63145923A (ja) * 1986-12-10 1988-06-18 Toshiba Corp 振動変位検出装置
JPH07243682A (ja) * 1994-03-03 1995-09-19 Takasago Thermal Eng Co Ltd ファンフィルタユニット及びクリーンルーム
JPH08289376A (ja) * 1995-04-18 1996-11-01 Kanden Kogyo Kk 機器運転データ測定監視システム
JPH10227700A (ja) * 1997-02-14 1998-08-25 Toyobo Co Ltd 振動・温度検出用一体型センサ
JP2007010415A (ja) 2005-06-29 2007-01-18 Toshiba Corp 軸受異常診断システム、軸受異常診断装置及び軸受異常診断方法
JP2009229090A (ja) * 2008-03-19 2009-10-08 Fuji Electric Systems Co Ltd 加速度センサ
JP2017166960A (ja) * 2016-03-16 2017-09-21 中国電力株式会社 計測診断装置、及び計測診断方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3598087A4

Also Published As

Publication number Publication date
US20190339120A1 (en) 2019-11-07
EP3598087B1 (en) 2024-04-24
EP3598087A4 (en) 2021-01-06
JP6852476B2 (ja) 2021-03-31
JP2018151232A (ja) 2018-09-27
TWI660256B (zh) 2019-05-21
TW201833698A (zh) 2018-09-16
KR20190086526A (ko) 2019-07-22
EP3598087A1 (en) 2020-01-22
CN110100158A (zh) 2019-08-06

Similar Documents

Publication Publication Date Title
WO2018168073A1 (ja) 回転機の状態監視システム、回転機の状態監視方法、プログラムおよび記録媒体
JP5738711B2 (ja) 回転機械状態監視装置、回転機械状態監視方法及び回転機械状態監視プログラム
JP4926166B2 (ja) モータの内側または外側に取り付けるためのインターフェースモジュール
CN110431390B (zh) 信息终端器和机械部件诊断系统
WO2014185346A1 (ja) 監視システムおよびその診断装置・監視端末
JP2009109350A (ja) 回転機械装置の監視診断システム
JP2019207126A (ja) 異常診断システム及び振動センサ
WO2015002617A1 (en) Multi-function machine condition analyzer instrument
JP2009133810A (ja) 振動監視装置
JP4997936B2 (ja) 転がり軸受の異常診断装置および乗物
JP2020071040A (ja) 振動解析診断システム及び振動解析診断方法
JP2014222150A (ja) 電動部品監視装置及び電動部品監視方法
TW201339848A (zh) 自我診斷健康狀態的傳動系統
EP4336164A1 (en) Vibration diagnosis device
WO2022131170A1 (ja) 異常検出装置、異常検出方法、異常検出プログラム、ベアリングの異常検出システム
JP2004093255A (ja) 機械設備の異常診断装置及び方法
JP2021011371A (ja) 診断装置、診断システムおよび診断方法
JP2007127554A (ja) 異常監視装置
CN113795735B (zh) 用于监测旋转装置的方法以及状态监测设备
JP2013086196A (ja) 刃具診断装置
JP2022097178A (ja) ベアリングの異常検出システム
JP2021004758A (ja) 振動解析診断システム及び振動解析診断方法
JP2006220533A (ja) 回転機械の振動入力処理装置、振動入力処理方法および振動診断装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17900796

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197017923

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017900796

Country of ref document: EP

Effective date: 20191014