JP2017166960A - 計測診断装置、及び計測診断方法 - Google Patents
計測診断装置、及び計測診断方法 Download PDFInfo
- Publication number
- JP2017166960A JP2017166960A JP2016052144A JP2016052144A JP2017166960A JP 2017166960 A JP2017166960 A JP 2017166960A JP 2016052144 A JP2016052144 A JP 2016052144A JP 2016052144 A JP2016052144 A JP 2016052144A JP 2017166960 A JP2017166960 A JP 2017166960A
- Authority
- JP
- Japan
- Prior art keywords
- measurement
- value
- data
- acceleration
- cpu
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
Abstract
Description
原子力発電所の回転機器の振動診断技術についての技術基準として「JEAG 4221−20XX 原子力発電所の設備診断に関する技術指針―回転機械振動診断技術」がある。
簡易診断は、状態監視データの特徴、経時変化の傾向及びこれらから予測されるその後の推移を、管理基準と比較することで、劣化又は故障の程度の推定及び対応時期の判断を行うものである。本手法は傾向管理と一般的に呼ばれている。
原子力発電所では、運転している回転機器の軸受部振動が増大した等の異常が発見された場合は、運転部門と保修部門が協議を行い、予備機がある場合は切り替えを行い、予備機がない場合は系統を停止して点検する等の対策をとる。
このため、回転機器に発生している振動が増大することに起因して故障が発生した場合は、運転中であれば回転機器の突然のトリップ等で原子力発電所の運転に多大の影響を及ぼす可能性があり、運転計画の変更を生じる可能性があるため、回転機器に対して日常の状態管理が不可欠である。
特許文献2には、回転機の振動データと回転数データを取り込み、回転機械の全回転数全領域ごとの振幅値を記録し、過去データの平均値と比較する技術が開示されている。
特許文献3には、振動波形についての現在値と振動管理基準値とを比較することで異常の判別を行うことと、分析に高速フーリエ演算を用い、予め採取した異常時データと現在データを比較し、異常の判断を行う技術が開示されている。
市販の振動計測器にあっては、あらゆる振動モードの測定を行うため、一般に多彩な機能を搭載している。しかし、一般作業員が使用するには測定器の取扱いやデータ採取について熟練が必要であり、必ずしも簡易なものではなかった。
現状市販されている計測器や振動計測診断方法では、以下の問題点がある。
(1)従来の振動計測業務では、振動計について十分な知識を持ち、振動計測の力量を持った専門の作業員が労力をかけて振動計測を行い、データ採取を行っている。振動計測業務は、専門性が高く、データの収集及び評価に時間がかかるという欠点がある。なお、専門的な知識例として、以下のことに習熟する必要がある。
(例1)軸受部の振動計測を行うためには適切な加速度ピックアップを選択しなくてはならない。目的に応じた感度や振動周波数帯レンジのピックアップについて選択することについては相応の学習が必要である。
(例2)市販の振動計測器は多機能すぎるため、プラントで使用するような回転機の軸受監視用に計測器の設定を調整する必要があり、機器に精通する必要がある。
(例3)簡易診断、精密診断の方法は確立しているが、振動計測器でデータ収集しても結果の判定は力量のある要員で判断しなくてはならず、データ意味合いについても習熟する必要がある。
(3)運転員は軸受部の状態を一般的に聴診棒による聴診で行うため、軸受部の音色や音量についての表現については個人差が生じやすく、一定の基準がない。軸受部から発するグリス切音についても同様に音量の強弱の表現でしか表しておらず、軸受管理記録でも定量値にできない。
そのため、グリスアップが必要な振動値や、グリスアップ後の振動低下量の感知についても運転員や保修員の感覚に頼っており、客観的な指標がない。
(4)簡易診断における傾向管理で使用されるデータは振動の速度モードによる振幅値、もしくは波形のピーク値と実効値の比であるクレストファクタによるものである。その他に、軸受部の故障モードは文献にあるように、振動の周波数分析から高い周波数帯領域から振動値が出始め、故障・劣化が進むにつれ、高周波帯域から低周波帯域へと振動モードが移行する傾向にある。簡易診断では振動速度の実効値の大きさで劣化を判断しているが(ISO10816−1「振動評価基準(振動速度の実効値))、早期の劣化兆候である高周波領域の振動数増加を定量的に評価する手段は、高速フーリエ変換による周波数解析結果を出力し、高調波やノイズの増加量は人間がFFTの出力値を観察することで確認するほかなく、高調波やノイズの増加量を示す簡単な指標についてはなかった。
(6)圧電式加速度ピックアップの周波数帯ごとの感度は完全なフラットではない。また、高い周波数帯にあるピックアップ自体の共振領域や中間帯の感度誤差があるため、振動周波数解析の精度に少なからず影響を及ぼしている。
(7)使用中にピックアップ感度が低下、または故障した場合、正確なデータとならない。ピックアップの故障はピックアップ内部で発生した場合はわかりづらく、知らずに誤ったデータを採取してしまう恐れがある。
請求項4記載の発明は、上記課題を解決するため、回転機器の軸受部に生じる振動の計測結果に基づいて前記軸受部の異常の有無を診断する計測診断装置であって、前記回転機器の振動を検出する加速度検出手段からの加速度信号を量子化するA/D変換器と、前記量子化後の加速度データを高速フーリエ変換する高速フーリエ変換手段と、前記回転機器の回転速度を基準周波数に変換する変換手段と、前記高速フーリエ変換手段により生成されたレベルデータのうち、前記基準周波数を基準波とした複数の異なる高調波帯域についての歪み値を取得する取得手段と、前記高調波帯域についての歪み値に基づいて、前記回転機器の軸受部に係る劣化状態を数値化する数値化手段と、を備えることを特徴とする
請求項4記載の発明によれば、簡易な操作で回転機器の振動を測定でき、軸受部振動に関する指標化されたパラメータ値が表示され、最適な振動監視ができ、収集データについての管理を行う最適な計測結果を得ることができ、回転機の簡易的な軸受振動監視に特化することができる。
本発明は、簡易な操作で回転機器の振動を測定でき、軸受部振動に関する指標化されたパラメータ値が表示され、最適な振動監視ができ、収集データについての管理を行う最適な計測結果を得ることができ、回転機の簡易的な軸受振動監視に特化した計測診断装置を提供するために、以下の構成を有する。
すなわち、本発明の計測診断装置は、回転機器の軸受部に生じる振動の計測結果に基づいて軸受部の異常の有無を診断する計測診断装置であって、前記回転機器の振動を検出する加速度検出手段からの加速度信号を量子化するA/D変換器と、量子化後の加速度データを高速フーリエ変換する高速フーリエ変換手段と、高速フーリエ変換手段により生成されたレベルデータのうち、回転機器の回転速度に依存しない4kHz〜6kHz、又は8kHz〜10kHzの周波数帯域のレベルデータを通過させるバンドパスフィルタと、バンドパスフィルタを通過した4kHz〜6kHz、又は8kHz〜10kHzの周波数帯域のレベルデータに対して、周波数帯域内の各周波数において平均値を算出して測定値とする算出手段と、を備えたことを特徴とする。
以上の構成を備えることにより、簡易な操作で回転機器の振動を測定でき、軸受部振動に関する指標化されたパラメータ値が表示され、最適な振動監視ができ、収集データについての管理を行う最適な計測結果を得ることができ、回転機の簡易的な軸受振動監視に特化することができる。
上記の本発明の特徴に関して、以下、図面を用いて詳細に説明する。
本実施形態では、回転機器として例えば原子力発電所や火力発電所に配置されている電動機を対象とするが、水力発電所などのプラントに配置されている電動機を対象としてもよく、また回転機器は軸受部(転がり軸受)を有するものであればよい。
図1(a)に示すように、原子力発電所1は、原子炉2、タービン4、復水器6、海水路8、配管10、給水ポンプ11、発電機12、センサ14、計測診断装置20を備えている。
原子燃料を核反応させて原子炉2内で蒸気を発生させ、配管10aを介して蒸気をタービン4に噴射することによりタービン4を回転させ、タービン4の回転軸に接続されている発電機12において交流電力を発電させる。タービン4を回転させた後に蒸気は配管10bを介して復水器6に入り、復水器6において海水で冷却やされて水に戻り、配管10cおよび給水ポンプ11を介して水が再び原子炉2に戻り、原子炉2内で沸騰して蒸気になるという動作を繰り返す。
給水ポンプ11の回転機に設けられた軸受部11aには、センサ群14が配置されており、センサ群14において検出された検出信号は計測診断装置20に出力される。計測診断装置20は、センサ群14から取得した検出信号に基づいて、給水ポンプ11の軸受部11aに生じる振動を診断する。
加速度ピックアップ14aは、例えば圧電式加速度ピックアップであり、加速度に比例して自己発生された電荷(電荷・電圧)を出力する。
ここで、簡易診断用の加速度ピックアップについて説明する。
簡易診断では、振動センサは、一般に、小型のものほど測定周波数を高くすることができるが、一方、感度は低下する特性がある。また、計測診断装置や測定対象機器の特性によって使用すべきセンサも異なることから、これらを考慮して適切な感度のセンサを選定する必要がある。
なお、使用する振動センサによって特性が異なることから、同一箇所の測定により傾向監視を行う場合には、同一仕様の振動センサを用いることが重要である。
振動センサの感度と周波数特性の関係は、一般に、振動センサの感度と周波数特性の関係は、感度が高いとS/N比が高くなるが共振周波数が低くなり、使用出来る周波数帯域が狭くなる。逆に感度を低くするとS/N比は低下するが周波数帯域は広くなる。
従って、異なる目的、あるいは測定対象物の設置環境や計測診断装置の都合によって異なる感度のセンサを採用する場合があり、例えば特定の周波数帯域で主に使用したい場合に、感度の高いセンサ(S/N比が高いセンサ)を使用する場合もある一方、広範囲の周波数帯域のデータを採取・評価したい場合には、感度の低いセンサ(周波数帯域が広いセンサ)を使用する場合もある(以上、出典:「JEAG 4221−20XX 原子力発電所の設備診断に関する技術指針―回転機械振動診断技術」より)。
以上のことから、簡易診断に用いる圧電式加速度ピックアップは、広帯域・低感度のものとなる。本実施形態では、小型の広帯域・低感度特性を有する加速度ピックアップを使用する。小型であるため、ピックアップ本体と振動体(軸受部)が同じように振動することができ、良好な振動データを得ることが可能となる。また、一般的にピックアップの重量により振動体の振動状態が変化しないためには、ピックアップの小型化が不可欠である。
温度センサ14b、温度センサ16は、接触式の温度センサもしくは非接触式の放射温度計であり、機器温度や室温をそれぞれ計測する。一般的に、軸受部の振動が増大すると、振動による機械的エネルギーの増加により、軸受部の温度上昇がみられる。ただし、振動の増大後に遅れて温度は上昇する傾向にある。
また、軸受部のグリスが不足していると潤滑が不足し、軸受部の温度が上昇する。反対にグリスの給油直後や、グリスの補給量が多すぎる場合でも軸受部の温度が上昇する現象ある。これは、グリスが補充されるとグリスによる抵抗の増大により熱発生が多くなり、温度が上昇する。温度が高い状態であればグリスの劣化速度が大きくなることが一般的に知られている。
このため、温度センサを設ける目的は、軸受部の振動による温度データも軸受部の健全性に関する二次データとして入力・記憶することにある。
また、軸受部に対する実際のグリスアップ作業時では、グリス注入ごとに軸受部の温度が上昇するため、保修員が軸受部に棒状温度計を取付け、グリスを数cc注入するごとに温度データを採取し、軸受部の温度が安定することを確認しながら、グリスを注入する。このため、温度センサを計測診断装置20に接続しておくことで、温度変化の傾向を連続的に測定することができ、温度データを蓄積することが可能となる。
なお、詳細説明の副次的効果として、本計測診断装置をグリス切れ管理機能の専用機とした場合、回転速度計は必要がなく、温度計が必須となる。回転速度計がいらない理由は、グリス切れの場合は機器の回転速度に関係なく、グリス切れの特徴的な周波数帯は8kHz〜10KHzで一定という知見があるからである。
回転速度計14cは、非接触式のデジタルタコメータであり、回転機のシャフトやカップリング等の対象物に反射テープを貼り付けておき、レーザ光を反射テープの方向に照射して反射テープによる反射されたレーザ光を非接触で受光して計測する回転速度測定装置である。
本実施形態における回転速度測定の目的は、計測した振動データをFFT演算器で解析する場合、機器の基本回転速度を入力しなければ、その後の全高調波歪+Nでの演算ができないために入力をしている。FFT演算された振動データのパワースペクトルでは、回転速度周波数(基本周波数)はその前後の周波数出力と比較して卓越している。そのため、デジタルタコメータから入力された回転速度データを周波数値に変換してから、パワースペクトルの中から基本周波数に近似し、かつ前後の周波数から卓越した周波数帯を導き出す。ここで、近似した周波数帯としているが、回転速度を周波数に変換した値と、FFT演算した後の周波数値は、FFT演算精度の関係上、完全に一致はしないため、近似かつ出力が卓越している周波数を探す。
また、回転速度計14cからケーブルを介して計測診断装置20に接続することにより、計測診断装置20の負荷を軽減する。
回転速度入力部18は、操作入力部17a、回転速度計14c、機器回転速度データベース17bからそれぞれ受け付けたデータのうち何れか1つのデータを選択して計測診断装置20に出力する。なお、回転速度入力部18を計測診断装置20に備えるように構成してもよい。
操作入力部17aは、キーボードを備え、ユーザにより操作入力された値を出力する。本実施形態では、回転機器の回転をスタンドアローン型の非接触式デジタルタコメータにより計測しておき、ユーザにより当該デジタルタコメータの読み値を直接に操作入力部17aに操作入力してもよい。
機器回転速度データベース17bは、回転機器の回転速度を記憶したデータベースである。
<温度入力部>
温度入力部19は、温度センサ14b、温度センサ16からそれぞれ受け付けた温度信号をデジタル信号の温度データに変換して計測診断装置20に出力する。なお、温度入力部19を計測診断装置20に備えるように構成してもよい。
計測診断装置20には、ネットワークNを介して振動データサーバ25が接続されている。
振動データサーバ25は、計測診断装置20からネットワークNを介して送信される振動データを受信して、ハードディスク等の記憶装置に記憶させ、必要に応じて記憶装置から読み出した振動データをネットワークNを介して計測診断装置20に送信する。
振動データサーバ25は、計測診断装置20の処理結果・信号入力値をモニタに表示する。これにより、運転員・保修員はデータを現場で確認することや、振動データサーバ25を用いて各軸受部の状態管理を行うことができる。
なお、振動データサーバ25のモニタには各パラメータの入力値、パラメータの傾向についてガイダンス表示、パラメータの意味の解説等を表示してもよい。また、後述する軸受部簡易診断測定部82で演算されたデータを表示する際には、計測データ、演算データや測定採取条件(ピックアップの種類やピックアップ取付方法等も含めて)等全部のデータを一画面で表示してもよい。
計測診断装置20は、自動利得調整部30、信号処理部50、回転速度入力部18、温度入力部19、I/Oブリッジ部60、CPU62、メインメモリ部64、フラッシュメモリ部66、LCD表示部68、LAN_I/F部70を備えている。
自動利得調整部30は、チャージアンプ32、HPF/LPF34、利得調整器36、比較器37、ピーク検波器38、ピーク表示ランプ40、A/D変換器44を備えている。自動利得調整部30には、振動アナログ信号をモニタするためのオペアンプ46、イヤフォン48が接続されている。
チャージアンプ32は、加速度ピックアップ14aからの加速度信号を入力して増幅する。すなわち、チャージアンプ32は、加速度ピックアップ14aにより自己発生された電荷(加速度に比例して電荷・電圧を発生する)に対して、電荷を処理し易い電圧信号に変換して増幅する。チャージアンプ32は、A/D変換器を内蔵し、増幅加速度信号をA/D変換器によりA/D変換されたデータをI/Oブリッジ60に出力する。
HPF/LPF34は、フィルタを構成し、チャージアンプ32から出力される増幅加速度信号の帯域を制限して通過させる。すなわち、HPF/LPF34は、加速度ピックアップ14aにより発生された電圧信号中に超低周波数(例1Hz〜2Hz以下)、及び加速度ピックアップ14aの共振周波数以上(例えば48kHz以上)の周波数帯をそれぞれハイパス処理及びローパスフィルタ処理を行い、後段のFFTアナライザ測定結果のアンチエイリアシングの前処理を行う。なお、アンチエイリアシングとは、デジタル信号ではあるサンプリング周波数でサンプリングされるために、サンプリング周波数の半分を超える周波数成分は折り返し雑音となる。この折り返し雑音(alias)を遮断する技術がアンチエイリアス処理である。アンチエイリアス処理では、例えば帯域制限フィルタを使ってサンプリング周波数の半分を超える周波数成分を予め除去してからサンプリングする。このフィルタは低域通過フィルタ(ローパスフィルタ、Low-pass filter)であり、アンチエイリアス処理を行う低域通過フィルタをアンチエイリアスフィルタと呼ばれる。
比較器37は、利得調整器36から出力される加速度信号と基準電圧(GND)とを比較して比較結果信号を利得調整器36に出力する。
比較器37は、加速度信号が基準電圧よりも大きい場合に、利得調整器36の増幅率の変化範囲を制限する。比較器37は、HPF/LPF34からの加速度信号がクリップしないように、利得調整器36の増幅率の変化上限を−0.5dB付近として制限する。
チャージアンプ32からの電圧信号である加速度信号をA/D変換器44に入力させるためには、A/D変換器44が正常に処理できる電圧に制御する必要がある。このため、A/D変換器44にとって過大な入力電圧にならないように入力信号をピーク値から−0.5dB程度下げる利得調整を行うため、利得調整器36の出力値と基準電圧値(GND)とを比較器37で比較して増減調整信号を出力し、利得調整器36により増減調整信号を用いて自動利得調整を行う。
ピーク検波器38は、利得調整器36から出力される加速度信号を入力し、加速度信号がゲイン−0.5dB程度のピーク値に到達したか否かを検波してピーク信号(ピークランプ不点およびゲイン−0.5dB)を出力する。ピーク検波器38は、A/D変換器を内蔵し、ピーク信号をA/D変換器によりA/D変換されたデータをI/Oブリッジ60に出力する。
利得調整結果を目視確認できるようにピーク検波器38、及びピーク表示ランプ40を設け、ピーク表示ランプ40が消灯及び後述する表示器に「測定準備完了表示」等を表示させることにより、測定者に入力信号の調整が完了したことを伝える。
なお、高精度の測定結果を求めるため、A/D変換器サンプリング周波数は96KHz以上とし、SN比を高くするため、ビット深度はアナログ波形をデジタル上で表現できる上限である24ビット以上とする。なお、サンプリングデータ数は2の累乗数であり、本実施形態に示すハードウェア構成において処理できる数とし、周波数ライン数も同じくハードウェア構成上で支障がない最大数とする。
オペアンプ46は、ユーザに振動音を直接モニタさせるために設けられ、利得調整器36から出力される振動アナログ信号を増幅してイヤフォン48に出力する。
信号処理部50は、DSP(digital signal processor)により構成され、LPF52、FFTアナライザ部54、感度補正回路部56を備えている。
LPF52は、A/D変換器44から出力される電圧データを入力しており、ローパスフィルタ処理によりFFTアナライザ部54へ出力する信号をサンプリング周波数の2倍以下の周波数とする。ローパスフィルタ処理はアンチエイリアシングを考慮し、機器で設定しているサンプリング周波数をもとに設定する。LPF52から出力されるデータは、実効値変換器54aに入力されるとともに、I/Oブリッジ部60を介してCPU62に入力される。
FFTアナライザ部54は、高速フーリエ変換手段を構成し、実効値変換器54a、ハニング窓関数演算器54b、FFT演算器54cを備え、FFTアナライズ処理を行う際に、波形データを実効値に変換し、実効値となった波形データにハニング窓関数を掛けてFFT処理を行う。FFTアナライザ部54は、A/D変換器44により量子化後の加速度データを高速フーリエ変換する。
実効値変換器54aは、LPF52から入力される電圧データに対して実効値変換を行って、変換結果となる実効値電圧データがハニング窓関数演算器54bに出力する。
ハニング窓関数演算器54bは、実効値変換器54aから入力される実効値電圧データに対してハニング窓関数を乗じた後の演算結果データがFFT演算器54cに出力する。
FFT演算器54cは、ハニング窓関数演算器54bから入力される演算結果データに対して、振動値のパワースペクトル(出力・周波数)で各周波数の出力値として、加速度ピックアップの周波数毎の電圧成分を求め、電圧成分をデータセレクタSEL1、SEL2を介して比較演算器56bに出力するとともに、電圧成分を感度補正回路部56に出力する。
感度補正回路部56は、感度補正演算器56a、比較演算器56b、フラッシュメモリ56c、校正モード判定部56d、補正値入力部56eを備えている。感度補正回路部56から出力されるデータはI/Oブリッジ部60を介してCPU62に入力される。
感度補正演算器56aは、感度補正演算器を構成し、補正値入力部56eから入力された各周波数帯域の補正値に基づいて、FFTアナライザ部54から出力される各周波数帯域のレベルデータを夫々補正する。感度補正演算器56aは、補正値入力部56eから入力された各周波数帯域の補正値に基づいて、FFTアナライザ部54から出力される各周波数帯域のレベルデータを夫々補正する。
比較演算器56bは、比較手段を構成し、フラッシュメモリ56cから読み出した各周波数帯域の第1のレベルデータと、使用中の加速度ピックアップから取得した各周波数帯域の第2のレベルデータとを比較する。
フラッシュメモリ56cは、記憶手段を構成するSSD(solid state drive)を備え、基準となる新品時の加速度ピックアップ(第1の加速度検出手段)から取得した各周波数帯域のレベルデータを記憶する。
校正モード判定部56dは、入力される論理値が論理「0」から論理「1」に切り替わった場合に、校正モードに切り替わったことと判定し、データセレクタSEL1、SEL2を閉結状態に切り替え、データセレクタSEL3を開放状態に切り替える。
補正値入力部56eは、補正値入力手段を構成し、比較結果データを各周波数帯域の補正値として入力する。補正値入力部56eは、各周波数帯域の補正値を入力する。
なお、補正信号は、メーカ校正結果が正常であれば±1%程度である。
フラッシュメモリ56cは、加速度ピックアップが新品時の校正直後の特性値を記憶して保持する。
比較演算器56bは、新品時の加速度ピックアップの校正信号のFFT出力レベルと、使用後の加速度ピックアップの校正信号のFFT出力レベルとを比較し、加速度ピックアップの故障の有無を検知する。
具体的には、新品時の加速度ピックアップの校正信号のFFT出力レベルと、使用後の加速度ピックアップの校正信号のFFT出力レベルを引き算し、そのズレ具合を目視して異常か判断を行う。
文献例によれば、加速度ピックアップの故障例として高域の感度が上昇しておりFFT出力値も高く表示されるため、新品時と使用後のFFTデータの比較は有効であることがわかる。
図2に示すように、比較校正を行う場合には、感度補正回路部56をバイパスするとともに、後述する軸受部簡易診断測定部82をバイパスする。
CPU62は、第1の取得手段を構成し、校正用振動発生器(図示しない)が発生した振動を基準となる新品時の加速度ピックアップ(第1の加速度検出手段)に印加した場合に、高速フーリエ変換手段により生成された各周波数帯域の第1のレベルデータを取得する。
CPU62は、第2の取得手段を構成し、校正用振動発生器が発生した振動を使用中の加速度ピックアップに印加した場合に、FFTアナライザ部54により生成された各周波数帯域の第2のレベルデータを取得する。
CPU62は、診断手段を構成し、比較演算器56bの比較結果データに基づいて、使用中の加速度ピックアップの異常の有無を診断する。比較演算結果については、CPU62に入力し、LCD表示部68に表示される。
これにより、校正用振動発生器が発生した振動を基準となる第1の加速度ピックアップ14aから取得した各周波数帯域の第1のレベルデータと、使用中の加速度ピックアップ14aから取得した各周波数帯域の第2のレベルデータとの比較結果データに基づいて、使用中の加速度ピックアップ14aの異常の有無を診断することができる。
また、新品データは本計測装置の製造時に、同じFFTアルゴリズムを備えた新品データ取得装置(図示しない)からあらかじめ新品時の第一のレベルデータを取得し、フラッシュメモリ56cに格納しておいてもよい。
回転速度入力部18は、データセレクタ18aを備え、操作入力部17a、回転速度計14c、機器回転速度データベース17bからそれぞれ受け付けたデータのうち何れか1つのデータを選択してI/Oブリッジ部60に出力する。
なお、図2に示すように、回転速度計14cを使用しているが、プラントで使用される誘導電動機は負荷変動によるすべりの影響以外では、通常運転中は回転速度が変化することはなく、一度測定しておけば次回以降は測定する必要がない。このため、本実施形態では、機器毎の回転速度データを入力・保存する機器回転速度データベース17bを設けて、機器回転速度データベース17bから出力される回転速度データを選択して利用している。
温度入力部19は、A/D変換器19a、19bを備え、温度センサ14b、温度センサ16からそれぞれ受け付けた温度信号をデジタル信号の温度データに変換してI/Oブリッジ部60に出力する。
I/Oブリッジ部60は、データを入力するためのポートとしてポートA〜ポートIを有し、CPUからの選択信号に応じて、ポートA〜ポートIの何れか1つのポートに入力されているデータをCPU62に出力する。
CPU(central processing unit)62は、内部にROM(read only memory)を有し、ROMからオペレーティングシステムOSを読み出してメインメモリ部64上に展開してOSを起動し、OS管理下において、ROMからアプリケーションソフトウェアのプログラム(処理モジュール)を読み出し、GUI(Graphical User Interface)機能や各種処理を実行する。
なお、CPUは各タスクを並行して各種処理を行うため、CPUは、複数コア・複数スレッド処理ができるものを用いてもよい。
メインメモリ部64は、RAM(random access memory)を有し、オペレーティングシステムOS、アプリケーションソフトウェアのプログラムに対して、ワークエリアを提供する。
フラッシュメモリ部66は、CPU62が演算した結果データを記憶して保持する。フラッシュメモリ部66は、採取されたデータを格納する。
LCD表示部68は、CPU62から出力されるデータとして、基本設定モードの選択画面、処理結果のグラフ、信号入力値等を表示する。LCD表示部68は、その他のパラメータとして、周波数解析結果の画面表示、速度振幅の波形表示、加速度波形、クレストファクタ及び実効値の表示、温度計表示、回転速度表示を行う。
LAN_I/F部70は、I/Oブリッジ部60と有線LAN又は無線LANに接続可能なインターフェースを有し、CPU62からI/Oブリッジ部60を介して出力されるデータ(採取されたデータ)を振動データサーバ25へ伝送する。
図3に示すように、アプリケーションソフトウェアである軸受部簡易診断測定部82はオペレーティングシステムOS80の管理下に位置している。
軸受部簡易診断測定部82は、校正比較演算表示処理部83、周波数解析表示処理部84、デジタルBPF処理部85、単純平均演算処理部86、デジタルBPF処理部87、単純平均演算処理部88、全高調波歪演算処理部89、加速度クレストファクタ処理部90、加速度振幅演算処理部91、温度表示処理部92、回転速度表示処理部93を備えている。
軸受部簡易診断測定部82に設けられている各部は、以下のパラメータを、OSを介し入力及び出力する。
(a)グラフ表示に用いる周波数解析値
(b)数値表示に用いるグリス切れ値
(c)数値表示に用いるキシリ音値
(d)数値表示に用いる全高調波歪+n(超高域、高域、中域、低域、回転域、全帯域)値
(e)数値表示に用いる加速度クレストファクタ、実効値
(f)グラフ表示に用いる加速度振幅演算器(波形)
(g)数値表示に用いる温度表示値:ただし、機器が接続していない場合は表示しない
(h)数値表示に用いる回転速度表示値
なお、(a)〜(d)は、FFTアナライザ部54の出力値を演算処理した結果である。
(e)〜(f)は、A/D変換器44によりA/D変換した後のデータがLPF52を通過して、得られた加速度信号を演算処理した結果である。
(g)〜(h)は、温度センサ14b、温度センサ16、操作入力部17a、回転速度計14c、機器回転速度データベース17b等からの信号値または入力値である。
(e)加速度クレストファクタとは、振動波形のピーク値の実効値に対する比率をいう。いわゆる転がり軸受部を対象とした実験によると、正常な軸受部における振動の波高率は4〜5であるのに対し、潤滑油が不足した潤滑不良では5〜10、軸受部の故障としてフレーキング傷が発生すると波高率は10以上になる。
なお、波高率は、軸受部の大きさ、運転条件または振動の測定条件が変わっても、フレーキング傷の発生を即時診断できる判定基準として有効である。
加速度クレストファクタの判定には、ピーク値と実効値をそれぞれ演算し、クレストファクタ簡易判断値を用いて良否判定を行う。
計測診断装置20には、例えば交流電源に接続されている電源部が備えられており、電源スイッチをON操作すると電源部から直流電源が計測診断装置20に設けられた各部に供給され、CPU62が起動される。
まず、ステップSM10では、CPU62は、内部に設けられたROMからオペレーティングシステムOSのプログラムを読み出してメインメモリ部64上に展開してOSの起動を実行する。
ステップSM12では、CPU62は、温度センサ、DSP、A/D変換器等を制御するためのドライバーソフトウエアの認識確認処理を行う。
ステップSM14では、CPU62は、OS管理下において、ROMから当該計測診断装置20を制御するためのアプリケーションソフトウェアのプログラム(処理モジュール)を読み出して起動する。
ステップSM16では、CPU62は、基本設定モード表示指令をGUIに発行する。GUIでは、図8に示すように、基本設定モードとして、「初期設定モード選択」ボタン、「補正・校正モード選択」ボタン、「送受信モード選択」ボタン、「システム停止選択」ボタンをLCD表示部68に表示する。
ステップSM18では、CPU62は、LCD表示部68に表示されているボタンのうち何れか1つがON操作されたことをGUIにより検知した場合に、該当ボタンの名称により示されるサブルーチンへ処理を移行(コール処理、又はジャンプ処理)する。
ここで、ユーザによりLCD表示部68に表示されている「初期設定モード選択」ボタンがON操作された場合は「初期設定モード選択」処理に移行し、「補正・校正モード選択」ボタンがON操作された場合は「補正・校正モード選択」処理に移行し、「送受信モード選択」ボタンがON操作された場合は「送受信モード選択」処理に移行し、「システム停止選択」ボタンがON操作された場合は「システム停止選択」処理に移行する。
ステップSM22では、CPU62は、オペレーティングシステムOSのプログラムのシャットダウンを実行する。この結果、当該計測診断装置20は電源がOFFされる。
この結果、図9に示すような「前回使用設定」画面が表示され、画面にはメッセージとして「前回設定を使用しますか。」、「OK」ボタン、「キャンセル」ボタンが表示される。
「前回使用設定」を再利用する場合、ステップSM34では、不連続で「前回使用設定」を使用するときには、フラッシュメモリ部66から「前回使用設定」の呼び出しを実行する。次いで、ステップSM36、ステップSM38に移行する。
ステップSM36では、CPU62は、加速度ピックアップ接続確認メッセージを表示させ、ステップSM64に移行する。
ステップSM38では、CPU62は、前回設定自動セットアップ処理を実行し、ステップSM40ではその後の処理開始指令を、ステップSM44、SM48、SM52、SM56の各処理では、前回設定をあらかじめ選択する。
なお、「前回使用設定」を再利用する場合、ステップSM34では、連続して「前回使用設定」を使用するときにはフラッシュメモリ部66から「前回使用設定」の呼び出しは行わず、ステップSM38に移行し、前回設定自動セットアップ処理は1回に制限し、さらにステップSM36に移行し、加速度ピックアップ接続確認メッセージを表示させ、ステップSM64に移行することとする。
<加速度ピックアップ選択処理>
ステップSM42では、CPU62は、ピックアップ取付方法選択指令をGUIに発行する。GUIでは、図10に示すように、加速度ピックアップ選択処理として、「加速度ピックアップ1選択」ボタン、「加速度ピックアップ2選択」ボタン、「加速度ピックアップ3選択」ボタン、「加速度ピックアップ補正なし」ボタンをLCD表示部68に表示する。
ステップSM44では、ユーザによりLCD表示部68に表示されている「加速度ピックアップ1選択」ボタンがON操作された場合は一旦「加速度ピックアップ選択処理」に移行した後に「加速度ピックアップ1選択」処理に移行し、「加速度ピックアップ2選択」ボタンがON操作された場合は一旦「加速度ピックアップ選択処理」に移行した後に「加速度ピックアップ2選択」処理に移行し、「加速度ピックアップ3選択」ボタンがON操作された場合は一旦「加速度ピックアップ選択処理」に移行した後に「加速度ピックアップ3選択」処理に移行し、「加速度ピックアップ補正なし」ボタンがON操作された場合は一旦「加速度ピックアップ選択処理」に移行した後に「加速度ピックアップ補正なし」処理に移行する。
ステップSM44での処理を終了した場合に、CPU62は、ステップSM46へ処理を移行する。
ステップSM46では、CPU62は、回転速度計入力選択指令をGUIに発行する。GUIでは、図11に示すように、回転速度入力選択モード処理として、「回転速度手動入力モード選択」ボタン、「回転速度データベース入力モード選択」ボタンをLCD表示部68に表示する。
ステップSM48では、ユーザによりLCD表示部68に表示されている「回転速度手動入力モード選択」ボタンがON操作された場合は「回転速度手動入力モード」処理に移行し、「回転速度データベース入力モード選択」ボタンがON操作された場合は「回転速度データベース入力モード」処理に移行する。
ステップSM48での処理を終了した場合に、CPU62は、ステップSM50へ処理を移行する。
ステップSM50では、CPU62は、温度センサ入力選択指令をGUIに発行する。GUIでは、図12に示すように、温度センサ使用選択処理として、「温度センサ使用選択」ボタン、「温度センサ不使用選択」ボタンをLCD表示部68に表示する。
ステップSM52では、ユーザによりLCD表示部68に表示されている「温度センサ使用選択」ボタンがON操作された場合は「温度センサ使用」処理に移行し、「温度センサ不使用選択」ボタンがON操作された場合は「温度センサ不使用」処理に移行する。
ステップSM52での処理を終了した場合に、CPU62は、ステップSM54へ処理を移行する。
ステップSM54では、CPU62は、ピックアップ取付け方法選択指令をGUIに発行する。GUIでは、図13に示すように、加速度ピックアップ取付け方法選択処理として、「ねじ止め選択」ボタン、「絶縁アタッチメント選択」ボタン、「両面テープ選択」ボタン、「マグネット選択」ボタン、「棒状アタッチメント選択」ボタン、「カットオフなし・または校正モード選択」ボタンをLCD表示部68に表示する。
ステップSM52では、ユーザによりLCD表示部68に表示されている「ねじ止め選択」ボタンがON操作された場合は「ねじ止め選択」処理に移行し、「絶縁アタッチメント選択」ボタンがON操作された場合は「絶縁アタッチメント選択」処理に移行し、「両面テープ選択」ボタンがON操作された場合は「両面テープ選択」処理に移行し、「マグネット選択」ボタンがON操作された場合は「マグネット選択」処理に移行し、「棒状アタッチメント選択」ボタンがON操作された場合は「棒状アタッチメント選択」処理に移行し、「カットオフなし・または校正モード選択」ボタンがON操作された場合は「カットオフなし・または校正モード選択」処理に移行する。
ステップSM56での処理を終了した場合に、CPU62は、ステップSM58へ処理を移行する。
ステップSM58では、CPU62は、初期設定条件記憶指令を発行する。次いで、ステップSM60では、CPU62は、ユーザにより設定された初期設定条件をフラッシュメモリ部66にストアする。この結果、フラッシュメモリ部66には初期設定条件が保存される。
次いで、ステップSM60での処理を終了した場合に、CPU62は、ステップSM62、ステップSM168へ処理を移行する。
この段階で、加速度ピックアップ14aのケーブルをチャージアンプ32に接続し、更に測定部位である軸受部に取付ける作業を行うこととする。
ステップSM62では、CPU62は、加速度ピックアップの接続確認を促すメッセージと、「接続確認」ボタンを表示する指令をGUIに発行する。
GUIでは、加速度ピックアップの接続確認を促すメッセージと、「接続確認」ボタンをLCD表示部68に表示する。
ステップSM64では、CPU62は、加速度ピックアップを接続したか否かを判断する。ここで、GUIから「接続確認」ボタンがON操作された場合はステップSM66に進む。一方、「接続確認」ボタンがON操作されていない場合はステップSM64を繰り返す。
ステップSM66では、CPU62は、加速度ピックアップ機能確認指令を発行し、タイマをスタートする。
ステップSM68では、CPU62は、チャージアンプ32を起動し、チャージアンプ32から加速度ピックアップ14aへの充電を実施する。
ステップSM70では、CPU62は、加速度ピックアップ14aへの充電状態に異常があるか否かを判断する。すなわち、CPU62は、チャージアンプ32に内蔵されているA/D変換器からI/Oブリッジ60のポートHを介して取得したチャージアンプの電圧状態に基づいて使用中の加速度ピックアップの異常の有無を診断する。ここで、加速度ピックアップ14aの充電状態に異常がない場合はステップSM76に進む。一方、加速度ピックアップ14aの充電状態に異常がある場合はステップSM72に進む。
ステップSM72では、CPU62は、タイマ経過が5秒以内である場合はステップSM68に戻り、タイマ経過が5秒を越えた場合にはステップSM74に進む。
ステップSM74では、CPU62は、エラー表示指令をGUIに発行する。GUIは、図14に示すように、「加速度ピックアップ取付状態または電源残量を確認してください。」というメッセージをLCD表示部68に表示する。なお、振動計測中、電源残量が少なくなった場合でもエラー表示をLCD表示部68に表示してもよい。
次いで、ステップSM74での処理を終了した場合に、CPU62は、ステップSM18に戻る。
ステップSM78では、CPU62は、「加速度ピックアップチェック異常なし」というメッセージをLCD表示部68に表示する。
ステップSM82では、CPU62は、自動利得調整開始メッセージ表示指令をGUIに発行する。GUIは、「自動利得調整開始」を表すメッセージをLCD表示部68に表示する。さらに、GUIでは、「ピークランプが不点灯か」というメッセージと「Yes」ボタン、「ゲイン−0.5dB整定済みか」というメッセージと「Yes」ボタンをLCD表示部68に表示する。次いで、ステップSM84、ステップSM86に進む。
ステップSM84では、CPU62は、「ピックアップ校正モード条件成立」処理(図22)に移行する。なお、ピックアップ校正モード条件成立時の条件は、回転機器の軸受部等の測定部位にピックアップを取り付けることではなく、基準振動器に加速度ピックアップを取り付けることである。
CPU62は、ピーク検波器38に内蔵されているA/D変換器からI/Oプリッジ部60のポートIを介して取得したピークランプ不点およびゲイン−0.5dBに対して整定済みとして判断する。なお、ゲイン−0.5dB整定済みではない場合には、比較器37から利得調整器36に増信号が与えていられており、当該増信号が次第に減衰する。
ステップSM90では、CPU62は、自動利得調整完了を確認する。
ステップSM92では、CPU62は、「自動利得調整済み」メッセージ表示指令をGUIに発行する。GUIは、「自動利得調整済み」を表すメッセージをLCD表示部68に表示する。
ここで、圧電式の加速度ピックアップに関する自動利得調整部30について説明する。
圧電式の加速度ピックアップ14aから出力されるアナログ信号を調整するため、自動利得調整部30を設ける。すなわち、アナログ信号のピーク超過によって、デジタル化に伴うデータ桁あふれに起因した測定データの不良を防ぐ回路を設ける。
振動データを採取する際、アナログデータでもデジタルデータとして記録する場合でも入力側のゲインが超過すると、その回路は信号を通過させるものの、記録できる最大レベルを超えた信号は全て「クリップ」現象を起こして、データがゆがんだ状態で記録されてしまう。
例えば、本実施形態でいえば、入力信号をA/D変換器44においてデジタル化を行っているので、この場合は表現可能な電圧の最大値を超えた時に発生する。この状態で記録された振動データは信頼性がないデータとなってしまう。そのため、振動データの取り直しが発生するなどの労力や費用が発生するため、入力ゲインの調整は慎重に行わなければならない。このクリップ現象を起こさないようにするためには、入力ゲインを低くすればよいが、あまり入力レベルが低いと、微細な信号が記録できず、異常原因の振動データを取り損なうおそれがある。
そのため、クリップ現象を起こさず、できるだけ入力ゲインを高く保つ必要が生じる。
従来の方法では、ユーザがデジタルレベルメータを確認しながら、手動で適切なゲインとなるよう入力レベルコントロールつまみ、あるいは入力レベルスケール設定等で、入力レベル調整を行っていた。
振動測定を行う場合、回転機器により軸受部の振動力は異なるため、1つの軸受部の振動測定を行った後、別の軸受部の振動測定を行うと、入力ゲインが異なるため、再度調整を行う必要が生じていた。そのため、ユーザの労力が大きいという欠点があった。
なお、この最大値より−0.5dB程度としたのは、クリップを起こすレベルにヘッドマージン分を加味した値としている。
従来技術では、無線機等で入力ゲインを調整するために、利得調整器を設けている実例が知られている。無線機のような音声信号は、入力される信号レベルの変動が大きく、利得調整器はそのレベルの高低に応じて、入力ゲインの調整を行う。
一方、振動データは、回転機器が発生する一定の振動であり、入力レベルは測定期間中大きく変動するものではない。そのため、利得調整器の動作としては、一度調整をしてしまえば入力ゲイン調整を細かく制御する必要がない。
この利点は、入力ゲインが一定であれば、その後の振動データのサンプリングデータが変動することがなく、安定したデータをサンプリングできることにある。
チャージアンプ32は、加速度ピックアップ14aからの加速度信号を入力して増幅する。
HPF/LPF(フィルタ)34は、チャージアンプ32から出力される増幅加速度信号の帯域を制限して通過させる。
利得調整器36は、加速度ピックアップ14aからの加速度信号を所定の増幅率により増幅する。
比較器37は、利得調整器36から出力される加速度信号と基準電圧とを比較して比較結果信号を利得調整器36に出力する。
比較器37は、加速度信号が基準電圧よりも大きい場合に、利得調整器36の増幅率の変化範囲を制限する。比較器37は、加速度ピックアップ14aからの加速度信号がクリップしないように、利得調整器36の増幅率の変化上限を−0.5dB付近として制限する。
なお、比較器37においては、信号がクリップせず、かつSN比を最大にするため、クリップするゲインを0とするとそれからヘッドマージンを設けた−0.5dB程度下げた値に信号増幅率を保持するように構成する。
ピーク検波器38は、−0.5dB以上の入力信号を検波して検波信号をピークランプ40に出力する。ピークランプ40は、検波信号が入力された場合に点灯する。
A/D変換器44は、利得調整器36からの加速度信号を量子化し、量子化後の加速度データを信号処理部50に出力する。
自動利得調整部30の動作について説明する。
入力された信号が、クリップレベル以上か以下かの判定を行う。
クリップレベル以上であれば、徐々に入力信号を減とし、クリップレベルから−0.5dB程度になれば減信号入力を停止する。入力信号が適正となればLCD表示部68により、適正レベルである旨のメッセージを表示させ、ユーザに通知する。
クリップレベル以下であれば、徐々に入力信号を増とし、一旦クリップするまで増加させ、クリップさせる。その後、同様に入力ゲイン減信号を発信し、徐々に入力信号を減とし、クリップレベルから−0.5dB程度になれば減信号入力を停止する。
以降は、同様に入力信号が適正となればLCD表示部68により、適正レベルである旨のメッセージを表示させ、ユーザに通知する。
また、レベルが低い微細な信号をとらえるため、SN比を24ビット以上に拡大することで、高いレベルから低いレベルの信号を余さず記録することとする。
回路構成では、ピックアップ14aのチャージアンプ32の後段に利得調整器36を設け、入力ゲインを−0.5dB程度に制御するものとする。
自動で調整を行うことで、作業員が利得調整を行う手間を省くことができる。
これにより、加速度ピックアップ14aからの加速度信号が基準電圧よりも大きい場合に、利得調整器36の増幅率の変化範囲を制限することができる。
これにより、加速度ピックアップ14aからの加速度信号を増幅した増幅加速度信号の帯域を制限して通過させることができる。
これにより、加速度ピックアップ14aからの加速度信号がクリップしないように、利得調整器36の増幅率の変化上限を−0.5dB付近として制限することができる。
ステップSM100において、CPU62は、LCD表示部68に表示された「部位測定変更処理 OR ピックアップ校正モード OR 新品データ入力モード」ボタンがオンかオフかを確認する。
ここで、LCD表示部68に表示された「部位測定変更処理 OR ピックアップ校正モード OR 新品データ入力モード」ボタンがオンである場合、ステップSM90から直ちにステップSM108に進む。
一方、LCD表示部68に表示された「部位測定変更処理 OR ピックアップ校正モード」ボタンがオフである場合、ステップSM90からステップSM94に進む。
ステップSM94では、CPU62は、温度センサ確認チェック指令をGUIに発行する。ステップSM96では、GUIは、「温度センサ確認開始」を表すメッセージをLCD表示部68に表示する。
ステップSM98では、CPU62は、温度センサOS認識確認実行(室温用温度センサ及び機器用温度センサ)を行う。すなわち、オペレーティングシステムOS側から温度センサの認識確認を実行して、温度センサの異常の有無状態を取得する。
ステップSM102では、CPU62は、温度センサに異常がないか否かを判断する。温度センサに異常がある場合は、ステップSM104に進み、エラー表示として「温度センサに異常があります。手動入力とします。」というメッセージをLCD表示部68に表示する。次いで、ステップSM106では、CPU62は、温度センサ不使用手動入力モードに強制切替を実行する。
次いで、ステップSM110では、CPU62は、温度センサの準備が完了した旨のメッセージを表示する。
次いで、ステップSM108では、CPU62は、測定準備が完了したことを確認する。ステップSM112では、CPU62は、図16に示すように、測定準備完了メッセージをLCD表示部68に表示する。
図6に移り、ステップSM120では、CPU62は、測定場所機器部位選択モードに移行したメッセージ(図15)をLCD表示部68に表示する。
ステップSM122では、CPU62は、測定機器・機器部位選択処理のサブルーチンに移行する。
ステップSM124では、CPU62は、フラッシュメモリ部66(測定機器・機器部位、回転速度データベース)に対して、データベース読み出し処理を実行する。ステップSM126では、CPU62は、測定機器・部位・回転速度データを次のステップに引き継ぐ。
ステップSM122からステップSM128に移行し、CPU62は、測定開始実行PB(プッシュボタン)がONか否かを判断する。測定開始実行PBがONしていない場合には、ステップSM130に進み、図17に示すように、測定中止メッセージとして「測定を中止します。他の機器・部位を選択しますか。基本設定モードに戻りますか。」をLCD表示部68に表示する。
「他の機器・部位を選択」ボタンが選択されたことを検出した場合はステップSM132に進み、「測定機器・測定部位変更処理へ」というメッセージをLCD表示部68に表示し、測定機器・測定部位変更処理へ移行する。
一方、「基本設定モードに戻ります」ボタンが選択されたことを検出した場合はステップSM134に進み、「基本設定画面選択へ」というメッセージをLCD表示部68に表示し、基本設定画面選択へ移行する。
一方、ステップSM128において、測定開始実行PBがONした場合には、ステップSM138に進む。
次いで、ステップSM138では、CPU62は、測定開始指令を発行する。
ステップSM140では、CPU62は、波形出力・ストア実行処理のサブルーチンに移行し、当該サブルーチンから復帰した場合にステップSM150に移行する。
ステップSM142では、CPU62は、回転速度データ入力処理実行処理のサブルーチンに移行し、当該サブルーチンから復帰した場合にステップSM150に移行する。
ステップSM144では、CPU62は、温度データ入力処理実行処理のサブルーチンに移行し、当該サブルーチンから復帰した場合にステップSM150に移行する。
ステップSM146では、CPU62は、ピックアップ取付け方法を選択(カットオフ周波数入力)し、ステップSM148に移行する。
ステップSM148では、CPU62は、FFT演算結果ストア実行処理のサブルーチンに移行し、当該サブルーチンから復帰した場合にステップSM150に移行する。なお、加速度ピックアップ補正は、信号処理部50のハードウェア(ソフトウェア処理)により、感度補正演算器56aで連続処理される。また、ステップSM148において、新品データ入力モードが選択中であれば、ステップSM151へ移行する。
ステップSM150では、CPU62は、全データストアが完了したことを確認する。図18に示す画面例11のように、測定結果が表示される。
ステップSM152では、CPU62は、各パラメータ演算実行指令を発行し、軸受簡易診断測定部82の各処理へ移行する。
ステップSM151では、CPU62は、新品データフラッシュメモリストア処理を行い、メインメモリ部64に蓄えられた新品データをフラッシュメモリ56cへ移行する処理を行う。
ステップSM153では、CPU62は、新品データ入力モードのリセット操作を行い、基本設定モードへ戻る。リセット動作は図24に示すステップSS120から発信された新品データ入力モードをリセットし、図6に示す信号処理部(DSP)50内のデータセレクタSEL1は閉、SEL2は開、SEL3は閉としてデータ経路を初期状態にリセットする。
ステップSM154では、CPU62は、「全高調波歪+N演算実行 THD(n)X」処理のサブルーチンに移行し、当該サブルーチンから復帰した場合にステップSM166に移行する。
ステップSM156では、CPU62は、「グリス切音演算実行P(gr)」処理のサブルーチンに移行し、当該サブルーチンから復帰した場合にステップSM166に移行する。
ステップSM158では、CPU62は、「キシリ音演算実行P(ks)」処理のサブルーチンに移行し、当該サブルーチンから復帰した場合にステップSM166に移行する。
ステップSM160では、CPU62は、「クレストファクタ演算・判定実行f(Cr)」処理のサブルーチンに移行し、当該サブルーチンから復帰した場合にステップSM166に移行する。
ステップSM162では、CPU62は、「回転速度データストア実行(r)」処理のサブルーチンに移行し、当該サブルーチンから復帰した場合にステップSM166に移行する。
ステップSM164では、CPU62は、「温度センサデータストア値表示・演算実行(t)」処理のサブルーチンに移行し、当該サブルーチンから復帰した場合にステップSM166に移行する。
なお、ステップSM154〜SM164の各処理を順次に実行してもよい。
ステップSM168では、CPU62は、初期設定条件を入力し、ステップSM170に移行する。
ステップSM170では、CPU62は、計測結果表示画面表示実行処理のサブルーチンに移行し、当該サブルーチンから復帰した場合にステップSM172に移行する。この結果、図19に示す画面例12のように、測定結果表示画面が表示される。
「保存」ボタンがON操作されていない場合はステップSM174に移行し、「計測データクリア確認」、「再計測再確認」メッセージを表示する。次いで、ステップSM176では、CPU62は、計測データクリアを実行し、メインメモリ部64上に一時記憶されているデータをクリアし、さらに、測定再度開始指令へ移行する。
一方、「保存」ボタンがON操作された場合はステップSM178に移行し、CPU62は、計測データ記憶実行処理として、メインメモリ部64上に一時記憶されている計測データをフラッシュメモリ部66に記憶する。この結果、図20に示す画面例13のように、保存完了・次測定機器・測定部位選択画面が表示される。
ステップSM180では、CPU62は、他機器についての部位測定を実施するか否かを判断する。他機器についての部位測定を実施する場合は、ステップSM182に進み、測定条件ストア呼び出し実行して、フラッシュメモリ部66(測定機器・機器部位、回転速度データベース)から測定条件を呼び出し、「測定機器・測定部位変更処理」へ移行する。
一方、他機器についての部位測定を実施しない場合は、ステップSM184に進み、データ採取終了指令を発行する。次いで、ステップSM186では、CPU62は、基本設定モード表示指令をGUIに発行する。この結果、図8に示す画面例1をLCD表示部68に表示する。
次いで、CPU62は、「基本設定モード」(図4)へ戻る。
次に、図21を参照して、本発明の実施形態に係る計測診断装置に設けられた軸受部簡易診断測定部による補正・校正モード選択処理のサブルーチンについて説明する。
ステップSS10では、CPU62は、補正・校正モード選択処理を開始する。
ステップSS12では、CPU62は、校正モード表示指令をGUIに発行する。この結果、LCD表示部68には「補正値入力モード」ボタン、「ピックアップ校正モード」ボタンが表示される。
LCD表示部68に表示されている一方のボタンへのユーザのON操作に応じて、「補正値入力モード」であるステップSS14、又は「ピックアップ校正モード」であるステップSS16へ移行する。
「ピックアップ校正モード」ボタンがON操作された場合、ステップSS16では、CPU62は、「ピックアップ校正モード」(図22)へ移行する。
「補正値入力モード」ボタンがON操作された場合、ステップSS14では、CPU62は、補正値入力モード処理を開始する。
ステップSS18では、CPU62は、ピックアップ選択表示指令をGUIに発行する。この結果、図34に示す画面例14のように、LCD表示部68には加速度ピックアップ1〜3の選択ボタンとして「○○社 P−01」ボタン、「○○社 P−03」ボタン、「○○社 P−05」ボタンが表示される。
LCD表示部68に表示されている何れか1つのボタンへのユーザのON操作に応じて、加速度ピックアップ1選択処理、加速度ピックアップ2選択処理、加速度ピックアップ3選択処理の何れか1つに移行する。
ステップSS20では、CPU62は、加速度ピックアップ1選択表示指令をGUIに発行する。この結果、図35に示す画面例15のように、LCD表示部68には基準校正周波数(20Hz、80Hz、200Hz、500Hz、1kHz、2kHz、5kHz、10kHz)の周波数毎の補正値に対する操作入力を受け付ける棒グラフが表示される。LCD表示部68に表示されている周波数毎の棒グラフに対して、ユーザが画面にタッチまたは操作入力部17aを用いて手動入力しながら所望の高さ位置に棒グラフを移動させることで、GUIにより感度誤差についての補正値の数字入力を周波数毎に受け付ける。この際、周波数毎の補正値をメインメモリ部64に一旦記憶する。
次いで、ステップSS22では、CPU62は、LCD表示部68に表示されている画面例15の「保存」ボタンPBがON操作されたか否かを判断し、「保存」ボタンPBがON操作されるまで当該処理を繰り返す。
「保存」ボタンPBがON操作された場合には、ステップSS24に進み、CPU62は、加速度ピックアップ1選択処理についての補正値データをフラッシュメモリ部66に保存する。
これにより、加速度ピックアップ1に対してより周波数毎に正確な信号補正を行うことができる。
なお、ステップSS26〜SS30、及びステップSS32〜SS36にそれぞれ示した処理については、ステップSS20〜SS24に示す各処理と同様であるので、その説明を省略する。
次に、図22を参照して、本発明の実施形態に係る計測診断装置に設けられた軸受部簡易診断測定部によるピックアップ校正モード処理のサブルーチンについて説明する。
ステップSS40では、CPU62は、ピックアップ校正モード処理を開始する。
ステップSS42では、CPU62は、ピックアップ校正モードを実行するか否かを判断する。ここで、例えば、GUIによりLCD表示部68に「OK」ボタンと「キャンセル」ボタンを表示しておき、「キャンセル」ボタンがON操作された場合には基本設定モード(SM18)に戻る。
一方、「OK」ボタンがON操作された場合には、ステップSS44に進み、CPU62は、ユーザによる現時点でのモード選択がピックアップ校正モードであることをメインメモリ部64に記憶する。
次いで、ステップSS46では、CPU62は、LCD表示部68にメッセージとして「ピックアップ校正モードが選択されました。基本設定モード−初期設定モードに戻り、各種設定を行った後、加速度ピックアップを装着し、基準振動器起動、加速度ピックアップを取り付けてください。」と表示する。
次いで、ステップSS46では、CPU62は、初期設定モード(SM30)に戻る。
一方、メインルーチン(図5)に示したステップSM84から「ピックアップ校正モード条件成立」処理に移行し、ステップSS48では、「ピックアップ校正モード条件成立」処理を開始する。
ステップSS50では、CPU62は、ピックアップ校正モード条件が成立したことを表すピックアップ校正モード条件成立フラグを論理「1」に設定してAND論理処理に出力する。
次いで、ステップSS51では、CPU62は、AND論理処理を行い、両入力に「1」が設定されている場合にのみ、論理「1」を信号処理部50に出力する。
信号処理部50では、ステップSS51でのAND論理処理から論理「1」がOR論理に入力された場合、OR論理から論理「1」を校正モード判定部56dに出力する。
<校正モード>
校正モード判定部56dは、入力される論理値が論理「0」から論理「1」に切り替わった場合に、校正モードに切り替わったことと判定し、データセレクタSEL1、SEL2を閉結状態に切り替え、データセレクタSEL3を開放状態に切り替える。
実効値変換器54aでは、LPF52から入力される電圧データに対して実効値変換を行って、変換結果となる実効値電圧データがハニング窓関数演算器54bに出力される。
ハニング窓関数演算器54bでは、実効値変換器54aから入力される実効値電圧データに対してハニング窓関数を乗じた後の演算結果データがFFT演算器54cに出力される。
FFT演算器54cでは、ハニング窓関数演算器54bから入力される演算結果データに対して、振動値のパワースペクトル(出力・周波数)で各周波数の出力値として、加速度ピックアップの周波数毎の電圧成分を求め、データセレクタSEL1、SEL2を介して比較演算器56bに出力される。
比較演算器56bの一方にはフラッシュメモリ56cからのデータが入力され、且つ他方には比較演算器56bからのデータが入力される。比較演算器56bでは両データに基づいて、周波数毎に減算処理を行い減算結果データがI/Oブリッジ部60に出力される。
I/Oブリッジ部60では、比較演算器56bから出力される減算結果データが入力され、CPU62に出力される。
次いで、ステップSS52では、CPU62は、表示画面に表示されている「結果リセット」PB26がON操作されたか否かを判断する。
「結果リセット」PB26がON操作された場合には、CPU62は、論理「1」を信号処理部50に設けられたOR論理に出力する。これにより信号処理部50では上述した校正モードを繰り返す。
一方、「結果リセット」PB26がON操作された場合には、CPU62は、基本設定モード(SM18)に戻る。
加速度ピックアップ14aの感度を補正するための感度補正回路部56をFFTアナライザ部54の下流側に設けることで、FFTアナライザ部54において取得した各周波数帯の出力レベルを補正することで感度補正を行う。
感度補正回路部56の補正入力値は、加速度ピックアップ14aの校正記録に基づいて、入力画面から入力できるようにしておき、各周波数帯の感度を補正した結果を特定の周波数帯で片寄りが生じていないニュートラルな値とする。
加速度ピックアップの感度誤差に依存するが、補正入力値をプラスの誤差に関しては減算、またマイナスの誤差に関しては加算して感度を補正する。
実際の補正処理では、高速フーリエ変換された各周波数帯の出力データに補正値を乗算し、それを元データに加算または減算することで、より加速度ピックアップに固有の特性(許容できる誤差)を補正し、より確からしいデータとする。
ここで、図38(a)〜(c)を参照して、感度補正回路部56による校正の具体例について説明する。なお、図38(a)〜(c)の出典は、Webに公開されている「小林理研ニュースNO18−2」とインターネット資料である。
加速度ピックアップを校正するために周波数−感度値で表された校正票を参照して、加速度ピックアップの校正周波数毎の感度値を求める。補正信号の入力は、加速度ピックアップの感度誤差に対して、当該感度誤差を可能なかぎりニュートラル(図38(a)では縦軸の誤差を0にする)にするため、感度値を反転した逆信号を補正信号として入力することで補正する。
例えば、図38(a)に示す矢印の周波数帯に対して、加速度ピックアップの感度をニュートラルとする目的でQ値を伴った補正信号を入力する。
校正用周波数へ入力する信号は、例えば、音響機器でのグラフィックイコライザを想定するとわかりやすい。図38(b)に示すように、補正信号は各周波数帯を補正するためにあるQ値の幅を持った信号である。Q値とは、補正信号の帯域幅のことである。
図38(c)に示すように、Q値は、補正用中心周波数を帯域幅で割った値で、中心周波数が固定なのでQ値を調整して帯域幅を変化させる。
Q値を大きくするほど、山の幅は狭くなり、操作している周波数付近のみを効果的に調整することができる。補正信号は補正周波数へ逆数を入力し、Q値を調整し、図38(a)に示すような補正信号曲線C2を入力する。その結果、図38(a)に示すように、ニュートラルに近づくような補正後特性曲線C3を形成するように調整を行う。ユーザは補正信号量をLCD表示部68から入力する。Q値については、信号間をなだらかに接続するため、あらかじめ帯域幅を広くするようセットしておいてもよい。
なお、校正用周波数が、加速度ピックアップを製造した製造メーカにより相違するものであれば、校正周波数及びQ値、信号量を変更できるパラメトリックイコライザと同様な補正装置としてもよい。
パラメトリックイコライザとは、信号特性を複数の項目に渡ってきめ細かく調整できるものをいう。通常、パラメトリックイコライザでは、3つの項目(パラメータ)を調整できる。中心となる周波数、調整する帯域幅、信号量である。このうち特に帯域幅については、帯域幅を広げると周辺の帯域となだらかにつながるため、隣接する帯域も調整している場合はそれとの兼ね合いも重要になる。
加速度ピックアップの補正入力信号については、加速度ピックアップの製造メーカごとに基準周波数の設定が違う可能性があるため、代表的な製造メーカの加速度ピックアップに関する補正値入力マッピングテンプレートを用意し、感度補正値を入力する画面(図35)において入力する。
装置校正用に比較演算器を設ける。目的は、加速度ピックアップの故障の有無を確認するためである。加速度ピックアップの感度誤差は通常1%程度である。加速度ピックアップが新品時に比較校正用に校正用振動発生器からの振動を印加し、補正値無し時の周波数解析値をフラッシュメモリ部56cに保存しておく。使用開始後、校正を行う際、比較校正用データと比較し、データの比較差によりピックアップの異常の有無の判断を行う。保存されるデータは、校正に使用する振動発生器の違いもあるため複数保存できるものとする。
図8に示す「補正・校正モード選択」ボタンがON操作されると、3つのスイッチがONするのではなく、PBのONで閉路するA接点リレー2つと、ONで開路するB接点リレー1つで構成されている。
具体的には、校正モードがONされると、
(1)FFT演算器下流の感度補正演算器をバイパスする。(比較前に補正値データを誤って入力しないようにするためである。)
(2)軸受部簡易診断測定部への信号は遮断される。
(3)感度補正演算器をバイパスした信号が比較演算器に入力される。
(4)フラッシュメモリに蓄積されたピックアップ使用前の振動データを突き合わせ、減算処理し、その結果をユーザが評価または判定値を設けて自動で良否判定をする。
(5)異常判定については、各基準周波数の±数%の誤差が発生した場合は、表示器に「異常の可能性有り、加速度ピックアップを交換及び点検をしてください。」とのメッセージを表示することでもよい。
次に、図23を参照して、本発明の実施形態に係る計測診断装置に設けられた軸受部簡易診断測定部による送受信モード選択処理のサブルーチンについて説明する。
ステップSS60では、CPU62は、送受信モード選択処理を開始する。
ステップSS62では、CPU62は、送受信モード表示指令をGUIに発行する。この結果、LCD表示部68には、図36に示すように、「データ受信」ボタンPB22、「データ送信」ボタンPB24が表示される。
LCD表示部68に表示されている「データ受信」ボタンPB22へのユーザのON操作に応じて、「受信モード」であるステップSS74へ移行する。
「データ送信」ボタンPB24へのユーザのON操作に応じて、「送信モード」であるステップSS64へ移行する。
ステップSS64では、CPU62は、送信モード処理を実行する。
ステップSS66では、CPU62は、LAN_I/F部70により無線LAN又は有線LANを介して振動データサーバ25へデータ送信要求を送信する。
そして、ステップSS66では、CPU62は、振動データサーバ25から送信される送信開始メッセージをLAN_I/F部70を介して受信した場合、ステップS68に進み、送信開始メッセージ表示指令をGUIに出力する。
ステップSS70では、CPU62は、フラッシュメモリ部66から格納されている計測データ、測定機器・機器部位データベースを読み出して、LAN_I/F部70により無線LAN又は有線LANを介して振動データサーバ25へデータを送信する。
次いで、ステップSS72では、CPU62は、送信完了メッセージ表示指令をGUIに発行する。この結果、LCD表示部68には、図36に示すように、「送信完了しました。」というメッセージが表示される。
次いで、CPU62は、基本設定モード(SM18)に戻る。
ステップSS74では、CPU62は、送信モード処理を実行する。
ステップSS76では、CPU62は、LAN_I/F部70により無線LAN又は有線LANを介して振動データサーバ25へデータ受信要求を送信する。
そして、ステップSS78では、CPU62は、振動データサーバ25から送信される受信開始メッセージをLAN_I/F部70を介して受信した場合、ステップS80に進み、受信開始メッセージ表示指令をGUIに出力する。
次いで、ステップSS78では、CPU62は、振動データサーバ25からLAN_I/F部70を介して計測データ、測定機器・機器部位データベースを受信し、計測データをフラッシュメモリ部66に記憶する。同様に、CPU62は、測定機器・機器部位データベースをフラッシュメモリ部66に記憶する。
次いで、ステップSS82では、CPU62は、受信完了メッセージ表示指令をGUIに発行する。この結果、LCD表示部68には、図36に示すように、「受信完了しました。」というメッセージが表示される。
次いで、CPU62は、基本設定モード(SM18)に戻る。
次に、図24を参照して、本発明の実施形態に係る計測診断装置に設けられた軸受部簡易診断測定部による加速度ピックアップ選択処理のサブルーチンについて説明する。
ステップSS90では、CPU62は、加速度ピックアップ選択処理を開始する。
ステップSS92、SS100、SS106、SS112では、CPU62は、加速度ピックアップ機種説明表示指令をGUIに発行する。この結果、LCD表示部68には「加速度ピックアップ機種説明」が表示されるとともに、「加速度ピックアップ1選択」ボタン、「加速度ピックアップ2選択」ボタン、「加速度ピックアップ3選択」ボタン、「加速度ピックアップ補正なし選択」ボタンが表示される。
ステップSS94、SS102、SS108、SS114では、CPU62は、LCD表示部68に表示されている4つのボタンのうち何れか1つへのユーザのON操作に応じて、それぞれステップSS98、SS104、SS110、SS116へ移行する。
ステップSS98、SS104、SS110では、CPU62は、入力部17aからデータセレクタ18a、I/Oブリッジ部60を介して入力される補正データを取得してメインメモリ部64に記憶する。同様に、ステップSS116では、CPU62は、入力部17aからデータセレクタ18a、I/Oブリッジ部60を介して入力される補正「0」データを取得してメインメモリ部64に記憶する。
次いで、ステップSS118では、CPU62は、補正データストア・出力処理を実行する。すなわち、補正値入力部56eは内部にメモリを備えており、ステップSS98、SS104、SS110、SS116で取得した補正データを用いて、信号処理部50に設けられた補正値入力部56eのメモリ内容である補正データを書き換える。
ステップSS119では、ステップSS116から新品データ入力モードボタンで新品データ入力モードか否かをユーザに判断させ、新品データ入力モードである場合にはステップSS120へ移行し、新品データ入力モードではない場合にはステップSS118へ移行する。
ここで、ステップSS120の新品データ入力モードの処理工程について、以下に説明する。
ステップSS120では、基準振動器に接続した図2に示す新品の加速度ピックアップ14aからの振動データを自動利得部30、信号処理部(DSP)50、I/Oブリッジ60のポートCを介して取得したCPU62は、振動データをメインメモリ部64にストアし、CPU62は、メインメモリにストアされた新品データをフラッシュメモリ56cへ入力する処理工程を実行するものとする。
その際、図6に示す信号処理部(DSP)50内のSEL1は閉、SEL2は閉、SEL3は開としてデータ経路を構成する。
なお、図6に示すステップSM153により新品データがフラッシュメモリ56cにストア完了したことをもって、ステップ120の新品データ入力モードはリセットされ、元の基本設定モードへ戻る。
一方、FFT演算器54cでは、ハニング窓関数演算器54bから入力される演算結果データに対して、振動値のパワースペクトル(出力・周波数)で各周波数の出力値として、加速度ピックアップの周波数毎の電圧成分を求め、感度補正演算器56aに出力される。
感度補正演算器56aでは、FFT演算器54cから入力される周波数毎の電圧成分から、補正値入力部56eから入力される周波数毎の補正データが減算され、その減算結果である周波数毎の補正電圧成分が軸受簡易測定部82へ連続して順次に出力される。
これにより、入力された比較結果データである各周波数帯域の補正値に基づいて、FFTアナライザ部54から出力される各周波数帯域のレベルデータを夫々補正することができる。
これにより、入力された各周波数帯域の補正値に基づいて、FFTアナライザ部54から出力される各周波数帯域のレベルデータを夫々補正することができる。
次に、図25を参照して、本発明の実施形態に係る計測診断装置に設けられた軸受部簡易診断測定部による回転速度手動入力モード処理のサブルーチンについて説明する。
ステップSS130では、CPU62は、回転速度手動入力モード処理を開始する。
ステップSS132では、CPU62は、手動入力モードメッセージ表示指令をGUIに発行する。この結果、LCD表示部68には、「手動入力モードメッセージ」が表示される。そして、CPU62は、ステップSS134に移行するとともに、ステップSM48(図4)に戻る。
ステップSS134では、CPU62は、図18に示す手動入力画面の入力として任意の値「xxxx rpm」が入力されたか否かを判断する。手動入力画面に入力があった場合には、手動入力された回転速度データをメインメモリ部64に記憶し、ステップSS146に進む。
次に、図25を参照して、回転速度データベース入力モード処理のサブルーチンについて説明する。
ステップSS136では、CPU62は、回転速度データベース入力モード処理を開始する。
ステップSS138では、CPU62は、データベース入力モードメッセージ表示指令をGUIに発行する。この結果、LCD表示部68には、「データベース入力モードメッセージ」が表示される。そして、CPU62は、論理「1」をAND論理処理に出力するとともに、ステップSM48(図4)に戻る。
次に、図25を参照して、本発明の実施形態に係る計測診断装置に設けられた軸受部簡易診断測定部によるデータベース(回転速度)読み出し・入力処理のサブルーチンについて説明する。
メインルーチンのステップSM122(図6)からサブルーチンであるステップSS140「測定機器・機器部位選択処理」がコールされると、ステップSS142に進み、CPU62は、データベース(回転速度)読み出し・入力処理実行を開始する。
すなわち、ステップSS142では、CPU62は、フラッシュメモリ部66から測定機器・機器部位、回転速度データベースを読み出してメインメモリ部64に記憶する。そして、CPU62は、論理「1」をAND論理処理に出力する。
一方、ステップSS144では、CPU62は、測定開始指令として論理「1」をAND論理処理に出力する。
ステップSS145では、CPU62は、AND論理処理を行い、両方の入力に論理「1」が設定されている場合に、当該AND論理処理により論理「1」を出力する。
ステップSS148では、CPU62は、ステップSS134において図18手動入力画面入力として任意の値「xxxx rpm」が入力された場合、又はステップSS146から論理「1」が入力された場合に、図6に示すステップSM142の「回転速度データ入力処理実行」へ戻る。
次に、図26を参照して、本発明の実施形態に係る計測診断装置に設けられた軸受部簡易診断測定部による温度センサ使用選択処理及び温度センサ不使用選択処理のサブルーチンについて説明する。
メインルーチンのステップSM52(図4)からサブルーチンであるステップSS150「温度センサ使用選択処理」がコールされると、ステップSS150に進み、CPU62は、温度センサ使用選択処理を開始する。
ステップSS152では、CPU62は、温度センサ使用モードメッセージ表示指令をGUIに発行する。この結果、LCD表示部68には、「温度センサ使用モードメッセージ」が表示される。そして、CPU62は、温度センサ使用モードであることを表す論理「1」をAND論理処理に出力するとともに、ステップSS174に進む。
測定開始指令が発行された場合には、ステップSS156では、メインルーチンのステップSM106を参照し、CPU62は、温度センサ不使用手動入力モードへ強制切替を実行する。すなわち、CPU62は、強制切替フラグとして論理「1」をOR 論理に出力するとともに、論理「1」をステップSS157に出力する。
ステップSS157では、CPU62は、論理「0」から論理「1」への切り替わりを入力した際に、タイマT1(sec)を起動してインヒビットフラグとして論理「0」をT1時間だけ出力する。
ステップSS153では、CPU62は、AND論理処理を行い、両方の入力に論理「1」が設定されている場合に、当該AND論理処理により論理「1」を出力する。
ステップSS160では、CPU62は、測定機器温度データの入力を催促するためのメッセージ表示指令をGUIに発行する。この結果、LCD表示部68には、「測定機器温度データを入力して下さい」という催促メッセージが表示される。
ステップSS162では、CPU62は、測定機器の温度測定実施が確定か否かを判断する。測定機器の温度測定実施が確定した場合、ステップSS164に進む。
ステップSS164では、CPU62は、温度センサ(機器)14b、A/D変換器19b、I/Oブリッジ部60を介して入力された室温に関する温度データをフラッシュメモリ部66に記憶する。
そして、ステップSS190に進む。
ステップSS172では、CPU62は、温度センサ不使用モードメッセージ表示指令をGUIに発行する。この結果、LCD表示部68には、「温度センサ不使用モードメッセージ」が表示される。そして、CPU62は、温度センサ不使用モードであることを表示するとともに、ステップSS174に進む。
ステップSS174では、ステップSM56(図4)の「加速度ピックアップ取付け方法選択処理」へ戻る。
ステップSS176では、ユーザは、温度測定をバイパスするか否かを入力する。温度測定をバイパスする場合はステップSS186に進む。
一方、温度測定をバイパスしない場合は、非温度測定バイパスフラグとして論理「1」をステップS177に出力する。
ステップSS178では、CPU62は、図18に示す画面でユーザによる温度データ(室温)の入力を促すメッセージ表示指令をGUIに発行する。この結果、LCD表示部68には、「室温(手動)入力してください。」というメッセージが表示される。
ステップSS180では、CPU62は、図18に示す画面で温度データ(室温)(xxx ℃)が手動入力されるか否かを判断する。
温度データ(室温)(xxx ℃)が手動入力された場合は、ステップSS182に進む。
ステップSS182では、CPU62は、ユーザによる図18に示す画面で温度データ(機器)の入力を促すメッセージ表示指令をGUIに発行する。この結果、LCD表示部68には、「機器温度(手動)入力してください。」というメッセージが表示される。
ステップSS184では、CPU62は、図18に示す画面で温度データ(機器)(xxx ℃)が手動入力されるか否かを判断する。
温度データ(機器)(xxx ℃)が手動入力された場合は、ステップSS190に進む。
そして、ステップSM144(図6)の「温度データ入力処理実行」へ戻る。
一方、ステップSS176において、温度測定をバイパスする場合はステップSS186に進み、温度データについての入力がない状態を表す「温度“−”表示入力」として「室温 − ℃」、「機器温度 − ℃」をメインメモリ部64に記憶する。そして、ステップSS190に進む。
そして、ステップSM144(図6)の「温度データ入力処理実行」へ戻る。
次に、図27を参照して、本発明の実施形態に係る計測診断装置に設けられた軸受部簡易診断測定部による加速度ピックアップ取付け方法選択処理のサブルーチンについて説明する。
<ねじ止め選択処理>
ステップSS200では、CPU62は、ねじ止め選択処理を開始する。
ステップSS202では、CPU62は、ねじ止め実施メッセージ表示指令をGUIに発行する。この結果、LCD表示部68には、「ねじ止めを実施して固定して下さい。」というメッセージが表示される。次いで、ステップSS236を実行するとともに、ステップSS204に進む。
ステップSS204では、CPU62は、「ねじ止め」を選択した場合に、カットオフ周波数関数発生器にf=25KHz以上0信号を入力する。次いで、ステップSS238に進む。
ステップSS206では、CPU62は、絶縁アタッチメント選択処理を開始する。
ステップSS208では、CPU62は、絶縁アタッチメント実施メッセージ表示指令をGUIに発行する。この結果、LCD表示部68には、「絶縁アタッチメントを用いて固定して下さい。」というメッセージが表示される。次いで、ステップSS236を実行するとともに、ステップSS210に進む。
ステップSS210では、CPU62は、「絶縁アタッチメント」を選択した場合に、カットオフ周波数関数発生器にf=25KHz以上0信号を入力する。次いで、ステップSS238に進む。
ステップSS212では、CPU62は、両面テープ選択処理を開始する。
ステップSS214では、CPU62は、両面テープ実施メッセージ表示指令をGUIに発行する。この結果、LCD表示部68には、「両面テープを用いて固定して取り付けて下さい。」というメッセージが表示される。次いで、ステップSS236を実行するとともに、ステップSS216に進む。
ステップSS216では、CPU62は、「両面テープ」を選択した場合に、カットオフ周波数関数発生器にf=15KHz以上0信号を入力する。次いで、ステップSS238に進む。
ステップSS218では、CPU62は、マグネット選択処理を開始する。
ステップSS220では、CPU62は、マグネット実施メッセージ表示指令をGUIに発行する。この結果、LCD表示部68には、「マグネットを用いて固定して下さい。」というメッセージが表示される。次いで、ステップSS236を実行するとともに、ステップSS222に進む。
ステップSS222では、CPU62は、「マグネット」を選択した場合に、カットオフ周波数関数発生器にf=2KHz以上0信号を入力する。次いで、ステップSS238に進む。
ステップSS224では、CPU62は、棒状アタッチメント選択処理を開始する。
ステップSS226では、CPU62は、棒状アタッチメント実施メッセージ表示指令をGUIに発行する。この結果、LCD表示部68には、「棒状アタッチメントで押しつけて下さい。」というメッセージが表示される。次いで、ステップSS236を実行するとともに、ステップSS228に進む。
ステップSS228では、CPU62は、「棒状アタッチメント」を選択した場合に、カットオフ周波数関数発生器にf=500Hz以上0信号を入力する。次いで、ステップSS238に進む。
ステップSS230では、CPU62は、カットオフなし・校正モード選択処理を開始する。
ステップSS232では、CPU62は、カットオフなし・校正モード実施メッセージ表示指令をGUIに発行する。この結果、LCD表示部68には、「カットオフなし・校正モードです。」というメッセージが表示される。次いで、ステップSS236を実行するとともに、ステップSS234に進む。
ステップSS234では、CPU62は、「カットオフなし・校正モード」を選択した場合に、カットオフ周波数関数発生器にf=f変更なし信号を入力する。次いで、ステップSS238に進む。
ステップSS238では、CPU62は、ステップSM146(図6)に移行する。
これにより、加速度ピックアップ14aの種類、取り付け部材の種類、及び取り付け方法の種類に応じて、加速度ピックアップ14aの有効計測周波数以上の周波数におけるレベルデータを非通過とし、レベルデータを補正することができ、加速度ピックアップ14aの種類、取り付け部材の種類、及び取り付け方法の種類に係る情報を表示することができる。
一般的に、加速度ピックアップを取り付ける方法は図39(a)に示すように、加速度ピックアップを測定対象物に取り付けたり、押し当てたりした場合、接触面が局部的に変形して一種のバネとして作用し、このバネと加速度ピックアップの質量などで決まる共振が起きる現象がある。図39(a)に示すように、急に振動レベル(レスポンス)が高くなった最高点を接触共振点という。
ここで、図39(a)に示す6つの接触共振点を発生させる取り付け方法は、図39(b)に示すように、(1)ねじ止め、(2)絶縁アタッチメント、(3)両面テープ、(4)マグネット、(5)丸形棒状アタッチメント、(6)針形棒状アタッチメントである。
これにより、加速度ピックアップの取り付け(押し付け)方法に依存して振動を正確に計測できる周波数の上限が決まることがわかる。
例えば、一般的に高周波数帯を測定できる加速度ピックアップについては、共振周波数帯が50KHzとなっており、これが測定限界である。実際には、加速度ピックアップを取り付けるための測定座との共振(ねじ止めの場合)により30KHzにおいて感度の上昇があることが知られており、実測限界として20KHz〜25KHz程度までの測定を行うものとする。それ以上は、共振ピークがあるため、A/D変換器44の後段において、25KHz以上の周波数のFFTデータに「0」データを加算して排除するものとする。
また、感度補正を行っても、取り付け方法に依存して加速度ピックアップ自体の共振周波数が変化し、共振周波数以上のデータは無意味である。このため、加速度ピックアップの取り付け方を選択する画面(図13)を表示し、測定可能周波数の上限値を表示し、実際の測定を開始したら、加速度ピックアップの取り付け方の選択時に選定した共振周波数以上は自動的にカットオフさせる。
次に、図28(a)を参照して、FFT演算結果ストア実行処理のサブルーチンについて説明する。
ステップSS240では、CPU62は、FFT演算結果ストア実行処理を開始する。
ステップSS242では、CPU62は、FFT演算器54cからの出力信号をメインメモリ部64に記憶する。FFT演算器54cからの出力信号は、感度補正演算器56a、データセレクタSEL3、I/Oブリッジ部60のポートAを介してCPU62に入力される。この際、サンプリング期間の数秒程度の間にCPU62に入力されるデータを一旦メインメモリ部64に記憶しておく。
ステップSS244では、CPU62は、ステップSM56において選択されたピックアップ取付け方法に対応するカットオフ周波数を受け取り、次いで、ステップSS246では、カットオフ周波数に基づいて、ステップSS242において記憶しておいたFFT演算器54cからの出力信号に加工処理を行う。
次いで、ステップSS248では、CPU62は、ステップSM150(図6)に移行する。
次に、図28(b)を参照して、波形出力・ストア実行処理のサブルーチンについて説明する。
ステップSS250では、CPU62は、波形出力・ストア実行処理を開始する。
ステップSS252では、CPU62は、信号処理部50のLPF52から出力される出力信号をメインメモリ部64に記憶する。LPF52からの出力信号は、I/Oブリッジ部60のポートBを介してCPU62に入力される。この際、サンプリング期間の数秒程度の間にCPU62に入力されるデータを一旦メインメモリ部64に記憶しておく。
次いで、ステップSS254では、CPU62は、ステップSM150(図6)に移行する。
次に、図28(c)を参照して、回転速度データ入力処理実行処理のサブルーチンについて説明する。
ステップSS256では、CPU62は、回転速度データ入力処理実行処理を開始する。
この際、ステップSS260では、CPU62は、ステップSS134において入力された回転速度データを受け取り、また、ステップSS264では、CPU62は、ステップSS142においてフラッシュメモリ部66のデータベースから読み出した回転速度データを受け取る。
次いで、ステップSS266では、回転速度データをメインメモリ部64に記憶する。
次いで、ステップSS268では、CPU62は、ステップSM150(図6)に移行する。
次に、図28(d)を参照して、温度データ入力処理実行処理のサブルーチンについて説明する。
ステップSS270では、CPU62は、温度データ入力処理実行処理を開始する。
この際、ステップSS274では、CPU62は、ステップSS158においてフラッシュメモリ部66に記憶しておいた室温データ“xxx℃”を読み出し、且つステップSS164においてフラッシュメモリ部66に記憶しておいた機器温度データ入力“xxx℃”を読み出し、ステップSS284に移行する。
また、ステップSS280では、CPU62は、ステップSS186においてフラッシュメモリ部66に記憶しておいた室温データ“−”を読み出し、且つステップSS186においてフラッシュメモリ部66に記憶しておいた機器温度データ“−”を読み出し、ステップSS284に移行する。
ステップSS284では、CPU62は、OR論理処理を行い、取得した室温データ“xxx℃”又は室温データ“−”、機器温度データ入力“xxx℃”又は機器温度データ“−”を選択し、さらに、ステップSS284では、それらのデータを室温・機器温度データとしてメインメモリ部64に記憶する。
次いで、ステップSS288では、CPU62は、ステップSM150(図6)に移行する。
次に、図29を参照して、本発明の実施形態に係る計測診断装置に設けられた軸受部簡易診断測定部による全高調波歪+N演算実行_THD(n)X処理のサブルーチンについて説明する。
ステップSS300では、CPU62は、全高調波歪+N演算実行_THD(n)X処理を開始する。なお、FFT演算器54cの出力データに対して、カットオフ周波数を入力することによって、全高調波歪+N(ノイズ値)は0となる場合がある。
ステップSS302では、CPU62は、ステップSM148(図6、G1)により処理された結果である、FFT演算器54cの出力信号を加工処理したデータを入力する。次いで、ステップSS304〜SS314の各処理を並列して実行する。
ステップSS304では、CPU62は、回転域データの抽出処理として、「100Hz以下」のデータを抽出した結果をTHD(n)1として後段のステップSS330に出力する。
ステップSS306では、CPU62は、低域データの抽出処理として、「100Hz〜500Hz」のデータを抽出した結果をTHD(n)2として後段のステップSS330に出力する。
ステップSS308では、CPU62は、中域データの抽出処理として、「500Hz〜2KHz」のデータを抽出した結果をTHD(n)3として後段のステップSS330に出力する。
ステップSS310では、CPU62は、高域データの抽出処理として、「2KHz〜10KHz」のデータを抽出した結果をTHD(n)4として後段のステップSS330に出力する。
ステップSS312では、CPU62は、超高域データの抽出処理として、「10KHz以上」のデータを抽出した結果をTHD(n)5として後段のステップSS330に出力する。
ステップSS314では、CPU62は、全域データの抽出処理として、「min〜max値」のデータを抽出した結果をTHD(n)6として後段のステップSS330に出力する。
ステップSS324では、CPU62は、FFTデータの近似値を検知するFFTデータ近似値検知処理として、FFTデータより基準周波数を導く処理を行う。ここで、CPU62は、入力f値と近似値、FFTパワー値pが前後周波数より卓越した値に基づいて、基本周波数F・基本周波数P(パワー)を決定し、決定値P(F)を出力する。
次いで、ステップSS330では、CPU62は、全高調波歪+N演算処理を行いTHD(n)Xとして、図29に示すTHD(N)1〜THD(N)6を算出する。
ここで、
THD(N)1={p(f1)2+p(f2)2+p(f3)2・・・+p(f99)2}1/2/P(F)
THD(N)2={p(f100)2+p(f101)2+p(f102)2・・・+p(f499)2}1/2/P(F)
THD(N)3={p(f500)2+p(f501)2+p(f502)2・・・+p(f1999)2}1/2/P(F)
THD(N)4={p(f2000)2+p(f2001)2+p(f2002)2・・・+p(f9999)2}1/2/P(F)
THD(N)5={p(f10000)2+p(f100001)2+p(f100002)2・・・+p(fmax)2}1/2/P(F)
THD(N)6={p(fmin)2・・・+p(fmax)2}1/2/P(F)
次いで、ステップSS332では、CPU62は、全高調波歪+N演算値をメインメモリ部64に記憶するとともに、出力し、ステップSS334へ移行する
次いで、ステップSS334では、CPU62は、各パラメータについての演算を実行した結果をステップSM166へ入力する。
これにより、回転機器の振動を検出する加速度ピックアップ14aからの加速度信号のレベルデータのうち、回転機器の回転速度を基準周波数の基準波とし、複数の異なる高調波帯域についての歪み値に基づいて、回転機器の軸受部11aに係る劣化状態を数値化することができる。
これにより、各高調波帯域についての歪み値に基づいて、各高調波帯域の高調波歪み率を全高調波帯域の高調波歪み率で除算して、各高調波帯域の商値を求めることができる。
これにより、各取得日時の高調波帯域についての歪み値に基づいて、各高調波帯域の商値を取得日時毎に時系列に表示することができる。
(全高調波歪+ノイズ)
軸受簡易診断測定部82において、出力されたFFTデータから全高調波歪み+ノイズ(THD+n)を算出することにより、軸受部が損傷した場合の全周波数帯の基本波(回転機回転速度周波数)の高次周波数出力実効値の増加、及びフロアノイズ実効値の増加をとらえ、全般的な軸受部に関する劣化の指標として数値化する。
高周波数帯の劣化兆候を定量化するために、波形の実効値を高速フーリエ変換した後のデータについて、回転機周波数を基準波とした高調波歪+ノイズ値(THD+N)で表すものとする。
ここで、基準波入力は、簡易振動測定器へ回転機の周波数を直接入力または回転速度値を画面から入力することで読み取り、値を入力する。基準周波数からそれより高周波数の出力値の高調波歪+ノイズ値を測定することにより、高調波成分も考慮することで、従来のクレストファクタ値(信号波形のピーク値/実効値の比)よりも高精度の測定が可能となる。
高調波歪分が増大していることで、軸受部の劣化をごく初期の段階から把握することができ、従来のクレストファクタ値より高精度な監視が可能となる。
なお、図40(a)〜(d)に示す高域は軸受部のベアリングの打衝撃エネルギー領域、中域は構成部品共振振動領域、低域は転がり軸受欠陥振動数領域、回転域は基本回転速度の2倍波、3倍波領域であり、これに加えて、超高域及び全帯域を加えて6つの帯域の高調波歪+ノイズ値(THD+N)を測定することにより、軸受部の劣化進行が数値化されて表現できる。
なお、数値の表示方法として、各帯域の高調波歪み率を全帯域の高調波歪み率で除算して、各帯域の割合を表示してもよい。
なお、高域は別途説明する軸受部のグリス切れ音や、キシリ音領域と重複するため、グリス切れ音やキシリ音が発生していた場合、同じ帯域の高調波歪率も増大する。グリス切音の影響を免れるため、超高域領域として10kHz以上の領域も高調波歪率+nを測定する。
軸受部の異常を見るための各周波数帯の出力値を全高調波歪+nで表現することにより、パワースペクトルを単純な数値で表現することが可能であり、グラフ化が容易となる利点がある。
また、全高調波歪+nの計算では、基本周波数の出力を分母としている。
(1)加速度ピックアップからの信号を実効値変換器54aにより実効値変換処理を行った後、ハニング窓関数演算器54bによりハニング窓関数を乗算し、FFT演算器54cから振動値のパワースペクトル(出力・周波数)で各周波数の出力値(この場合は加速度ピックアップの周波数毎の電圧成分)を求める。
基本周波数=回転速度/60
回転速度計もしくは機器の回転速度データベースからの回転速度を周波数値に変換し、FFTデータからその周波数に近似し(例えば、基本周波数±1Hz以内)、前後のデータから卓越した出力値の周波数を「基準周波数」とする。
基準周波数を求めた後、その基準周波数の出力値を取得する。
この方法は、タコメータを用いて取得した基本周波数値と、FFT演算器54cで導き出した基本周波数ではFFTの処理上、値に差が生じるため、このようにしている。(例えば、タコメータで取得した基本周波数が60Hzで表示され、FFT演算器54cでは基本周波数60.2Hzの出力が卓越している場合、回転速度から求めた基本周波数をそのまま使用せず、より近似し、より出力が卓越した周波数である60.2Hzを基本周波数とする。)
ここで、計算式(例:回転域)は、
(p12+p22+p32+・・・・・・p1002)1/2/P(F)
P(F):基本周波数のパワー値、p=各周波数での出力値、p12+・・・p1002とは周波数1Hz〜100Hzまでの出力値のことである。
なお、回転機の場合、基本周波数は変化がなく、出力値は一定しているが、基本回転速度の出力が分母になるため、基本周波数の出力が高くなった場合は見掛け上、すべての値が下がるようになる。
回転機が送排風機などの場合、インペラーに塵埃がついた場合は遠心力の増加により、アンバランスとなり基本周波数出力が増加することが知られている。ただし、ポンプは、インペラーに内液由来の付着物が付くような事象やインペラーが欠損する等のトラブルでなければ、基本的にはアンバランスは生じないものと考えられず、急激な基本周波数の上昇はないものと考えられる。
その場合、後述するが、基本周波数の出力もデータ採取しているため、見掛け上すべての帯域の値が下がっても、基本周波数の出力値が確認できれば原因が判明できる。
なお、軸受部の故障の進行は、図40(a)〜(d)に示すように、高周波数帯の周波数の卓越が発生することから始まり、次第に卓越周波数の数が低周波数帯にも増加することを検知することで、軸受部の破壊具合がわかる。
FFT変換のみのグラフでは、過去から現在までのデータの変化具合が、ユーザにとって直感的にわかり難いため、本実施形態のように、基準周波数を元に各周波数帯の「THD+N」値を採取し、統計的にデータをグラフにプロットし、変化傾向を管理することで、ユーザにとって直感的にわかりやすくなる。
軸受部のように経年での変化が進行する機器に対しては、本実施形態によれば、軸受部の故障の進行程度をユーザが傾向管理することで、軸受部の交換時期を判定することができる。
以上、本実施形態では、軸受部の故障進行を把握するために周波数帯ごとに高調波の歪データとノイズ値「THD+N」値により数値化を行い、データを蓄積し、統計的に表してもよい。
なお、各周波数帯のデータを「THD+N」値で表したが、各周波数帯のデータを平均値で表現しなかったのは、キシリ音やグリス切音と違い機器の回転周波数(基準周波数)に依存しているためである。基準周波数の出力が大きければ、各周波数帯の出力も大きくなるので、「THD+N」値で表すのが適当である。
次に、図30を参照して、本発明の実施形態に係る計測診断装置に設けられた軸受部簡易診断測定部によるグリス切音演算実行P(gr)処理のサブルーチンについて説明する。
ステップSS340では、CPU62は、グリス切音演算実行P(gr)処理を開始する。
ステップSS342では、CPU62は、ステップSM148(図6、G1)により処理された結果である、FFT演算器54cの出力信号を加工処理したデータを入力する。
ステップSS344では、CPU62は、グリス切音演算処理(P(gr):ave8000−10000)を行う。ここで、CPU62は、FFT演算器54cの出力信号から周波数帯8kHz〜10kHz帯の周波数パワー値を加算し、8kHz〜10kHzの総数で除算し、単純平均値P(gr)を出力する。
P(gr)={P(f8000)+P(f8001)+P(f8002)・・・+P(f10000)}/(f10000−f8000)
ステップSS346では、CPU62は、グリス切音演算値をメインメモリ64に記憶するとともに、出力する。
ステップSS348では、CPU62は、各パラメータについての演算を実行した結果を入力し、ステップSM166へ移行する。
ここで、ステップSS348では、CPU62は、比較手段を構成し、周波数帯域の測定値に対して、第1の基準値及び第1の基準値よりも低い第2の基準値と夫々比較してもよい。さらに、CPU62は、判定手段を構成し、測定値が第1の基準値よりも大きい場合に回転機器にグリス切れが発生したことと判定し、測定値が第1の基準値と第2の基準値との間にある場合に回転機器の軸受部11aに異常があると判定してもよい。
次に、図31を参照して、本発明の実施形態に係る計測診断装置に設けられた軸受部簡易診断測定部によるキシリ音演算実行P(ks)処理のサブルーチンについて説明する。
ステップSS350では、CPU62は、キシリ音演算実行P(ks)処理を開始する。
ステップSS352では、CPU62は、ステップSM148(図6、G1)により処理された結果である、FFT演算器54cの出力信号を加工処理したデータを入力する。
ステップSS354では、CPU62は、キシリ音演算処理(P(gr):ave4000−6000)を行う。ここで、CPU62は、FFT演算器54cの出力信号から周波数帯4kHz〜6kHz帯の周波数パワー値を加算し、4kHz〜6kHzの総数で除算し、単純平均値P(ks)を出力する。
P(ks)={P(f4000)+P(f4001)+P(f4002)・・・+P(f6000)}/(f4000−f6000)
ステップSS356では、CPU62は、キシリ音演算値をメインメモリ64に記憶するとともに、SS358へ移行する。
ステップSS358では、CPU62は、各パラメータについての演算を実行した結果を入力し、ステップSM166へ移行する。
通常、ポンプや電動機の回転軸に取り付けたカップリングに対して、芯出し作業が適切になされ、運転状態に異常がない場合、電動機の軸受部から発生する主な振動要因としては、一般に、グリス切による振動発生及び軸受部の劣化が多い。
このため、ミスアライメントやミスカップリング等のように機械据え付け時、ポンプや電動機の分解点検後のテストラン時に測定する項目については、試運転時にのみ必要であり、正常に組みあがった回転機器では無視できる。
潤滑油が不足した軸受部の特徴としては、軸受部に潤滑油が不足すると転がり軸受部もスムーズな回転ができなくなる。その結果、軸受部自身が励振され、異常振動が発生する。
潤滑不足を生じた軸受部の振動は、正常な軸受部の振動と同じような振動波形を示す。
また、軸受部にスポットキズが発生した時のような周期性を持った振動波形ではなく、ランダム振動であるため、一般的に周期性が無い波形となる。正常な軸受部に発生する振動との唯一の差は、振動の振幅が大きくなる点である。
したがって、振動の実効値及びピーク値は、正常時よりも大きくなる。
グリス切音に特有な周波数帯は、図41(a)に示すように、周波数分析を行うと8k〜10kHz帯に顕著に現われており、その他周波数全域にノイズとしてあらわされる。
本実施形態では、この特性を利用し、グリス切音が顕著に現われる周波数帯を高速フーリエ変換で周波数分析を行い、8k〜10kHz帯のみをバンドパスフィルタにより抽出する。抽出した周波数帯の単純平均出力値をLCD表示部68に表示することによって、グリス切音レベルの数値化を図ることができる。
利用方法として、軸受部のグリスアップをする際、グリスアップ前後の出力レベルの変化を確認することで、グリスの注入良否がわかる。また、定期的な巡視時に計測診断装置を用いて測定することにより、グリス切音の傾向管理が容易にできるようになる。
キシリ音の発生メカニズムは完全には解明されていないが、精密診断のレベルでは、キシリ音は比較的判断しやすい。図42(a)に示すように、4kHz〜6kHz付近に幅広い音圧レベルを持った音で、軸受部の大きさ及び回転速度にはほとんど左右されない。
キシリ音もグリス切れ音と同様に顕著に現われる振動加速度の周波数帯を高速フーリエ変換で周波数分析を行い、4kHz〜6kHz帯のみをデジタルフィルター(バンドパスフィルタ)により抽出する。抽出した周波数帯の単純平均出力値をLCD表示部68に表示することによって、グリス切音レベルの数値化を図ることができる。
なお、グリス切音及びキシリ音ともに、高調波歪+Nの高域(2KHz以上)以上であるという特徴がある。
このため、高域のレベル増大の原因が、グリス切音・キシリ音に起因するか、軸受部の異常に起因するかを判別するためには、各々の数値を確認して、グリス切音・キシリ音が比較的高い場合はグリス切れと判別し、一方、グリス切音・キシリ音が比較的低い場合は軸受部の異常であると判別できる。
ここで、具体的なグリス切音とキシリ音の計算について説明する。
グリス切音とキシリ音は、それぞれ8000Hz〜10000Hz、4000Hz〜6000Hz帯に特徴的な出力レベルの増大が見られる(以下、それぞれの周波数帯を「特徴的な周波数帯」という。)ため、この周波数帯の出力レベルを単純に平均して平均値を算出している。
なお、全高調波歪のように分母に基本周波数の出力レベルで除算していないのは、グリス切音とキシリ音の場合は軸受部の大きさ及び回転速度には依存しないためであり、単純に出力レベル値を見ることで傾向管理が可能である。
p(gr)=((p8000)+(p8002)+・・・+(p10000))/(V10000―V8000)
p(gr):グリス切音の単純平均出力レベル
V8000〜V10000:周波数8000〜10000Hz=2000
p8000〜p10000:周波数8000〜10000Hzの出力レベル
p(ks)=((p4000)+(p4002)+・・・+(p6000))/(V6000−V4000)
p(ks):グリス切音の単純平均出力レベル
V4000〜V6000:周波数4000Hz〜6000Hz=2000
p4000〜p6000:周波数4000Hz〜6000Hzの出力レベル
グリス切音及びキシリ音についての各計算値を求めた後に、それぞれにグラフ化を行い、傾向管理を行う。
グリス切音及びキシリ音ともその特徴的な周波数帯よりも高域及び低域にもレベルが低いが出力レベルが表れている。また、この特徴的な周波数帯より高域及び低域には、軸受部の故障(フレーキング傷や軸受部ベアリング玉の微小な傷発生等)が発生した場合は、故障に伴う特徴的な周波数が卓越する現象が現れる。
そのため、グリス切音が発生すると、軸受部の故障に伴う卓越した周波数上にグリス切音に伴うノイズが混入し、いわばマスキングされてしまう。軸受部に対してグリスアップを行えば、特徴的な周波数帯以外の周波数帯域では、ノイズが著しく減少する。軸受部が故障した場合であれば、グリス切音のノイズが除去された後でも、軸受部の故障があれば、特徴的な周波数に出力レベルが残っている。
特徴的な周波数帯に着目した理由として、仮にグリス切音及びキシリ音を全域での平均値とした場合、このような軸受部の故障に伴う特徴的な周波数も合わせて評価してしまうことになり、グリス切音及びキシリ音単独の評価を行い難くなる。そのため、特徴的な周波数帯だけに着目すれば、目的を達成できる。
本実施形態では、区別なく無差別に周波数帯に区切ることは行わない。すなわち、グリス切音又はキシリ音の特定周波数帯に限定しておき、それぞれの帯域の平均値で特徴を表すこととする。
図41(a)(b)に示すように、グリスアップ前とグリスアップ後の平均値の変化量を見れば、その軸受部のグリスアップが適正に行われているか否かの判断目安とすることができる。ただし、同じ軸受部でも固体差によるバラツキ、軸受部への取付け状態によるバラツキ、及び周辺環境温度(室温)の変化に伴う軸受部に注入されたグリスの粘度が変化する可能性等の要因がある。そのため、一緒に室温及び軸受部温度を採取して蓄積しておき、蓄積データとの目視確認を行うことによって、長期的な経年変化傾向を確認することができる。統計的に傾向管理することにより、軸受部固有の要因を含めた管理を行うことができる。
次に、図32を参照して、本発明の実施形態に係る計測診断装置に設けられた軸受部簡易診断測定部によるクレストファクタ演算・判定実行f(Cr)処理のサブルーチンについて説明する。
ステップSS360では、CPU62は、クレストファクタ演算・判定実行f(Cr)処理を開始する。
ステップSS362では、CPU62は、信号処理部50のLPF52から出力される出力信号をメインメモリ部64に記憶する。LPF52からの出力信号は、I/Oブリッジ部60のポートBを介してCPU62に入力される。この際、サンプリング期間の数秒程度の間にCPU62に入力されるデータを一旦メインメモリ部64に記憶しておく。
ステップSS364では、CPU62は、加速度信号を速度信号へ変換し、速度波の高ピーク値を検波する速度波高ピーク値検波処理を行ってf(Peak)を検知し、ステップS366に進み、高ピーク値を維持するピークホールド処理を行い、再度ステップSS364に戻り、前回のピーク値よりも大きい値のピーク値をステップS366に出力することで、数秒程度でピーク値を確定し、メインメモリ部64に記憶し、ステップS368に進む。
f(rms)=f(Peak)/√2
ステップSS372では、CPU62は、速度クレストファクタ演算処理を行う。
f(Cr)=f(Peak)/f(rms)
ステップSS374では、CPU62は、速度クレストファクタ演算値を出力する。
ステップSS376で使用する速度実効値判定処理に使用する基準値に関しては、CPU62により、フラッシュメモリ部(測定機器・機器部位データベース)66にあらかじめ軸受測定をする機器の電動機等の使用電力に関する登録データを呼び出し、その機器ごとに基準値を変更する処理を行う。なお、ステップSS376に示す表は表1に示すクラス3を抜粋したものである。
f(rms)=A,B,C,D
なお、評価と、剛性基礎振動速度(cm/s)rmsとの関係を表1に示す。
発電所ではクラス1〜クラス3までの機械類が多くを占めており、これらの振動速度値から簡易的に判別ができる。
ステップSS378では、CPU62は、ステップSS372での速度クレストファクタ演算処理の結果と、ステップSS376での速度実効値判定処理の結果との論理積ANDを算出し、ステップSS380に進む。
ステップSS380では、CPU62は、速度クレストファクタ判定処理の簡易判定として、
f(Cr)=A,B,C,D
f(Cr)<5 A「良好」
f(Cr)=5〜10 B「潤滑不良」
f(Cr)=10〜20 C「注意」
f(Cr)>20 D「危険」
と判定する。
ただし、速度実効値判定処理評価が「A」の場合は、「 − 実効値判定A異常なし。CF判定なし。」と表示する。
ステップSS382では、CPU62は、速度実効値演算値を出力する。
ステップSS384では、CPU62は、各パラメータについての演算を実行した結果を入力し、SM166へ移行する。
次に、図33(a)を参照して、回転速度データストア実行(r)処理のサブルーチンについて説明する。
ステップSS390では、CPU62は、回転速度データストア実行(r)処理を開始する。
ステップSS392では、CPU62は、ステップSM48(図4、C1)により選択された結果である、手動入力モードの選択結果を入力する。
ステップSS394では、CPU62は、ステップSM48(図4、C2)により選択された結果である、データベース入力モードの選択結果を入力する。
ステップSS396では、CPU62は、手動入力モードの選択結果、またはデータベース入力モードの選択結果を入力する。
ステップSS398では、CPU62は、回転速度データとして、「回転速度(r) xxxxrpm」が、メインメモリ64にストアされていることを確認する。
ステップSS400では、CPU62は、各パラメータについての演算を実行した結果を入力し、ステップSM166へ移行する。
次に、図33(b)を参照して、温度センサデータストア値表示・演算実行(t)処理のサブルーチンについて説明する。
ステップSS410では、CPU62は、温度センサデータストア値表示・演算実行(t)処理を開始する。
ステップSS412では、CPU62は、ステップSM144(図6、G4)により処理された結果である、温度データ入力処理実行の結果を入力する。
ステップSS414では、CPU62は、温度データとして「室温(t(r)) xx℃」、「機器温度(t(m)) yy℃」が、メインメモリ部64にストアされていることを確認する。
ステップSS416では、CPU62は、温度データ判定処理として、「 yy< xx+40 A“良好”」、「 yy> xx+40 B“注意”」結果をメインメモリ部64にストアする。
ステップSS418では、CPU62は、各パラメータについての演算を実行した結果を入力し、ステップSM166へ移行する。
(1)採取したデータは計測診断装置内に保持される、さらに振動データサーバ25に格納される。データは保存形式によって表計算ソフトまたはデータベースソフトでも容易に管理することができる。
(2)本実施形態では、一体式の計測診断装置としたが、信号処理部50以降はデジタル処理となるため、加速度ピックアップ14aからA/D変換器44までは専用ハードウェアとして構成した自動利得調整部30にUSBインターフェースを設け、USBケーブルでノートPCまたはタブレットPCに接続することで、以降の処理はパソコンPC上のアプリケーションソフトウェアで動作させることが可能である。それにより、一体式と比較し、コストの低減が図られる。
(3)信号処理部50から出力されるデータをファイル化し、信号処理部50にLANインターフェースを設け、又は有線/無線LANで伝送し、振動データサーバ25上でソフトウェアを動作させれば、現場にPCを持ち込むことがなく、最小限の機器構成でオンライン監視が可能となる。
(4)軸受部のグリス切れ管理専用に機能を絞り込み、他の演算回路を省略することで機器をさらに小型化できる。これにより運転員がグリス切れ管理を容易に行うことや、保修員がグリスアップをする際にグリス切れ音を評価することで、グリス注入の良否を判断することも可能となる。
<第1態様>
本態様の計測診断装置20は、回転機器の軸受部11aに生じる振動の計測結果に基づいて軸受部11aの異常の有無を診断する計測診断装置20であって、回転機器の振動を検出する加速度ピックアップ14aからの加速度信号を量子化するA/D変換器44と、量子化後の加速度データを高速フーリエ変換するFFTアナライザ部54と、FFTアナライザ部54により生成されたレベルデータのうち、回転機器の回転速度に依存しない4kHz〜6kHz、又は8kHz〜10kHzの周波数帯域のレベルデータを通過させるデジタルBPF処理部85、87と、デジタルBPF処理部85、87を通過した4kHz〜6kHz、又は8kHz〜10kHzの周波数帯域のレベルデータに対して、周波数帯域内の各周波数において平均値を算出して測定値とする単純平均演算処理部86、88と、を備えたことを特徴とする。
本態様によれば、A/D変換器44は、回転機器の振動を検出する加速度ピックアップ14aからの加速度信号を量子化する。FFTアナライザ部54は、量子化後の加速度データを高速フーリエ変換する。デジタルBPF処理部85、87は、FFTアナライザ部54により生成されたレベルデータのうち、回転機器の回転速度に依存しない4kHz〜6kHz、又は8kHz〜10kHzの周波数帯域のレベルデータを通過させる。単純平均演算処理部86、88は、デジタルBPF処理部85、87を通過した4kHz〜6kHz、又は8kHz〜10kHzの周波数帯域のレベルデータに対して、周波数帯域内の各周波数において平均値を算出して測定値とする。
このように、回転機器の振動を検出する加速度ピックアップ14aからの加速度信号の周波数帯域のレベルデータに対して、回転機器の回転速度に依存しない4kHz〜6kHz、又は8kHz〜10kHzの周波数帯域のレベルデータに対して、周波数帯域内の各周波数において平均値を算出して測定値とする。
これにより、簡易な操作で回転機器の振動を測定でき、軸受部振動に関する指標化されたパラメータ値が表示され、最適な振動監視ができ、収集データについての管理を行う最適な計測結果を得ることができ、回転機の簡易的な軸受振動監視に特化することができる。
本態様の計測診断装置20は、周波数帯域の測定値に対して、第1の基準値及び第1の基準値よりも低い第2の基準値と夫々比較する比較手段(SS348)と、測定値が第1の基準値よりも大きい場合に回転機器にグリス切れが発生したことと判定し、測定値が第1の基準値と第2の基準値との間にある場合に回転機器の軸受部11aに異常があると判定する判定手段(SS348)と、を備えたことを特徴とする。
本態様によれば、比較手段(SS348)は、周波数帯域の測定値に対して、第1の基準値及び第1の基準値よりも低い第2の基準値と夫々比較する。判定手段(SS348)は、測定値が第1の基準値よりも大きい場合に回転機器にグリス切れが発生したことと判定し、測定値が第1の基準値と第2の基準値との間にある場合に回転機器の軸受部11aに異常があると判定する。
このように、周波数帯域の測定値に対して、測定値が第1の基準値よりも大きい場合に回転機器にグリス切れが発生したことと判定し、測定値が第1の基準値と第2の基準値との間にある場合に回転機器の軸受部11aに異常があると判定することができる。
本態様の計測診断装置20は、回転機器が配置されている室内の温度を検出する温度センサ16からの温度信号を量子化するA/D変換器19aと、回転機器の軸受部11aの温度を検出する温度センサ14bからの温度信号を量子化するA/D変換器19bと、室内の温度データに所定の値を加算した基準値よりも、回転機器の軸受部11aの温度データの方が低い場合に、回転機器の軸受部11aが正常であると判定する判定手段(SS416)と、を備えることを特徴とする。
本態様によれば、A/D変換器19aは、回転機器が配置されている室内の温度を検出する温度センサ16からの温度信号を量子化する。A/D変換器19bは、回転機器の軸受部11aの温度を検出する温度センサ14bからの温度信号を量子化する。判定手段(SS416)は、室内の温度データに所定の値を加算した基準値よりも、回転機器の軸受部11aの温度データの方が低い場合に、回転機器の軸受部11aが正常であると判定する。
このように、回転機器が配置されている室内の温度データに所定の値を加算した基準値よりも、回転機器の軸受部11aの温度データの方が低い場合に、回転機器の軸受部11aが正常であると判定することができる。
本態様の計測診断装置20は、回転機器の軸受部11aに生じる振動の計測結果に基づいて軸受部11aの異常の有無を診断する計測診断装置20であって、回転機器の振動を検出する加速度ピックアップ14aからの加速度信号を量子化するA/D変換器44と、量子化後の加速度データを高速フーリエ変換するFFTアナライザ部54と、回転機器の回転速度を基準周波数に変換する変換手段(SS322)と、FFTアナライザ部54により生成されたレベルデータのうち、基準周波数を基準波とした複数の異なる高調波帯域についての歪み値を取得する取得手段(SS330)と、高調波帯域についての歪み値に基づいて、回転機器の軸受部11aに係る劣化状態を数値化する数値化手段(SS330)と、を備えることを特徴とする。
本態様によれば、A/D変換器44は、回転機器の振動を検出する加速度ピックアップ14aからの加速度信号を量子化する。FFTアナライザ部54は、量子化後の加速度データを高速フーリエ変換する。変換手段(SS322)は、回転機器の回転速度を基準周波数に変換する。取得手段(SS330)は、FFTアナライザ部54により生成されたレベルデータのうち、基準周波数を基準波とした複数の異なる高調波帯域についての歪み値を取得する。数値化手段(SS330)は、高調波帯域についての歪み値に基づいて、回転機器の軸受部11aに係る劣化状態を数値化する。
このように、回転機器の振動を検出する加速度ピックアップ14aからの加速度信号のレベルデータのうち、回転機器の回転速度を基準周波数の基準波とし、複数の異なる高調波帯域についての歪み値に基づいて、回転機器の軸受部11aに係る劣化状態を数値化することができる。
本態様の数値化手段(SS330)は、各高調波帯域についての歪み値に基づいて、各高調波帯域の高調波歪み率、及び全高調波帯域の高調波歪み率を算出する算出手段(SS330)と、各高調波帯域の高調波歪み率を全高調波帯域の高調波歪み率で除算して、各高調波帯域の商値を求める除算手段(SS330)と、を備えたことを特徴とする。
本態様によれば、算出手段(SS330)は、各高調波帯域についての歪み値に基づいて、各高調波帯域の高調波歪み率、及び全高調波帯域の高調波歪み率を算出する。除算手段(SS330)は、各高調波帯域の高調波歪み率を全高調波帯域の高調波歪み率で除算して、各高調波帯域の商値を求める。
このように、各高調波帯域についての歪み値に基づいて、各高調波帯域の高調波歪み率を全高調波帯域の高調波歪み率で除算して、各高調波帯域の商値を求めることができる。
本態様の数値化手段(SS330)は、高調波帯域についての歪み値に取得日時を付加して蓄積するフラッシュメモリ部66と、フラッシュメモリ部66から取得した各取得日時の高調波帯域についての歪み値に基づいて、除算手段(SS330)により求められた各高調波帯域の商値を取得日時毎に時系列に表示するLCD表示部68と、を備えたことを特徴とする。
本態様によれば、フラッシュメモリ部66は、高調波帯域についての歪み値に取得日時を付加して蓄積する。LCD表示部68は、フラッシュメモリ部66から取得した各取得日時の高調波帯域についての歪み値に基づいて、除算手段(SS330)により求められた各高調波帯域の商値を取得日時毎に時系列に表示する。
このように、各取得日時の高調波帯域についての歪み値に基づいて、各高調波帯域の商値を取得日時毎に時系列に表示することができる。
本態様の計測診断装置20は、加速度ピックアップ14aからの加速度信号を所定の増幅率により増幅する利得調整器36と、利得調整器36から出力される加速度信号と基準電圧とを比較して比較結果信号を利得調整器36に出力する比較器37と、を備え、比較器37は、加速度信号が基準電圧よりも大きい場合に、利得調整器36の増幅率の変化範囲を制限することを特徴とする。
本態様によれば、利得調整器36は、加速度ピックアップ14aからの加速度信号を所定の増幅率により増幅する。比較器37は、利得調整器36から出力される加速度信号と基準電圧とを比較して比較結果信号を利得調整器36に出力する。ここで、比較器37は、加速度信号が基準電圧よりも大きい場合に、利得調整器36の増幅率の変化範囲を制限する。
このように、加速度ピックアップ14aからの加速度信号が基準電圧よりも大きい場合に、利得調整器36の増幅率の変化範囲を制限することができる。
本態様の計測診断装置20は、加速度ピックアップ14aからの加速度信号を入力して増幅するチャージアンプ32と、チャージアンプ32から出力される増幅加速度信号の帯域を制限して通過させるHPF/LPF34と、を備えることを特徴とする。
本態様によれば、チャージアンプ32は、加速度ピックアップ14aからの加速度信号を入力して増幅する。HPF/LPF34は、チャージアンプ32から出力される増幅加速度信号の帯域を制限して通過させる。
このように、加速度ピックアップ14aからの加速度信号を増幅した増幅加速度信号の帯域を制限して通過させることができる。
本態様の比較器37は、加速度ピックアップ14aからの加速度信号がクリップしないように、利得調整器36の増幅率の変化上限を−0.5dB付近として制限することを特徴とする。
本態様によれば、比較器37は、加速度ピックアップ14aからの加速度信号がクリップしないように、利得調整器36の増幅率の変化上限を−0.5dB付近として制限する。
このように、加速度ピックアップ14aからの加速度信号がクリップしないように、利得調整器36の増幅率の変化上限を−0.5dB付近として制限することができる。
この結果、例えばクリップするゲインを0dBとした場合にそれからヘッドマージンを設けた−0.5dB程度下げた値に信号増幅率を保持することができ、加速度ピックアップ14aからの加速度信号がクリップせず、かつSN比を最大にすることができる。
本態様の計測診断装置20は、加速度ピックアップ14aの種類、回転機器の軸受部11aに加速度ピックアップ14aを取付けるための取り付け部材の種類、及び取り付け方法の種類に応じて、加速度ピックアップ14aの有効計測周波数以上の周波数におけるレベルデータを非通過としてバンドパスフィルタに設定し、FFTアナライザ部54により生成されるレベルデータを補正する演算手段(SS204〜SS234)と、
加速度ピックアップ14aの種類、取り付け部材の種類、及び取り付け方法の種類に係る情報を表示するLCD表示部68と、を備えたことを特徴とする。
本態様によれば、演算手段(SS204〜SS234)は、加速度ピックアップ14aの種類、回転機器の軸受部11aに加速度ピックアップ14aを取付けるための取り付け部材の種類、及び取り付け方法の種類に応じて、加速度ピックアップ14aの有効計測周波数以上の周波数におけるレベルデータを非通過としてバンドパスフィルタに設定し、FFTアナライザ部54により生成されるレベルデータを補正する。LCD表示部68は、加速度ピックアップ14aの種類、取り付け部材の種類、及び取り付け方法の種類に係る情報を表示する。
このように、加速度ピックアップ14aの種類、取り付け部材の種類、及び取り付け方法の種類に応じて、加速度ピックアップ14aの有効計測周波数以上の周波数におけるレベルデータを非通過とし、レベルデータを補正することができ、加速度ピックアップ14aの種類、取り付け部材の種類、及び取り付け方法の種類に係る情報を表示することができる。
本態様の計測診断装置20は、校正用振動発生器が発生した振動を基準となる第1の加速度ピックアップ14aに印加した場合に、FFTアナライザ部54により生成された各周波数帯域の第1のレベルデータを取得する第1の取得手段と、基準となる第1の加速度ピックアップ14aから取得した各周波数帯域の第1のレベルデータを記憶するフラッシュメモリ部66と、校正用振動発生器が発生した振動を使用中の加速度ピックアップ14aに印加した場合に、FFTアナライザ部54により生成された各周波数帯域の第2のレベルデータを取得する第2の取得手段と、フラッシュメモリ部66から読み出した各周波数帯域の第1のレベルデータと、使用中の加速度ピックアップ14aから取得した各周波数帯域の第2のレベルデータとを比較する比較演算器56bと、比較手段の比較結果データに基づいて、使用中の加速度ピックアップ14aの異常の有無を診断する診断手段(CPU62)と、を備えたことを特徴とする。
本態様によれば、第1の取得手段は、校正用振動発生器が発生した振動を基準となる第1の加速度ピックアップ14aに印加した場合に、FFTアナライザ部54により生成された各周波数帯域の第1のレベルデータを取得する。フラッシュメモリ部66は、基準となる第1の加速度ピックアップ14aから取得した各周波数帯域の第1のレベルデータを記憶する。第2の取得手段は、校正用振動発生器が発生した振動を使用中の加速度ピックアップ14aに印加した場合に、FFTアナライザ部54により生成された各周波数帯域の第2のレベルデータを取得する。比較演算器56bは、フラッシュメモリ部66から読み出した各周波数帯域の第1のレベルデータと、使用中の加速度ピックアップ14aから取得した各周波数帯域の第2のレベルデータとを比較する。診断手段(CPU62)は、比較演算器56bの比較結果データに基づいて、使用中の加速度ピックアップ14aの異常の有無を診断する。
このように、校正用振動発生器が発生した振動を基準となる第1の加速度ピックアップ14aから取得した各周波数帯域の第1のレベルデータと、使用中の加速度ピックアップ14aから取得した各周波数帯域の第2のレベルデータとの比較結果データに基づいて、使用中の加速度ピックアップ14aの異常の有無を診断することができる。
本態様の計測診断装置20は、比較結果データを各周波数帯域の補正値として入力する補正値入力部56eと、
補正値入力部56eから入力された各周波数帯域の補正値に基づいて、FFTアナライザ部54から出力される各周波数帯域のレベルデータを夫々補正する感度補正演算器56aと、
を備えたことを特徴とする。
本態様によれば、補正値入力部56eは、比較結果データを各周波数帯域の補正値として入力する。感度補正演算器56aは、補正値入力部56eから入力された比較結果データである各周波数帯域の補正値に基づいて、FFTアナライザ部54から出力される各周波数帯域のレベルデータを夫々補正する。
このように、入力された比較結果データである各周波数帯域の補正値に基づいて、FFTアナライザ部54から出力される各周波数帯域のレベルデータを夫々補正することができる。
本態様の計測診断装置20は、各周波数帯域の補正値を入力する補正値入力部56eと、補正値入力部56eから入力された各周波数帯域の補正値に基づいて、FFTアナライザ部54から出力される各周波数帯域のレベルデータを夫々補正する感度補正演算器56aと、を備えたことを特徴とする。
本態様によれば、補正値入力部56eは、各周波数帯域の補正値を入力する。感度補正演算器56aは、補正値入力部56eから入力された各周波数帯域の補正値に基づいて、FFTアナライザ部54から出力される各周波数帯域のレベルデータを夫々補正する。
このように、入力された各周波数帯域の補正値に基づいて、FFTアナライザ部54から出力される各周波数帯域のレベルデータを夫々補正することができる。
本態様の計測診断方法は、回転機器の軸受部11aに生じる振動の計測結果に基づいて軸受部11aの異常の有無を診断する計測診断装置20による計測診断方法であって、回転機器の振動を検出する加速度ピックアップ14aからの加速度信号を量子化するA/D変換器44から取得した量子化後の加速度データを高速フーリエ変換するFFTアナライザ部54と、FFTアナライザ部54により生成されたレベルデータのうち、回転機器の回転速度に依存しない4kHz〜6kHz、又は8kHz〜10kHzの周波数帯域のレベルデータを通過させるデジタルBPF処理部85、87と、デジタルBPF処理部85、87を通過した4kHz〜6kHz、又は8kHz〜10kHzの周波数帯域のレベルデータに対して、周波数帯域内の各周波数において平均値を算出して測定値とする単純平均演算処理部86、88と、を実行することを特徴とする。
第14態様の作用、及び効果は第1態様と同様であるので、その説明を省略する。
本態様の計測診断方法は、回転機器の軸受部11aに生じる振動の計測結果に基づいて軸受部11aの異常の有無を診断する計測診断装置20による計測診断方法であって、回転機器の振動を検出する加速度ピックアップ14aからの加速度信号を量子化するA/D変換器44から取得した量子化後の加速度データを高速フーリエ変換するFFTアナライザ部54と、回転機器の回転速度を基準周波数に変換する変換ステップ(SS322)と、FFTアナライザ部54により生成されたレベルデータのうち、基準周波数を基準波とした複数の異なる高調波帯域についての歪み値を取得する取得ステップ(SS330)と、高調波帯域についての歪み値に基づいて、回転機器の軸受部11aに係る劣化状態を数値化する数値化ステップ(SS330)と、を実行することを特徴とする。
第15態様の作用、及び効果は第4態様と同様であるので、その説明を省略する。
Claims (15)
- 回転機器の軸受部に生じる振動の計測結果に基づいて前記軸受部の異常の有無を診断する計測診断装置であって、
前記回転機器の振動を検出する加速度検出手段からの加速度信号を量子化するA/D変換器と、
前記量子化後の加速度データを高速フーリエ変換する高速フーリエ変換手段と、
前記高速フーリエ変換手段により生成されたレベルデータのうち、前記回転機器の回転速度に依存しない4kHz〜6kHz、又は8kHz〜10kHzの周波数帯域のレベルデータを通過させるバンドパスフィルタと、
前記バンドパスフィルタを通過した4kHz〜6kHz、又は8kHz〜10kHzの周波数帯域のレベルデータに対して、前記周波数帯域内の各周波数において平均値を算出して測定値とする算出手段と、
を備えたことを特徴とする計測診断装置。 - 前記周波数帯域の測定値に対して、第1の基準値及び前記第1の基準値よりも低い第2の基準値と夫々比較する比較手段と、
前記測定値が前記第1の基準値よりも大きい場合に前記回転機器にグリス切れが発生したことと判定し、前記測定値が前記第1の基準値と前記第2の基準値との間にある場合に前記回転機器の軸受部に異常があると判定する判定手段と、
を備えたことを特徴とする請求項1に記載の計測診断装置。 - 前記回転機器が配置されている室内の温度を検出する第1の温度センサからの温度信号を量子化する第2のA/D変換器と、
前記回転機器の軸受部の温度を検出する第2の温度センサからの温度信号を量子化する第3のA/D変換器と、
前記室内の温度データに所定の値を加算した基準値よりも、前記回転機器の軸受部の温度データの方が低い場合に、前記回転機器の軸受部が正常であると判定する判定手段と、
を備えることを特徴とする請求項2に記載の計測診断装置。 - 回転機器の軸受部に生じる振動の計測結果に基づいて前記軸受部の異常の有無を診断する計測診断装置であって、
前記回転機器の振動を検出する加速度検出手段からの加速度信号を量子化するA/D変換器と、
前記量子化後の加速度データを高速フーリエ変換する高速フーリエ変換手段と、
前記回転機器の回転速度を基準周波数に変換する変換手段と、
前記高速フーリエ変換手段により生成されたレベルデータのうち、前記基準周波数を基準波とした複数の異なる高調波帯域についての歪み値を取得する取得手段と、
前記高調波帯域についての歪み値に基づいて、前記回転機器の軸受部に係る劣化状態を数値化する数値化手段と、
を備えることを特徴とする計測診断装置。 - 前記数値化手段は、
各高調波帯域についての歪み値に基づいて、各高調波帯域の高調波歪み率、及び全高調波帯域の高調波歪み率を算出する算出手段と、
前記各高調波帯域の高調波歪み率を前記全高調波帯域の高調波歪み率で除算して、前記各高調波帯域の商値を求める除算手段と、
を備えたことを特徴とする請求項4に記載の計測診断装置。 - 前記数値化手段は、
前記高調波帯域についての歪み値に取得日時を付加して蓄積する蓄積手段と、
前記蓄積手段から取得した各取得日時の前記高調波帯域についての歪み値に基づいて、前記除算手段により求められた前記各高調波帯域の商値を前記取得日時毎に時系列に表示する表示手段と、
を備えたことを特徴とする請求項5に記載の計測診断装置。 - 前記加速度検出手段からの加速度信号を所定の増幅率により増幅する利得調整器と、
前記利得調整器から出力される加速度信号と基準電圧とを比較して比較結果信号を利得調整器に出力する比較器と、を備え、
前記比較器は、前記加速度信号が前記基準電圧よりも大きい場合に、前記利得調整器の増幅率の変化範囲を制限することを特徴とする請求項1乃至6の何れか1項に記載の計測診断装置。 - 前記加速度検出手段からの加速度信号を入力して増幅するチャージアンプと、
前記チャージアンプから出力される増幅加速度信号の帯域を制限して通過させるフィルタと、を備えることを特徴とする請求項7に記載の計測診断装置。 - 前記比較器は、前記加速度検出手段からの前記加速度信号がクリップしないように、前記利得調整器の増幅率の変化上限を−0.5dB付近として制限することを特徴とする請求項7に記載の計測診断装置。
- 前記加速度検出手段の種類、前記回転機器の軸受部に前記加速度検出手段を取付けるための取り付け部材の種類、及び取り付け方法の種類に応じて、前記加速度検出手段の有効計測周波数以上の周波数におけるレベルデータを非通過として前記バンドパスフィルタに設定し、前記高速フーリエ変換手段により生成されるレベルデータを補正する演算手段と、
前記加速度検出手段の種類、前記取り付け部材の種類、及び前記取り付け方法の種類に係る情報を表示する情報表示手段と、
を備えたことを特徴とする請求項1乃至9の何れか1項に記載の計測診断装置。 - 校正用振動発生器が発生した振動を基準となる第1の加速度検出手段に印加した場合に、前記高速フーリエ変換手段により生成された各周波数帯域の第1のレベルデータを取得する第1の取得手段と、
前記基準となる第1の加速度検出手段から取得した各周波数帯域の第1のレベルデータを記憶する記憶手段と、
前記校正用振動発生器が発生した振動を使用中の加速度検出手段に印加した場合に、前記高速フーリエ変換手段により生成された各周波数帯域の第2のレベルデータを取得する第2の取得手段と、
前記記憶手段から読み出した各周波数帯域の第1のレベルデータと、前記使用中の加速度検出手段から取得した各周波数帯域の第2のレベルデータとを比較する比較手段と、
前記比較手段の比較結果データに基づいて、前記使用中の加速度検出手段の異常の有無を診断する診断手段と、
を備えたことを特徴とする請求項1乃至9の何れか1項に記載の計測診断装置。 - 前記比較結果データを前記各周波数帯域の補正値として入力する補正値入力手段と、
前記補正値入力手段から入力された前記各周波数帯域の補正値に基づいて、前記高速フーリエ変換手段から出力される各周波数帯域のレベルデータを夫々補正する感度補正演算器と、
を備えたことを特徴とする請求項11に記載の計測診断装置。 - 前記各周波数帯域の補正値を入力する補正値入力手段と、
前記補正値入力手段から入力された前記各周波数帯域の補正値に基づいて、前記高速フーリエ変換手段から出力される各周波数帯域のレベルデータを夫々補正する感度補正演算器と、
を備えたことを特徴とする請求項11に記載の計測診断装置。 - 回転機器の軸受部に生じる振動の計測結果に基づいて前記軸受部の異常の有無を診断する計測診断装置による計測診断方法であって、
前記回転機器の振動を検出する加速度検出手段からの加速度信号を量子化するA/D変換器から取得した前記量子化後の加速度データを高速フーリエ変換する高速フーリエ変換ステップと、
前記高速フーリエ変換ステップにより生成されたレベルデータのうち、前記回転機器の回転速度に依存しない4kHz〜6kHz、又は8kHz〜10kHzの周波数帯域のレベルデータを通過させるバンドパスフィルタステップと、
前記バンドパスフィルタステップを通過した4kHz〜6kHz、又は8kHz〜10kHzの周波数帯域のレベルデータに対して、前記周波数帯域内の各周波数において平均値を算出して測定値とする算出ステップと、
を実行することを特徴とする計測診断方法。 - 回転機器の軸受部に生じる振動の計測結果に基づいて前記軸受部の異常の有無を診断する計測診断装置による計測診断方法であって、
前記回転機器の振動を検出する加速度検出手段からの加速度信号を量子化するA/D変換器から取得した前記量子化後の加速度データを高速フーリエ変換する高速フーリエ変換ステップと、
前記回転機器の回転速度を基準周波数に変換する変換ステップと、
前記高速フーリエ変換ステップにより生成されたレベルデータのうち、前記基準周波数を基準波とした複数の異なる高調波帯域についての歪み値を取得する取得ステップと、
前記高調波帯域についての歪み値に基づいて、前記回転機器の軸受部に係る劣化状態を数値化する数値化ステップと、
を実行することを特徴とする計測診断方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016052144A JP6728808B2 (ja) | 2016-03-16 | 2016-03-16 | 計測診断装置、及び計測診断方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016052144A JP6728808B2 (ja) | 2016-03-16 | 2016-03-16 | 計測診断装置、及び計測診断方法 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020002810A Division JP6835265B2 (ja) | 2020-01-10 | 2020-01-10 | 計測診断装置、及び計測診断方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017166960A true JP2017166960A (ja) | 2017-09-21 |
JP6728808B2 JP6728808B2 (ja) | 2020-07-22 |
Family
ID=59913272
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016052144A Active JP6728808B2 (ja) | 2016-03-16 | 2016-03-16 | 計測診断装置、及び計測診断方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6728808B2 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018168073A1 (ja) * | 2017-03-13 | 2018-09-20 | オムロン株式会社 | 回転機の状態監視システム、回転機の状態監視方法、プログラムおよび記録媒体 |
KR101901146B1 (ko) | 2017-11-16 | 2018-09-21 | 한국세라믹기술원 | 자가발전 IoT 센서 모듈 및 이를 갖는 안전사고방지 모니터링 시스템 |
CN110186552A (zh) * | 2019-06-24 | 2019-08-30 | 大连贝林轴承仪器有限公司 | 一种全自动三代轮毂轴承振动测量仪及测量方法 |
WO2020095993A1 (ja) * | 2018-11-09 | 2020-05-14 | 日鉄ソリューションズ株式会社 | 推論装置、情報処理装置、推論方法、プログラム及び記録媒体 |
KR20200072496A (ko) * | 2017-11-22 | 2020-06-22 | 미쓰비시덴키 가부시키가이샤 | 설비의 열화 진단 장치 |
CN111855166A (zh) * | 2019-04-26 | 2020-10-30 | 博世力士乐(常州)有限公司 | 线性运动系统及其监控装置 |
CN114813124A (zh) * | 2022-03-21 | 2022-07-29 | 广东石油化工学院 | 一种轴承故障的监测方法及装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4948374A (ja) * | 1972-08-29 | 1974-05-10 | ||
JP2004184400A (ja) * | 2002-11-21 | 2004-07-02 | Nsk Ltd | 機械設備の監視システム |
JP2007192828A (ja) * | 2003-07-29 | 2007-08-02 | Nsk Ltd | 異常診断装置及びこれを有する転がり軸受装置並びに異常診断方法 |
WO2009096551A1 (ja) * | 2008-01-30 | 2009-08-06 | Jfe Advantech Co., Ltd. | 軸受の診断システム |
US20120035885A1 (en) * | 2009-02-18 | 2012-02-09 | Optimized Systems And Solutions Limited | Method and apparatus for monitoring and analyzing vibrations in rotary machines |
JP2012163439A (ja) * | 2011-02-07 | 2012-08-30 | Toshiba Corp | 回転機振動監視システムおよび監視方法 |
-
2016
- 2016-03-16 JP JP2016052144A patent/JP6728808B2/ja active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4948374A (ja) * | 1972-08-29 | 1974-05-10 | ||
JP2004184400A (ja) * | 2002-11-21 | 2004-07-02 | Nsk Ltd | 機械設備の監視システム |
JP2007192828A (ja) * | 2003-07-29 | 2007-08-02 | Nsk Ltd | 異常診断装置及びこれを有する転がり軸受装置並びに異常診断方法 |
WO2009096551A1 (ja) * | 2008-01-30 | 2009-08-06 | Jfe Advantech Co., Ltd. | 軸受の診断システム |
US20120035885A1 (en) * | 2009-02-18 | 2012-02-09 | Optimized Systems And Solutions Limited | Method and apparatus for monitoring and analyzing vibrations in rotary machines |
JP2012163439A (ja) * | 2011-02-07 | 2012-08-30 | Toshiba Corp | 回転機振動監視システムおよび監視方法 |
Non-Patent Citations (1)
Title |
---|
中井 幹雄: "円筒ころ軸受のきしり音について", 日本機械学会論文集C編, vol. 56巻 525号, JPN6019044798, 25 May 1990 (1990-05-25), JP, pages 166 - 174, ISSN: 0004233130 * |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018168073A1 (ja) * | 2017-03-13 | 2018-09-20 | オムロン株式会社 | 回転機の状態監視システム、回転機の状態監視方法、プログラムおよび記録媒体 |
KR101901146B1 (ko) | 2017-11-16 | 2018-09-21 | 한국세라믹기술원 | 자가발전 IoT 센서 모듈 및 이를 갖는 안전사고방지 모니터링 시스템 |
KR102475739B1 (ko) * | 2017-11-22 | 2022-12-08 | 미쓰비시덴키 가부시키가이샤 | 설비의 열화 진단 장치 |
KR20200072496A (ko) * | 2017-11-22 | 2020-06-22 | 미쓰비시덴키 가부시키가이샤 | 설비의 열화 진단 장치 |
US20210397992A1 (en) * | 2018-11-09 | 2021-12-23 | Ns Solutions Corporation | Inference apparatus, information processing apparatus, inference method, program and recording medium |
WO2020095993A1 (ja) * | 2018-11-09 | 2020-05-14 | 日鉄ソリューションズ株式会社 | 推論装置、情報処理装置、推論方法、プログラム及び記録媒体 |
JP2020077327A (ja) * | 2018-11-09 | 2020-05-21 | 日鉄ソリューションズ株式会社 | 推論装置、情報処理装置、推論方法及びプログラム |
JP7161379B2 (ja) | 2018-11-09 | 2022-10-26 | 日鉄ソリューションズ株式会社 | 推論装置 |
CN111855166A (zh) * | 2019-04-26 | 2020-10-30 | 博世力士乐(常州)有限公司 | 线性运动系统及其监控装置 |
CN111855166B (zh) * | 2019-04-26 | 2024-07-26 | 博世力士乐(常州)有限公司 | 线性运动系统及其监控装置 |
CN110186552B (zh) * | 2019-06-24 | 2021-01-26 | 大连贝林轴承仪器有限公司 | 一种全自动三代轮毂轴承振动测量仪及测量方法 |
CN110186552A (zh) * | 2019-06-24 | 2019-08-30 | 大连贝林轴承仪器有限公司 | 一种全自动三代轮毂轴承振动测量仪及测量方法 |
CN114813124A (zh) * | 2022-03-21 | 2022-07-29 | 广东石油化工学院 | 一种轴承故障的监测方法及装置 |
Also Published As
Publication number | Publication date |
---|---|
JP6728808B2 (ja) | 2020-07-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6835265B2 (ja) | 計測診断装置、及び計測診断方法 | |
JP6728808B2 (ja) | 計測診断装置、及び計測診断方法 | |
JP3609982B2 (ja) | 故障診断方法及びその装置 | |
US6801864B2 (en) | System and method for analyzing vibration signals | |
JP4504065B2 (ja) | 転がり軸受の余寿命診断方法 | |
JP4120099B2 (ja) | 軸受の異常診断方法および異常診断装置 | |
JP4003088B2 (ja) | 回転体の異常診断方法及び装置 | |
JP5460160B2 (ja) | 設備機器の診断装置 | |
JP4787904B2 (ja) | 転がり軸受の余寿命診断方法 | |
JP6714806B2 (ja) | 状態監視装置及び状態監視方法 | |
JP2008292288A (ja) | 減速機の軸受診断装置 | |
JP4935165B2 (ja) | 異常診断装置及び異常診断方法 | |
KR101482509B1 (ko) | 베어링 결함 진단 시스템 및 그 진단 방법 | |
WO2017159784A1 (ja) | 状態監視システムおよび風力発電装置 | |
KR20140084159A (ko) | 기어박스의 상태를 모니터링하는 방법 및 시스템 | |
JP2002022617A (ja) | 軸受診断装置 | |
JP2017101954A (ja) | 機械設備の評価方法 | |
JP2018155494A (ja) | 軸受異常診断システム及び軸受異常診断方法 | |
KR20110009615A (ko) | 데이터 수집장치 및 상기 데이터 수집장치를 구비한 설비기기의 진단장치 | |
JP2018179735A (ja) | 回転部品の異常診断方法及び異常診断装置 | |
KR101166871B1 (ko) | 기계시스템 상태감시장치 및 상태감시방법 | |
JP4730166B2 (ja) | 機械設備の異常診断装置及び異常診断方法 | |
JP7113668B2 (ja) | 状態監視システム | |
JP7383367B1 (ja) | 回転機器の振動データ分析方法及び分析システム | |
US10908014B2 (en) | Detecting rotor anomalies during transient speed operations |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190214 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20191010 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20191119 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200110 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200317 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200401 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200602 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200615 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6728808 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |