WO2018167846A1 - 基板処理装置、半導体装置の製造方法およびプログラム - Google Patents

基板処理装置、半導体装置の製造方法およびプログラム Download PDF

Info

Publication number
WO2018167846A1
WO2018167846A1 PCT/JP2017/010220 JP2017010220W WO2018167846A1 WO 2018167846 A1 WO2018167846 A1 WO 2018167846A1 JP 2017010220 W JP2017010220 W JP 2017010220W WO 2018167846 A1 WO2018167846 A1 WO 2018167846A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
purge gas
wafer
chamber
processing
Prior art date
Application number
PCT/JP2017/010220
Other languages
English (en)
French (fr)
Inventor
志有 廣地
和宏 湯浅
哲夫 山本
愛彦 柳沢
佐々木 伸也
典明 道田
Original Assignee
株式会社Kokusai Electric
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Kokusai Electric filed Critical 株式会社Kokusai Electric
Priority to PCT/JP2017/010220 priority Critical patent/WO2018167846A1/ja
Priority to JP2019505563A priority patent/JP6944990B2/ja
Priority to KR1020197026382A priority patent/KR102311459B1/ko
Priority to TW106144208A priority patent/TWI668764B/zh
Publication of WO2018167846A1 publication Critical patent/WO2018167846A1/ja
Priority to US16/563,466 priority patent/US11018033B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/6719Apparatus for manufacturing or treating in a plurality of work-stations characterized by the construction of the processing chambers, e.g. modular processing chambers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67196Apparatus for manufacturing or treating in a plurality of work-stations characterized by the construction of the transfer chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67276Production flow monitoring, e.g. for increasing throughput
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/673Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere using specially adapted carriers or holders; Fixing the workpieces on such carriers or holders
    • H01L21/67303Vertical boat type carrier whereby the substrates are horizontally supported, e.g. comprising rod-shaped elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67742Mechanical parts of transfer devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67763Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading
    • H01L21/67766Mechanical parts of transfer devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67763Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading
    • H01L21/67769Storage means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67763Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading
    • H01L21/67772Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading involving removal of lid, door, cover
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67763Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading
    • H01L21/67778Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading involving loading and unloading of wafers
    • H01L21/67781Batch transfer of wafers

Definitions

  • the present invention relates to a substrate processing apparatus, a semiconductor device manufacturing method, and a program.
  • a substrate in a processing chamber is heated using a heating device to change a composition or a crystal structure in a thin film formed on the surface of the substrate.
  • a modification process typified by an annealing process for repairing crystal defects or the like in the formed thin film.
  • miniaturization and high integration have been remarkable in semiconductor devices, and accordingly, a modification process to a high-density substrate on which a pattern having a high aspect ratio is formed is required.
  • a heat treatment method using electromagnetic waves has been studied as a method for modifying such a high-density substrate.
  • An object of the present invention is to provide an electromagnetic wave processing technique capable of suppressing a decrease in productivity even when a substrate cooling step is provided.
  • a processing chamber that has a gate valve that opens and closes a loading / unloading port for loading and unloading a substrate, and heats and processes the substrate by a heating device using microwaves;
  • a substrate transfer chamber provided with a purge gas distribution mechanism for supplying purge gas to the inside from a clean unit capable of introducing the purge gas and circulating the purge gas supplied to the inside through a predetermined path;
  • a transfer machine provided inside the substrate transfer chamber to transfer the substrate to the processing chamber;
  • a substrate mounting device for cooling a substrate that is installed in the vicinity of the clean unit and above the gate valve and that is transported by the transfer device, A technique is provided.
  • (A) It is the figure typically shown about the method of conveying a wafer to a cooling area.
  • (B) It is the figure which showed typically about the method of carrying out the wafer which completed cooling from a cooling area.
  • (A) It is a figure which shows an example of the sequence of the board
  • (B) It is a figure which shows an example of the sequence of the board
  • (A) It is a figure which shows an example at the time of measuring the temperature transition at the time of hold
  • (B) It is a figure which shows an example at the time of measuring the temperature transition at the time of hold
  • (A) It is a figure which shows the substrate holder which hold
  • (B) It is a figure which shows an example in the case of measuring a temperature transition at the time of hold
  • a substrate processing apparatus 100 is configured as a single wafer heat treatment apparatus that performs various heat treatments on a wafer, and an annealing process using electromagnetic waves to be described later.
  • the apparatus will be described as an apparatus for performing (reforming treatment).
  • a FOUP Front Opening Unified Pod: hereinafter referred to as a pod
  • a pod 110 is used as a storage container (carrier) that stores a wafer 200 as a substrate therein.
  • the pod 110 is also used as a transfer container for transferring the wafer 200 between various substrate processing apparatuses.
  • the substrate processing apparatus 100 is provided on a transfer housing (housing) 202 having a transfer chamber (transfer area) 203 for transferring a wafer 200 inside, and on a side wall of the transfer housing 202.
  • cases 102-1 and 102-2 are provided as processing containers, which will be described later, each having processing chambers 201-1 and 201-2 for processing the wafer 200 therein.
  • a load port unit (LP) 106 is disposed as an opening / closing mechanism.
  • the load port unit 106 includes a casing 106a, a stage 106b, and an opener 106c.
  • the stage 106b mounts the pod 110, and a pod is connected to the substrate loading / unloading port 134 formed in front of the casing of the transfer chamber 203.
  • the lid 110 (not shown) provided on the pod 110 is opened and closed by the opener 106c.
  • the load port unit 106 may have a function capable of purging the inside of the pod 110 with a purge gas such as N 2 gas.
  • the housing 202 has a later-described purge gas circulation structure in the transfer chamber 203 as a purge gas distribution system for circulating a purge gas such as N 2.
  • Gate valves 205-1 and 205-2 for opening and closing the processing chambers 201-1 and 202-2 are provided on the left side (upper side in FIG. 2) of FIG. Each is arranged.
  • a transfer machine 125 as a substrate transfer mechanism (substrate transfer robot) for transferring the wafer 200 is installed in the transfer chamber 203.
  • the transfer machine 125 can rotate or linearly move each of the tweezers (arms) 125a-1 and 125a-2 and the tweezers 125a-1 and 125a-2 as placement units on which the wafer 200 is placed. It includes a transfer device 125b and a transfer device elevator 125c that moves the transfer device 125b up and down.
  • the wafer 200 is loaded (charged) or removed (discharged) on a substrate holder 217 or a pod 110 described later. This is possible.
  • each of the cases 102-1, 102-2, the processing chambers 201-1, 201-2, and the tweezers 125a-1 and 125a-2 are simply the case 102, the processing, unless it is necessary to distinguish them.
  • the chamber 201 is described as a tweezer 125a.
  • a wafer cooling mounting tool (cooling) as a substrate cooling mounting tool for cooling the processed wafer 200.
  • a boat 108 is provided on the wafer cooling table 109.
  • the wafer cooling mount 108 has a structure similar to that of a boat 217 as a substrate holder described later.
  • a plurality of wafers are provided by a plurality of wafer holding grooves 107a to 107d. It is configured so that 200 can be held horizontally in multiple vertical stages.
  • the wafer cooling mounting tool 108 and the wafer cooling table 109 are provided above the substrate loading / unloading port 134 and the gate valve 205 and below the clean unit 166, that is, the gate valve 205 and the clean unit.
  • the wafer 200 is removed from the flow line when the transfer device 125 transports the wafer 200 from the pod 110 to the processing chamber 201. For this reason, it is possible to cool the processed wafer 200 without reducing the throughput of wafer processing (wafer transfer).
  • the wafer cooling mounting tool 108 and the wafer cooling table 109 may be collectively referred to as a cooling area (cooling area).
  • each of the wafer holding grooves 107a to 107d is simply described as the wafer holding groove 107 when it is not necessary to distinguish between them.
  • a processing furnace having a substrate processing structure as shown in FIG. 3 is configured.
  • FIG. 2 in the present embodiment, a plurality of processing furnaces are provided.
  • the processing furnace has a case 102 as a cavity (processing container) made of a material that reflects electromagnetic waves such as metal.
  • a cap flange (blocking plate) 104 made of a metal material is configured to close the upper end of the case 102 via an O-ring (not shown) as a sealing member (seal member).
  • a space inside the case 102 and the cap flange 104 is mainly configured as a processing chamber 201 for processing a substrate such as a silicon wafer.
  • a reaction tube (not shown) made of quartz that transmits electromagnetic waves may be installed inside the case 102, and the processing vessel may be configured so that the inside of the reaction tube becomes a processing chamber.
  • the processing chamber 201 may be configured using the case 102 with the ceiling closed without providing the cap flange 104.
  • a mounting table 210 is provided in the processing chamber 201, and a boat 217 as a substrate holder for holding the wafer 200 as a substrate is mounted on the upper surface of the mounting table 210.
  • the boat 217 holds a wafer 200 to be processed and quartz plates 101 a and 101 b as heat insulating plates placed vertically above and below the wafer 200 so as to sandwich the wafer 200 at a predetermined interval.
  • a dielectric such as a dielectric that absorbs electromagnetic waves such as a silicon plate (Si plate) or a silicon carbide plate (SiC plate) and heats itself.
  • Susceptors also referred to as energy conversion members, radiation plates, and soaking plates
  • 103a and 103b that indirectly heat the wafer 200 formed of a substance
  • the wafer 200 can be more efficiently and uniformly heated by the radiant heat from the susceptors 103a and 103b.
  • the quartz plates 101a and 101b and the susceptors 103a and 103b are the same components, and will be referred to as the quartz plate 101 and the susceptor 103 in the following unless there is no need to distinguish between them. To do.
  • the case 102 as a processing container has a circular cross section, for example, and is configured as a flat sealed container.
  • the transport container 202 as a lower container is made of, for example, a metal material such as aluminum (Al) or stainless steel (SUS), or quartz.
  • a space surrounded by the case 102 may be referred to as a processing chamber 201 or a reaction area 201 as a processing space
  • a space surrounded by the transfer container 202 may be referred to as a transfer chamber 203 or a transfer area 203 as a transfer space.
  • the processing chamber 201 and the transfer chamber 203 are not limited to being configured to be adjacent in the horizontal direction as in the present embodiment, and may be configured to be adjacent in the vertical direction.
  • a substrate loading / unloading port 206 adjacent to the gate valve 205 is provided on the side surface of the transfer container 202, and the wafer 200 is processed via the substrate loading / unloading port 206. It moves between the chamber 201 and the transfer chamber 203.
  • a choke structure having a length of a quarter wavelength of the electromagnetic wave used is provided as a countermeasure against leakage of the electromagnetic wave described later.
  • An electromagnetic wave supply unit as a heating device which will be described in detail later, is installed on the side surface of the case 102.
  • An electromagnetic wave such as a microwave supplied from the electromagnetic wave supply unit is introduced into the processing chamber 201 to heat the wafer 200 and the like. Then, the wafer 200 is processed.
  • the mounting table 210 is supported by a shaft 255 as a rotating shaft.
  • the shaft 255 penetrates the bottom of the transport container 202 and is further connected to a drive mechanism 267 that rotates outside the transport container 202.
  • the wafer 200 mounted on the boat 217 can be rotated by operating the drive mechanism 267 to rotate the shaft 255 and the mounting table 210.
  • the periphery of the lower end portion of the shaft 255 is covered with a bellows 212, and the inside of the processing chamber 201 and the transfer area 203 is kept airtight.
  • the mounting table 210 is raised or lowered by the driving mechanism 267 so that the wafer 200 becomes the wafer transfer position when the wafer 200 is transferred, and the wafer 200 is processed when the wafer 200 is processed.
  • An exhaust unit that exhausts the atmosphere of the processing chamber 201 is provided below the processing chamber 201 and on the outer peripheral side of the mounting table 210. As shown in FIG. 1, an exhaust port 221 is provided in the exhaust part. An exhaust pipe 231 is connected to the exhaust port 221, and a pressure regulator 244 such as an APC valve that controls the valve opening degree according to the pressure in the processing chamber 201 and a vacuum pump 246 are connected in series to the exhaust pipe 231. It is connected to the.
  • the pressure regulator 244 is not limited to an APC valve as long as it can receive pressure information in the processing chamber 201 (a feedback signal from a pressure sensor 245 described later) and adjust the exhaust amount.
  • the on-off valve and the pressure regulating valve may be used in combination.
  • the exhaust port 221, the exhaust pipe 231, and the pressure regulator 244 constitute an exhaust part (also referred to as an exhaust system or an exhaust line).
  • an exhaust port may be provided so as to surround the mounting table 210 so that the gas can be exhausted from the entire circumference of the wafer 200.
  • the cap flange 104 is provided with a gas supply pipe 232 for supplying a processing gas for processing various substrates such as an inert gas, a raw material gas, and a reactive gas into the processing chamber 201.
  • a mass flow controller (MFC) 241 that is a flow rate controller (flow rate control unit) and a valve 243 that is an on-off valve are provided in order from the upstream side.
  • MFC mass flow controller
  • N 2 nitrogen
  • a gas in which an MFC that is a flow controller and a valve that is an on-off valve are provided downstream from the valve 243 of the gas supply pipe 232 in order from the upstream side A plurality of types of gases can be supplied by using a configuration in which a supply pipe is connected.
  • a gas supply pipe provided with an MFC and a valve may be installed for each gas type.
  • a gas supply system (gas supply unit) is mainly configured by the gas supply pipe 232, the MFC 241, and the valve 243.
  • an inert gas flows through the gas supply system, it is also referred to as an inert gas supply system.
  • the inert gas for example, a rare gas such as Ar gas, He gas, Ne gas, or Xe gas can be used in addition to N 2 gas.
  • the cap flange 104 is provided with a temperature sensor 263 as a non-contact temperature measuring device.
  • a temperature sensor 263 By adjusting the output of a microwave oscillator 655, which will be described later, based on the temperature information detected by the temperature sensor 263, the substrate is heated, and the substrate temperature has a desired temperature distribution.
  • the temperature sensor 263 is configured by a radiation thermometer such as an IR (Infrared Radiation) sensor, for example.
  • the temperature sensor 263 is installed so as to measure the surface temperature of the quartz plate 101 a or the surface temperature of the wafer 200. When the susceptor as the heating element described above is provided, the surface temperature of the susceptor may be measured.
  • the wafer temperature converted by the temperature conversion data described later that is, the estimated wafer temperature, and the temperature sensor 263 are used.
  • the temperature obtained by directly measuring the temperature of the wafer 200 is meant and a case where both are meant will be described.
  • the converted data may be stored in the storage device 121c or the external storage device 123.
  • the temperature of the wafer 200 can be estimated by measuring only the temperature of the quartz plate 101, and based on the estimated temperature of the wafer 200.
  • the output of the microwave oscillator 655, that is, the heating device can be controlled.
  • the means for measuring the temperature of the substrate is not limited to the radiation thermometer described above, and the temperature may be measured using a thermocouple, or the thermocouple and the non-contact thermometer are used in combination. May be.
  • a thermocouple it is necessary to place the thermocouple near the wafer 200 and perform temperature measurement. That is, since it is necessary to arrange a thermocouple in the processing chamber 201, the thermocouple itself is heated by a microwave supplied from a microwave oscillator to be described later, so that the temperature cannot be measured accurately. Therefore, it is preferable to use a non-contact type thermometer as the temperature sensor 263.
  • the temperature sensor 263 is not limited to being provided on the cap flange 104 but may be provided on the mounting table 210.
  • the temperature sensor 263 is not only directly installed on the cap flange 104 or the mounting table 210 but also indirectly measured by reflecting the radiated light from the measurement window provided on the cap flange 104 or the mounting table 210 with a mirror or the like. It may be configured to.
  • the number of temperature sensors 263 is not limited to one, and a plurality of temperature sensors may be installed.
  • the electromagnetic wave introduction ports 653-1 and 653-2 are installed on the side wall of the case 102.
  • One end of each of waveguides 654-1 and 654-2 for supplying electromagnetic waves into the processing chamber 201 is connected to each of the electromagnetic wave introduction ports 653-1 and 653-2.
  • Connected to the other ends of the waveguides 654-1 and 654-2 are microwave oscillators (electromagnetic wave sources) 655-1 and 655-2 as heating sources for supplying and heating electromagnetic waves into the processing chamber 201, respectively.
  • the microwave oscillators 655-1 and 655-2 supply electromagnetic waves such as microwaves to the waveguides 654-1 and 654-2, respectively.
  • a magnetron, a klystron or the like is used for the microwave oscillators 655-1 and 655-2.
  • the electromagnetic wave introduction ports 653-1 and 653-2, the waveguides 654-1 and 654-2, and the microwave oscillators 655-1 and 655-2 are not particularly required to be described separately.
  • the electromagnetic wave introduction port 653, the waveguide 654, and the microwave oscillator 655 will be described.
  • the frequency of the electromagnetic wave generated by the microwave oscillator 655 is preferably controlled to be in the frequency range of 13.56 MHz to 24.125 GHz. More preferably, the frequency is preferably controlled to be 2.45 GHz or 5.8 GHz.
  • the frequencies of the microwave oscillators 655-1 and 655-2 may be the same frequency, or may be installed at different frequencies.
  • the two microwave oscillators 655 are described as being disposed on the side surface of the case 102, but the present invention is not limited thereto, and one or more microwave oscillators may be provided. You may arrange
  • An electromagnetic wave supply unit (electromagnetic wave supply apparatus, microwave) mainly as a heating device is mainly constituted by the microwave oscillators 655-1 and 655-2, the waveguides 654-1 and 654-2, and the electromagnetic wave introduction ports 653-1 and 653-2.
  • a supply unit also referred to as a microwave supply device).
  • a controller 121 described later is connected to each of the microwave oscillators 655-1 and 655-2.
  • a temperature sensor 263 for measuring the temperature of the quartz plate 101 a or 101 b accommodated in the processing chamber 201 or the wafer 200 is connected to the controller 121.
  • the temperature sensor 263 measures the temperature of the quartz plate 101 or the wafer 200 by the method described above and transmits it to the controller 121.
  • the controller 121 controls the outputs of the microwave oscillators 655-1 and 655-2, and Control heating.
  • a heating control method by the heating device a method of controlling the heating of the wafer 200 by controlling a voltage input to the microwave oscillator 655, a time when the power source of the microwave oscillator 655 is turned ON, and an OFF time are set.
  • a method of controlling the heating of the wafer 200 by changing the time ratio can be used.
  • the microwave oscillators 655-1 and 655-2 are controlled by the same control signal transmitted from the controller 121.
  • the present invention is not limited to this, and the microwave oscillators 655-1 and 655-2 are individually controlled by transmitting individual control signals from the controller 121 to the microwave oscillators 655-1 and 655-2, respectively. May be.
  • the transfer chamber 203 includes a purge gas supply mechanism 162 that supplies an inert gas or air (fresh air) as a purge gas into a duct formed around the transfer chamber 203, and a transfer chamber 203. And a pressure control mechanism 150 that performs pressure control.
  • the purge gas supply mechanism 162 is configured to supply the purge gas into the duct mainly according to the detection value by the detector 160 that detects the oxygen concentration in the transfer chamber 203.
  • the detector 160 is installed above (upstream) a clean unit 166 as a gas supply mechanism that removes dust and impurities and supplies purge gas into the transfer chamber 203.
  • the clean unit 166 includes a filter for removing dust and impurities and a blower (fan) for blowing purge gas.
  • the purge gas supply mechanism 162 and the pressure control mechanism 150 can control the oxygen concentration in the transfer chamber 203.
  • the detector 160 may be configured to detect the moisture concentration in addition to the oxygen concentration.
  • the inert gas as the purge gas may be the same gas type as the inert gas supplied into the processing chamber 201 described above.
  • the pressure control mechanism 150 includes an adjustment damper 154 configured to hold the inside of the transfer chamber 203 at a predetermined pressure, and an exhaust damper 156 configured to fully open or close the exhaust passage 152.
  • the adjustment damper 154 includes an auto damper (back pressure valve) 151 configured to open when the pressure in the transfer chamber 203 becomes higher than a predetermined pressure, and a press damper 153 configured to control opening and closing of the auto damper 151. Consists of. By controlling the opening / closing of the adjustment damper 154 and the exhaust damper 156 in this manner, the inside of the transfer chamber 203 can be controlled to an arbitrary pressure.
  • one clean unit 166 is arranged on the left and right on the ceiling of the transfer chamber 203.
  • a perforated plate 174 that is a rectifying plate for adjusting the flow of the purge gas is installed around the transfer device 125.
  • the perforated plate 174 has a plurality of holes and is formed of, for example, a punching panel.
  • a first space 170 that is a wafer transfer region is formed in a space between the ceiling and the porous plate 174, and a gas exhaust region is formed in a space between the porous plate 174 and the floor surface of the transfer chamber 203.
  • a certain second space 176 is formed.
  • suction portions 164 for circulating and exhausting the purge gas flowing in the transfer chamber 203 are arranged one by one on the left and right sides with the transfer device 125 interposed therebetween. Yes. Further, a path as a circulation path and an exhaust path that connect the pair of left and right suction portions 164 and the pair of left and right filter units 166 in the wall surface of the housing 202, that is, between the outer wall surface and the inner wall surface of the housing 202, respectively. 168 is formed.
  • a cooling mechanism (radiator) (not shown) for cooling the fluid in the path 168, the temperature of the circulating purge gas can be controlled.
  • the path 168 is branched into two paths, which are a circulation path 168A and an exhaust path 168B.
  • the circulation path 168 ⁇ / b> A is a flow path that connects to the upstream side of the clean unit 166 and supplies the purge gas again into the transfer chamber 203.
  • the exhaust path 168B is a flow path that is connected to the pressure control mechanism 150 and exhausts the purge gas, and the exhaust paths 168B provided on the left and right sides of the housing 202 are joined to one external exhaust path 152 on the downstream side.
  • the arrows shown in FIG. 4 schematically show the flow of the purge gas supplied from the purge gas supply mechanism 162.
  • N 2 gas inert gas
  • the N 2 gas is supplied into the transfer chamber 203 from the ceiling of the transfer chamber 203 via the clean unit 166, and is transferred to the transfer chamber 203.
  • a downflow 111 is formed in 203.
  • a perforated plate 174 is provided in the transfer chamber 203, and a first space 170 in which the wafer 200 is mainly transferred and a second space 176 in which particles are likely to settle are provided in the transfer chamber 203.
  • a structure is formed in which a differential pressure is formed between the first space 170 and the second space 176. At this time, the pressure in the first space 170 is higher than the pressure in the second space 176.
  • a driving unit such as the transfer machine elevator 125c below the tweezer 125a into the wafer transfer region. Further, the particles on the floor surface of the transfer chamber 203 can be prevented from rolling up to the first space 170.
  • the N 2 gas supplied to the second space 176 by the downflow 111 is sucked out of the transfer chamber 203 by the suction portion 164.
  • the N 2 gas sucked out from the transfer chamber 203 is divided into two flow paths, a circulation path 168A and an exhaust path 168B, downstream of the suction section 164.
  • the N 2 gas introduced into the circulation path 168A flows above the casing 202 and is circulated into the transfer chamber 203 via the clean unit 166.
  • N 2 gas introduced into the exhaust passage 168B flows into the lower part of the housing 202, and be exhausted from the external exhaust path 152 to the outside.
  • a fan 178 as a blower for promoting circulation of N 2 gas may be installed in the left and right suction portions 164.
  • the flow of N 2 gas can be improved, and a circulation gas flow can be easily formed.
  • a uniform gas flow can be formed in the transfer chamber 203 by performing circulation and exhaust in two separate left and right systems.
  • a purge gas circulation structure is mainly configured by the purge gas supply mechanism 162, the clean unit 166, and the path 168.
  • the pressure control mechanism 150, the external exhaust path 152, the adjustment damper 154, the exhaust damper 156, the suction portion 164, the first space 170, the second space 176, and the fan 178 may be included in the purge gas circulation structure.
  • whether or not the N 2 gas is circulated in the transfer chamber 203 may be made possible by controlling opening and closing of the adjustment damper 154 and the exhaust damper 156. That is, when the N 2 gas is circulated in the transfer chamber 203, it is easy to form a circulating gas flow into the transfer chamber 203 by opening the auto damper 151 and the press damper 153 and closing the exhaust damper 156. You may comprise. In this case, the N 2 gas introduced into the exhaust path 168B may stay in the exhaust path 168B or may flow in the circulation path 168A. In addition, a cooling unit for cooling the gas circulating in the transfer chamber 203 may be provided.
  • the pressure in the pod 110, the pressure in the transfer chamber 203, and the pressure in the processing chamber 201 are all controlled by atmospheric pressure or a pressure about 10 to 200 Pa (gauge pressure) higher than atmospheric pressure.
  • the pressure in the transfer chamber 203 is preferably higher than the pressure in the processing chamber 201, and the pressure in the processing chamber 201 is preferably higher than the pressure in the pod 110.
  • the controller 121 which is a control unit (control device, control means), includes a CPU (Central Processing Unit) 121a, a RAM (Random Access Memory) 121b, a storage device 121c, and an I / O port 121d. It is configured as a computer.
  • the RAM 121b, the storage device 121c, and the I / O port 121d are configured to exchange data with the CPU 121a via the internal bus 121e.
  • an input / output device 122 configured as a touch panel or the like is connected to the controller 121.
  • the storage device 121c includes, for example, a flash memory, a HDD (Hard Disk Drive), and the like.
  • a control program for controlling the operation of the substrate processing apparatus, a process recipe describing the annealing (modification) processing procedure and conditions, and the like are stored in a readable manner.
  • the process recipe is a combination of the controller 121 that allows the controller 121 to execute each procedure in the substrate processing process described later and obtain a predetermined result, and functions as a program.
  • the process recipe, the control program, and the like are collectively referred to simply as a program.
  • the process recipe is also simply called a recipe.
  • the RAM 121b is configured as a memory area (work area) in which programs, data, and the like read by the CPU 121a are temporarily stored.
  • the I / O port 121d is connected to the above-described MFC 241, valve 243, pressure sensor 245, APC valve 244, vacuum pump 246, temperature sensor 263, drive mechanism 267, microwave oscillator 655, and the like.
  • the CPU 121a is configured to read out and execute a control program from the storage device 121c and to read a recipe from the storage device 121c in response to an operation command input from the input / output device 122 or the like.
  • the CPU 121a adjusts the flow rate of various gases by the MFC 241, the opening / closing operation of the valve 243, the pressure adjusting operation by the APC valve 244 based on the pressure sensor 245, the start and stop of the vacuum pump 246, and the temperature in accordance with the contents of the read recipe.
  • the output adjustment operation of the microwave oscillator 655 based on the sensor 263, the rotation and rotation speed adjustment operation of the mounting table 210 (or the boat 217) by the drive mechanism 267, the raising / lowering operation, and the like are controlled.
  • the controller 121 installs the above-described program stored in an external storage device (for example, a magnetic disk such as a hard disk, an optical disk such as a CD, a magneto-optical disk such as an MO, or a semiconductor memory such as a USB memory) 123 in a computer.
  • an external storage device for example, a magnetic disk such as a hard disk, an optical disk such as a CD, a magneto-optical disk such as an MO, or a semiconductor memory such as a USB memory
  • the storage device 121c and the external storage device 123 are configured as computer-readable recording media. Hereinafter, these are collectively referred to simply as a recording medium.
  • recording medium When the term “recording medium” is used in this specification, it may include only the storage device 121c alone, may include only the external storage device 123 alone, or may include both of them.
  • the program may be provided to the computer using a communication means such as the Internet or a dedicated line without using the external storage device 123.
  • wafer when used in this specification, it may mean the wafer itself or a laminate of the wafer and a predetermined layer or film formed on the surface thereof.
  • wafer surface when used in this specification, it may mean the surface of the wafer itself, or may mean the surface of a predetermined layer or the like formed on the wafer.
  • the phrase “form a predetermined layer on the wafer” means that the predetermined layer is directly formed on the surface of the wafer itself, a layer formed on the wafer, etc. It may mean that a predetermined layer is formed on the substrate.
  • substrate is also synonymous with the term “wafer”.
  • the transfer machine 125 takes out a predetermined number of wafers 200 to be processed from the pod 110 opened by the load port unit 106, and either one or both of the tweezers 125a-1 and 125a-2.
  • the wafer 200 is placed on the substrate.
  • the wafer 200 placed on one or both of the tweezers 125a-1 and 125a-2 is loaded into the predetermined processing chamber 201 (boat loading) by opening / closing the gate valve 205. (S402).
  • the temperature is raised to a predetermined substrate processing temperature by the electromagnetic wave supply unit, it is preferable to raise the temperature with an output smaller than the output of the reforming step described later so that the wafer 200 is not deformed or damaged.
  • you may control so that it may transfer to inert gas supply process S404 mentioned later, after adjusting only the temperature in a furnace, without adjusting a furnace pressure.
  • the microwave oscillator 655 supplies the microwave into the processing chamber 201 through the above-described units.
  • the wafer 200 is heated to a temperature of 100 ° C. or higher and 1000 ° C. or lower, preferably 400 ° C. or higher and 900 ° C. or lower, more preferably And heating to a temperature of 500 ° C. or higher and 700 ° C. or lower.
  • the substrate processing is performed at a temperature at which the wafer 200 efficiently absorbs microwaves, and the speed of the modification processing can be improved.
  • the temperature of the wafer 200 is processed at a temperature lower than 100 ° C. or a temperature higher than 1000 ° C.
  • the surface of the wafer 200 is altered and it becomes difficult to absorb microwaves. In this case, it becomes difficult to heat the wafer 200. For this reason, it is desired to perform substrate processing in the above-described temperature range.
  • a standing wave is generated in the processing chamber 201, and on the wafer 200 (when the susceptor 103 is placed, the susceptor 103 is also the same as the wafer 200).
  • a heated concentration region (hot spot) that is locally heated and a non-heated region (non-heated region) other than that are generated, and when the susceptor 103 is placed, the susceptor 103 is the same as the wafer 200.
  • the temperature sensor 263 is a non-contact temperature sensor, and is deformed or damaged on the wafer 200 to be measured (when the susceptor 103 is mounted, the susceptor 103 is also the same as the wafer 200). If this occurs, the position of the wafer 200 monitored by the temperature sensor and the measurement angle with respect to the wafer 200 change, so that the measurement value (monitor value) becomes inaccurate, and the measurement temperature changes abruptly.
  • the sudden change in the measurement temperature of the radiation thermometer accompanying such deformation or breakage of the measurement object is used as a trigger for turning on / off the electromagnetic wave supply unit.
  • the wafer 200 is heated to modify (crystallize) the amorphous silicon film formed on the surface of the wafer 200 into a polysilicon film (S405). That is, the wafer 200 can be uniformly modified.
  • the microwave oscillator 655 is not turned OFF, but the wafer 200 is controlled by controlling the output of the microwave oscillator 655 to be low.
  • the temperature may be within a predetermined range. In this case, when the temperature of the wafer 200 returns to a temperature within a predetermined range, the output of the microwave oscillator 655 is controlled to be increased.
  • Substrate unloading step (S406) After the pressure in the processing chamber 201 is returned to atmospheric pressure, the gate valve 205 is opened to allow the processing chamber 201 and the transfer chamber 203 to communicate spatially. Thereafter, the wafer 200 placed on the boat is carried out to the transfer chamber 203 by the tweezer 125a of the transfer machine 125 (S406).
  • the wafer 200 unloaded by the tweezer 125a is moved to the cooling area by the continuous operation of the transfer device 125b and the transfer device elevator 125c, and is placed on the wafer cooling mounting tool 108 by the tweezer 125a.
  • the wafer 200a after the modification process S405 held by the tweezer 125a-1 is transferred to the wafer holding groove 107b provided in the wafer cooling mounting tool 108.
  • the wafer 200a is cooled by being placed for a predetermined time (S407). At this time, as shown in FIG.
  • the wafer after the modification process S405 is completed.
  • the tweezer 125a-1 after placing 200a in the wafer holding groove 107b or another vacant tweezer (eg, tweezer 125a-2) transports the cooled wafer 200b to the load port, that is, the pod 110.
  • the cooling area is arranged in the vicinity of the clean unit 166, that is, at a position facing at least a part of the purge gas delivery port (fan gas delivery port) of the clean unit.
  • the wafer cooling mounting tool 108 may be provided with a disk-shaped top plate having a diameter equal to or larger than the diameter of the wafer 200 above the wafer holding groove 107 on which the wafer 200 is placed. As a result, it is possible to prevent the wafer 200 from being deformed without being able to cool the wafer 200 uniformly due to rapid cooling caused by the downflow 111 from the clean unit 166 being directly blown onto the wafer 200.
  • FIG. 3 has been described as configured to perform substrate processing by placing two wafers 200 on the boat 217, the present invention is not limited to this, and as shown in FIG. The same processing may be performed by placing each one on the boat 217 installed in each of 201-2, or by performing swap processing as shown in FIG.
  • Two wafers 200 (# 1, # 2) may be processed in the processing chambers 201-1 and 201-2.
  • the transfer destination of the wafer 200 may be controlled so that the number of substrate processing performed in each of the processing chambers 201-1 and 201-2 matches.
  • the number of executions of substrate processing in each of the processing chambers 201-1 and 201-2 becomes constant, and maintenance work such as maintenance can be performed efficiently.
  • the processing chamber to which the wafer 200 was transferred last time is the processing chamber 201-1
  • the processing chamber 201-1 is controlled so that the next wafer 200 is transferred to the processing chamber 201-2. 2 can control the number of executions of the substrate processing.
  • the tweezers 125a-1 and 125a-2 are respectively a high temperature tweezer for transporting the wafer 200 that has become high temperature by the substrate processing and a low temperature tweezer for transporting the wafer 200 at a temperature other than the high temperature. May be provided.
  • the wafer 200 that has been heated in the modification step S405 is transferred to the cooling area only by the tweezer 125a-1 and processed.
  • the wafer 200 may be controlled to be transferred by the tweezer 125a-2.
  • the substrate processing apparatus in the present embodiment is not limited to the above-described aspect, and can be changed as in the following modifications.
  • the gate valve 205 is kept open as shown in FIG. 9, that is, the processing chamber 201 and the transfer chamber.
  • a part of the downflow 111 formed by the inert gas or air supplied from the clean unit 166 by operating the exhaust unit installed in the processing chamber 201 in a state where the 203 is in spatial communication. May be configured to flow into the processing chamber 201.
  • the controller 121 opens the gate valve 205.
  • a gas flow 112 in which a part of the downflow 111 formed in the transfer chamber 203 flows into the processing chamber 201 is formed, and becomes horizontal on the surface of the wafer 200 in the processing chamber 201.
  • a cooling gas stream is formed.
  • the gas flow that has passed through the region where the wafer 200 is held becomes a flow (gas flow 113) toward the exhaust port 221 by the pressure regulator 244 and the vacuum pump 246 that are controlled to be fully opened by the controller 121.
  • the downflow 111 that does not flow into the processing chamber 201 is circulated or exhausted by the purge gas circulation structure described above.
  • the gas flow 112 flowing into the processing chamber 201 from the downflow 111 is preferably controlled so as to have a flow rate (exhaust flow rate) equal to or lower than the exhaust capability of the vacuum pump 246. If a gas flow 112 having a flow rate larger than the exhaust flow rate of the vacuum pump 246 is supplied into the processing chamber 201, the exhaust gas in the processing chamber 201 is not caught up by the vacuum pump 246, and gas stays in the processing chamber 201. As a result, unnecessary gas vortices are generated and the particles are wound up, which may cause the particles to adhere to the wafer surface.
  • the gas flow meter which is a gas flow measuring device aiming at controlling the flow volume of the gas flow 112 in the board
  • the opening degree of the plate loading / unloading port 206 serving as the inlet of the gas flow 112 may be controlled by controlling the opening degree of the gate valve 205.
  • the valve 243 may be opened to control the wafer 200 more efficiently by controlling the gas supply pipe 232 to supply an inert gas as a cooling gas.
  • the flow rate of the purge gas supplied into the transfer chamber 203 (or the flow rate of the purge gas flowing through the transfer chamber 203 after a part thereof flows into the process chamber 201) and the flow rate of the purge gas flowing into the process chamber 201
  • the pressure in the processing chamber 201 may be under reduced pressure or under atmospheric pressure.
  • the pressure in the processing chamber 201 is controlled by the controller 121 so as to be equal to or lower than the pressure in the transfer chamber 203. If the substrate processing is performed at the same pressure as the pressure in the transfer chamber 203 in the present embodiment, the reforming step S405 is completed, the gate valve 205 is opened, and then the vacuum pump 246 is operated to transfer the processing chamber 201. You may control so that it may become the pressure in the chamber 203 or less.
  • the substrate loading / unloading is performed in order to prevent the heat in the processing chamber 201 from flowing into the transfer chamber 203 when the gate valve 205 is opened.
  • You may be comprised so that the inert gas as a cooling gas may be supplied from the exit 206 vicinity.
  • processing is performed using an alternative to the wafer 200 such as a dummy wafer in order to bring the thermal insulation rate around the wafer closer to the case of batch processing of a plurality of wafers, a process for transporting the dummy wafer or the like has to be added. As a result, the productivity of substrate processing is reduced.
  • the same film quality as that for processing two wafers can be obtained without using a substitute for the wafer 200 such as a dummy wafer while using the substrate flow used in the above-described embodiment of the present invention.
  • the microwave oscillator 655 is controlled by the controller 121 by providing a predetermined control table, which is different from the above-described embodiment of the present invention.
  • Other points are the same as those in the embodiment of the present invention described above, and a description thereof will be omitted.
  • the processing flow shown in FIG. 6 is used in a state where one wafer 200 is held in advance on the upper portion of the boat 217 where the wafer can be held.
  • the substrate is processed, and the transition is measured by the temperature sensor 263.
  • the measured temperature is transmitted to the controller 121 and stored in the storage device 121c or the external storage device 123 as a temperature table in which the temperature transition is recorded.
  • the substrate processing is performed using the processing flow shown in FIG. 6 in a state where one wafer 200 is held in advance in the lower portion of the boat 217 where the wafer can be held. And the transition is measured by the temperature sensor 263.
  • the measured temperature is transmitted to the controller 121 and stored in the storage device 121c or the external storage device 123 as a temperature table in which the temperature transition is recorded. After that, when performing substrate processing (when performing this processing), the controller 121 reads the temperature table stored by the temperature measurement shown in FIGS. 10A and 10B, so that the microwave oscillator 655 is read.
  • the substrate processing is performed according to the processing flow shown in FIG. By controlling in this way, even when the number of wafers 200 to be processed becomes one, it becomes possible to obtain the same film quality as that for processing a plurality of wafers. Since it does not have to be used, it is possible to suppress a decrease in throughput.
  • the substrate processing apparatus in the present embodiment is not limited to the above-described aspect, and can be changed as in the following modifications.
  • a modified example of the other embodiment includes a quartz plate 101 as a heat insulator mounted on a boat 217, a susceptor 103 as a dielectric, and a wafer 200 as an object to be processed.
  • the processing flow shown in FIG. 6 is used.
  • Substrate processing is performed, and the transition is measured by the temperature sensor 263.
  • the measured temperature is transmitted to the controller 121 and stored in the storage device 121c or the external storage device 123 as a temperature table in which the temperature transition is recorded.
  • the controller 121 adjusts the output of the microwave oscillator 655 by reading the temperature table stored by the temperature measurement shown in FIG.
  • Substrate processing is performed according to the processing flow shown in FIG. 11A is different from the wafer holding position shown in FIG.
  • the wafer 200 is not continuously held vertically
  • the wafer is not held at the position of the wafer 200-1 in FIG. 11A.
  • the substrate processing is performed only with the temperature table obtained by the temperature measurement method shown in FIG. 11B without performing the temperature measurement in FIG. 11B, but more preferably, the wafer 200 is placed at the position of the wafer 200-1. It is preferable to measure the temperature in a state where the wafer 200 is held at the position of the wafer 200-2 without holding the substrate, create a temperature table, and perform the substrate processing (main processing).
  • the process of modifying an amorphous silicon film into a polysilicon film as a film containing silicon as a main component has been described.
  • the present invention is not limited thereto, and oxygen (O), nitrogen (N),
  • the film formed on the surface of the wafer 200 may be modified by supplying a gas containing at least one of carbon (C) and hydrogen (H).
  • a hafnium oxide film (HfxOy film) as a high dielectric film is formed on the wafer 200, by supplying a microwave and heating while supplying a gas containing oxygen, the hafnium oxide film
  • the deficient oxygen can be replenished to improve the characteristics of the high dielectric film.
  • the present invention is not limited to this, but aluminum (Al), titanium (Ti), zirconium (Zr), tantalum (Ta), niobium (Nb), lanthanum (La), cerium ( An oxide film containing a metal element containing at least one of Ce), yttrium (Y), barium (Ba), strontium (Sr), calcium (Ca), lead (Pb), molybdenum (Mo), tungsten (W), etc.
  • the present invention can be suitably applied to the case of modifying a metal oxide film.
  • the film formation sequence described above is performed on the wafer 200 on the TiOCN film, the TiOC film, the TiON film, the TiO film, the ZrOCN film, the ZrOC film, the ZrON film, the ZrO film, the HfOCN film, the HfOC film, the HfON film, the HfO film, TaOCN film, TaOC film, TaON film, TaO film, NbOCN film, NbOC film, NbON film, NbO film, AlOCN film, AlOC film, AlON film, AlO film, MoOCN film, MoOC film, MoON film, MoO film, WOCN film
  • the present invention can be suitably applied to the case of modifying the WOC film, the WON film, and the WO film.
  • a film mainly composed of silicon doped with impurities may be heated.
  • a film mainly composed of silicon a silicon nitride film (SiN film), a silicon oxide film (SiO film), a silicon oxycarbide film (SiOC film), a silicon oxycarbonitride film (SiOCN film), a silicon oxynitride film (SiON)
  • the impurity include at least one of bromine (B), carbon (C), nitrogen (N), aluminum (Al), phosphorus (P), gallium (Ga), arsenic (As), and the like.
  • it may be a resist film based on at least one of methyl methacrylate resin (PMMA), epoxy resin, novolac resin, polyvinyl phenyl resin, and the like.
  • PMMA methyl methacrylate resin
  • epoxy resin epoxy resin
  • novolac resin polyvinyl phenyl resin
  • the present invention is not limited to this. Patterning process in the liquid crystal panel manufacturing process, patterning process in the solar cell manufacturing process, and patterning process in the power device manufacturing process.
  • the present invention can also be applied to a technique for processing a substrate.
  • Substrate cooling device 121... Controller (control unit), 125 ... transfer machine, 166 ... Clean unit, 200: Wafer (substrate), 201 ... processing chamber, 205 ... Gate valve, 217 ... Boat (substrate holder), 655: Microwave oscillator.

Abstract

基板を搬入搬出する搬入搬出口を開閉するゲートバルブを有し、マイクロ波を用いた加熱装置によって基板を加熱し処理する処理室と、パージガスを導入可能なクリーンユニットから内部にパージガスを供給し、所定の経路で前記内部に供給されたパージガスを流通させるパージガス流通機構を備えた基板搬送室と、前記基板搬送室の内部に設けられて前記処理室に前記基板を搬送する移載機と、前記クリーンユニットの近傍であって、前記ゲートバルブよりも上方に設置され、前記移載機によって搬送された基板を冷却する基板用冷却載置具と、を有する技術を提供することができる。

Description

基板処理装置、半導体装置の製造方法およびプログラム
 本発明は、基板処理装置、半導体装置の製造方法およびプログラムに関するものである。
 半導体装置(半導体デバイス)の製造工程の一工程として、例えば、加熱装置を用いて処理室内の基板を加熱し、基板の表面に成膜された薄膜中の組成や結晶構造を変化させたり、成膜された薄膜内の結晶欠陥等を修復するアニール処理に代表される改質処理がある。近年の半導体デバイスにおいては、微細化、高集積化が著しくなっており、これに伴い、高いアスペクト比を有するパターンが形成された高密度の基板への改質処理が求められている。このような高密度基板への改質処理方法として電磁波を用いた熱処理方法が検討されている。
特開2015-070045
 従来の電磁波を用いた処理では、熱処理によって高温に加熱された基板を処理室内で冷却するという冷却工程を設ける必要があるため、生産性が低下してしまう場合がある。
 本発明の目的は、基板の冷却工程を設けた場合であっても生産性の低下を抑制することが可能となる電磁波処理技術を提供することにある。
本発明の一態様によれば、
基板を搬入搬出する搬入搬出口を開閉するゲートバルブを有し、マイクロ波を用いた加熱装置によって基板を加熱し処理する処理室と、
パージガスを導入可能なクリーンユニットから内部にパージガスを供給し、所定の経路で前記内部に供給されたパージガスを流通させるパージガス流通機構を備えた基板搬送室と、
前記基板搬送室の内部に設けられて前記処理室に前記基板を搬送する移載機と、
前記クリーンユニットの近傍であって、前記ゲートバルブよりも上方に設置され、前記移載機によって搬送された基板を冷却する基板用冷却載置具と、
 を有する技術が提供される。
 本発明によれば、基板の冷却工程を設けた場合であっても生産性の低下を抑制することが可能となる電磁波処理技術を提供することができる。
本発明の実施形態で好適に用いられる基板処理装置の概略構成を示した縦断面図である。 本発明の実施形態で好適に用いられる基板処理装置の概略構成を示した横断面図である。 本発明の実施形態で好適に用いられる基板処理装置の枚葉型処理炉の概略構成図であり、処理炉部分を縦断面図で示す図である。 本発明の実施形態で好適に用いられる搬送室のパージガス循環構造を示した図である。 本発明で好適に用いられる基板処理装置のコントローラの概略構成図である。 本発明における基板処理のフローを示す図である。 (A)ウエハを冷却エリアへ搬送する方法について模式的に示した図である。(B)冷却が完了したウエハを冷却エリアから搬出する方法について模式的に示した図である。 (A)処理室ごとに1枚ずつ処理を行う場合の基板処理のシーケンスの一例を示す図である。(B)処理室ごとに2枚ずつ処理を行う場合の基板処理のシーケンスの一例を示す図である。 本発明における一実施形態で好適に用いられる変形例を示す図である。 (A)ウエハを基板保持具の上段に1枚保持した際の温度推移を測定して温度テーブルを作成する場合の一例を示す図である。(B)ウエハを基板保持具の下段に1枚保持した際の温度推移を測定して温度テーブルを作成する場合の一例を示す図である。 (A)他の実施形態で好適に用いられる変形例におけるウエハを保持する基板保持具を示す図である。(B)図11(A)を用いてウエハを基板保持具の上段に1枚保持した際の温度推移を測定して温度テーブルを作成する場合の一例を示す図である。
 <本発明の一実施形態>
 以下に本発明の一実施形態を図面に基づいて説明する。
(1)基板処理装置の構成
 本実施の形態において、本発明に係る基板処理装置100は、ウエハに各種の熱処理を施す枚葉式熱処理装置として構成されており、後述する電磁波を用いたアニール処理(改質処理)を行う装置として説明を行う。本実施形態における基板処理装置100では、基板としてのウエハ200を内部に収容した収納容器(キャリア)としてFOUP(Front Opening Unified Pod:以下、ポッドと称する)110が使用される。ポッド110は、ウエハ200を種々の基板処理装置間を搬送する為の搬送容器としても用いられる。
 図1および図2に示すように、基板処理装置100は、ウエハ200を搬送する搬送室(搬送エリア)203を内部に有する搬送筐体(筐体)202と、搬送筐体202の側壁に設けられ、ウエハ200を処理する処理室201-1、201-2をそれぞれ内部に有する後述する処理容器としてのケース102-1、102-2を備えている。搬送室203の筐体前側である図1の向かって右側(図2の向かって下側)には、ポッド110の蓋を開閉し、ウエハ200を搬送室203に搬送・搬出するための、ポッド開閉機構としてのロードポートユニット(LP)106が配置されている。ロードポートユニット106は、筐体106aと、ステージ106bと、オープナ106cとを備え、ステージ106bは、ポッド110を載置し、搬送室203の筐体前方に形成された基板搬入搬出口134にポッド110を近接させるように構成され、オープナ106cによってポッド110に設けられている図示しない蓋を開閉させる。また、ロードポートユニット106は、ポッド110内部をNガス等のパージガスでパージする可能な機能を有していてもよい。また、筐体202は、搬送室203内をNなどのパージガスを流通させるパージガス流通機構としての後述するパージガス循環構造を有している。
 搬送室203の筐体202後側である図1の向かって左側(図2の向かって上側)には、処理室201-1、202-2を開閉するゲートバルブ205-1、205-2がそれぞれ配置されている。搬送室203には、ウエハ200を移載する基板移載機構(基板移載ロボット)としての移載機125が設置されている。移載機125は、ウエハ200を載置する載置部としてのツィーザ(アーム)125a-1、125a―2と、ツィーザ125a-1、125a―2のそれぞれを水平方向に回転または直動可能な移載装置125bと、移載装置125bを昇降させる移載装置エレベータ125cとで構成されている。ツィーザ125a-1、125a-2、移載装置125b、移載装置エレベータ125cの連続動作により、後述する基板保持具217やポッド110にウエハ200を装填(チャージング)または脱装(ディスチャージング)することを可能な構成としている。以降、ケース102-1、102-2、処理室201-1、201-2、ツィーザ125a-1および125a-2のそれぞれは、特に区別して説明する必要が無い場合には、単にケース102、処理室201、ツィーザ125aとして記載する。
 図1に示すように、搬送室203の上方空間であって、後述するクリーンユニット166よりも下方には処理したウエハ200を冷却する基板冷却用載置具としてのウエハ冷却用載置具(冷却用ボート)108がウエハ冷却テーブル109上に設けられている。ウエハ冷却用載置具108は、後述する基板保持具としてのボート217と同様の構造を有しており、後述する図7に示すように、複数のウエハ保持溝107a~107dによって複数枚のウエハ200を垂直多段に水平保持することが可能なように構成されている。ウエハ冷却用載置具108およびウエハ冷却テーブル109は、基板搬入搬出口134およびゲートバルブ205の設置位置よりも上方、かつ、クリーンユニット166よりも下方に設けられる、すなわち、ゲートバルブ205とクリーンユニット166との間に設置されることで、ウエハ200を移載機125によってポッド110から処理室201へ搬送する際の動線上から外れることとなる。このため、ウエハ処理(ウエハ搬送)のスループットを低下させることなく、処理後のウエハ200を冷却することを可能としている。以降、ウエハ冷却用載置具108とウエハ冷却テーブル109を合わせて冷却エリア(冷却領域)と称する場合もある。また、ウエハ保持溝107a~107dのそれぞれは、特に区別して説明する必要が無い場合には、単にウエハ保持溝107として記載する。
(処理炉)
 図1の破線で囲まれた領域Aには、図3に示すような基板処理構造を有する処理炉が構成される。図2に示すように、本実施形態においては処理炉が複数設けられているが、処理炉の構成は同一である為、一方の構成を説明するに留め、他方の処理炉構成の説明は省略する。
 図3に示すように、処理炉は、金属などの電磁波を反射する材料で構成されるキャビティ(処理容器)としてのケース102を有している。また、金属材料で構成されたキャップフランジ(閉塞板)104が、封止部材(シール部材)としてのOリング(図示せず)を介してケース102の上端を閉塞するように構成する。主にケース102とキャップフランジ104の内側空間をシリコンウエハ等の基板を処理する処理室201として構成している。ケース102の内部に電磁波を透過させる石英製の図示しない反応管を設置してもよく、反応管内部が処理室となるように処理容器を構成してもよい。また、キャップフランジ104を設けずに、天井が閉塞したケース102を用いて処理室201を構成するようにしてもよい。
 処理室201内には載置台210が設けられており、載置台210の上面には、基板としてのウエハ200を保持する基板保持具としてのボート217が載置されている。ボート217には、処理対象であるウエハ200と、ウエハ200を挟み込むようにウエハ200の垂直方向上下に載置された断熱板としての石英プレート101a、101bが所定の間隔で保持されている。また、石英プレート101a、101bとウエハ200のそれぞれの間には、例えば、シリコンプレート(Si板)や炭化シリコンプレート(SiC板)などの電磁波を吸収して自身が加熱される誘電体などの誘電物質で形成されたウエハ200を間接的に加熱するサセプタ(エネルギー変換部材、輻射板、均熱板とも称する)103a、103bを載置してもよい。このように構成することによってサセプタ103a、103bからの輻射熱によってウエハ200をより効率的に均一に加熱することが可能となる。本実施形態において、石英プレート101a、101b、および、サセプタ103a、103bは、それぞれ同一の部品であり、以後、特に区別して説明する必要が無い場合には、石英プレート101、サセプタ103と称して説明する。
 処理容器としてのケース102は、例えば横断面が円形であり、平らな密閉容器として構成されている。また、下部容器としての搬送容器202は、例えばアルミニウム(Al)やステンレス(SUS)などの金属材料、または、石英などにより構成されている。なお、ケース102に囲まれた空間を処理空間としての処理室201又は反応エリア201と称し、搬送容器202に囲まれた空間を搬送空間としての搬送室203又は搬送エリア203と称する場合もある。なお、処理室201と搬送室203は、本実施形態のように水平方向に隣接させて構成することに限らず、垂直方向に隣接させる構成としてもよい。
 図1、図2および図3に示すように、搬送容器202の側面には、ゲートバルブ205に隣接した基板搬入搬出口206が設けられており、ウエハ200は基板搬入搬出口206を介して処理室201と搬送室203との間を移動する。ゲートバルブ205または基板搬入搬出口206の周辺には、後述する電磁波の漏洩対策として、使用される電磁波の1/4波長の長さを有するチョーク構造が設けられている。
 ケース102の側面には、後に詳述する加熱装置としての電磁波供給部が設置されており、電磁波供給部から供給されたマイクロ波等の電磁波が処理室201に導入されてウエハ200等を加熱し、ウエハ200を処理する。
 載置台210は回転軸としてのシャフト255によって支持される。シャフト255は、搬送容器202の底部を貫通しており、更には搬送容器202の外部で回転動作を行う駆動機構267に接続されている。駆動機構267を作動させてシャフト255及び載置台210を回転させることにより、ボート217上に載置されるウエハ200を回転させることが可能となっている。なお、シャフト255下端部の周囲はベローズ212により覆われており、処理室201および搬送エリア203内は気密に保持されている。
 ここで、載置台210は基板搬入搬出口206の高さに応じて、駆動機構267によって、ウエハ200の搬送時にはウエハ200がウエハ搬送位置となるよう上昇または下降し、ウエハ200の処理時にはウエハ200が処理室201内の処理位置(ウエハ処理位置)まで上昇または下降するよう構成されていてもよい。
 処理室201の下方であって、載置台210の外周側には、処理室201の雰囲気を排気する排気部が設けられている。図1に示すように、排気部には排気口221が設けられている。排気口221には排気管231が接続されており、排気管231には、処理室201内の圧力に応じて弁開度を制御するAPCバルブなどの圧力調整器244、真空ポンプ246が順に直列に接続されている。
 ここで、圧力調整器244は、処理室201内の圧力情報(後述する圧力センサ245からのフィードバック信号)を受信して排気量を調整することができるものであればAPCバルブに限らず、通常の開閉バルブと圧力調整弁を併用するように構成されていてもよい。
 主に、排気口221、排気管231、圧力調整器244により排気部(排気系または排気ラインとも称する)が構成される。なお、載置台210を囲むように排気口を設け、ウエハ200の全周からガスを排気可能に構成してもよい。また、排気部の構成に、真空ポンプ246を加えるようにしてもよい。
 キャップフランジ104には、不活性ガス、原料ガス、反応ガスなどの各種基板処理のための処理ガスを処理室201内に供給するためのガス供給管232が設けられている。
 ガス供給管232には、上流から順に、流量制御器(流量制御部)であるマスフローコントローラ(MFC)241、および、開閉弁であるバルブ243が設けられている。ガス供給管232の上流側には、例えば不活性ガスである窒素(N)ガス源が接続され、MFC241、バルブ243を介して処理室201内へ供給される。基板処理の際に複数種類のガスを使用する場合には、ガス供給管232のバルブ243よりも下流側に、上流側から順に流量制御器であるMFCおよび開閉弁であるバルブが設けられたガス供給管が接続された構成を用いることで複数種類のガスを供給することができる。ガス種毎にMFC、バルブが設けられたガス供給管を設置してもよい。
 主に、ガス供給管232、MFC241、バルブ243によりガス供給系(ガス供給部)が構成される。ガス供給系に不活性ガスを流す場合には、不活性ガス供給系とも称する。不活性ガスとしては、Nガスの他、例えば、Arガス、Heガス、Neガス、Xeガス等の希ガスを用いることができる。
 キャップフランジ104には、非接触式の温度測定装置として温度センサ263が設置されている。温度センサ263により検出された温度情報に基づき後述するマイクロ波発振器655の出力を調整することで、基板を加熱し、基板温度が所望の温度分布となる。温度センサ263は、例えばIR(Infrared Radiation)センサなどの放射温度計で構成されている。温度センサ263は、石英プレート101aの表面温度、または、ウエハ200の表面温度を測定するように設置される。上述した発熱体としてのサセプタが設けられている場合にはサセプタの表面温度を測定するように構成してもよい。なお、本発明においてウエハ200の温度(ウエハ温度)と記載した場合は、後述する温度変換データによって変換されたウエハ温度、すなわち、推測されたウエハ温度のことを意味する場合と、温度センサ263によって直接ウエハ200の温度を測定して取得した温度を意味する場合と、それらの両方を意味する場合を指すものとして説明する。
 温度センサ263によって石英プレート101またはサセプタ103と、ウエハ200のそれぞれに対し、温度変化の推移を予め取得しておくことで石英プレート101またはサセプタ103と、ウエハ200の温度の相関関係を示した温度変換データを記憶装置121cまたは外部記憶装置123に記憶させてもよい。このように予め温度変換データを作成することによって、ウエハ200の温度は、石英プレート101の温度のみを測定することで、ウエハ200の温度を推測可能とし、推測されたウエハ200の温度を基に、マイクロ波発振器655の出力、すなわち加熱装置の制御を行うことが可能となる。
 なお、基板の温度を測定する手段として、上述した放射温度計に限らず、熱電対を用いて温度測定を行ってもよいし、熱電対と非接触式温度計を併用して温度測定を行ってもよい。ただし、熱電対を用いて温度測定を行った場合、熱電対をウエハ200の近傍に配置して温度測定を行う必要がある。すなわち、処理室201内に熱電対を配置する必要があるため、後述するマイクロ波発振器から供給されたマイクロ波によって熱電対自体が加熱されてしまうので正確に測温することができない。したがって、非接触式温度計を温度センサ263として用いることが好ましい。
 また、温度センサ263は、キャップフランジ104に設けることに限らず、載置台210に設けるようにしてもよい。また、温度センサ263は、キャップフランジ104や載置台210に直接設置するだけでなく、キャップフランジ104や載置台210に設けられた測定窓からの放射光を鏡等で反射させて間接的に測定するように構成されてもよい。さらに、温度センサ263は1つ設置することに限らず、複数設置するようにしてもよい。
 ケース102の側壁には電磁波導入ポート653-1、653-2が設置されている。電磁波導入ポート653-1、653-2のそれぞれには処理室201内に電磁波を供給するための導波管654-1、654-2のそれぞれの一端が接続されている。導波管654-1、654-2それぞれの他端には処理室201内に電磁波を供給して加熱する加熱源としてのマイクロ波発振器(電磁波源)655-1、655-2が接続されている。マイクロ波発振器655-1、655-2はマイクロ波などの電磁波を導波管654-1、654-2にそれぞれ供給する。また、マイクロ波発振器655-1、655-2は、マグネトロンやクライストロンなどが用いられる。以降、電磁波導入ポート653-1、653-2、導波管654-1、654-2、マイクロ波発振器655-1、655-2は、特にそれぞれを区別して説明する必要のない場合には、電磁波導入ポート653、導波管654、マイクロ波発振器655と記載して説明する。
 マイクロ波発振器655によって生じる電磁波の周波数は、好ましくは13.56MHz以上24.125GHz以下の周波数範囲となるように制御される。さらに好適には、2.45GHzまたは5.8GHzの周波数となるように制御されることが好ましい。ここで、マイクロ波発振器655-1、655-2のそれぞれの周波数は同一の周波数としてもよいし、異なる周波数で設置されてもよい。
 また、本実施形態において、マイクロ波発振器655は、ケース102の側面に2つ配置されるように記載されているが、これに限らず、1つ以上設けられていればよく、また、ケース102の対向する側面等の異なる側面に設けられるように配置してもよい。主に、マイクロ波発振器655―1、655-2、導波管654-1、654-2および電磁波導入ポート653-1、653-2によって加熱装置としての電磁波供給部(電磁波供給装置、マイクロ波供給部、マイクロ波供給装置とも称する)が構成される。
 マイクロ波発振器655-1、655-2のそれぞれには後述するコントローラ121が接続されている。コントローラ121には処理室201内に収容される石英プレート101aまたは101b、若しくはウエハ200の温度を測定する温度センサ263が接続されている。温度センサ263は、上述した方法によって石英プレート101、またはウエハ200の温度を測定してコントローラ121に送信し、コントローラ121によってマイクロ波発振器655-1、655-2の出力を制御し、ウエハ200の加熱を制御する。なお、加熱装置による加熱制御の方法としては、マイクロ波発振器655へ入力する電圧を制御することでウエハ200の加熱を制御する方法と、マイクロ波発振器655の電源をONとする時間とOFFとする時間の比率を変更することでウエハ200の加熱を制御する方法などを用いることができる。
 ここで、マイクロ波発振器655-1、655-2は、コントローラ121から送信される同一の制御信号によって制御される。しかし、これに限らず、マイクロ波発振器655-1、655-2それぞれにコントローラ121から個別の制御信号を送信することでマイクロ波発振器655-1、655-2が個々に制御されるように構成してもよい。
(パージガス循環構造)
 次に、本実施形態の搬送室203に設けられている搬送室203内のパージガス流通機構としてのパージガス循環構造について図1、図4を用いて説明する。図4に示すように、搬送室203は、搬送室203の周囲に形成されたダクト内にパージガスとしての不活性ガスまたは空気(フレッシュエアー)を供給するパージガス供給機構162と、搬送室203内の圧力制御を行う圧力制御機構150とを備える。パージガス供給機構162は、主に搬送室203内の酸素濃度を検出する検出器160による検出値に応じてダクト内にパージガスを供給するように構成されている。検出器160は、塵や不純物を取り除き、搬送室203内にパージガスを供給するガス供給機構としてのクリーンユニット166の上方(上流側)に設置されている。クリーンユニット166は、塵や不純物を取り除くためのフィルタとパージガスを送風するための送風機(ファン)で構成されている。パージガス供給機構162と圧力制御機構150とにより、搬送室203内の酸素濃度を制御することが可能となる。ここで、検出器160は、酸素濃度に加えて水分濃度も検出可能な様に構成されていてもよい。また、パージガスとしての不活性ガスとしては、上述した処理室201内に供給される不活性ガスと同様のガス種であってもよい。
 圧力制御機構150は、搬送室203内を所定の圧力に保持するように構成された調整ダンパ154と、排気路152を全開または全閉にするように構成された排気ダンパ156とにより構成される。調整ダンパ154は、搬送室203内の圧力が所定の圧力より高くなると開くように構成されたオートダンパ(背圧弁)151と、オートダンパ151の開閉を制御するように構成されたプレスダンパ153とにより構成される。このように調整ダンパ154および排気ダンパ156の開閉を制御することで、搬送室203内を任意の圧力に制御することが可能なように構成されている。
 図4に示すように、搬送室203の天井部には、クリーンユニット166が左右に1つずつ配置される。移載機125の周辺には、パージガスの流れを整える整流板である多孔板174が設置される。多孔板174は複数の孔を有し、例えば、パンチングパネルで形成される。多孔板174を設けることにより、搬送室203内の空間が上部空間である第一の空間170と下部空間である第二の空間176とに区画される。すなわち、天井部と多孔板174との間の空間にウエハ搬送領域である第一の空間170が形成され、また、多孔板174と搬送室203の床面との間の空間にガス排気領域である第二の空間176が形成される。
 搬送室203の下方である第二の空間176の下部には、搬送室203内を流れたパージガスを循環および排気する吸出部164が移載機125を挟んで左右にそれぞれ1つずつ配置されている。また、筐体202の壁面内、すなわち、筐体202の外壁面と内壁面の間には、左右一対の吸出部164と左右一対のフィルタユニット166とをそれぞれ繋ぐ循環経路および排気経路としての経路168が形成されている。経路168には、流体を冷却する図示しない冷却機構(ラジエーター)を設置することにより、循環パージガスの温度制御が可能となる。
 経路168は、循環経路である循環路168Aと排気路168Bとの2つの経路に分岐される。循環路168Aは、クリーンユニット166の上流側へ接続し、搬送室203内へパージガスを再び供給する流路である。排気路168Bは、圧力制御機構150に接続し、パージガスを排気する流路であり、筐体202の左右に設けられた排気路168Bは下流側において一本の外部排気経路152に合流される。
 次に、搬送室203内のガスの流れについて説明する。図4に示す矢印は、パージガス供給機構162から供給されたパージガスの流れを模式的に示したものである。例えばパージガスとしてのNガス(不活性ガス)を搬送室203内に導入する場合、Nガスはクリーンユニット166を介して、搬送室203の天井部から搬送室203内に供給され、搬送室203内にダウンフロー111を形成する。搬送室203内には、多孔板174が設けられ、搬送室203内の空間を、主にウエハ200が搬送される領域である第1の空間170と、パーティクルが沈降し易い第2の空間176とに区画することにより、第1の空間170と第2の空間176との間に差圧を形成する構造を有している。この際、第1の空間170の圧力は第2の空間176の圧力よりも高くなっている。このような構成により、ツィーザ125a下方の移載機エレベータ125cなどの駆動部から発生するパーティクルがウエハ搬送領域内へ飛散することを抑制できる。また、搬送室203の床面のパーティクルが第1の空間170へ巻き上がることを抑制できる。
 ダウンフロー111によって第2の空間176に供給されたNガスは、吸出部164によって搬送室203から吸い出される。搬送室203から吸い出されたNガスは、吸出部164の下流において循環路168Aと排気路168Bとの2つの流路に分かれる。循環路168Aに導入されたNガスは、筐体202の上方に流れ、クリーンユニット166を介して搬送室203内に循環される。また、排気路168Bに導入されたNガスは、筐体202の下方に流れ、外部排気経路152より外部へ排気されることとなる。ここで、経路168のコンダクタンスが小さい場合、左右の吸出部164にNガスの循環を促す送風機としてのファン178を設置しても良い。ファン178を設置することにより、Nガスの流れを良くすることができ、循環ガスフローを形成しやすくなる。このように、左右2つの系統に分かれて循環および排気を行う事により、搬送室203内において均一なガスフローを形成することができる。なお、主に、パージガス供給機構162、クリーンユニット166、経路168によってパージガス循環構造が構成される。圧力制御機構150、外部排気経路152、調整ダンパ154、排気ダンパ156、吸出部164、第一の空間170、第二の空間176、ファン178のそれぞれをパージガス循環構造に含めて考えてもよい。
 ここで、搬送室203内にNガスを循環させるか否かは、調整ダンパ154と、排気ダンパ156の開閉を制御することで可能としてもよい。すなわち、搬送室203内にNガスを循環させる際には、オートダンパ151およびプレスダンパ153を開とし、排気ダンパ156を閉とすることで搬送室203内への循環ガスフローを形成しやすくするように構成してもよい。この場合、排気路168Bに導入されたNガスは、排気路168B内に滞留させてもよいし、循環路168Aに流れるように構成してもよい。また、搬送室203内を循環するガスを冷却するための冷却ユニットを設けてもよい。
 ここで、ポッド110内の圧力、搬送室203内の圧力および処理室201内の圧力は、すべて大気圧、または大気圧よりも10~200Pa(ゲージ圧)程度の高い圧力にて制御される。搬送室203内の圧力の方が処理室201の圧力よりも高く、また、処理室201内の圧力の方がポッド110内の圧力よりも高くするのが好ましい。
(制御装置)
 図5に示すように、制御部(制御装置、制御手段)であるコントローラ121は、CPU(Central Processing Unit)121a、RAM(Random Access Memory)121b、記憶装置121c、I/Oポート121dを備えたコンピュータとして構成されている。RAM121b、記憶装置121c、I/Oポート121dは、内部バス121eを介して、CPU121aとデータ交換可能なように構成されている。コントローラ121には、例えばタッチパネル等として構成された入出力装置122が接続されている。
 記憶装置121cは、例えばフラッシュメモリ、HDD(Hard Disk Drive)等で構成されている。記憶装置121c内には、基板処理装置の動作を制御する制御プログラムや、アニール(改質)処理の手順や条件等が記載されたプロセスレシピ等が、読み出し可能に格納されている。プロセスレシピは、後述する基板処理工程における各手順をコントローラ121に実行させ、所定の結果を得ることが出来るように組み合わされたものであり、プログラムとして機能する。以下、このプロセスレシピや制御プログラム等を総称して、単に、プログラムともいう。また、プロセスレシピを、単にレシピともいう。本明細書においてプログラムという言葉を用いた場合は、レシピ単体のみを含む場合、制御プログラム単体のみを含む場合、または、それらの両方を含む場合がある。RAM121bは、CPU121aによって読み出されたプログラムやデータ等が一時的に保持されるメモリ領域(ワークエリア)として構成されている。
 I/Oポート121dは、上述のMFC241、バルブ243、圧力センサ245、APCバルブ244、真空ポンプ246、温度センサ263、駆動機構267、マイクロ波発振器655等に接続されている。
 CPU121aは、記憶装置121cから制御プログラムを読み出して実行すると共に、入出力装置122からの操作コマンドの入力等に応じて記憶装置121cからレシピを読み出すように構成されている。CPU121aは、読み出したレシピの内容に沿うように、MFC241による各種ガスの流量調整動作、バルブ243の開閉動作、圧力センサ245に基づくAPCバルブ244による圧力調整動作、真空ポンプ246の起動および停止、温度センサ263に基づくマイクロ波発振器655の出力調整動作、駆動機構267による載置台210(またはボート217)の回転および回転速度調節動作、または、昇降動作等を制御するように構成されている。
 コントローラ121は、外部記憶装置(例えば、ハードディスク等の磁気ディスク、CD等の光ディスク、MO等の光磁気ディスク、USBメモリ等の半導体メモリ)123に格納された上述のプログラムを、コンピュータにインストールすることにより構成することができる。記憶装置121cや外部記憶装置123は、コンピュータ読み取り可能な記録媒体として構成されている。以下、これらを総称して、単に、記録媒体ともいう。本明細書において記録媒体という言葉を用いた場合は、記憶装置121c単体のみを含む場合、外部記憶装置123単体のみを含む場合、または、それらの両方を含む場合がある。なお、コンピュータへのプログラムの提供は、外部記憶装置123を用いず、インターネットや専用回線等の通信手段を用いて行ってもよい。
(2)基板処理工程
 次に、上述の基板処理装置100の処理炉を用いて、半導体装置(デバイス)の製造工程の一工程として、例えば、基板上に形成されたシリコン含有膜としてのアモルファスシリコン膜の改質(結晶化)方法の一例について図6に示した処理フローに沿って説明する。以下の説明において、基板処理装置100を構成する各部の動作はコントローラ121により制御される。また、上述した処理炉構造と同様に本実施形態における基板処理工程においても、処理内容、すなわちレシピについては複数設けられた処理炉において同一レシピを使用する為、一方の処理炉を使用した基板処理工程について説明するに留め、他方の処理炉を用いた基板処理工程の説明は省略する。
 ここで、本明細書において「ウエハ」という言葉を用いた場合は、ウエハそのものを意味する場合や、ウエハとその表面に形成された所定の層や膜との積層体を意味する場合がある。本明細書において「ウエハの表面」という言葉を用いた場合は、ウエハそのものの表面を意味する場合や、ウエハ上に形成された所定の層等の表面を意味する場合がある。本明細書において「ウエハ上に所定の層を形成する」と記載した場合は、ウエハそのものの表面上に所定の層を直接形成することを意味する場合や、ウエハ上に形成されている層等の上に所定の層を形成することを意味する場合がある。本明細書において「基板」という言葉を用いた場合も、「ウエハ」という言葉を用いた場合と同義である。
(基板取出し工程(S401))
 図1に示されるように、移載機125はロードポートユニット106によって開口されたポッド110から処理対象となるウエハ200を所定枚数取り出し、ツィーザ125a-1、125a―2のいずれか一方、または両方にウエハ200を載置する。
(基板搬入工程(S402))
 図3に示されるように、ツィーザ125a-1、125a―2のいずれか一方、または両方に載置されたウエハ200はゲートバルブ205の開閉動作によって所定の処理室201に搬入(ボートローディング)される(S402)。
 (炉内圧力・温度調整工程(S403))
 処理室201内へのボート217の搬入が完了したら、処理室201内が所定の圧力(例えば10~102000Pa)となるよう処理室201内の雰囲気を制御する。具体的には、真空ポンプ246により排気しつつ、圧力センサ245により検出された圧力情報に基づいて圧力調整器244の弁開度をフィードバック制御し、処理室201内を所定の圧力とする。また、同時に予備加熱として電磁波供給部を制御し、所定の温度まで加熱を行うように制御してもよい(S403)。電磁波供給部によって、所定の基板処理温度まで昇温させる場合、ウエハ200が変形・破損しないように、後述する改質工程の出力よりも小さな出力で昇温を行うことが好ましい。なお、大気圧下で基板処理を行う場合、炉内圧力調整を行わず、炉内の温度調整のみを行った後、後述する不活性ガス供給工程S404へ移行するように制御してもよい。
(不活性ガス供給工程(S404))
 炉内圧力・温度調整工程S403によって処理室201内の圧力と温度を所定の値に制御すると、駆動機構267は、シャフト255を回転させ、載置台210上のボート217を介してウエハ200を回転させる。このとき、窒素ガス等の不活性ガスがガス供給管232を介して供給される(S404)。さらにこのとき、処理室201内の圧力は10Pa以上102000Pa以下の範囲となる所定の値であって、例えば101300Pa以上101650Pa以下となるように調整される。なお、シャフトは基板搬入工程S402時、すなわち、ウエハ200を処理室201内に搬入完了後に回転させてもよい。
(改質工程(S405))
 処理室201内を所定の圧力となるように維持すると、マイクロ波発振器655は上述した各部を介して処理室201内にマイクロ波を供給する。処理室201内にマイクロ波が供給されることによって、ウエハ200が100℃以上、1000℃以下の温度、好適には400℃以上、900℃以下の温度となるように加熱し、さらに好適には、500℃以上、700℃以下の温度となるように加熱する。このような温度で基板処理することによって、ウエハ200が効率よくマイクロ波を吸収する温度下での基板処理となり、改質処理の速度向上が可能となる。換言すると、ウエハ200の温度を100℃よりも低い温度、または1000℃よりも高い温度下で処理してしまうと、ウエハ200の表面が変質してしまい、マイクロ波を吸収し難くなってしまうためにウエハ200を加熱し難くなってしまうこととなる。このため、上述した温度帯で基板処理を行うことが望まれる。
 マイクロ波による加熱方式にて加熱を行う本実施形態では、処理室201に定在波が発生し、ウエハ200(サセプタ103が載置されている場合はサセプタ103もウエハ200と同様に)上に、局所的に加熱されてしまう加熱集中領域(ホットスポット)とそれ以外の加熱されない領域(非加熱領域)が生じ、ウエハ200(サセプタ103が載置されている場合はサセプタ103もウエハ200と同様に)が変形することを抑制するため、電磁波供給部の電源のON/OFFを制御することでウエハ200にホットスポットが生じることを抑制している。このとき、電磁波供給部の供給電力を低出力とすることで、ホットスポットの影響が小さくなるように制御することにより、ウエハ200の変形を抑制することも可能である。ただしこの場合、ウエハ200やサセプタ103に照射されるエネルギーが小さくなるため、昇温温度も小さくなり、加熱時間を長くする必要がある。
 ここで、上述したように温度センサ263は非接触式の温度センサであり、測定対象であるウエハ200(サセプタ103が載置されている場合はサセプタ103もウエハ200と同様に)に変形や破損が生じると、温度センサがモニタするウエハ200の位置や、ウエハ200に対する測定角度が変化するため、測定値(モニタ値)が不正確となり、測定温度が急激に変化してしまうこととなる。本実施形態では、このような測定対象の変形や破損に伴って放射温度計の測定温度が急激に変化することを電磁波供給部のON/OFFを行うトリガとして利用している。
 以上のようにマイクロ波発振器655を制御することによって、ウエハ200を加熱し、ウエハ200表面上に形成されているアモルファスシリコン膜をポリシリコン膜へと改質(結晶化)させる(S405)。すなわち、ウエハ200を均一に改質することが可能となる。なお、ウエハ200の測定温度が上述した閾値を超えて高くまたは低くなった場合、マイクロ波発振器655をOFFとするのではなく、マイクロ波発振器655の出力を低くするように制御することでウエハ200の温度が所定の範囲の温度となるようにしてもよい。この場合、ウエハ200の温度が所定の範囲の温度に戻るとマイクロ波発振器655の出力を高くするように制御される。
 予め設定された処理時間が経過すると、ボート217の回転、ガスの供給、マイクロ波の供給および排気管の排気が停止する。
(基板搬出工程(S406))
 処理室201内の圧力を大気圧復帰させた後、ゲートバルブ205を開放し処理室201と搬送室203とを空間的に連通させる。その後、ボートに載置されているウエハ200を移載機125のツィーザ125aによって、搬送室203に搬出する(S406)。
(基板冷却工程(S407))
 ツイーザ125aによって搬出されたウエハ200は、移載装置125b、移載装置エレベータ125cの連続動作により、冷却エリアまで移動され、ツィーザ125aによって、ウエハ冷却用載置具108に載置される。具体的には、図7(A)に示すように、ツィーザ125a-1に保持された改質処理S405後のウエハ200aが、ウエハ冷却用載置具108に設けられたウエハ保持溝107bに移送され、所定時間載置されることでウエハ200aが冷却される(S407)。このとき、図7(B)に示すように既に先行してウエハ冷却用載置具108に冷却されていた冷却済ウエハ200bが載置されている場合には、改質処理S405完了後のウエハ200aをウエハ保持溝107bに載置後のツィーザ125a-1、または、他の空いているツィーザ(例えばツィーザ125a-2)が冷却済ウエハ200bをロードポート、すなわちポッド110に搬送する。
 ここで、図1に示すように冷却エリアがクリーンユニット166近傍、すなわち、クリーンユニットのパージガス送出口(ファンのガス送出口)の少なくとも一部に対向する位置に配置されることで、改質工程S405によって高熱となっているウエハ200aを効率よく冷却することが可能となる。さらに、不純物やパーティクルの少ないガスを使用することが可能となり、ウエハ200aに形成されている薄膜の膜質低下を抑制することも可能となる。また、ウエハ冷却用載置具108は、ウエハ200を載置するウエハ保持溝107の上方にウエハ200の径と同一またはより大きい径を有した円盤形状の天板を設けてもよい。これによって、クリーンユニット166からのダウンフロー111が直接ウエハ200に吹き付けられることによる急冷によってウエハ200を均一に冷却できずにウエハ200が変形してしまうことを抑制することが可能となる。
 以上の動作が繰り返されることにより、ウエハ200が改質処理され、次の基板処理工程に移行することとなる。また、図3においてはウエハ200をボート217に2枚載置させることで基板処理を行うように構成して説明したが、これに限らず、図8(A)に示すように処理室201-1、201-2のそれぞれに設置されているボート217に1枚ずつ載置させて同一の処理を行うようにしてもよいし、図8(B)に示すようにスワップ処理を行うことで、ウエハ200を2枚ずつ(#1、#2)、処理室201-1、201-2にて処理するようにしてもよい。このとき、処理室201-1、201-2のそれぞれで行われる基板処理の回数が一致するようにウエハ200の搬送先を制御してもよい。このように制御することで各処理室201-1、201-2における基板処理の実施回数が一定となり、メンテナンスなどの保守作業を効率よく行うことが可能となる。例えば、前回ウエハ200を搬送した処理室が処理室201-1である場合、次のウエハ200の搬送先は処理室201-2とするように制御することで各処理室201-1、201-2における基板処理の実施回数を制御することができる。
 また、ツィーザ125a-1と125a-2はそれぞれ、基板処理によって高温となったウエハ200を搬送するための高温用ツィーザと、高温以外の温度のウエハ200を搬送するための低温用ツィーザとなるように設けられていてもよい。例えば、ツィーザ125a-1を高温用ツィーザとし、ツィーザ125a-2を低温用ツィーザとすることで、改質工程S405によって高温となったウエハ200をツィーザ125a-1のみで冷却エリアに搬送し、処理室201から搬出するとき以外の搬送タイミングでは、ツィーザ125a-2でウエハ200を搬送するように制御してもよい。
(3)本実施形態による効果
 本実施形態によれば以下に示す1つまたは複数の効果が得られる。
(a)ウエハの冷却エリアを搬送空間の上方、すなわち、基板搬入搬出口およびゲートバルブの設置位置よりも上方に設けたことで、ポッドから処理室へウエハ搬送する際の動線上から外すことが可能となり、ウエハ処理のスループットを低下させることなく、処理後のウエハを冷却することが可能となる。すなわち、ウエハの生産性を向上させることが可能となる。
(b)冷却エリアを搬送空間の上方、すなわち、クリーンユニットの近傍に設けることによって、クリーンユニットから供給される不活性ガスまたは空気を冷却ガスとして利用することが可能となり、ウエハ冷却を効率よく行うことが可能となる。
(c)ウエハ冷却用載置具にウエハ径と同等以上の天板を設けることによって、クリーンユニットから供給される不活性ガスまたは空気がウエハ表面に直接吹き付けることを抑制することが可能となり、ウエハの変形を抑制することが可能となる。
(一実施形態の変形例)
 本実施形態における基板処理装置は、上述の態様に限定されず、以下に示す変形例のように変更することができる。
 ウエハ200に対して改質工程S405が完了した後、基板搬出工程S406を実施する前に、図9に示すようにゲートバルブ205を開放した状態を維持しつつ、すなわち、処理室201と搬送室203とを空間的に連通させた状態で、処理室201に設置されている排気部を動作させることによって、クリーンユニット166から供給された不活性ガスまたは空気によって形成されるダウンフロー111の一部を処理室201内に流入させるように構成してもよい。
 例えば具体的には、改質工程S405が完了すると、コントローラ121によってゲートバルブ205が開放される。ゲートバルブ205が開放されると、搬送室203内で形成されていたダウンフロー111の一部が処理室201に流入するガスフロー112が形成され、処理室201内のウエハ200表面に水平となる冷却ガス流れが形成される。ウエハ200が保持された領域を通過したガス流れは、コントローラ121によって全開となるように制御される圧力調整器244と真空ポンプ246によって排気口221に向かう流れ(ガスフロー113)となり、処理室201内から排気される。処理室201内に流入しないダウンフロー111は、上述したパージガス循環構造により、循環または排気される。
 このとき、ダウンフロー111から処理室201内に流入するガスフロー112は、真空ポンプ246の排気能力以下の流量(排気流量)となるように制御されることが好ましい。仮に真空ポンプ246の排気流量よりも大きい流量のガスフロー112が処理室201内に供給されてしまうと、真空ポンプ246による処理室201内の排気が追い付かずに、処理室201内でガスが滞留してしまうこととなり、不要なガス渦を生じさせ、パーティクルを巻き上げる原因となり、ウエハ表面にパーティクルが付着してしまう可能性が生じる。このため、基板搬入搬出口206近傍にガスフロー112の流量を制御することを目的としたガス流量測定器であるガス流量計を設けることとしてもよい。また、ガスフロー112の流量を制御するために、ゲートバルブ205の開度を制御することでガスフロー112の流入口となる板搬入搬出口206の開度を制御するように構成してもよい。
 さらにこのとき、バルブ243を開放し、ガス供給管232からも冷却ガスとしての不活性ガスを供給するように制御することで、より効率的にウエハ200を冷却するように構成してもよい。また、搬送室203内に供給されるパージガスの流量(または、一部が処理室201内に流入した後の搬送室203内を流れるパージガスの流量)と、処理室201内に流入するパージガスの流量との比は、ファン178と真空ポンプ246の排気量との比、または経路168のコンダクタンスと排気路231のコンダクタンスとの比、若しくは、外部排気経路152のコンダクタンスと排気路231のコンダクタンスとの比の何れか1つまたは複数と等しくなるように制御されることが好ましい。
 また、本変形例において、処理室201内の圧力は減圧下であってもよく、大気圧下であってもよい。しかし、ダウンフロー111の一部を処理室201内に導入する必要があるため、処理室201内の圧力は、搬送室203内の圧力以下となるようにコントローラ121によって制御されることが好ましい。仮に本実施形態において、基板処理を搬送室203内圧力と同圧で行う場合、改質工程S405が完了し、ゲートバルブ205を開放した後、真空ポンプ246を動作させ、処理室201内を搬送室203内の圧力以下となるように制御してもよい。また、仮に処理室201内圧力が搬送室203内圧力よりも高い場合、ゲートバルブ205を開放した時に処理室201内の熱が搬送室203内に流入することを回避するために、基板搬入搬出口206近傍から冷却ガスとしての不活性ガスを供給するように構成されていてもよい。
 <本発明の他の実施形態>
 図3に示すように、上述した本発明における一実施形態では、ボート217にウエハ200を2枚載置することによって複数枚のウエハ200を同時に一括処理する構成について説明した。しかし、ポッドに収容されているウエハ200の枚数や、ウエハ200の収容可能枚数によっては、ウエハ200を1枚だけ処理する必要が生じてくる。そのような場合において、複数枚のウエハを一括処理する条件と同一の制御を行うと、ボート217に載置されたウエハ200周辺の断熱率が異なることから同一の結果を得ることが難しくなってしまう。仮にウエハ周辺の断熱率を複数枚一括処理の場合に近づけるためにダミーウエハ等のウエハ200の代替物を用いて処理を行おうとすると、ダミーウエハ等を搬送する為の工程を追加せざるを得なくなってしまい、基板処理の生産性が低下してしまうことになる。
 本発明における他の実施形態では、上述した本発明における一実施形態において用いられる基板フローを用いたまま、ダミーウエハ等のウエハ200の代替物を用いずに、2枚処理時と同様の膜質を得られるように所定の制御テーブルを設けることでマイクロ波発振器655をコントローラ121によって制御する点において、上述した本発明における一実施形態と異なる。なお、その他の点については上述した本発明における一実施形態と同一であり、説明を省略する。
 本実施形態において、図10(A)に示すように、例えば、予めウエハ200をボート217のウエハ保持可能な箇所である上段部に1枚保持させた状態で、図6に示す処理フローを用いて基板処理を行い、その推移を温度センサ263によって測定する。測定した温度は、コントローラ121に送信され、温度推移を記録した温度テーブルとして記憶装置121cまたは外部記憶装置123に記憶される。また、同様に図10(B)に示すように、予めウエハ200をボート217のウエハ保持可能な箇所である下段部に1枚保持させた状態で、図6に示す処理フローを用いて基板処理を行い、その推移を温度センサ263によって測定する。測定した温度は、コントローラ121に送信され、温度推移を記録した温度テーブルとして記憶装置121cまたは外部記憶装置123に記憶される。その後、基板処理を行う際(本処理を行う際)にコントローラ121は、図10(A)および図10(B)に示した温度測定によって記憶された温度テーブルを読み込むことで、マイクロ波発振器655の出力を調整し、図6に示す処理フローによって基板処理を行う。
 このように制御することによって、処理すべきウエハ200が1枚となった場合であっても、複数枚処理と同様の膜質を得ることが可能となり、さらに、ダミーウエハ等のウエハ200の代替部品を用いなくても良くなることから、スループットの低下を抑制することが可能となる。
(他の実施形態の変形例)
 本実施形態における基板処理装置は、上述の態様に限定されず、以下に示す変形例のように変更することができる。
 他の実施形態の変形例は、図11(A)に示すように、ボート217に載置される断熱体としての石英プレート101、誘電体としてのサセプタ103、被処理体としてのウエハ200が、上方から石英プレート101a、サセプタ103a、ウエハ200-1、サセプタ103b、石英プレート101b、石英プレート101c、サセプタ103c、ウエハ200-2、サセプタ103d、石英プレート101dの順番で載置されるボート217の構造である点において、上述した他の実施形態と異なる。
 本変形例においても、図11(B)に示すように、予めウエハ200をボート217のウエハ保持可能な箇所である上段部に1枚保持させた状態で、図6に示す処理フローを用いて基板処理を行い、その推移を温度センサ263によって測定する。測定した温度は、コントローラ121に送信され、温度推移を記録した温度テーブルとして記憶装置121cまたは外部記憶装置123に記憶される。その後、基板処理を行う際(本処理を行う際)にコントローラ121は、図11(B)に示した温度測定によって記憶された温度テーブルを読み込むことで、マイクロ波発振器655の出力を調整し、図6に示す処理フローによって基板処理を行う。
 なお、図11(A)は図10に示すウエハ保持位置と異なる(ウエハ200が連続で垂直に保持されていない)ため、図11(A)におけるウエハ200-1の位置にウエハを保持しない場合の温度測定は実施せずに図11(B)に示す温度測定方法で取得した温度テーブルのみで基板処理を行うようにしても問題ないが、より好ましくは、ウエハ200-1の位置にウエハ200を保持させず、ウエハ200-2の位置にウエハ200を保持させた状態で温度を測定し、温度テーブルを作成して基板処理(本処理)を行うようにするとよい。
 以上、本発明を実施形態に沿って説明してきたが、上述の各実施形態や各変形例等は、適宜組み合わせて用いることができ、その効果も得ることができる。
 例えば、上述の各実施形態では、シリコンを主成分とする膜として、アモルファスシリコン膜をポリシリコン膜に改質する処理について記載したが、これに限らず、酸素(O)、窒素(N)、炭素(C)、水素(H)のうち、少なくとも1つ以上を含むガスを供給させて、ウエハ200の表面に形成された膜を改質しても良い。例えば、ウエハ200に、高誘電体膜としてのハフニウム酸化膜(HfxOy膜)が形成されている場合に、酸素を含むガスを供給しながらマイクロ波を供給して加熱させることによって、ハフニウム酸化膜中の欠損した酸素を補充し、高誘電体膜の特性を向上させることができる。
 なお、ここでは、ハフニウム酸化膜について示したが、これに限らず、アルミニウム(Al)、チタニウム(Ti)、ジルコニウム(Zr)、タンタル(Ta)、ニオブ(Nb)、ランタン(La)、セリウム(Ce)、イットリウム(Y)、バリウム(Ba)、ストロンチウム(Sr)、カルシウム(Ca)、鉛(Pb)、モリブデン(Mo)、タングステン(W)等の少なくともいずれかを含む金属元素を含む酸化膜、すなわち、金属系酸化膜を改質する場合においても、好適に適用可能である。すなわち、上述の成膜シーケンスは、ウエハ200上に、TiOCN膜、TiOC膜、TiON膜、TiO膜、ZrOCN膜、ZrOC膜、ZrON膜、ZrO膜、HfOCN膜、HfOC膜、HfON膜、HfO膜、TaOCN膜、TaOC膜、TaON膜、TaO膜、NbOCN膜、NbOC膜、NbON膜、NbO膜、AlOCN膜、AlOC膜、AlON膜、AlO膜、MoOCN膜、MoOC膜、MoON膜、MoO膜、WOCN膜、WOC膜、WON膜、WO膜を改質する場合にも、好適に適用することが可能となる。
 また、高誘電体膜に限らず、不純物がドーピングされたシリコンを主成分とする膜を加熱させるようにしてもよい。シリコンを主成分とする膜としては、シリコン窒化膜(SiN膜)、シリコン酸化膜(SiO膜)シリコン酸炭化膜(SiOC膜)、シリコン酸炭窒化膜(SiOCN膜)、シリコン酸窒化膜(SiON膜)等のSi系酸化膜がある。不純物としては、例えば、臭素(B)、炭素(C)、窒素(N)、アルミニウム(Al)、リン(P)、ガリウム(Ga)、砒素(As)などの少なくとも1つ以上を含む。
 また、メタクリル酸メチル樹脂(Polymethyl methacrylate:PMMA)、エポキシ樹脂、ノボラック樹脂、ポリビニルフェニール樹脂などの少なくともいずれかをベースとするレジスト膜であってもよい。
 また、上述では、半導体装置の製造工程の一工程について記したが、これに限らず、液晶パネルの製造工程のパターニング処理、太陽電池の製造工程のパターニング処理や、パワーデバイスの製造工程のパターニング処理などの、基板を処理する技術にも適用可能である。
 以上述べたように、本発明によれば、基板の冷却工程を設けた場合であっても生産性の低下を抑制することが可能となる電磁波処理技術を提供することができる。
108・・・基板用冷却載置具、
121・・・コントローラ(制御部)、
125・・・移載機、
166・・・クリーンユニット、
200・・・ウエハ(基板)、
201・・・処理室、
205・・・ゲートバルブ、
217・・・ボート(基板保持具)、
655・・・マイクロ波発振器。

Claims (12)

  1. 基板を搬入搬出する搬入搬出口を開閉するゲートバルブを有し、マイクロ波を用いた加熱装置によって基板を加熱し処理する処理室と、
    パージガスを導入可能なクリーンユニットから内部にパージガスを供給し、所定の経路で前記内部に供給されたパージガスを流通させるパージガス流通機構を備えた基板搬送室と、
    前記基板搬送室の内部に設けられて前記処理室に前記基板を搬送する移載機と、
    前記クリーンユニットの近傍であって、前記ゲートバルブよりも上方に設置され、前記移載機によって搬送された基板を冷却する基板用冷却載置具と、
    を有する基板処理装置。
  2. 前記パージガス流通機構は、前記基板搬送室を形成する筐体内に前記パージガスを循環させる循環路と前記パージガスを排気させる排気路とを有する請求項1に記載の基板処理装置。
  3. 前記パージガス流通機構は、前記基板搬送室内の圧力制御を行う圧力制御機構を有する請求項2に記載の基板処理装置。
  4. 前記処理室は、前記処理室内の雰囲気を排気する排気部を有し、
    前記基板を処理した後、前記ゲートバルブを開放し、前記クリーンユニットから前記基板搬送室内に供給されるパージガスの一部が前記処理室内に流れるように前記排気部の排気量を制御するよう構成された制御部と、
    を有する請求項1に記載の基板処理装置。
  5. 前記処理室は、所定のガスを供給するガス供給部をさらに有し、
    前記制御部は、前記ゲートバルブを開放している間、前記ガス供給部よりパージガスが供給されるように前記ガス供給部を制御するよう構成される請求項4に記載の基板処理装置。
  6. 前記制御部は、前記処理室内に流れるパージガスの流量が前記排気部の排気流量よりも小さくなるように前記排気部を制御するよう構成される請求項4に記載の基板処理装置。
  7. 前記制御部は、前記ゲートバルブの開度によって前記処理室内に流れるパージガスの流量を制御するよう構成される請求項4に記載の基板処理装置。
  8. 前記処理室は、前記処理室内に流れるパージガスの流量を測定するためのガス流量測定器を有する請求項4に記載の基板処理装置。
  9. 前記制御部は、前記処理室内に流れるパージガスの流量と前記基板搬送室内に流れるパージガスの流量との比が、前記排気部の排気流量と前記所定の経路のコンダクタンスとの比と同等となるように前記排気部を制御するよう構成される請求項4に記載の基板処理装置。
  10. 前記基板搬送室は、前記基板搬送室内部の酸素濃度を検出するための検出器を有し、
    前記制御部は、前記検出器の検出値に基づいて、前記パージガス流通機構を制御するよう構成される請求項1に記載の基板処理装置。
  11. 基板を搬入搬出する搬入搬出口を開閉するゲートバルブを有し、マイクロ波を用いた加熱装置によって基板を加熱し処理する処理室と、パージガスを導入可能なクリーンユニットから内部にパージガスを供給し、所定の経路で前記内部に供給されたパージガスを流通させるパージガス流通機構を備えた基板搬送室と、前記基板搬送室の内部に設けられて前記処理室に前記基板を搬送する移載機と、前記クリーンユニットの近傍であって、前記ゲートバルブよりも上方に設置され、前記移載機によって搬送された基板を冷却する基板用冷却載置具と、を有する基板処理装置の前記処理室内に前記基板を搬送する工程と、
    前記基板を加熱して所定の改質処理を行う工程と、
    前記改質処理後、前記移載機によって前記基板を前記基板用冷却載置具に載置して、前記基板を冷却する冷却工程と、
    を有する半導体装置の製造方法。
  12. 基板を搬入搬出する搬入搬出口を開閉するゲートバルブを有し、マイクロ波を用いた加熱装置によって基板を加熱し処理する処理室と、パージガスを導入可能なクリーンユニットから内部にパージガスを供給し、所定の経路で前記内部に供給されたパージガスを流通させるパージガス流通機構を備えた基板搬送室と、前記基板搬送室の内部に設けられて前記処理室に前記基板を搬送する移載機と、前記クリーンユニットの近傍であって、前記ゲートバルブよりも上方に設置され、前記移載機によって搬送された基板を冷却する基板用冷却載置具と、を有する基板処理装置の前記処理室内に前記基板を搬送する手順と、
    前記基板を加熱して所定の改質処理を行う手順と、
    前記改質処理後、前記移載機によって前記基板を前記基板用冷却載置具に載置して、前記基板を冷却する冷却手順と、
    をコンピュータによって前記基板処理装置に実行させるためのプログラム。
PCT/JP2017/010220 2017-03-14 2017-03-14 基板処理装置、半導体装置の製造方法およびプログラム WO2018167846A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2017/010220 WO2018167846A1 (ja) 2017-03-14 2017-03-14 基板処理装置、半導体装置の製造方法およびプログラム
JP2019505563A JP6944990B2 (ja) 2017-03-14 2017-03-14 基板処理装置、半導体装置の製造方法およびプログラム
KR1020197026382A KR102311459B1 (ko) 2017-03-14 2017-03-14 기판 처리 장치, 반도체 장치의 제조 방법, 및 프로그램
TW106144208A TWI668764B (zh) 2017-03-14 2017-12-15 基板處理裝置、半導體裝置之製造方法及記錄媒體
US16/563,466 US11018033B2 (en) 2017-03-14 2019-09-06 Substrate processing apparatus, method of manufacturing semiconductor device, and recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/010220 WO2018167846A1 (ja) 2017-03-14 2017-03-14 基板処理装置、半導体装置の製造方法およびプログラム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/563,466 Continuation US11018033B2 (en) 2017-03-14 2019-09-06 Substrate processing apparatus, method of manufacturing semiconductor device, and recording medium

Publications (1)

Publication Number Publication Date
WO2018167846A1 true WO2018167846A1 (ja) 2018-09-20

Family

ID=63521909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/010220 WO2018167846A1 (ja) 2017-03-14 2017-03-14 基板処理装置、半導体装置の製造方法およびプログラム

Country Status (5)

Country Link
US (1) US11018033B2 (ja)
JP (1) JP6944990B2 (ja)
KR (1) KR102311459B1 (ja)
TW (1) TWI668764B (ja)
WO (1) WO2018167846A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020053476A (ja) * 2018-09-25 2020-04-02 東京エレクトロン株式会社 真空処理装置及び真空処理装置の制御方法
KR102208017B1 (ko) * 2019-08-14 2021-01-27 로체 시스템즈(주) 기판 반송 장치
JP7464471B2 (ja) 2020-07-10 2024-04-09 株式会社日立ハイテク 基板搬送装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11101163B2 (en) * 2018-01-30 2021-08-24 Taiwan Semiconductor Manufacturing Co., Ltd. Systems and methods for automated robotic arm sensing
JP7011033B2 (ja) * 2018-03-01 2022-01-26 株式会社Kokusai Electric 基板処理装置、半導体装置の製造方法およびプログラム
JP7234527B2 (ja) * 2018-07-30 2023-03-08 Tdk株式会社 センサー内蔵フィルタ構造体及びウエハ収容容器
US20200168485A1 (en) * 2018-11-28 2020-05-28 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
JP7210065B2 (ja) * 2019-03-28 2023-01-23 株式会社リガク 透過型小角散乱装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02229429A (ja) * 1989-03-01 1990-09-12 Sumitomo Metal Ind Ltd プラズマプロセス装置
WO2012133441A1 (ja) * 2011-03-28 2012-10-04 株式会社日立国際電気 基板処理装置、半導体装置の製造方法及び基板処理方法
JP2012195570A (ja) * 2011-03-02 2012-10-11 Hitachi Kokusai Electric Inc 基板処理装置及び基板処理方法
JP2014120520A (ja) * 2012-12-13 2014-06-30 Tokyo Electron Ltd 基板処理装置、基板処理方法及び記憶媒体
WO2017022366A1 (ja) * 2015-08-04 2017-02-09 株式会社日立国際電気 基板処理装置、半導体装置の製造方法および記録媒体

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09106956A (ja) * 1995-10-09 1997-04-22 Kokusai Electric Co Ltd ボートおよびその設置構造
JP2003092329A (ja) * 2001-09-18 2003-03-28 Hitachi Kokusai Electric Inc 基板処理装置
JP2005175068A (ja) * 2003-12-09 2005-06-30 Hitachi Kokusai Electric Inc 基板処理装置
JP2005268244A (ja) * 2004-03-16 2005-09-29 Hitachi Kokusai Electric Inc 基板処理装置
JP6188145B2 (ja) 2013-09-27 2017-08-30 株式会社日立国際電気 基板処理装置、半導体装置の製造方法及びプログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02229429A (ja) * 1989-03-01 1990-09-12 Sumitomo Metal Ind Ltd プラズマプロセス装置
JP2012195570A (ja) * 2011-03-02 2012-10-11 Hitachi Kokusai Electric Inc 基板処理装置及び基板処理方法
WO2012133441A1 (ja) * 2011-03-28 2012-10-04 株式会社日立国際電気 基板処理装置、半導体装置の製造方法及び基板処理方法
JP2014120520A (ja) * 2012-12-13 2014-06-30 Tokyo Electron Ltd 基板処理装置、基板処理方法及び記憶媒体
WO2017022366A1 (ja) * 2015-08-04 2017-02-09 株式会社日立国際電気 基板処理装置、半導体装置の製造方法および記録媒体

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020053476A (ja) * 2018-09-25 2020-04-02 東京エレクトロン株式会社 真空処理装置及び真空処理装置の制御方法
JP7149144B2 (ja) 2018-09-25 2022-10-06 東京エレクトロン株式会社 真空処理装置及び真空処理装置の制御方法
KR102208017B1 (ko) * 2019-08-14 2021-01-27 로체 시스템즈(주) 기판 반송 장치
TWI754330B (zh) * 2019-08-14 2022-02-01 南韓商樂華系統股份有限公司 基材傳送設備
JP7464471B2 (ja) 2020-07-10 2024-04-09 株式会社日立ハイテク 基板搬送装置

Also Published As

Publication number Publication date
US11018033B2 (en) 2021-05-25
TW201843739A (zh) 2018-12-16
KR20190116402A (ko) 2019-10-14
JP6944990B2 (ja) 2021-10-06
JPWO2018167846A1 (ja) 2019-11-21
US20190393056A1 (en) 2019-12-26
KR102311459B1 (ko) 2021-10-13
TWI668764B (zh) 2019-08-11

Similar Documents

Publication Publication Date Title
WO2018167846A1 (ja) 基板処理装置、半導体装置の製造方法およびプログラム
JP6841920B2 (ja) 基板処理装置、半導体装置の製造方法およびプログラム
JP7011033B2 (ja) 基板処理装置、半導体装置の製造方法およびプログラム
JP6838010B2 (ja) 基板処理装置、半導体装置の製造方法およびプログラム
WO2018173197A1 (ja) 発熱体、基板処理装置および半導体装置の製造方法
US20230189407A1 (en) Substrate processing apparatus, method of manufacturing semiconductor device, and recording medium
US11553565B2 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and non-transitory computer-readable recording medium
JP7079317B2 (ja) 基板処理装置、半導体装置の製造方法及びプログラム
JP6949080B2 (ja) 基板処理装置、半導体装置の製造方法およびプログラム
WO2023047922A1 (ja) 基板処理装置、半導体装置の製造方法およびプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17901241

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019505563

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197026382

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17901241

Country of ref document: EP

Kind code of ref document: A1