WO2018159719A1 - 隅肉溶接継手及びその製造方法 - Google Patents

隅肉溶接継手及びその製造方法 Download PDF

Info

Publication number
WO2018159719A1
WO2018159719A1 PCT/JP2018/007638 JP2018007638W WO2018159719A1 WO 2018159719 A1 WO2018159719 A1 WO 2018159719A1 JP 2018007638 W JP2018007638 W JP 2018007638W WO 2018159719 A1 WO2018159719 A1 WO 2018159719A1
Authority
WO
WIPO (PCT)
Prior art keywords
base material
weld
weld metal
fillet
carbon equivalent
Prior art date
Application number
PCT/JP2018/007638
Other languages
English (en)
French (fr)
Inventor
真二 児玉
和貴 松田
石田 欽也
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to US16/489,144 priority Critical patent/US11235415B2/en
Priority to MX2019010128A priority patent/MX2019010128A/es
Priority to KR1020197022044A priority patent/KR102197868B1/ko
Priority to CN201880014185.8A priority patent/CN110382154B/zh
Priority to EP18761559.6A priority patent/EP3590644B1/en
Priority to JP2018535193A priority patent/JP6432716B1/ja
Publication of WO2018159719A1 publication Critical patent/WO2018159719A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • B23K26/242Fillet welding, i.e. involving a weld of substantially triangular cross section joining two parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/23Arc welding or cutting taking account of the properties of the materials to be welded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12347Plural layers discontinuously bonded [e.g., spot-weld, mechanical fastener, etc.]

Definitions

  • the present invention relates to a fillet welded joint and a manufacturing method thereof, and particularly to a fillet welding technique that improves weld fatigue strength while suppressing low temperature cracking.
  • the use of thin high-strength steel sheets is expected for the purpose of reducing the weight of the vehicle body, particularly the chassis.
  • the fatigue strength of the member is emphasized from the viewpoint of durability.
  • the steel plates are welded to each other, the welded portion becomes a stress concentration portion, which causes a reduction in the fatigue strength of the member.
  • a thin high-strength steel plate is applied, it is necessary to increase the fatigue strength of the welded portion as the strength of the steel plate increases.
  • the hardness of the heat-affected zone (HAZ) of the base metal tends to be higher than the weld metal, and the fatigue strength of the welded portion is caused by this hardness difference. May decrease. For this reason, in order to apply the thin high-strength steel plate to the vehicle body to the chassis, it is necessary to increase the fatigue strength of the welded portion of the high-strength steel plate.
  • the following techniques are known as techniques for improving the fatigue strength of welds.
  • Patent Document 1 discloses a structural steel welded joint.
  • This joint has a Vickers hardness average value A measured in accordance with JIS Z2244 within a range of 1 mm from the fusion boundary to the weld metal side at a position within 0.5 mm below the surface of the weld toe, and the fusion boundary.
  • the difference (A ⁇ B) in the maximum hardness B similarly measured in the range of 1 mm to the coarse grain region side of the base metal from the heat-affected zone is 26 to 39.
  • Patent Document 2 discloses a fillet arc welded joint. This joint is characterized in that a remelted portion by laser irradiation is formed to a predetermined depth in a weld toe portion of fillet arc welding and a region including a boundary of a heat affected zone. With such a feature, the welded portion is locally hardened and hardened, and the progress of cracks in the welded portion is suppressed.
  • Patent Document 3 discloses a fillet arc welded joint. This joint is characterized by limiting the amount of Si among steel plates and welding wires. With such a feature, even when the welding speed is over 80 cm / min, particularly over 110 cm / min and 150 cm / min or less, the shape of the weld toe shape is improved, and the fatigue characteristics of the fillet arc welded joint can be improved. It is said that.
  • the hardness of the weld metal is made higher than the hardness of the toe portion and the heat affected zone.
  • the hardenability of the steel material component is also increased, so that the hardness of the heat-affected zone that was originally the steel plate itself is also increased.
  • the weld metal may harden and cold cracks may occur in the weld metal.
  • the cause of cold cracking is hydrogen embrittlement.
  • reducing diffusible hydrogen that has entered the weld metal during welding lowering the tensile residual stress caused by shrinkage of the weld metal, and lowering the hardness of the weld metal.
  • it is difficult to reduce the amount of diffusible hydrogen and residual tensile, and preventing excessive hardening of the weld metal is a measure for preventing hydrogen embrittlement.
  • the weld wire component and the base material component may not be mixed uniformly during solidification of the weld metal. For this reason, in the vicinity of the toe, a region where a larger amount of the base material component having a relatively low alloy component concentration is mixed than a welding wire having a relatively high alloy component concentration occurs, and the weld metal hardness in the region is sufficient. May not be obtained.
  • Patent Document 2 a remelted portion by laser irradiation is formed to a predetermined depth in the weld toe portion and the region including the boundary of the heat affected zone. Such laser irradiation is performed in a superimposed manner after the welding operation, and there is a risk that the equipment investment and workload for that purpose will increase. Further, Patent Document 2 has no description or suggestion regarding cold cracking.
  • Patent Document 3 In the technique disclosed in Patent Document 3, the shape of the weld toe shape is improved by limiting the amount of Si in the steel plate and the welding wire, and the fatigue characteristics of the fillet arc welded joint are improved.
  • Patent Document 3 has little description or suggestion regarding cold cracking. Specifically, Patent Document 3 only describes that no slit is provided because there is a risk of intrusion of outside air (hydrogen) if there is a slit in the welding wire.
  • the present invention has been made in view of the above circumstances, and provides a fillet welded joint having excellent weld fatigue strength while suppressing low temperature cracking in a steel sheet having a tensile strength of 980 MPa or more, and a method for producing the same. With the goal.
  • the present inventors diligently investigated fillet welded joints that can realize excellent weld fatigue strength while suppressing low temperature cracking.
  • a base material having a predetermined tensile strength a high-strength steel plate suitably selected with respect to the value of carbon equivalent and the relationship between carbon equivalent [wt%] and tensile strength [MPa] is used.
  • a fillet welded joint obtained by stacking part of two base materials and performing fillet welding The fillet weld joint includes the base material, a weld metal, and a heat affected zone,
  • the base material has a tensile strength of 980 MPa or more, the base material has a carbon equivalent of 0.36 or more and 0.60 or less, and the base material has a tensile strength [MPa] of the base material of carbon equivalent [wt%].
  • the average carbon equivalent of the weld metal is 0.45 or more and 0.65 or less, which is higher than the carbon equivalent of the base material, In a cross section perpendicular to the weld line of the fillet weld joint, it passes through a position of 0.1 mm or more and 0.3 mm or less in the thickness direction of the base metal from the weld toe, and is on a straight line parallel to the surface of the base metal.
  • the base material is in mass%, 0.01 ⁇ C ⁇ 0.25, 0.01 ⁇ Si ⁇ 2.00, 0.05 ⁇ Mn ⁇ 3.0, 0.001 ⁇ Al ⁇ 0. 4.
  • the base material is in mass%, 0.1 ⁇ Ni ⁇ 3.0, 0.1 ⁇ Cr ⁇ 2.0, 0.005 ⁇ Mo ⁇ 0.5, 0.005 ⁇ Nb ⁇ 0. 3. Fillet welding according to (3) above, further comprising at least one of 0.005 ⁇ V ⁇ 0.3, 0.005 ⁇ Ti ⁇ 0.3, 0.0001 ⁇ B ⁇ 0.01 Fittings.
  • the above-mentioned weld metal is 0.03 ⁇ C ⁇ 0.25, 0.01 ⁇ Si ⁇ 2.00, 0.5 ⁇ Mn ⁇ 3.0, 0.001 ⁇ Al ⁇ 0.0. 15.
  • the weld metal is 0.1% Ni ⁇ 3.0, 0.1 ⁇ Cr ⁇ 2.0, 0.005 ⁇ Mo ⁇ 0.5, 0.005 ⁇ Nb ⁇ 0. 1.
  • a method for manufacturing a fillet welded joint in which part of two base materials are overlapped and fillet welded using a welding wire,
  • the base material has a tensile strength of 980 MPa or more, the base material has a carbon equivalent of 0.36 or more and 0.60 or less, and the base material has a tensile strength [MPa] of the base material of carbon equivalent [wt%]. More than 1950 times
  • the carbon equivalent of the welding wire is 0.50 or more and 0.80 or less, which is higher than the carbon equivalent of the base material,
  • a fillet welding manufacturing method wherein the welding speed is 60 cm / min or more and 150 cm / min or less.
  • a high-strength steel plate suitably selected from the value of carbon equivalent and the relationship between carbon equivalent and tensile strength is used, and a high carbon equivalent having an appropriate carbon equivalent is used.
  • FIG. 1 is a cross-sectional view showing a fillet welded joint according to this embodiment, which is obtained by performing fillet welding by overlapping a part of two base materials.
  • FIG. 2 is a graph showing the relationship between Vickers hardness and a point on an imaginary line for the fillet welded joint shown in FIG.
  • FIG. 3 is a diagram for explaining the fatigue bending test.
  • FIG. 4 is a diagram illustrating a welding method employed in the examples.
  • the present inventors preferably select the value of the carbon equivalent of the base material and the relationship between the carbon equivalent and the tensile strength on the assumption that a thin steel material having a tensile strength of 980 MPa or more is used as the base material.
  • the fillet welded joint of the present embodiment is a joint obtained by stacking a part of two high-strength thin steel plates (base materials) and performing fillet welding. Specifically, a lap joint or a T joint is used. It is a concept that includes.
  • the fillet welded joint of the present embodiment is intended for a joint using a so-called high-strength steel plate having a tensile strength of 980 MPa or more as a base material.
  • the tensile strength of the base material exceeds 1470 MPa, it is not possible to sufficiently improve the welded portion fatigue strength of the joint according to this embodiment described later. For this reason, it is preferable that the base material has a tensile strength of 1470 MPa or less.
  • the fillet welded joint of this embodiment has a carbon equivalent of the base metal of 0.36 or more and 0.60 or less.
  • the base material By setting the carbon equivalent of the base material to 0.36 or more, the base material itself can be hardened to obtain a strength that can be sufficiently applied as a member of a vehicle body, particularly a chassis.
  • the carbon equivalent of the base material 0.60 or less, the hardness in the boundary region between the heat affected zone and the weld metal and the heat in the vicinity of the boundary zone are not increased without excessively increasing the hardness of the heat affected zone. It is possible to efficiently prevent the occurrence of cracks in the vicinity of the boundary region by suppressing the difference from the hardness in the affected part.
  • the boundary between the heat-affected zone and the weld metal can be obtained by cutting the weld zone in a direction perpendicular to the weld line and corroding the cross section.
  • said each effect can be show
  • the carbon equivalent [wt%] of the base material, the weld metal, and the weld wire is represented by the following formula.
  • Carbon equivalent [wt%] C + Si / 24 + Mn / 6 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14 C, Mn, Ni, Cr, Mo, and V in the formula are content rates [wt%] in each material.
  • the content rate of the said element is measured in the base material which does not contain a plating part, and / or the part of the welding wire which does not contain a plating part.
  • the tensile strength [MPa] of the base material is 1950 times or more the carbon equivalent [wt%] of the base material.
  • the matrix structure becomes a martensite-based structure.
  • the structure of the base material is governed by the hot rolling conditions in the base material manufacture.In particular, in order to ensure a predetermined base material strength, the cooling rate during hot rolling is increased and the martensite structure is set. It is important to use work hardening by rolling.
  • the heat-affected zone may be tempered and softened. Therefore, the tensile strength [MPa] of the base material is preferably 2750 times or less the carbon equivalent [wt%] of the base material. Thereby, the static strength fall of the joint with respect to base material strength, ie, the strength fall by HAZ softening, can be controlled.
  • the ratio of the tensile strength of the joint is preferably 0.7 or more.
  • FIG. 1 is a cross-sectional view showing a fillet welded joint according to this embodiment, which is obtained by performing fillet welding by overlapping a part of two base materials.
  • the cross section is a cross section perpendicular to the weld line of the fillet weld joint.
  • the fillet weld joint 10 of this embodiment includes two base materials 12 and 14, a weld metal 16, and a heat affected zone (not shown).
  • a point A is a so-called weld toe
  • a dotted line passes through a position of Smm (0.1 mm or more and 0.3 mm or less) from the weld toe A in the plate thickness direction of the base material to the surface of the base material. It is an imaginary line which shows a parallel straight line.
  • a point or region on this imaginary line that is, A representative point B at the boundary between the weld metal 16 and the heat affected zone (HAZ) (of the base material 14)
  • HVwmt of the Vickers hardness of the weld metal in the region C from 0.1 mm to 0.3 mm from the representative point B to the weld metal 16 side
  • -Average value HVhaz of Vickers hardness of heat affected zone in region D of 0.1 mm or more and 0.3 mm or less from representative point B to heat affected zone side think of.
  • the average value HVwmt of the Vickers hardness and the average value HVhaz of the Vickers hardness are the average values of the hardness at at least three arbitrary points in each of the regions C and D.
  • the representative point B means a point determined as a boundary between a weld metal having a dendrite structure and a heat-affected zone not having the structure.
  • the fillet welded joint of the present embodiment has the Vickers hardness HVbond at the representative point B, the average value HVwmt of the Vickers hardness of the weld metal in the region C, and the Vickers of the heat affected zone in the region D.
  • the average value HVhaz of hardness satisfies the following relationships (a) to (c).
  • C HVhaz ⁇ 350
  • FIG. 2 is a graph showing the relationship between the Vickers hardness and the area on the imaginary line for the fillet welded joint shown in FIG.
  • the Vickers hardness shown to the figure shows not a quantitative value but a qualitative value.
  • the alloy elements are oxidized and consumed under the influence of the oxidizing gas in the atmosphere, and the oxide inclusions in the weld metal promote the ferrite transformation, so that the vicinity of the melting boundary (region C) The weld metal hardness is reduced. Therefore, in order to prevent fatigue cracking due to strain concentration on the weld metal near the softened melting boundary (region C), the lower limit of the carbon equivalent of the welding wire (0.50 or higher and higher than the carbon equivalent of the base metal) is specified. Therefore, it is necessary to satisfy HVbond ⁇ HVwmt.
  • the relationship between the tensile strength of the base material and the carbon equivalent is suitably selected, so that the hardness difference at these points B and D is compared with the conventional one. Therefore, it is an index which means that it can be remarkably reduced.
  • the carbon equivalent of the base material is set to 0.36 or more, and the martensitic transformation of the base material is promoted by increasing the cooling rate at the time of manufacturing the hot-rolled steel sheet, and the base material is pulled using work hardening.
  • the hardening of the weld heat affected zone near the melting boundary can be suppressed by setting the carbon equivalent of the base material to 0.60 or less. It can.
  • This technology reduces the degree of hardening caused by cooling of the heat-affected zone at the time of welding against hardening due to cooling and processing in the manufacture of the steel plate base material, thereby ensuring the strength of the base material while ensuring the strength of the base material. It is a technique that suppresses curing and has a different concept from the conventional one.
  • the lower limit of the carbon equivalent of the welding wire (0.50 or higher and higher than the carbon equivalent of the base metal) is specified to prevent softening of the weld metal and The difference from the hardness can be kept large.
  • (C) HVhaz ⁇ 350 This rule defines the upper limit of the hardness of the heat-affected zone near the melting boundary, and is an index for preventing excessive hardening of the heat-affected zone and, consequently, a decrease in weld fatigue strength. By setting the carbon equivalent of the base material to 0.60 or less, hardening in the weld heat affected zone near the melting boundary can be suppressed.
  • the fillet welded joint of this embodiment can achieve excellent fatigue strength of the welded portion (including the weld metal and the heat affected zone).
  • the fatigue strength is measured by the following test.
  • a plane bending fatigue test piece having the shape shown in FIG. 3 is prepared, and the fatigue strength of the weld toe is evaluated.
  • ⁇ ⁇ Fatigue strength may be evaluated on a relative basis. Based on the fatigue strength of conventional fillet welded joints, the higher the fatigue strength ratio, the better the fatigue strength.
  • the fatigue strength ratio with respect to the conventional product is preferably as high as possible, and may be 1.1 or more. More preferably, the fatigue strength ratio may be 1.2 or more. More preferably, the fatigue strength ratio may be 1.3 or more.
  • the fatigue strength of a fillet welded joint obtained by filling fillet of 780 MPa steel may be used as the standard fatigue strength of a conventional fillet welded joint without considering the carbon equivalent defined in the present invention.
  • the average carbon equivalent of the weld metal is 0.45 or more and 0.65 or less, which is higher than the carbon equivalent of the base metal.
  • the range of such a carbon equivalent is set to 0.50 or more and 0.60 or less, the above effects are achieved at a high level, which is preferable.
  • About the average carbon content of a weld metal it is set as the average value of the average carbon content in at least three arbitrary points in a weld metal part.
  • the base material and / or the weld metal can be selected from the following components (the units are all by mass%).
  • the components of the base material will be described. Here, it is assumed that the value of each component in the base material is measured at the base material portion of the base material not including the plating portion.
  • C 0.01% or more and 0.25% or less C is preferably set to 0.01% or more in order to ensure the strength of the joint.
  • the content is preferably 0.25% or less.
  • Si 0.01% or more and 2.00% or less Si is useful for deoxidation and ensuring strength, and is preferably 0.01% or more. Further, if over 2.00% is added, the weldability is impaired, so the content is preferably made 2.00% or less.
  • Mn 0.05% or more and 3.0% or less Mn is useful as an element for increasing the strength at low cost, and is preferably set to 0.05% or more for securing the strength. Further, if over 3.0% is added, the weldability is impaired, so the content is preferably 3.0% or less.
  • Al 0.001% or more and 0.4% or less Al is preferably made 0.001% or more for deoxidation. Moreover, when more than 0.4% is added, the inclusions in the steel and the weld metal become excessive, and the toughness is lowered.
  • the balance Fe and impurities
  • the impurity means a component contained in the raw material or a component mixed in the manufacturing process and not a component intentionally contained in the base material.
  • impurities include P and S.
  • a plating component such as Zn or Al may be mixed in the base material as an inevitable component of about 0.10 to 0.3%. . It is preferable to analyze the components of the base material in consideration of the thickness of the plating so as not to be affected by the plating.
  • Ni, Cr, Mo, Nb, V, Ti, B Ni, Cr, Mo, Nb, V, Ti, and B are all components that improve the fatigue characteristics of the joint, and are considered to improve the fatigue strength by affecting the weld metal and the heat affected zone (HAZ). .
  • these components are effective components, and the fillet welded joint of the present embodiment can contain at least one of these components.
  • any excess addition degrades the steel sheet material. Therefore, 0.1 ⁇ Ni ⁇ 3.0, 0.1 ⁇ Cr ⁇ 2.0, 0.005 ⁇ Mo ⁇ 0.5, 0.005 ⁇ Nb ⁇ 0.3, 0.005 ⁇ V, respectively. ⁇ 0.3, 0.005 ⁇ Ti ⁇ 0.3, and 0.0001 ⁇ B ⁇ 0.01 are preferably included.
  • the component of the weld metal can be obtained by measuring with an emission spectroscopic method using high frequency inductively coupled plasma (ICP), using a cutting powder collected from the weld metal part.
  • ICP inductively coupled plasma
  • collection of a chip it measures by measuring the area
  • the component of the weld metal is generally an average value of the central portion of the weld metal, and the carbon equivalent is also an average value of the weld metal.
  • the weld metal contains oxides and nitrides unlike the steel plate base material.
  • the oxide promotes the ferrite transformation of the weld metal structure and causes a decrease in strength. Therefore, in the weld metal, it is necessary to increase the hardenability improving elements C and Mn as compared with the base material.
  • nitrogen reacts with Al, Nb, and V to form nitrides, remarkably harden the weld metal and lower the toughness value of the weld metal. Therefore, in the weld metal, it is necessary to limit the upper limit values of these elements as compared to the base material.
  • the components of the weld metal may be defined as follows.
  • C 0.03% to 0.25%
  • C is preferably 0.03% or more in order to ensure the strength of the joint.
  • C forms an oxide, promotes the ferrite transformation of the weld metal structure, and causes a decrease in strength. Therefore, in the weld metal, C, which is a hardenability improving element, is increased more than the base material.
  • the content is preferably 0.25% or less.
  • Si 0.01% or more and 2.00% or less Si is useful for deoxidation and ensuring strength, and is preferably 0.01% or more. Further, if over 2.00% is added, the weldability is impaired, so the content is preferably made 2.00% or less.
  • Mn 0.5% or more and 3.0% or less Mn is useful as an element for increasing the strength at low cost, and is preferably set to 0.5% or more for ensuring the strength. Mn generates an oxide, promotes the ferrite transformation of the weld metal structure, and causes a decrease in strength. Therefore, in the weld metal, Mn, which is a hardenability improving element, is increased more than the base material. Further, if over 3.0% is added, the weldability is impaired, so the content is preferably 3.0% or less.
  • Al 0.001% to 0.15%
  • Al is preferably 0.001% or more for deoxidation. Also, adding more than 0.15% reacts with nitrogen to form nitrides, remarkably harden the weld metal and reduce the toughness value of the weld metal. Therefore, the content is preferably 0.15% or less. Therefore, in the weld metal, the upper limit value of Al is limited more than that of the base material.
  • the balance Fe and impurities
  • the balance is Fe and impurities.
  • the impurities are regarded as components other than the elements described above and optional elements described later.
  • Examples of impurities include Cu and Zn.
  • the weld metal includes welding wire and base metal components. The surface of the welding wire may be subjected to Cu plating or the like to ensure conductivity, and when the base material is also plated, the plating component will be included in the weld metal, Cu and Zn are also regarded as impurities.
  • Ni, Cr, Mo, Nb, V, Ti, B Ni, Cr, Mo, Nb, V, Ti, B are all components that improve the fatigue characteristics of the joint, and are considered to improve the fatigue strength by affecting the weld metal and the heat affected zone (HAZ). .
  • these components are effective components, and the fillet welded joint of the present embodiment can contain at least one of these components.
  • any excess addition degrades the steel sheet material. Therefore, 0.1 ⁇ Ni ⁇ 3.0, 0.1 ⁇ Cr ⁇ 2.0, 0.005 ⁇ Mo ⁇ 0.5, 0.005 ⁇ Nb ⁇ 0.1, and 0.005 ⁇ V, respectively.
  • Nb and Ti react with nitrogen to form nitrides, remarkably harden the weld metal, and lower the toughness value of the weld metal. Therefore, in the weld metal, the upper limit values of these elements are limited more than the base metal.
  • the thickness of the base material can be set to 1.0 mm to 3.6 mm.
  • welding defects such as burn-off defects are prevented at any location in the longitudinal direction of the fillet welded joint base material. can do.
  • the thickness of the base material is 3.6 mm or less, the deformation of the steel plate in the out-of-plane direction is facilitated, and the tensile residual stress of the welded portion, which is a problem in welding of the thick steel plate, is reduced. Can do.
  • the thickness of the base material is 1.8 mm or more and 2.6 mm or less because the above effects are achieved at a high level.
  • the Vickers hardness HVwmr of the weld metal on the welding route point side defined below may satisfy the following relationship. HVwmr ⁇ 350
  • the point E in FIG. 1 is a so-called welding route point.
  • the Vickers hardness HVwmr of the welding root portion passes through a position of 0.1 mm or more and 0.3 mm or less from the welding root point E in the thickness direction of the base material 14 in the cross section perpendicular to the weld line of the fillet weld joint.
  • the boundary region between the weld metal on the welding route point side and the heat affected zone on the straight line parallel to the surface of the base material (the boundary region between the weld metal and the heat affected zone located below the weld route point E)
  • the average value of the Vickers hardness of the weld metal in the region F of 0.1 mm to 0.3 mm on the weld metal side. About this average value, it is set as the average value of the hardness in at least three arbitrary points in the region F.
  • arc welding of a thin steel plate is performed at a high speed, so that a welding wire component and a base material component are solidified without being sufficiently mixed, so that the components in the weld metal are uneven.
  • the mixing ratio of the base material component is high, while the mixing of the base material component in the region F in the vicinity of the root point E tends to be small.
  • the weld metal component has a higher carbon equivalent than the base metal component, so the weld metal in the vicinity of the root point (region F) compared to the weld metal in the vicinity of the toe portion A.
  • the weld metal hardness in the vicinity of the root point (region F) is set to an average value of three arbitrary points, and the Vickers hardness is set to 350 or less (HVwmr ⁇ 350). It is preferable.
  • the numerical value of Vickers hardness 350 is known as an index for preventing cold cracking in the welding of thick steel plates, and is a result of low temperature cracking examination in a lap fillet joint of thin steel plates conducted by the present inventors. It also matches the value of. That is, when the Vickers hardness of the weld metal on the welding root point side is 350 or less, the effect of suppressing low temperature cracking is improved.
  • the method for manufacturing a fillet welded joint according to the present embodiment is a method in which a part of two base materials whose tensile strength and carbon equivalent are in a predetermined range are overlapped, a welding wire having a predetermined carbon equivalent is used, and a predetermined welding speed is used.
  • a method for manufacturing a fillet welded joint for performing fillet welding wherein the base material has a tensile strength of 980 MPa or more, the base material has a carbon equivalent of 0.36 or more and 0.60 or less, and the base material has a tensile strength [MPa Is 1950 times or more of the carbon equivalent [wt%] of the base material, as described above.
  • the obtained fillet weld joint includes the base material, the weld metal, and the heat affected zone.
  • a welding wire having a carbon equivalent of 0.50 or more and 0.80 or less and higher than the carbon equivalent of the base material is used.
  • the carbon equivalent of the welding wire 0.50 or more softening of the weld metal can be prevented, while by setting it to 0.80 or less, excessive hardening of the weld metal is suppressed, and hydrogen embrittlement of the weld metal is suppressed. Can be prevented.
  • the range of such a carbon equivalent is set to 0.55 or more and 0.70 or less, the above effects are achieved at a high level, which is preferable.
  • the carbon equivalent of the welding wire is set higher than the carbon equivalent (0.36 to 0.60) of the base metal described above. This is because the alloy component of the welding wire is oxidized and consumed during welding, and the oxidized inclusions in the weld metal promote intragranular transformation of the weld metal, resulting in a fine structure.
  • the welding speed is set to 60 cm / min or more and 150 cm / min or less.
  • the welding speed is set to 60 cm / min or more, the uneven mixing of the base metal component of the weld metal and the welding wire component in the vicinity of the toe portion seen in high-speed welding is significant, and the fatigue strength improvement effect of the present invention is exhibited. This is because it is easy.
  • the range of such a welding speed shall be 80 cm / min or more, since the said effect is show
  • the welding speed is one of the factors that determine the manufacturing efficiency of the welded structure. The higher the speed, the higher the efficiency.
  • the welding speed is set to 150 cm / min or less.
  • the welding speed may be 120 cm / min or less.
  • a gas shield welding method using a mixed gas of Ar and CO 2 or the like can be mentioned.
  • pulse mag welding it becomes possible to obtain a uniform weld bead shape even in high-speed welding, and the effect of the present invention (improvement of weld fatigue strength while suppressing low-temperature cracking) can be efficiently realized. it can.
  • the base material has a structure in which work hardening is added to martensite, but the heat-affected zone has a martensitic structure that has been autotempered and has a hardness of An excessive increase can be suppressed.
  • the structure of the weld metal is a mixed structure of martensite, bainite, and ferrite.
  • oxide inclusions generated during welding serve as the starting point for ferrite transformation, and as a result of promoting intragranular transformation, a relatively high strength weld metal also exhibits a fine structure.
  • the Vickers hardness HVwmr of the weld root portion can also satisfy the following relationship. HVwmr ⁇ 350 Thereby, the inhibitory effect of the low temperature crack in a fillet welded joint is improved.
  • FIG. 4 is a diagram illustrating a welding method employed in the examples. As shown in the figure, a lap fillet welded joint was created using two thin plates (thickness 2.6 mm).
  • symbol 26 shows a weld metal
  • symbol W shows a welding machine.
  • the welding conditions were pulse mag welding with a current of 230 A and a voltage of 26 V, and the welding speed was 80 cm / min.
  • Table 1 shows the components and carbon equivalents of the steel (base material) AF used in the examples
  • Table 2 shows the components and carbon equivalents of the welding wires ae used in the examples.
  • Steel materials B and C are outside the scope of the present invention (0.36 to 0.60) with respect to the carbon equivalent of the steel material
  • welding wires a and d are within the scope of the present invention (0.50) with respect to the carbon equivalent of the welding wire. More than 0.80).
  • the fatigue test method was a plane bending fatigue test, and the fatigue strength was judged to be acceptable when the fatigue strength of the 780 MPa steel shown in Comparative Example 1 was exceeded.
  • the strength of hot stamped steel used as a conventional technology is reduced to about 60% of the base material strength. The strength of 70% or more was determined as “good”.
  • the tensile strength was low and the fatigue strength was 215 MPa.
  • the carbon equivalent of the base material was outside the predetermined range defined in the present invention, and the fatigue strength was lower than Comparative Example 1 corresponding to the conventional product.
  • Comparative Example 3 the carbon equivalent of the base material, the relationship between the tensile strength of the base material and the carbon equivalent, and the Vickers hardness (relational expressions (1) to (3)) are outside the predetermined ranges defined in the present invention.
  • the fatigue strength was lower than that of Comparative Example 1 corresponding to the conventional product.
  • Comparative Example 4 the carbon equivalent of the welding wire is less than the predetermined range defined in the present invention, the Vickers hardness (relational expression (1)) is outside the predetermined range defined in the present invention, and the fatigue strength is conventional. It was lower than Comparative Example 1 corresponding to the product.
  • Comparative Example 5 the carbon equivalent of the welding wire was larger than the predetermined range specified in the present invention, the relationship between the Vickers hardness of the root part, HVwmr ⁇ 350 was not satisfied, and cold cracking occurred.
  • Comparative Example 6 the Vickers hardness (relational expressions (1) and (3)) was outside the predetermined range defined in the present invention, and the fatigue strength was lower than that in Comparative Example 1 corresponding to the prior art. Therefore, in each comparative example, it cannot be said that excellent fatigue strength is achieved while suppressing low-temperature cracking in the welded portion (including the weld metal and the heat-affected zone).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

本発明は、隅肉溶接継手及びその製造方法に関し、低温割れを抑制しつつ優れた溶接疲労強度を有する隅肉溶接継手を提供することを課題とする。本発明による、隅肉溶接継手は、母材の引張強度が980MPa以上、炭素当量が0.36以上0.60以下、引張強度[MPa]が上記炭素当量[wt%]の1950倍以上であり、溶接金属の平均炭素当量が0.45以上0.65以下であり、溶接止端の表面下の所定位置において、溶接金属と熱影響部との境界におけるビッカース硬さHVbondと、境界から溶接金属側に0.1mm以上0.3mm以下の位置における溶接金属のビッカース硬さの平均値HVwmtと、境界から熱影響部側に0.1mm以上0.3mm以下の位置における熱影響部のビッカース硬さの平均値HVhazと、が、HVbond≦HVwmt、HVbond≧HVhaz-50、HVhaz≦350を満たす。

Description

隅肉溶接継手及びその製造方法
 本発明は、隅肉溶接継手及びその製造方法に関し、特に低温割れを抑制しつつ溶接疲労強度を向上させた隅肉溶接技術に関する。
 近年、車体、特にシャーシの軽量化を目的として薄手高強度鋼板の利用が期待されている。シャーシ部材では、耐久性の観点から部材の疲労強度が重視されるが、一般的に、鋼板同士を溶接した場合には、溶接部が応力集中箇所となり部材の疲労強度の低下要因となる。さらに、薄手高強度鋼板を適用する場合には鋼板の強度増加に応じて溶接部の疲労強度を高める必要がある。しかしながら、高強度鋼板を母材とした場合には、溶接金属に対して母材の熱影響部(HAZ)の硬度が高くなる傾向があり、この硬度差に起因して溶接部の疲労強度が低下することがある。このため、車体への薄手高強度鋼板をシャーシに適用するには、高強度鋼板の溶接部疲労強度を増加させる必要がある。
 具体的には、鋼板の引張強さが780MPaを超えると、溶接部の疲労強度が顕著に低下する傾向を示す。このため、特に、引張強さが980MPa以上の高強度鋼板を用いた場合の溶接部の疲労強度を向上させる技術の開発が望まれている。
 溶接部の疲労強度を向上させた技術としては、以下の技術が知られている。
特開平11-104838号公報 国際公開WO2017/018492号公報 国際公開WO2011/037272号公報
 特許文献1には構造用鋼溶接継手が開示されている。この継手は、溶接止端の表面下0.5mm以内の位置で、溶融境界から溶接金属側に1mmの範囲において、JIS  Z2244に準拠して測定されたビッカース硬度の平均値Aと、上記溶融境界から母材の溶接熱影響部粗粒域側に1mmの範囲において同様に測定された最高硬度Bの差(A-B)が、26以上39以下であることを特徴としている。このような特徴により、疲労強度を向上させた溶接継手を安定して提供することができる、とされている。
 特許文献2には隅肉アーク溶接継手が開示されている。この継手は、隅肉アーク溶接の溶接止端部と、熱影響部の境界を含む領域とに、所定の深さまでレーザ照射による再溶融部を形成することを特徴としている。このような特徴により、溶接部が局所的に焼入硬化され、溶接部の亀裂の進展が抑制される、とされている。
 特許文献3には隅肉アーク溶接継手が開示されている。この継手は、鋼板および溶接ワイヤのうちで、特にSi量を制限することを特徴としている。このような特徴により、溶接速度が80cm/min超、特に110cm/min超150cm/min以下でも、溶接止端形状の形状が良好となり、隅肉アーク溶接継手の疲労特性を向上させることができる、とされている。
 特許文献1に開示された技術では、溶接部の疲労強度を向上させるため、溶接金属の硬さを止端部及び熱影響部の硬さよりも高くしている。一般に、母材強度が高くなると、鋼材成分の焼入れ性も高くなるので、そもそも鋼板自体であった熱影響部の硬度も高くなる。このため、引張強さが980MPa以上のような高強度鋼板を使用する場合には、溶接金属の主成分となる溶接ワイヤについても高強度なものを使用することが必要となる。
 しかしながら、溶接ワイヤ強度を過度に高めると、溶接金属が硬化し溶接金属に低温割れが生ずるおそれがある。低温割れの原因は水素脆化で、これを抑制するには、溶接時に溶接金属に侵入した拡散性水素を減らす、溶接金属の収縮によって生じる引張残留応力を下げる、溶接金属の硬度を下げることが有効とされる。しかし、一般的な溶接条件では、拡散性水素量や引張残留を低減することは困難であり、溶接金属の過度な硬化を防ぐことが水素脆化防止の対策となる。
 また、薄手鋼板を母材として溶接継手を製造するには、溶接が高速度で行われるため、溶接金属の凝固時に溶接ワイヤ成分と母材成分とが均一に混合されないおそれがある。このため、止端部近傍では、比較的合金成分濃度の高い溶接ワイヤよりも比較的合金成分濃度の低い母材成分が多く混合する領域が発生することとなり、当該領域における溶接金属硬さが十分に得られないおそれがある。
 このように、継手溶接において、引張強さが980MPa以上であるような高強度薄手鋼板を母材として使用する場合には、溶接金属の低温割れの制限から止端部近傍における溶接金属の硬度が十分に高められない問題がある。その結果、載荷に伴う歪が熱影響部と溶接金属との境界領域に集中し、当該境界領域において亀裂が発生し、優れた溶接部疲労強度が得られないおそれがある。
 なお、特許文献2に開示された技術では、溶接止端部と、熱影響部の境界を含む領域とに、所定の深さまでレーザ照射による再溶融部を形成している。このようなレーザ照射は、溶接作業後に重畳的に行われるものであり、そのための設備投資や作業負荷の増大するおそれがある。また、特許文献2には、低温割れに関する記載や示唆はない。
 特許文献3に開示された技術では、鋼板および溶接ワイヤの、特にSi量を制限することにより、溶接止端形状の形状を良好にして、隅肉アーク溶接継手の疲労特性を向上させる。しかしながら、特許文献3には、低温割れに関する記載や示唆はほとんどない。具体的には、特許文献3は、溶接ワイヤにスリットがあると外気(水素)侵入の危険性があるので、スリットを設けないことを記載しているにすぎない。
 本発明は、上記事情に鑑みてなされたものであって、引張強さが980MPa以上の鋼板において低温割れを抑制しつつ優れた溶接疲労強度を有する隅肉溶接継手及びその製造方法を提供することを目的とする。
 本発明者らは、低温割れを抑制しつつ優れた溶接疲労強度を実現し得る隅肉溶接継手について鋭意検討した。その結果、所定の引張強度を有する母材について、炭素当量の値と、炭素当量[wt%]と引張強度[MPa]との関係と、を好適に選択した高強度鋼板を使用するとともに、適正な炭素当量を有する溶接ワイヤを使用し、溶接金属と熱影響部との境界領域におけるビッカース硬さHVbond、溶接金属のビッカース硬さの平均値HVwmt及び、熱影響部のビッカース硬さの平均値HVhazとが好適な関係を満たすことで、低温割れを抑制しつつ優れた溶接疲労強度を実現した隅肉溶接継手を得ることができるとの知見を得た。本発明は、このような知見に基づきなされたものであり、その要旨は以下のとおりである。
 (1)2枚の母材の一部を重ねて隅肉溶接を施して得られる隅肉溶接継手であって、
 上記隅肉溶接継手は、上記母材、溶接金属及び熱影響部を含んでなり、
 上記母材の引張強度が980MPa以上であり、上記母材の炭素当量が0.36以上0.60以下であり、上記母材の引張強度[MPa]が前記母材の炭素当量[wt%]の1950倍以上であり、
 上記溶接金属の平均炭素当量 が0.45以上0.65以下であり、上記母材の炭素当量より高く、
 前記隅肉溶接継手の溶接線に直角な断面において、溶接止端から前記母材の板厚方向に0.1mm以上0.3mm以下の位置を通り、前記母材表面に平行な直線上であって、
 上記溶接金属と上記熱影響部との境界におけるビッカース硬さHVbondと、上記境界から上記溶接金属側に0.1mm以上0.3mm以下の位置における上記溶接金属のビッカース硬さの平均値HVwmtと、上記境界から上記熱影響部側に0.1mm以上0.3mm以下の位置における上記熱影響部のビッカース硬さの平均値HVhazと、が以下の関係を満たす、ことを特徴とする隅肉溶接継手。
       HVbond≦HVwmt                      (1)
       HVbond≧HVhaz-50                   (2)
       HVhaz≦350                       (3)
 (2)上記母材の引張強度[MPa]が上記母材の炭素当量[wt%]の2750倍以下である、上記(1)に記載の隅肉溶接継手。
 (3)上記母材が、質量%で、0.01≦C≦0.25、0.01≦Si≦2.00、0.05≦Mn≦3.0、0.001≦Al≦0.4、を含有し、残部がFeおよび不可避的不純物である、上記(1)又は(2)に記載の隅肉溶接継手。
 (4)上記母材が、質量%で、0.1≦Ni≦3.0、0.1≦Cr≦2.0、0.005≦Mo≦0.5、0.005≦Nb≦0.3、0.005≦V≦0.3、0.005≦Ti≦0.3、0.0001≦B≦0.01の少なくとも1種をさらに含有する、上記(3)に記載の隅肉溶接継手。
 (5)上記溶接金属が、質量%で、0.03≦C≦0.25、0.01≦Si≦2.00、0.5≦Mn≦3.0、0.001≦Al≦0.15、を含有し、残部がFeおよび不可避的不純物である、上記(1)から(4)のいずれか1つに記載の隅肉溶接継手。
 (6)上記溶接金属が、質量%で、0.1≦Ni≦3.0、0.1≦Cr≦2.0、0.005≦Mo≦0.5、0.005≦Nb≦0.1、0.005≦V≦0.15、0.005≦Ti≦0.15、0.0001≦B≦0.01の少なくとも1種をさらに含有する、上記(5)に記載の隅肉溶接継手。
 (7)上記母材の板厚が、1.0mm以上3.6mm以下である、上記(1)から(6)のいずれか1つに記載の隅肉溶接継手。
 (8)上記隅肉溶接継手の溶接線に直角な断面において、溶接ルート点から上記母材の板厚方向に0.1mm以上0.3mm以下の位置を通り、上記母材表面に平行な直線上であって、
 上記溶接ルート点の下方に位置する上記溶接金属と上記熱影響部との境界から上記溶接金属側に0.1mm以上0.3mm以下の領域における上記溶接金属のビッカース硬さの平均値HVwmrが以下の関係を満たす、上記(1)から(7)のいずれか1つに記載の隅肉溶接継手。
      HVwmr≦350
 (9)2枚の母材の一部を重ね、溶接ワイヤを用いて隅肉溶接を施す隅肉溶接継手の製造方法であって、
 上記母材の引張強度が980MPa以上であり、上記母材の炭素当量が0.36以上0.60以下であり、上記母材の引張強度[MPa]が前記母材の炭素当量[wt%]の1950倍以上であり、
 上記溶接ワイヤの炭素当量が0.50以上0.80以下で、上記母材の炭素当量より高く、
 溶接速度が60cm/min以上150cm/min以下である、ことを特徴とする隅肉溶接の製造方法。
 本発明では、所定の引張強度を有する母材について、炭素当量の値と、炭素当量と引張強度との関係と、を好適に選択した高強度鋼板を使用するとともに、適正な炭素当量を有する高強度溶接ワイヤを使用している。このため、本発明によれば、溶接金属と熱影響部との境界領域、溶接金属、及び熱影響部の、各ビッカース硬さを好適に制御することができ、ひいては隅肉溶接継手の低温割れを抑制しつつ、優れた溶接疲労強度を実現することができる。
図1は、2枚の母材の一部を重ねて隅肉溶接を施して得られた、本実施形態の隅肉溶接継手を示す断面図である。 図2は、図1に示す隅肉溶接継手に関して、ビッカース硬さと、仮想線上の点と、の関係を示すグラフである。 図3は、疲労曲げ試験を説明するための図である。 図4は、実施例において採用した溶接方法を示す図である。
<隅肉溶接継手>
 本発明者らは、高強度薄手鋼板の隅肉溶接において、溶接金属の低温割れを抑制しつつ溶接部(溶接金属と熱影響部とを含む)の疲労強度を向上させるべく、鋭意研究を重ねた。その結果、本発明者らは、母材として引張強度が980MPa以上の薄手鋼材を用いることを前提に、母材の炭素当量の値と、炭素当量と引張強度との関係と、を好適に選択した高強度鋼板を使用するとともに、適正な炭素当量を有する高強度溶接ワイヤを使用することで、止端部近傍領域の溶接部の疲労強度を向上させ、且つ、低温割れの原因となる溶接金属の水素脆化を防ぐことができる、との知見を得た。本実施形態の隅肉溶接継手は、上記のような知見に基づくものである。
 なお、JIS Z 3001(溶接用語)によれば、熱影響部とは、溶接・切断などの熱で組織、や(治)金的性質、機械的性質などが変化を生じた、溶融していない母材の部分を意味する。
 本実施形態の隅肉溶接継手は、2枚の高強度薄手鋼板(母材)の一部を重ねて隅肉溶接を施して得られる継手であり、具体的には、重ね継手やT継手を含む概念である。
 また、本実施形態の隅肉溶接継手は、引張強度が980MPa以上の、いわゆる高強度鋼板を母材とする継手を対象としている。ただし、母材の引張強度が1470MPa超となると後述する本実施形態の継手の溶接部疲労強度の向上が十分に得られなくなる。このため、母材の引張強度は1470MPa以下とすることが好ましい。
 このような条件の下、本実施形態の隅肉溶接継手は、母材の炭素当量を0.36以上0.60以下としている。母材の炭素当量を0.36以上とすることで、母材自体を硬質化し、車体、特にシャーシの部材として十分に適用することができる程度の強度を得ることができる。
 これに対し、母材の炭素当量を0.60以下とすることで、熱影響部の硬度を過度に高めることなく、熱影響部と溶接金属との境界領域における硬度と、境界領域近傍の熱影響部における硬度との差を抑制して、当該境界領域付近における亀裂の発生を効率的に防止することができる。ここで、熱影響部と溶接金属との境界は、溶接部を溶接線と垂直方向に切断し、その断面を腐食することによって求めることができる。
 なお、母材の炭素当量を0.40以上0.55以下とすることで、上記の各効果をさらに高いレベルで奏することができる。
 ここで、母材、溶接金属、および溶接ワイヤの炭素当量[wt%]は、下記式で表される。炭素当量[wt%]=C+Si/24+Mn/6+Ni/40+Cr/5+Mo/4+V/14
式中のC、Mn、Ni、Cr、Mo、Vは、各材料中の含有率[wt%]である。なお、上記元素の含有率は、めっき部分を含まない母材及び/又はめっき部分を含まない溶接ワイヤの部分で測定されるものである。
 さらに、本実施形態の隅肉溶接継手では、母材の引張強度[MPa]を母材の炭素当量[wt%]の1950倍以上としている。本要件を満たすことで、母材の組織がマルテンサイト主体の組織となる。母材の組織は、母材製造における熱間圧延条件に支配されるが、特に、所定の母材強度を確保するためには、熱間圧延時の冷却速度を高めマルテンサイト組織とするとともに、圧延加工による加工硬化を利用することが重要である。
 但し、このような圧延態様で製造された高強度鋼板を用いて溶接すると、熱影響部(HAZ)が焼き戻され軟化することがある。そこで、母材の引張強度[MPa]を母材の炭素当量[wt%]の2750倍以下とすることが好ましい。これにより、母材強度に対する継手の静的強度低下、すなわちHAZ軟化による強度低下を抑制することができる。母材の引張強度を基準として、継手の引張強度の比(継手の引張強度/母材の引張強度)が0.7以上であることが好ましい。
 図1は、2枚の母材の一部を重ねて隅肉溶接を施して得られた、本実施形態の隅肉溶接継手を示す断面図である。当該断面は、隅肉溶接継手の溶接線に直角な断面である。本実施形態の隅肉溶接継手10は、2枚の母材12、14と、溶接金属16と、熱影響部(図示せず)を含む。図1中、点Aはいわゆる溶接止端であり、点線は溶接止端Aから前記母材の板厚方向にSmm(0.1mm以上0.3mm以下)の位置を通り、前記母材表面に平行な直線を示す仮想線である。
 以上のような構成の隅肉溶接継手に関し、この仮想線上の点または領域、即ち、
 ・溶接金属16と(母材14の)熱影響部(HAZ)との境界における代表点B、
 ・代表点Bから溶接金属16側に0.1mm以上0.3mm以下の領域Cにおける溶接金属のビッカース硬さの平均値HVwmt、
 ・代表点Bから熱影響部側に0.1mm以上0.3mm以下の領域Dにおける熱影響部のビッカース硬さの平均値HVhaz
を考える。
 なお、ビッカース硬さの平均値HVwmt及びビッカース硬さの平均値HVhazについては、領域C、Dのそれぞれにおいて、少なくとも任意の3点における硬さの平均値とする。
 ここで、境界領域の観察面として、ピクリン酸腐食した断面を用いた。ピクリン酸で腐食するとデンドライトの成長方向等の凝固形態を確認することができるため、溶融凝固した溶接金属部と変態組織である熱影響部を明瞭に区別することができる。また、代表点Bは、デンドライト組織を有する溶接金属と当該組織を有しない熱影響部の境界として決定された点を意味する。
 このような前提の下、本実施形態の隅肉溶接継手は、代表点Bにおけるビッカース硬さHVbondと、領域Cにおける溶接金属のビッカース硬さの平均値HVwmtと、領域Dにおける熱影響部のビッカース硬さの平均値HVhazと、が以下の関係(a)から(c)を満たす。
 (a)HVbond≦HVwmt
 (b)HVbond≧HVhaz-50
 (c)HVhaz≦350
 図2は、図1に示す隅肉溶接継手に関して、ビッカース硬さと、仮想線上の領域との関係を示すグラフである。なお、同図に示すビッカース硬さは定量的な値ではなく定性的な値を示すものである。以下に、上記関係(a)から(c)について詳細に説明する。
(a)HVbond≦HVwmt
 本規定は、溶接金属を溶融境界領域に比べて硬化させることを意味する指標である。本規定には、溶接ワイヤの成分、及び薄鋼板溶接の特徴である高速溶接が影響する。高速度の溶接では、母材成分と溶接ワイヤ成分の混合が不均一となり、特に溶接金属と熱影響部の境界近傍(領域C)の溶接金属は母材成分の混合率が高くなる。また、母材成分が溶接熱で溶融すると、雰囲気の酸化性ガスの影響で合金元素が酸化消耗するとともに溶接金属中の酸化物系介在物がフェライト変態を促進させるため溶融境界近傍(領域C)の溶接金属硬さが低くなる。そこで、軟質化した溶融境界近傍(領域C)の溶接金属へのひずみ集中による疲労亀裂を防ぐため、溶接ワイヤの炭素当量の下限(0.50以上で母材の炭素当量より高い)を規定してHVbond≦HVwmtとする必要がある。
(b)HVbond≧HVhaz-50
 従来、隅肉溶接継手において溶接部(溶接金属と熱影響部とを含む)の疲労強度が十分に発揮されない最大の理由は、図2の点Bにおけるビッカース硬さと、領域Dにおけるビッカース硬さ(の平均値)と、の差異が過度に大きいために、止端部A付近から疲労破壊が発生するためであった。これは、溶接金属と母材の熱影響部との境界(代表点B)においては平滑凝固界面となり、鋼成分の合金元素が溶融金属側に排出されることから比較的硬度が低くなる一方、熱影響部(領域D)においては溶接後の冷却によるマルテンサイト変態によって比較的硬度が高くなることが原因であった。
 これに対し、本規定は、母材の引張強度に加えて、母材の引張強度と炭素当量との関係を好適に選択することで、これらの点B、領域Dにおける硬度差を従来に比して著しく小さくすることができることを意味する指標である。具体的には、母材の炭素当量を0.36以上として、熱延鋼板製造時の冷却速度を大きくすることで母材のマルテンサイト変態を促進させるとともに加工硬化を利用して母材の引張強度を980MPa以上とすることを前提に、HVhazの硬化抑制に対しては、母材の炭素当量を0.60以下とすることで、溶融境界近傍の溶接熱影響部における硬化を抑制することができる。本技術は、鋼板母材の製造における冷却や加工に伴う硬化に対して、溶接時の熱影響部の冷却による硬化の度合いを小さくすることで、母材の強度を確保しつつ熱影響部の硬化を抑制するもので、従来とは思想の異なる技術である。一方、HVbondの軟化抑制に対しては、溶接ワイヤの炭素当量の下限(0.50以上で母材の炭素当量より高い)を規定して、溶接金属の軟質化を防ぎつつ、熱影響部の硬度との差異を大きくしないことができる。
(c)HVhaz≦350
 本規定は、溶融境界近傍の熱影響部の硬さの上限を規定するもので、過度な熱影響部の硬化、ひいてはそれに伴う溶接部疲労強度の低下を防ぐための指標である。母材の炭素当量を0.60以下とすることで、溶融境界近傍の溶接熱影響部における硬化を抑制することができる。
 以上に示す関係(a)から(c)が相まって、本実施形態の隅肉溶接継手では、溶接部(溶接金属と熱影響部とを含む)の優れた疲労強度を実現することができる。
 なお、疲労強度は次の試験により測定される。
 疲労試験片として、図3に示す形状の平面曲げ疲労試験片を用意し、溶接止端部の疲労強度を評価する。溶接止端部の疲労強度を両振り曲げ試験で求めるため、評価対象の重ね隅肉溶接を行った後に、裏面側を拘束溶接しルート部の開口を防止する。疲労試験は変位制御の曲げ疲労試験(応力比R=-1)とし、繰返し周波数は25Hz、試験終了条件は40%のトルク低下もしくは、トルクの低下無しで繰返し数が2×10回に達した時とする。
 疲労強度は、相対的な基準について評価してもよい。従来の隅肉溶接継手の疲労強度を基準として、疲労強度比が高いほど、優れた疲労強度とみなすことができる。従来品に対する疲労強度比は、高いほど好ましく、1.1以上であってもよい。さらに好ましくは、疲労強度比が1.2以上であってもよい。より好ましくは、疲労強度比が1.3以上であってもよい。基準となる、従来の隅肉溶接継手の疲労強度として、本願発明で規定する炭素当量等について考慮せずに、780MPa鋼を隅肉溶接した隅肉溶接継手の疲労強度を用いてもよい。
 加えて、本実施形態の隅肉溶接継手は、溶接金属の平均炭素当量が0.45以上0.65以下で、母材の炭素当量より高くしている。本規定により、溶接金属の平均炭素当量を0.45以上で、母材の炭素当量より高くすることで、溶接金属の軟化を防ぐことができ、溶接部(溶接金属と熱影響部とを含む)の疲労強度をさらに向上することができる。一方で、溶接金属の平均炭素当量を0.65以下とすることで、溶接金属の過度な硬化を抑制し、溶接金属の水素脆化を防ぐことができる。また、このような炭素当量の範囲を0.50以上、0.60以下とした場合には、上記効果がそれぞれ高いレベルで奏されるため好ましい。溶接金属の平均炭素量については、溶接金属部において、少なくとも任意の3点における平均炭素量の平均値とする。
 このような構成の隅肉溶接継手では、母材及び/又は溶接金属を以下のような成分(単位はいずれも質量%)から選択することができる。
 まず、母材の成分について説明する。なお、ここで、母材における各成分の値は、めっき部分を含まない母材の基材部分で測定されたものとする。
 C:0.01%以上0.25%以下
 Cは、継手の強度確保のためには0.01%以上とすることが好ましい。また、溶接止端近傍の硬度分布の均一化のためには0.25%以下とすることが好ましい。
 Si:0.01%以上2.00%以下
 Siは、脱酸するのに、および強度を確保するのに有用であり、0.01%以上とすることが好ましい。また、2.00%超を添加すると溶接性を損なうので含有量は2.00%以下とすることが好ましい。
 Mn:0.05%以上3.0%以下
 Mnは、安価に強度を上げる元素として有用であり、強度確保のため0.05%以上とすることが好ましい。また、3.0%超を添加すると溶接性を損なうので含有量は3.0%以下とすることが好ましい。
 Al:0.001%以上0.4%以下
 Alは脱酸のため0.001%以上とすることが好ましい。また、0.4%超を添加すると鋼中および溶接金属中の介在物が多くなりすぎ、靱性を低下させるため0.4%以下とすることが好ましい。
 残部:Fe及び不純物
 残部はFeと不純物である。ここで、不純物とは、原材料に含まれる成分、或いは製造の過程で混入される成分であって、母材に意図的に含有させた成分ではない成分をいう。不純物としては、P、Sが挙げられる。また、母材の表面にはめっきが施されている場合があるため、ZnやAl等のめっき成分が母材に不可避的成分として0.10~0.3%程度混入されていることがある。めっき等の影響を受けないように、めっき等の厚みを考慮して、母材の成分を分析することが好ましい。
 任意選択的元素:Ni、Cr、Mo、Nb、V、Ti、B
 Ni、Cr、Mo、Nb、V、Ti、Bはいずれも継手疲労特性を向上させる成分であり、溶接金属及び熱影響部(HAZ)に影響してかかる疲労強度を向上させていると考えられる。この点でこれらの成分は有効成分であり、本実施形態の隅肉溶接継手には、これらの成分の少なくとも1種含有させることが可能である。しかしながら、過剰の添加はいずれも鋼板材質を劣化させる。このため、それぞれ、0.1≦Ni≦3.0、0.1≦Cr≦2.0、0.005≦Mo≦0.5、0.005≦Nb≦0.3、0.005≦V≦0.3、0.005≦Ti≦0.3、0.0001≦B≦0.01の範囲で含有させることが好ましい。
 次に、溶接金属の成分(単位はいずれも質量%)について説明する。
 溶接金属の成分は、溶接金属部から採取した切り粉を用い、高周波誘導結合プラズマ(ICP)による発光分光分析法で測定することによって求めることができる。なお、切り粉の採取については、溶接部の断面を観察することによって予め溶接金属の領域を測定し、その領域からドリル等の刃物で切削することによって採取する。このため、溶接金属の成分は概ね溶接金属中央部の平均値であり、炭素当量も溶接金属の平均的な値となる。
 溶接、特にガスシールドアーク溶接では、溶接施工時に大気及びシールドガスから微量の酸素や窒素が溶融金属中に混入するため、鋼板母材と異なり、溶接金属には酸化物や窒化物が含まれる。酸化物は溶接金属組織のフェライト変態を促進し、強度低下の原因となる。そのため、溶接金属では、焼入れ性向上元素であるCやMnを、母材よりも増やす必要がある。一方、窒素はAl,Nb,Vと反応して、窒化物を生成し、溶接金属を著しく硬化させると共に、溶接金属の靱性値を低下させる。そのため、溶接金属では、それらの元素の上限値を、母材よりも制限する必要がある。
 上記の観点から、溶接金属の成分は以下のように規定されてもよい。
 C:0.03%以上0.25%以下
 Cは、継手の強度確保のためには0.03%以上とすることが好ましい。Cは、酸化物を生成し、溶接金属組織のフェライト変態を促進し、強度低下の原因となる。そのため、溶接金属では、焼入れ性向上元素であるCを、母材よりも増やしている。また、溶接止端近傍の硬度分布の均一化のためには0.25%以下とすることが好ましい。
 Si:0.01%以上2.00%以下
 Siは、脱酸するのに、および強度を確保するのに有用であり、0.01%以上とすることが好ましい。また、2.00%超を添加すると溶接性を損なうので含有量は2.00%以下とすることが好ましい。
 Mn:0.5%以上3.0%以下
 Mnは、安価に強度を上げる元素として有用であり、強度確保のため0.5%以上とすることが好ましい。Mnは、酸化物を生成し、溶接金属組織のフェライト変態を促進し、強度低下の原因となる。そのため、溶接金属では、焼入れ性向上元素であるMnを、母材よりも増やしている。また、3.0%超を添加すると溶接性を損なうので含有量は3.0%以下とすることが好ましい。
 Al:0.001%以上0.15%以下
 Alは脱酸のため0.001%以上とすることが好ましい。また、0.15%超を添加する、窒素と反応して、窒化物を生成し、溶接金属を著しく硬化させると共に、溶接金属の靱性値を低下させる。ため0.15%以下とすることが好ましい。そのため、溶接金属では、Alの上限値を、母材よりも制限している。
 残部:Fe及び不純物
 残部はFeと不純物である。ここで、不純物とは、上記に記載した元素、後述の任意選択元素以外の成分とみなす。不純物としては、CuやZn等が挙げられる。溶接金属は溶接ワイヤと母材の成分を含む。溶接ワイヤの表面には導電性確保のためにCuめっき等が施されている場合があり、また、母材もめっきが施されている場合は、めっき成分が溶接金属に含まれてくるので、CuやZnも不純物とみなす。
 任意選択的元素:Ni、Cr、Mo、Nb、V、Ti、B
 Ni、Cr、Mo、Nb、V、Ti、Bはいずれも継手疲労特性を向上させる成分であり、溶接金属及び熱影響部(HAZ)に影響してかかる疲労強度を向上させていると考えられる。この点でこれらの成分は有効成分であり、本実施形態の隅肉溶接継手には、これらの成分の少なくとも1種含有させることが可能である。しかしながら、過剰の添加はいずれも鋼板材質を劣化させる。このため、それぞれ、0.1≦Ni≦3.0、0.1≦Cr≦2.0、0.005≦Mo≦0.5、0.005≦Nb≦0.1、0.005≦V≦0.15、0.005≦Ti≦0.15、0.0001≦B≦0.01の範囲で含有させることが好ましい。なお、NbとTiは、窒素と反応して、窒化物を生成し、溶接金属を著しく硬化させると共に、溶接金属の靱性値を低下させる。そのため、溶接金属では、それらの元素の上限値を、母材よりも制限している。
 さらに、上記構成の隅肉溶接継手では、上記母材の板厚を、1.0mm以上3.6mm以下とすることができる。上記母材の板厚を1.0mm以上とすることで、母材を過度に溶解させずに、隅肉溶接継手母材の長手方向のいずれの箇所においても溶落ち不良等の溶接欠陥を防止することができる。
 これに対し、上記母材の板厚を3.6mm以下とすることで、鋼板の面外方向への変形が容易となり、厚鋼板の溶接において問題となる溶接部の引張残留応力を低減することができる。
 なお、母材の板厚を1.8mm以上2.6mm以下とすると、上記効果がそれぞれ高いレベルで奏されることとなるので好ましい。
 さらに、上記構成の隅肉溶接継手では、下記に規定する溶接ルート点側の溶接金属のビッカース硬さHVwmrが以下の関係を満たしてもよい。
HVwmr≦350
 図1における点Eがいわゆる溶接ルート点である。溶接ルート部のビッカース硬さHVwmrは、前記隅肉溶接継手の溶接線に直角な断面において、溶接ルート点Eから前記母材14の板厚方向に0.1mm以上0.3mm以下の位置を通り、前記母材表面に平行な直線上であって、溶接ルート点側の溶接金属と熱影響部との境界領域(溶接ルート点Eの下方に位置する溶接金属と熱影響部との境界領域)から前記溶接金属側に0.1mm以上0.3mm以下の領域Fにおける前記溶接金属のビッカース硬さの平均値とする。この平均値については、領域Fにおいて、少なくとも任意の3点における硬さの平均値とする。
 一般に、薄鋼板のアーク溶接は、高速度の溶接が行われるため、溶接ワイヤ成分と母材成分が十分に混合されずに凝固するため、溶接金属内の成分にむらが生じる。その結果、止端部A近傍の溶接金属では母材成分の混合率が高くなる一方、ルート点E近傍の領域Fでの母材成分の混合は少ない傾向となる。
 本願では、溶接部疲労強度の向上を目的に、母材成分よりも溶接金属成分の炭素当量が高いため、止端部A近傍の溶接金属に比べて、ルート点近傍(領域F)の溶接金属硬さが硬くなりやすい。このため、ルート部での低温割れを防止するためには、ルート点近傍(領域F)の溶接金属硬さを任意の3点の平均値としてビッカース硬さで350以下(HVwmr≦350)にすることが好ましい。
 なお、ビッカース硬さ350の数値は、厚鋼板の溶接において低温割れ防止のための指標として知られていると共に、本願発明者らが行った薄鋼板の重ね隅肉継手での低温割れ検討結果での値とも一致する。すなわち、溶接ルート点側の溶接金属のビッカース硬さが350以下とすることにより、低温割れの抑制効果が向上する。
<隅肉溶接継手の製造方法>
 次に、本実施形態の隅肉溶接継手の製造方法について詳述する。
 本実施形態の隅肉溶接継手の製造方法は、引張強度と炭素当量が所定の範囲である2枚の母材の一部を重ね、所定の炭素当量の溶接ワイヤを用い、所定の溶接速度で隅肉溶接を施す隅肉溶接継手の製造方法であり、母材の引張強度が980MPa以上であり、母材の炭素当量が0.36以上0.60以下であり、母材の引張強度[MPa]を母材の炭素当量[wt%]の1950倍以上とすることは上述したとおりである。得られた隅肉溶接継手は、上記母材、溶接金属及び熱影響部を含んでなる。
 具体的には、本実施形態の隅肉溶接継手の製造方法では、溶接ワイヤとして、炭素当量が0.50以上0.80以下であり、かつ、母材の炭素当量より高いものを使用する。溶接ワイヤの炭素当量を0.50以上とすることで、溶接金属の軟化を防ぐことができる一方、0.80以下とすることで、溶接金属の過度な硬化を抑制し、溶接金属の水素脆化を防ぐことができる。また、このような炭素当量の範囲を0.55以上、0.70以下とした場合には、上記効果がそれぞれ高いレベルで奏されるため好ましい。
 なお、本実施形態の隅肉溶接継手の製造方法においては、上述した母材の炭素当量(0.36以上0.60以下)に対して、溶接ワイヤの炭素当量が高く設定されている。これは、溶接ワイヤの合金成分が溶接時に酸化消耗するとともに、溶接金属中の酸化介在物が溶接金属の粒内変態を促進させて、微細な組織が生じるためである。
 また、本実施形態の隅肉溶接継手の製造方法では、溶接速度を60cm/min以上150cm/min以下とする。溶接速度を60cm/min以上とすることで、高速溶接においてみられる止端部近傍の溶接金属の母材成分と溶接ワイヤ成分の混合むらが顕著であり、本発明の疲労強度向上効果が発揮され易いためである。なお、このような溶接速度の範囲を80cm/min以上とした場合には、上記効果が高いレベルで奏されるため好ましい。溶接速度は、溶接構造物の製造効率を決定する要因の1つであり、その速度を高く設定するほど効率はよくなる。したがって、疲労強度等に影響が出ない範囲であれば、溶接速度に特に上限を規定しなくてもよい。ただし、過剰な高速化は、溶融プールの動きを激しくするなど、溶接ビード形状の観点からは、好ましくない。そのため、溶接速度は、150cm/min以下とする。好ましくは、溶接速度は、120cm/min以下としてもよい。
 ここで、本実施形態の溶接継手の製造方法に適用可能な溶接方法としては、ArとCO2 との混合ガスなどを用いたガスシールド溶接法が挙げられる。特に、パルスマグ溶接を採用することで高速溶接においても均一な溶接ビード形状を得ることが可能となり、本発明の効果(低温割れを抑制しつつ溶接疲労強度の向上)を効率的に実現することができる。
 以上のように母材の引張強度及び炭素当量を選択した場合には、母材はマルテンサイトに加工硬化の加わった組織となるが、熱影響部はオートテンパーされたマルテンサイト組織となり、硬度の過度な増加を抑制することができる。
 一方、溶接金属の組織は、マルテンサイト、ベイナイト、フェライトの混合組織となる。溶接金属では溶接時に生成する酸化物系介在物がフェライト変態の起点となり、粒内変態が促進される結果、比較的高強度溶接金属においても微細な組織形態を示すこととなる。
 このような母材の引張強度、母材の炭素当量、及び溶接ワイヤの炭素当量の選択により、本実施形態の製造方法で得られた隅肉溶接継手においては、以下の関係(式(4)から式(6)が満たされる。
       HVbond≦HVwmt                      (4)
       HVbond≧HVhaz-50                   (5)
       HVhaz≦350                       (6)
 従って、上記式(4)から(6)を満たすことで、本実施形態の製造方法により得られた隅肉溶接継手では、疲労強度の優れた溶接部(溶接金属と熱影響部とを含む)を実現することができる。
 さらに、本実施形態の製造方法で得られた隅肉溶接継手においては、溶接ルート部のビッカース硬さHVwmrが以下の関係も満たすことができる。
  HVwmr≦350
これにより、隅肉溶接継手における低温割れの抑制効果が向上する。
 以下に、本願発明の効果を実証するための実施例を詳述する。
 図4は、実施例において採用した溶接方法を示す図である。同図に示すように、2枚の薄板(厚さ2.6mm)を用いて重ね隅肉溶接継手を作成した。図4中符号26は溶接金属を示し、符号Wは溶接機を示す。
 溶接条件は、電流230A、電圧26Vのパルスマグ溶接とし、溶接速度はいずれも80cm/minとした。
 表1に実施例で使用した鋼材(母材)A-Fの成分及び炭素当量を示し、表2に実施例で使用した溶接ワイヤa-eの成分及び炭素当量を示す。鋼材の炭素当量に関しては鋼材B、Cが本発明の範囲(0.36以上0.60以下)外であり、溶接ワイヤの炭素当量に関しては溶接ワイヤa、dが本発明の範囲(0.50以上0.80以下)外である。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1の成分で各種強度の鋼板(母材)を製造し、次いでそれらの鋼板と表2の溶接ワイヤを用いて、表3に示す比較例1~6及び発明例1~8の重ね隅肉溶接継手を作製した。そして、これらの各隅肉溶接継手のそれぞれについて、隅肉溶接継手の溶接線に直角な断面において、溶接止端から母材の板厚方向に0.2mmの位置を通り、母材表面に平行な直線上であって、溶接金属と熱影響部との境界におけるビッカース硬さHVbondと、境界領域から溶接金属側に0.2mmの位置における溶接金属のビッカース硬さの平均値HVwmtと、境界から熱影響部側に0.2mmの位置における熱影響部のビッカース硬さの平均値HVhazと、について調査した。また、溶接ルート点側の溶接金属のビッカース硬さHVwmrについても調査した。これらの結果を表3に併記する。なお、疲労試験方法は平面曲げ疲労試験とし、疲労強度の判定については、比較例1に示す780MPa鋼の疲労強度を上回る場合を合格とした。また、継手の静的強度の判定については、従来技術として使用されているホットスタンプ鋼の強度が母材強度の6割程度に低下することから、母材強度の6割以上の強度を「可」とし7割以上の強度を「良」とした。
Figure JPOXMLDOC01-appb-T000003
 表3から明らかなように、発明例1~8はいずれも、母材強度が980MPa以上、母材の炭素当量が0.36~0.60(%)、(母材引張強度/母材炭素当量)が1950以上、溶接ワイヤの炭素当量が0.50~0.80で母材の炭素当量より高いことを前提条件とし、HVbond≦HVwmt、HVbond≧HVhaz-50、及びHVhaz≦350を満たすことが確認された。そして、これらのこれら発明例1~8については、いずれも、低温割れを生じることなく、優れた疲労強度(比較例1に示す780MPa鋼のの疲労強度を基準として1.1倍以上の疲労強度比)が得られることが確認された。
 また、特に、(母材引張強度/母材炭素当量)≦2750以下とした、発明例1、2、4~7については、HAZ軟化による継手引張強度の低下を抑制することができることも確認された。
 これに対し、比較例1~6については、いずれも、母材の引張強度、母材の炭素当量、母材の引張強度と炭素当量との関係、溶接ワイヤの炭素当量、ビッカース硬さの少なくともいずれかが、本発明で規定する所定の範囲外であるため、低温割れ、疲労強度及び静的引張強度の少なくともいずれかについて優れた結果が得られないことが確認された。より具体的には、比較例1では、母材の引張強度、母材の引張強度と炭素当量との関係、及びビッカース硬さ(関係式(1)HVbond≦HVwmt)が本発明で規定する所定の範囲外であり、引張強度が低く、疲労強度が215MPaであった。
 比較例2では、母材の炭素当量が本発明で規定する所定の範囲外であり、疲労強度が従来品に相当する比較例1を下回った。
 比較例3では、母材の炭素当量、母材の引張強度と炭素当量との関係、及びビッカース硬さ(関係式(1)~(3))が本発明で規定する所定の範囲外であり、疲労強度が従来品に相当する比較例1を下回った。
 比較例4では、溶接ワイヤの炭素当量が本発明で規定する所定の範囲より少なく、またビッカース硬さ(関係式(1))が本発明で規定する所定の範囲外であり、疲労強度が従来品に相当する比較例1を下回った。
 比較例5では、溶接ワイヤの炭素当量が本発明で規定する所定の範囲より多く、ルート部のビッカース硬さの関係、HVwmr≦350が満たされず、低温割れが発生した。
 比較例6では、ビッカース硬さ(関係式(1)および(3))が本発明で規定する所定の範囲外であり、疲労強度が従来技術に相当する比較例1を下回った。
 従って、各比較例では、溶接部(溶接金属と熱影響部とを含む)において低温割れを抑制しつつ優れた疲労強度が実現されるとはいえない。
 10  隅肉溶接継手
 12、14、22、24  母材
 16、26  溶接金属
 A  溶接止端
 B  境界の代表点
 C  代表点Bから溶接金属16側に0.1mm以上0.3mm以下の位置である溶接金属内の領域
 D  境界(代表点B)から熱影響部側に0.1mm以上0.3mm以下の位置である熱影響部内の領域
 E  溶接ルート点
 F  溶接ルート点側の境界(溶接ルート点Eの下方に位置する溶接金属と熱影響部との境界)から溶接金属側に0.1mm以上0.3mm以下の位置である溶接金属内の領域
 S  溶接止端部と仮想線との間の寸法
 W  溶接機

Claims (9)

  1.  2枚の母材の一部を重ねて隅肉溶接を施して得られる隅肉溶接継手であって、
     前記隅肉溶接継手は、前記母材、溶接金属及び熱影響部を含んでなり、
     前記母材の引張強度が980MPa以上であり、前記母材の炭素当量が0.36以上0.60以下であり、前記母材の引張強度[MPa]が前記母材の炭素当量[wt%]の1950倍以上であり、
     前記溶接金属の平均炭素当量が0.45以上0.65以下であり、前記母材の炭素当量より高く、
     前記隅肉溶接継手の溶接線に直角な断面において、溶接止端から前記母材の板厚方向に0.1mm以上0.3mm以下の位置を通り、前記母材表面に平行な直線上であって、
     前記溶接止端の下方に位置する、前記溶接金属と前記熱影響部との境界におけるビッカース硬さHVbondと、前記境界から前記溶接金属側に0.1mm以上0.3mm以下の位置における前記溶接金属のビッカース硬さの平均値HVwmtと、前記境界から前記熱影響部側に0.1mm以上0.3mm以下の位置における前記熱影響部のビッカース硬さの平均値HVhazと、が以下の関係を満たす、ことを特徴とする隅肉溶接継手。
           HVbond≦HVwmt                     (1)
           HVbond≧HVhaz-50                  (2)
           HVhaz≦350                      (3)
  2.  前記母材の引張強度が前記母材の炭素当量の2750倍以下である、請求項1に記載の隅肉溶接継手。
  3.  前記母材が、質量%で、0.01≦C≦0.25、0.01≦Si≦2.00、0.05≦Mn≦3.0、0.001≦Al≦0.4、を含有し、残部がFeおよび不純物である、請求項1又は2に記載の隅肉溶接継手。
  4.  前記母材が、質量%で、0.1≦Ni≦3.0、0.1≦Cr≦2.0、0.005≦Mo≦0.5、0.005≦Nb≦0.3、0.005≦V≦0.3、0.005≦Ti≦0.3、0.0001≦B≦0.01の少なくとも1種をさらに含有する、請求項3に記載の隅肉溶接継手。
  5.  前記溶接金属が、質量%で、0.03≦C≦0.25、0.01≦Si≦2.00、0.5≦Mn≦3.0、0.001≦Al≦0.15、を含有し、残部がFeおよび不純物である、請求項1から4のいずれか1項に記載の隅肉溶接継手。
  6.  前記溶接金属が、質量%で、0.1≦Ni≦3.0、0.1≦Cr≦2.0、0.005≦Mo≦0.5、0.005≦Nb≦0.1、0.005≦V≦0.15、0.005≦Ti≦0.15、0.0001≦B≦0.01の少なくとも1種をさらに含有する、請求項5に記載の隅肉溶接継手。
  7.  前記母材の板厚が、1.0mm以上3.6mm以下である、請求項1から6のいずれか1項に記載の隅肉溶接継手。
  8.  前記隅肉溶接継手の溶接線に直角な断面において、溶接ルート点から前記母材の板厚方向に0.1mm以上0.3mm以下の位置を通り、前記母材表面に平行な直線上であって、
     前記溶接ルート点の下方に位置する、前記溶接金属と前記熱影響部との境界から前記溶接金属側に0.1mm以上0.3mm以下の領域における前記溶接金属のビッカース硬さの平均値HVwmrが以下の関係を満たす、請求項1から7のいずれか1項に記載の隅肉溶接継手。
          HVwmr≦350
  9.  2枚の母材の一部を重ね、溶接ワイヤを用いて隅肉溶接を施す隅肉溶接継手の製造方法であって、
     前記母材の引張強度が980MPa以上であり、前記母材の炭素当量が0.36以上0.60以下で、前記母材の引張強度[MPa]が前記母材の炭素当量[wt%]の1950倍以上であり、
     前記溶接ワイヤの炭素当量が0.50以上0.80以下で、上記母材の炭素当量より高く、
     溶接速度が60cm/min以上150cm/min以下である、ことを特徴とする隅肉溶接の製造方法。
PCT/JP2018/007638 2017-02-28 2018-02-28 隅肉溶接継手及びその製造方法 WO2018159719A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US16/489,144 US11235415B2 (en) 2017-02-28 2018-02-28 Fillet welded joint and method of manufacturing thereof
MX2019010128A MX2019010128A (es) 2017-02-28 2018-02-28 Union soldada en filete y metodo de fabricacion de la misma.
KR1020197022044A KR102197868B1 (ko) 2017-02-28 2018-02-28 필릿 용접 조인트 및 그의 제조 방법
CN201880014185.8A CN110382154B (zh) 2017-02-28 2018-02-28 角焊接头及其制造方法
EP18761559.6A EP3590644B1 (en) 2017-02-28 2018-02-28 Fillet welded joint and method of manufacturing thereof
JP2018535193A JP6432716B1 (ja) 2017-02-28 2018-02-28 隅肉溶接継手及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-036283 2017-02-28
JP2017036283 2017-02-28

Publications (1)

Publication Number Publication Date
WO2018159719A1 true WO2018159719A1 (ja) 2018-09-07

Family

ID=63370921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007638 WO2018159719A1 (ja) 2017-02-28 2018-02-28 隅肉溶接継手及びその製造方法

Country Status (7)

Country Link
US (1) US11235415B2 (ja)
EP (1) EP3590644B1 (ja)
JP (1) JP6432716B1 (ja)
KR (1) KR102197868B1 (ja)
CN (1) CN110382154B (ja)
MX (1) MX2019010128A (ja)
WO (1) WO2018159719A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220154319A1 (en) * 2019-03-27 2022-05-19 Nippon Steel Corporation Automobile undercarriage part
WO2023189632A1 (ja) * 2022-03-31 2023-10-05 株式会社神戸製鋼所 ガスシールドアーク溶接方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102244232B1 (ko) 2017-08-18 2021-04-26 닛폰세이테츠 가부시키가이샤 겹침 필릿 아크 용접 조인트
KR102428825B1 (ko) 2020-12-18 2022-08-02 주식회사 포스코 용접부의 피로강도가 우수한 용접부재 및 그 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH101742A (ja) * 1995-09-28 1998-01-06 Nippon Steel Corp 溶接継手の疲労強度に優れた高張力溶接構造用鋼板及びその製造方法
JP2007253160A (ja) * 2006-03-20 2007-10-04 Toyota Boshoku Corp 亜鉛めっき超高張力鋼板のアーク溶接方法
JP2010214466A (ja) * 2009-02-17 2010-09-30 Jfe Steel Corp 高強度薄鋼板の溶接方法
WO2011037272A1 (ja) 2009-09-25 2011-03-31 新日本製鐵株式会社 高強度薄鋼板の隅肉アーク溶接方法
WO2017018492A1 (ja) 2015-07-28 2017-02-02 新日鐵住金株式会社 隅肉アーク溶接継手及びその製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980703593A (ko) * 1996-02-13 1998-11-05 아사무라 다까시 피로강도가 우수한 용접계수
JPH11104838A (ja) 1997-10-01 1999-04-20 Nippon Steel Corp 疲労強度の優れた構造用鋼溶接継手
JP3905876B2 (ja) * 2003-10-01 2007-04-18 新日本製鐵株式会社 破壊形態に優れるアーク溶接重ね継手構造物
JP4754175B2 (ja) * 2004-02-27 2011-08-24 新日本製鐵株式会社 溶接金属の変態膨張を利用した薄鋼板の隅肉溶接継手
WO2008047806A1 (fr) * 2006-10-17 2008-04-24 Kabushiki Kaisha Kobe Seiko Sho Acier à matrices pour travail à froid, matrice, et procédé de production de l'acier à matrices pour travail à froid
CN100547103C (zh) * 2007-12-10 2009-10-07 华油钢管有限公司 一种高强度x80钢螺旋焊管制造方法
CA2748188C (en) * 2008-12-26 2013-04-16 Nippon Steel Corporation Stainless steel flux-cored welding wire for welding of zinc-coated steel sheet and arc welding method of zinc-coated steel sheet using same
JP5467480B2 (ja) * 2009-07-31 2014-04-09 高周波熱錬株式会社 溶接構造部材及び溶接方法
CN104507628B (zh) * 2012-08-08 2018-01-02 新日铁住金株式会社 重叠部的焊接方法、搭接焊构件的制造方法、搭接焊构件以及汽车用部件
KR101737712B1 (ko) * 2012-08-10 2017-05-18 신닛테츠스미킨 카부시키카이샤 겹침 용접 부재, 자동차용 부품, 겹침부의 용접 방법 및 겹침 용접 부재의 제조 방법
CA2877237C (en) * 2012-11-29 2017-01-03 Nippon Steel & Sumitomo Metal Corporation Method of forming fillet arc welded joint and fillet arc welded joint
CN106133165B (zh) * 2014-03-31 2019-03-08 杰富意钢铁株式会社 焊接接头

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH101742A (ja) * 1995-09-28 1998-01-06 Nippon Steel Corp 溶接継手の疲労強度に優れた高張力溶接構造用鋼板及びその製造方法
JP2007253160A (ja) * 2006-03-20 2007-10-04 Toyota Boshoku Corp 亜鉛めっき超高張力鋼板のアーク溶接方法
JP2010214466A (ja) * 2009-02-17 2010-09-30 Jfe Steel Corp 高強度薄鋼板の溶接方法
WO2011037272A1 (ja) 2009-09-25 2011-03-31 新日本製鐵株式会社 高強度薄鋼板の隅肉アーク溶接方法
WO2017018492A1 (ja) 2015-07-28 2017-02-02 新日鐵住金株式会社 隅肉アーク溶接継手及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3590644A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220154319A1 (en) * 2019-03-27 2022-05-19 Nippon Steel Corporation Automobile undercarriage part
WO2023189632A1 (ja) * 2022-03-31 2023-10-05 株式会社神戸製鋼所 ガスシールドアーク溶接方法

Also Published As

Publication number Publication date
MX2019010128A (es) 2019-10-02
KR102197868B1 (ko) 2021-01-05
KR20190103244A (ko) 2019-09-04
CN110382154B (zh) 2021-06-22
US20190388995A1 (en) 2019-12-26
EP3590644A4 (en) 2021-03-31
JPWO2018159719A1 (ja) 2019-03-07
EP3590644B1 (en) 2023-01-11
US11235415B2 (en) 2022-02-01
CN110382154A (zh) 2019-10-25
EP3590644A1 (en) 2020-01-08
JP6432716B1 (ja) 2018-12-05

Similar Documents

Publication Publication Date Title
JP5817832B2 (ja) 溶接熱影響部の低温靭性に優れた高張力鋼板およびその製造方法
JP5050863B2 (ja) 温水器用フェライト系ステンレス鋼板
KR101846759B1 (ko) 강판 및 그 제조 방법
JP5157606B2 (ja) フラックス入りワイヤを用いた高強度鋼のtig溶接方法
JP6432716B1 (ja) 隅肉溶接継手及びその製造方法
JP2001131682A (ja) 高強度低合金耐熱鋼
JP3045856B2 (ja) 高靱性Cu含有高張力鋼の製造方法
KR20230042371A (ko) 용접 조인트 및 용접 조인트의 제조 방법
JP3850764B2 (ja) 高Crフェライト系耐熱鋼用溶接ワイヤ
JP4998708B2 (ja) 材質異方性が小さく、耐疲労亀裂伝播特性に優れた鋼材およびその製造方法
KR101937005B1 (ko) 용접 조인트
JP4924047B2 (ja) 表面残留応力の絶対値が150N/mm2以下の耐疲労亀裂伝播特性に優れた鋼材の製造方法
JP2002224835A (ja) 溶接熱影響部靭性に優れた高靱性高張力鋼の溶接方法
JPH08253821A (ja) 優れた疲労強度を有する溶接継手の製造方法
JPH11138262A (ja) Tig溶接方法及びtig溶接材料
JP3705161B2 (ja) 高張力鋼板
JPH08283905A (ja) 疲労強度が優れた溶接継手
JP3933020B2 (ja) すみ肉溶接継手を形成した際の該すみ肉溶接継手の疲労特性及び靱性に優れたステンレス鋼
JP5458923B2 (ja) 耐脆性破壊特性に優れた溶接継手
WO2024029626A1 (ja) スポット溶接継手の製造方法及びスポット溶接継手
EP1340831A1 (en) Welding steel for enhancing welded joint strength
JP2023512141A (ja) 溶接部の疲労強度に優れた溶接部材及びその製造方法
JP5092427B2 (ja) レーザ溶接性に優れた高張力厚鋼板
JPH0285339A (ja) 溶接部を含む構造部材、溶接部を含む構造部材の製造方法及び溶接部を含む構造部材用の低C−Cr−Mo鋼
JPH06306457A (ja) 耐めっき割れ性に優れた高張力鋼の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018535193

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18761559

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197022044

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018761559

Country of ref document: EP

Effective date: 20190930