WO2018159649A1 - フランジカルボン酸ユニットを有するポリエステルフィルムとヒートシール性樹脂層とを備える積層体および包装袋 - Google Patents
フランジカルボン酸ユニットを有するポリエステルフィルムとヒートシール性樹脂層とを備える積層体および包装袋 Download PDFInfo
- Publication number
- WO2018159649A1 WO2018159649A1 PCT/JP2018/007405 JP2018007405W WO2018159649A1 WO 2018159649 A1 WO2018159649 A1 WO 2018159649A1 JP 2018007405 W JP2018007405 W JP 2018007405W WO 2018159649 A1 WO2018159649 A1 WO 2018159649A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- film
- laminate
- less
- heat
- polyester film
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/36—Layered products comprising a layer of synthetic resin comprising polyesters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/08—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/02—Physical, chemical or physicochemical properties
- B32B7/027—Thermal properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/03—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers with respect to the orientation of features
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/02—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
- C08G63/12—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
- C08G63/123—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
- C08G63/137—Acids or hydroxy compounds containing cycloaliphatic rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
- C08L67/02—Polyesters derived from dicarboxylic acids and dihydroxy compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2250/00—Layers arrangement
- B32B2250/02—2 layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/30—Properties of the layers or laminate having particular thermal properties
- B32B2307/308—Heat stability
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/30—Properties of the layers or laminate having particular thermal properties
- B32B2307/31—Heat sealable
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/514—Oriented
- B32B2307/518—Oriented bi-axially
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/582—Tearability
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/704—Crystalline
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/724—Permeability to gases, adsorption
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/724—Permeability to gases, adsorption
- B32B2307/7242—Non-permeable
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/724—Permeability to gases, adsorption
- B32B2307/7242—Non-permeable
- B32B2307/7244—Oxygen barrier
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/724—Permeability to gases, adsorption
- B32B2307/7242—Non-permeable
- B32B2307/7246—Water vapor barrier
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/732—Dimensional properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/732—Dimensional properties
- B32B2307/734—Dimensional stability
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2309/00—Parameters for the laminating or treatment process; Apparatus details
- B32B2309/08—Dimensions, e.g. volume
- B32B2309/10—Dimensions, e.g. volume linear, e.g. length, distance, width
- B32B2309/105—Thickness
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2367/00—Polyesters, e.g. PET, i.e. polyethylene terephthalate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2439/00—Containers; Receptacles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2439/00—Containers; Receptacles
- B32B2439/02—Open containers
- B32B2439/06—Bags, sacks, sachets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2439/00—Containers; Receptacles
- B32B2439/40—Closed containers
- B32B2439/46—Bags
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2439/00—Containers; Receptacles
- B32B2439/70—Food packaging
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2439/00—Containers; Receptacles
- B32B2439/80—Medical packaging
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2230/00—Compositions for preparing biodegradable polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/02—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
- C08G63/12—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/02—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
- C08G63/12—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
- C08G63/123—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/02—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
- C08G63/12—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
- C08G63/123—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
- C08G63/127—Acids containing aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/02—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
- C08G63/12—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
- C08G63/16—Dicarboxylic acids and dihydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/02—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
- C08G63/12—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
- C08G63/16—Dicarboxylic acids and dihydroxy compounds
- C08G63/18—Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/052—Forming heat-sealable coatings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2203/00—Applications
- C08L2203/16—Applications used for films
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/28—Web or sheet containing structurally defined element or component and having an adhesive outermost layer
- Y10T428/2813—Heat or solvent activated or sealable
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/28—Web or sheet containing structurally defined element or component and having an adhesive outermost layer
- Y10T428/2813—Heat or solvent activated or sealable
- Y10T428/2817—Heat sealable
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31786—Of polyester [e.g., alkyd, etc.]
Definitions
- the present invention relates to a laminate having a polyester film having a flanged carboxylic acid unit and a heat-sealable resin layer and excellent in laminate strength, and a packaging bag having the laminate.
- Polyester resins such as polyethylene terephthalate (PET) and polybutylene terephthalate (PBT), which are thermoplastic resins with excellent heat resistance and mechanical properties, are used in a wide variety of fields such as plastic films, electronics, energy, packaging materials, and automobiles. It's being used.
- PET polyethylene terephthalate
- PBT polybutylene terephthalate
- plastic films biaxially stretched PET film is widely used in industrial and packaging fields because of its excellent balance of mechanical properties, heat resistance, dimensional stability, chemical resistance, optical properties, and other costs. Yes.
- the PET film imparted with hydrolysis resistance is also used as a film for a solar battery back sheet, and is used for various purposes as a functional film and a base film.
- packaging films In the field of packaging films, it is used for food packaging, bottle shrink labels, and gas barrier films.
- films having excellent gas barrier properties are used as packaging materials or gas barrier materials that require airtightness such as foods, pharmaceuticals, and electronic parts, and the demand for these films has been increasing in recent years.
- thermoplastic resin composition having several kinds of furandicarboxylic acid units centering on polybutylene furandicarboxylate (PBF)
- PPF polybutylene furandicarboxylate
- Patent Document 2 a polymer compound that regulates the degree of polymerization and can be used for applications such as electric and electronic parts has been proposed.
- Patent Document 3 and 4 a polyester having a reduced viscosity and a terminal acid value and excellent mechanical strength has been proposed.
- Patent Documents 5 and 6 Studies have been made on uniaxially stretched sheets obtained by blending PEF derivatives and PEF derivatives and copolymerized polyesters.
- Patent Document 7 discloses a PEF film excellent in mechanical strength.
- Patent Document 1 the physical properties of the disclosed polymer are only the melting point, the mechanical strength is not clarified, and a thermoplastic resin composition having a flange carboxylic acid unit is used for industrial and packaging films. It was unknown whether it could be used in the field.
- Patent Document 2 the transparency of the PBF hot-press molded product disclosed is low, and its use in the fields of industrial and packaging films is limited.
- the mechanical properties of the 200 ⁇ m sheet product of polyethylene flange carboxylate (PEF) structure disclosed in Patent Documents 3 and 4 the elongation at break and strength at break are both low, and it can be considered to be used in the fields of industrial and packaging films. There wasn't.
- Patent Document 5 describes that the elongation at break of a film obtained by uniaxially stretching a film is improved as compared with a sheet made of a thermoplastic resin composition having a flanged carboxylic acid unit, depending on the type and blending ratio of the blend.
- cyclohexanedimethanol copolymerized PET which is widely known to improve elongation at break, is not blended, a significant improvement in elongation at break is not observed, and it must be said that the effect is limited by the blending ratio. Neither was it used in the field of packaging and packaging films.
- Patent Document 6 discloses a PEF film that is uniaxially stretched about 1.6 times using a rolling roll. Although it has been shown that it is a plastic film with excellent gas barrier properties, it has only shown the advantage of barrier properties derived from the chemical structure of PEF, and the mechanical strength important as a packaging material has not been clarified. It has not been used in the field of packaging gas barrier films having carboxylic acid units.
- Patent Document 7 only improvement in characteristics of a biaxially stretched polyester film containing a flanged carboxylic acid unit and a film having heat sealability has been studied.
- An object of the present invention is to provide a laminate having excellent laminate strength comprising a polyester film having a flanged carboxylic acid unit and a heat-sealable resin layer, and a packaging bag comprising the laminate.
- a laminate excellent in gas barrier properties and a packaging bag including the laminate is an object to provide.
- the configuration of the present invention is as follows. 1.
- a laminate comprising a polyester film and a heat-sealable resin layer,
- the polyester film is a biaxially oriented polyester film containing a polyethylene flange carboxylate resin composed of flange carboxylic acid and ethylene glycol,
- the plane orientation coefficient ⁇ P of the film is 0.005 or more and 0.200 or less
- the thickness of the film is 1 ⁇ m or more and 300 ⁇ m or less
- the laminate according to 1 above, wherein the oxygen permeability at a temperature of 23 ° C. and a relative humidity of 65% is 1 mL / m 2 / day / MPa or more and 200 mL / m 2 / day / MPa or less.
- a packaging bag comprising the laminate according to either 1 or 2 above
- the laminate of the present invention is excellent in laminate strength, it can be suitably used as a packaging material. Furthermore, since the laminate of the present invention is preferably excellent in gas barrier properties, it is possible to provide packaging materials that require airtightness such as foods, pharmaceuticals, and electronic parts.
- FIG. 1 shows an example of a plan view of a TD stretching process in a film production apparatus used in the present invention.
- polyester film used in the present invention is a biaxially oriented polyester film containing a polyethylene flange carboxylate resin composed of flange carboxylic acid and ethylene glycol.
- the polyester film includes a polyethylene flange carboxylate (hereinafter sometimes referred to as PEF) resin composed of flange carboxylic acid and ethylene glycol. That is, the polyethylene furandicarboxylate resin is formed from a composition comprising a dicarboxylic acid component (furandicarboxylic acid) and a glycol component (ethylene glycol).
- the content of the ethylene furandicarboxylate unit is preferably more than 50 mol% and not more than 100 mol% in 100 mol% of all the structural units of the polyester, and other dicarboxylic acids may be used as long as the object of the present invention is not impaired.
- a polyethylene flange carboxylate resin in which a component or a glycol component is copolymerized may be used.
- the content of the ethylene furandicarboxylate unit is more preferably 70 mol% or more and 100 mol% or less, further preferably 80 mol% or more and 100 mol% or less, and 90 mol% or more and 100 mol% or less. Is more preferably 95 mol% or more and 100 mol% or less, and most preferably 100 mol%.
- the copolymerization amount of the other dicarboxylic acid component and glycol component is preferably 20 mol% or less, more preferably 10 mol% or less, and more preferably 5 mol% or less, in 100 mol% of all the structural units of the polyester.
- Examples of the other dicarboxylic acid components include terephthalic acid, isophthalic acid, phthalic acid, naphthalene dicarboxylic acid, aromatic dicarboxylic acids such as 4,4′-dicarboxybiphenyl and 5-sodium sulfoisophthalic acid, 1,4-cyclohexane.
- Alicyclic dicarboxylic acids such as dicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 2,5-norbornenedicarboxylic acid, tetrahydrophthalic acid, oxalic acid, malonic acid, succinic acid, adipic acid
- aliphatic dicarboxylic acids such as azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, octadecanedioic acid, fumaric acid, maleic acid, itaconic acid, mesaconic acid, citraconic acid, and dimer acid.
- glycol components examples include 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2-methyl-1, 3-propanediol, 2-amino-2-ethyl-1,3-propanediol, 2-amino-2-methyl-1,3-propanediol, 1,10-decanediol, dimethyloltricyclodecane, diethylene glycol, Aliphatic glycols such as triethylene glycol, bisphenol A, bisphenol S, bisphenol C, bisphenol Z, bisphenol AP, ethylene oxide adduct or propylene oxide adduct of 4,4′-biphenol, 1,2-cyclohexanedimethanol, , 3-cyclohexanedimethanol, 1 Alicyclic glycols such as 4-cyclohexane dimethanol, polyethylene glycol, polypropylene glycol,
- a direct polymerization method in which furandicarboxylic acid and ethylene glycol and, if necessary, other dicarboxylic acid component and diol component are directly reacted, and dimethyl ester of furandicarboxylic acid are used.
- Any production method such as a transesterification method in which a transesterification reaction of ethylene glycol (including another diol component as necessary) and ethylene glycol (including another diol component as necessary) can be used.
- polyester film of the present invention As a resin component of the polyester film of the present invention, other resins such as polyamide, polystyrene, polyolefin, polyester other than the above may be included. However, in terms of mechanical properties and heat resistance, the content of the other resin is that of the polyester film. It is preferably 30 mol% or less, more preferably 20 mol% or less, still more preferably 10 mol% or less, still more preferably 5 mol% or less, based on all the constituent units. Most preferably, it is 0 mol%. In the present specification, even when a resin other than polyester is included, it is referred to as “polyester film”.
- the PEF film used in the present invention has a plane orientation coefficient ( ⁇ P) of 0.005 or more and 0.200 or less, preferably 0.020 or more and 0.195 or less, more preferably 0.100 or more, 0.195 or less, more preferably 0.110 or more and 0.195 or less, even more preferably 0.120 or more and 0.195 or less, and even more preferably 0.130 or more, 0.005 or less. 195 or less, particularly preferably 0.140 or more and 0.190 or less, and most preferably 0.140 or more and 0.160 or less. If the plane orientation coefficient ( ⁇ P) is less than 0.005, the mechanical properties of the film become insufficient, and post-processing such as film printing and bag making becomes difficult. This is not preferable because the film may be cut off on the coater.
- the PEF film used in the present invention has a heat shrinkage rate (hereinafter simply referred to as a heat shrinkage rate) of 10% or less in the MD direction and the TD direction when heated at 150 ° C. for 30 minutes.
- a heat shrinkage rate (hereinafter simply referred to as a heat shrinkage rate) of 10% or less in the MD direction and the TD direction when heated at 150 ° C. for 30 minutes.
- it is 8% or less, More preferably, it is 4.5% or less, More preferably, it is 3.5% or less, Still more preferably, it is 3.2% or less, More preferably, it is 2.8% or less, More preferably Is 2.4% or less.
- the heat shrinkage rate is large, color misalignment during printing, printing or coating due to film elongation on a printing press or coater becomes difficult, and appearance defects due to film deformation due to high heat may occur. .
- the thermal contraction rate in the TD direction is an even more preferable order, 1.8% or less, 1.5% or less, 1.2% or less, 0.9% or less, and most preferably 0.6% or less.
- 0.01% or more is preferable in both the MD direction and the TD direction.
- the thickness of the polyester film having a flanged carboxylic acid unit used in the present invention is 1 ⁇ m or more and 300 ⁇ m or less, preferably 5 ⁇ m or more and 200 ⁇ m or less, more preferably 10 ⁇ m or more and 100 ⁇ m or less.
- the thickness exceeds 300 ⁇ m, there is a problem in terms of cost, and the visibility tends to decrease when used as a packaging material.
- the thickness is less than 1 ⁇ m, the mechanical properties are deteriorated, the function as a film may not be performed, and the laminate strength may be decreased.
- the oxygen permeability at a temperature of 23 ° C. and a relative humidity of 65% is preferably 1 mL / m 2 / day / MPa or more and 1000 mL / m 2 / day / MPa or less, more preferably It is 500 mL / m 2 / day / MPa or less, more preferably 200 mL / m 2 / day / MPa or less, and even more preferably 120 mL / m 2 / day / MPa or less. If it exceeds 1000 mL / m 2 / day / MPa, the substance is deteriorated by oxygen or the preservability of food is poor. Moreover, 1 mL / m ⁇ 2 > / day / MPa or more is preferable from the point on manufacture.
- the oxygen permeability per 50 ⁇ m thickness at a temperature of 23 ° C. and a relative humidity of 65% is preferably 1 mL / m 2 / day / MPa or more and 200 mL / m 2 / day / MPa or less. More preferably 50 mL / m 2 / day / MPa or less, still more preferably 40 mL / m 2 / day / MPa or less, and even more preferably 30 mL / m 2 / day / MPa or less. If it exceeds 200 mL / m 2 / day / MPa, the substance deteriorates due to oxygen and the preservability of the food becomes poor.
- the water vapor permeability at a temperature of 37.8 ° C. and a relative humidity of 90% is preferably 0.1 g / m 2 / day or more and 40 g / m 2 / day or less, more preferably It is 30 g / m 2 / day or less, more preferably 20 g / m 2 / day or less. If it exceeds 40 g / m 2 / day, the substance deteriorates due to water vapor and the preservability of the food becomes poor. Moreover, 0.1 g / m ⁇ 2 > / day or more is preferable from the point on manufacture.
- the water vapor permeability per 50 ⁇ m thickness at a temperature of 37.8 ° C. and a relative humidity of 90% is preferably 0.1 g / m 2 / day or more and 10 g / m 2 / day or less. Yes, more preferably 8 g / m 2 / day or less, even more preferably 5 g / m 2 / day or less, and even more preferably 4 g / m 2 / day or less. If it exceeds 10 g / m 2 / day, the substance deteriorates due to water vapor and the preservability of the food becomes poor.
- the base film is coated, vapor-deposited by metal, metal oxide, sputtering, and other methods such as coextrusion. It is possible to further improve the water vapor permeability.
- PEF itself has a high oxygen barrier property (that is, low oxygen permeability), but the oxygen barrier property is further enhanced by introducing a stretching step described later.
- the intrinsic viscosity of the PEF is preferably in the range of 0.30 dl / g or more and 1.20 dl / g or less, more preferably 0.55 dl / g or more and 1.00 dl / g or less, further preferably 0.70 dl. / G to 0.95 dl / g. If the intrinsic viscosity is lower than 0.30 dl / g, the film will be easily torn, and if it is higher than 1.20 dl / g, the increase in filtration pressure will be increased, making high-precision filtration difficult, and extruding the resin through the filter. It becomes difficult.
- the refractive index (nx) in the MD direction and the refractive index (ny) in the direction perpendicular to the MD direction are preferably 1.5700 or more, more preferably 1.5800 or more, and further preferably 1.5900 or more. More preferably, it is 1.6000 or more, more preferably 1.6100 or more, and most preferably 1.6200 or more.
- nx and ny are 1.5700 or more, sufficient film breaking strength and breaking elongation can be obtained, so that the mechanical properties of the film are sufficient, and post-processing such as film printing and bag making becomes easy. This is preferable because it is difficult for the film to be cut on a printing machine or coater when printing or coating is performed.
- the upper limit is preferably less than 1.7000 in terms of production and heat shrinkage.
- the PEF film used in the present invention preferably has a breaking strength of 75 MPa or more in both the MD direction and the TD direction.
- the more preferable lower limit of the breaking strength is 100 MPa
- the still more preferable lower limit is 150 MPa
- the still more preferable lower limit is 200 MPa
- the still more preferable lower limit is 220 MPa. If the breaking strength is less than 75 MPa, the mechanical strength of the film becomes insufficient, and problems such as elongation and misalignment tend to occur in the film processing step, which is not preferable.
- the upper limit is preferably 1000 MPa.
- the PEF film used in the present invention preferably has a breaking elongation of 10% or more in both the MD direction and the TD direction.
- the preferable lower limit of the elongation at break is 15%, the more preferable lower limit is 20%, and the particularly preferable lower limit is 30%.
- the upper limit of the elongation at break is preferably 300%.
- the upper limit of the elongation at break is more preferably 150%, still more preferably 100%, and even more preferably 80%.
- the PEF film used in the present invention preferably has a static friction coefficient ( ⁇ s) of 1.0 or less and a dynamic friction coefficient ( ⁇ d) of 1.0 or less.
- the static friction coefficient ( ⁇ s) is more preferably 0.8 or less, and further preferably 0.6 or less.
- the dynamic friction coefficient ( ⁇ d) is more preferably 0.8 or less, and further preferably 0.6 or less. If the static friction coefficient ( ⁇ s) or the dynamic friction coefficient ( ⁇ d) exceeds 1.0, the slipperiness is deteriorated, and there is a possibility that scratches and wrinkles are generated due to rubbing during film running.
- the static friction coefficient ( ⁇ s) is a static friction coefficient between one surface and the other surface of the PEF film used in the present invention
- the dynamic friction coefficient ( ⁇ d) is one surface of the PEF film used in the present invention and the other surface. It is the coefficient of dynamic friction with the surface.
- the PEF film used in the present invention preferably has a total light transmittance of 85% or more.
- the total light transmittance of the polyester film having the flange carboxylic acid unit of the present invention is preferably 85% or more, more preferably 87% or more, and further preferably 89% or more.
- the higher the total light transmittance the better.
- the PEF film used in the present invention preferably has a haze of 15% or less.
- the haze in the PEF film used in the present invention is preferably 15% or less, more preferably 7% or less, further preferably 3% or less, and particularly preferably 1% or less.
- the haze should be low, but 0.1% or more is preferable from the refractive index inherent to the PEF film.
- the lower limit of the impact (impact) strength (impact resistance) in terms of 15 ⁇ m of the PEF film used in the present invention is preferably 0.4 J / 15 ⁇ m, more preferably 0.6 J / 15 ⁇ m, still more preferably 0.8. 8 J / 15 ⁇ m. When it is less than 0.4 J / 15 ⁇ m, the strength may be insufficient when used as a bag.
- the upper limit of the impact strength is preferably 3.0 J / 15 ⁇ m. If it exceeds 3.0 J / 15 ⁇ m, the improvement effect will be saturated.
- the heat-sealable resin layer used for this invention should just contain resin adapted to the heat seal conditions of a packaging machine. That is, the heat-sealable resin is not particularly limited as long as it can be sealed by a method such as heat sealing by heat and pressure of a heat seal bar, impulse sealing, ultrasonic sealing, or the like when processing bags or the like.
- Low density polyethylene medium density polyethylene, high density polyethylene, polyethylene such as linear low density polyethylene, polyolefin such as polypropylene, polystyrene, polyvinyl chloride, polyvinyl alcohol, ethylene-vinyl alcohol copolymer, ethylene-vinyl acetate copolymer Polymers, ethylene-acrylic acid copolymers, ethylene-ethyl acrylate copolymers, ionomers and the like are used.
- the laminate of the present invention may have a coating layer in order to impart high transparency and excellent slipperiness to the PEF film used in the present invention. Good.
- a coating layer it is preferable to provide a coating layer on at least one side of the polyester film.
- the coating layer may be on both sides of the polyester film, or may have a multilayer laminated structure in which a coating layer is further provided on the coating layer.
- a coating layer is a multilayer, it is preferable to contain the below-mentioned particle
- the coating layer preferably contains at least one resin selected from the group consisting of polyester resins, urethane resins, and acrylic resins.
- the polyester resin, urethane resin, and acrylic resin have adhesiveness to the polyester film.
- the above resins may be used alone, or two or more different resins, for example, a polyester resin and a urethane resin, a polyester resin and an acrylic resin, or a combination of a urethane resin and an acrylic resin.
- polyester resin When a copolyester is used as the polyester resin of the coating layer, an aromatic dicarboxylic acid component may be used as the dicarboxylic acid component, and ethylene glycol and branched glycol as the constituent components. preferable.
- Examples of the branched glycol include 2,2-dimethyl-1,3-propanediol (neopentyl glycol), 2-methyl-2-ethyl-1,3-propanediol, and 2-methyl-2-butyl-1 , 3-propanediol, 2-methyl-2-propyl-1,3-propanediol, 2-methyl-2-isopropyl-1,3-propanediol, 2-methyl-2-n-hexyl-1,3- Propanediol, 2,2-diethyl-1,3-propanediol, 2-ethyl-2-n-butyl-1,3-propanediol, 2-ethyl-2-n-hexyl-1,3-propanediol, 2,2-di-n-butyl-1,3-propanediol, 2-n-butyl-2-propyl-1,3-propanediol, 2,2-di-
- the lower limit of the molar ratio of the branched glycol component is preferably 10 mol%, more preferably 20 mol%, still more preferably 30 mol% with respect to the total glycol component.
- the upper limit is preferably 90 mol%, more preferably 80 mol%. If necessary, diethylene glycol, propylene glycol, butanediol, hexanediol, 1,4-cyclohexanedimethanol or the like may be used in combination.
- aromatic dicarboxylic acid component terephthalic acid, isophthalic acid, or furandicarboxylic acid is most preferable.
- the aromatic dicarboxylic acid component may be composed only of terephthalic acid, isophthalic acid, and furandicarboxylic acid.
- other aromatic dicarboxylic acids in particular, aromatic dicarboxylic acids such as diphenylcarboxylic acid and 2,6-naphthalenedicarboxylic acid may be added in a range of 10 mol% or less and copolymerized with respect to the total dicarboxylic acid component. Good.
- polyester resin when used as an aqueous coating liquid, a water-soluble or water-dispersible polyester resin is used.
- a compound containing a sulfonate group is used.
- dicarboxylic acid component for example, sulfoterephthalic acid, 5-sulfoisophthalic acid, 4-sulfonaphthaleneisophthalic acid-2,7-dicarboxylic acid, 5- (4-sulfophenoxy) are used to impart water dispersibility to the polyester.
- Isophthalic acid or an alkali metal salt thereof is preferably used in an amount of 1 to 10 mol% based on the total dicarboxylic acid component, and more preferably 5-sulfoisophthalic acid or an alkali metal salt thereof.
- polyurethane resin of the coating layer contains at least a polyol component and a polyisocyanate component as constituent components, and may further contain a chain extender as necessary.
- a heat-reactive polyurethane resin for example, water-soluble or water-dispersible polyurethane in which a terminal isocyanate group is blocked with an active hydrogen group (hereinafter referred to as a block) is exemplified.
- polystyrene resin examples include polyvalent carboxylic acids (for example, malonic acid, succinic acid, adipic acid, sebacic acid, fumaric acid, maleic acid, terephthalic acid, isophthalic acid, etc.) or acid anhydrides thereof and polyhydric alcohols (for example, Ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, neopentyl glycol, 1,6-hexanediol, etc.) Polyester polyols obtained from this reaction, polyether polyols such as polyethylene glycol, polypropylene glycol, polyethylene propylene glycol, polytetramethylene ether glycol, polyhexamethylene ether glycol, Sulfonates polyols, polyolefin polyols, and the like acrylic polyo
- -Alicyclic diisocyanates such as dicyclohexylmethane diisocyanate, 1,3-bis (isocyanatomethyl) cyclohexane, aliphatic diisocyanates such as hexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, or one of these compounds
- species or 2 types or more and trimethylol propane etc. previously is mentioned. From the viewpoint of barrier properties, aromatic diisocyanates, araliphatic diisocyanates, and alicyclic diisocyanates are preferred.
- the side chain of an aromatic ring or an alicyclic ring is a short chain.
- the diisocyanate component has symmetry because cohesion is improved.
- isocyanate group blocking agents bisulfites, phenols, alcohols, lactams, oximes, esters such as dimethyl malonate, diketones such as methyl acetoacetate, mercaptans, ureas, imidazoles, Examples thereof include acid imides such as succinimide, amines such as diphenylamine, imines, and carbamates such as 2-oxazolidine.
- the water-soluble or water-dispersible polyurethane preferably has a hydrophilic group in the molecule. Therefore, it is preferable to use a compound having a hydrophilic group in the compound having at least one active hydrogen atom in the molecule to be used or a hydrophilic compound in the blocking agent.
- Examples of having a hydrophilic group in a compound having at least one active hydrogen atom in the molecule to be used include taurine, dimethylolpropionic acid, polyester polyol having carboxylic acid group or sulfonic acid group, polyoxyalkylene polyol, etc. Is mentioned.
- Examples of the hydrophilic compound in the blocking agent include bisulfites and phenols containing a sulfonic acid group.
- water-soluble or water-dispersible polyurethane those using a hydrophilic compound as a blocking agent are preferable.
- These polyurethanes are poor in water resistance because the resin in the coating liquid preparation is hydrophilic, but when the thermal reaction is completed by coating, drying and heat setting, the hydrophilic group of the urethane resin, that is, the blocking agent is released, A coating film with good water resistance is obtained.
- the chemical composition of the urethane prepolymer used in the polyurethane resin includes (i) a compound having at least two active hydrogen atoms in the molecule and a molecular weight of 200 to 20,000, and (ii) two or more in the molecule. It is a compound having a terminal isocyanate group obtained by reacting an organic polyisocyanate having an isocyanate group, and (iii) a chain extender having at least two active hydrogen atoms in the molecule if necessary.
- Two or more hydroxyl groups, carboxyl groups, amino groups in the terminal or molecule generally known as a compound having at least two active hydrogen atoms in the molecule (i) and having a molecular weight of 200 to 20,000, or Those containing a mercapto group are preferred, and particularly preferred compounds include polyether polyols and polyester polyols.
- polyester polyols include polysaturated or unsaturated carboxylic acids such as succinic acid, adipic acid, phthalic acid, and maleic anhydride, or carboxylic anhydrides, and ethylene glycol, diethylene glycol, 1,4-butanediol, Polyvalent saturated or unsaturated alcohols such as neopentyl glycol, 1,6-hexanediol, trimethylolpropane, polyalkylene ether glycols such as relatively low molecular weight polyethylene glycol and polypropylene glycol, or alcohols thereof. It can be obtained by condensing the mixture.
- carboxylic acids such as succinic acid, adipic acid, phthalic acid, and maleic anhydride, or carboxylic anhydrides
- ethylene glycol diethylene glycol, 1,4-butanediol
- Polyvalent saturated or unsaturated alcohols such as neopentyl glycol, 1,6-hexanediol,
- polyesters obtained from lactones and hydroxy acids polyesters obtained by adding ethylene oxide or propylene oxide to a previously produced polyester can also be used.
- organic polyisocyanate (ii) examples include isomers of toluylene diisocyanate, aromatic diisocyanates such as 4,4-diphenylmethane diisocyanate, aromatic aliphatic diisocyanates such as xylylene diisocyanate, isophorone diisocyanate, 4,4 -Alicyclic diisocyanates such as dicyclohexylmethane diisocyanate, aliphatic diisocyanates such as hexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, or one or more of these compounds as trimethylolpropane Examples thereof include polyisocyanates obtained by addition.
- Examples of the chain extender having at least two active hydrogen atoms in the molecule (iii) include glycols such as ethylene glycol, diethylene glycol, 1,4-butanediol, and 1,6-hexanediol, glycerin, and trimethylol.
- Examples include polyhydric alcohols such as propane and pentaerythritol, diamines such as ethylenediamine, hexamethylenediamine, and piperazine, amino alcohols such as monoethanolamine and diethanolamine, thiodiglycols such as thiodiethylene glycol, and water. .
- the urethane prepolymer is usually 150 ° C. or less, preferably 70 to 70 ° C., by a single-stage or multi-stage isocyanate polyaddition method using the above (i) and (ii) and, if necessary, the above (iii). It is synthesized by reacting at a temperature of 120 ° C. for 5 minutes to several hours.
- the ratio of the isocyanate group of (ii) to the active hydrogen atom of (i) and (iii) may be 1 or more, but it is necessary to leave a free isocyanate group in the resulting urethane prepolymer. .
- the content of free isocyanate groups may be 10% by mass or less with respect to the total mass of the urethane prepolymer to be obtained.
- 7 it is preferable that it is below mass%.
- the urethane prepolymer is preferably blocked with a terminal isocyanate group using bisulfite.
- the urethane prepolymer is mixed with an aqueous bisulfite solution, and the reaction is allowed to proceed with good stirring for about 5 minutes to 1 hour.
- the reaction temperature is preferably 60 ° C. or lower.
- the reaction mixture is diluted with water to an appropriate concentration to obtain a heat-reactive water-soluble urethane resin composition.
- the composition is adjusted to an appropriate concentration and viscosity when used.
- the bisulfite as a blocking agent is dissociated to regenerate active terminal isocyanate groups.
- a polyurethane polymer is produced by a polyaddition reaction that occurs within or between molecules of the prepolymer, or has a property of causing addition to other functional groups.
- acrylic resin for the coating layer a water-dispersible or water-soluble acrylic resin can be used.
- the water-dispersible or water-soluble acrylic resin is, for example, at least one of acrylate and methacrylate resins, or an aliphatic compound or fragrance copolymerizable with an acrylic resin having an unsaturated double bond such as styrene. And a copolymer with a group compound.
- the acrylic-styrene copolymer resin having excellent hydrophilicity a water-dispersible acrylic-styrene random copolymer resin by emulsion polymerization is most preferable.
- the particles include inorganic particles and organic particles (heat-resistant polymer particles).
- Inorganic particles include calcium carbonate, calcium phosphate, amorphous silica, crystalline glass filler, kaolin, talc, titanium dioxide, alumina, silica-alumina composite oxide, barium sulfate, calcium fluoride, lithium fluoride, zeolite, What made molybdenum sulfide, mica, etc. into particles can be used.
- Organic particles include crosslinked polystyrene particles, crosslinked acrylic resin particles, crosslinked methyl methacrylate particles, benzoguanamine / formaldehyde condensate particles, melamine / formaldehyde condensate particles, and polytetrafluoroethylene particles. Is mentioned.
- silica particles are preferable because the refractive index is relatively close to the resin component, and a highly transparent film is easily obtained.
- the shape of the particles is not particularly limited, but particles that are close to spherical are preferable from the viewpoint of imparting easy slipperiness.
- the content of particles in the total amount of the coating layer is preferably 20% by mass or less, more preferably 15% by mass or less, and particularly preferably 10% by mass or less.
- the content of the particles in the coating layer exceeds 20% by mass, the transparency is deteriorated and the adhesiveness of the film tends to be insufficient.
- the lower limit of the content of the particles is preferably 0.1% by mass, more preferably 1% by mass, and particularly preferably 3% by mass.
- the average particle size of the main particles P is preferably 10 to 10,000 nm, particularly preferably 200 to 1000 nm.
- the average particle size of the particles P is less than 10 nm, scratch resistance, slipping property, and winding property may be deteriorated.
- the average particle size of the particles P exceeds 10,000 nm, not only the particles are easily dropped but also the haze tends to increase.
- the average particle size of the particles Q is preferably 20 to 150 nm, more preferably 40 to 60 nm. When the average particle size is less than 20 nm, it is difficult to obtain sufficient blocking resistance, and scratch resistance tends to deteriorate.
- the particles P are silica particles
- the average particle size of the particles P is 10 to 10,000 nm
- an aggregate having an average primary particle size of 40 to 60 nm made of silica produced by a dry method is dropped from the coating layer. It is preferable because it is difficult. This is presumably because, in the film-forming process, after applying the coating layer, it can be made flat and stable by passing through a stretching process and a heat setting process.
- the particle P it is possible to use a particle having a ratio of the average particle size in the aggregated state to the average primary particle (average particle size in the aggregated state / average primary particle size) of 4 times or more. It is preferable from the point.
- the particles may contain two or more kinds of different kinds of particles, or the same kind of particles having different average particle diameters.
- the coating layer may contain a surfactant for the purpose of improving leveling properties during coating and defoaming the coating solution.
- the surfactant may be any of cationic, anionic and nonionic, but is preferably a silicone, acetylene glycol or fluorine surfactant. These surfactants are preferably contained in a range that does not impair the adhesion to the polyester film, for example, 0.005 to 0.5% by mass in the coating layer forming coating solution.
- additives may be included.
- the additive include fluorescent dyes, fluorescent brighteners, plasticizers, ultraviolet absorbers, pigment dispersants, antifoaming agents, antifoaming agents, preservatives, and antistatic agents.
- the laminate of the present invention may be provided with a thin film layer in order to improve the gas barrier property of the PEF film and impart flexibility to the PEF film.
- the thin film layer is mainly composed of an inorganic compound.
- the inorganic compound is at least one of aluminum oxide and silicon oxide.
- the “main component” means that the total amount of aluminum oxide and silicon oxide is more than 50% by mass, preferably 70% by mass or more, with respect to 100% by mass of the component constituting the thin film layer.
- the content is preferably 90% by mass or more, and most preferably 100% by mass (components other than aluminum oxide and silicon oxide are not contained as components constituting the thin film layer).
- aluminum oxide as used herein includes at least one of various aluminum oxides such as AlO, Al 2 O, and Al 2 O 3 , and the content of various aluminum oxides can be controlled by the conditions for forming the thin film layer. it can.
- Silicon oxide is composed of at least one of various silicon oxides such as SiO, SiO 2 and Si 3 O 2 , and the content of various silicon oxides can be controlled by the conditions for forming the thin film layer.
- Aluminum oxide or silicon oxide may contain a small amount of other components (up to 3% by mass based on all components) within a range in which the characteristics are not impaired.
- the thickness of the thin film layer is not particularly limited, but is preferably 5 to 500 nm, more preferably 10 to 200 nm, and still more preferably 15 to 50 nm from the viewpoint of gas barrier properties and flexibility of the film. If the thickness of the thin film layer is less than 5 nm, it may be difficult to obtain the desired gas barrier property. On the other hand, if it exceeds 500 nm, the corresponding effect of improving the gas barrier property cannot be obtained, It is disadvantageous in terms of manufacturing cost. (3-3) Others
- the laminate of the present invention may be provided with a layer other than the PEF film, the coating layer, and the thin film layer as necessary for improving the characteristics. Examples thereof include a biaxially stretched polyamide film, a polyvinylidene chloride film, a polymetaxylene adipamide film, and a biaxially stretched polyethylene terephthalate film effective for improving impact strength.
- the laminate of the present invention comprises a biaxially oriented polyester film made of polyethylene flange carboxylate resin and a heat-sealable resin layer.
- the laminate of the present invention may also include other layers as described above. That is, the laminate of the present invention is not limited to two layers, and may have a laminate structure of three or more layers.
- the two-layer structure of the laminate of the present invention includes PEF as a polyester film having a flanged carboxylic acid unit according to the present invention, PEF as a vapor deposition of aluminum oxide or silicon oxide, LLDPE as a linear low density polyethylene film,
- PEF as a vapor deposition of aluminum oxide or silicon oxide
- LLDPE as a linear low density polyethylene film
- examples of the structure include PEF / LLDPE, PEF / CPP, vapor deposition PEF / LLDPE, vapor deposition PEF / CPP, and the like.
- the three-layer structure of the laminate of the present invention includes Al as an aluminum foil, DPET as a biaxially stretched polyethylene terephthalate film, vapor deposited DPE as a DPE film deposited with aluminum oxide or silicon oxide, ONY as a biaxially stretched polyamide film, and PVDC.
- polyvinylidene chloride film and EVOH are ethylene vinyl alcohol copolymer films
- the four-layer structure of the laminate of the present invention is such that when MXD6 is a polymetaxylene adipamide film, PEF / ONY / Al / LLDPE, PEF / ONY / Al / CPP, DPET / Al / PEF / CPP, DPET / Al / PEF / LLDPE, PEF / MXD6 / CPP, etc.
- the laminate strength of the laminate of the present invention is 2.0 N / 15 mm or more, preferably 2.5 N / 15 mm or more, more preferably 3.0 N / 15 mm or more, and further preferably 3.5 N / 15 mm or more.
- the upper limit is preferably 15 N / 15 mm.
- the oxygen permeability of the laminate of the present invention at a temperature of 23 ° C. and a relative humidity of 65% is preferably 1 mL / m 2 / day / MPa or more and 200 mL / m 2 / day / MPa or less, more preferably 150 mL / m m 2 / day / MPa or less, more preferably 120 mL / m 2 / day / MPa or less, even more preferably 90 mL / m 2 / day / MPa or less, and particularly preferably 80 mL / m 2 / day. / MPa or less.
- the water vapor permeability of the laminate of the present invention at a temperature of 37.8 ° C. and a relative humidity of 90% is preferably 0.1 g / m 2 / day or more and 10 g / m 2 / day or less, more preferably 8. 0 g / m 2 / day or less, more preferably 6 g / m 2 / day or less, and even more preferably 4 g / m 2 / day or less. If it exceeds 10 g / m 2 / day, the substance deteriorates due to water vapor and the preservability of the food becomes poor. Moreover, 0.1 g / m ⁇ 2 > / day or more is preferable from the point on manufacture.
- the heat seal strength of the laminate of the present invention can be sufficiently obtained without any treatment on the surface of the polyester film having the flanged carboxylic acid unit of the present invention, but the corona treatment, plasma treatment, anchor By performing the coating, it is possible to increase the adhesive strength.
- Packaging bag A packaging bag can be obtained by bag-making the laminated body of this invention.
- Examples of the package include bags, lid materials, cups, tubes, standing pouches, trays and the like.
- the shape and type are not particularly limited, and examples of the packaging form of the bag include a pillow type, a three-side seal, and a four-side seal.
- the laminate of the present invention is used as all or part of these packaging materials and packages.
- the film raw material is dried or hot air dried so that the moisture content is less than 100 ppm.
- each raw material is weighed and mixed, supplied to an extruder, and melt extruded into a sheet. Furthermore, the molten sheet is brought into close contact with a rotating metal roll (casting roll) using an electrostatic application method and cooled and solidified to obtain an unstretched PEF sheet.
- a rotating metal roll casting roll
- high-precision filtration is performed at any place where the molten resin is maintained at 220 to 300 ° C. in order to remove foreign substances contained in the resin.
- the filter medium used for high-precision filtration of the molten resin is not particularly limited, but in the case of a stainless steel sintered filter medium, the removal performance of aggregates and high melting point organic substances mainly composed of Si, Ti, Sb, Ge, Cu Excellent and suitable.
- a multi-layer feed block for example, a merge block having a square merge portion
- a multi-manifold die may be used instead of the multilayer feed block.
- the unstretched film obtained by the above method is biaxially stretched and then heat-set.
- a uniaxial stretching method is performed in the MD direction or the TD direction, and then stretching is performed in the MD direction and the TD direction at the same time.
- a method of using a linear motor can be adopted as a method of simultaneous biaxial stretching and a driving method for simultaneous biaxial stretching.
- MD stretching can be performed by stretching in the MD direction by providing a speed difference using a heating roll. It is also possible to use an infrared heater or the like for heating.
- the subsequent TD stretching can be performed by guiding the longitudinally stretched sheet to a tenter, holding both ends with clips, and stretching in the TD direction while heating.
- the film after TD stretching is subsequently heat-set in a tenter.
- the heat setting can be performed while being pulled by TD stretching, but can also be processed while relaxing in the TD direction.
- the film after heat setting can be rolled up with a winder with both ends cut off.
- Patent Documents 5 and 6 disclose a method for producing a PEF film that has been uniaxially stretched 1.6 to 5.0 times.
- the method disclosed above cannot achieve mechanical properties that can be used for industrial and packaging purposes. Therefore, as a result of intensive studies, the present inventor has achieved high mechanical properties by performing the following stretching method.
- ⁇ P is 0.02 or more
- the refractive indexes nx and ny in the MD and TD directions are 1.5700 or more
- the film breaking strength is 100 MPa or more
- the film breaking elongation is 15%. It can be set as the film excellent in the above mechanical characteristics.
- the draw ratio in the MD direction is 10.0 times or less because the frequency of breakage is reduced. The higher the draw ratio in the MD direction, the higher the temperature of the heat setting step, and the lower the heat shrinkage rate.
- (6-2) Control of stretching temperature in MD direction of film In order to obtain the polyester film used in the present invention, it is preferable to stretch in the MD direction in the range of 90 ° C to 150 ° C. More preferably, it is 100 degreeC or more and 125 degrees C or less. A stretching temperature in the MD direction of 90 ° C. or higher is preferable because the frequency of breakage is reduced. Since it can extend
- FIG. 1 is an example of a plan view of a stretching process in the TD direction in the film forming apparatus used in the present invention.
- the film after stretching in the MD direction is gripped by the clips 7 at both ends and led to the downstream winding process through the preheating zone 1, the stretching zone 2, the heat setting zone 3, the relaxation zones 4, 5, and the cooling zone 6. .
- the said process is not limited to this.
- (6-3) Control of stretching ratio in TD direction of film In order to obtain the polyester film having the flanged carboxylic acid unit of the present invention, it is preferable to stretch in the TD direction within a range of 1.1 to 10.0 times. . By stretching 1.1 times or more in the TD direction, a film having a plane orientation coefficient ⁇ P of 0.005 or more can be produced. More preferably, the draw ratio in the TD direction is 3.0 times or more, more preferably 3.5 times or more, still more preferably 4 times or more, and particularly preferably 4.5 times or more.
- the plane orientation coefficient ⁇ P is 0.02 or more, and the refractive indexes nx and ny in the MD direction and the TD direction are 1.5700 or more, the film breaking strength is 75 MPa or more, and the film breaking elongation is A film having excellent mechanical properties with a degree of 15% or more can be obtained.
- the draw ratio in the TD direction is 10.0 times or less, the frequency of breakage is reduced, which is preferable.
- At least one of a relaxation process in the TD direction and a relaxation process in the TD direction or the MD direction is performed. Specifically, after the heat setting process, only the relaxation process in the TD direction is performed; after the heat setting process, only the relaxation process in the TD direction or the MD direction is performed; after the heat setting process, the relaxation in the TD direction is performed.
- relaxation in the TD direction in the range of 100 ° C to 200 ° C. It is preferable to carry out the treatment. More preferably, it is 165 degreeC or more and 195 degrees C or less. This is preferable because the heat shrinkage rate can be reduced.
- the relaxation rate in the TD direction is set to 0.5% or more to obtain a polyester film having the flange carboxylic acid unit of the present invention. It is preferable to carry out in the range of 0% or less. More preferably, it is 2% or more and 6% or less. It is preferable to set the relaxation rate to 0.5% or more because the heat shrinkage rate can be reduced.
- the take-up speed in the winding process may be slower than the film-forming speed in the TD direction to perform relaxation treatment in the TD direction, but the film is cooled after passing through the maximum temperature of the heat setting zone 3.
- the film is preferably subjected to a relaxation treatment without any problems.
- the temperature of the relaxation zone 4 or 5 is preferably 140 ° C. or higher and 200 ° C. or lower, and more preferably 160 ° C. or higher and 180 ° C. or lower.
- the maximum value of the heat shrinkage rate when heated at 150 ° C. for 30 minutes is preferable. It is difficult to reduce the shrinkage rate in all directions when heated at 150 ° C. for 30 minutes with a relaxation treatment of less than 140 ° C., and with a relaxation treatment over 200 ° C., the elasticity of the film is lowered, resulting in a flatness of the film. It will get worse.
- the longitudinal relaxation rate defined by the following formula (1) correlates with the thermal contraction rate in the longitudinal direction
- the longitudinal relaxation rate is preferably 1.0% or more and 15.0% or less. It is more preferably 0.0% or more and 10.0% or less.
- a longitudinal relaxation rate of 15.0% or less is preferable because of excellent flatness of the film. It is preferable that the longitudinal relaxation rate is 1.0% or more because the maximum value of the heat shrinkage rate becomes small.
- the separation method of the film edge is not particularly limited, but a method of providing a cutting blade in the relaxation zone 4 or 5 to cut and separate the edge, A method of removing the film end from the clip in the relaxation zone 4 can be used.
- the method of removing the film end from the clip in the relaxation zone 4 or 5 is more preferable because the relaxation treatment can be performed stably regardless of the longitudinal relaxation rate.
- the film used in the present invention is produced by the above method, but is not limited to the above specifically disclosed method as long as it is within the scope of the technical idea. In producing the film used in the present invention, it is important to control the above-mentioned production conditions with high accuracy within a very narrow range based on the above technical idea.
- the breaking strength, breaking elongation, and heat shrinkage rate of the film used in the present invention can be controlled independently and in combination with the aforementioned stretching and heat setting conditions. They can be arbitrarily selected, but by combining the above-mentioned preferable conditions, the plane orientation coefficient ( ⁇ P) is 0.005 or more, the thermal shrinkage is 10% or less, preferably 8% or less, the film breaking strength is preferably 75 MPa or more, A film having a breaking elongation of preferably 10% or more can be obtained. For example, it is effective to increase the stretching ratio in the longitudinal direction and the stretching ratio in the lateral direction and perform the heat setting treatment at a higher temperature.
- slipperiness can be provided by putting lubricant particles in the film. It is also possible to impart slipperiness, anti-blocking property, antistatic property, easy adhesion, etc. by mixing resin, cross-linking agent, particles, etc. as appropriate and coating with a solution or dispersion dissolved in a solvent. is there. Further, various stabilizers, pigments, UV absorbers and the like may be included in the film used in the present invention.
- the function can be improved by surface-treating the film after stretching and heat setting.
- printing, coating, metal vapor deposition, metal oxide vapor deposition, sputtering treatment and the like can be mentioned.
- the laminating method of the heat-sealable resin layer is not particularly limited, but dry lamination, extrusion laminating method and the like are preferable. Furthermore, printing may be performed for decoration or explanation of contents, or the film may be laminated with a design film or a reinforcing material.
- the adhesive used for laminating is not particularly limited as long as it plays a role for adhering a polyester film or the like to a heat-sealable resin layer (sealant film).
- a heat-sealable resin layer laminated film
- System polyethyleneimine, alkyl titanate and the like are used.
- the coating layer preferably used in the laminate of the present invention is applied at any stage of the production process of the laminate, for example, by applying a coating solution for forming a coating layer containing a solvent, particles, and resin on at least one surface of the polyester film, A coating layer may be formed. Further, it is preferable to apply a coating solution for forming a coating layer to an unstretched or uniaxially stretched polyester film, dry it, then stretch it at least in a uniaxial direction, and then perform heat treatment to form a coating layer.
- the solvent include organic solvents such as toluene, water, and mixed systems of water and water-soluble organic solvents. From the viewpoint of environmental problems, water alone or a mixture of water-soluble organic solvent is preferable.
- any known method can be used as a method for applying the coating layer forming coating solution to the film.
- reverse roll coating method gravure coating method, kiss coating method, die coater method, roll brush method, spray coating method, air knife coating method, wire bar coating method, pipe doctor method, impregnation coating method, curtain coating method, etc. It is done. These methods are applied alone or in combination.
- a known production method such as a vacuum deposition method, a sputtering method, a PVD method (physical vapor deposition method) such as ion plating, or a CVD method (chemical vapor deposition method).
- a vacuum deposition method a mixture of Al 2 O 3 and SiO 2 or a mixture of Al and SiO 2 is used as a deposition source material, and the heating method is resistance heating, high-frequency induction heating, electron beam heating. Etc. can be used.
- the reactive gas oxygen, nitrogen, water vapor or the like may be introduced, or reactive vapor deposition using means such as ozone addition or ion assist may be used.
- the manufacturing conditions may be changed as long as the object of the present invention is not impaired, such as applying a bias to the substrate, raising the substrate temperature, or cooling the substrate. The same applies to other manufacturing methods such as sputtering and CVD.
- Breaking strength and breaking elongation A sample was cut into a strip shape having a length of 140 mm and a width of 10 mm, respectively, with a single-blade razor with respect to the MD direction and the TD direction of the film. Subsequently, the strip-shaped sample was pulled using Autograph AG-IS (manufactured by Shimadzu Corporation), and the breaking strength (MPa) and breaking elongation (%) in each direction were determined from the obtained load-strain curve.
- Autograph AG-IS manufactured by Shimadzu Corporation
- the measurement was performed in an atmosphere of 25 ° C. under conditions of a distance between chucks of 40 mm, a crosshead speed of 100 mm / min, and a load cell of 1 kN. In addition, this measurement was performed 5 times and the average value was used.
- Oxygen transmission rate (OTR) Measurement was performed by supplying oxygen from the PEF side at a temperature of 23 ° C. and a relative humidity of 65% using an oxygen permeability measuring device (OX-TRAN 2/21 manufactured by MOCON).
- WVTR Water vapor transmission rate
- a colored solution (uncolored) was obtained by adding 1.25 g of hydrosulfite sodium to the solution and mixing uniformly in a glove box in which nitrogen was circulated for 15 minutes or more in advance.
- iii) Filling with color solution About 30 mL of color solution is placed in a three-side-sealed packaging bag in a glove box that has been circulated with nitrogen for 15 minutes or more. After filling with nitrogen, the bag is closed with a sealer, and the color is displayed.
- a packaging bag (packaging bag with methylene blue coloring solution) filled with the liquid was obtained.
- Oxygen permeability test After the agar was hardened at room temperature, the packaging bag containing the methylene blue color liquid was transferred to a temperature-controlled room at 40 ° C and a relative humidity of 90%, and the color change after 72 hours was observed. The color change was determined according to the following criteria A and B, and A was determined to be acceptable (good). A: There is almost no color change. B: The color change is large.
- Laminate strength The laminate strength is a 15 mm width and 200 mm length cut into a test piece, and the peel strength between the polyester film and the heat-sealable resin layer at a tensile rate of 200 mm / min. It was set as the strength when peeled at 90 degrees.
- the evaluation method was determined on the basis of the following A, B, and C, and in the case of A and B, it was evaluated that there was no practical problem (good).
- the extruded resin was cast on a cooling drum having a surface temperature of 20 ° C. and brought into close contact with the surface of the cooling drum using an electrostatic application method to be cooled and solidified to prepare an unstretched film having a thickness of 250 ⁇ m.
- the obtained unstretched sheet was stretched 5.0 times in the MD direction by a roll group having a peripheral speed difference after the film temperature was raised by a roll group heated to 120 ° C.
- the obtained uniaxially stretched film was guided to a tenter and held with a clip, and stretched in the TD direction.
- the conveyance speed was 5 m / min.
- the stretching temperature in the TD direction was 105 ° C.
- the stretching ratio in the TD direction was 5.0 times.
- heat setting was performed at 200 ° C. for 12 seconds, and 5% relaxation treatment was performed at 190 ° C. to obtain a polyester film having a flange carboxylic acid unit. It was possible to increase the heat setting temperature to 200 ° C. by stretching the MD direction in the MD direction 5 times in the MD direction at 120 ° C., and stretching the TD direction in the TD direction 5 times in the TD direction at 105 ° C.
- Table 1 shows the physical properties of the obtained film.
- a urethane-based two-component curable adhesive (“Takelac (registered trademark) A525S” and "Takenate (registered trademark) A50” manufactured by Mitsui Chemicals, Inc.) is 13.5: 1. (Mixed at a ratio of (mass ratio)), an unstretched polypropylene film having a thickness of 70 ⁇ m (“P1147” manufactured by Toyobo Co., Ltd.) (CPP) as a heat-sealable resin layer was bonded by a dry laminating method, and 4 at 40 ° C. A laminate for evaluation was obtained by performing aging for days. In addition, the thickness after drying of the adhesive bond layer formed with the urethane type 2 liquid curable adhesive was about 4 micrometers. Table 1 shows the physical properties of the obtained laminate.
- the laminate obtained in this example had a laminate strength of 3.9 N / 15 mm and was excellent in laminate strength. Furthermore, the oxygen permeability is 100 mL / m 2 / day / MPa, the water vapor permeability is 3.8 g / m 2 / day, the oxygen permeability test of the packaging bag is good, and the bag breakability test is evaluated. It was good.
- Example 2 A laminate was obtained by laminating an unstretched polypropylene film in the same manner as in Example 1 on a polyester film obtained by the same method as described in Example 1, except that the thickness of the unstretched film was 300 ⁇ m. . Table 1 shows the physical properties of the obtained film and laminate.
- the obtained laminate had a laminate strength of 4.0 N / 15 mm and was excellent in laminate strength. Furthermore, the oxygen permeability is 75 mL / m 2 / day / MPa, the water vapor permeability is 3.4 g / m 2 / day, the oxygen permeability test of the packaging bag is good, and the evaluation of the bag breaking property test is also good. Met.
- Example 3 An unstretched film having a thickness of 300 ⁇ m was obtained in the same manner as in Example 2 except that 2000 ppm of silica particles (manufactured by Fuji Silysia Chemical, Silicia 310) was used as an additive.
- the obtained unstretched film was stretched 5 times in the MD direction with a roll group having a peripheral speed difference to obtain a uniaxially stretched film. It was.
- the obtained uniaxially stretched film was guided to a tenter and held with a clip, and TD stretching was performed.
- the conveyance speed was 5 m / min.
- the stretching temperature in the stretching zone 2 was 105 ° C., and the TD stretching ratio was 5 times.
- a heat setting treatment is performed at 200 ° C. for 12 seconds in the heat setting zone 3, and immediately after 5% relaxation treatment is performed at 190 ° C. as shown in Table 1, at a relaxation temperature of 180 ° C. in the relaxation zone 5.
- the end of the film was removed from the clip, and a relaxation treatment was performed at a longitudinal relaxation rate of 9% to obtain a polyester film.
- the obtained film properties are shown in Table 1.
- a laminate was obtained by laminating an unstretched polypropylene film on the obtained polyester film in the same manner as in Example 1.
- Table 1 shows the physical properties of the obtained laminate.
- the obtained laminate had a laminate strength of 4.2 N / 15 mm and was excellent in laminate strength. Furthermore, the oxygen permeability is 77 mL / m 2 / day / MPa, the water vapor permeability is 3.5 g / m 2 / day, the oxygen permeability test of the packaging bag is good, and the bag breakability test is evaluated. It was good.
- Example 4 An unstretched film having a thickness of 300 ⁇ m was obtained in the same manner as in Example 3 except that 1000 ppm of silica particles (manufactured by Fuji Silysia Chemical Co., Ltd., Silicia 310) was used as an additive.
- the obtained unstretched film is heated at 110 ° C., and the film temperature is raised, and then the roll group having a peripheral speed difference is stretched 3.8 times in the MD direction to obtain a uniaxially stretched film. It was.
- the obtained uniaxially stretched film is guided to a tenter and held with a clip.
- the transverse stretching temperature is 105 ° C.
- the transverse stretching ratio is 4.5 times
- heat setting is performed at 190 ° C. for 12 seconds
- relaxation is 8% at 190 ° C.
- a biaxially stretched polyester film was obtained in the same manner as in Example 1 except that the treatment was performed.
- a laminate was obtained by laminating an unstretched polypropylene film in the same manner as described in Example 1.
- the physical properties of the obtained polyester film and the physical properties of the laminate are shown in Table 1.
- the obtained laminate had a laminate strength of 5.4 N / 15 mm and was excellent in laminate strength. Furthermore, the oxygen permeability is 60 mL / m 2 / day / MPa, the water vapor permeability is 3.0 g / m 2 / day, the oxygen permeability test of the packaging bag is good, and the evaluation of the bag breaking property test is also good. Met.
- Example 5 On one side of the polyester film obtained by the same method as described in Example 1, a urethane two-component curable adhesive ("Takelac (registered trademark) A525S” and “Takenate (registered trademark) A50” manufactured by Mitsui Chemicals, Inc.) 13.5: 1 (mass ratio) is used, and a 40 ⁇ m-thick linear low density polyethylene film (“L4102” manufactured by Toyobo Co., Ltd.) (LLDPE) is dry-laminated as a heat-sealable resin layer
- L4102 manufactured by Toyobo Co., Ltd.
- LLDPE 40 ⁇ m-thick linear low density polyethylene film
- the laminated body for evaluation was obtained by pasting together by the method and performing aging at 40 ° C. for 4 days. In addition, all the thickness after drying of the adhesive bond layer formed with the urethane type 2 liquid curable adhesive was about 4 micrometers.
- Table 1 The physical properties of the obtained polyester film and the physical
- the obtained laminate had a laminate strength of 2.4 N / 15 mm and was excellent in laminate strength. Furthermore, the oxygen permeability is 105 mL / m 2 / day / MPa, the water vapor permeability is 6.8 g / m 2 / day, the oxygen permeability test of the packaging bag is good, and the evaluation of the bag breaking property test is also good. Met.
- Example 6 A laminate was obtained by laminating a linear low density polyethylene film on the polyester film obtained in the same manner as described in Example 2 in the same manner as in Example 5. The physical properties of the obtained polyester film and the physical properties of the laminate are shown in Table 1.
- the obtained laminate had a laminate strength of 2.3 N / 15 mm and was excellent in laminate strength. Furthermore, the oxygen permeability is 82 mL / m 2 / day / MPa, the water vapor permeability is 5.8 g / m 2 / day, the oxygen permeability test of the packaging bag is good, and the evaluation of the bag breaking property test is also good. Met.
- Example 7 A laminate was obtained by laminating a linear low density polyethylene film on the polyester film obtained in the same manner as described in Example 3 in the same manner as in Example 5. The physical properties of the obtained polyester film and the physical properties of the laminate are shown in Table 1.
- the obtained laminate had a laminate strength of 2.8 N / 15 mm and was excellent in laminate strength. Furthermore, the oxygen permeability is 81 mL / m 2 / day / MPa, the water vapor permeability is 5.7 g / m 2 / day, the oxygen permeability test of the packaging bag is good, and the bag breakability test is evaluated well. Met.
- Example 8 A laminate was obtained by laminating a linear low-density polyethylene film on the polyester film obtained in the same manner as described in Example 4 in the same manner as in Example 5. The physical properties of the obtained polyester film and the physical properties of the laminate are shown in Table 1.
- the obtained laminate had a laminate strength of 4.0 N / 15 mm and was excellent in laminate strength. Further, the oxygen permeability is 78 mL / m 2 / day / MPa, the water vapor permeability is 5.2 g / m 2 / day, the oxygen permeability test of the packaging bag is good, and the evaluation of the bag breaking property test is also good. Met.
- the inside of the esterification reaction vessel was returned to normal pressure, and 0.071 part by mass of magnesium acetate tetrahydrate and then 0.014 part by mass of trimethyl phosphate were added. Furthermore, the temperature was raised to 260 ° C. over 15 minutes, and 0.012 part by mass of trimethyl phosphate and then 0.0036 part by mass of sodium acetate were added. After 15 minutes, the obtained esterification reaction product was transferred to a polycondensation reaction can, gradually heated from 260 ° C. to 280 ° C. under reduced pressure, and subjected to a polycondensation reaction at 285 ° C.
- the obtained PET resin (A) After completion of the polycondensation reaction, it is filtered through a NASRON filter with a 95% cut diameter of 5 ⁇ m, extruded into a strand from a nozzle, and cooled and solidified using cooling water that has been filtered (pore diameter: 1 ⁇ m or less) in advance. And cut into pellets.
- the obtained PET resin (A) had a melting point of 257 ° C., an intrinsic viscosity of 0.62 dl / g, and contained substantially no inert particles and internally precipitated particles.
- PET resin Polyethylene terephthalate containing 2000 ppm of silica particles (manufactured by Fuji Silysia Chemical Co., Ltd., Silicia 310, average particle size of 2.7 ⁇ m) as an additive is manufactured in the same manner as PET (A) resin. Created.
- the extruded resin was cast on a cooling drum having a surface temperature of 30 ° C. and brought into close contact with the surface of the cooling drum using an electrostatic application method to be cooled and solidified to produce an unstretched film having a thickness of 170 ⁇ m.
- the obtained unstretched sheet was heated to 78 ° C. and the film temperature was raised to 100 ° C., and then stretched 3.5 times in the MD direction with a roll group having a difference in peripheral speed.
- the obtained uniaxially stretched film was held with a clip and stretched in the TD direction.
- the stretching temperature in the TD direction was 120 ° C., and the stretching ratio was 4.0 times.
- heat setting was performed at 240 ° C. for 15 seconds, and 4% relaxation treatment was performed at 185 ° C. to obtain a biaxially stretched polyethylene terephthalate film having a thickness of 12 ⁇ m.
- a laminate was obtained by laminating an unstretched polypropylene film on the obtained polyester film in the same manner as in Example 1. Table 1 shows the physical properties of the obtained film and the physical properties of the laminate.
- Comparative Example 2 A laminate was obtained by laminating a linear low density polyethylene film on the polyester film obtained in the same manner as in Comparative Example 1 in the same manner as in Example 5. Table 1 shows the physical properties of the obtained film and the physical properties of the laminate.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Laminated Bodies (AREA)
- Wrappers (AREA)
Abstract
Description
1.ポリエステルフィルムとヒートシール性樹脂層とを備えた積層体であって、
上記ポリエステルフィルムは、フランジカルボン酸とエチレングリコールからなるポリエチレンフランジカルボキシレート樹脂を含む二軸配向ポリエステルフィルムであり、
上記フィルムの面配向係数ΔPが0.005以上、0.200以下であり、上記フィルムの厚さが1μm以上、300μm以下であり、上記フィルムの150℃で30分加熱したときの熱収縮率が10%以下であり、
上記積層体のラミネート強度が2.0N/15mm以上であることを特徴とする積層体。
2.温度23℃、相対湿度65%下における酸素透過度が1mL/m2/day/MPa以上、200mL/m2/day/MPa以下である上記1に記載の積層体。
3.上記1または2のいずれかに記載の積層体を備えることを特徴とする包装袋。
本発明に用いるポリエステルフィルムは、フランジカルボン酸とエチレングリコールからなるポリエチレンフランジカルボキシレート樹脂を含む二軸配向ポリエステルフィルムである。
他のジカルボン酸成分およびグリコール成分の共重合量は、上記ポリエステルの全構成ユニット100モル%中、20モル%以下であることが好ましく、10モル%以下であることがより好ましく、5モル%以下であることが特に好ましい。
上記の他のジカルボン酸成分としては、テレフタル酸やイソフタル酸、フタル酸、ナフタレンジカルボン酸、4、4’-ジカルボキシビフェニル、5-ナトリウムスルホイソフタル酸等の芳香族ジカルボン酸、1,4-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,2-シクロヘキサンジカルボン酸、2,5-ノルボルネンジカルボン酸、テトラヒドロフタル酸等の脂環族ジカルボン酸や、シュウ酸、マロン酸、コハク酸、アジピン酸、アゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸、オクタデカン二酸、フマル酸、マレイン酸、イタコン酸、メサコン酸、シトラコン酸、ダイマー酸等の脂肪族ジカルボン酸等が挙げられる。
上記の他のグリコール成分としては、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2-メチル-1,3-プロパンジオール、2-アミノ-2-エチル-1,3-プロパンジオール、2-アミノ-2-メチル-1,3-プロパンジオール、1,10-デカンジオール、ジメチロールトリシクロデカン、ジエチレングリコール、トリエチレングリコール等の脂肪族グリコール、ビスフェノールA、ビスフェノールS、ビスフェノールC、ビスフェノールZ、ビスフェノールAP、4,4′-ビフェノールのエチレンオキサイド付加体またはプロピレンオキサイド付加体、1,2-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール等の脂環族グリコール、ポリエチレングリコール、ポリプロピレングリコール等が挙げられる。
面配向係数(ΔP)が0.005未満では、フィルムの機械特性が不十分となり、フィルムの印刷や製袋などの後加工が困難となること、後の印刷やコーティングを行うときに印刷機やコーター上でフィルムが切れることなどが発生するため好ましくない。これに対して面配向係数(ΔP)を0.005以上とすることにより、上記問題が解消される他、PEFフィルムのガスバリア性が向上する。また面配向係数(ΔP)を、最も好ましくは0.160以下とすることにより十分な機械強度が得られる。
ΔP={(nx+ny)-2nz}÷2
なお、本項で記載しているのは基材フィルムそのものの酸素透過度であり、当然、基材フィルムにコーティング、金属蒸着、金属酸化物による蒸着、スパッタリングなどの方法および共押出しなどによる方法などを付与することで、さらに酸素透過度を改善することは可能である。
なお、本項で記載しているのは基材フィルムそのものの水蒸気透過度であり、当然、基材フィルムにコーティング、金属蒸着、金属酸化物による蒸着、スパッタリングなどの方法および共押出しなどによる方法などを付与することで、さらに水蒸気透過度を改善することは可能である。
本発明に用いるヒートシール性樹脂層は、包装機械のヒートシール条件に適応する樹脂を含むものであればよい。すなわちヒートシール性樹脂は、製袋等の加工の際に、ヒートシールバーの熱と圧力により熱接着する方法、インパルスシール、超音波シール等の方法によりシール可能なものであればよく、例えば、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、直鎖状低密度ポリエチレン等のポリエチレン、ポリプロピレン等のポリオレフィン、ポリスチレン、ポリ塩化ビニル、ポリビニルアルコール、エチレン-ビニルアルコール共重合体、エチレン-酢酸ビニル共重合体、エチレン-アクリル酸共重合体、エチレン-アクリル酸エチル共重合体、アイオノマー等が用いられる。
(3-1)被覆層
本発明の積層体は、本発明に用いるPEFフィルムに高い透明性と優れた易滑性等を付与するために、被覆層を備えていてもよい。被覆層を設ける場合には、上記ポリエステルフィルムの少なくとも片面に被覆層を備えることが好ましい。被覆層は上記ポリエステルフィルムの両面にあってもよく、被覆層上にさらに被覆層を設ける多層積層構成をとってもよい。被覆層が多層の場合は、より外側(ポリエステルフィルムの反対側)の被覆層に後述の粒子を含有させることが好ましく、後述の無機粒子を含有させることがより好ましい。
被覆層のポリエステル樹脂として共重合ポリエステルを用いる場合、ジカルボン酸成分として芳香族ジカルボン酸成分を、グリコール成分としてエチレングリコール及び分岐状グリコールを構成成分とすることが好ましい。分岐状グリコールとは、例えば、2,2-ジメチル-1,3-プロパンジオール(ネオペンチルグリコール)、2-メチル-2-エチル-1,3-プロパンジオール、2-メチル-2-ブチル-1,3-プロパンジオール、2-メチル-2-プロピル-1,3-プロパンジオール、2-メチル-2-イソプロピル-1,3-プロパンジオール、2-メチル-2-n-ヘキシル-1,3-プロパンジオール、2,2-ジエチル-1,3-プロパンジオール、2-エチル-2-n-ブチル-1,3-プロパンジオール、2-エチル-2-n-ヘキシル-1,3-プロパンジオール、2,2-ジ-n-ブチル-1,3-プロパンジオール、2-n-ブチル-2-プロピル-1,3-プロパンジオール、2,2-ジ-n-ヘキシル-1,3-プロパンジオールなどが挙げられる。
被覆層のポリウレタン樹脂は、構成成分として、少なくともポリオール成分及びポリイソシアネート成分を含み、さらに必要に応じて鎖延長剤を含むことができる。熱反応型ポリウレタン樹脂を用いる場合には、例えば、末端イソシアネート基を活性水素基で封鎖(以下ブロックと言う)した、水溶性または水分散性ポリウレタンなどが挙げられる。
被覆層のアクリル系樹脂として、水分散性または水溶性のアクリル樹脂を用いることができる。水分散性または水溶性のアクリル樹脂とは、例えば、アクリレートおよびメタクリレート樹脂のうち少なくとも1つ、あるいはこれらと、スチレンなどの不飽和二重結合を有するアクリル樹脂と共重合可能な脂肪族化合物または芳香族化合物との共重合体が挙げられる。親水性に優れたアクリル-スチレン共重合樹脂として、乳化重合による水分散性アクリル-スチレンランダム共重合樹脂が最も好ましい。
耐スクラッチ性やロール状に巻取る際や巻出す際のハンドリング性(滑り性、走行性、ブロッキング性、巻取り時の随伴空気の空気抜け性など)を改善するために、被覆層に粒子を含有させることが好ましい。これにより、本発明の積層ポリエステルフィルムは、高い透明性を保持しながら、滑り性、巻取り性、耐スクラッチ性を得ることができる。
本発明の積層体は、PEFフィルムのガスバリア性を向上し、PEFフィルムに可撓性を付与するために薄膜層を備えていてもよい。薄膜層は、無機化合物を主たる成分とするものである。無機化合物は、酸化アルミニウム及び酸化珪素の少なくとも一方である。ここでの「主たる成分」とは、薄膜層を構成する成分100質量%に対し、酸化アルミニウム及び酸化珪素の合計量が50質量%超であることを意味し、好ましくは70質量%以上、より好ましくは90質量%以上、最も好ましくは100質量%(酸化アルミニウム、酸化珪素以外の成分が薄膜層を構成する成分として含有されていない)である。ここでいう酸化アルミニウムとは、AlO,Al2O,Al2O3等の各種アルミニウム酸化物の少なくとも1種以上からなり、各種アルミニウム酸化物の含有率は薄膜層の作製条件によって制御することができる。酸化珪素とは、SiO,SiO2,Si3O2等の各種珪素酸化物の少なくとも1種以上からなり、各種珪素酸化物の含有率は薄膜層の作製条件によって制御することができる。酸化アルミニウム又は酸化珪素には、成分中に、特性が損なわれない範囲で微量(全成分に対して、最大でも3質量%まで)の他成分を含んでいてもよい。
(3-3)その他
本発明の積層体は、特性向上のために必要に応じて、上記PEFフィルム、被覆層、および薄膜層以外の層を備えていてもよい。例えば、二軸延伸ポリアミドフィルム、ポリ塩化ビニリデンフィルム、ポリメタキシレンアジパミドフィルム、耐衝撃強度の向上に有効な二軸延伸ポリエチレンテレフタレートフィルム等が挙げられる。
本発明の積層体は、ポリエチレンフランジカルボキシレート系樹脂よりなる二軸配向ポリエステルフィルムと、ヒートシール性樹脂層とを備えるものである。また本発明の積層体は、上述の通りその他の層も備えていても良い。すなわち本発明の積層体は、2層に限定されず、3層以上の積層構造であっても良い。
200mL/m2/day/MPaを超えると、酸素により物質が劣化したり食品の保存性が不良になる。また、製造上の点から、1mL/m2/day/MPa以上が好ましい。
本発明の積層体を製袋することにより包装袋を得ることができる。包装体としては、袋、フタ材、カップ、チューブ、スタンディングパウチ、トレイ等が挙げられる。その形状、種類は、特に限定されず、例えば、袋物の包装形式としては、ピロータイプ、三方シール、四方シール等が挙げられる。これらの包装材料、包装体の全部あるいは一部として、本発明の積層体を用いる。
次に、本発明の積層体を製造する方法について説明する。まず本発明に用いるフランジカルボン酸ユニットを有するポリエステルフィルムの製造方法について説明する。PEFペレットを用いた代表例について詳しく説明するが、当然これに限定されるものではない。
本発明で用いるポリエステルフィルムを得るためには1.1~10.0倍の範囲でMD方向に延伸を行うことが好ましい。MD方向に1.1倍以上延伸することで、面配向係数ΔPが0.005以上であるフィルムを作製することができる。MD方向の延伸倍率は、より好ましくは1.5倍以上、さらに好ましくは2.5倍以上、さらにより好ましくは3.5倍以上、一層好ましくは3.8倍以上、特に好ましくは4.0倍以上、最も好ましくは4.5倍以上である。2.5倍以上とすることで、ΔPが0.02以上、さらにはMDおよびTD方向の屈折率nx、nyが1.5700以上となり、フィルム破断強度が100MPa以上かつフィルム破断伸度が15%以上の力学的特性に優れたフィルムとすることができる。MD方向の延伸倍率が10.0倍以下であると破断の頻度が少なくなり好ましい。MD方向の延伸倍率が高いほど、熱固定工程の温度を高くすることができ、熱収縮率を下げることができる。
本発明で用いられるポリエステルフィルムを得るためには90℃以上150℃以下の範囲でMD方向に延伸を行うことが好ましい。より好ましくは100℃以上125℃以下である。MD方向の延伸温度が90℃以上では破断の頻度が少なくなり好ましい。150℃以下であると均一に延伸ができるため好ましい。
本発明のフランジカルボン酸ユニットを有するポリエステルフィルムを得るためには1.1~10.0倍の範囲でTD方向に延伸を行うことが好ましい。TD方向に1.1倍以上延伸することで、面配向係数ΔPが0.005以上のフィルムを作製することができる。より好ましくは、TD方向の延伸倍率が3.0倍以上、さらに好ましくは3.5倍以上、さらにより好ましくは4倍以上、特に好ましくは4.5倍以上である。3.0倍以上とすることで、面配向係数ΔPが0.02以上、さらにはMD方向及びTD方向の屈折率nx、nyが1.5700以上となり、フィルム破断強度が75MPa以上かつフィルム破断伸度が15%以上の力学的特性に優れたフィルムとすることができる。TD方向の延伸倍率が10.0倍以下であると破断の頻度が少なくなり好ましい。
本発明のフランジカルボン酸ユニットを有するポリエステルフィルムを得るためには80℃以上200℃以下の範囲でTD方向に延伸を行うことが好ましい。より好ましくは95℃以上135℃以下である。幅方向の延伸温度が80℃以上では破断の頻度が少なくなり好ましい。200℃以下であると均一に延伸ができるため好ましい。
本発明のフランジカルボン酸ユニットを有するポリエステルフィルムを得るためには110℃以上、210℃以下の範囲で熱固定処理を行うことが好ましい。熱固定処理の温度が210℃以下であるとフィルムが不透明になり難く、溶融破断の頻度が少なくなり、好ましい。一方、熱固定温度を高くすると熱収縮率が低減するため110℃以上であることが好ましく、120℃以上がより好ましく、140℃以上がさらに好ましく、160℃以上がさらにより好ましく、175℃以上が特に好ましい。熱固定処理により面配向係数ΔPが大きくなる傾向にある。
TD方向の緩和処理を行なう場合、本発明のフランジカルボン酸ユニットを有するポリエステルフィルムを得るためには100℃以上200℃以下の範囲でTD方向に緩和処理を行うことが好ましい。より好ましくは165℃以上195℃以下である。これにより、熱収縮率を低減できるため好ましい。
TD方向の緩和処理を行なう場合、本発明のフランジカルボン酸ユニットを有するポリエステルフィルムを得るためにはTD方向の緩和率を0.5%以上10.0%以下の範囲で行うことが好ましい。より好ましくは2%以上6%以下である。緩和率を0.5%以上とすることにより、熱収縮率を低減できるため好ましい。
熱固定ゾーン3の最高温度を経て結晶化を施したフィルムに対して弛緩処理を行うと、その残留延伸応力を適度に除去できるため、好ましい。例えば緩和処理を行なわずに弛緩処理のみ行なう場合、図1に示すように熱固定ゾーン3の熱固定処理による最高温度部を経た後、ただちに弛緩ゾーン4でフィルム端部を分離し、MD方向およびTD方向に熱固定を行う(この場合は、次の弛緩ゾーン5でフィルム端部を分離しない)か;または弛緩ゾーン4にて弛緩を行った後、ただちに弛緩ゾーン5にてフィルム端部を分離し、MD方向およびTD方向に弛緩処理を施すことが好ましい。これにより、熱収縮率を低く抑えることができる。また、冷却後、巻取り工程の引き取り速度をTD方向の延伸の製膜速度より遅くしてTD方向の弛緩処理を行ってもよいが、熱固定ゾーン3の最高温度を経た後にフィルムを冷却することなくフィルムに弛緩処理を行うことが好ましい。
弛緩ゾーン4または5の温度は140℃以上200℃以下であることが好ましく、160℃以上180℃以下であることがより好ましい。弛緩ゾーン4または5の温度が140℃以上200℃以下であると150℃、30分間加熱したときの熱収縮率最大値が小さくなり好ましい。140℃未満の弛緩処理では150℃、30分間加熱したときの全方位の収縮率を低減することは難しく、200℃を超える弛緩処理ではフィルムの弾性率が低下することにより、フィルムの平面性が悪化してしまう。
熱固定ゾーン3の熱固定処理による最高温度部を経た後、フィルムを冷却することなくフィルム端部を分離する場合には、横方向には自由に弛緩することから、上記弛緩処理温度の制御により、横方向の熱収縮率は極めて低くなる。また、下記式(1)で定義される縦方向弛緩率は、縦方向の熱収縮率と相関するため、縦方向弛緩率は1.0%以上15.0%以下であることが好ましく、3.0%以上10.0%以下であることがより好ましい。縦方向弛緩率が15.0%以下であると、フィルムの平面性に優れるため好ましい。縦方向弛緩率が1.0%以上であると、熱収縮率最大値が小さくなり好ましい。
フィルム端部の分離方法は特に限定されないが、弛緩ゾーン4または5に切断刃を設け、端部を切断分離する手法、弛緩ゾーン4内でクリップよりフィルム端部を外す方法などを用いることができる。弛緩ゾーン4または5内でクリップよりフィルム端部を外す方法では縦方向弛緩率によらず安定的に弛緩処理を行うことができるためより好ましい。
フィルムのMD方向及びTD方向に対して、それぞれ長さ140mm及び幅10mmの短冊状に試料を片刃カミソリで切り出した。次いで、オートグラフAG-IS(株式会社島津製作所製)を用いて短冊状試料を引っ張り、得られた荷重-歪曲線から各方向の破断強度(MPa)および破断伸度(%)を求めた。
以下の方法により、面配向係数(ΔP)を算出した。JIS K 7142-1996 5.1(A法)により、ナトリウムD線を光源としてアッベ屈折計によりフィルム面内の縦方向の屈折率(nx)、およびその直角方向の屈折率(ny)、厚み方向の屈折率(nz)を測定し、下記式によって面配向係数(ΔP)を算出した。
ΔP={(nx+ny)-2nz}÷2
JIS K 7136-2000「プラスチック 透明材料のヘーズの求め方」に準拠して測定した。測定器には、日本電色工業社製NDH-5000型濁度計を用いた。
JIS C 2318-1997 5.3.4(寸法変化)に準拠して測定した。測定すべき方向に対し、フィルムを幅10mm、長さ250mmに切り取り、150mm間隔で印を付け、5gfの一定張力下で印の間隔(A)を測定した。次いで、フィルムを150℃の雰囲気中のオーブンに入れ、無荷重下で150±3℃で30分間加熱処理した後、5gfの一定張力下で印の間隔(B)を測定した。以下の式より熱収縮率を求めた。
熱収縮率(%)=(A-B)/A×100
酸素透過度測定装置(MOCON社製OX-TRAN2/21)を用いて、温度23℃、相対湿度65%の条件にて、酸素をPEF側から供給して測定を行った。
水蒸気透過量は、水蒸気透過度測定装置(MOCON社製PERMATRAN-W3/333)を用いて、温度37.8℃、相対湿度90%の条件にて、水蒸気をPEF側から供給して測定を行った。
ポリエステル樹脂を粉砕して乾燥した後、パラクロロフェノール/テトラクロロエタン=75/25(重量比)の混合溶媒に溶解した。ウベローデ粘度計を用いて、30℃で0.4g/dlの濃度の溶液の流下時間及び溶媒のみの流下時間を測定し、それらの時間比率から、Hugginsの式を用い、Hugginsの定数が0.38であると仮定して固有粘度を算出した。
ミリトロンを用い、測定すべきフィルムのTD方向の中央から両側へ全幅の6割に相当する範囲内における任意の4箇所より5cm角サンプル4枚を切り取り、マール社製の厚み計「Millitron 1254」を用い、一枚あたり各5点(計20点)測定して平均値を厚みとした。
株式会社東洋精機製作所製のインパクトテスターを用い、23℃の雰囲気下におけるフィルムの衝撃打ち抜きに対する強度を測定した。衝撃球面は、直径1/2インチのものを用いた。単位はJであり、測定したフィルムの厚みで測定値を割り、厚み15μmあたりの評価値を用いた。
i)包装袋の作製
実施例で作製したポリエステルフィルムにポリエステル系接着剤を塗布後、厚み40μmの直鎖状低密度ポリエチレンフィルム(L‐LDPEフィルム:東洋紡績社製、L4102)をドライラミネートし、40℃の環境下で3日間エージングを行いラミネートフィルムとした。ラミネートフィルムを用い内寸:横70mm×縦105mmの三方シールされた包装袋を作成した。
ii)呈色液の作製
水2Lと粉寒天6.6gをガラス容器に入れ95℃の湯中に容器を浸し1時間以上温め寒天を完全に溶解させた。50メッシュの金網を用いて溶液をろ過しゲル化した異物を取り除いた。溶液にメチレンブルー0.04gを加えた。事前に窒素を15分以上流通させたグローブボックス内で溶液にハイドロサルファイトナトリウム1.25gを加え均一に混ぜることで呈色液(未呈色)を得た。
iii)呈色液の充填
事前に窒素を15分以上流通させたグローブボックス内で三方シールされた包装袋に約30mLの呈色液を入れ、窒素を充填した後にシーラーで袋を閉じ、呈色液が充填された包装袋(メチレンブルー呈色液入り包装袋)を得た。
iv)酸素透過性試験
寒天を室温で固めた後、メチレンブルー呈色液入り包装袋を40℃、相対湿度90%の恒温室に移し72時間後の色変化を観察した。色変化について下記のA、Bの基準で判定し、Aを合格(良好)とした。
A: 色の変化がほとんどない。
B: 色の変化が大きい。
ラミネート強度は、積層体を幅15mm、長さ200mmに切り出して試験片とし、ポリエステルフィルムとヒートシール性樹脂層との剥離強度を引張速度200mm/minの条件下で、剥離角度90度で剥離させたときの強度とした。
上記(10)で作製したメチレンブルー呈色液入り包装袋を用いて、以下の方法で耐破袋性試験を行った。5℃、相対湿度40%の条件下で、包装袋20袋を高さ方向に1列にまとめて、1mの高さから鋼鉄の床の上に落下させた。これを1回の処理として、20回繰り返し処理した後、包装袋が破れたもの、包装袋から内容物が漏出したもの、または外観に損傷が見られなくても40℃、相対湿度90%の条件下で3日間保存した後の包装袋内のメチレンブルー寒天溶液が著しく呈色したものは破袋したと判断した。評価方法は下記のA、B、Cの基準で判定して、A、Bの場合実用上問題なし(良好)と評価した。
A:破袋率が10%未満
B:破袋率が10%以上、20%未満
C:破袋率が20%以上
原料として、Avantium社製ポリ(エチレン2,5-フランジカルボキシレート)、IV=0.90を用いた。100℃で24時間減圧乾燥(1Torr)し、水分率を100ppm以下にした後、二軸押出機(スクリュー径30mm、L/D=25)に供給した。二軸押出機に供給された原料を、押出機の溶融部、混練り部、配管、ギアポンプまでの樹脂温度は270℃、その後の配管では275℃とし、口金よりシート状に溶融押し出した。
未延伸フィルムの厚みを300μmとしたこと以外は、実施例1に記載と同様の方法にて得たポリエステルフィルムに、実施例1と同様に未延伸ポリプロピレンフィルムをラミネートすることにより積層体を得た。得られたフィルムと積層体の物性を表1に示す。
原料に添加剤としてシリカ粒子(富士シリシア化学製、サイリシア310)を2000ppm用いたこと以外は、実施例2と同様の方法で厚み300μmの未延伸フィルムを得た。
原料に添加剤としてシリカ粒子(富士シリシア化学製、サイリシア310)を1000ppm用いたこと以外は、実施例3と同様の方法で厚み300μmの未延伸フィルムを得た。
実施例1に記載と同様の方法にて得たポリエステルフィルムの片面に、ウレタン系2液硬化型接着剤(三井化学社製「タケラック(登録商標)A525S」と「タケネート(登録商標)A50」とを13.5:1(質量比)の割合で配合)を用いて、ヒートシール性樹脂層として厚さ40μmの直鎖状低密度ポリエチレンフィルム(東洋紡社製「L4102」)(LLDPE)をドライラミネート法により貼り合わせ、40℃で4日間エージングを施すことによって、評価用の積層体を得た。なお、ウレタン系2液硬化型接着剤で形成された接着剤層の乾燥後の厚みはいずれも約4μmであった。得られたポリエステルフィルムの物性、積層体の物性を表1に示す。
実施例2に記載と同様の方法にて得たポリエステルフィルムに、実施例5と同様に直鎖状低密度ポリエチレンフィルムをラミネートすることにより積層体を得た。得られたポリエステルフィルムの物性、積層体の物性を表1に示す。
実施例3に記載と同様の方法にて得たポリエステルフィルムに、実施例5と同様に直鎖状低密度ポリエチレンフィルムをラミネートすることにより積層体を得た。得られたポリエステルフィルムの物性、積層体の物性を表1に示す。
実施例4に記載と同様の方法にて得たポリエステルフィルムに、実施例5と同様に直鎖状低密度ポリエチレンフィルムをラミネートすることにより積層体を得た。得られたポリエステルフィルムの物性、積層体の物性を表1に示す。
(1)PET樹脂(A)の製造
エステル化反応缶を昇温し、200℃に到達した時点で、テレフタル酸を86.4質量部及びエチレングリコールを64.4質量部からなるスラリーを仕込み、攪拌しながら触媒として三酸化アンチモンを0.017質量部及びトリエチルアミンを0.16質量部添加した。次いで、加圧昇温を行いゲージ圧3.5kgf/cm2、240℃の条件で、加圧エステル化反応を行った。その後、エステル化反応缶内を常圧に戻し、酢酸マグネシウム4水和物0.071質量部、次いでリン酸トリメチル0.014質量部を添加した。さらに、15分かけて260℃に昇温し、リン酸トリメチル0.012質量部、次いで酢酸ナトリウム0.0036質量部を添加した。15分後、得られたエステル化反応生成物を重縮合反応缶に移送し、減圧下260℃から280℃へ徐々に昇温し、285℃で重縮合反応を行った。
添加剤としてシリカ粒子(富士シリシア化学株式会社製、サイリシア310、平均粒径2.7μm)を2000ppm含有したポリエチレンテレフタレートをPET(A)樹脂と同様の製法で作成した。
表層(a)の原料として、PET樹脂(A)70質量部と、PET樹脂(B)30質量部とをペレット混合し、135℃で6時間減圧乾燥(1Torr)した後、押出機1に供給した。また、中間層(b)層の原料としてPET樹脂(A)82質量部と、PET樹脂(B)18質量部とをペレット混合し、135℃で6時間減圧乾燥(1Torr)した後、押出機2に供給した。押出機2、及び押出機1に供給された各原料を、押出機の溶融部、混練り部、配管、ギアポンプ、フィルターまでの樹脂温度は280℃、その後のポリマー管では275℃とし、3層合流ブロックを用いてa/b/aとなるように積層し、口金よりシート状に溶融押し出した。なお、a層とb層との厚み比率は、a/b/a=8/84/8となるように、各層のギアポンプを用いて制御した。また、前記のフィルターには、いずれもステンレス焼結体の濾材(公称濾過精度:10μm粒子を95%カット)を用いた。また、口金の温度は、押出された樹脂温度が275℃になるように制御した。
比較例1と同様の方法で得られたポリエステルフィルムに、実施例5と同様の方法で直鎖状低密度ポリエチレンフィルムをラミネートすることにより積層体を得た。得られたフィルムの物性、積層体の物性を表1に示す。
2 延伸ゾーン
3 熱固定ゾーン
4、5 弛緩ゾーン
6 冷却ゾーン
7 クリップ
Claims (3)
- ポリエステルフィルムとヒートシール性樹脂層とを備えた積層体であって、
上記ポリエステルフィルムは、フランジカルボン酸とエチレングリコールからなるポリエチレンフランジカルボキシレート樹脂を含む二軸配向ポリエステルフィルムであり、
上記フィルムの面配向係数ΔPが0.005以上、0.200以下であり、上記フィルムの厚さが1μm以上、300μm以下であり、
上記フィルムの150℃で30分加熱したときの熱収縮率が10%以下であり、
上記積層体のラミネート強度が2.0N/15mm以上であることを特徴とする積層体。 - 温度23℃、相対湿度65%下における酸素透過度が1mL/m2/day/MPa以上、200mL/m2/day/MPa以下である請求項1に記載の積層体。
- 請求項1または2のいずれかに記載の積層体を備えることを特徴とする包装袋。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/490,307 US11325363B2 (en) | 2017-03-01 | 2018-02-28 | Laminate including polyester film having furandicarboxylate unit and heat-sealable resin layer, and packaging bag |
CN201880015127.7A CN110382232B (zh) | 2017-03-01 | 2018-02-28 | 具备具有呋喃二甲酸单元的聚酯膜和热密封性树脂层的层叠体以及包装袋 |
KR1020197028220A KR102411863B1 (ko) | 2017-03-01 | 2018-02-28 | 푸란디카르복실산 유닛을 갖는 폴리에스테르 필름과 히트 시일성 수지층을 구비하는 적층체 및 포장 주머니 |
JP2019503042A JP7018427B2 (ja) | 2017-03-01 | 2018-02-28 | フランジカルボン酸ユニットを有するポリエステルフィルムとヒートシール性樹脂層とを備える積層体および包装袋 |
EP18760798.1A EP3590711B1 (en) | 2017-03-01 | 2018-02-28 | Laminate provided with heat-sealable resin layer and polyester film having furandicarboxylic acid unit, and packaging bag |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017008201 | 2017-03-01 | ||
JPPCT/JP2017/008201 | 2017-03-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018159649A1 true WO2018159649A1 (ja) | 2018-09-07 |
Family
ID=63370127
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/007405 WO2018159649A1 (ja) | 2017-03-01 | 2018-02-28 | フランジカルボン酸ユニットを有するポリエステルフィルムとヒートシール性樹脂層とを備える積層体および包装袋 |
Country Status (7)
Country | Link |
---|---|
US (1) | US11325363B2 (ja) |
EP (1) | EP3590711B1 (ja) |
JP (1) | JP7018427B2 (ja) |
KR (1) | KR102411863B1 (ja) |
CN (1) | CN110382232B (ja) |
TW (1) | TWI752179B (ja) |
WO (1) | WO2018159649A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7196970B1 (ja) | 2021-09-01 | 2022-12-27 | 東洋紡株式会社 | 二軸配向ポリエチレンテレフタレートフィルムロール |
JP2023036069A (ja) * | 2021-09-01 | 2023-03-13 | 東洋紡株式会社 | 二軸配向ポリエチレンテレフタレートフィルムロール |
JP7524988B2 (ja) | 2022-12-06 | 2024-07-30 | 東洋紡株式会社 | 二軸配向ポリエチレンテレフタレートフィルムロール |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017115737A1 (ja) * | 2015-12-28 | 2017-07-06 | 東洋紡株式会社 | 積層ポリエステルフィルム |
EP3398768B1 (en) * | 2015-12-28 | 2022-01-26 | Toyobo Co., Ltd. | Layered polyester film |
TWI717477B (zh) | 2016-03-30 | 2021-02-01 | 日商東洋紡股份有限公司 | 聚酯膜、聚酯膜捲筒以及聚酯膜的製造方法 |
KR102411863B1 (ko) * | 2017-03-01 | 2022-06-22 | 도요보 가부시키가이샤 | 푸란디카르복실산 유닛을 갖는 폴리에스테르 필름과 히트 시일성 수지층을 구비하는 적층체 및 포장 주머니 |
CN110382602B (zh) | 2017-03-01 | 2022-05-27 | 东洋纺株式会社 | 具有呋喃二甲酸单元的聚酯膜的制造方法 |
JP7532807B2 (ja) * | 2020-02-28 | 2024-08-14 | Toppanホールディングス株式会社 | 積層体 |
CN111621006B (zh) * | 2020-05-20 | 2022-09-13 | 浙江恒逸石化研究院有限公司 | 一种高韧性的生物基抗菌聚酯的制备方法 |
WO2022168694A1 (ja) * | 2021-02-03 | 2022-08-11 | 住友ベークライト株式会社 | 封止用樹脂組成物および半導体装置 |
DE102022134275A1 (de) * | 2022-12-21 | 2024-06-27 | Tesa Se | Nachhaltiges Haftklebeband |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2551731A (en) | 1946-11-12 | 1951-05-08 | Celanese Corp | Polyesters from heterocyclic components |
JPH1110725A (ja) * | 1997-06-27 | 1999-01-19 | Toray Ind Inc | 透明蒸着用ポリエステルフィルム |
JP2003200546A (ja) * | 2002-01-09 | 2003-07-15 | Toray Ind Inc | 蒸着用ポリエステルフィルム及び蒸着ポリエステルフィルム |
JP4881127B2 (ja) | 2005-11-07 | 2012-02-22 | キヤノン株式会社 | 高分子化合物およびその合成方法 |
JP2012094699A (ja) * | 2010-10-27 | 2012-05-17 | Teijin Dupont Films Japan Ltd | 太陽電池裏面保護膜用ポリエステルフィルムの製造方法および太陽電池裏面保護膜用ポリエステルフィルム |
JP2012229395A (ja) | 2011-04-11 | 2012-11-22 | Canon Inc | プラスチックフィルム |
JP2013155389A (ja) | 2007-04-24 | 2013-08-15 | Mitsubishi Chemicals Corp | フラン構造を含むポリエステル |
JP2014073598A (ja) * | 2012-10-03 | 2014-04-24 | Toray Ind Inc | ガスバリア性フィルム |
WO2014100265A1 (en) * | 2012-12-20 | 2014-06-26 | Dow Global Technologies Llc | Multilayer films of fdca-based polyesters |
JP2015506389A (ja) | 2011-12-29 | 2015-03-02 | ナチュラ コスメティコス ソシエダッド アノニマ | 2,5−フランジカルボン酸からのポリ(エチレン2,5−フランジカルボキシレート)の製造方法、その使用、そのポリエステル化合物及び配合物 |
WO2016032330A1 (en) | 2014-08-25 | 2016-03-03 | Furanix Technologies B.V. | Process for producing an oriented film comprising poly(ethylene-2,5-furandicarboxylate) |
Family Cites Families (59)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4439479A (en) * | 1982-01-15 | 1984-03-27 | Teijin Limited | Slippery biaxially stretched polyester films |
FR2644105B1 (fr) * | 1989-03-08 | 1991-07-05 | Rhone Poulenc Films | Films polyester composites, leur procede d'obtention et leur utilisation comme support de revetements finals d'application |
US5096784A (en) * | 1989-12-20 | 1992-03-17 | Hoechst Celanese Corporation | Polyester film with nodule surface |
USH1982H1 (en) * | 1996-06-20 | 2001-08-07 | Eastman Chemical Company | Primer coated amorphous plastic films |
DE69913605T2 (de) * | 1998-06-05 | 2004-09-23 | Teijin Ltd. | Antistatische Polyesterfolie und Verfahren zu ihrer Herstellung |
JP2000119414A (ja) * | 1998-10-13 | 2000-04-25 | Toray Ind Inc | 蒸着用ポリエステルフィルム |
JP2001001399A (ja) | 1999-06-17 | 2001-01-09 | Unitika Ltd | ガスバリヤー性ポリエステルフィルムおよびその製造方法 |
JP2001232739A (ja) * | 2000-02-23 | 2001-08-28 | Toray Ind Inc | 蒸着用フィルムおよびそれを用いた蒸着フィルム |
JP5142421B2 (ja) * | 2000-06-05 | 2013-02-13 | 東レ株式会社 | 透明蒸着用2軸配向ポリエチレンテレフタレートフィルム |
JP4834923B2 (ja) * | 2001-06-18 | 2011-12-14 | 東レ株式会社 | 蒸着用ポリエステルフィルム及び蒸着ポリエステルフィルム |
JP2003071969A (ja) | 2001-09-04 | 2003-03-12 | Toyo Metallizing Co Ltd | 透明ガスバリア性フィルム |
JP3982385B2 (ja) * | 2001-11-27 | 2007-09-26 | Jfeスチール株式会社 | 金属板ラミネート用樹脂フィルム、その製造方法、樹脂ラミネート金属板並びにその製造方法 |
KR100909752B1 (ko) * | 2002-03-07 | 2009-07-29 | 도레이 카부시키가이샤 | 폴리에스테르 필름 및 가스 배리어성 폴리에스테르 필름 |
DE10301786A1 (de) * | 2003-01-20 | 2004-07-29 | Mitsubishi Polyester Film Gmbh | Mehrschichtige transparente, biaxial orientierte Polyesterfolie, Verfahren zu ihrer Herstellung und ihre Verwendung |
TWI327105B (en) | 2005-04-28 | 2010-07-11 | Toyo Boseki | Thermal adhesive polyester film, production method of ic card or ic tag using it, and ic card or ic tag |
JP2007118476A (ja) * | 2005-10-31 | 2007-05-17 | Toray Ind Inc | 包装用二軸配向ポリエステルフィルム |
WO2008011295A2 (en) * | 2006-07-17 | 2008-01-24 | Toray Plastics (America), Inc. | Biaxially oriented laminated polyester film for transfer applications |
US20080038539A1 (en) * | 2006-08-08 | 2008-02-14 | Toray Plastics (America), Inc. Lumirror Divison | Anti-iridescent easy handling ultraclear thermoplastic film |
KR101553729B1 (ko) | 2008-03-05 | 2015-09-16 | 도레이 카부시키가이샤 | 열부형 광학 필름용 폴리에스테르 수지 및 그것을 이용한 이축 배향 폴리에스테르 필름 |
IT1387503B (it) * | 2008-05-08 | 2011-04-13 | Novamont Spa | Poliestere biodegradabile alifatico-aromatico |
US20120053317A1 (en) * | 2009-04-23 | 2012-03-01 | Teijin Dupont Films Japan Limited | Biaxially oriented polyester film for solar cells |
KR20120092105A (ko) | 2009-09-02 | 2012-08-20 | 이 아이 듀폰 디 네모아 앤드 캄파니 | 개선된 발유성을 갖는 폴리에스테르 필름 |
KR101700630B1 (ko) * | 2009-09-14 | 2017-01-31 | 미쓰비시 쥬시 가부시끼가이샤 | 태양전지 이면 봉지용 2축 배향 폴리에스테르 필름 |
CN101899145B (zh) * | 2010-07-28 | 2012-07-11 | 江南大学 | 一种2,5-呋喃二甲酸基聚酯的制备方法 |
US8871319B2 (en) * | 2011-04-12 | 2014-10-28 | The Procter & Gamble Company | Flexible barrier packaging derived from renewable resources |
BR112013024517A2 (pt) | 2011-04-12 | 2019-09-24 | Procter & Gamble | embalagem de barreira flexível derivada de recursos renováveis |
EP2527142A1 (en) | 2011-05-24 | 2012-11-28 | Cryovac, Inc. | Multilayer polyester film for ready meals |
US10137625B2 (en) * | 2011-07-08 | 2018-11-27 | Toray Plastics (America), Inc. | Biaxially oriented bio-based polyester films and laminates |
US20130344345A1 (en) * | 2011-07-08 | 2013-12-26 | Toray Plastics (America), Inc. | Biaxially oriented bio-based polyester window films and laminates |
US10800878B2 (en) * | 2011-10-14 | 2020-10-13 | Eastman Chemical Company | Polyester compositions containing furandicarboxylic acid or an ester thereof, cyclobutanediol and ethylene glycol |
KR102250679B1 (ko) * | 2011-10-24 | 2021-05-11 | 퓨라닉스 테크놀러지스 비.브이. | 병, 필름 또는 섬유용도에서 사용되는 중합체 골격안에 2,5-퓨란디카르복실레이트 부분을 가지는 중합체 생성물의 제조방법 |
TW201336667A (zh) | 2011-12-16 | 2013-09-16 | Saudi Basic Ind Corp | 含有熱塑性聚酯的單軸定向膜 |
CN104053535B (zh) * | 2012-01-24 | 2016-08-24 | 东丽株式会社 | 聚酯膜及其制造方法 |
US20140004286A1 (en) * | 2012-06-27 | 2014-01-02 | Toray Plastics (America), Inc. | Lighter than air balloons from laminates comprising bio-based polyester films and bio-based polyethylene films |
WO2014021396A1 (ja) | 2012-08-03 | 2014-02-06 | 東洋紡株式会社 | ポリエステルフィルムおよびその製造方法 |
CN104245278B (zh) * | 2012-08-21 | 2017-04-26 | 东丽株式会社 | 双轴取向聚对苯二甲酸乙二醇酯膜及其制造方法 |
CN104955738A (zh) * | 2012-12-20 | 2015-09-30 | 陶氏环球技术有限责任公司 | 具有基于fdca的聚酯的阻挡膜 |
US9580594B2 (en) | 2012-12-20 | 2017-02-28 | Dow Global Technologies Llc | FDCA-based polyesters |
CN105143967B (zh) * | 2013-04-19 | 2019-02-19 | 东洋纺株式会社 | 液晶显示装置、偏光板和偏振片保护膜 |
US10421835B2 (en) * | 2013-04-26 | 2019-09-24 | Toyobo Co., Ltd. | Polyester film for sealant use, laminate, and packaging bag |
CN104228245A (zh) * | 2013-06-09 | 2014-12-24 | 杜邦公司 | 包含含有聚(丁二酸丙二醇酯)或聚(对苯二甲酸-共-丁二酸丙二醇酯)的低温可热封层的层合体 |
US9580798B2 (en) * | 2013-06-27 | 2017-02-28 | Flex Films (Usa) Inc. | High-barrier polyethylene terephthalate film |
US20160272771A1 (en) * | 2013-11-13 | 2016-09-22 | Toyobo Co., Ltd. | Biaxially stretched polyester film and method for producing same |
WO2015093524A1 (ja) | 2013-12-19 | 2015-06-25 | 東洋紡株式会社 | ポリエステル樹脂 |
JP6387625B2 (ja) | 2014-02-24 | 2018-09-12 | 大日本印刷株式会社 | ガスバリアフィルムの製造方法 |
WO2015134824A2 (en) | 2014-03-07 | 2015-09-11 | 3M Innovative Properties Company | Durable extruded dyed polyester films |
TWI535780B (zh) | 2014-10-24 | 2016-06-01 | 財團法人工業技術研究院 | 聚酯混掺物 |
EP3250377B1 (en) * | 2015-01-28 | 2022-01-05 | Dow Global Technologies LLC | Multilayer film structures comprising renewable polyester compositions |
ES2894648T3 (es) * | 2015-07-03 | 2022-02-15 | Tetra Laval Holdings & Finance | Película o lámina de barrera y material de envasado laminado que comprende la película o lámina y el recipiente de envasado preparado a partir del mismo |
KR20230143619A (ko) | 2015-09-02 | 2023-10-12 | 도요보 가부시키가이샤 | 푸란디카르복실레이트 단위를 함유하는 폴리에스테르 필름 |
MX2018004908A (es) * | 2015-10-29 | 2018-07-06 | Tetra Laval Holdings & Finance | Pelicula de barrera laminada y cinta de cobertura de los bordes para envasado. |
EP3398768B1 (en) * | 2015-12-28 | 2022-01-26 | Toyobo Co., Ltd. | Layered polyester film |
WO2017115737A1 (ja) | 2015-12-28 | 2017-07-06 | 東洋紡株式会社 | 積層ポリエステルフィルム |
TWI717477B (zh) * | 2016-03-30 | 2021-02-01 | 日商東洋紡股份有限公司 | 聚酯膜、聚酯膜捲筒以及聚酯膜的製造方法 |
US20170368807A1 (en) | 2016-06-28 | 2017-12-28 | Toray Plastics (America), Inc. | Formable polyester films |
CN109476857B (zh) | 2016-07-15 | 2022-07-29 | 株式会社可乐丽 | 密封剂膜和其制备方法 |
CN109982825A (zh) * | 2016-11-28 | 2019-07-05 | 福兰尼克斯科技公司 | 聚(2,5-呋喃二甲酸乙二醇酯)聚酯的热成型制品 |
CN110382602B (zh) * | 2017-03-01 | 2022-05-27 | 东洋纺株式会社 | 具有呋喃二甲酸单元的聚酯膜的制造方法 |
KR102411863B1 (ko) * | 2017-03-01 | 2022-06-22 | 도요보 가부시키가이샤 | 푸란디카르복실산 유닛을 갖는 폴리에스테르 필름과 히트 시일성 수지층을 구비하는 적층체 및 포장 주머니 |
-
2018
- 2018-02-28 KR KR1020197028220A patent/KR102411863B1/ko active IP Right Grant
- 2018-02-28 WO PCT/JP2018/007405 patent/WO2018159649A1/ja unknown
- 2018-02-28 CN CN201880015127.7A patent/CN110382232B/zh active Active
- 2018-02-28 EP EP18760798.1A patent/EP3590711B1/en active Active
- 2018-02-28 US US16/490,307 patent/US11325363B2/en active Active
- 2018-02-28 JP JP2019503042A patent/JP7018427B2/ja active Active
- 2018-03-01 TW TW107106833A patent/TWI752179B/zh active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2551731A (en) | 1946-11-12 | 1951-05-08 | Celanese Corp | Polyesters from heterocyclic components |
JPH1110725A (ja) * | 1997-06-27 | 1999-01-19 | Toray Ind Inc | 透明蒸着用ポリエステルフィルム |
JP2003200546A (ja) * | 2002-01-09 | 2003-07-15 | Toray Ind Inc | 蒸着用ポリエステルフィルム及び蒸着ポリエステルフィルム |
JP4881127B2 (ja) | 2005-11-07 | 2012-02-22 | キヤノン株式会社 | 高分子化合物およびその合成方法 |
JP2013155389A (ja) | 2007-04-24 | 2013-08-15 | Mitsubishi Chemicals Corp | フラン構造を含むポリエステル |
JP2015098612A (ja) | 2007-04-24 | 2015-05-28 | 三菱化学株式会社 | フラン構造を含むポリエステル |
JP2012094699A (ja) * | 2010-10-27 | 2012-05-17 | Teijin Dupont Films Japan Ltd | 太陽電池裏面保護膜用ポリエステルフィルムの製造方法および太陽電池裏面保護膜用ポリエステルフィルム |
JP2012229395A (ja) | 2011-04-11 | 2012-11-22 | Canon Inc | プラスチックフィルム |
JP2015506389A (ja) | 2011-12-29 | 2015-03-02 | ナチュラ コスメティコス ソシエダッド アノニマ | 2,5−フランジカルボン酸からのポリ(エチレン2,5−フランジカルボキシレート)の製造方法、その使用、そのポリエステル化合物及び配合物 |
JP2014073598A (ja) * | 2012-10-03 | 2014-04-24 | Toray Ind Inc | ガスバリア性フィルム |
WO2014100265A1 (en) * | 2012-12-20 | 2014-06-26 | Dow Global Technologies Llc | Multilayer films of fdca-based polyesters |
WO2016032330A1 (en) | 2014-08-25 | 2016-03-03 | Furanix Technologies B.V. | Process for producing an oriented film comprising poly(ethylene-2,5-furandicarboxylate) |
Non-Patent Citations (2)
Title |
---|
See also references of EP3590711A4 |
Y. HACHIHAMAT. SHONOK. HYONO: "Technol. Repts.", vol. 8, 1958, OSAKA UNIV., pages: 475 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7196970B1 (ja) | 2021-09-01 | 2022-12-27 | 東洋紡株式会社 | 二軸配向ポリエチレンテレフタレートフィルムロール |
WO2023032595A1 (ja) * | 2021-09-01 | 2023-03-09 | 東洋紡株式会社 | 二軸配向ポリエチレンテレフタレートフィルムロール |
JP2023036069A (ja) * | 2021-09-01 | 2023-03-13 | 東洋紡株式会社 | 二軸配向ポリエチレンテレフタレートフィルムロール |
JP2023035545A (ja) * | 2021-09-01 | 2023-03-13 | 東洋紡株式会社 | 二軸配向ポリエチレンテレフタレートフィルムロール |
JP7243912B2 (ja) | 2021-09-01 | 2023-03-22 | 東洋紡株式会社 | 二軸配向ポリエチレンテレフタレートフィルムロール |
JP7524988B2 (ja) | 2022-12-06 | 2024-07-30 | 東洋紡株式会社 | 二軸配向ポリエチレンテレフタレートフィルムロール |
Also Published As
Publication number | Publication date |
---|---|
US20190389189A1 (en) | 2019-12-26 |
TWI752179B (zh) | 2022-01-11 |
JPWO2018159649A1 (ja) | 2020-02-13 |
EP3590711B1 (en) | 2023-11-22 |
KR20190126093A (ko) | 2019-11-08 |
TW201841976A (zh) | 2018-12-01 |
KR102411863B1 (ko) | 2022-06-22 |
JP7018427B2 (ja) | 2022-02-10 |
EP3590711A4 (en) | 2021-01-06 |
CN110382232A (zh) | 2019-10-25 |
US11325363B2 (en) | 2022-05-10 |
CN110382232B (zh) | 2021-09-28 |
EP3590711A1 (en) | 2020-01-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018159649A1 (ja) | フランジカルボン酸ユニットを有するポリエステルフィルムとヒートシール性樹脂層とを備える積層体および包装袋 | |
US11312830B2 (en) | Polyester film | |
JP6967455B2 (ja) | 積層ポリエステルフィルム | |
US20230340261A1 (en) | Biaxially stretched polyamide film | |
JP4102584B2 (ja) | 積層体およびそれを用いた包装袋 | |
CN115103766B (zh) | 层叠薄膜 | |
TWI851530B (zh) | 積層聚酯膜及聚酯膜卷 | |
JP2004025484A (ja) | ガスバリア性に優れた易裂き性フィルム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18760798 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019503042 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20197028220 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2018760798 Country of ref document: EP Effective date: 20191001 |