WO2018159590A1 - 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法 - Google Patents

銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法 Download PDF

Info

Publication number
WO2018159590A1
WO2018159590A1 PCT/JP2018/007186 JP2018007186W WO2018159590A1 WO 2018159590 A1 WO2018159590 A1 WO 2018159590A1 JP 2018007186 W JP2018007186 W JP 2018007186W WO 2018159590 A1 WO2018159590 A1 WO 2018159590A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
active metal
ceramic
circuit board
ceramic substrate
Prior art date
Application number
PCT/JP2018/007186
Other languages
English (en)
French (fr)
Inventor
伸幸 寺▲崎▼
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018010964A external-priority patent/JP6965768B2/ja
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to CN201880012794.XA priority Critical patent/CN110382445B/zh
Priority to EP18760572.0A priority patent/EP3590909B1/en
Priority to US16/486,266 priority patent/US10818585B2/en
Priority to KR1020197023690A priority patent/KR102459745B1/ko
Publication of WO2018159590A1 publication Critical patent/WO2018159590A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49822Multilayer substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4871Bases, plates or heatsinks
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • C04B37/025Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of glass or ceramic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/4857Multilayer substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/15Ceramic or glass substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49866Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers characterised by the materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/04Ceramic interlayers
    • C04B2237/08Non-oxidic interlayers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/126Metallic interlayers wherein the active component for bonding is not the largest fraction of the interlayer
    • C04B2237/127The active component for bonding being a refractory metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/366Aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/368Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/407Copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/60Forming at the joining interface or in the joining layer specific reaction phases or zones, e.g. diffusion of reactive species from the interlayer to the substrate or from a substrate to the joining interface, carbide forming at the joining interface
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/704Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the ceramic layers or articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/72Forming laminates or joined articles comprising at least two interlayers directly next to each other
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/86Joining of two substrates at their largest surfaces, one surface being complete joined and covered, the other surface not, e.g. a small plate joined at it's largest surface on top of a larger plate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4871Bases, plates or heatsinks
    • H01L21/4882Assembly of heatsink parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3675Cooling facilitated by shape of device characterised by the shape of the housing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12576Boride, carbide or nitride component

Definitions

  • the present invention relates to a copper / ceramic bonded body, an insulating circuit board, and a copper / ceramic bonded body manufacturing method in which a copper member made of copper or a copper alloy and a ceramic member made of aluminum nitride or silicon nitride are bonded.
  • the present invention relates to a method for manufacturing an insulated circuit board.
  • the power module, the LED module, and the thermoelectric module have a structure in which a power semiconductor element, an LED element, and a thermoelectric element are bonded to an insulating circuit board in which a circuit layer made of a conductive material is formed on one surface of the insulating layer.
  • a power semiconductor element for high power control used for controlling wind power generation, electric vehicles, hybrid vehicles, and the like generates a large amount of heat during operation. Therefore, as a substrate on which the power semiconductor element is mounted, for example, a ceramic substrate made of aluminum nitride, silicon nitride, or the like, and a circuit layer formed by bonding a metal plate having excellent conductivity to one surface of the ceramic substrate, Insulated circuit boards having the above have been widely used.
  • an insulating circuit board there is also provided an insulating circuit board in which a metal layer is formed by bonding a metal plate to the other surface of a ceramic substrate.
  • Patent Document 1 proposes an insulated circuit board in which a first metal plate and a second metal plate constituting a circuit layer and a metal layer are copper plates, and this copper plate is directly bonded to a ceramic substrate by a DBC method. Yes.
  • the copper plate and the ceramic substrate are joined by generating a liquid phase at the interface between the copper plate and the ceramic substrate using a eutectic reaction between copper and copper oxide.
  • Patent Document 2 proposes an insulated circuit board in which a circuit layer and a metal layer are formed by bonding a copper plate to one surface and the other surface of a ceramic substrate.
  • a copper plate is disposed on one surface and the other surface of a ceramic substrate with an Ag—Cu—Ti brazing material interposed therebetween, and heat treatment is performed (so-called copper plate is joined).
  • Active metal brazing method since a brazing material containing Ti, which is an active metal, is used, the wettability between the molten brazing material and the ceramic substrate is improved, and the ceramic substrate and the copper plate are bonded well. .
  • Patent Document 3 proposes a paste containing a powder made of a Cu—Mg—Ti alloy as a bonding brazing material used when bonding a copper plate and a ceramic substrate in a high-temperature nitrogen gas atmosphere.
  • This Patent Document 3 has a structure in which bonding is performed by heating at 560 to 800 ° C. in a nitrogen gas atmosphere, and Mg in the Cu—Mg—Ti alloy sublimes and does not remain at the bonding interface.
  • titanium nitride (TiN) is not substantially formed.
  • the bonding temperature is set to 1065 ° C. or higher (eutectic point temperature of copper and copper oxide or higher). Since it is necessary, the ceramic substrate may be deteriorated during bonding.
  • the brazing material contains Ag, and Ag exists at the joining interface. This was likely to occur and could not be used for high voltage applications.
  • the bonding temperature is relatively high at 900 ° C., there is still a problem that the ceramic substrate is deteriorated.
  • Patent Document 3 when bonding is performed in a nitrogen gas atmosphere using a bonding brazing material made of a paste containing a powder made of a Cu—Mg—Ti alloy, gas remains at the bonding interface. However, there is a problem that partial discharge is likely to occur. Moreover, since the alloy powder is used, the melting state becomes uneven according to the variation in the composition of the alloy powder, and there is a possibility that a region where the interface reaction is insufficient is locally formed. Moreover, the organic substance contained in the paste may remain at the bonding interface, resulting in insufficient bonding.
  • the present invention has been made in view of the above-described circumstances, and is a copper / ceramic bonded body, an insulating circuit board, and the above-described copper which are reliably bonded to each other and have excellent migration resistance.
  • An object of the present invention is to provide a method for producing a ceramic joined body and a method for producing an insulated circuit board.
  • a copper / ceramic bonded body includes a copper member made of copper or a copper alloy and a ceramic member made of aluminum nitride or silicon nitride. 1 or 2 selected from Ti, Zr, Nb, and Hf on the ceramic member side between the copper member and the ceramic member.
  • An active metal nitride layer containing the above active metal nitride is formed, and an Mg solid solution layer in which Mg is dissolved in a Cu matrix is formed between the active metal nitride layer and the copper member.
  • the active metal is present in the Mg solid solution layer.
  • the copper / ceramic bonded body of this configuration between the copper member made of copper or copper alloy and the ceramic member made of aluminum nitride or silicon nitride, Ti, Zr, Nb, Hf are formed on the ceramic member side.
  • An active metal nitride layer containing a nitride of one or more selected active metals is formed. This active metal nitride layer is formed by a reaction between an active metal disposed between a ceramic member and a copper member and nitrogen in the ceramic member, and the ceramic member is sufficiently reacted. .
  • an Mg solid solution layer in which Mg is dissolved in the matrix of Cu is formed, and the active metal is present in the Mg solid solution layer.
  • Mg disposed between the ceramic member and the copper member is sufficiently diffused to the copper member side, and Cu and the active metal are sufficiently reacted. Therefore, the interface reaction sufficiently proceeds at the bonding interface between the copper member and the ceramic member, and a copper / ceramic bonded body in which the copper member and the ceramic member are securely bonded can be obtained. Moreover, since Ag does not exist in the joining interface, it is excellent in migration resistance.
  • an intermetallic compound phase containing Cu and the active metal may be dispersed in the Mg solid solution layer.
  • the active metal exists as an intermetallic compound phase of Cu and the active metal when Ti, Zr, and Hf are included as the active metal.
  • Mg disposed between the ceramic member and the copper member is sufficiently diffused to the copper member side, and Cu and The active metal reacts sufficiently, and a copper / ceramic bonded body in which the copper member and the ceramic member are securely bonded can be obtained.
  • Cu particles are dispersed inside the active metal nitride layer.
  • Cu of the copper member is sufficiently reacted with the ceramic member, and a copper / ceramic bonded body in which the copper member and the ceramic member are firmly bonded can be obtained.
  • Cu particles are a simple substance of Cu or an intermetallic compound containing Cu, and are produced by precipitation of Cu present in the liquid phase when an active metal nitride layer is formed.
  • the active metal may be Ti.
  • a titanium nitride layer is formed as the active metal nitride layer, and an intermetallic compound phase containing Cu and Ti is dispersed in the Mg solid solution layer. It is possible to provide a copper / ceramic bonded body that is bonded and has excellent migration resistance.
  • the rate is preferably 15% or less.
  • the area ratio of the fragile Cu 2 Mg phase is limited to 15% or less, for example, even when ultrasonic bonding or the like is performed, it is possible to suppress the occurrence of cracks or the like at the bonding interface. It becomes.
  • An insulated circuit board is an insulated circuit board in which a copper plate made of copper or a copper alloy is bonded to the surface of a ceramic substrate made of aluminum nitride or silicon nitride, the copper plate and the ceramic substrate Are formed on the ceramic substrate side an active metal nitride layer containing a nitride of one or more active metals selected from Ti, Zr, Nb, and Hf.
  • An Mg solid solution layer in which Mg is dissolved in a matrix of Cu is formed between the physical layer and the copper plate, and the active metal is present in the Mg solid solution layer.
  • the copper plate and the ceramic substrate are reliably bonded and have excellent migration resistance, and can be used with high reliability even under high withstand voltage conditions.
  • an intermetallic compound phase containing Cu and the active metal may be dispersed in the Mg solid solution layer.
  • the active metal exists as an intermetallic compound phase of Cu and the active metal when Ti, Zr, and Hf are included as the active metal.
  • the insulated circuit board by which the copper plate and the ceramic substrate were reliably joined can be obtained by existing as an intermetallic compound phase of Cu and the said active metal in Mg solid solution layer.
  • Cu particles are dispersed inside the active metal nitride layer.
  • Cu of the copper plate is sufficiently reacted with the ceramic substrate, and it is possible to obtain an insulating circuit substrate in which the copper plate and the ceramic substrate are firmly bonded.
  • Cu particles are a simple substance of Cu or an intermetallic compound containing Cu, and are produced by precipitation of Cu present in the liquid phase when an active metal nitride layer is formed.
  • the active metal may be Ti.
  • a titanium nitride layer is formed as the active metal nitride layer, and an intermetallic compound phase containing Cu and Ti is dispersed in the Mg solid solution layer, so that the copper plate and the ceramic substrate are reliably bonded. Therefore, it is possible to provide an insulated circuit board having excellent migration resistance.
  • the area ratio of the Cu 2 Mg phase in the region from the bonding surface of the ceramic substrate to the copper plate side to 50 ⁇ m is 15% between the ceramic substrate and the copper plate.
  • the following is preferable.
  • the area ratio of the fragile Cu 2 Mg phase is limited to 15% or less, for example, even when ultrasonic bonding or the like is performed, it is possible to suppress the occurrence of cracks or the like at the bonding interface. It becomes.
  • a method for producing a copper / ceramic bonded body according to an aspect of the present invention is a method for manufacturing the above-described copper / ceramic bonded body, and includes Ti, Zr, Nb, and the like between the copper member and the ceramic member.
  • a bonding step of heating and bonding in a vacuum atmosphere in a state in which the copper member and the ceramic member stacked via the active metal and Mg are pressed in the stacking direction, wherein in the active metal and Mg arrangement step, within an active metal amount of 0.4 ⁇ mol / cm 2 or more 47.0 ⁇ mol / cm 2 or less, Mg amount 7.0 ⁇ mol / cm 2 or more 143. is characterized in that the [mu] mol / cm 2 within the following ranges.
  • a single active metal element and a single Mg element are disposed between the copper member and the ceramic member, and in a state where they are pressed in the stacking direction, a vacuum atmosphere is provided. Since the heat treatment is performed below, no gas or organic residue remains at the bonding interface. Further, since the active metal simple substance and the Mg simple substance are arranged, there is no variation in composition, and a uniform liquid phase is generated.
  • the active metal and Mg arrangement step within an active metal amount of 0.4 ⁇ mol / cm 2 or more 47.0 ⁇ mol / cm 2 or less, Mg amount 7.0 ⁇ mol / cm 2 or more 143.2 ⁇ mol / cm 2 within the range Therefore, it is possible to sufficiently obtain a liquid phase necessary for the interfacial reaction, and to suppress an unnecessary reaction of the ceramic member. Therefore, it is possible to obtain a copper / ceramic bonded body in which the copper member and the ceramic member are securely bonded. Moreover, since Ag is not used for bonding, a copper / ceramic bonded body excellent in migration resistance can be obtained.
  • the pressure load in the bonding step is in a range of 0.049 MPa to 3.4 MPa
  • the heating temperature in the bonding step is Cu and
  • Mg is laminated in a contact state
  • it is within a range of 500 ° C. or more and 850 ° C. or less
  • Cu and Mg are laminated in a non-contact state
  • it is within a range of 670 ° C. or more and 850 ° C. or less. preferable.
  • the ceramic member, the copper member, the active metal, and Mg can be brought into close contact with each other during heating. Interfacial reaction can be promoted.
  • the heating temperature in the joining step is Cu and Mg laminated in a contact state
  • the heating temperature is 500 ° C. or higher, which is higher than the eutectic temperature of Cu and Mg, and Cu and Mg are laminated in a non-contact state. Is set to 670 ° C. or higher, which is higher than the melting point of Mg, so that a liquid phase can be sufficiently generated at the bonding interface.
  • the heating temperature in the joining step is set to 850 ° C. or less, the eutectic reaction between Cu and the active metal can be suppressed, and the generation of an excessive liquid phase can be suppressed. Further, the thermal load on the ceramic member is reduced, and deterioration of the ceramic member can be suppressed.
  • An insulating circuit board manufacturing method is an insulating circuit board that manufactures an insulating circuit board in which a copper plate made of copper or a copper alloy is bonded to the surface of a ceramic substrate made of aluminum nitride or silicon nitride.
  • An active metal and Mg arrangement in which a single element of two or more active metals selected from Ti, Zr, Nb, and Hf and a single element of Mg are disposed between the copper plate and the ceramic substrate.
  • the amount of active metal is 0.4 ⁇ mol / c.
  • the amount of active metal is 0.4 ⁇ mol / c.
  • the range of 2 or more 47.0 ⁇ mol / cm 2 or less it is characterized in that in the range of Mg content of 7.0 ⁇ mol / cm 2 or more 143.2 ⁇ mol / cm 2 or less.
  • the pressure load in the joining step is in the range of 0.049 MPa to 3.4 MPa, and the heating temperature in the joining step is Cu and Mg.
  • the heating temperature in the joining step is Cu and Mg.
  • the pressure load in the joining step is in the range of 0.049 MPa to 3.4 MPa
  • the ceramic substrate, the copper plate, the active metal, and Mg can be brought into close contact with each other during heating.
  • the reaction can be promoted.
  • the heating temperature in the joining step is Cu and Mg laminated in a contact state
  • the heating temperature is 500 ° C. or higher, which is higher than the eutectic temperature of Cu and Mg, and Cu and Mg are laminated in a non-contact state.
  • the heating temperature in the joining step is set to 850 ° C. or less, the eutectic reaction between Cu and the active metal can be suppressed, and the generation of an excessive liquid phase can be suppressed. Further, the thermal load on the ceramic substrate is reduced, and deterioration of the ceramic substrate can be suppressed.
  • a copper member and a ceramic member are reliably joined, and the copper / ceramic joined body excellent in migration resistance, an insulated circuit board, the manufacturing method of the above-mentioned copper / ceramic joined body, and the insulated circuit board It is possible to provide a manufacturing method.
  • FIG. 1 It is a schematic diagram of the joining interface of the circuit layer (copper member) and ceramic substrate (ceramic member) of the insulated circuit board which is the 2nd Embodiment of this invention. It is a flowchart which shows the manufacturing method of the insulated circuit board which is the 2nd Embodiment of this invention. It is explanatory drawing which shows the manufacturing method of the insulated circuit board which is the 2nd Embodiment of this invention. It is an observation result of the joining interface of the copper plate in the copper / ceramics joined body of Example 5 of this invention, and a ceramic substrate. It is an observation result of the joining interface of the copper plate in the copper / ceramics joined body of Example 5 of this invention, and a ceramic substrate.
  • FIG. 6 is an explanatory diagram showing a method for measuring pull strength in Example 3.
  • FIG. 6 is an explanatory diagram showing a method for measuring pull strength in Example 3.
  • the copper / ceramic bonding body is configured by bonding a ceramic substrate 11 as a ceramic member, a copper plate 22 (circuit layer 12) and a copper plate 23 (metal layer 13) as copper members.
  • the insulating circuit board 10 is used.
  • FIG. 1 shows an insulated circuit board 10 and a power module 1 using the insulated circuit board 10 according to the first embodiment of the present invention.
  • the power module 1 includes an insulating circuit board 10, a semiconductor element 3 bonded to one side (the upper side in FIG. 1) of the insulating circuit board 10 via a first solder layer 2, and the other side of the insulating circuit board 10. And a heat sink 51 joined via a second solder layer 8 (on the lower side in FIG. 1).
  • the insulated circuit board 10 is arranged on the ceramic substrate 11, the circuit layer 12 disposed on one surface (the upper surface in FIG. 1) of the ceramic substrate 11, and the other surface (lower surface in FIG. 1) of the ceramic substrate 11. And a metal layer 13 provided.
  • the ceramic substrate 11 prevents electrical connection between the circuit layer 12 and the metal layer 13, and is composed of aluminum nitride having high insulation in this embodiment.
  • the thickness of the ceramic substrate 11 is set within a range of 0.2 to 1.5 mm, and in this embodiment is set to 0.635 mm.
  • the circuit layer 12 is formed by bonding a copper plate 22 made of copper or a copper alloy to one surface of the ceramic substrate 11.
  • a copper plate 22 made of copper or a copper alloy
  • an oxygen-free copper rolled plate is used as the copper plate 22 constituting the circuit layer 12.
  • a circuit pattern is formed on the circuit layer 12, and one surface (the upper surface in FIG. 1) is a mounting surface on which the semiconductor element 3 is mounted.
  • the thickness of the circuit layer 12 is set within a range of 0.1 mm to 2.0 mm, and is set to 0.6 mm in the present embodiment.
  • the metal layer 13 is formed by bonding a copper plate 23 made of copper or a copper alloy to the other surface of the ceramic substrate 11.
  • a copper plate 23 made of copper or a copper alloy
  • an oxygen-free copper rolled plate is used as the copper plate 23 constituting the metal layer 13.
  • the thickness of the metal layer 13 is set within a range of 0.1 mm to 2.0 mm, and is set to 0.6 mm in the present embodiment.
  • the heat sink 51 is for cooling the insulating circuit board 10 described above, and in the present embodiment, is constituted by a heat radiating plate made of a material having good thermal conductivity. In the present embodiment, the heat sink 51 is made of copper or a copper alloy having excellent thermal conductivity. The heat sink 51 and the metal layer 13 of the insulated circuit board 10 are joined via the second solder layer 8.
  • the ceramic substrate 11 and the circuit layer 12 (copper plate 22), and the ceramic substrate 11 and the metal layer 13 (copper plate 23) are one or two selected from Ti, Zr, Nb, and Hf.
  • the active metal film 24 Ti film in this embodiment
  • a metal nitride layer 31 (in this embodiment, a titanium nitride layer) and an Mg solid solution layer 32 in which Mg is dissolved in a matrix of Cu are stacked.
  • the Mg solid solution layer 32 contains the above active metal.
  • an intermetallic compound phase 33 containing Cu and an active metal (Ti) is dispersed in the Mg solid solution layer 32.
  • Ti is used as the active metal, and examples of the intermetallic compound constituting the intermetallic compound phase 33 containing Cu and Ti include Cu 4 Ti, Cu 3 Ti 2 , Cu 4 Ti 3 , and CuTi. , CuTi 2 , CuTi 3 and the like.
  • the Mg content in the Mg solid solution layer 32 is in the range of 0.01 atomic% to 0.5 atomic%.
  • the thickness of the Mg solid solution layer 32 is in the range of 0.1 ⁇ m to 80 ⁇ m.
  • the Mg content in the Mg solid solution layer 32 is preferably in the range of 0.01 atomic% to 0.3 atomic%, but is not limited thereto.
  • Cu particles 35 are dispersed inside the active metal nitride layer 31 (titanium nitride layer).
  • the particle size of the Cu particles 35 dispersed in the active metal nitride layer 31 (titanium nitride layer) is in the range of 10 nm to 100 nm.
  • the Cu concentration in the region near the interface from the interface with the ceramic substrate 11 to 20% of the thickness of the active metal nitride layer 31 (titanium nitride layer) in the active metal nitride layer 31 (titanium nitride layer) is 0. It is within the range of 3 atomic% or more and 15 atomic% or less.
  • the thickness of the active metal nitride layer 31 is in the range of 0.03 ⁇ m to 1.2 ⁇ m.
  • the Cu concentration in the region near the interface from the interface with the ceramic substrate 11 to 20% of the thickness of the active metal nitride layer 31 (titanium nitride layer) is 0.3.
  • the area ratio of the Cu 2 Mg phase in the region from the bonding surface of the ceramic substrate 11 to the circuit layer 12 side to 50 ⁇ m between the ceramic substrate 11 and the circuit layer 12 is 15% or less.
  • the area ratio of the Cu 2 Mg phase in the region from the bonding surface of the ceramic substrate 11 to the circuit layer 12 side up to 50 ⁇ m is preferably 0.01% or more and 10% or less, but is limited to this. Absent.
  • the above-described Cu 2 Mg phase is a region in which Mg element MAP is obtained with an electron beam microanalyzer, and in the region where the presence of Mg is confirmed, the Mg concentration is in a range of 30 atomic percent to 40 atomic percent. .
  • each of Ti, Zr, Nb, and Hf is selected between the copper plate 22 that becomes the circuit layer 12 and the ceramic substrate 11 and between the copper plate 23 that becomes the metal layer 13 and the ceramic substrate 11.
  • One or more active metal simple substances Ti simple substance in this embodiment
  • Mg simple substance are arranged (active metal and Mg arranging step S01).
  • active metal film 24 (Ti film) and Mg film 25 are formed by depositing active metal (Ti) and Mg, and Mg film 25 is laminated in a non-contact state with copper plate 22. ing.
  • the lower limit of the amount of active metal is preferably 2.8 ⁇ mol / cm 2 or more, and the upper limit of the amount of active metal is preferably 18.8 ⁇ mol / cm 2 or less.
  • the lower limit of the Mg amount is preferably 8.8 ⁇ mol / cm 2 or more, and the upper limit of the Mg amount is preferably 37.0 ⁇ mol / cm 2 or less.
  • the copper plate 22, the ceramic substrate 11, and the copper plate 23 are laminated via the active metal film 24 (Ti film) and the Mg film 25 (lamination step S02).
  • the laminated copper plate 22, ceramic substrate 11, and copper plate 23 are pressurized in the laminating direction, and are loaded into a vacuum furnace and heated to join the copper plate 22, the ceramic substrate 11 and the copper plate 23 (joining step S03).
  • the pressurizing load in the joining step S03 is set in the range of 0.049 MPa to 3.4 MPa.
  • the pressure load in the joining step S03 is preferably in the range of 0.294 MPa to 1.47 MPa, but is not limited thereto.
  • the heating temperature in the bonding step S03 is in the range of 670 ° C. or higher and 850 ° C. or lower higher than the melting point of Mg because Cu and Mg are laminated in a non-contact state.
  • the lower limit of the heating temperature is preferably 700 ° C.
  • the degree of vacuum in the bonding step S03 is preferably in the range of 1 ⁇ 10 ⁇ 6 Pa to 1 ⁇ 10 ⁇ 2 Pa.
  • the holding time at the heating temperature is preferably in the range of 5 min to 360 min. In order to reduce the area ratio of the Cu 2 Mg phase, the lower limit of the holding time at the heating temperature is preferably 60 min or more. The upper limit of the holding time at the heating temperature is preferably 240 min or less.
  • the insulated circuit board 10 is manufactured by the active metal and Mg arrangement step S01, the lamination step S02, and the bonding step S03.
  • the heat sink 51 is bonded to the other surface side of the metal layer 13 of the insulating circuit board 10 (heat sink bonding step S04).
  • the insulating circuit board 10 and the heat sink 51 are laminated via a solder material and inserted into a heating furnace, and the insulating circuit board 10 and the heat sink 51 are soldered via the second solder layer 8.
  • the semiconductor element 3 is joined to one surface of the circuit layer 12 of the insulating circuit board 10 by soldering (semiconductor element joining step S05).
  • soldering semiconductor element joining step S05.
  • the copper plate 22 (circuit layer 12) and the copper plate 23 (metal layer 13) made of oxygen-free copper and aluminum nitride are used.
  • the ceramic substrate 11 is joined via an active metal film 24 (Ti film) and an Mg film 25, and the ceramic substrate 11 and the circuit layer 12 (copper plate 22) and the ceramic substrate 11 and the metal layer 13 (copper plate 23).
  • the active metal nitride layer 31 (titanium nitride layer) formed on the ceramic substrate 11 side and the Mg solid solution layer 32 in which Mg is dissolved in the matrix of Cu are laminated on the bonding interface of FIG. Yes.
  • the active metal nitride layer 31 (titanium nitride layer) is formed by reaction of active metal (Ti) disposed between the ceramic substrate 11 and the copper plates 22 and 23 and nitrogen of the ceramic substrate 11. Therefore, in the present embodiment, the ceramic substrate 11 is sufficiently reacted at the bonding interface. Further, an Mg solid solution layer 32 in which Mg is dissolved in the matrix phase of Cu is formed so as to be stacked on the active metal nitride layer 31 (titanium nitride layer). Of active metals. In the present embodiment, since the intermetallic compound phase 33 containing Cu and active metal (Ti) is dispersed in the Mg solid solution layer 32, the Mg disposed between the ceramic substrate 11 and the copper plates 22 and 23 is reduced. It is sufficiently diffused on the copper plates 22 and 23 side. Therefore, in this embodiment, Cu and the active metal (Ti) are sufficiently reacted.
  • the interface reaction sufficiently proceeds at the bonding interface between the ceramic substrate 11 and the copper plates 22, 23, and the circuit layer 12 (copper plate 22), the ceramic substrate 11, the metal layer 13 (copper plate 23), and the ceramic substrate 11.
  • the insulated circuit board 10 (copper / ceramic bonding body) bonded reliably can be obtained. Further, since Ag does not exist at the bonding interface, it is possible to obtain the insulating circuit substrate 10 (copper / ceramic bonding body) having excellent migration resistance.
  • the Cu particles 35 are dispersed inside the active metal nitride layer 31 (titanium nitride layer), the Cu of the copper plates 22 and 23 sufficiently reacts at the bonding surface of the ceramic substrate 11. is doing. Therefore, it is possible to obtain an insulating circuit substrate 10 (copper / ceramic bonding body) in which the copper plates 22 and 23 and the ceramic substrate 11 are firmly bonded.
  • the area ratio of the Cu 2 Mg phase in the region from the bonding surface of the ceramic substrate 11 to the circuit layer 12 (copper plate 22) side to 50 ⁇ m between the ceramic substrate 11 and the circuit layer 12 (copper plate 22). Is limited to 15% or less, for example, even when ultrasonic bonding or the like is performed, it is possible to suppress the occurrence of cracks or the like at the bonding interface.
  • the active metal (Ti) simple substance (active metal film 24) and the Mg simple substance between the copper plates 22 and 23 and the ceramic substrate 11 are used.
  • An active metal and Mg disposing step S01 for disposing (Mg film 25), a laminating step S02 for laminating the copper plates 22 and 23 and the ceramic substrate 11 through the active metal film 24 and the Mg film 25, and a laminated copper plate 22, the ceramic substrate 11, and the copper plate 23 are joined in a state of being pressurized in the stacking direction by heat treatment and joining in a vacuum atmosphere. It does not remain.
  • the active metal (Ti) simple substance and Mg simple substance are arranged, there is no variation in composition, and a uniform liquid phase is generated.
  • a liquid phase necessary for the interfacial reaction can be sufficiently obtained, and an excessive reaction of the ceramic substrate 11 can be suppressed. Therefore, the insulated circuit board 10 (copper / ceramic joined body) in which the copper plates 22 and 23 and the ceramic substrate 11 are securely joined can be obtained.
  • Ag is not used for joining, the insulated circuit board 10 excellent in migration resistance can be obtained.
  • Active metal content of less than 0.4 ⁇ mol / cm 2 (Ti content is less than 0.02 mg / cm 2), and, when Mg content is 7.0 ⁇ mol / cm less than 2 (less than 0.17 mg / cm 2) is There was a risk that the interfacial reaction would be insufficient and the bonding rate would decrease. Further, when the amount of active metal exceeds 47.0 ⁇ mol / cm 2 (Ti amount exceeds 2.25 mg / cm 2 ), an excessive amount of active metal and a relatively hard intermetallic compound phase 33 are generated excessively. The Mg solid solution layer 32 becomes too hard and the ceramic substrate 11 may be cracked.
  • Mg amount exceeds 143.2 ⁇ mol / cm 2 (greater than 3.48 mg / cm 2) in the case, the decomposition reaction of the ceramic substrate 11 becomes excessive, Al is excessively generated, these and Cu and active metal There was a possibility that a large amount of (Ti) or Mg intermetallic compound was generated, and the ceramic substrate 11 was cracked.
  • the active metal amount 0.4 ⁇ mol / cm 2 or more 47.0 ⁇ mol / cm 2 within the range of (Ti amount 0.02 mg / cm 2 or more 2.25 mg / cm 2 or less of range), and the Mg content of 7.0 ⁇ mol / cm 2 or more 143.2 ⁇ mol / cm 2 within the range of (0.17 mg / cm 2 or more 3.48 mg / cm 2 within the range).
  • the pressing load in the joining step S03 is 0.049 MPa or more
  • the ceramic substrate 11, the copper plates 22, 23, the active metal film 24 (Ti film), and the Mg film 25 are brought into close contact with each other. These interface reactions can be promoted during heating.
  • the pressurization load in joining process S03 shall be 3.4 MPa or less, the crack etc. of the ceramic substrate 11 can be suppressed.
  • the heating temperature in the joining step S03 is set to 670 ° C. or more which is equal to or higher than the melting point of Mg. Can be generated.
  • the heating temperature in the bonding step S03 is 850 ° C. or lower, generation of eutectic reaction between Cu and the active metal (Ti) can be suppressed, and generation of an excessive liquid phase can be suppressed. . Further, the thermal load on the ceramic substrate 11 is reduced, and deterioration of the ceramic substrate 11 can be suppressed.
  • the copper / ceramic bonding body according to this embodiment is an insulating circuit board 110 configured by bonding a ceramic substrate 111 as a ceramic member and a copper plate 122 (circuit layer 112) as a copper member.
  • FIG. 5 shows an insulated circuit board 110 and a power module 101 using the insulated circuit board 110 according to the second embodiment of the present invention.
  • the power module 101 includes an insulating circuit board 110, a semiconductor element 3 bonded to a surface on one side (upper side in FIG. 5) of the insulating circuit board 110 via a solder layer 2, and the other side of the insulating circuit board 110. And a heat sink 151 disposed on the lower side (lower side in FIG. 5).
  • the solder layer 2 is made of, for example, a Sn—Ag, Sn—In, or Sn—Ag—Cu solder material.
  • the insulated circuit board 110 is arranged on the ceramic substrate 111, the circuit layer 112 disposed on one surface (the upper surface in FIG. 5) of the ceramic substrate 111, and the other surface (the lower surface in FIG. 5) of the ceramic substrate 111. And a metal layer 113 provided.
  • the ceramic substrate 111 prevents electrical connection between the circuit layer 112 and the metal layer 113.
  • the ceramic substrate 111 is made of highly insulating silicon nitride.
  • the thickness of the ceramic substrate 111 is set within a range of 0.2 to 1.5 mm, and is set to 0.32 mm in this embodiment.
  • the circuit layer 112 is formed by bonding a copper plate 122 made of copper or a copper alloy to one surface of the ceramic substrate 111.
  • a copper plate 122 made of copper or a copper alloy
  • an oxygen-free copper rolled plate is used as the copper plate 122 constituting the circuit layer 112.
  • a circuit pattern is formed on the circuit layer 112, and one surface (the upper surface in FIG. 5) is a mounting surface on which the semiconductor element 3 is mounted.
  • the thickness of the circuit layer 112 is set within a range of 0.1 mm to 2.0 mm, and is set to 0.6 mm in the present embodiment.
  • the metal layer 113 is formed by joining an aluminum plate 123 to the other surface of the ceramic substrate 111.
  • the metal layer 113 is formed by joining an aluminum plate 123 made of a rolled plate of aluminum (so-called 4N aluminum) having a purity of 99.99 mass% or more to the ceramic substrate 111.
  • This aluminum plate 123 has a 0.2% proof stress of 30 N / mm 2 or less.
  • the thickness of the metal layer 113 (aluminum plate 123) is set within a range of 0.5 mm or more and 6 mm or less, and is set to 2.0 mm in the present embodiment.
  • the metal layer 113 is formed by bonding an aluminum plate 123 to the ceramic substrate 111 using an Al—Si brazing material 128.
  • the heat sink 151 is for cooling the insulating circuit board 110 described above, and in the present embodiment, is constituted by a heat radiating plate made of a material having good thermal conductivity.
  • the heat sink 151 is made of A6063 (aluminum alloy).
  • the heat sink 151 is bonded to the metal layer 113 of the insulating circuit substrate 110 using, for example, an Al—Si brazing material.
  • the ceramic substrate 111 and the circuit layer 112 include an active metal film 124 (this embodiment) made of one or more active metals selected from Ti, Zr, Nb, and Hf. In the embodiment, they are bonded via a Ti film) and an Mg film 125.
  • an active metal nitride layer 131 in this embodiment, a titanium nitride layer formed on the ceramic substrate 111 side, A Mg solid solution layer 132 in which Mg is dissolved in a Cu mother phase is laminated.
  • the Mg solid solution layer 132 contains the active metal described above.
  • an intermetallic compound phase 133 containing Cu and an active metal (Ti) is dispersed in the Mg solid solution layer 132.
  • Ti is used as the active metal, and examples of the intermetallic compound constituting the intermetallic compound phase 133 containing Cu and Ti include Cu 4 Ti, Cu 3 Ti 2 , Cu 4 Ti 3 , CuTi, CuTi 2, CuTi 3, and the like.
  • the Mg content in the Mg solid solution layer 132 is in the range of 0.01 atomic% to 0.5 atomic%.
  • the thickness of the Mg solid solution layer 132 is in the range of 0.1 ⁇ m to 80 ⁇ m.
  • Cu particles 135 are dispersed inside the active metal nitride layer 131 (titanium nitride layer).
  • the particle size of the Cu particles 135 dispersed in the active metal nitride layer 131 (titanium nitride layer) is in the range of 10 nm to 100 nm.
  • the Cu concentration in the region near the interface from the interface with the ceramic substrate 111 to 20% of the thickness of the active metal nitride layer 131 (titanium nitride layer) is 0.3 atom. % Or more and 15 atomic% or less.
  • the thickness of the active metal nitride layer 131 (titanium nitride layer) is in the range of 0.03 ⁇ m to 1.2 ⁇ m.
  • the area ratio of the Cu 2 Mg phase in the region from the bonding surface of the ceramic substrate 111 to the circuit layer 112 side to 50 ⁇ m between the ceramic substrate 111 and the circuit layer 112 is 15% or less.
  • Ti simple substance) and Mg simple substance are arranged (active metal and Mg arrangement step S101).
  • active metal film 124 (Ti film) and Mg film 125 are formed by depositing active metal (Ti) and Mg, and Mg film 125 is formed so as to be in contact with copper plate 122. Yes.
  • Active metal content of less than 0.4 ⁇ mol / cm 2 (Ti content is less than 0.02 mg / cm 2), and, when Mg content is 7.0 ⁇ mol / cm less than 2 (less than 0.17 mg / cm 2) is The interface reaction becomes insufficient, and the bonding rate may be reduced. Further, when the amount of active metal exceeds 47.0 ⁇ mol / cm 2 (Ti amount exceeds 2.25 mg / cm 2 ), an excessive amount of active metal and a relatively hard intermetallic compound phase 133 are generated excessively. The Mg solid solution layer 132 becomes too hard and the ceramic substrate 111 may be cracked.
  • Mg amount exceeds 143.2 ⁇ mol / cm 2 (greater than 3.48 mg / cm 2) in the case, the decomposition reaction of the ceramic substrate 111 becomes excessive, Al is excessively generated, these and Cu and active metal There is a possibility that a large amount of (Ti) or Mg intermetallic compound is generated and the ceramic substrate 111 is cracked.
  • the lower limit of the amount of active metal is preferably 2.8 ⁇ mol / cm 2 or more, and the upper limit of the amount of active metal is preferably 18.8 ⁇ mol / cm 2 or less.
  • the lower limit of the Mg amount is preferably 8.8 ⁇ mol / cm 2 or more, and the upper limit of the Mg amount is preferably 37.0 ⁇ mol / cm 2 or less.
  • the copper plate 122 and the ceramic substrate 111 are laminated via the active metal film 124 (Ti film) and the Mg film 125 (lamination step S102).
  • the active metal film 124 Ti film
  • the Mg film 125 laminated via the active metal film 124 (Ti film) and the Mg film 125 (lamination step S102).
  • an aluminum plate 123 to be the metal layer 113 is laminated on the other surface side of the ceramic substrate 111 with an Al—Si brazing material 128 interposed.
  • the laminated copper plate 122, the ceramic substrate 111, and the aluminum plate 123 are pressurized in the laminating direction, and are inserted into a vacuum furnace and heated to join the copper plate 122, the ceramic substrate 111, and the aluminum plate 123 (joining process).
  • the pressurizing load in the joining step S103 is set in the range of 0.049 MPa to 3.4 MPa.
  • the pressure load in the joining step S103 is preferably in the range of 0.294 MPa to 1.47 MPa, but is not limited thereto.
  • the eutectic temperature of Cu and active metal (Ti) is 500 ° C. or higher which is higher than the eutectic temperature of Mg and Cu.
  • the following is set to 850 ° C. or lower.
  • the lower limit of the heating temperature is preferably 700 ° C. or higher.
  • the heating temperature is set in the range of 600 ° C. to 650 ° C.
  • the degree of vacuum in the bonding step S103 is preferably in the range of 1 ⁇ 10 ⁇ 6 Pa to 1 ⁇ 10 ⁇ 2 Pa.
  • the holding time at the heating temperature is preferably in the range of 5 min to 360 min.
  • the lower limit of the holding time at the heating temperature is preferably 60 min or more.
  • the upper limit of the holding time at the heating temperature is preferably 240 min or less.
  • the insulated circuit board 110 is manufactured by the active metal and Mg arrangement step S101, the stacking step S102, and the bonding step S103.
  • the heat sink 151 is bonded to the other surface side of the metal layer 113 of the insulating circuit board 110 (heat sink bonding step S104).
  • the insulating circuit board 110 and the heat sink 151 are laminated through a brazing material, pressurized in the laminating direction, and inserted into a vacuum furnace for brazing. Thereby, the metal layer 113 of the insulated circuit board 110 and the heat sink 151 are joined.
  • a brazing material having a thickness of 20 to 110 ⁇ m can be used as the brazing material, and the brazing temperature is preferably set lower than the heating temperature in the joining step S103.
  • the semiconductor element 3 is joined to one surface of the circuit layer 112 of the insulating circuit substrate 110 by soldering (semiconductor element joining step S105). Through the above steps, the power module 101 shown in FIG. 5 is produced.
  • the copper plate 122 (circuit layer 112) and the ceramic substrate 111 made of silicon nitride are combined with the active metal film 124 (
  • the active metal nitride layer 131 (titanium nitride layer) formed on the ceramic substrate 111 side is joined to the bonding interface between the ceramic substrate 111 and the circuit layer 112 (copper plate 122).
  • a Mg solid solution layer 132 in which Mg is dissolved in the mother phase of Cu, and an active metal is present in the Mg solid solution layer 132.
  • the circuit layer 112 (copper plate 122) and the ceramic substrate 111 are securely connected as in the first embodiment.
  • Insulated circuit board 110 (copper / ceramic bonded body) bonded to each other can be obtained.
  • Ag does not exist at the bonding interface, an insulating circuit substrate 110 (copper / ceramic bonding body) having excellent migration resistance can be obtained.
  • the Cu particles 135 are dispersed inside the active metal nitride layer 131 (titanium nitride layer), the Cu of the copper plate 122 is sufficiently reacted at the bonding surface of the ceramic substrate 111.
  • an insulating circuit substrate 110 (copper / ceramic bonding body) in which the circuit layer 112 (copper plate 122) and the ceramic substrate 111 are firmly bonded.
  • the area ratio of the Cu 2 Mg phase in the region from the bonding surface of the ceramic substrate 111 to the circuit layer 112 (copper plate 122) side to 50 ⁇ m between the ceramic substrate 111 and the circuit layer 112 (copper plate 122). Is limited to 15% or less, for example, even when ultrasonic bonding or the like is performed, it is possible to suppress the occurrence of cracks or the like at the bonding interface.
  • the liquid phase is formed at the bonding interface between the circuit layer 112 (copper plate 122) and the ceramic board 111, as in the first embodiment.
  • the insulating circuit substrate 110 (copper / ceramic bonding body) in which the copper plate 122 and the ceramic substrate 111 are reliably bonded can be obtained.
  • Ag is not used for bonding, the insulating circuit substrate 110 having excellent migration resistance can be obtained.
  • the heating temperature in the bonding step S103 is set to 500 ° C. or higher which is equal to or higher than the eutectic temperature of Cu and Mg.
  • a liquid phase can be produced.
  • an aluminum plate 123 is laminated on the other surface side of the ceramic substrate 111 via an Al—Si brazing material 128, and the copper plate 122 and the ceramic substrate 111, the ceramic substrate 111 and the aluminum plate 123, As a result, the insulating circuit board 110 including the circuit layer 112 made of copper and the metal layer 113 made of aluminum can be efficiently manufactured. Further, the occurrence of warpage in the insulating circuit board 110 can be suppressed.
  • the copper plate which comprises a circuit layer or a metal layer was demonstrated as an oxygen-free copper rolled plate, it is not limited to this, You may be comprised with other copper or copper alloys.
  • the aluminum plate constituting the metal layer has been described as a rolled plate of pure aluminum having a purity of 99.99 mass%, but is not limited to this, and aluminum having a purity of 99 mass% (2N aluminum) It may be composed of other aluminum or aluminum alloy.
  • the heat sink has been described as an example of the heat sink, it is not limited to this, and the structure of the heat sink is not particularly limited. For example, what has a flow path through which a refrigerant circulates or a cooling fin may be used.
  • a composite material containing aluminum or an aluminum alloy (for example, AlSiC) can also be used as the heat sink.
  • a buffer layer made of aluminum, an aluminum alloy, or a composite material containing aluminum (for example, AlSiC) may be provided between the top plate portion of the heat sink or the heat sink and the metal layer.
  • the active metal and Mg arrangement process has been described as forming the active metal film (Ti film) and the Mg film.
  • the present invention is not limited to this, and the active metal and Mg are co-evaporated. May be. Also in this case, the formed active metal film and Mg film are not alloyed, and the active metal simple substance and Mg simple substance are arranged.
  • the active metal and Mg film are formed by co-evaporation, Mg and Cu are brought into contact with each other, so that the lower limit of the heating temperature in the bonding step can be set to 500 ° C. or higher.
  • Ti is used as the active metal.
  • the present invention is not limited to this, and one or more selected from Ti, Zr, Nb, and Hf is used as the active metal. May be.
  • Zr is used as the active metal
  • Zr exists as an intermetallic compound phase with Cu in the Mg solid solution layer.
  • the intermetallic compound constituting the intermetallic compound phase include Cu 5 Zr, Cu 51 Zr 14 , Cu 8 Zr 3 , Cu 10 Zr 7 , CuZr, Cu 5 Zr 8 , and CuZr 2 .
  • Hf is used as the active metal, Hf exists as an intermetallic compound phase with Cu in the Mg solid solution layer.
  • intermetallic compound constituting this intermetallic compound phase examples include Cu 51 Hf 14 , Cu 8 Hf 3 , Cu 10 Hf 7 , and CuHf 2 .
  • Ti and Zr are used as the active metal, Ti and Zr exist as an intermetallic compound phase containing Cu and the active metal in the Mg solid solution layer.
  • Examples of the intermetallic compound constituting the intermetallic compound phase include Cu 1.5 Zr 0.75 Ti 0.75 .
  • Nb is used as the active metal, Nb exists as a solid solution in the Mg solid solution layer.
  • active metal and Mg arrangement step within an active metal amount in the bonded interface 0.4 ⁇ mol / cm 2 or more 47.0 ⁇ mol / cm 2 or less, Mg amount 7.0 ⁇ mol / cm 2 or more 143.2 ⁇ mol / cm 2
  • the active metal film and the Mg film may be laminated in multiple layers, for example, Mg film / active metal film / Mg film.
  • a Cu film may be formed between the active metal film and the Mg film.
  • the active metal simple substance and the Mg simple substance may be provided with a foil material or may be formed by sputtering.
  • the power module is configured by mounting the power semiconductor element on the circuit layer of the insulating circuit board.
  • the LED module may be configured by mounting an LED element on an insulating circuit board, or the thermoelectric module may be configured by mounting a thermoelectric element on a circuit layer of the insulating circuit board.
  • Example 1 A copper / ceramic bonding body having the structure shown in Table 1 was formed. More specifically, as shown in Table 1, a copper plate on which Ti and Mg are deposited as active metals is laminated on both sides of a 40 mm square ceramic substrate and bonded under the bonding conditions shown in Table 1. A joined body was formed. The thickness of the ceramic substrate was 0.635 mm in the case of aluminum nitride and 0.32 mm in the case of silicon nitride. The vacuum degree of the vacuum furnace at the time of joining was set to 5 ⁇ 10 ⁇ 3 Pa.
  • the bonding interface was observed, and the active metal nitride layer (titanium nitride layer), Mg solid solution layer, intermetallic compound phase, active metal nitride layer (titanium nitride layer) ) In the presence of Cu particles and the Cu concentration. Further, the initial bonding rate of the copper / ceramic bonded body, the cracking of the ceramic substrate after the cooling and heating cycle, and the migration property were evaluated as follows.
  • Mg solid solution layer Using a EPMA apparatus (JXA-8539F manufactured by JEOL Ltd.), an area including the bonding interface (400 ⁇ m ⁇ 600 ⁇ m) was observed under the conditions of a magnification of 2000 times and an acceleration voltage of 15 kV, using the EPMA apparatus (JXA-8539F manufactured by JEOL Ltd.). Quantitative analysis was performed at 10 points with an interval of 10 ⁇ m from the surface of the ceramic substrate (active metal nitride layer surface) toward the copper plate side, and a region having an Mg concentration of 0.01 atomic% or more was defined as an Mg solid solution layer.
  • the Cu concentration is 5 atom% or more and the active metal concentration (Ti concentration) is 16 atoms or more and 90 atom% or less with an average of five points in the quantitative analysis in the region where the presence of the active metal (Ti) is confirmed.
  • a region satisfying the above condition was defined as an intermetallic compound phase.
  • the bonding rate between the copper plate and the ceramic substrate was determined using the following formula using an ultrasonic flaw detector (FineSAT 200 manufactured by Hitachi Power Solutions Co., Ltd.).
  • the initial bonding area was defined as the area to be bonded before bonding, that is, the area of the bonding surface of the copper plate.
  • peeling is indicated by a white portion in the joint, and thus the area of the white portion was taken as the peeling area.
  • (Bonding rate) ⁇ (initial bonding area) ⁇ (peeling area) ⁇ / (initial bonding area) ⁇ 100
  • the electrical resistance between circuit patterns was measured after leaving for 500 hours under the conditions of a distance between circuit patterns of the circuit layer of 0.8 mm, a temperature of 60 ° C., a humidity of 95% RH, and a voltage of DC 50V.
  • the case where the resistance value was 1 ⁇ 10 6 ⁇ or less was judged as short-circuited, and “B” was assigned.
  • the case where the resistance value did not become 1 ⁇ 10 6 ⁇ or less was defined as “A”.
  • the amount of active metal (Ti amount) is 0.1 ⁇ mol / cm 2 (0.005 mg / cm 2 ), which is lower than the range of the present invention, and the initial bonding rate is low. It was. It is presumed that the active metal (Ti) was not present as an intermetallic compound phase in the Mg solid solution layer, and the interfacial reaction was insufficient. In the active metal and Mg arrangement step, cracking of the ceramic substrate was confirmed in Comparative Example 2 in which the amount of active metal (Ti amount) was 66.9 ⁇ mol / cm 2 (3.20 mg / cm 2 ), which is larger than the range of the present invention. It was done. This is presumably because a relatively hard intermetallic compound phase was formed in a large amount.
  • the initial bonding rate was low in Comparative Example 3 in which the amount of Mg was 2.1 ⁇ mol / cm 2 (0.05 mg / cm 2 ), which is less than the range of the present invention. It is presumed that the Mg solid solution layer was not observed and the interface reaction was insufficient. In the active metal and Mg arrangement step, cracks in the ceramic substrate were confirmed in Comparative Example 4 where the Mg content was 220.1 ⁇ mol / cm 2 (5.35 mg / cm 2 ), which is larger than the range of the present invention. It is presumed that the decomposition reaction of the ceramic substrate became excessive, Al was generated excessively, and an intermetallic compound of Cu, active metal (Ti), and Mg was generated in large quantities.
  • Example 1 to 12 of the present invention the initial bonding rate was high, and no cracks in the ceramic substrate were confirmed. Also, the migration was good. As shown in FIG. 9A, FIG. 9B and FIG. 9C, as a result of observing the bonding interface, an active metal nitride layer 31 (titanium nitride layer) and a Mg solid solution layer 32 are observed. It was observed that the intermetallic compound phase 33 was dispersed.
  • Example 2 A copper / ceramic bonding body having the structure shown in Table 3 was formed. More specifically, as shown in Table 3, a copper plate having a single active metal layer and a single Mg layer formed thereon is laminated on both sides of a 40 mm square ceramic substrate, and bonded under the bonding conditions shown in Table 3. Copper / ceramic bonding Formed body. The thickness of the ceramic substrate was 0.635 mm in the case of aluminum nitride and 0.32 mm in the case of silicon nitride. The vacuum degree of the vacuum furnace at the time of joining was set to 5 ⁇ 10 ⁇ 3 Pa.
  • Example 4 The presence or absence of active metal in the active metal nitride layer, Mg solid solution layer, Mg solid solution layer (metal) The presence or absence of an intermetallic phase), the presence or absence of Cu particles in the active metal nitride layer, and the Cu concentration were confirmed. Further, the initial bonding rate of the copper / ceramic bonding body, the cracking of the ceramic substrate after the thermal cycle, and the migration property were evaluated in the same manner as in Example 1. The evaluation results are shown in Table 4.
  • the amount of active metal is 50.4 ⁇ mol / cm 2, which is more than the range of the present invention, and the amount of active metal (Nb amount) is 61.2 ⁇ mol / cm 2.
  • Comparative Example 22 which was larger than the range of the present invention, cracks in the ceramic substrate were confirmed. It is presumed that the amount of active metal present in the Mg solid solution layer was large and the Mg solid solution layer became hard.
  • the amount of active metal (Hf amount) is 0.2 ⁇ mol / cm 2, which is less than the range of the present invention, and the amount of active metal (Hf amount + Nb amount) is 0.2 ⁇ mol / cm 2.
  • Comparative Example 24 which is less than the range of cm 2 and the present invention, the initial bonding rate was low.
  • the copper member and the ceramic member can be reliably bonded and a copper / ceramic bonded body (insulated circuit board) excellent in migration resistance can be provided. .
  • Example 3 An insulated circuit board having the structure shown in Table 5 was formed. More specifically, as shown in Table 5, a copper plate having a single active metal layer and a single Mg layer formed thereon is laminated on both sides of a 40 mm square ceramic substrate and bonded under the bonding conditions shown in Table 5 to have a circuit layer. An insulated circuit board was formed. The thickness of the ceramic substrate was 0.635 mm in the case of aluminum nitride and 0.32 mm in the case of silicon nitride. The vacuum degree of the vacuum furnace at the time of joining was set to 5 ⁇ 10 ⁇ 3 Pa.
  • the area ratio of the Cu 2 Mg phase at the bonding interface between the ceramic substrate and the circuit layer, and the pull strength of the terminals ultrasonically bonded to the circuit layer are as follows. evaluated.
  • the Mg interface in the region (120 ⁇ m ⁇ 160 ⁇ m) including the bonding interface is used at a magnification of 750 times and an acceleration voltage of 15 kV.
  • An area where the Mg concentration was 30 atomic% or more and 40 atomic% or less was obtained as a Cu 2 Mg phase by the five-point average of quantitative analysis in the area where the presence of Mg was confirmed.
  • the area A of the ceramic substrate bonding surface and the region from the bonding surface of the ceramic substrate to the copper plate side up to 50 ⁇ m is obtained.
  • a copper terminal (width: 5 mm) is formed on the circuit layer of the insulated circuit board using an ultrasonic metal bonding machine (60C-904 manufactured by Ultrasonic Industry Co., Ltd.) including the stage 40.
  • Thickness T 1.0 mm, length L 1 : 20 mm, length L 2 : 10 mm
  • the value obtained by dividing the breaking load when the copper terminal is pulled under the condition that the tool speed Y is 5 mm / s and the stage speed X is 5 mm / s by the joining area is shown in Table 5.
  • a copper member and a ceramic member are reliably joined, and the copper / ceramic joined body excellent in migration resistance, an insulated circuit board, the manufacturing method of the above-mentioned copper / ceramic joined body, and the insulated circuit board The manufacturing method of can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Products (AREA)

Abstract

本発明の銅/セラミックス接合体は、銅又は銅合金からなる銅部材と、窒化アルミニウム又は窒化ケイ素からなるセラミックス部材と、が接合され、銅部材とセラミックス部材との間においては、セラミックス部材側に、Ti,Zr,Nb,Hfから選択される1種又は2種以上の活性金属の窒化物からなる活性金属窒化物層が形成され、この活性金属窒化物層と銅部材との間にCuの母相中にMgが固溶したMg固溶層が形成されており、Mg固溶層には、活性金属が存在する。

Description

銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法
 この発明は、銅又は銅合金からなる銅部材と、窒化アルミニウム又は窒化ケイ素からなるセラミックス部材と、が接合されてなる銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法に関する。
 本願は、2017年2月28日に、日本に出願された特願2017-036841号、および2018年1月25日に、日本に出願された特願2018-010964号に基づき優先権を主張し、その内容をここに援用する。
 パワーモジュール、LEDモジュール及び熱電モジュールにおいては、絶縁層の一方の面に導電材料からなる回路層を形成した絶縁回路基板に、パワー半導体素子、LED素子及び熱電素子が接合された構造を備えている。
 例えば、風力発電、電気自動車、ハイブリッド自動車等を制御するために用いられる大電力制御用のパワー半導体素子は、動作時の発熱量が多い。そのため、パワー半導体素子を搭載する基板としては、例えば窒化アルミニウムや窒化ケイ素などからなるセラミックス基板と、このセラミックス基板の一方の面に導電性の優れた金属板を接合して形成した回路層と、を備えた絶縁回路基板が、従来から広く用いられている。絶縁回路基板としては、セラミックス基板の他方の面に金属板を接合して金属層を形成したものも提供されている。
 例えば、特許文献1には、回路層及び金属層を構成する第一の金属板及び第二の金属板を銅板とし、この銅板をDBC法によってセラミックス基板に直接接合した絶縁回路基板が提案されている。このDBC法においては、銅と銅酸化物との共晶反応を利用して、銅板とセラミックス基板との界面に液相を生じさせることにより、銅板とセラミックス基板とを接合している。
 特許文献2には、セラミックス基板の一方の面及び他方の面に、銅板を接合することにより回路層及び金属層を形成した絶縁回路基板が提案されている。この絶縁回路基板においては、セラミックス基板の一方の面及び他方の面に、Ag-Cu-Ti系ろう材を介在させて銅板を配置し、加熱処理を行うことにより銅板が接合されている(いわゆる活性金属ろう付け法)。この活性金属ろう付け法では、活性金属であるTiが含有されたろう材を用いているため、溶融したろう材とセラミックス基板との濡れ性が向上し、セラミックス基板と銅板とが良好に接合される。
 特許文献3には、高温の窒素ガス雰囲気下で銅板とセラミックス基板とを接合する際に用いられる接合用ろう材として、Cu-Mg-Ti合金からなる粉末を含有するペーストが提案されている。この特許文献3においては、窒素ガス雰囲気下にて560~800℃で加熱することによって接合する構成を備えており、Cu-Mg-Ti合金中のMgは昇華して接合界面には残存せず、かつ、窒化チタン(TiN)が実質的に形成しないものとされている。
特開平04-162756号公報 特許第3211856号公報 特許第4375730号公報
 しかしながら、特許文献1に開示されているように、DBC法によってセラミックス基板と銅板とを接合する場合には、接合温度を1065℃以上(銅と銅酸化物との共晶点温度以上)にする必要があることから、接合時にセラミックス基板が劣化してしまうおそれがあった。
 特許文献2に開示されているように、活性金属ろう付け法によってセラミックス基板と銅板とを接合する場合には、ろう材がAgを含有しており、接合界面にAgが存在することから、マイグレーションが生じやすく、高耐圧用途には使用することができなかった。また、接合温度が900℃と比較的高温とされていることから、やはり、セラミックス基板が劣化してしまうといった問題があった。
 特許文献3に開示されているように、Cu-Mg-Ti合金からなる粉末を含有するペーストからなる接合用ろう材を用いて窒素ガス雰囲気下で接合した場合には、接合界面にガスが残存し、部分放電が発生しやすいといった問題があった。また、合金粉を用いていることから、合金粉の組成ばらつきに応じて溶融状況が不均一となり、界面反応が不十分な領域が局所的に形成されるおそれがあった。また、ペーストに含まれる有機物が接合界面に残存し、接合が不十分となるおそれがあった。
 この発明は、前述した事情に鑑みてなされたものであって、銅部材とセラミックス部材とが確実に接合され、耐マイグレーション性に優れた銅/セラミックス接合体、絶縁回路基板、及び、上述の銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法を提供することを目的とする。
 このような課題を解決して、前記目的を達成するために、本発明の一態様である銅/セラミックス接合体は、銅又は銅合金からなる銅部材と、窒化アルミニウム又は窒化ケイ素からなるセラミックス部材とが接合されてなる銅/セラミックス接合体であって、前記銅部材と前記セラミックス部材との間においては、前記セラミックス部材側に、Ti,Zr,Nb,Hfから選択される1種又は2種以上の活性金属の窒化物を含む活性金属窒化物層が形成され、この活性金属窒化物層と前記銅部材との間にCuの母相中にMgが固溶したMg固溶層が形成されており、前記Mg固溶層には、前記活性金属が存在することを特徴としている。
 この構成の銅/セラミックス接合体においては、銅又は銅合金からなる銅部材と、窒化アルミニウム又は窒化ケイ素からなるセラミックス部材との間においては、前記セラミックス部材側に、Ti,Zr,Nb,Hfから選択される1種又は2種以上の活性金属の窒化物を含む活性金属窒化物層が形成されている。この活性金属窒化物層は、セラミックス部材と銅部材の間に配設された活性金属とセラミックス部材中の窒素とが反応することにより形成されるものであり、セラミックス部材が十分に反応している。
 活性金属窒化物層と前記銅部材との間には、Cuの母相中にMgが固溶したMg固溶層が形成されており、このMg固溶層に前記活性金属が存在するので、セラミックス部材と銅部材の間に配設されたMgが銅部材側に十分に拡散しており、さらに、Cuと活性金属とが十分に反応している。
 したがって、銅部材とセラミックス部材との接合界面において界面反応が十分に進行しており、銅部材とセラミックス部材とが確実に接合された銅/セラミックス接合体を得ることができる。また、接合界面にAgが存在していないので、耐マイグレーション性にも優れている。
 本発明の一態様である銅/セラミックス接合体においては、前記Mg固溶層には、Cuと前記活性金属を含む金属間化合物相が分散されている構成としてもよい。
 Mg固溶層において活性金属は、活性金属としてTi,Zr,Hfを含む場合には、Cuと前記活性金属との金属間化合物相として存在する。このため、Mg固溶層にCuと前記活性金属との金属間化合物相が存在することで、セラミックス部材と銅部材の間に配設されたMgが銅部材側に十分に拡散し、Cuと活性金属とが十分に反応しており、銅部材とセラミックス部材とが確実に接合された銅/セラミックス接合体を得ることができる。
 本発明の一態様である銅/セラミックス接合体においては、前記活性金属窒化物層の内部に、Cu粒子が分散されていることが好ましい。
 この場合、銅部材のCuがセラミックス部材と十分に反応していることになり、銅部材とセラミックス部材とが強固に接合された銅/セラミックス接合体を得ることが可能となる。Cu粒子は、Cu単体又はCuを含有する金属間化合物であり、活性金属窒化物層が形成される際に、液相中に存在していたCuが析出することで生成されている。
 本発明の一態様である銅/セラミックス接合体においては、前記活性金属がTiであってもよい。
 この場合、前記活性金属窒化物層として窒化チタン層が形成され、前記Mg固溶層に、CuとTiを含む金属間化合物相が分散されることになり、銅部材とセラミックス部材とが確実に接合され、耐マイグレーション性に優れた銅/セラミックス接合体を提供することができる。
 本発明の一態様である銅/セラミックス接合体においては、前記セラミックス部材と前記銅部材との間において、前記セラミックス部材の接合面から前記銅部材側へ50μmまでの領域におけるCuMg相の面積率が15%以下とされていることが好ましい。
 この場合、脆弱なCuMg相の面積率が15%以下に制限されているので、例えば超音波接合等を実施した場合であっても、接合界面における割れ等の発生を抑制することが可能となる。
 本発明の一態様である絶縁回路基板は、窒化アルミニウム又は窒化ケイ素からなるセラミックス基板の表面に、銅又は銅合金からなる銅板が接合されてなる絶縁回路基板であって、前記銅板と前記セラミックス基板との間においては、前記セラミックス基板側に、Ti,Zr,Nb,Hfから選択される1種又は2種以上の活性金属の窒化物を含む活性金属窒化物層が形成され、この活性金属窒化物層と前記銅板との間にCuの母相中にMgが固溶したMg固溶層が形成されており、前記Mg固溶層には、前記活性金属が存在することを特徴としている。
 この構成の絶縁回路基板においては、銅板とセラミックス基板とが確実に接合されるとともに、耐マイグレーション性に優れており、高耐圧条件下においても信頼性高く使用することができる。
 本発明の一態様である絶縁回路基板においては、前記Mg固溶層には、Cuと前記活性金属を含む金属間化合物相が分散されている構成としてもよい。
 Mg固溶層において活性金属は、活性金属としてTi,Zr,Hfを含む場合には、Cuと前記活性金属との金属間化合物相として存在する。このため、Mg固溶層にCuと前記活性金属との金属間化合物相として存在することで、銅板とセラミックス基板とが確実に接合された絶縁回路基板を得ることができる。
 本発明の一態様である絶縁回路基板においては、前記活性金属窒化物層の内部に、Cu粒子が分散されていることが好ましい。
 この場合、銅板のCuがセラミックス基板と十分に反応していることになり、銅板とセラミックス基板とが強固に接合された絶縁回路基板を得ることが可能となる。Cu粒子は、Cu単体又はCuを含有する金属間化合物であり、活性金属窒化物層が形成される際に、液相中に存在していたCuが析出することで生成されている。
 本発明の一態様である絶縁回路基板においては、前記活性金属がTiであってもよい。
 この場合、前記活性金属窒化物層として窒化チタン層が形成され、前記Mg固溶層に、CuとTiを含む金属間化合物相が分散されることになり、銅板とセラミックス基板とが確実に接合され、耐マイグレーション性に優れた絶縁回路基板を提供することができる。
 本発明の一態様である絶縁回路基板においては、前記セラミックス基板と前記銅板との間において、前記セラミックス基板の接合面から前記銅板側へ50μmまでの領域におけるCuMg相の面積率が15%以下とされていることが好ましい。
 この場合、脆弱なCuMg相の面積率が15%以下に制限されているので、例えば超音波接合等を実施した場合であっても、接合界面における割れ等の発生を抑制することが可能となる。
 本発明の一態様である銅/セラミックス接合体の製造方法は、上述した銅/セラミックス接合体を製造する方法であって、前記銅部材と前記セラミックス部材との間に、Ti,Zr,Nb,Hfから選択される1種又は2種以上の活性金属の単体及びMg単体を配置する活性金属及びMg配置工程と、前記銅部材と前記セラミックス部材とを、活性金属及びMgを介して積層する積層工程と、活性金属及びMgを介して積層された前記銅部材と前記セラミックス部材とを積層方向に加圧した状態で、真空雰囲気下において加熱処理して接合する接合工程と、を備えており、前記活性金属及びMg配置工程では、活性金属量を0.4μmol/cm以上47.0μmol/cm以下の範囲内、Mg量を7.0μmol/cm以上143.2μmol/cm以下の範囲内とすることを特徴としている。
 この構成の銅/セラミックス接合体の製造方法によれば、前記銅部材と前記セラミックス部材との間に活性金属の単体及びMg単体を配置し、これらを積層方向に加圧した状態で、真空雰囲気下において加熱処理するので、接合界面にガスや有機物の残渣等が残存することがない。また、活性金属の単体及びMg単体を配置しているので、組成のばらつきがなく、均一に液相が生じる。
 活性金属及びMg配置工程では、活性金属量を0.4μmol/cm以上47.0μmol/cm以下の範囲内、Mg量を7.0μmol/cm以上143.2μmol/cm以下の範囲内としているので、界面反応に必要な液相を十分に得ることができるとともに、セラミックス部材の必要以上の反応を抑制することができる。
 よって、銅部材とセラミックス部材とが確実に接合された銅/セラミックス接合体を得ることができる。また、接合にAgを用いていないので、耐マイグレーション性に優れた銅/セラミックス接合体を得ることができる。
 本発明の一態様である銅/セラミックス接合体の製造方法においては、前記接合工程における加圧荷重が0.049MPa以上3.4MPa以下の範囲内とされ、前記接合工程における加熱温度は、CuとMgが接触状態で積層されている場合は500℃以上850℃以下の範囲内、CuとMgが非接触状態で積層されている場合は670℃以上850℃以下の範囲内とされていることが好ましい。
 この場合、前記接合工程における加圧荷重が0.049MPa以上3.4MPa以下の範囲内とされているので、セラミックス部材と銅部材と活性金属及びMgとを密着させることができ、加熱時にこれらの界面反応を促進させることができる。
 前記接合工程における加熱温度が、CuとMgが接触状態で積層されている場合はCuとMgの共晶温度よりも高い500℃以上とし、CuとMgが非接触状態で積層されている場合にはMgの融点よりも高い670℃以上としているので、接合界面において十分に液相を生じさせることができる。
 前記接合工程における加熱温度が850℃以下とされているので、Cuと活性金属との共晶反応の発生を抑制することができ、液相が過剰に生成することを抑制できる。また、セラミックス部材への熱負荷が小さくなり、セラミックス部材の劣化を抑制することができる。
 本発明の一態様である絶縁回路基板の製造方法は、窒化アルミニウム又は窒化ケイ素からなるセラミックス基板の表面に、銅又は銅合金からなる銅板が接合されてなる絶縁回路基板を製造する絶縁回路基板の製造方法であって、前記銅板と前記セラミックス基板との間に、Ti,Zr,Nb,Hfから選択される1種又は2種以上の活性金属の単体及びMg単体を配置する活性金属及びMg配置工程と、前記銅板と前記セラミックス基板とを、活性金属及びMgを介して積層する積層工程と、活性金属及びMgを介して積層された前記銅板と前記セラミックス基板とを積層方向に加圧した状態で、真空雰囲気下において加熱処理して接合する接合工程と、を備えており、前記活性金属及びMg配置工程では、活性金属量を0.4μmol/cm以上47.0μmol/cm以下の範囲内、Mg量を7.0μmol/cm以上143.2μmol/cm以下の範囲内とすることを特徴としている。
 この構成の絶縁回路基板の製造方法によれば、銅板とセラミックス基板とが確実に接合された絶縁回路基板を得ることができる。また、接合にAgを用いていないので、耐マイグレーション性に優れた絶縁回路基板を得ることができる。
 本発明の一態様である絶縁回路基板の製造方法においては、前記接合工程における加圧荷重が0.049MPa以上3.4MPa以下の範囲内とされ、前記接合工程における加熱温度は、CuとMgが接触状態で積層されている場合は500℃以上850℃以下の範囲内、CuとMgが非接触状態で積層されている場合は670℃以上850℃以下の範囲内とされていることが好ましい。
 この場合、前記接合工程における加圧荷重が0.049MPa以上3.4MPa以下の範囲内とされているので、セラミックス基板と銅板と活性金属及びMgとを密着させることができ、加熱時にこれらの界面反応を促進させることができる。
 前記接合工程における加熱温度が、CuとMgが接触状態で積層されている場合はCuとMgの共晶温度よりも高い500℃以上とし、CuとMgが非接触状態で積層されている場合にはMgの融点よりも高い670℃以上としているので、接合界面において十分に液相を生じさせることができる。
 前記接合工程における加熱温度が850℃以下とされているので、Cuと活性金属との共晶反応の発生を抑制することができ、液相が過剰に生成することを抑制できる。また、セラミックス基板への熱負荷が小さくなり、セラミックス基板の劣化を抑制することができる。
 本発明によれば、銅部材とセラミックス部材とが確実に接合され、耐マイグレーション性に優れた銅/セラミックス接合体、絶縁回路基板、及び、上述の銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法を提供することが可能となる。
本発明の第1の実施形態である絶縁回路基板を用いたパワーモジュールの概略説明図である。 本発明の第1の実施形態である絶縁回路基板の回路層(銅部材)及び金属層(銅部材)とセラミックス基板(セラミックス部材)との接合界面の模式図である。 本発明の第1の実施形態である絶縁回路基板の製造方法を示すフロー図である。 本発明の第1の実施形態である絶縁回路基板の製造方法を示す説明図である。 本発明の第2の実施形態である絶縁回路基板を用いたパワーモジュールの概略説明図である。 本発明の第2の実施形態である絶縁回路基板の回路層(銅部材)とセラミックス基板(セラミックス部材)との接合界面の模式図である。 本発明の第2の実施形態である絶縁回路基板の製造方法を示すフロー図である。 本発明の第2の実施形態である絶縁回路基板の製造方法を示す説明図である。 本発明例5の銅/セラミックス接合体における銅板とセラミックス基板の接合界面の観察結果である。 本発明例5の銅/セラミックス接合体における銅板とセラミックス基板の接合界面の観察結果である。 本発明例5の銅/セラミックス接合体における銅板とセラミックス基板の接合界面の観察結果である。 実施例3におけるプル強度の測定方法を示す説明図である。 実施例3におけるプル強度の測定方法を示す説明図である。
 以下に、本発明の実施形態について添付した図面を参照して説明する。
(第1の実施形態)
 本発明の第1の実施形態について、図1から図4を参照して説明する。
 本実施形態に係る銅/セラミックス接合体は、セラミックス部材であるセラミックス基板11と、銅部材である銅板22(回路層12)及び銅板23(金属層13)とが接合されることにより構成された絶縁回路基板10とされている。
 図1に本発明の第1の実施形態である絶縁回路基板10及びこの絶縁回路基板10を用いたパワーモジュール1を示す。
 このパワーモジュール1は、絶縁回路基板10と、この絶縁回路基板10の一方側(図1において上側)に第1はんだ層2を介して接合された半導体素子3と、絶縁回路基板10の他方側(図1において下側)に第2はんだ層8を介して接合されたヒートシンク51と、を備えている。
 絶縁回路基板10は、セラミックス基板11と、このセラミックス基板11の一方の面(図1において上面)に配設された回路層12と、セラミックス基板11の他方の面(図1において下面)に配設された金属層13とを備えている。
 セラミックス基板11は、回路層12と金属層13との間の電気的接続を防止するものであって、本実施形態では、絶縁性の高い窒化アルミニウムで構成されている。セラミックス基板11の厚さは、0.2~1.5mmの範囲内に設定されており、本実施形態では、0.635mmに設定されている。
 回路層12は、図4に示すように、セラミックス基板11の一方の面に銅又は銅合金からなる銅板22が接合されることにより形成されている。本実施形態においては、回路層12を構成する銅板22として、無酸素銅の圧延板が用いられている。この回路層12には、回路パターンが形成されており、その一方の面(図1において上面)が、半導体素子3が搭載される搭載面である。回路層12の厚さは0.1mm以上2.0mm以下の範囲内に設定されており、本実施形態では0.6mmに設定されている。
 金属層13は、図4に示すように、セラミックス基板11の他方の面に銅又は銅合金からなる銅板23が接合されることにより形成されている。本実施形態においては、金属層13を構成する銅板23として、無酸素銅の圧延板が用いられている。金属層13の厚さは0.1mm以上2.0mm以下の範囲内に設定されており、本実施形態では0.6mmに設定されている。
 ヒートシンク51は、前述の絶縁回路基板10を冷却するためのものであり、本実施形態においては、熱伝導性が良好な材質で構成された放熱板で構成されている。本実施形態においては、ヒートシンク51は、熱伝導性に優れた銅又は銅合金で構成されている。ヒートシンク51と絶縁回路基板10の金属層13とは、第2はんだ層8を介して接合されている。
 セラミックス基板11と回路層12(銅板22)、及び、セラミックス基板11と金属層13(銅板23)は、図4に示すように、Ti,Zr,Nb,Hfから選択される1種又は2種以上の活性金属からなる活性金属膜24(本実施形態ではTi膜)及びMg膜25を介して接合されている。
 セラミックス基板11と回路層12(銅板22)との接合界面及びセラミックス基板11と金属層13(銅板23)との接合界面においては、図2に示すように、セラミックス基板11側に形成された活性金属窒化物層31(本実施形態では窒化チタン層)と、Cuの母相中にMgが固溶したMg固溶層32と、が積層された構造を備えている。
 Mg固溶層32には、上述の活性金属が含まれている。本実施形態においては、Mg固溶層32には、Cuと活性金属(Ti)とを含む金属間化合物相33が分散されている。本実施形態では、活性金属としてTiを用いており、CuとTiとを含む金属間化合物相33を構成する金属間化合物としては、例えばCuTi,CuTi,CuTi,CuTi,CuTi,CuTi等が挙げられる。
 このMg固溶層32におけるMgの含有量は、0.01原子%以上0.5原子%以下の範囲内とされている。Mg固溶層32の厚さは、0.1μm以上80μm以下の範囲内とされている。Mg固溶層32におけるMgの含有量は、0.01原子%以上0.3原子%以下の範囲内とされていることが好ましいが、これに限定されることはない。
 本実施形態では、活性金属窒化物層31(窒化チタン層)の内部に、Cu粒子35が分散している。
 活性金属窒化物層31(窒化チタン層)内に分散するCu粒子35の粒径は、10nm以上100nm以下の範囲内とされている。また、活性金属窒化物層31(窒化チタン層)のうちセラミックス基板11との界面から活性金属窒化物層31(窒化チタン層)の厚さの20%までの界面近傍領域におけるCu濃度が0.3原子%以上15原子%以下の範囲内とされている。
 活性金属窒化物層31(窒化チタン層)の厚さは、0.03μm以上1.2μm以下の範囲内とされている。活性金属窒化物層31(窒化チタン層)のうちセラミックス基板11との界面から活性金属窒化物層31(窒化チタン層)の厚さの20%までの界面近傍領域におけるCu濃度は、0.3原子%以上12原子%以下の範囲内とされていることが好ましいが、これに限定されることはない。
 本実施形態においては、セラミックス基板11と回路層12との間において、セラミックス基板11の接合面から回路層12側へ50μmまでの領域におけるCuMg相の面積率が15%以下とされている。セラミックス基板11の接合面から回路層12側へ50μmまでの領域におけるCuMg相の面積率は、0.01%以上10%以下とされていることが好ましいが、これに限定されることはない。
 本実施形態では、上述のCuMg相は、電子線マイクロアナライザーでMgの元素MAPを取得し、Mgの存在が確認された領域においてMg濃度が30原子%以上40原子%以下の領域とした。
 上述した本実施形態である絶縁回路基板10の製造方法について、図3及び図4を参照して説明する。
 図4に示すように、回路層12となる銅板22とセラミックス基板11との間、及び、金属層13となる銅板23とセラミックス基板11との間に、それぞれTi,Zr,Nb,Hfから選択される1種又は2種以上の活性金属の単体(本実施形態ではTi単体)及びMg単体を配置する(活性金属及びMg配置工程S01)。本実施形態では、活性金属(Ti)及びMgを蒸着することによって、活性金属膜24(Ti膜)及びMg膜25が形成されており、Mg膜25は銅板22とは非接触状態で積層されている。
 この活性金属及びMg配置工程S01では、活性金属量を0.4μmol/cm以上47.0μmol/cm以下の範囲内(本実施形態では、Tiを0.02mg/cm以上2.25mg/cm以下の範囲内)、Mg量を7.0μmol/cm以上143.2μmol/cm以下の範囲内(0.17mg/cm以上3.48mg/cm以下の範囲内)としている。
 活性金属量の下限は2.8μmol/cm以上とすることが好ましく、活性金属量の上限は18.8μmol/cm以下とすることが好ましい。また、Mg量の下限は8.8μmol/cm以上とすることが好ましく、Mg量の上限は37.0μmol/cm以下とすることが好ましい。
 次に、銅板22とセラミックス基板11と銅板23とを、活性金属膜24(Ti膜)及びMg膜25を介して積層する(積層工程S02)。
 積層された銅板22、セラミックス基板11、銅板23を、積層方向に加圧するとともに、真空炉内に装入して加熱し、銅板22とセラミックス基板11と銅板23を接合する(接合工程S03)。
 接合工程S03における加圧荷重は、0.049MPa以上3.4MPa以下の範囲内とされている。接合工程S03における加圧荷重は、0.294MPa以上1.47MPa以下の範囲内とされていることが好ましいが、これに限定されることはない。
 接合工程S03における加熱温度は、CuとMgが非接触状態で積層されていることから、Mgの融点以上の670℃以上850℃以下の範囲内とされている。加熱温度の下限は700℃以上とすることが好ましい。
 接合工程S03における真空度は、1×10-6Pa以上1×10-2Pa以下の範囲内とすることが好ましい。
 加熱温度での保持時間は、5min以上360min以下の範囲内とすることが好ましい。上述のCuMg相の面積率を低くするためには、加熱温度での保持時間の下限を60min以上とすることが好ましい。また、加熱温度での保持時間の上限は240min以下とすることが好ましい。
 以上のように、活性金属及びMg配置工程S01と、積層工程S02と、接合工程S03とによって、本実施形態である絶縁回路基板10が製造される。
 絶縁回路基板10の金属層13の他方の面側にヒートシンク51を接合する(ヒートシンク接合工程S04)。
 絶縁回路基板10とヒートシンク51とを、はんだ材を介して積層して加熱炉に装入し、第2はんだ層8を介して絶縁回路基板10とヒートシンク51とをはんだ接合する。
 次に、絶縁回路基板10の回路層12の一方の面に、半導体素子3をはんだ付けにより接合する(半導体素子接合工程S05)。
 以上の工程により、図1に示すパワーモジュール1が製出される。
 以上のような構成とされた本実施形態の絶縁回路基板10(銅/セラミックス接合体)によれば、無酸素銅からなる銅板22(回路層12)及び銅板23(金属層13)と窒化アルミニウムからなるセラミックス基板11とが、活性金属膜24(Ti膜)及びMg膜25を介して接合されており、セラミックス基板11と回路層12(銅板22)及びセラミックス基板11と金属層13(銅板23)の接合界面には、セラミックス基板11側に形成された活性金属窒化物層31(窒化チタン層)と、Cuの母相中にMgが固溶したMg固溶層32と、が積層されている。
 活性金属窒化物層31(窒化チタン層)は、セラミックス基板11と銅板22、23の間に配設された活性金属(Ti)とセラミックス基板11の窒素とが反応することにより形成される。そのため、本実施形態では、接合界面においてセラミックス基板11が十分に反応している。また、活性金属窒化物層31(窒化チタン層)に積層するように、Cuの母相中にMgが固溶したMg固溶層32が形成されており、このMg固溶層32に、上述の活性金属が含まれている。本実施形態においてはMg固溶層32にCuと活性金属(Ti)を含む金属間化合物相33が分散されているので、セラミックス基板11と銅板22,23との間に配設されたMgが銅板22,23側に十分に拡散している。そのため、本実施形態では、Cuと活性金属(Ti)とが十分に反応している。
 よって、セラミックス基板11と銅板22,23との接合界面において十分に界面反応が進行しており、回路層12(銅板22)とセラミックス基板11、金属層13(銅板23)とセラミックス基板11とが確実に接合された絶縁回路基板10(銅/セラミックス接合体)を得ることができる。また、接合界面にAgが存在していないので、耐マイグレーション性に優れた絶縁回路基板10(銅/セラミックス接合体)を得ることができる。
 特に、本実施形態においては、活性金属窒化物層31(窒化チタン層)の内部に、Cu粒子35が分散しているので、銅板22,23のCuがセラミックス基板11の接合面で十分に反応している。そのため、銅板22,23とセラミックス基板11とが強固に接合された絶縁回路基板10(銅/セラミックス接合体)を得ることが可能となる。
 本実施形態においては、セラミックス基板11と回路層12(銅板22)との間において、セラミックス基板11の接合面から回路層12(銅板22)側へ50μmまでの領域におけるCuMg相の面積率が15%以下に制限されているので、例えば超音波接合等を実施した場合であっても、接合界面における割れ等の発生を抑制することが可能となる。
 本実施形態の絶縁回路基板10(銅/セラミックス接合体)の製造方法によれば、銅板22,23とセラミックス基板11との間に活性金属(Ti)の単体(活性金属膜24)及びMg単体(Mg膜25)を配置する活性金属及びMg配置工程S01と、これら活性金属膜24及びMg膜25を介して銅板22、23とセラミックス基板11とを積層する積層工程S02と、積層された銅板22、セラミックス基板11、銅板23を、積層方向に加圧した状態で、真空雰囲気下において加熱処理して接合する接合工程S03と、を備えているので、接合界面にガスや有機物の残渣等が残存することがない。また、活性金属(Ti)の単体及びMg単体を配置しているので、組成のばらつきがなく、均一に液相が生じる。
 活性金属及びMg配置工程S01では、活性金属量を0.4μmol/cm以上47.0μmol/cm以下の範囲内(本実施形態では、Tiを0.02mg/cm以上2.25mg/cm以下の範囲内)、Mg量を7.0μmol/cm以上143.2μmol/cm以下の範囲内(0.17mg/cm以上3.48mg/cm以下の範囲内)としているので、界面反応に必要な液相を十分に得ることができるとともに、セラミックス基板11の必要以上の反応を抑制することができる。
 よって、銅板22,23とセラミックス基板11とが確実に接合された絶縁回路基板10(銅/セラミックス接合体)を得ることができる。また、接合にAgを用いていないので、耐マイグレーション性に優れた絶縁回路基板10を得ることができる。
 活性金属量が0.4μmol/cm未満(Ti量が0.02mg/cm未満)、及び、Mg量が7.0μmol/cm未満(0.17mg/cm未満)の場合には、界面反応が不十分となり、接合率が低下するおそれがあった。また、活性金属量が47.0μmol/cmを超える(Ti量が2.25mg/cmを超える)場合には、活性金属が多く比較的硬い金属間化合物相33が過剰に生成してしまい、Mg固溶層32が硬くなり過ぎて、セラミックス基板11に割れが生じるおそれがあった。また、Mg量が143.2μmol/cmを超える(3.48mg/cmを超える)場合には、セラミックス基板11の分解反応が過剰となり、Alが過剰に生成し、これらとCuや活性金属(Ti)やMgの金属間化合物が多量に生じ、セラミックス基板11に割れが生じるおそれがあった。
 以上のことから、本実施形態では、活性金属量を0.4μmol/cm以上47.0μmol/cm以下の範囲内(Ti量を0.02mg/cm以上2.25mg/cm以下の範囲内)、Mg量を7.0μmol/cm以上143.2μmol/cm以下の範囲内(0.17mg/cm以上3.48mg/cm以下の範囲内)としている。
 本実施形態においては、接合工程S03における加圧荷重が0.049MPa以上とされているので、セラミックス基板11と銅板22,23と活性金属膜24(Ti膜)及びMg膜25とを密着させることができ、加熱時にこれらの界面反応を促進させることができる。また、接合工程S03における加圧荷重が3.4MPa以下とされているので、セラミックス基板11の割れ等を抑制することができる。
 本実施形態では、CuとMgとが非接触状態で積層されており、接合工程S03における加熱温度が、Mgの融点以上である670℃以上とされているので、接合界面において十分に液相を生じさせることができる。一方、接合工程S03における加熱温度が850℃以下とされているので、Cuと活性金属(Ti)との共晶反応の発生を抑制することができ、液相が過剰に生成することを抑制できる。また、セラミックス基板11への熱負荷が小さくなり、セラミックス基板11の劣化を抑制することができる。
 (第2の実施形態)
 本発明の第2の実施形態について、図5から図8を参照して説明する。
 本実施形態に係る銅/セラミックス接合体は、セラミックス部材であるセラミックス基板111と、銅部材である銅板122(回路層112)とが接合されることにより構成された絶縁回路基板110とされている。
 図5に、本発明の第2の実施形態である絶縁回路基板110及びこの絶縁回路基板110を用いたパワーモジュール101を示す。
 このパワーモジュール101は、絶縁回路基板110と、この絶縁回路基板110の一方側(図5において上側)の面にはんだ層2を介して接合された半導体素子3と、絶縁回路基板110の他方側(図5において下側)に配置されたヒートシンク151と、を備えている。
 はんだ層2は、例えばSn-Ag系、Sn-In系、若しくはSn-Ag-Cu系のはんだ材とされている。
 絶縁回路基板110は、セラミックス基板111と、このセラミックス基板111の一方の面(図5において上面)に配設された回路層112と、セラミックス基板111の他方の面(図5において下面)に配設された金属層113とを備えている。
 セラミックス基板111は、回路層112と金属層113との間の電気的接続を防止するものであって、本実施形態では、絶縁性の高い窒化ケイ素で構成されている。セラミックス基板111の厚さは、0.2~1.5mmの範囲内に設定されており、本実施形態では、0.32mmに設定されている。
 回路層112は、図8に示すように、セラミックス基板111の一方の面に銅又は銅合金からなる銅板122が接合されることにより形成されている。本実施形態においては、回路層112を構成する銅板122として、無酸素銅の圧延板が用いられている。この回路層112には、回路パターンが形成されており、その一方の面(図5において上面)が、半導体素子3が搭載される搭載面である。回路層112の厚さは0.1mm以上2.0mm以下の範囲内に設定されており、本実施形態では0.6mmに設定されている。
 金属層113は、図8に示すように、セラミックス基板111の他方の面にアルミニウム板123が接合されることにより形成されている。本実施形態においては、金属層113は、純度が99.99mass%以上のアルミニウム(いわゆる4Nアルミニウム)の圧延板からなるアルミニウム板123がセラミックス基板111に接合されることで形成されている。このアルミニウム板123は、0.2%耐力が30N/mm以下とされている。金属層113(アルミニウム板123)の厚さは0.5mm以上6mm以下の範囲内に設定されており、本実施形態では、2.0mmに設定されている。金属層113は、図8に示すように、アルミニウム板123がAl-Si系ろう材128を用いてセラミックス基板111に接合されることで形成されている。
 ヒートシンク151は、前述の絶縁回路基板110を冷却するためのものであり、本実施形態においては、熱伝導性が良好な材質で構成された放熱板で構成されている。本実施形態においては、ヒートシンク151は、A6063(アルミニウム合金)で構成されている。本実施形態においては、このヒートシンク151は、絶縁回路基板110の金属層113に、例えばAl-Si系ろう材を用いて接合されている。
 セラミックス基板111と回路層112(銅板122)とは、図8に示すように、Ti,Zr,Nb,Hfから選択される1種又は2種以上の活性金属からなる活性金属膜124(本実施形態ではTi膜)及びMg膜125を介して接合されている。
 セラミックス基板111と回路層112(銅板122)との接合界面においては、図6に示すように、セラミックス基板111側に形成された活性金属窒化物層131(本実施形態では窒化チタン層)と、Cuの母相中にMgが固溶したMg固溶層132と、が積層されている。
 Mg固溶層132には、上述の活性金属が含まれている。本実施形態においては、Mg固溶層132には、Cuと活性金属(Ti)とを含む金属間化合物相133が分散されている。本実施形態では、活性金属としてTiを用いており、CuとTiを含む金属間化合物相133を構成する金属間化合物としては、例えばCuTi,CuTi,CuTi,CuTi,CuTi,CuTi等が挙げられる。
 このMg固溶層132におけるMgの含有量は、0.01原子%以上0.5原子%以下の範囲内とされている。Mg固溶層132の厚さは、0.1μm以上80μm以下の範囲内とされている。
 本実施形態では、活性金属窒化物層131(窒化チタン層)の内部に、Cu粒子135が分散している。
 活性金属窒化物層131(窒化チタン層)内に分散するCu粒子135の粒径が10nm以上100nm以下の範囲内とされている。活性金属窒化物層131(窒化チタン層)のうちセラミックス基板111との界面から活性金属窒化物層131(窒化チタン層)の厚さの20%までの界面近傍領域におけるCu濃度が0.3原子%以上15原子%以下の範囲内とされている。
 活性金属窒化物層131(窒化チタン層)の厚さは、0.03μm以上1.2μm以下の範囲内とされている。
 本実施形態においては、セラミックス基板111と回路層112との間において、セラミックス基板111の接合面から回路層112側へ50μmまでの領域におけるCuMg相の面積率が15%以下とされている。
 上述した本実施形態である絶縁回路基板110の製造方法について、図7及び図8を参照して説明する。
 図8に示すように、回路層112となる銅板122とセラミックス基板111との間に、それぞれTi,Zr,Nb,Hfから選択される1種又は2種以上の活性金属の単体(本実施形態ではTi単体)及びMg単体を配置する(活性金属及びMg配置工程S101)。本実施形態では、活性金属(Ti)とMgを蒸着することによって、活性金属膜124(Ti膜)及びMg膜125が形成されており、銅板122に接触するようにMg膜125が形成されている。
 この活性金属及びMg配置工程S101では、活性金属量を0.4μmol/cm以上47.0μmol/cm以下の範囲内(本実施形態では、Tiを0.02mg/cm以上2.25mg/cm以下の範囲内)、Mg量を7.0μmol/cm以上143.2μmol/cm以下の範囲内(0.17mg/cm以上3.48mg/cm以下の範囲内)としている。
 活性金属量が0.4μmol/cm未満(Ti量が0.02mg/cm未満)、及び、Mg量が7.0μmol/cm未満(0.17mg/cm未満)の場合には、界面反応が不十分となり、接合率が低下するおそれがある。また、活性金属量が47.0μmol/cmを超える(Ti量が2.25mg/cmを超える)場合には、活性金属が多く比較的硬い金属間化合物相133が過剰に生成してしまい、Mg固溶層132が硬くなり過ぎて、セラミックス基板111に割れが生じるおそれがある。また、Mg量が143.2μmol/cmを超える(3.48mg/cmを超える)場合には、セラミックス基板111の分解反応が過剰となり、Alが過剰に生成し、これらとCuや活性金属(Ti)やMgの金属間化合物が多量に生じ、セラミックス基板111に割れが生じるおそれがある。
 活性金属量の下限は2.8μmol/cm以上とすることが好ましく、活性金属量の上限は18.8μmol/cm以下とすることが好ましい。また、Mg量の下限は8.8μmol/cm以上とすることが好ましく、Mg量の上限は37.0μmol/cm以下とすることが好ましい。
 次に、銅板122とセラミックス基板111とを、活性金属膜124(Ti膜)及びMg膜125を介して積層する(積層工程S102)。
 本実施形態では、図8に示すように、セラミックス基板111の他方の面側に、Al-Si系ろう材128を介して、金属層113となるアルミニウム板123を積層する。
 積層された銅板122、セラミックス基板111、アルミニウム板123を、積層方向に加圧するとともに、真空炉内に装入して加熱し、銅板122とセラミックス基板111とアルミニウム板123とを接合する(接合工程S103)。
 接合工程S103における加圧荷重は、0.049MPa以上3.4MPa以下の範囲内とされている。接合工程S103における加圧荷重は、0.294MPa以上1.47MPa以下の範囲内とされていることが好ましいが、これに限定されることはない。
 接合工程S103における加熱温度は、CuとMgとが接触状態で積層されていることから、MgとCuの共晶温度以上である500℃以上、かつ、Cuと活性金属(Ti)の共晶温度以下である850℃以下とする。加熱温度の下限は700℃以上とすることが好ましい。
 本実施形態では、アルミニウム板123をAl-Si系ろう材128を用いて接合するため、加熱温度は600℃以上650℃以下の範囲内としている。
 接合工程S103における真空度は、1×10-6Pa以上1×10-2Pa以下の範囲内とすることが好ましい。
 加熱温度での保持時間は、5min以上360min以下の範囲内とすることが好ましい。上述のCuMg相の面積率を低くするためには、加熱温度での保持時間の下限を60min以上とすることが好ましい。加熱温度での保持時間の上限は240min以下とすることが好ましい。
 以上のように、活性金属及びMg配置工程S101と、積層工程S102と、接合工程S103とによって、本実施形態である絶縁回路基板110が製造される。
 絶縁回路基板110の金属層113の他方の面側に、ヒートシンク151を接合する(ヒートシンク接合工程S104)。
 絶縁回路基板110とヒートシンク151とを、ろう材を介して積層し、積層方向に加圧するとともに真空炉内に装入してろう付けを行う。これにより、絶縁回路基板110の金属層113とヒートシンク151とを接合する。このとき、ろう材としては、例えば、厚さ20~110μmのAl-Si系ろう材箔を用いることができ、ろう付け温度は、接合工程S103における加熱温度よりも低温に設定することが好ましい。
 次に、絶縁回路基板110の回路層112の一方の面に、半導体素子3をはんだ付けにより接合する(半導体素子接合工程S105)。
 以上の工程により、図5に示すパワーモジュール101が製出される。
 以上のような構成とされた本実施形態の絶縁回路基板110(銅/セラミックス接合体)によれば、銅板122(回路層112)と窒化ケイ素からなるセラミックス基板111とが、活性金属膜124(Ti膜)及びMg膜125を介して接合されており、セラミックス基板111と回路層112(銅板122)の接合界面には、セラミックス基板111側に形成された活性金属窒化物層131(窒化チタン層)と、Cuの母相中にMgが固溶したMg固溶層132と、が積層され、このMg固溶層132内に、活性金属が存在している。本実施形態では、Cuと活性金属(Ti)とを含む金属間化合物相133が分散しているので、第1の実施形態と同様に、回路層112(銅板122)とセラミックス基板111とが確実に接合された絶縁回路基板110(銅/セラミックス接合体)を得ることができる。また、接合界面にAgが存在していないので、耐マイグレーション性に優れた絶縁回路基板110(銅/セラミックス接合体)を得ることができる。
 本実施形態においては、活性金属窒化物層131(窒化チタン層)の内部に、Cu粒子135が分散しているので、銅板122のCuがセラミックス基板111の接合面で十分に反応していることになり、回路層112(銅板122)とセラミックス基板111とが強固に接合された絶縁回路基板110(銅/セラミックス接合体)を得ることが可能となる。
 本実施形態においては、セラミックス基板111と回路層112(銅板122)との間において、セラミックス基板111の接合面から回路層112(銅板122)側へ50μmまでの領域におけるCuMg相の面積率が15%以下に制限されているので、例えば超音波接合等を実施した場合であっても、接合界面における割れ等の発生を抑制することが可能となる。
 本実施形態の絶縁回路基板110(銅/セラミックス接合体)の製造方法によれば、第1の実施形態と同様に、回路層112(銅板122)とセラミックス基板111との接合界面において、液相を適度に出現させて十分に界面反応させることができ、銅板122とセラミックス基板111とが確実に接合された絶縁回路基板110(銅/セラミックス接合体)を得ることができる。また、接合にAgを用いていないので、耐マイグレーション性に優れた絶縁回路基板110を得ることができる。
 本実施形態では、CuとMgとが接触状態で積層されており、接合工程S103における加熱温度が、CuとMgとの共晶温度以上である500℃以上とされているので、接合界面において十分に液相を生じさせることができる。
 本実施形態では、積層工程S102において、セラミックス基板111の他面側にアルミニウム板123をAl-Si系ろう材128を介して積層し、銅板122とセラミックス基板111、セラミックス基板111とアルミニウム板123とを同時に接合しているので、銅からなる回路層112とアルミニウムからなる金属層113とを備えた絶縁回路基板110を効率良く製造することができる。また、絶縁回路基板110における反りの発生を抑制することができる。
 以上、本発明の実施形態について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
 例えば、回路層又は金属層を構成する銅板を、無酸素銅の圧延板として説明したが、これに限定されることはなく、他の銅又は銅合金で構成されたものであってもよい。
 第2の実施形態において、金属層を構成するアルミニウム板を、純度99.99mass%の純アルミニウムの圧延板として説明したが、これに限定されることはなく、純度99mass%のアルミニウム(2Nアルミニウム)等、他のアルミニウム又はアルミニウム合金で構成されたものであってもよい。
 ヒートシンクとして放熱板を例に挙げて説明したが、これに限定されることはなく、ヒートシンクの構造に特に限定はない。例えば、冷媒が流通する流路を有するものや冷却フィンを備えたものであってもよい。ヒートシンクとしてアルミニウムやアルミニウム合金を含む複合材(例えばAlSiC等)を用いることもできる。
 ヒートシンクの天板部や放熱板と金属層との間に、アルミニウム又はアルミニウム合金若しくはアルミニウムを含む複合材(例えばAlSiC等)からなる緩衝層を設けてもよい。
 本実施形態では、活性金属及びMg配置工程において、活性金属膜(Ti膜)及びMg膜を成膜するものとして説明したが、これに限定されることはなく、活性金属とMgを共蒸着してもよい。この場合においても、成膜された活性金属膜及びMg膜は、合金化されておらず、活性金属の単体及びMg単体が配置される。共蒸着によって活性金属及びMg膜を成膜した場合には、MgとCuとが接触状態となるため、接合工程における加熱温度の下限を500℃以上とすることができる。
 本実施形態では、活性金属としてTiを用いたものとして説明したが、これに限定されることはなく、活性金属として、Ti,Zr,Nb,Hfから選択される1種又は2種以上を用いてもよい。
 活性金属としてZrを用いた場合には、Mg固溶層において、Zrは、Cuとの金属間化合物相として存在する。この金属間化合物相を構成する金属間化合物としては、例えばCuZr,Cu51Zr14,CuZr,Cu10Zr,CuZr,CuZr,CuZr等が挙げられる。
 活性金属としてHfを用いた場合には、Mg固溶層において、Hfは、Cuとの金属間化合物相として存在する。この金属間化合物相を構成する金属間化合物としては、例えばCu51Hf14,CuHf,Cu10Hf,CuHf等が挙げられる。
 活性金属としてTi及びZrを用いた場合には、Mg固溶層において、Ti及びZrは、Cuと活性金属を含む金属間化合物相として存在する。この金属間化合物相を構成する金属間化合物としては、Cu1.5Zr0.75Ti0.75等が挙げられる。
 活性金属としてNbを用いた場合には、NbはMg固溶層に固溶して存在する。
 活性金属及びMg配置工程においては、接合界面における活性金属量を0.4μmol/cm以上47.0μmol/cm以下の範囲内、Mg量を7.0μmol/cm以上143.2μmol/cm以下の範囲内とされていればよく、例えばMg膜/活性金属膜/Mg膜のように活性金属膜とMg膜を多層に積層してもよい。あるいは、活性金属膜とMg膜の間にCu膜を成膜してもよい。
 活性金属の単体及びMg単体は、箔材を配置してもよいし、スパッタリングによって成膜してもよい。
 本実施形態では、絶縁回路基板の回路層にパワー半導体素子を搭載してパワーモジュールを構成するものとして説明したが、これに限定されることはない。例えば、絶縁回路基板にLED素子を搭載してLEDモジュールを構成してもよいし、絶縁回路基板の回路層に熱電素子を搭載して熱電モジュールを構成してもよい。
 本発明の有効性を確認するために行った確認実験について説明する。
<実施例1>
 表1に示す構造の銅/セラミックス接合体を形成した。詳述すると、40mm角のセラミックス基板の両面に、表1に示すように、活性金属としてTi単体及びMg単体を成膜した銅板を積層し、表1に示す接合条件で接合し、銅/セラミックス接合体を形成した。
 セラミックス基板の厚さは窒化アルミニウムの場合は厚さ0.635mm、窒化ケイ素の場合は厚さ0.32mmを用いた。また、接合時の真空炉の真空度は5×10-3Paとした。
 このようにして得られた銅/セラミックス接合体について、接合界面を観察して活性金属窒化物層(窒化チタン層)、Mg固溶層、金属間化合物相、活性金属窒化物層(窒化チタン層)中のCu粒子の有無及びCu濃度、を確認した。また、銅/セラミックス接合体の初期接合率、冷熱サイクル後のセラミックス基板の割れ、マイグレーション性を、以下のように評価した。
(Mg固溶層)
 銅板とセラミックス基板との接合界面を、EPMA装置(日本電子株式会社製JXA-8539F)を用いて、倍率2000倍、加速電圧15kVの条件で接合界面を含む領域(400μm×600μm)を観察し、セラミックス基板表面(活性金属窒化物層表面)から銅板側に向かって10μm間隔の10点で定量分析を行い、Mg濃度が0.01原子%以上である領域をMg固溶層とした。
(Mg固溶層における活性金属の有無(金属間化合物相の有無)
 銅板とセラミックス基板との接合界面を、電子線マイクロアナライザー(日本電子株式会社製JXA-8539F)を用いて、倍率2000倍、加速電圧15kVの条件で接合界面を含む領域(400μm×600μm)の活性金属(Ti)の元素MAPを取得し、活性金属(Ti)の有無を確認した。また、活性金属(Ti)の存在が確認された領域内での定量分析の5点平均で、Cu濃度が5原子%以上、かつ、活性金属濃度(Ti濃度)が16原子以上90原子%以下を満たした領域を金属間化合物相とした。
(活性金属窒化物層)
 銅板とセラミックス基板との接合界面を、走査型透過電子顕微鏡(FEI社製Titan ChemiSTEM(EDS検出器付き))を用いて、倍率115000倍、加速電圧200kVの条件で観察を行い、エネルギー分散型X線分析法(サーモサイエンティフィック社製NSS7)を用いてマッピングを行い、活性金属(Ti)とNが重なる領域において、1nm程度に絞った電子ビームを照射すること(NBD(ナノビーム回折)法)で電子回折図形を得て、活性金属窒化物層(窒化チタン層)の有無を確認した。
 活性金属窒化物層(窒化チタン層)と確認された領域におけるCu粒子の有無を確認し、この領域における定量分析の5点平均から得られたCu濃度を、活性金属窒化物層(窒化チタン層)内に分散されたCuの平均濃度とした。
(初期接合率)
 銅板とセラミックス基板との接合率は、超音波探傷装置(株式会社日立パワーソリューションズ製FineSAT200)を用いて以下の式を用いて求めた。 初期接合面積とは、接合前における接合すべき面積、すなわち銅板の接合面の面積とした。超音波探傷像において剥離は接合部内の白色部で示されることから、この白色部の面積を剥離面積とした。
  (接合率)={(初期接合面積)-(剥離面積)}/(初期接合面積)×100
(セラミックス基板の割れ)
 冷熱衝撃試験機(エスペック株式会社製TSA-72ES)を使用し、気相で、1サイクルが-50℃で10分と150℃で10分であるサイクルを300サイクル実施した。
 上述の冷熱サイクルを負荷した後のセラミックス基板の割れの有無を評価した。
(マイグレーション)
 回路層の回路パターン間距離0.8mm、温度60℃、湿度95%RH、電圧DC50Vの条件で、500時間放置後に、回路パターン間の電気抵抗を測定した。抵抗値が1×10Ω以下となった場合を短絡したと判断し、「B」とした。抵抗値が1×10Ω以下とならなかった場合を「A」とした。
 評価結果を表2に示す。また、本発明例5の観察結果を図9A、図9Bおよび図9Cに示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 活性金属及びMg配置工程において、活性金属量(Ti量)が0.1μmol/cm(0.005mg/cm)と本発明の範囲よりも少ない比較例1においては、初期接合率が低くなった。Mg固溶層に、金属間化合物相として活性金属(Ti)が存在しておらず、界面反応が不十分だったためと推測される。
 活性金属及びMg配置工程において、活性金属量(Ti量)が66.9μmol/cm(3.20mg/cm)と本発明の範囲よりも多い比較例2においては、セラミックス基板の割れが確認された。比較的硬い金属間化合物相が多量に形成されたためと推測される。
 活性金属及びMg配置工程において、Mg量が2.1μmol/cm(0.05mg/cm)と本発明の範囲よりも少ない比較例3においては、初期接合率が低くなった。Mg固溶層が観察されておらず、界面反応が不十分だったためと推測される。
 活性金属及びMg配置工程において、Mg量が220.1μmol/cm(5.35mg/cm)と本発明の範囲よりも多い比較例4においては、セラミックス基板の割れが確認された。セラミックス基板の分解反応が過剰となり、Alが過剰に生成し、これらとCuや活性金属(Ti)やMgの金属間化合物が多量に生じたためと推測される。
 Ag-Cu-Tiろう材を用いてセラミックス基板と銅板を接合した従来例においては、マイグレーションが「B」と判断された。接合界面にAgが存在するためと推測される。
 これに対して、本発明例1~12においては、初期接合率も高く、セラミックス基板の割れも確認されなかった。また、マイグレーションも良好であった。
 図9A、図9Bおよび図9Cに示すように、接合界面を観察した結果、活性金属窒化物層31(窒化チタン層)、Mg固溶層32が観察され、このMg固溶層32の内部に金属間化合物相33が分散していることが観察された。
<実施例2>
 表3に示す構造の銅/セラミックス接合体を形成した。詳述すると、40mm角のセラミックス基板の両面に、表3に示すように、活性金属の単体及びMg単体を成膜した銅板を積層し、表3に示す接合条件で接合し、銅/セラミックス接合体を形成した。セラミックス基板の厚さは窒化アルミニウムの場合は厚さ0.635mm、窒化ケイ素の場合は厚さ0.32mmを用いた。また、接合時の真空炉の真空度は5×10-3Paとした。
 このようにして得られた銅/セラミックス接合体について、実施例1と同様に、接合界面を観察して、活性金属窒化物層、Mg固溶層、Mg固溶層における活性金属の有無(金属間化合物相の有無)、活性金属窒化物層中のCu粒子の有無及びCu濃度、を確認した。また、銅/セラミックス接合体の初期接合率、冷熱サイクル後のセラミックス基板の割れ、マイグレーション性は、実施例1と同様に評価した。評価結果を表4に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 活性金属及びMg配置工程において、活性金属量(Zr量)が50.4μmol/cmと本発明の範囲よりも多い比較例21、及び、活性金属量(Nb量)が61.2μmol/cmと本発明の範囲よりも多い比較例22においては、セラミックス基板の割れが確認された。Mg固溶層に存在する活性金属量が多く、Mg固溶層が硬くなったためと推測される。
 活性金属及びMg配置工程において、活性金属量(Hf量)が0.2μmol/cmと本発明の範囲よりも少ない比較例23、及び、活性金属量(Hf量+Nb量)が0.2μmol/cmと本発明の範囲よりも少ない比較例24においては、初期接合率が低くなった。
 これに対して、本発明例21~27においては、初期接合率も高く、セラミックス基板の割れも確認されなかった。また、マイグレーションも良好であった。
 以上のことから、本発明例によれば、銅部材とセラミックス部材とが確実に接合され、耐マイグレーション性に優れた銅/セラミックス接合体(絶縁回路基板)を提供可能であることが確認された。
<実施例3>
 表5に示す構造の絶縁回路基板を形成した。詳述すると、40mm角のセラミックス基板の両面に、表5に示すように、活性金属の単体及びMg単体を成膜した銅板を積層し、表5に示す接合条件で接合し、回路層を有する絶縁回路基板を形成した。セラミックス基板の厚さは窒化アルミニウムの場合は厚さ0.635mm、窒化ケイ素の場合は厚さ0.32mmを用いた。また、接合時の真空炉の真空度は5×10-3Paとした。
 このようにして得られた絶縁回路基板について、セラミックス基板と回路層との接合界面におけるCuMg相の面積率、及び、回路層に超音波接合した端子のプル強度を、以下のようにして評価した。
(CuMg相の面積率)
 銅板とセラミックス基板との接合界面を、電子線マイクロアナライザー(日本電子株式会社製JXA-8539F)を用いて、倍率750倍、加速電圧15kVの条件で接合界面を含む領域(120μm×160μm)のMgの元素MAPを取得し、Mgの存在が確認された領域内での定量分析の5点平均で、Mg濃度が30原子%以上40原子%以下を満たした領域をCuMg相とした。
 観察視野内において、セラミックス基板の接合面とセラミックス基板の接合面から銅板側へ50μmまでの領域の面積Aを求める。この領域内においてCuMg相の面積Bを求め、CuMg相の面積率B/A×100(%)を求めた。上述のようにCuMg相の面積率を5視野で測定し、その平均値を表5に記載した。
(プル強度)
 図10Aおよび図10Bに示すように、絶縁回路基板の回路層の上に、ステージ40を含む超音波金属接合機(超音波工業株式会社製60C-904)を用いて、銅端子(幅:5mm、厚さT:1.0mm、長さL:20mm、長さL:10mm)を、コプラス量0.3mmの条件で超音波接合した。
 ツール速度Yが5mm/s,ステージ速度Xが5mm/sの条件で銅端子をプルしたときの破断荷重を接合面積で割った値をプル強度として表5に記載した。
 本発明例31~43を比較すると、CuMg相の面積率が低いほど、プル強度が高くなることが確認された。よって、超音波接合性を向上させる場合には、CuMg相の面積率を低く抑えることが効果的であることが確認された。
 本発明によれば、銅部材とセラミックス部材とが確実に接合され、耐マイグレーション性に優れた銅/セラミックス接合体、絶縁回路基板、及び、上述の銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法を提供することができる。
10、110 絶縁回路基板
11、111 セラミックス基板
12、112 回路層
13、113 金属層
22、23、122 銅板
31、131 活性金属窒化物層
32、132 Mg固溶層
33、133 金属間化合物相
35、135 Cu粒子

Claims (14)

  1.  銅又は銅合金からなる銅部材と、窒化アルミニウム又は窒化ケイ素からなるセラミックス部材とが接合されてなる銅/セラミックス接合体であって、
     前記銅部材と前記セラミックス部材との間においては、前記セラミックス部材側に、Ti,Zr,Nb,Hfから選択される1種又は2種以上の活性金属の窒化物を含む活性金属窒化物層が形成され、前記活性金属窒化物層と前記銅部材との間にCuの母相中にMgが固溶したMg固溶層が形成されており、
     前記Mg固溶層には、前記活性金属が存在することを特徴とする銅/セラミックス接合体。
  2.  前記Mg固溶層には、Cuと前記活性金属を含む金属間化合物相が分散されていることを特徴とする請求項1に記載の銅/セラミックス接合体。
  3.  前記活性金属窒化物層の内部に、Cu粒子が分散されていることを特徴とする請求項1又は請求項2に記載の銅/セラミックス接合体。
  4.  前記活性金属がTiであることを特徴とする請求項1から請求項3のいずれか一項に記載の銅/セラミックス接合体。
  5.  前記セラミックス部材と前記銅部材との間において、前記セラミックス部材の接合面から前記銅部材側へ50μmまでの領域におけるCuMg相の面積率が15%以下であることを特徴とする請求項1から請求項4のいずれか一項に記載の銅/セラミックス接合体。
  6.  窒化アルミニウム又は窒化ケイ素からなるセラミックス基板の表面に、銅又は銅合金からなる銅板が接合されてなる絶縁回路基板であって、
     前記銅板と前記セラミックス基板との間においては、前記セラミックス基板側に、Ti,Zr,Nb,Hfから選択される1種又は2種以上の活性金属の窒化物を含む活性金属窒化物層が形成され、この活性金属窒化物層と前記銅板との間にCuの母相中にMgが固溶したMg固溶層が形成されており、
     前記Mg固溶層には、前記活性金属が存在することを特徴とする絶縁回路基板。
  7.  前記Mg固溶層には、Cuと前記活性金属を含む金属間化合物相が分散されていることを特徴とする請求項6に記載の絶縁回路基板。
  8.  前記活性金属窒化物層の内部に、Cu粒子が分散されていることを特徴とする請求項6又は請求項7に記載の絶縁回路基板。
  9.  前記活性金属がTiであることを特徴とする請求項6から請求項8のいずれか一項に記載の絶縁回路基板。
  10.  前記セラミックス基板と前記銅板との間において、前記セラミックス基板の接合面から前記銅板側へ50μmまでの領域におけるCuMg相の面積率が15%以下であることを特徴とする請求項6から請求項9のいずれか一項に記載の絶縁回路基板。
  11.  請求項1から請求項5のいずれか一項に記載の銅/セラミックス接合体を製造する銅/セラミックス接合体の製造方法であって、
     前記銅部材と前記セラミックス部材との間に、Ti,Zr,Nb,Hfから選択される1種又は2種以上の活性金属の単体及びMg単体を配置する活性金属及びMg配置工程と、
     前記銅部材と前記セラミックス部材とを、前記活性金属の単体及び前記Mg単体を介して積層する積層工程と、
     前記活性金属の単体及び前記Mg単体を介して積層された前記銅部材と前記セラミックス部材とを積層方向に加圧した状態で、真空雰囲気下において加熱処理して接合する接合工程と、
     を備えており、
     前記活性金属及びMg配置工程では、前記活性金属の単体の活性金属量が0.4μmol/cm以上47.0μmol/cm以下であり、前記Mg単体のMg量が7.0μmol/cm以上143.2μmol/cm以下であることを特徴とする銅/セラミックス接合体の製造方法。
  12.  前記接合工程における加圧荷重が0.049MPa以上3.4MPa以下であり、
     前記接合工程における加熱温度は、前記銅板のCuと前記Mg単体のMgとが接触状態で積層されている場合は500℃以上850℃以下であり、前記Cuと前記Mgとが非接触状態で積層されている場合は670℃以上850℃以下であることを特徴とする請求項11に記載の銅/セラミックス接合体の製造方法。
  13.  窒化アルミニウム又は窒化ケイ素からなるセラミックス基板の表面に、銅又は銅合金からなる銅板が接合されてなる絶縁回路基板を製造する絶縁回路基板の製造方法であって、
     前記銅板と前記セラミックス基板との間に、Ti,Zr,Nb,Hfから選択される1種又は2種以上の活性金属の単体及びMg単体を配置する活性金属及びMg配置工程と、
     前記銅板と前記セラミックス基板とを、前記活性金属の単体及び前記Mg単体を介して積層する積層工程と、
     前記活性金属の単体及び前記Mg単体を介して積層された前記銅板と前記セラミックス基板とを積層方向に加圧した状態で、真空雰囲気下において加熱処理して接合する接合工程と、
     を備えており、
     前記活性金属及びMg配置工程では、前記活性金属の単体の活性金属量が0.4μmol/cm以上47.0μmol/cm以下であり、前記Mg単体のMg量が7.0μmol/cm以上143.2μmol/cm以下であることを特徴とする絶縁回路基板の製造方法。
  14.  前記接合工程における加圧荷重が0.049MPa以上3.4MPa以下であり、
     前記接合工程における加熱温度は、前記銅板のCuと前記Mg単体のMgとが接触状態で積層されている場合は500℃以上850℃以下であり、前記Cuと前記Mgとが非接触状態で積層されている場合は670℃以上850℃以下であることを特徴とする請求項13に記載の絶縁回路基板の製造方法。
PCT/JP2018/007186 2017-02-28 2018-02-27 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法 WO2018159590A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880012794.XA CN110382445B (zh) 2017-02-28 2018-02-27 铜-陶瓷接合体、绝缘电路基板、铜-陶瓷接合体的制造方法及绝缘电路基板的制造方法
EP18760572.0A EP3590909B1 (en) 2017-02-28 2018-02-27 Copper/ceramic joined body insulated circuit board, method for producing copper/ceramic joined body, and method for producing insulated circuit board
US16/486,266 US10818585B2 (en) 2017-02-28 2018-02-27 Copper/ceramic joined body, insulated circuit board, method for producing copper/ceramic joined body, and method for producing insulated circuit board
KR1020197023690A KR102459745B1 (ko) 2017-02-28 2018-02-27 구리/세라믹스 접합체, 절연 회로 기판, 및, 구리/세라믹스 접합체의 제조 방법, 절연 회로 기판의 제조 방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017036841 2017-02-28
JP2017-036841 2017-02-28
JP2018-010964 2018-01-25
JP2018010964A JP6965768B2 (ja) 2017-02-28 2018-01-25 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法

Publications (1)

Publication Number Publication Date
WO2018159590A1 true WO2018159590A1 (ja) 2018-09-07

Family

ID=63370915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007186 WO2018159590A1 (ja) 2017-02-28 2018-02-27 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法

Country Status (2)

Country Link
TW (1) TWI746807B (ja)
WO (1) WO2018159590A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111848226A (zh) * 2019-04-24 2020-10-30 成都大学 一种纳米金属层陶瓷基板及其制造方法
WO2021085451A1 (ja) * 2019-10-30 2021-05-06 三菱マテリアル株式会社 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法
WO2021112060A1 (ja) * 2019-12-02 2021-06-10 三菱マテリアル株式会社 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法
JP2021091595A (ja) * 2019-12-02 2021-06-17 三菱マテリアル株式会社 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法
US20210238103A1 (en) * 2018-08-28 2021-08-05 Mitsubishi Materials Corporation Copper/ceramic bonded body, insulating circuit substrate, copper/ceramic bonded body production method, and insulating circuit substrate production method
WO2021241463A1 (ja) * 2020-05-27 2021-12-02 三菱マテリアル株式会社 銅/セラミックス接合体、および、絶縁回路基板
CN114127921A (zh) * 2019-08-21 2022-03-01 三菱综合材料株式会社 铜-陶瓷接合体、绝缘电路基板、铜-陶瓷接合体的制造方法及绝缘电路基板的制造方法
CN114787106A (zh) * 2019-12-06 2022-07-22 三菱综合材料株式会社 铜-陶瓷接合体、绝缘电路基板及铜-陶瓷接合体的制造方法、绝缘电路基板的制造方法
US20230071498A1 (en) * 2020-03-13 2023-03-09 Mitsubishi Materials Corporation Heat sink integrated insulating circuit board
WO2024053738A1 (ja) * 2022-09-09 2024-03-14 三菱マテリアル株式会社 銅/セラミックス接合体、および、絶縁回路基板

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021149802A1 (ja) * 2020-01-24 2021-07-29 三菱マテリアル株式会社 銅/グラフェン接合体とその製造方法、および銅/グラフェン接合構造

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04162756A (ja) 1990-10-26 1992-06-08 Toshiba Corp 半導体モジュール
JPH08277173A (ja) * 1995-02-09 1996-10-22 Ngk Insulators Ltd セラミックスの接合構造およびその製造方法
JPH08277171A (ja) * 1995-02-09 1996-10-22 Ngk Insulators Ltd 接合体、耐蝕性接合材料および接合体の製造方法
JP2001077245A (ja) * 1999-09-03 2001-03-23 Dowa Mining Co Ltd 窒化ケイ素回路基板
JP2001135929A (ja) * 1999-11-08 2001-05-18 Dowa Mining Co Ltd 窒化ケイ素回路基板の製造方法
JP3211856B2 (ja) 1994-11-02 2001-09-25 電気化学工業株式会社 回路基板
JP2007197229A (ja) * 2006-01-24 2007-08-09 National Institute Of Advanced Industrial & Technology 高熱伝導窒化ケイ素基板とその製造方法
JP4375730B2 (ja) 2004-04-23 2009-12-02 本田技研工業株式会社 銅とセラミックス又は炭素基銅複合材料との接合用ろう材及び同接合方法
JP2014168811A (ja) * 2013-03-05 2014-09-18 Mitsubishi Materials Corp ろう付用シート、ろう付用シート構成体及びパワーモジュール用基板の製造方法
WO2015141839A1 (ja) * 2014-03-20 2015-09-24 Jx日鉱日石金属株式会社 積層体及び、その製造方法
JP2017036841A (ja) 2013-11-15 2017-02-16 イビデン株式会社 蓄熱器
JP2018010964A (ja) 2016-07-13 2018-01-18 株式会社村田製作所 回路モジュールの製造方法および成膜装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3989254B2 (ja) * 2002-01-25 2007-10-10 日本碍子株式会社 異種材料接合体及びその製造方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04162756A (ja) 1990-10-26 1992-06-08 Toshiba Corp 半導体モジュール
JP3211856B2 (ja) 1994-11-02 2001-09-25 電気化学工業株式会社 回路基板
JPH08277173A (ja) * 1995-02-09 1996-10-22 Ngk Insulators Ltd セラミックスの接合構造およびその製造方法
JPH08277171A (ja) * 1995-02-09 1996-10-22 Ngk Insulators Ltd 接合体、耐蝕性接合材料および接合体の製造方法
JP2001077245A (ja) * 1999-09-03 2001-03-23 Dowa Mining Co Ltd 窒化ケイ素回路基板
JP2001135929A (ja) * 1999-11-08 2001-05-18 Dowa Mining Co Ltd 窒化ケイ素回路基板の製造方法
JP4375730B2 (ja) 2004-04-23 2009-12-02 本田技研工業株式会社 銅とセラミックス又は炭素基銅複合材料との接合用ろう材及び同接合方法
JP2007197229A (ja) * 2006-01-24 2007-08-09 National Institute Of Advanced Industrial & Technology 高熱伝導窒化ケイ素基板とその製造方法
JP2014168811A (ja) * 2013-03-05 2014-09-18 Mitsubishi Materials Corp ろう付用シート、ろう付用シート構成体及びパワーモジュール用基板の製造方法
JP2017036841A (ja) 2013-11-15 2017-02-16 イビデン株式会社 蓄熱器
WO2015141839A1 (ja) * 2014-03-20 2015-09-24 Jx日鉱日石金属株式会社 積層体及び、その製造方法
JP2018010964A (ja) 2016-07-13 2018-01-18 株式会社村田製作所 回路モジュールの製造方法および成膜装置

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210238103A1 (en) * 2018-08-28 2021-08-05 Mitsubishi Materials Corporation Copper/ceramic bonded body, insulating circuit substrate, copper/ceramic bonded body production method, and insulating circuit substrate production method
CN111848226A (zh) * 2019-04-24 2020-10-30 成都大学 一种纳米金属层陶瓷基板及其制造方法
EP3960722A4 (en) * 2019-08-21 2022-06-22 Mitsubishi Materials Corporation COPPER-CERAMIC COMPOSITE BODY, INSULATING CIRCUIT SUBSTRATE, METHOD OF MAKING COPPER-CERAMIC COMPOSITE BODY AND METHOD OF MAKING AN INSULATING CIRCUIT SUBSTRATE
US11881439B2 (en) 2019-08-21 2024-01-23 Mitsubishi Materials Corporation Copper/ceramic joined body, insulating circuit substrate, copper/ceramic joined body production method, and insulating circuit substrate production method
CN114127921A (zh) * 2019-08-21 2022-03-01 三菱综合材料株式会社 铜-陶瓷接合体、绝缘电路基板、铜-陶瓷接合体的制造方法及绝缘电路基板的制造方法
CN114127921B (zh) * 2019-08-21 2022-12-23 三菱综合材料株式会社 铜-陶瓷接合体、绝缘电路基板、铜-陶瓷接合体的制造方法及绝缘电路基板的制造方法
WO2021085451A1 (ja) * 2019-10-30 2021-05-06 三菱マテリアル株式会社 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法
EP4053091A4 (en) * 2019-10-30 2023-12-13 Mitsubishi Materials Corporation COPPER/CERAMIC ASSEMBLY, INSULATED PRINTED CIRCUIT BOARD, METHOD FOR PRODUCING COPPER/CERAMIC ASSEMBLY, AND METHOD FOR PRODUCING INSULATED PRINTED CIRCUIT BOARD
KR102413017B1 (ko) 2019-12-02 2022-06-23 미쓰비시 마테리알 가부시키가이샤 구리/세라믹스 접합체, 절연 회로 기판, 및 구리/세라믹스 접합체의 제조 방법, 절연 회로 기판의 제조 방법
JP2021091595A (ja) * 2019-12-02 2021-06-17 三菱マテリアル株式会社 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法
KR20220054461A (ko) * 2019-12-02 2022-05-02 미쓰비시 마테리알 가부시키가이샤 구리/세라믹스 접합체, 절연 회로 기판, 및 구리/세라믹스 접합체의 제조 방법, 절연 회로 기판의 제조 방법
US11638350B2 (en) 2019-12-02 2023-04-25 Mitsubishi Materials Corporation Copper/ceramic bonded body, insulating circuit board, method for producing copper/ceramic bonded body, and method for producing insulating circuit board
WO2021112060A1 (ja) * 2019-12-02 2021-06-10 三菱マテリアル株式会社 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法
CN114787106A (zh) * 2019-12-06 2022-07-22 三菱综合材料株式会社 铜-陶瓷接合体、绝缘电路基板及铜-陶瓷接合体的制造方法、绝缘电路基板的制造方法
CN114787106B (zh) * 2019-12-06 2023-07-14 三菱综合材料株式会社 铜-陶瓷接合体、绝缘电路基板及铜-陶瓷接合体的制造方法、绝缘电路基板的制造方法
US20230071498A1 (en) * 2020-03-13 2023-03-09 Mitsubishi Materials Corporation Heat sink integrated insulating circuit board
WO2021241463A1 (ja) * 2020-05-27 2021-12-02 三菱マテリアル株式会社 銅/セラミックス接合体、および、絶縁回路基板
WO2024053738A1 (ja) * 2022-09-09 2024-03-14 三菱マテリアル株式会社 銅/セラミックス接合体、および、絶縁回路基板

Also Published As

Publication number Publication date
TW201841871A (zh) 2018-12-01
TWI746807B (zh) 2021-11-21

Similar Documents

Publication Publication Date Title
CN110382445B (zh) 铜-陶瓷接合体、绝缘电路基板、铜-陶瓷接合体的制造方法及绝缘电路基板的制造方法
WO2018159590A1 (ja) 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法
JP7192451B2 (ja) 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法
WO2019146464A1 (ja) 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法
JP7056744B2 (ja) 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、及び、絶縁回路基板の製造方法
WO2021033421A1 (ja) 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法
WO2019088222A1 (ja) 接合体、及び、絶縁回路基板
WO2020044590A1 (ja) 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、及び、絶縁回路基板の製造方法
WO2021085451A1 (ja) 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法
WO2021033622A1 (ja) 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法
JP2019085327A (ja) 接合体、及び、絶縁回路基板
WO2021044844A1 (ja) 銅/セラミックス接合体、及び、絶縁回路基板
JP6928297B2 (ja) 銅/セラミックス接合体、及び、絶縁回路基板
WO2021117327A1 (ja) 銅/セラミックス接合体、及び、絶縁回路基板
JP7008188B2 (ja) 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、及び、絶縁回路基板の製造方法
JP7512863B2 (ja) 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法
US12027434B2 (en) Bonded body of copper and ceramic, insulating circuit substrate, bonded body of copper and ceramic production method, and insulating circuit substrate production method
WO2021112046A1 (ja) 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法
JP6850984B2 (ja) 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18760572

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197023690

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018760572

Country of ref document: EP

Effective date: 20190930