WO2018159381A1 - 鉄骨コンクリート梁及び鉄骨コンクリート梁の施工方法 - Google Patents

鉄骨コンクリート梁及び鉄骨コンクリート梁の施工方法 Download PDF

Info

Publication number
WO2018159381A1
WO2018159381A1 PCT/JP2018/005970 JP2018005970W WO2018159381A1 WO 2018159381 A1 WO2018159381 A1 WO 2018159381A1 JP 2018005970 W JP2018005970 W JP 2018005970W WO 2018159381 A1 WO2018159381 A1 WO 2018159381A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
concrete
allowable
side plate
pair
Prior art date
Application number
PCT/JP2018/005970
Other languages
English (en)
French (fr)
Inventor
貴之 平山
和人 中平
裕和 野澤
雄一郎 奥野
崇宏 待永
尚大 藤田
高津 比呂人
賢二 山崎
行夫 村上
智裕 木下
孝憲 清水
誠司 渡辺
裕織 安岡
Original Assignee
株式会社竹中工務店
Jfeスチール株式会社
Jfe建材株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社竹中工務店, Jfeスチール株式会社, Jfe建材株式会社 filed Critical 株式会社竹中工務店
Priority to JP2019502898A priority Critical patent/JP7185616B2/ja
Priority to SG11201907593QA priority patent/SG11201907593QA/en
Publication of WO2018159381A1 publication Critical patent/WO2018159381A1/ja
Priority to US16/549,198 priority patent/US10988928B2/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/29Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces built-up from parts of different material, i.e. composite structures
    • E04C3/293Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces built-up from parts of different material, i.e. composite structures the materials being steel and concrete
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/29Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces built-up from parts of different material, i.e. composite structures
    • E04C3/293Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces built-up from parts of different material, i.e. composite structures the materials being steel and concrete
    • E04C3/294Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces built-up from parts of different material, i.e. composite structures the materials being steel and concrete of concrete combined with a girder-like structure extending laterally outside the element
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/16Structures made from masses, e.g. of concrete, cast or similarly formed in situ with or without making use of additional elements, such as permanent forms, substructures to be coated with load-bearing material
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B5/00Floors; Floor construction with regard to insulation; Connections specially adapted therefor
    • E04B5/16Load-carrying floor structures wholly or partly cast or similarly formed in situ
    • E04B5/32Floor structures wholly cast in situ with or without form units or reinforcements
    • E04B5/36Floor structures wholly cast in situ with or without form units or reinforcements with form units as part of the floor
    • E04B5/38Floor structures wholly cast in situ with or without form units or reinforcements with form units as part of the floor with slab-shaped form units acting simultaneously as reinforcement; Form slabs with reinforcements extending laterally outside the element
    • E04B5/40Floor structures wholly cast in situ with or without form units or reinforcements with form units as part of the floor with slab-shaped form units acting simultaneously as reinforcement; Form slabs with reinforcements extending laterally outside the element with metal form-slabs

Definitions

  • the present invention relates to a steel concrete beam and a method for constructing a steel concrete beam.
  • the present invention has been made in view of the above, and can reduce the labor and cost of attaching a reinforcing member separately to form a through hole, and increase the degree of freedom of the position and size of the through hole.
  • An object of the present invention is to provide a steel frame concrete beam and a method for constructing the steel concrete beam.
  • the steel concrete beam according to claim 1 is a steel having a bottom plate portion and a pair of side plate portions extending upward from both ends of the bottom plate portion. And a concrete placed in a groove formed by the bottom plate portion and the pair of side plate portions of the steel mold frame.
  • the steel-concrete beam according to claim 2 is the steel-concrete beam according to claim 1, wherein an allowable bending moment or an allowable shear force of the steel-concrete beam is calculated by the following formula (1).
  • the steel-concrete beam according to claim 3 is the steel-concrete beam according to claim 1 or 2, wherein a part of the steel-concrete beam is joined to a large beam, and the steel formwork is An end of the steel formwork in the longitudinal direction on the side of the large beam, which is accommodated in the large beam via a notch formed on a side surface of the large beam, and has an end longer than the cover thickness of the large beam A part.
  • the steel-concrete beam according to claim 4 is the steel-concrete beam according to any one of claims 1 to 3, wherein the side plate portion and the concrete have a through hole penetrating the side plate portion and the concrete. It has a through-hole forming portion that can be formed.
  • the steel-concrete beam according to claim 5 is the steel-concrete beam according to any one of claims 1 to 4, wherein the pair of side plates includes an opening preventing member for fixing the pair of side plate portions to each other. It was provided in the range from the upper end position of the part to a position below the upper end position by 1/3 of the height of the pair of side plate parts.
  • a steel-concrete beam according to claim 7 is the steel-concrete beam according to claim 6, wherein the steel formwork includes a reinforcing portion extending downward or upward from an outer end of the flange portion.
  • the construction method of the steel concrete beam of Claim 8 is a steel formwork installation which installs the steel formwork which has a baseplate part and a pair of side-plate part extended upwards from the both ends of the said baseplate part. And a placing step of placing concrete in a groove portion formed by the bottom plate portion and the pair of side plate portions of the steel mold frame installed in the steel mold frame installation step.
  • the method for constructing a steel concrete beam according to claim 9 is the method for constructing a steel concrete beam according to claim 8, wherein an allowable bending moment or an allowable shear force of the steel concrete beam is calculated by the following formula (1).
  • the construction method of the steel-concrete beam of Claim 8 currently performed.
  • F a F RC + ⁇ ⁇ F S
  • F a Allowable bending moment or allowable shear force of the steel concrete beam
  • F RC Allowable bending moment or allowable shear force of the concrete
  • Load coefficient of allowable bending moment or allowable shear force of the steel formwork, 0 Load coefficient of 5 or less
  • F S Allowable bending moment or allowable shear force of the steel mold.
  • the joint strength between the small beam and the large beam can be obtained by accommodating the end portion of the steel formwork which is longer than the cover thickness of the large beam in the large beam. Further improvement is possible.
  • the through hole can be formed in the through hole forming portion, it is possible to allow piping and wiring to pass through the through hole, and the convenience of the steel concrete beam is improved. Can do.
  • the portion where the through hole can be formed is not limited to the portion where the reinforcing member is attached as in the prior art, and the size of the through hole is large. The degree of freedom of sheath arrangement can be increased.
  • the load of the slab supported by the steel concrete beam can be received by the flange portion and smoothly flowed to the steel concrete beam. Strength is improved.
  • the reinforcing portion is provided at the outer end of the flange portion, the buckling of the flange portion when the concrete is placed on the groove portion or the flange portion of the steel mold frame. Can be suppressed by the reinforcing portion, and the proof stress of the steel concrete beam is improved.
  • FIGS. 1A and 1B are diagrams showing a steel-concrete beam (small beam) according to Embodiment 1 of the present invention, in which FIG. 1A is a left side view, and FIG. 1B is an AA view of FIG. It is arrow sectional drawing. It is a disassembled perspective view which shows the temporary state at the time of construction in the junction part vicinity of a small beam and a large beam. It is a figure which shows the relationship between the cross section of a small beam, and a calculation parameter. It is a graph which shows the relationship between the thickness of a slab, and a long-term bending rigidity ratio. It is a graph which shows the relationship between the thickness of a slab, and a short-term bending rigidity ratio.
  • FIG. 8A is a cross-sectional perspective view corresponding to the cross-section taken along the line AA in FIG. 1A
  • FIG. 8A is a diagram showing the completion of the steel mold installation step
  • FIG. 8C shows the small beam at the completion of the penetration step.
  • FIG. 9A is a cross-sectional perspective view corresponding to the cross-section taken along the line AA in FIG.
  • FIG. 9A is a diagram illustrating the completion of the steel mold frame installation step and the cylindrical mold frame installation step; Fig. 9 (c) shows a small beam at the completion of the penetration step, the deck plate installation step, and the placement step, and Fig. 9 (c). It is a figure which shows the conveyance state of Z-shaped steel, Fig.10 (a) is an end view which shows the conveyance state of Z-shaped steel of Embodiment 1, FIG.10 (b) is conveyance of Z-shaped steel which concerns on a 1st modification. It is an end view which shows a state.
  • FIG.11 (a) is a top view of the steel mold frame before bending
  • FIG.11 (b) is a side view of the steel mold frame after bending. is there.
  • FIGS. 12A and 12B are views showing the vicinity of a joint portion between a small beam and a large beam according to a third modification, in which FIG. 12A is a left side view, and FIG. 12B is a BB arrow in FIG. FIG.
  • FIG. 13 (a) is a right view
  • FIG.13 (b) is a top view.
  • FIG. 1 It is a right view which shows the junction part vicinity of the small beam and large beam which concern on a 5th modification. It is a right view which shows the junction part vicinity of the small beam and large beam which concern on a 6th modification. It is a perspective view of the edge part of the steel formwork of the small beam of FIG. It is a right view which shows the junction part vicinity of the small beam and large beam which concern on a 7th modification. It is a side view which shows the junction part vicinity of the small beam and large beam which concern on an 8th modification. It is a top view of FIG. It is sectional drawing corresponding to the AA arrow cross section of Fig.1 (a), Comprising: It is sectional drawing of the steel formwork of the small beam which concerns on a 9th modification.
  • FIG. 21 is a cross-sectional view corresponding to the cross section taken along the line AA in FIG. 1A, and is a cross-sectional view of a steel beam formwork of a small beam according to a tenth modification.
  • FIG. 22A is a cross-sectional view corresponding to the cross section taken along the line AA of FIG. 1A
  • FIG. 22A is a steel formwork of a small beam according to an eleventh modification
  • FIG. It is a steel formwork of a small beam concerning 12 modifications.
  • FIG. 23A is a cross-sectional view corresponding to the cross section taken along the line AA of FIG. 1A
  • FIG. 23A is a steel formwork of a beam according to a thirteenth modification
  • FIG. It is a steel formwork of a small beam concerning the 14th modification.
  • the embodiment relates to a steel-concrete beam constituting a building.
  • a “steel concrete beam” is a beam comprising at least a steel frame and concrete.
  • the steel-concrete beam may include components other than these steel frames and concrete.
  • the steel-frame concrete beam is configured as a steel-frame reinforced concrete beam having a reinforcing bar in addition to the steel frame and the concrete is shown.
  • a reinforcing bar for example, a main muscle or a stirrup may be provided, but a case where only a main muscle is provided and no stirrup is provided will be described below.
  • the steel-concrete beam may be provided with, for example, only stirrups, both main and stirrups, or none of them.
  • the shape of the steel frame is arbitrary as long as it functions as a formwork on which concrete can be placed, and in the following, the shaft section is a steel formwork having a hat shape (a shape in which a pair of Z-shaped steels are joined together) Will be described.
  • the installation floor of the steel concrete beam according to the embodiment is arbitrary, and in the following, a case where the steel concrete beam is a second-order beam will be described, but the present invention can be applied to beams on other floors. Moreover, although the case where a steel-frame concrete beam is a small beam is demonstrated below, you may be a large beam.
  • FIG. 1 is a diagram showing a steel-concrete beam (hereinafter simply “beam” 1) according to the first embodiment.
  • FIG. 1 (a) is a left side view
  • FIG. 1 (b) is a diagram.
  • 1A is a cross-sectional view taken along line AA in FIG.
  • the small beam 1 according to the first embodiment includes a steel mold 10, a small beam concrete 20, a main reinforcement 30, and a through hole 40.
  • the + XX direction in each drawing is referred to as a “width direction”, particularly the + X direction is referred to as a “right direction”, and the ⁇ X direction is referred to as a “left direction”.
  • the + Y ⁇ Y direction is referred to as “depth direction” or “front-rear direction”, in particular the + Y direction is referred to as “front direction”, and the ⁇ Y direction is referred to as “rear direction”.
  • the + Z ⁇ Z direction is referred to as “height direction” or “vertical direction”, in particular, the + Z direction is referred to as “upward direction”, and the ⁇ Z direction is referred to as “downward direction”.
  • the direction approaching along the width direction (+ XX) is “inward” and the direction moving away along the width direction (+ XX) Is referred to as “outward direction”.
  • the steel mold 10 is a steel mold having a groove (to be described later) for placing the small beam concrete 20.
  • This steel formwork 10 is provided in each small beam 1 which comprises a building, and is arrange
  • the steel mold 10 according to the first embodiment is obtained by joining a pair of (that is, two) Z-shaped steels 11 to each other at a bottom plate portion 12 to be described later at a construction site.
  • the present invention is not limited to this, and the steel mold 10 may be integrally formed with a single member, or may be formed by combining three or more members.
  • the integrally formed members constituting the Z-shaped steel 11 are mutually connected. It may be formed separately.
  • each of a pair of Z-shaped steel 11 can be comprised substantially mutually similarly, although only one Z-shaped steel 11 is demonstrated below, when it is necessary to distinguish these Z-shaped steel 11 from each other
  • the Z-shape steel 11 located on the right side (+ X direction) of the beam 1 is the “right Z-shape steel”, and the Z-shape steel 11 located on the left side ( ⁇ X direction) of the beam 1 is designated as the “left Z shape” It is distinguished from “steel”.
  • a specific method for forming the steel mold 10 will be described later.
  • the Z-shaped steel 11 is a frame member that constitutes the steel mold 10, and is a steel material having a substantially Z-shaped axial cross section as shown in FIG.
  • the Z-shaped steel 11 includes a bottom plate portion 12, a side plate portion 13, a flange portion 14, and a reinforcing portion 15.
  • the bottom plate portion 12 is a steel plate located on the bottom surface of the steel mold 10.
  • the bottom plate portion 12 has a joining surface 16 for joining the bottom plate portions 12 of the pair of Z-shaped steels 11 to each other, and the pair of Z-shaped steels 11 are joined to each other at the joining surface 16.
  • a part of the bottom Z 12 of the right Z-shaped steel is superimposed on a part of the bottom Z 12 of the left Z-shaped steel, and the pair of Z-shaped steels 11 are mutually connected.
  • the portions in contact with each other are the joining surfaces 16.
  • the specific method of joining at the joint surface 16 is arbitrary.
  • the joint surface 16 of both Z-shaped steels 11 is spaced along the longitudinal direction of the beam (+ Y-Y direction).
  • a plurality of bolt holes are formed at intervals, and both Z-shaped steels 11 are joined by bolt fastening using the bolt holes.
  • the specific method of joining is not limited to this, and may be joined by welding, for example, or may be joined by penetrating a screw.
  • the side plate portion 13 is a steel plate extending upward from the bottom plate portion 12. Specifically, the side plate portion 13 is a portion that is folded back from the outer end of the bottom plate portion 12 and extends to the upper end of the beam, and is positioned so as to cover the left and right sides of the small beam 1. Yes.
  • the length in the height direction (+ Z ⁇ Z direction) of the side plate portion 13 is longer in the left Z-shape steel by the thickness of the bottom plate portion 12 than in the right Z-shape steel. This is because when the pair of Z-shaped steels 11 are overlapped, the upper end positions of the side plate portions 13 of both Z-shaped steels 11 (that is, the height positions of the flange portions 14) are made to coincide with each other.
  • the axial cross-sectional U-shaped part formed of the side plate part 13 and the bottom plate part 12 of the pair of steel molds 10 is hereinafter referred to as a groove part as necessary.
  • the steel mold 10 forms the groove, so that concrete can be placed in the groove.
  • the lower part and the side of the small beam 1 are covered with the steel plate by the groove portion, it is possible to prevent the steam from escaping from the lower and the side of the small beam concrete 20 in the event of a fire, and the temperature rise in the room below the small beam 1 is prevented. It can suppress and can improve the fireproof performance of the beam 1.
  • the flange portion 14 is a steel plate extending outward from the upper end of the side plate portion 13. Specifically, the flange portion 14 is a portion that is folded outward from the upper end of the side plate portion 13 and extends along a horizontal plane, and the deck plate 3 is mounted on the flange portion 14. It is placed and screwed.
  • the deck plate 3 is described as a known corrugated steel plate, but is not limited to this, and a flat plate may be used.
  • illustration is abbreviate
  • the other end of the deck plate 3 is similarly placed on the flange 14 of the beam 1 adjacent to the beam 1.
  • the flange part 14 is provided, the load of the slab concrete 4 (after-mentioned) can be received by the flange part 14 and can be smoothly flowed to the small beam 1, and the proof stress of the small beam 1 improves.
  • the reinforcing portion 15 is a steel plate extending downward from the outer end of the flange portion 14.
  • the reinforcing portion 15 is a steel plate extending downward from the outer end of the flange portion 14.
  • the small beam concrete 20 is concrete placed in a groove portion formed by the bottom plate portion 12 and the pair of side plate portions 13 of the steel mold 10.
  • the small beam concrete 20 is a known concrete that is solidified in a state of being filled in the groove portion, and the plurality of through holes 40 are formed in the small beam concrete 20 as described above.
  • the slab concrete 4 for forming the slab of the upper floor is formed above the small beam concrete 20 along the horizontal plane, and the large beam 2 is formed at the front end and the rear end of the small beam concrete 20.
  • a large beam concrete (reference numeral omitted) is formed so as to be orthogonal to the small beam 1.
  • the small beam concrete 20, the slab concrete 4, and the large beam concrete are given different names and symbols, but in the first embodiment, they are formed and formed at the same time. When it is not necessary to distinguish between the two, it is simply referred to as “concrete”.
  • the main reinforcing bar 30 is a reinforcing bar extending along the axial direction of the beam.
  • the two upper bars and the four lower bars are illustrated as an example, but the number and arrangement of the main bars 30 are not limited thereto.
  • the through hole 40 is a hole formed so as to penetrate the side plate portion 13 and the small beam concrete 20. For example, after the small beam concrete 20 placed on the steel mold 10 is solidified, the side plate portion 13 and the through hole 40 are drilled. The beam concrete 20 is formed by drilling.
  • a duct or piping for air conditioning or electrical equipment can be passed through the through-hole 40 (hereinafter, what is passed through the through-hole 40 is a duct for air conditioning. Explain). Therefore, the duct can be extended from one space (for example, the space on the right side of the beam 1) sandwiching the beam 1 to the other space (for example, the space on the left side of the beam 1). The degree of freedom of arrangement is improved.
  • the through hole 40 is formed in the through hole forming portion of the small beam 1.
  • the “through-hole forming portion” is a portion where the through-hole 40 penetrating the side plate portion 13 and the small beam concrete 20 can be formed.
  • the reinforcing bar (the main reinforcing rod 30 in the first embodiment) is arranged. This is a portion that is not streaked (a portion where the drill does not interfere with the rebar when drilling the through hole 40 with a drill).
  • it is a part above the lower main reinforcement 30 (lower end reinforcement) in the small beam 1.
  • the number of through holes 40 is six in the drawing along the axial direction of the beam, but is not limited thereto.
  • FIG. 2 is an exploded perspective view showing a temporary state during construction in the vicinity of the joint between the small beam 1 and the large beam 2.
  • concrete and reinforcing bars constituting the small beam 1 and the large beam 2 are omitted.
  • the side surface of the wooden formwork 2a of the large beam 2 according to the first embodiment has a notch (hereinafter referred to as a small shape) with a shape (hat shape) that substantially matches the axial cross-sectional shape of the small beam 1.
  • a beam housing part 2b) is formed.
  • flange housing portion 2c notches having the same width as the flange portion 14 (hereinafter referred to as flange housing portion 2c) are formed on the left and right of the upper end of the small beam housing portion 2b, and the flange portion 14 is provided in the flange housing portion 2c. Can be stored.
  • a sealing material 2d (for example, a rectangular parallelepiped wood as shown in the figure) is disposed to fill this gap.
  • the beam 1 may be supported by a temporary support (not shown) until the concrete is placed.
  • the position and number of temporary supports may be appropriately changed according to the length and weight of the beam 1, but for example, one at each end in the axial direction and one at the center in the axial direction. Good.
  • the temporary support since the steel mold 10 has higher proof strength than the wooden mold 2a, the temporary support may be omitted if unnecessary in view of the length and weight of the beam 1.
  • the allowable bending moment or allowable shear force of the small beam 1 is calculated by the following formula (1).
  • F a F RC + ⁇ ⁇ F S
  • F a Allowable bending moment or allowable shearing force of beam 1
  • F RC Allowable bending moment or allowable shearing force of beam concrete 20 (hereinafter referred to as “RC” (Reinforced Concrete) as required)
  • Steel formwork 10 is an allowable bending moment or allowable shearing force load coefficient of 0.5 or less.
  • F S allowable bending moment or allowable shearing force of steel mold 10.
  • FIG. 3 is a diagram showing the relationship between the cross section of the beam 1 and the calculation parameters.
  • L M RC Long allowable bending moment of RC cross section (may be with a t ⁇ L f t ⁇ j If tensile reinforcement ratio RC section is less than the balance reinforcement ratio)
  • the long-term allowable bending moment is the allowable bending moment over a relatively long period (eg several years to several decades), and the short-term allowable bending moment is the allowable bending moment over a relatively short period (eg several hours to several days). It is.
  • the reason why the allowable bending moment is calculated in two periods as described above is that the loading situation on the beam 1 may vary depending on the length of the period, so the load between the RC and the steel formwork 10 in the beam 1 This is because an allowable bending moment suitable for each load share ratio is designed in consideration of the fact that the share ratio may be different.
  • Equations 2 and 3 the load burden ratio between the RC in the small beam 1 and the steel mold 10 is expressed as a steel bending load effective coefficient ⁇ M , and then this steel bending load effective coefficient ⁇
  • ⁇ M the load burden ratio between the RC in the small beam 1 and the steel mold 10
  • the steel bending load effective coefficient
  • This bending stiffness ratio ⁇ M can be changed by the thickness of the steel mold 10 and the thickness of the slab concrete 4 (hereinafter referred to as “slab” if necessary) attached to the beam 1.
  • An application restriction range is set for each of the plate thickness of the mold frame 10 and the thickness of the slab, and the bending stiffness ratio ⁇ M is calculated on the assumption of the application restriction range, and the steel frame effective coefficient is calculated from the calculated bending stiffness ratio ⁇ M.
  • ⁇ M was determined.
  • the plate thickness of the steel mold 10 was set to an application restriction range of 3.2 mm or more. As the plate thickness of the steel mold 10 increases, the load bearing ratio of the steel mold 10 increases. Therefore, “3.2 mm” is set as the lower limit, and the lower limit “above” is set as the applicable limit range. doing, as long as it determines the thickness of the steel mold 10 by applying limits, steel burden effective coefficient beta M is prevented should it below.
  • the thickness of the slab was set to 200 mm or less in the application restriction range. As the thickness of the slab increases, the load burden ratio due to the slab increases as the thickness increases. Therefore, the load burden ratio of the steel mold 10 decreases. Therefore, the upper limit value “below” is set to “200 mm” as the upper limit value.
  • FIG. 4 is a graph showing the relationship between the slab thickness and the long-term bending stiffness ratio L ⁇ M
  • FIG. 5 is a graph showing the relationship between the slab thickness and the short-term bending stiffness ratio S ⁇ M.
  • the horizontal axis represents the thickness of the slab
  • the vertical axis represents the bending stiffness ratio ⁇ M (long-term bending stiffness ratio L ⁇ M or short-term bending stiffness ratio S ⁇ M )
  • the cross-sectional shape of the beam 1 is assumed to be a standard cross section (total length 6.5 m, total width 300 mm, total height 550 mm). As shown in FIG.
  • the long-term bending stiffness ratio L ⁇ M about 0.12 at the upper limit value of the application limit range of the slab thickness is 200 mm.
  • the bending stiffness ratio L ⁇ M 0.1 was set.
  • M RC / M S is the allowable yield strength ratio of the RC cross section and the steel mold 10
  • the reinforcement of the RC cross section in the cross section of FIGS. 4 and 5 is 4-HD13 (with a yield point of 345 N / mm 2 or more).
  • M RC / M S 1.35.
  • the simplified method ( ⁇ method) is used to limit the plate thickness of the steel mold 10 and the thickness of the slab, which is an application limit range.
  • a detailed method ( ⁇ method) for calculating M may be employed.
  • the design formula is determined on the safe side so that the design formula does not become complicated (the iron burden ratio is set lower in design).
  • the cross section of the steel mold 10 is constrained by the RC cross section, and the steel mold 10 is not laterally buckled as a thin plate.
  • the allowable stress degree f b is the tensile stress degree f t .
  • FIG. 6 is a graph showing the relationship between the loading load of the beam 1 and the shear stiffness ratio ⁇ Q of the steel mold 10 when there is no through-hole (opening) 40, and FIG. 7 shows the through-hole (opening) 40.
  • Q RC / Q S is the ratio of the shear strength of the RC cross section and the steel mold 10
  • the cross-sectional shape of the beam 1 is a standard cross section (total length 6.5 m, total width 300 mm, total height 550 mm).
  • Q RC / Q S 1.04.
  • Is a steel shear load effective coefficient ⁇ Q 0.2.
  • the load coefficient ⁇ of the steel mold 10 may be other than these values, but in order to increase the safety level, the upper limit of the load share ratio of the steel mold 10 is 50%, and the steel mold The burden coefficient ⁇ of the frame 10 is set to 0.5 or less.
  • the lower limit of the load sharing ratio of the steel mold 10 can be set to at least 10% in consideration of the graphs of FIGS. 6 and 7, and the load coefficient ⁇ of the steel mold 10 is 0.1 or more.
  • the steel formwork 10 is used only as the formwork of the small beam concrete 20, and it is not necessary to place a load on the steel formwork 10.
  • the Z-shaped steel 11 is manufactured at a factory.
  • a specific method for manufacturing such a Z-shaped steel 11 is arbitrary, and for example, it can be formed by bending a single flat thin steel plate.
  • the manufactured Z-shaped steel 11 is conveyed to a construction site. In this case, since a plurality of Z-shaped steels 11 can be transported while being superposed on each other, more Z-shaped steels 11 can be transported at one time than when a pair of Z-shaped steels 11 are joined together and transported. Efficiency can be increased.
  • the sealing material (small edge material) 2d described with reference to FIG. 2 may be attached below the flange portion 14 by an arbitrary method such as adhesion.
  • the strength of the flange portion 14 and the reinforcing portion 15 can be increased by the sealing material 2d, and the flange portion 14 and the reinforcing portion 15 can be prevented from being deformed by a load or impact during transportation.
  • reinforcing members (not shown) having the same shape as the sealing material 2d are provided at predetermined intervals below the flange portion 14, or the sealing material 2d is extended in the Y direction in FIG.
  • a long reinforcing material (not shown) may be provided below the flange portion 14.
  • Such reinforcing material may be removed after transportation, but may be fixed permanently without being removed.
  • the strength of the flange portion 14 and the reinforcement portion 15 can be improved by providing such a reinforcing material, the strength of the flange portion 14 and the reinforcement portion 15 can be reduced by that amount. 15 may be thinned, or the extension dimension from the flange part 14 of the reinforcement part 15 may be shortened.
  • the pair of Z-shaped steels 11 transported to the construction site are joined together to form the steel mold 10.
  • Bolts may be inserted and fastened in holes (not shown).
  • FIG. 8 is a cross-sectional perspective view corresponding to the cross-section taken along the line AA in FIG. 1 (a).
  • FIG. 8 (a) is a diagram showing the completion of the steel mold installation step, and FIG. When the bar arrangement step, the deck plate installation step, and the placement step are completed, FIG. 8C shows the small beam 1 when the penetration step is completed.
  • the steel formwork installation step is a step in which the steel formwork 10 formed by the above-described forming method is lifted by a heavy machine or the like and installed at the beam construction position.
  • the end of the steel mold 10 is installed so as to be connected to the wooden form 2a of the large beam 2 as shown in FIG.
  • the steel mold 10 of the small beam 1 is illustrated so that it fits snugly into the notch (the small beam housing portion 2 b) of the wooden mold 2 a of the large beam 2.
  • the small beam accommodating part 2b is enlarged in the width direction and the steel formwork 10 is inserted after the steel formwork 10 is inserted.
  • the small beam housing portion 2b may be filled with wood or the like.
  • a main bar arrangement step, a deck plate installation step, and a placement step are performed.
  • the main bar arrangement step is a step of arranging the main bar 30 inside the steel mold 10. Specifically, the main bars 30 are assembled and lifted using a heavy machine or the like, dropped into the groove, and arranged. Similarly, the main bar 30 (not shown) of the large beam 2 is also dropped into the wooden form 2a of the large beam 2 and arranged. Then, the main bar 30 of the small beam 1 is bent at, for example, an end portion and fixed to the main bar 30 of the large beam 2.
  • the deck plate installation step is a step of installing the deck plate 3 on the flange portion 14 of the steel mold 10.
  • a plurality of deck plates 3 are placed on the flange portion 14 so as to be bridged from one small beam 1 to another adjacent small beam 1. Secure with bolts.
  • the placing step is a step of placing the small beam concrete 20 in the groove portion constituted by the bottom plate portion 12 and the pair of side plate portions 13 of the steel mold frame 10 installed in the steel mold frame setting step. Specifically, in this placing step, the concrete is poured into the groove portion of the steel mold 10 while using a vibrator so that bubbles are not mixed.
  • concrete is simultaneously placed inside the wooden form 2a of the large beam 2 or above the deck plate 3, so that the small beam 1, the large beam 2 and the slab are integrated. Form.
  • the penetration step is a step of forming a through hole 40 that penetrates the steel mold 10 installed in the steel mold installation step and the small beam concrete 20 placed in the placement step. Specifically, this penetration step is performed after the concrete placed in the placing step achieves a predetermined strength, and then the side plate portion 13 of the one Z-shaped steel 11, the small beam concrete 20, and the other Z-shaped steel 11.
  • the side plate 13 is sequentially penetrated using an excavator (for example, a known drill) to form a through hole 40, and the same operation is performed at a plurality of locations on the beam to form a plurality of through holes 40.
  • the number of through holes 40 may be a number corresponding to the number of ducts to be arranged.
  • the size and arrangement position of the through hole 40 can be determined in the same manner as in general RC.
  • the maximum diameter of the through hole 40 is 1/3 or less the height of the small beam 1 (dimension D in FIG. 3), and the arrangement position is the end of the small beam 1 (the end of the small beam 1).
  • the mutual interval between the plurality of through-holes 40 It is preferable to leave it by 3/2 or more of the total diameter.
  • the size and arrangement position of the through-hole 40 are not limited to such an example, and can be arbitrarily determined as long as the required strength of the small beam 1 can be ensured.
  • the duct is passed through the through hole 40 formed in the penetration step. Since the method of passing the duct in this way is known, detailed description is omitted. This is the end of the description of the method for constructing the beam according to the first embodiment.
  • the outer wall of the small beam concrete 20 is covered with the steel mold 10, so that when the through hole 40 is formed on the side surface of the small beam 1 A decrease in yield strength can be suppressed, and labor and cost for attaching a reinforcing member separately to form the through hole 40 can be reduced.
  • the portion where the through hole 40 can be formed is not limited to the portion where the reinforcing member is attached as in the prior art.
  • the degree of freedom and the degree of arrangement can be increased.
  • the flange portion 14 is provided, the load of the slab supported by the small beam 1 can be received by the flange portion 14 and smoothly flowed to the small beam 1, and the proof stress of the small beam 1 is improved.
  • the reinforcing portion 15 is provided at the outer end of the flange portion 14, the buckling of the flange portion 14 when the small beam concrete 20 is placed on the groove portion or the flange portion 14 of the steel mold 10 is reinforced. It can suppress by the part 15, and the yield strength of the small beam 1 improves.
  • a cylindrical frame is generally installed in advance in the through hole forming portion, and the through hole is formed at the installation position of the cylindrical frame by removing the cylindrical frame after placing the concrete. It is a form related to the construction method.
  • the configuration of the beam according to the second embodiment after completion is substantially the same as the configuration of the beam according to the first embodiment, and the configuration substantially the same as the configuration of the first embodiment is the same as that of the first embodiment.
  • the same reference numerals and / or names as those used in Embodiment 1 are attached as necessary, and description thereof is omitted.
  • a method for forming a steel mold and a method for constructing a small beam in the small beam according to the second embodiment will be described, but description of procedures similar to those in the first embodiment will be omitted as appropriate.
  • the Z-shaped steel 11 is manufactured at a factory.
  • a circular hole 51 is formed in advance at a position corresponding to the through hole forming portion in the Z-shaped steel 11. That is, in this Embodiment 2, arbitrary positions, such as a cutting machine, are provided in the position (a total of six places in the figure) corresponding to the through hole 40 shown in FIG.
  • the circular hole 51 is provided using a tool.
  • the Z-shaped steel 11 with the circular hole 51 thus vacated is transported to the construction site, and then the pair of Z-shaped steels 11 transported to the construction site are joined together with bolts to form the steel mold 10.
  • a specific method for such bonding is the same as that in the first embodiment, and thus detailed description thereof is omitted.
  • FIG. 9 is a cross-sectional perspective view corresponding to the cross section taken along the line AA in FIG. 1 (a).
  • FIG. 9 (a) is a diagram when the steel formwork installation step and the cylindrical formwork installation step are completed.
  • 9 (b) shows the main beam arrangement step, the deck plate installation step, and the placement step, and
  • FIG. 9 (c) shows the small beam 50 when the penetration step is completed.
  • a steel mold installation step and a cylindrical mold installation step are performed.
  • the steel mold installation step is the same as that of Embodiment 1, detailed description is abbreviate
  • the cylindrical form installation step is a step of inserting the cylindrical form 52 into the circular hole 51 formed in the steel form 10. Since the axial length (+ XX direction length) of the cylindrical mold 52 is larger than the width of the groove (+ XX direction length) of the steel mold 10, the cylindrical mold 52 is shown in the figure. Both end portions protrude from the circular hole 51 to the outside.
  • the cylindrical form 52 may be either hollow or solid, and the material is arbitrary as long as it can withstand the load of concrete. In the following, a case of a solid wooden form will be described. And after installing the cylindrical frame 52 in this way, the gap between the outer periphery of the cylindrical frame 52 and the inner periphery of the circular hole 51 is filled with a sealing material (not shown) such as putty to prevent leakage of concrete. Deter.
  • a main bar arrangement step As shown in FIG. 9 (b), a main bar arrangement step, a deck plate installation step, and a placement step are performed.
  • a main bar arrangement step As shown in FIG. 9 (b), a main bar arrangement step, a deck plate installation step, and a placement step are performed.
  • all of these main bar arrangement steps, deck plate installation steps, and placement steps can be performed in the same manner as the steps according to the first embodiment, detailed description thereof is omitted.
  • the penetration step is a step of forming a through hole 40 penetrating the steel mold 10 installed in the steel mold installation step and the concrete placed in the placement step.
  • the cylindrical form 52 installed in the above-described cylindrical form placement step is removed from the small beam 50.
  • the through hole 40 is formed at the position (through hole forming portion) where the cylindrical frame 52 is present.
  • a duct can be inserted into the hollow portion of the steel mold frame 10, so that the cylindrical frame 52 need not be removed. A part of the duct may be used as the cylindrical frame 52.
  • the duct is passed through the through hole 40 formed in the penetration step. Since the method of passing the duct in this way is known, detailed description is omitted. This completes the description of the method for constructing the beam 50 according to the second embodiment.
  • the through hole 40 can be formed only by removing the cylindrical frame 52, and the operation of forming the through hole 40 at the construction site can be simplified.
  • each embodiment The features shown in each embodiment and the features according to each modification described below may be interchanged with each other, or one feature may be added to the other.
  • the through hole 40 in the small beam 50 is not formed.
  • the through hole 40 may be formed at the position by the method according to the first embodiment (with a drill or the like).
  • FIG. 10 is a diagram illustrating a transported state of the Z-shaped steel 11
  • FIG. 10A is an end view of the Z-shaped steel 11 according to the first embodiment in the transported state
  • FIG. 10B is related to the first modification. It is an end view which shows the conveyance state of Z-shaped steel 11 '.
  • FIG. 10 (a) in the state in which a plurality of Z-shaped steels 11 of the first embodiment are polymerized, one of the straight lines connecting a plurality of outermost parts on one side of the Z-shaped steel 11 and parallel to this straight line.
  • the distance between the straight lines passing through the outermost part on the other side of the Z-shaped steel 11 (hereinafter referred to as the first overlap dimension) is H.
  • the first overlap dimension is H.
  • the angle formed by the side plate portion 13 and the bottom plate portion 12 and the angle formed by the side plate portion 13 and the flange portion 14 are respectively obtuse angles.
  • the Z-shaped steel 11 ′ is a plurality of the Z-shaped steels 11 ′
  • the interval corresponding to the first overlapping dimension H (hereinafter, the second overlapping dimension) is H ′.
  • the second overlapping dimension H ′ is smaller than the first overlapping dimension H, it is possible to improve the conveyance efficiency by forming the Z-shaped steel 11 ′ as shown in FIG. 10B. become.
  • FIG. 11 is a view showing a steel mold 10 according to a second modification, in which FIG. 11 (a) is a plan view of the steel mold 10 before bending, and FIG. 11 (b) is a steel after bending.
  • 1 is a side view of a formwork 10.
  • the steel mold frame 10 before bending may be formed as one flat steel plate 60.
  • slits are formed in the boundary line L1 between the side plate portion 13 and the bottom plate portion 12, the side plate portion 13 and the flange portion 14 boundary line L2, and the flange portion 14 and the reinforcement portion 15 boundary line L3.
  • 11B can be formed by bending each part of the steel plate 60 using a known device or the like in the slit.
  • the steel mold 10 since the steel mold 10 may be transported as the flat steel plate 60 of FIG. 11A, the overlapping dimension of the steel mold 10 in the transported state is reduced, and the transport efficiency is improved. It becomes possible.
  • the steel mold 10 may be divided at one or more points in the longitudinal direction and joined at the installation site.
  • segmentation location and position of the steel formwork 10 can be determined arbitrarily.
  • the steel mold 10 may be divided into a plurality of lengths that can be loaded on a transport vehicle.
  • the dividing position is preferably a location where the moment applied to the steel mold 10 after joining is small.
  • the joining method of the divided steel molds 10 is arbitrary, for example, a pair of steel molds 10 which are butted against each other in a divided state are connected to each other. You may connect via the connection plate (illustration omitted) provided in the outer surface of the side-plate part 13. As shown in FIG.
  • a drill screw or a bolt can be used to fix the connection plate to the side plate portion 13.
  • a drill screw or a bolt can be used to fix the connection plate to the side plate portion 13.
  • FIG. 12A and 12B are views showing the vicinity of the joint between the small beam 100 and the large beam 110 according to the third modification.
  • FIG. 12A is a right side view, and FIG. FIG.
  • the end of the small beam 100 in the axial center direction (+ Y-Y direction) is joined to a large beam 110 that is a steel beam.
  • a Chiritori member 120 whose XZ cross section is substantially U-shaped is joined by, for example, welding.
  • FIG. 13A and 13B are diagrams showing the vicinity of the joint between the small beam 1 and the large beam 110 according to the fourth modification.
  • FIG. 13A is a right side view and FIG. 13B is a plan view.
  • the girder 110 is configured as reinforced concrete. Inside the girder 110, a plurality of main bars 30 arranged along the longitudinal direction of the girder 110, and a direction orthogonal to the longitudinal direction The gluteal muscles 31 arranged around the plurality of major muscles 30 are arranged (in FIG. 13B, for the convenience of illustration, among the major muscles 30, the outermost major muscle 30 in the Y direction). Only shown).
  • a notch 111 is formed at a position corresponding to the small beam 1 on the side portion of the large beam 110 so that the leading end of the small beam 1 is swallowed by the large beam 110.
  • the small beam 1 is arranged so as to be orthogonal to the large beam 110, and a part of the small beam 1 is joined to the large beam 110 through the notch 111.
  • the bottom plate portion 12, the flange portion 14, and the reinforcing portion 15 of the small beam 1 remain at a position where the end surface on the large beam 110 side is substantially flush with the side surface of the large beam on the small beam 1 side.
  • the pair of side plate portions 13 of the small beam 1 is accommodated inside the large beam 1 by a length L10 that exceeds the side surface of the large beam on the small beam 1 side and is larger than the cover thickness of the large beam 110.
  • the “cover thickness” is a thickness portion of the concrete from the side surface of the large beam 110 to the reinforcing bar 31 and is the thickness of the dimension L11 in FIG.
  • the hairpins 17 are swallowed by the girder 110.
  • the barbs 17 are a plurality of bar-shaped bars arranged in parallel along the X direction, and are connected to the pair of side plates 13 so as to connect the pair of side plates 13 swallowed by the large beam 110 to each other.
  • the formed reinforcing bar holes (see reference numeral 13a in FIG. 16 described later) communicate with each other, and are fixed to the pair of side plate parts 13 by welding or the like.
  • the shaving muscles 17 at a position closer to the center position in the Y direction of the large beam 110 than the shaving bars 31 (position on the ⁇ Y direction side), the shaving muscles 17 and the pair of side plate portions 13 are used.
  • At least a part of 31 is surrounded.
  • the joint strength between the small beam 1 and the large beam 110 is further increased by the support pressure (local compressive force) of the shank muscle 17. It becomes possible to improve.
  • FIG. 13 it is assumed that only a minimum height portion necessary for arranging the required number (three in FIG. 13) of the knurled bars 17 is accommodated in the girder 110. For this reason, a notch 18 is formed at an unnecessary height portion and is notched.
  • the end of the steel mold 10 is connected to the large beam 110 through a notch 111 formed in the mold of the large beam 110.
  • the barb 17 is arranged and fixed to the side plate part 13 so as to surround at least a part of the barb 31
  • concrete is cast on the frame of the large beam 110 and the steel mold 10. You may set up.
  • FIG. 14 is a right side view showing the vicinity of the joint portion between the small beam 1 and the large beam 110 according to the fifth modification (note that the description of the fifth to eighth modifications is the fourth modification). Is the same).
  • the small beam 1 has a pair of side plate portions 13 extending toward the large beam 110 with the same height, and the pair of side plate portions 13 is longer than the cover thickness of the large beam 110. Now, it is accommodated in the large beam 110.
  • FIG. 15 is a right side view showing the vicinity of the joint portion between the small beam 1 and the large beam 110 according to the sixth modification
  • FIG. 16 is a perspective view of the end portion of the steel mold 10 of the small beam 1 in FIG. is there.
  • the small beam 1 has a pair of side plate portions 13 extending toward the large beam 110 at the same height (or the flange portion 14 and the reinforcement of the steel mold 10).
  • a part of the part 15 and a part of the bottom plate part 12 are cut out), and the pair of side plate parts 13 are accommodated in the girder 110 by a length L10 equal to or greater than the cover thickness of the girder 110.
  • FIG. 17 is a right side view showing the vicinity of the joint between the small beam 1 and the large beam 110 according to the seventh modification.
  • the pair of side plate portions 13 have end surfaces on the large beam 110 side that are on the small beam 1 side of the large beam 110. It stays in a position that is almost flush with the side of.
  • the joining plate 19 is fixed to the outer side surfaces of the pair of side plate portions 13 by an arbitrary method including drill screws and bolts, and only the joining plate 19 exceeds the side surface of the large beam 110 on the small beam 1 side.
  • FIG. 18 is a side view showing the vicinity of the joint between the small beam 1 and the large beam 110 according to the eighth modification
  • FIG. 19 is a plan view of FIG.
  • a pair of small beams 1 disposed along a direction orthogonal to the longitudinal direction of the large beam 110 are provided on both sides of the large beam 110.
  • the pair of small beams 1 are connected to each other via a knurled bar 17 'fixed to the flange 14 from above. According to this structure, even when a tensile force in a direction away from the large beam 110 is applied to the small beam 1, it is possible to counter the tensile force by the knurled bars 17 ′.
  • the small beam concrete 20 and the large beam concrete are simultaneously placed.
  • the present invention is not limited to this and may be placed one by one.
  • the side surface of the solid girder concrete is placed in a shape (hat shape) that substantially matches the axial cross-sectional shape of the girder 1 and 50, and this curled portion is The ends of the steel formwork 10 of the small beams 1 and 50 may be installed, and then the small beam concrete 20 may be placed.
  • the flange portion 14 is provided.
  • the flange portion 14 may be omitted, and the steel mold 10 may be configured as a member having a substantially U-shaped axial cross section.
  • the flange part 14 was provided in the upper end of the side-plate part 13, you may provide not only in this but in positions other than an upper end (For example, a position below predetermined distance (for example, several centimeters) from an upper end).
  • the reinforcing portion 15 is provided at the outer end of the flange portion 14. However, when the flange portion 14 can withstand the load of concrete, the reinforcing portion 15 may be omitted. Further, in addition to or instead of the reinforcing portion 15, reinforcing means for further reinforcing the flange portion 14 may be provided. For example, a reinforcing steel plate may be attached to the upper surface or the lower surface of the flange portion 14 for reinforcement.
  • Such a steel plate may be pasted in the front-rear direction of the flange portion 14 or may be affixed mainly only to a portion requiring a proof stress (for example, near the center in the front-rear direction of the flange portion 14). It doesn't matter.
  • FIG. 20 is a cross-sectional view corresponding to the cross section taken along the line AA in FIG. 1A, and is a cross-sectional view of the steel mold 210 of the beam 200 according to the ninth modification.
  • the steel mold 210 is provided with a second reinforcing portion 216.
  • the second reinforcing portion 216 is a steel plate that extends from the lower end of the reinforcing portion 215 toward the side plate portion 213.
  • FIG. 21 is a cross-sectional view corresponding to the cross section taken along the line AA of FIG. 1A, and is a cross-sectional view of the steel mold 210 of the beam 200 according to the tenth modification.
  • the second reinforcing portion 216 is formed by turning the outer end of the flange portion 214 toward the side plate portion 213, and the reinforcing portion 215 is omitted.
  • FIG. 22 is a cross-sectional view corresponding to the cross section taken along the line AA of FIG. 1A, and FIG. 22A is a cross-sectional view of the steel mold 210 of the beam 200 according to the eleventh modification.
  • FIG. 22B is a cross-sectional view of the steel mold 310 of the beam 300 according to the twelfth modification.
  • the mutually faced surface of the baseplate part 221 of a pair of Z-shaped steel 220 may be made into the joining surface 222, and these surfaces may be weld-joined.
  • the ends of the bottom plate portion 321 of the pair of Z-shaped steel 320 are folded back upward, and the inner side surface of the folded portion 322 is joined as a joining surface 323, The folded portion may be joined using the metal fitting 324.
  • these end portions may be joined to each other by driving a drill screw or a screw into the end portions of the bottom plate portion 321 of the pair of Z-shaped steels 320 from below or above.
  • a drill screw or a screw is protruded into the internal space of the pair of Z-shaped steels 220 by, for example, about several centimeters, thereby further increasing the joint strength between the small beam concrete 20 placed in the internal space and the Z-shaped steel 220. Also good.
  • FIG. 23 is a cross-sectional view corresponding to the cross section taken along the line AA in FIG. 1A.
  • FIG. 23A shows the steel mold 410 of the small beam 400 according to the thirteenth modification, FIG.
  • FIG. 23 (B) is the steel formwork 510 of the small beam 500 which concerns on a 14th modification. That is, as shown in FIG. 23 (a), an opening preventing member 422 that connects the flange portions 421 of the pair of Z-shaped steels 420 may be provided, or as shown in FIG. You may provide the opening prevention member 522 which connects the side plate parts 521 of the Z-shaped steel 520.
  • the opening prevention members 422 and 522 as described above and fixing the relative positions of the pair of Z-shaped steels 420 and 520, when the small beam concrete 20 is placed, a pair of weights of the small beam concrete 20 is set. It is possible to prevent the Z-shaped steels 420 and 520 from opening outward from each other.
  • the locking member 522 shown in FIG. 23B is within a range from the upper end position of the pair of side plate portions to a position lower by 1/3 of the height of the pair of side plate portions than the upper end position ( It is preferably provided within the range of the dimension L12 in FIG.
  • the side plate portion 13 tries to rotate outward with the boundary between the bottom plate portion 12 and the side plate portion 13 as a fulcrum. The closer to the upper end, the greater the distance between the pair of side plate portions 13 tends to open.
  • the relative position of the pair of side plate portions 13 can be fixed at a position relatively close to the upper ends of the pair of side plate portions 13, so that the position below the range is lower. It is possible to more effectively prevent the pair of side plate portions 13 from opening outward with respect to each other as compared with the case where the opening preventing member 522 is provided.
  • the main bar arrangement step is performed after the steel formwork installation step.
  • the present invention is not limited to this, and the steel formwork installation step may be performed after the main bar arrangement step.
  • the main reinforcement 30 is arranged in the main reinforcement arrangement step, the pair of Z-shaped steels 11 are arranged so as to cover the main reinforcement 30 from below, and the bottom plate portions 12 of the pair of Z-shaped steels 11 are overlapped with each other. In this state, the pair of Z-shaped steels 11 may be joined to each other by inserting bolts from below the bottom plate portion 12.
  • the steel concrete beam of Supplementary Note 1 includes a steel plate having a bottom plate portion and a pair of side plate portions extending upward from both ends of the bottom plate portion, and a pair of the bottom plate portion of the steel mold frame and the pair of side plate portions. And concrete placed in a groove formed by the side plate portion.
  • the steel-concrete beam of appendix 2 is the steel-concrete beam of appendix 1, wherein the allowable bending moment or the allowable shear force of the steel-concrete beam is calculated by the following formula (1).
  • Steel concrete beam. (Formula 1) F a F RC + ⁇ ⁇ F S However, F a : Allowable bending moment or allowable shear force of the steel concrete beam F RC : Allowable bending moment or allowable shear force of the concrete ⁇ : Load coefficient of allowable bending moment or allowable shear force of the steel formwork, 0 Load coefficient of 5 or less F S : Allowable bending moment or allowable shear force of the steel mold.
  • the steel-concrete beam of appendix 3 is the steel-concrete beam of appendix 1 or 2, wherein the steel-concrete beam is partly joined to a large beam, and the steel formwork is the steel mold An end portion on the large beam side in the longitudinal direction of the frame, and an end portion having a length equal to or greater than the cover thickness of the large beam, which is accommodated in the large beam through a notch formed on a side surface of the large beam.
  • the steel-concrete beam according to appendix 4 is the steel-concrete beam according to any one of appendices 1 to 3, wherein the side plate portion and the concrete are capable of forming a through-hole penetrating the side plate portion and the concrete. It has a hole forming part.
  • the steel-concrete beam according to appendix 5 is the steel-concrete beam according to any one of appendices 1 to 4, wherein an opening preventing member for fixing the pair of side plate portions to each other is provided at an upper end position of the pair of side plate portions. To a position below the upper end position by a third of the height of the pair of side plate portions.
  • the steel-concrete beam according to appendix 6 is the steel-concrete beam according to any one of appendices 1 to 5, wherein the steel formwork includes a flange portion that extends outward from the upper end of the side plate portion.
  • the steel-concrete beam according to appendix 7 is the steel-concrete beam according to appendix 6, wherein the steel mold is provided with a reinforcing portion that extends downward or upward from the outer end of the flange portion.
  • the construction method of the steel-concrete beam of appendix 8 includes a steel formwork installation step of installing a steel formwork having a bottom plate part and a pair of side plate parts extending upward from both ends of the bottom plate part, A placing step of placing concrete in a groove portion formed by the bottom plate portion and the pair of side plate portions of the steel mold frame installed in the steel mold frame installation step.
  • the construction method of the steel concrete beam of appendix 9 is the construction method of the steel concrete beam of appendix 8, wherein the allowable bending moment or the allowable shear force of the steel concrete beam is calculated by the following formula (1).
  • the concrete shell is covered with the steel formwork, so that when the through hole is formed on the side surface of the beam It is possible to suppress a decrease in the proof stress, and to reduce the labor and cost of attaching a reinforcing member separately to form a through hole.
  • the composite allowable bending moment and allowable shear force considering the respective load ratios of the steel formwork and the concrete are obtained. It is possible to calculate and to optimize the design of steel concrete beams.
  • the joint strength between the small beam 1 and the large beam can be increased by accommodating the end of the steel mold frame and having an end longer than the cover thickness of the large beam in the large beam. Further improvement is possible.
  • the through-hole can be formed in the through-hole forming portion, piping and wiring can be made to pass through the through-hole, and the convenience of the steel-concrete beam can be improved. it can.
  • the portion where the through hole can be formed is not limited to the portion where the reinforcing member is attached as in the prior art, and the size of the through hole is large. The degree of freedom of sheath arrangement can be increased.
  • the opening preventing member is provided at a position below this range. As compared with the above, it is possible to more effectively prevent the pair of side plates from opening outward.
  • the reinforcing portion is provided at the outer end of the flange portion, the buckling of the flange portion when the concrete is placed on the groove portion or the flange portion of the steel mold is prevented. It can be suppressed by the reinforcing part, and the proof stress of the steel concrete beam is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Rod-Shaped Construction Members (AREA)
  • Conveying And Assembling Of Building Elements In Situ (AREA)

Abstract

貫通孔を形成するために補強部材を別途取り付ける手間やコストを削減できる鉄骨コンクリート梁及び鉄骨コンクリート梁の施工方法を提供すること。 小梁1は、底板部12と、底板部12の両端から上方向に延出する一対の側板部13と、を有する鋼製型枠10と、鋼製型枠10の底板部12と一対の側板部13によって構成された溝部に打設された小梁コンクリート20と、を備える。

Description

鉄骨コンクリート梁及び鉄骨コンクリート梁の施工方法
 本発明は、鉄骨コンクリート梁及び鉄骨コンクリート梁の施工方法に関する。
 従来、RC造の梁に対してダクト等を通すための貫通孔を形成する方法が提案されている。このような方法の一例としては、梁の外郭に補強部材を取付けて貫通補強を施すことで貫通孔形成時の梁の耐力低下を抑制し、この後に、梁と補強部材とを貫通する貫通孔を形成する方法が提案されている(例えば、特許文献1参照)。
特開2014-148813号公報
 しかし、上述したような特許文献1に記載の方法では、貫通孔を形成するために、RC造の梁を構築した後で別途補強部材を梁の側面に取付ける必要があるため、作業工数が増えていた。また、補強部材を取付けた範囲にしか貫通孔を形成することができないため、貫通孔の位置や大きさの自由度が低かった。そこで、貫通孔を形成するために補強部材を別途取り付ける手間やコストを削減でき、また、貫通孔の位置や大きさの自由度を高めることができる鉄骨コンクリート梁及び鉄骨コンクリート梁の施工方法が要望されていた。
 本発明は、上記に鑑みてなされたものであって、貫通孔を形成するために補強部材を別途取り付ける手間やコストを削減でき、また、貫通孔の位置や大きさの自由度を高めることができる鉄骨コンクリート梁及び鉄骨コンクリート梁の施工方法を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、請求項1に記載の鉄骨コンクリート梁は、底板部と、前記底板部の両端から上方向に延出する一対の側板部と、を有する鋼製型枠と、前記鋼製型枠の前記底板部と一対の前記側板部によって構成された溝部に打設されたコンクリートと、を備える。
 請求項2に記載の鉄骨コンクリート梁は、請求項1に記載の鉄骨コンクリート梁において、前記鉄骨コンクリート梁の許容曲げモーメント又は許容せん断力が、下記の数式(1)により算定されている、請求項1に記載の鉄骨コンクリート梁。
 (数式1) F=FRC+β・F
 ただし、
 F:前記鉄骨コンクリート梁の許容曲げモーメント又は許容せん断力
 FRC:前記コンクリートの許容曲げモーメント又は許容せん断力
 β:前記鋼製型枠の許容曲げモーメント又は許容せん断力の負担係数であって0.5以下の負担係数
 F:前記鋼製型枠の許容曲げモーメント又は許容せん断力
 である。
 請求項3に記載の鉄骨コンクリート梁は、請求項1又は2に記載の鉄骨コンクリート梁において、前記鉄骨コンクリート梁は、その一部が大梁に接合されるものであり、前記鋼製型枠は、前記鋼製型枠の長手方向における前記大梁側の端部であって、前記大梁の側面に形成された切り欠きを介して前記大梁に収容される、前記大梁のかぶり厚以上の長さの端部を備える。
 請求項4に記載の鉄骨コンクリート梁は、請求項1から3のいずれか一項に記載の鉄骨コンクリート梁において、前記側板部及び前記コンクリートは、前記側板部と前記コンクリートとを貫通する貫通孔を形成可能な貫通孔形成部を有する。
 請求項5に記載の鉄骨コンクリート梁は、請求項1から4のいずれか一項に記載の鉄骨コンクリート梁において、前記一対の側板部を相互に固定するための開き止め部材を、前記一対の側板部の上端位置から、当該上端位置よりも前記一対の側板部の高さの1/3だけ下方の位置、までの範囲内に設けた。
 請求項6に記載の鉄骨コンクリート梁は、請求項1から5のいずれか一項に記載の鉄骨コンクリート梁において、前記鋼製型枠は、前記側板部の上端から外方向に延出するフランジ部を備える。
 請求項7に記載の鉄骨コンクリート梁は、請求項6に記載の鉄骨コンクリート梁において、前記鋼製型枠は、前記フランジ部の外端から下方向又は上方向に延出する補強部を備える。
 請求項8に記載の鉄骨コンクリート梁の施工方法は、底板部と、前記底板部の両端から上方向に延出する一対の側板部と、を有する鋼製型枠を設置する鋼製型枠設置ステップと、前記鋼製型枠設置ステップにおいて設置した前記鋼製型枠の前記底板部と一対の前記側板部によって構成された溝部にコンクリートを打設する打設ステップと、を含む。
 請求項9に記載の鉄骨コンクリート梁の施工方法は、請求項8に記載の鉄骨コンクリート梁の施工方法において、前記鉄骨コンクリート梁の許容曲げモーメント又は許容せん断力が、下記の数式(1)により算定されている、請求項8に記載の鉄骨コンクリート梁の施工方法。
 (数式1) F=FRC+β・F
 ただし、
 F:前記鉄骨コンクリート梁の許容曲げモーメント又は許容せん断力
 FRC:前記コンクリートの許容曲げモーメント又は許容せん断力
 β:前記鋼製型枠の許容曲げモーメント又は許容せん断力の負担係数であって0.5以下の負担係数
 F:前記鋼製型枠の許容曲げモーメント又は許容せん断力
 である。
 請求項1に記載の鉄骨コンクリート梁、及び請求項8に記載の鉄骨コンクリート梁の施工方法によれば、コンクリートの外郭が鋼製型枠によって覆われているため、梁の側面に貫通孔を形成した際の耐力の低下を抑制することができ、貫通孔を形成するために補強部材を別途取り付ける手間やコストを削減できる。
 請求項2に記載の鉄骨コンクリート梁、及び請求項9に記載の鉄骨コンクリート梁の施工方法によれば、鋼製型枠とコンクリートのそれぞれの負担割合を考慮した複合的な許容曲げモーメントや許容せん断力を計算することが可能になり、鉄骨コンクリート梁の設計を最適化することが可能になる。
 請求項3に記載の鉄骨コンクリート梁によれば、鋼製型枠の端部であって大梁のかぶり厚以上の長さの端部を大梁に収容することで、小梁と大梁の接合強度を一層向上させることが可能になる。
 請求項4に記載の鉄骨コンクリート梁によれば、貫通孔形成部において貫通孔を形成できるので、貫通孔に配管や配線を相通させること等が可能になり、鉄骨コンクリート梁の利便性を高めることができる。特に、鉄骨コンクリート梁のコンクリートの外郭が鋼製型枠によって覆われているため、貫通孔を形成可能な部分が、従来技術のように補強部材を取付けた部分に限定されず、貫通孔の大きさや配置の自由度を高めることができる。
 請求項5に記載の鉄骨コンクリート梁によれば、一対の側板の上端に比較的近い位置でこれら一対の側板の相対位置を固定できるので、この範囲よりも下方の位置に開き止め部材を設けた場合に比べて、一対の側板が相互に外向きに開いてしまうことを一層効果的に防止できる。
 請求項6に記載の鉄骨コンクリート梁によれば、フランジ部を備えるので、鉄骨コンクリート梁で支持するスラブの荷重をフランジ部で受けてスムーズに鉄骨コンクリート梁へと流すことができ、鉄骨コンクリート梁の耐力が向上する。
 請求項7に記載の鉄骨コンクリート梁によれば、フランジ部の外端に補強部を備えるので、鋼製型枠の溝部やフランジ部の上にコンクリートが打設された際のフランジ部の座屈を、補強部によって抑制することができ、鉄骨コンクリート梁の耐力が向上する。
本発明の実施の形態1に係る鉄骨コンクリート梁(小梁)を示す図であって、図1(a)は、左側面図、図1(b)は、図1(a)のA-A矢視断面図である。 小梁と大梁との接合部付近における施工時の一時的状態を示す分解斜視図である。 小梁の断面と算定パラメータの関係を示す図である。 スラブの厚さと長期曲げ剛性比の関係を示すグラフである。 スラブの厚さと短期曲げ剛性比の関係を示すグラフである。 貫通孔がない場合における、小梁の載荷荷重と鋼製型枠のせん断剛性比の関係を示すグラフである。 貫通孔がある場合における、小梁の載荷荷重と鋼製型枠のせん断剛性比の関係を示すグラフである。 図1(a)のA-A矢視断面に対応する断面斜視図であって、図8(a)は、鋼製型枠設置ステップ完了時、図8(b)は、主筋配筋ステップ、デッキプレート設置ステップ、及び打設ステップ完了時、図8(c)は、貫通ステップ完了時の小梁を示す。 図1(a)のA-A矢視断面に対応する断面斜視図であって、図9(a)は、鋼製型枠設置ステップ、及び円筒型枠設置ステップ完了時、図9(b)は、主筋配筋ステップ、デッキプレート設置ステップ、及び打設ステップ完了時、図9(c)は、貫通ステップ完了時の小梁を示す。 Z形鋼の運搬状態を示す図であり、図10(a)は実施形態1のZ形鋼の運搬状態を示す端面図、図10(b)は第1変形例に係るZ形鋼の運搬状態を示す端面図である。 第2変形例に係る鋼製型枠を示す図であり、図11(a)は折り曲げ前の鋼製型枠の平面図、図11(b)は折り曲げ後の鋼製型枠の側面図である。 第3変形例に係る小梁と大梁との接合部付近を示す図であって、図12(a)は、左側面図、図12(b)は、図12(a)のB-B矢視断面図である。 第4変形例に係る小梁と大梁との接合部付近を示す図であり、図13(a)は右側面図、図13(b)は平面図である。 第5変形例に係る小梁と大梁との接合部付近を示す右側面図である。 第6変形例に係る小梁と大梁との接合部付近を示す右側面図である。 図15の小梁の鋼製型枠の端部の斜視図である。 第7変形例に係る小梁と大梁との接合部付近を示す右側面図である。 第8変形例に係る小梁と大梁との接合部付近を示す側面図である。 図18の平面図である。 図1(a)のA-A矢視断面に対応する断面図であって、第9変形例に係る小梁の鋼製型枠の断面図である。 図1(a)のA-A矢視断面に対応する断面図であって、第10変形例に係る小梁の鋼製型枠の断面図である。 図1(a)のA-A矢視断面に対応する断面図であって、図22(a)は、第11変形例に係る小梁の鋼製型枠、図22(b)は、第12変形例に係る小梁の鋼製型枠である。 図1(a)のA-A矢視断面に対応する断面図であって、図23(a)は、第13変形例に係る小梁の鋼製型枠、図23(b)は、第14変形例に係る小梁の鋼製型枠である。
 以下に添付図面を参照して、この発明に係る鉄骨コンクリート梁の実施の形態を詳細に説明する。まず、〔I〕実施の形態の基本的概念を説明した後、〔II〕実施の形態の具体的内容について説明し、最後に、〔III〕実施の形態に対する変形例について説明する。ただし、実施の形態によって本発明が限定されるものではない。
〔I〕実施の形態の基本的概念
 まず、実施の形態の基本的概念について説明する。
 実施の形態は、建築物を構成する鉄骨コンクリート梁に関する。「鉄骨コンクリート梁」とは、少なくとも鉄骨とコンクリートとを備える梁である。なお、鉄骨コンクリート梁は、これらの鉄骨及びコンクリート以外の構成要素を備えても構わず、例えば実施の形態では、鉄骨及びコンクリートに加えてさらに鉄筋を有する鉄骨鉄筋コンクリート梁として構成した例を示す。このような鉄筋としては、例えば主筋やあばら筋を備えてよいが、以下では主筋のみを備え、あばら筋は備えない場合について説明する。ただし、鉄骨コンクリート梁が、例えばあばら筋のみを備えていたり、主筋とあばら筋の両方を備えていたり、これらのいずれも備えていなかったりしてもよい。
 また、鉄骨の形状は、コンクリートを打設可能な型枠として機能する限り任意であり、以下では軸断面がハット形状(一対のZ形鋼を互いに接合した形状)の鋼製型枠である場合について説明する。
 また、実施の形態に係る鉄骨コンクリート梁の設置階は任意であり、以下では鉄骨コンクリート梁が2階梁である場合について説明するが、他の階の梁にも適用できる。また、以下では鉄骨コンクリート梁が小梁である場合について説明するが、大梁であっても構わない。
〔II〕実施の形態の具体的内容
 次に、実施の形態の具体的内容について説明する。
(実施の形態1)
 まずは、実施の形態1に係る鉄骨コンクリート梁について説明する。
(構成)
 図1は、本実施の形態1に係る鉄骨コンクリート梁(以下、単に「小梁」1)を示す図であって、図1(a)は、左側面図、図1(b)は、図1(a)のA-A矢視断面図である。この図1に示すように、本実施の形態1に係る小梁1は、鋼製型枠10、小梁コンクリート20、主筋30、及び貫通孔40を備えている。ここで、以下では、必要に応じて、各図における+X-X方向を「幅方向」と称し、特に+X方向を「右方向」、-X方向を「左方向」と称する。また、+Y-Y方向を「奥行き方向」又は「前後方向」と称し、特に+Y方向を「前方向」、-Y方向を「後方向」と称する。また、+Z-Z方向を「高さ方向」又は「上下方向」と称し、特に+Z方向を「上方向」、-Z方向を「下方向」と称する。また、鉄骨コンクリート梁の軸心を通る鉛直平面(YZ平面)に対して、幅方向(+X-X)に沿って近付く方向を「内方向」、幅方向(+X-X)に沿って遠ざかる方向を「外方向」と称する。
(構成-鋼製型枠)
 鋼製型枠10は、小梁コンクリート20を打設するための溝部(後述する)を有する鋼製の型枠である。この鋼製型枠10は、建築物を構成する各小梁1に設けられており、小梁1を下方から覆うように配置されている。ここで、本実施の形態1の鋼製型枠10は、施工現場にて、図示のように一対の(すなわち、2つの)Z形鋼11を後述する底板部12にて相互に接合して形成されるが、これに限らず、鋼製型枠10を単一の部材で一体形成しても構わないし、3つ以上の部材を組み合わせて形成しても構わない。このように3つ以上の部材を組み合わせる場合には、例えば、Z形鋼11を構成する一体形成された部材(後述する底板部12、側板部13、フランジ部14、及び補強部15)を相互に分離して形成してもよい。なお、一対のZ形鋼11の各々は相互に略同様に構成できるので、以下では一方のZ形鋼11についてのみ説明するが、これらのZ形鋼11を相互に区別する必要がある場合には、小梁1の右方(+X方向)に位置するZ形鋼11を「右Z形鋼」、小梁1の左方(-X方向)に位置するZ形鋼11を「左Z形鋼」と区別して称する。また、鋼製型枠10の具体的な形成方法については後述する。
 ここで、Z形鋼11は、鋼製型枠10を構成する枠部材であって、図1(b)に示すように軸断面が略Z形状の鋼材である。このZ形鋼11は、底板部12、側板部13、フランジ部14、及び補強部15を備えている。
 底板部12は、鋼製型枠10の底面に位置する鋼板である。この底板部12は、一対のZ形鋼11の各々の底板部12を相互に接合するための接合面16を有し、この接合面16において一対のZ形鋼11が相互に接合されている。例えば、本実施の形態1では、左Z形鋼の底板部12の一部の上に、右Z形鋼の底板部12の一部が重ね合わされており、これら一対のZ形鋼11が相互に接触している部分(左Z形鋼の底板部12の上面と、右Z形鋼の底板部12の下面)のそれぞれが接合面16である。この接合面16での接合の具体的な方法は任意で、例えば本実施の形態1では、両Z形鋼11の接合面16には梁の長手方向(+Y-Y方向)に沿って間隔を隔てて複数のボルト孔(図示省略)が形成されており、このボルト孔を用いてボルト締結することで両Z形鋼11を接合する。ただし、接合の具体的な方法はこれに限らず、例えば溶接により接合してもよいし、ビスを貫通させて接合してもよい。
 側板部13は、底板部12から上方向に延出する鋼板である。具体的には、この側板部13は、底板部12の外端から折り返されて、梁の上端まで延出している部分であって、小梁1の左右の側方を覆うように位置している。ここで、側板部13の高さ方向(+Z-Z方向)の長さは、右Z形鋼よりも左Z形鋼の方が、底板部12の厚みの分だけ長い。これは、一対のZ形鋼11を重ね合わせた際に、両Z形鋼11の側板部13の上端位置(すなわち、フランジ部14の高さ位置)を相互に一致させるためである。
 なお、一対の鋼製型枠10の側板部13及び底板部12により形成された軸断面U字状の部分を、以下では必要に応じて溝部と称する。このように鋼製型枠10が溝部を形成することで、当該溝部にコンクリートを打設可能となる。また、溝部により小梁1の下方や側方が鋼板で覆われるので、火災時に小梁コンクリート20の下方や側方から蒸気が抜けることを抑止でき、小梁1の下方の室内の温度上昇を抑止し、小梁1の耐火性能を向上させることができる。
 フランジ部14は、側板部13の上端から外方向に延出する鋼板である。具体的には、このフランジ部14は、側板部13の上端から外方向に折り返されて、水平面に沿うように延出している部分であり、このフランジ部14の上にはデッキプレート3が載置されてビス留めされている。このデッキプレート3は公知の波形鋼板である場合について説明するが、これに限らず平板を用いてもよい。なお、図示は省略しているが、実際には大梁2の長手方向に沿って小梁1が間隔を隔てて並設されており、デッキプレート3の一端部は、図1(b)に示すように一本の小梁1のフランジ部14に載置されており、デッキプレート3の他方の端部は上記一本の小梁1の隣の小梁1のフランジ部14に同様に載置されている。このように、フランジ部14を備えるので、スラブコンクリート4(後述する)の荷重をフランジ部14で受けてスムーズに小梁1へと流すことができ、小梁1の耐力が向上する。
 補強部15は、フランジ部14の外端から下方向に延出する鋼板である。このように補強部15を設けてフランジ部14の外端に厚みを持たせることにより、スラブコンクリート4を打設してフランジ部14がスラブの荷重を受けた場合の、フランジ部14の外端の局部座屈を抑止できる。また、補強部15により強度の低い部分のみを局部的に補強することで、鋼製型枠10の全体的な薄肉化が可能となる。なお、本実施の形態1の補強部15は、フランジ部14の外端から下方向に延出しているが、これに限らず、例えば上方向に延出してもよい。
(構成-小梁コンクリート)
 小梁コンクリート20は、鋼製型枠10の底板部12と一対の側板部13によって構成された溝部に打設されたコンクリートである。この小梁コンクリート20は、溝部の内部に充填された状態で固化された公知のコンクリートであり、この小梁コンクリート20には上述したように複数の貫通孔40が形成されている。ここで、小梁コンクリート20の上方には、上階のスラブを形成するためのスラブコンクリート4が水平面に沿って形成されており、また、小梁コンクリート20の前端及び後端には、大梁2を形成するための大梁コンクリート(符号省略)が小梁1と直交するように形成されている。なお、これらの小梁コンクリート20、スラブコンクリート4、及び大梁コンクリートは、別々の名称や符号を付しているが、本実施の形態1では同時に打設されて形成されており、またこれらを相互に区別する必要のない際には単に「コンクリート」と称して説明する。
(構成-主筋)
 主筋30は、梁の軸心方向に沿って延設された鉄筋である。なお、本実施の形態1では2本の上端筋と4本の下端筋を一例として図示しているが、主筋30の数や配置はこれに限らない。
(構成-貫通孔)
 貫通孔40は、側板部13及び小梁コンクリート20を貫通するように形成された孔であり、例えば鋼製型枠10に打設した小梁コンクリート20が固化した後に、ドリルで側板部13及び小梁コンクリート20を削孔して形成する。このように貫通孔40を形成することで、例えば空調や電気設備用のダクトや配管を当該貫通孔40に通すことができる(以下では、貫通孔40に通すものが空調用のダクトである場合について説明する)。したがって、ダクトを、小梁1を挟む一方の空間(例えば小梁1の右方の空間)から他方の空間(例えば小梁1の左方の空間)へと延設することができ、ダクトの配置の自由度が向上する。
 ここで、貫通孔40は、小梁1の貫通孔形成部に形成される。この「貫通孔形成部」とは、側板部13及び小梁コンクリート20を貫通する貫通孔40を形成可能な部分であり、具体的には、鉄筋(本実施の形態1では主筋30)が配筋されていない部分(ドリルで貫通孔40を削孔する際に、鉄筋にドリルが干渉してしまわない部分)である。例えば本実施の形態1では、小梁1における下方の主筋30(下端筋)よりも上方の部分である。なお、貫通孔40の数は、図示では梁の軸心方向に沿った6つであるが、これに限らない。
(構成-大梁との接合部)
 続いて、本実施の形態1に係る小梁1と大梁2との接合部について説明する。図2は、小梁1と大梁2との接合部付近における施工時の一時的状態を示す分解斜視図である。なお、図2では、図示の便宜上、小梁1や大梁2を構成するコンクリートや鉄筋は省略している。この図2に示すように、本実施の形態1に係る大梁2の木製型枠2aの側面には、小梁1の軸断面形状と略一致する形状(ハット形状)の切り欠き(以下、小梁収容部2b)が形成されている。そして、この小梁収容部2bに小梁1の鋼製型枠10をはめ込んだ状態で、鋼製型枠10と大梁2の木製型枠2a内に同時にコンクリートを打設することで、小梁1と大梁2を同時に形成できる。なお、小梁収容部2bの上端の左右には、図示のようにフランジ部14と同一幅の切り欠き(以下、フランジ収容部2c)が形成されており、このフランジ収容部2cにフランジ部14を収めることができる。ただし、このようにフランジ収容部2cにフランジ部14を収めた場合、フランジ部14の下方には補強部15の高さ分だけ隙間が形成されるので、この隙間からコンクリートが漏れることを防止するために、この隙間を埋める封止材2d(例えば、図示のような直方体の木材)を配置している。
 また、コンクリートを打設するまでの間、仮設サポート(図示省略)で小梁1を支持してもよい。なお、仮設サポートの位置や本数は小梁1の長さや重量に応じて適宜変更して構わないが、例えば、軸方向両端部に1本ずつと、軸方向中央部に1本を設けてもよい。なお、鋼製型枠10は、木製型枠2aと比べて耐力が高いので、小梁1の長さや重量に鑑みて不要であれば仮設サポートを省略してもよい。
(鋼製型枠の設計方法)
 次に、本実施の形態1に係る鋼製型枠10の設計方法の一例を説明する。本実施の形態においては、小梁1の許容曲げモーメント又は許容せん断力を、下記の数式(1)により算定する。
 (数式1) F=FRC+β・F
 ただし、
 F:小梁1の許容曲げモーメント又は許容せん断力
 FRC:小梁コンクリート20(以下、必要に応じて「RC」(Reinforced Concrete))の許容曲げモーメント又は許容せん断力
 β:鋼製型枠10の許容曲げモーメント又は許容せん断力の負担係数であって0.5以下の負担係数
 F:鋼製型枠10の許容曲げモーメント又は許容せん断力
 である。
(鋼製型枠の設計方法-許容曲げモーメントの設計方法)
 この設計方法について、許容曲げモーメントの設計方法と、許容せん断力の設計方法に分けて、以下において一層具体的に説明する。最初に、許容曲げモーメントの設計方法について説明する。この許容曲げモーメントは、長期許容曲げモーメントと短期許容曲げモーメントに分けて設計するものとし、長期許容曲げモーメントを下記の数式(2)、短期許容曲げモーメントを下記の数式(3)によりそれぞれ算定する。図3は、小梁1の断面と算定パラメータの関係を示す図である。
 (数式2) RCβ
 (数式3) RCβ
 ただし、
 RC:RC断面部分の長期許容曲げモーメント
     (RC断面の引張鉄筋比が釣合鉄筋比以下の場合はa・jとしてよい)
 RC:RC断面部分の短期許容曲げモーメント
     (RC断面の引張鉄筋比が釣合鉄筋比以下の場合はa・jとしてよい)
 a:引張鉄筋断面積
 :引張鉄筋の長期許容引張応力度
 :引張鉄筋の短期許容引張応力度
 j:応力中心距離(j=(7/8)・d)
 d:断面の有効せい(小梁1の上面から、コンクリートの配筋までの距離)
 β:長期鉄骨曲げ負担有効係数であって0.5以下の係数であり、ここでは0.1
 β:短期鉄骨曲げ負担有効係数であって0.5以下の係数であり、ここでは0.4
 :S断面部分の長期許容曲げモーメント(σ・Z
 :S断面部分の短期許容曲げモーメント(σ・Z
 σ:鋼製型枠10の長期許容引張応力度
 σ:鋼製型枠10の短期許容引張応力度
 Z:鋼製型枠10の断面係数
 また、終局時曲げ耐力Muは、下記の数式(4)により算定する。
 (数式4) M=MuRC+MuS
 ただし、
 MuRC:RC断面部分の終局時曲げ耐力(MuRC=0.9・a・1.1・・d)
 a:引張鉄筋断面積
 :引張鉄筋の短期許容引張応力度
 d:断面の有効せい
 MuS:S断面部分の終局時曲げ耐力(MuS=1.1・σ・Z
 σ:鋼製型枠10の短期許容引張応力度
 Z:鋼製型枠10の塑性断面係数
 長期許容曲げモーメントとは、比較的長期(例えば数年間~数十年間)に渡る許容曲げモーメントであり、短期許容曲げモーメントとは、比較的短期(例えば数時間~数日間)に渡る許容曲げモーメントである。このように2つの期間に分けて許容曲げモーメントを計算する理由は、期間の長さによって小梁1への載荷状況が異なり得ることから、小梁1におけるRCと鋼製型枠10との荷重負担割合も異なり得ることを考慮し、各荷重負担割合に適した許容曲げモーメントを設計するためである。すなわち、比較的長期においては、小梁1への載荷が比較的小さいことが想定されるので、小梁1のRCが割れずに維持され(後述する図4の左下の断面参照)、RCの荷重負担割合が高くなることが想定される。一方、比較的短期においては、小梁1への載荷が比較的大きいこと(例えば、重量物を積載したフォークリフトが小梁1を通過ことにより載荷が比較的大きくなること)が想定されるので、小梁1のRCの下端にひび割れが発生することで(後述する図5の左下の断面参照。この断面に斜線で示すように、RCのスラブ部分のうち、上部2/3程度のみがひび割れせずに残り、荷重を負担することを想定している)、RCの荷重負担割合が小さくなることが想定される。そこで、本実施形態では、数式2、3において、小梁1におけるRCと鋼製型枠10との荷重負担割合を鉄骨曲げ負担有効係数βとして表した上で、この鉄骨曲げ負担有効係数βを長期の場合と短期の場合で異なる値とすることで、各荷重負担割合に適した許容曲げモーメントを設計する。このような設計方法を採用することで、長期と短期のそれぞれの載荷状況を考慮した複合的な許容曲げモーメントを計算することが可能になり、小梁1の設計を最適化することが可能になる。
 この鉄骨曲げ負担有効係数βは、鋼製型枠10の曲げ剛性EとRCの曲げ剛性比ζ(=E/E)から算定することができる。この曲げ剛性比ζは、鋼製型枠10の板厚や小梁1に取付くスラブコンクリート4(以下、必要に応じて「スラブ」)の厚さによっても変化し得ることから、これら鋼製型枠10の板厚とスラブの厚さにそれぞれ適用制限範囲を設定し、この適用制限範囲を前提として曲げ剛性比ζを算定し、当該算定した曲げ剛性比ζから鉄骨負担有効係数βを決定した。具体的には、鋼製型枠10の板厚は、適用制限範囲を3.2mm以上とした。この鋼製型枠10の板厚は、厚い程、鋼製型枠10の荷重負担割合が大きくなるので、「3.2mm」を下限値として、この下限値「以上」を適用制限範囲に設定することで、適用制限範囲で鋼製型枠10の板厚を決定している限り、鉄骨負担有効係数βがそれ以下にはならないようにしている。一方、スラブの厚さは、適用制限範囲を200mm以下とした。このスラブの厚さは、厚い程、スラブによる荷重負担割合が大きくなるために、鋼製型枠10の荷重負担割合が小さくなるので、「200mm」を上限値として、この上限値「以下」を適用制限範囲に設定することで、適用制限範囲でスラブの厚さを決定している限り、鉄骨負担有効係数βがそれ以下にはならないようにしている。
 図4は、スラブの厚さと長期曲げ剛性比ζの関係を示すグラフ、図5は、スラブの厚さと短期曲げ剛性比ζの関係を示すグラフである。いずれのグラフも、横軸はスラブの厚さ、縦軸は曲げ剛性比ζ(長期曲げ剛性比ζ又は短期曲げ剛性比ζ)、実線は荷重=3.2ton、点線は荷重=4.5tonを示し、小梁1の断面形状は標準断面(全長6.5m、全幅300mm、全高550mm)を想定している。図4に示すように、長期では、スラブの厚さの適用制限範囲の上限値である200mmにおいて、長期曲げ剛性比ζ=約0.12であるから、安全度を考慮して、長期曲げ剛性比ζ=0.1と設定した。また、図5に示すように、短期ではスラブの厚さの適用制限範囲の上限値である200mmにおいて、短期曲げ剛性比ζ=約0.49であるから、安全度を考慮して、短期曲げ剛性比ζ=0.4と設定した。そして、これら長期曲げ剛性比ζ=0.1と短期曲げ剛性比ζ=0.4に基づいて、耐力式M=(1+ζ)MRCより、鉄骨曲げ負担有効係数β=ζ(MRC/M)より算定することができる。ここで、MRC/Mは、RC断面と鋼製型枠10の許容耐力比であり、図4、5の断面においてRC断面の配筋を4-HD13(降伏点が345N/mm2以上の異形鉄筋(steel deformed bar)が4本)、鋼製型枠10の板厚を3.2mmとした場合、MRC/M=1.35となる。ここでは、安全側の値としてMRC/M=1.0として鉄骨曲げ負担有効係数βを算定した。なお、本実施の形態では、上述のように鋼製型枠10の板厚やスラブの厚さに適用制限範囲という制限を設ける簡略法(β法)を用いているが、各々の断面形状(鋼製型枠10の板厚、スラブの厚さ、配筋)に応じて曲げ剛性比ζを設定し,耐力式M=(1+ζ)MRCより、鉄骨曲げ負担有効係数βを算定する詳細法(ζ法)を採用してもよい。ここでは設計式が煩雑にならないよう、安全側で設計式を決めている(鉄の負担率を設計上低めに設定している)。なお、発明者の実験でも確認されたとおり、鋼製型枠10の断面部分はRC断面部分で拘束されており、鋼製型枠10は薄板として横座屈しないので、鋼製型枠10の鋼材の許容応力度fは引張応力度fを採用することとした。
(鋼製型枠の設計方法-許容せん断力の設計方法)
 次に、許容せん断力の設計方法について説明する。この許容せん断力は、許容曲げモーメントに関する上述した考え方と同様に、長期許容せん断力と短期許容せん断力に分けて設計するものとし、長期許容せん断力を下記の数式(5)、短期許容せん断力を下記の数式(6)によりそれぞれ算定する。小梁1の断面と算定パラメータの関係は図3に示す通りである。
 (数式5) =α・A+βσ
 (数式6) =α・A+βσs
 ただし、
 α:せん断スパン比(M/Q)による割増係数
 A:RC部のせん断有効断面積(A=B・j+2・B・t)
 fs:コンクリートの長期許容せん断応力度
 :コンクリートの短期許容せん断応力度
 β:鉄骨せん断負担有効係数であって0.5以下の係数であり、ここでは0.2
 :鋼製型枠10のせん断断面積(=2・t・(H-2・r))
 t:鋼板の厚さ
 r:Z形鋼板11の角部の曲率半径
 σ:Z形鋼板11の鋼材の長期許容せん断応力度(σσt/3の平方根)
 σ:Z形鋼板11の鋼材の短期許容せん断応力度(σσt/3の平方根)
 このせん断力の算定で用いているRC部のせん断有効断面積Aは、図3のように実験に用いた小梁1と同じ断面とし、鋼製型枠10のフランジ部の上部のスラブの断面積も含んでよいこととする。せん断力の算定式における鉄骨せん断負担有効係数βは、発明者の実験結果から示される鋼製型枠10のせん断剛性比ζから求めることができる。図6は、貫通孔(開口)40がない場合における、小梁1の載荷荷重と鋼製型枠10のせん断剛性比ζの関係を示すグラフ、図7は、貫通孔(開口)40がある場合における、小梁1の載荷荷重と鋼製型枠10のせん断剛性比ζの関係を示すグラフである。いずれのグラフも、横軸は載荷荷重、縦軸はせん断剛性比ζを示す。これら図6、7から分かるように、鋼製型枠10のせん断剛性比ζは、貫通孔40の有無や載荷荷重の大小に関わらず、約0.2でほぼ一定である。このため、本実施の形態では、せん断剛性比ζ=0.2と設定して、鉄骨せん断負担有効係数βを求めた。この鉄骨せん断負担有効係数βの算定は、詳細法(ζ法)の耐力式Q=(1+ζRCより、β=ζ(QRC/Q)より算定する。ここで、QRC/QはRC断面と鋼製型枠10のせん断耐力の比であり、小梁1の断面形状が標準断面(全長6.5m、全幅300mm、全高550mm)であり鋼製型枠10の厚さを3.2mmとした場合、QRC/Q=1.04となる。ここでは、安全側の値としてQRC/Q=1.0として鉄骨せん断負担有効係数β=0.2を算定した。このせん断の設計式においても、詳細法(ζ法)としてζ=0.2(一定)とし、RC断面の許容耐力から求める式Qa=(1+ζ)QRCから求めることも可能であるが、曲げの設計式と同様、鉄骨負担有効係数を明確とした設計式とした。
 上述のように、許容曲げモーメントの設計においては、長期鉄骨曲げ負担有効係数β=0.1とし、短期鉄骨曲げ負担有効係数β=0.4としており、許容せん断力の設計においては、鉄骨せん断負担有効係数β=0.2としている。このような鋼製型枠10の負担係数βは、これら以外の値であってもよいが、安全度を高めるため、鋼製型枠10の荷重負担割合の上限を5割とし、鋼製型枠10の負担係数β=0.5以下とする。一方、鋼製型枠10の荷重負担割合の下限は、図6、7のグラフを考慮すると、少なくとも1割とすることができ、鋼製型枠10の負担係数β=0.1以上とすることができる。ただし、鋼製型枠10を小梁コンクリート20の型枠としてのみ用いることとし、鋼製型枠10に荷重を負担させなくてもよく、この場合には、鋼製型枠10の負担係数β=0としてもよい。このような設計方法を採用することで、鋼製型枠10と小梁コンクリート20のそれぞれの負担割合を考慮した複合的な許容曲げモーメントや許容せん断力を計算することが可能になり、小梁1の設計を最適化することが可能になる。
(鋼製型枠の形成方法)
 続いて、本実施の形態1に係る鋼製型枠10の形成方法の一例を説明する。まずは、工場にてZ形鋼11を製造する。このようなZ形鋼11を製造する具体的な方法は任意で、例えば一枚の平板の薄型鋼板を折り曲げて形成することができる。そして、製造したZ形鋼11を施工現場に運搬する。この際には、複数のZ形鋼11を互いに重ね合わせて運搬できるため、一対のZ形鋼11を互いに接合してから運搬するよりも一度に多くのZ形鋼11を運搬でき、運搬の効率を上げることができる。
 また、この運搬の際、フランジ部14の下方には、図2に関して説明した封止材(小口材)2dを予め接着等の任意の方法で付けておいてもよい。この場合には、フランジ部14や補強部15の強度を封止材2dによって高めることができ、運搬時の荷重や衝撃によってフランジ部14や補強部15が変形することを防止できる。また、同様の目的のため、封止材2dと同様の形状の補強用材(図示省略)を、フランジ部14の下方において所定間隔で設けたり、封止材2dを図2のY方向に延ばした長尺形状の補強用材(図示省略)をフランジ部14の下方に設けたりしてもよい。このような補強用材は、運搬後に取り外してもよいが、取り外すことなく恒久的に固定しておいてもよい。このような補強用材を設けることで、フランジ部14や補強部15の強度を向上できる場合には、その分だけフランジ部14や補強部15の強度を低減できるため、これらフランジ部14や補強部15を薄肉化したり、補強部15のフランジ部14からの延出寸法を短くしたりしてもよい。
 次に、施工現場に運搬された一対のZ形鋼11を互いに接合して鋼製型枠10を形成する。具体的には、図1(b)に示すように右Z形鋼と左Z形鋼の底板部12を重ね合わせた状態で、両底板部12の重畳部分に適当な間隔で形成されたボルト孔(図示省略)にボルトを挿通して留めていってもよい。なお、このように両Z形鋼を接合する際には、各Z形鋼11の側板部13同士の間隔を一定に維持するための部材を取付けることが好ましく、例えば、溝部の内部に位置し、側板部13同士を突っ張ることで間隔を固定する端太角や、溝部の外縁形状にフィットするコ字状のベニヤ板等を仮設し、両Z形鋼11を相互に接合した後に取り外してもよい。
(小梁の施工方法)
 続いて、本実施の形態1に係る小梁1の施工方法について説明する。図8は、図1(a)のA-A矢視断面に対応する断面斜視図であって、図8(a)は、鋼製型枠設置ステップ完了時、図8(b)は、主筋配筋ステップ、デッキプレート設置ステップ、及び打設ステップ完了時、図8(c)は、貫通ステップ完了時の小梁1を示す。
 まずは、図8(a)に示すように、鋼製型枠設置ステップを行う。鋼製型枠設置ステップは、上述した形成方法にて形成した鋼製型枠10を重機等で持ち上げて、梁の施工位置に設置するステップである。なお、本実施の形態1では、鋼製型枠10の端部が、図2に示すように大梁2の木製型枠2aに接続されるように設置する。ここで、図2では、図示の便宜上、小梁1の鋼製型枠10が大梁2の木製型枠2aの切り欠き(小梁収容部2b)にぴったりと納まるように図示しているが、これに限らず、鋼製型枠10を小梁収容部2bに挿入し易くすべく、小梁収容部2bを幅方向に大きくし、鋼製型枠10を挿入してから鋼製型枠10と小梁収容部2bとの間を木材等で埋めても構わない。このように鋼製型枠10を設置してから、後のコンクリート打設時に耐え得るように、鋼製型枠10を仮設サポートで支持する。
 続いて、図8(b)に示すように、主筋配筋ステップ、デッキプレート設置ステップ、及び打設ステップを行う。
 主筋配筋ステップは、鋼製型枠10の内部に主筋30を配筋するステップである。具体的には、主筋30を組んで重機などを用いて持ち上げ、溝部に落とし込んで配置する。同様に、大梁2の主筋30(図示省略)も大梁2の木製型枠2aに落とし込んで配置する。そして、小梁1の主筋30を例えば端部で折り曲げて大梁2の主筋30に定着させる。
 デッキプレート設置ステップは、鋼製型枠10のフランジ部14の上にデッキプレート3を設置するステップである。このデッキプレート設置ステップでは、複数のデッキプレート3を一本の小梁1から隣接する他の小梁1へと架け渡すようにフランジ部14に載置していき、フランジ部14に対して例えばボルト締結で固定する。
 打設ステップは、鋼製型枠設置ステップにおいて設置した鋼製型枠10の底板部12と一対の側板部13によって構成された溝部に小梁コンクリート20を打設するステップである。具体的には、この打設ステップでは、気泡が混入しないようバイブレータを使用しながら鋼製型枠10の溝部にコンクリートを流し込んでいく。なお、本実施の形態1では、上述したように、大梁2の木製型枠2aの内部や、デッキプレート3の上方にも同時にコンクリートを打設し、小梁1、大梁2、及びスラブを一体形成する。
 続いて、図8(c)に示すように、貫通ステップを行う。貫通ステップは、鋼製型枠設置ステップにおいて設置した鋼製型枠10と、打設ステップにおいて打設した小梁コンクリート20とを貫通する貫通孔40を形成するステップである。この貫通ステップは、具体的には、打設ステップにおいて打設したコンクリートが所定の強度を実現した後に、一方のZ形鋼11の側板部13、小梁コンクリート20、及び他方のZ形鋼11の側板部13を、掘削機(例えば、公知のドリル)を用いて順次貫いて貫通孔40を形成し、同様の作業を梁の複数箇所で行うことにより複数の貫通孔40を形成する。なお、貫通孔40の数は、配置するダクトの数に対応する数でよい。
 この貫通孔40の大きさや配置位置については、一般的なRCと同様に決定することができる。例えば、貫通孔40の最大径は、小梁1の高さ(図3の寸法D)に対して1/3以下の直径とし、配置位置は、小梁1の端部(小梁1の端部から、小梁1の全長の1/10の長さの範囲かつ貫通孔40の直径の2倍の範囲)を避けた位置とし、複数の貫通孔40の相互間隔は、各貫通孔40の直径の合計値の3/2以上だけ空けることが、好ましい。ただし、貫通孔40の大きさや配置位置は、このような一例に限定されるものではなく、小梁1の所要強度が確保できる限りにおいて、任意に決定することができる。
 最後に、図示は省略するが、貫通ステップにて形成した貫通孔40にダクトを通す。このようにダクトを通す方法は公知であるため、詳細な説明を省略する。これにて、本実施の形態1に係る小梁の施工方法の説明を終了する。
(実施の形態1の効果)
 このように、本実施の形態1の小梁1によれば、小梁コンクリート20の外郭が鋼製型枠10によって覆われているため、小梁1の側面に貫通孔40を形成した際の耐力の低下を抑制することができ、貫通孔40を形成するために補強部材を別途取り付ける手間やコストを削減できる。
 また、鋼製型枠10と小梁コンクリート20のそれぞれの負担割合を考慮した複合的な許容曲げモーメントや許容せん断力を計算することが可能になり、小梁1の設計を最適化することが可能になる。
 また、小梁コンクリート20の外郭が鋼製型枠10によって覆われているため、貫通孔40を形成可能な部分が、従来技術のように補強部材を取付けた部分に限定されず、貫通孔40の大きさや配置の自由度を高めることができる。
 また、フランジ部14を備えるので、小梁1で支持するスラブの荷重をフランジ部14で受けてスムーズに小梁1へと流すことができ、小梁1の耐力が向上する。
 また、フランジ部14の外端に補強部15を備えるので、鋼製型枠10の溝部やフランジ部14の上に小梁コンクリート20が打設された際のフランジ部14の座屈を、補強部15によって抑制することができ、小梁1の耐力が向上する。
(実施の形態2)
 次に、実施の形態2に係る小梁について説明する。本実施の形態2は、概略的に、貫通孔形成部に予め円筒型枠を設置しておき、コンクリート打設後に円筒型枠を取り除くことで、円筒型枠の設置個所に貫通孔を形成する施工方法に関する形態である。なお、完成後の本実施の形態2に係る小梁の構成は、実施の形態1に係る小梁の構成と略同一であり、実施の形態1の構成と略同一の構成についてはこの実施の形態1で用いたものと同一の符号及び/又は名称を必要に応じて付して、その説明を省略する。また、以下では本実施の形態2に係る小梁における、鋼製型枠の形成方法、及び小梁の施工方法について説明するが、実施の形態1と同様の手順については適宜説明を省略する。
(鋼製型枠の形成方法)
 まず、本実施の形態2に係る鋼製型枠10の形成方法の一例を説明する。まずは、工場にてZ形鋼11を製造する。この際に、Z形鋼11における貫通孔形成部に対応する位置には、予め円形孔51を形成しておく。すなわち、本実施の形態2では、Z形鋼11の側板部13における、図1(a)に示す貫通孔40に対応する位置(図では計6か所)に、例えば切断機などの任意の工具を用いて円形孔51を設ける。続いて、このように円形孔51の空いたZ形鋼11を施工現場に運搬し、次に、施工現場に運搬された一対のZ形鋼11を互いにボルトで接合して鋼製型枠10を形成する。なお、このような接合の具体的な方法については実施の形態1と同様であるため、詳細な説明を省略する。
(小梁の施工方法)
 続いて、本実施の形態2に係る小梁50の施工方法について説明する。図9は、図1(a)のA-A矢視断面に対応する断面斜視図であって、図9(a)は、鋼製型枠設置ステップ、及び円筒型枠設置ステップ完了時、図9(b)は、主筋配筋ステップ、デッキプレート設置ステップ、及び打設ステップ完了時、図9(c)は、貫通ステップ完了時の小梁50を示す。
 まずは、図9(a)に示すように、鋼製型枠設置ステップ、及び円筒型枠設置ステップを行う。なお、鋼製型枠設置ステップは、実施の形態1と同様であるため、詳細な説明を省略する。
 円筒型枠設置ステップは、鋼製型枠10に形成された円形孔51に、円筒型枠52を挿入するステップである。なお、円筒型枠52の軸方向長さ(+X-X方向長さ)は鋼製型枠10の溝部の幅(+X-X方向長さ)よりも大きいため、図示のように円筒型枠52の両端部は円形孔51から外側に突出している。また、円筒型枠52は中空又は中実のいずれでも構わず、素材はコンクリートの荷重に耐えうる限り任意であるが、以下では中実の木製の型枠である場合について説明する。そして、このように円筒型枠52を設置した後に、円筒型枠52の外周と円形孔51の内周との間の隙間をパテ等のシーリング材(図示省略)で埋めて、コンクリートの漏れを抑止する。
 続いて、図9(b)に示すように、主筋配筋ステップ、デッキプレート設置ステップ、及び打設ステップを行う。なお、これらの主筋配筋ステップ、デッキプレート設置ステップ、及び打設ステップは、いずれも実施の形態1に係る各ステップと同様に実施できるため、詳細な説明を省略する。
 続いて、図9(c)に示すように、貫通ステップを行う。貫通ステップは、鋼製型枠設置ステップにおいて設置した鋼製型枠10と、打設ステップにおいて打設したコンクリートとを貫通する貫通孔40を形成するステップである。具体的には、この貫通ステップでは、打設ステップにおいて打設したコンクリートが所定の強度を実現した後に、上記の円筒型枠設置ステップにおいて設置した円筒型枠52を小梁50の外へ取り除くことで、円筒型枠52が在った位置(貫通孔形成部)に貫通孔40を形成する。なお、円筒型枠52を中空の形状とした場合には、この鋼製型枠10の中空部分にダクトを挿通可能であるため、円筒型枠52を取り外さなくても構わない。また、ダクトの一部分を円筒型枠52として利用してもよい。
 最後に、図示は省略するが、貫通ステップにて形成した貫通孔40にダクトを通す。このようにダクトを通す方法は公知であるため、詳細な説明を省略する。これにて、本実施の形態2に係る小梁50の施工方法の説明を終了する。
(実施の形態2の効果)
 このように、本実施の形態2の小梁50によれば、円筒型枠52を取り除くのみで貫通孔40を形成することができ、施工現場で貫通孔40を形成する作業を簡略化できる。
〔III〕実施の形態に対する変形例
 以上、本発明に係る実施の形態について説明したが、本発明の具体的な構成及び手段は、特許請求の範囲に記載した各発明の技術的思想の範囲内において、任意に改変及び改良することができる。以下、このような変形例について説明する。
(解決しようとする課題や発明の効果について)
 まず、発明が解決しようとする課題や発明の効果は、上述の内容に限定されるものではなく、発明の実施環境や構成の細部に応じて異なる可能性があり、上述した課題の一部のみを解決したり、上述した効果の一部のみを奏することがある。
(各実施の形態の相互関係)
 各実施の形態に示した特徴や、後述する各変形例に係る特徴は、相互に入れ替えたり、一方の特徴を他方に追加してもよい。例えば、実施の形態2に係る方法で(円筒型枠52を予め貫通孔形成部に配置しておく方法で)小梁50を形成した後に、この小梁50における貫通孔40が形成されていない位置に、実施の形態1に係る方法で(ドリル等で)貫通孔40を形成してもよい。
(寸法や材料について)
 発明の詳細な説明や図面で説明した小梁1、50の各部の寸法、形状、材料、比率等は、あくまで例示であり、その他の任意の寸法、形状、材料、比率等とすることができる。例えば、図1(b)に示すように、各実施の形態では、正面視における側板部13と底板部12の成す角度や、側板部13とフランジ部14の成す角度や、フランジ部14と補強部15の成す角度は、それぞれ直角であるが、これらが鈍角や鋭角でも構わない。
 図10は、Z形鋼11の運搬状態を示す図であり、図10(a)は実施形態1のZ形鋼11の運搬状態における端面図、図10(b)は第1変形例に係るZ形鋼11’の運搬状態を示す端面図である。図10(a)に示すように、実施形態1のZ形鋼11を複数重合させた状態において、Z形鋼11の一側方の複数の最外部を結ぶ直線の一つと、この直線に平行な直線であってZ形鋼11の他側方の最外部を通る直線との相互の間隔(以下、第1の重ね合わせ寸法)をHとする。一方、図10(b)に示すように、第1変形例に係るZ形鋼11’として、側板部13と底板部12の成す角度と側板部13とフランジ部14の成す角度をそれぞれ鈍角としたZ形鋼11’を想定し、このZ形鋼11’を複数重合させた状態において、第1の重ね合わせ寸法Hに対応する間隔(以下、第2の重ね合わせ寸法)をH’とする。この第2の重ね合わせ寸法H’は、第1の重ね合わせ寸法Hより小さくなるため、図10(b)のようにZ形鋼11’を形成することで、運搬効率を向上させることが可能になる。
 図11は、第2変形例に係る鋼製型枠10を示す図であり、図11(a)は折り曲げ前の鋼製型枠10の平面図、図11(b)は折り曲げ後の鋼製型枠10の側面図である。図11(a)に示すように、折り曲げ前の鋼製型枠10を1枚の平坦な鋼板60として形成してもよい。この鋼板60には、側板部13と底板部12の境界線L1、側板部13とフランジ部14境界線L2、フランジ部14と補強部15境界線L3に、それぞれスリットが形成されており、このスリットにおいて鋼板60の各部を公知の装置等を用いて折り曲げることで、図11(b)に示す鋼製型枠10を形成することができる。この場合には、鋼製型枠10を図11(a)の平坦な鋼板60として運搬等すればよいため、運搬状態における鋼製型枠10の重ね合わせ寸法が小さくなり、運搬効率を向上させることが可能になる。
 あるいは、鋼製型枠10を長手方向の1か所以上において分割し、設置現場において接合してもよい。鋼製型枠10の分割の箇所や位置は任意に決定することができる。例えば、運搬車両に積載可能な長さで、鋼製型枠10を複数に分割してもよい。分割位置は、接合後の鋼製型枠10に加わるモーメントの小さい箇所とすることが好ましい。分割された鋼製型枠10の接合方法は任意であるが、例えば、分割された状態で相互に突き合せられた一対の鋼製型枠10の同士を、これら一対の鋼製型枠10の側板部13の外側面に設けられた接続プレート(図示省略)を介して、接続してもよい。側板部13に対する接続プレートの固定は、例えば、ドリルビスやボルトを用いることができる。また、接合後の鋼製型枠10に小梁コンクリート20を打設する際には、鋼製型枠10の接合点において、鋼製型枠10を仮設サポートで支持することが好ましい。このようにて分割構造とすることで、鋼製型枠10の製造作業性及び運搬効率を向上させることや、大スパンの小梁1であっても標準的なスパンの小梁1を複数接合して構築することが可能になる。
(大梁との接合部について)
 各実施の形態では、大梁2が鉄筋コンクリート梁である場合について説明したが、これに限らず、例えば鉄骨梁であっても構わない。図12は、第3変形例に係る小梁100と大梁110との接合部付近を示す図であって、図12(a)は、右側面図、図12(b)は、図12(a)のB-B矢視断面図である。この図12に示すように、本第3変形例では、小梁100の軸心方向(+Y-Y方向)の端部は、鉄骨梁である大梁110に接合されている。ここで、大梁110の側面には、XZ断面が略U字状のチリトリ部材120が例えば溶接により接合されており、このチリトリ部材120に小梁100の鋼製型枠10を収容することで、小梁100と大梁110とを相互に接合可能である。
 あるいは、大梁110における小梁1の飲み込み幅をさらに大きくしてもよい。図13は、第4変形例に係る小梁1と大梁110との接合部付近を示す図であり、図13(a)は右側面図、図13(b)は平面図である。この図13に示すように、大梁110は、鉄筋コンクリートとして構成されており、大梁110の内部には、大梁110の長手方向に沿って配置された複数の主筋30と、その長手方向に直交する方向に配置された肋筋31であって複数の主筋30を取り巻く肋筋31が配置されている(図13(b)では、図示の便宜上、主筋30のうち、Y方向の最外方の主筋30のみを図示する)。この大梁110の側部における小梁1に対応する箇所には、小梁1の先端を大梁110に飲み込ませるための切り欠き111が形成されている。一方、小梁1は、大梁110に直交するように配置されており、切り欠き111を介して、その一部が大梁110に接合されている。具体的には、小梁1の底板部12、フランジ部14、及び補強部15は、その大梁110側の端面が、大梁の小梁1側の側面とほぼ面一となる位置に留まっているのに対して、小梁1の一対の側板部13は、大梁の小梁1側の側面を超え、大梁110のかぶり厚以上の長さL10だけ、大梁1の内部に収容されている。ここで、「かぶり厚」とは、大梁110の側面から肋筋31に至るコンクリートの厚み部分であり、図13の寸法L11の厚みである。このように大梁110のかぶり厚L11以上の長さL10だけ、小梁1を大梁110に収容することにより、小梁1と大梁110の接合強度を一層向上させることが可能になる。
 特に、図13の例では、かんざし筋17を大梁110に飲み込ませている。このかんざし筋17は、X方向に沿って並設された複数の棒状の配筋であり、大梁110に飲み込ませた一対の側板部13を相互に連結するように、これら一対の側板部13に形成された配筋孔(後述する図16の符号13a参照)に相通され、これら一対の側板部13に溶接等によって固定されている。また特に、かんざし筋17を、肋筋31よりも大梁110のY方向中央位置寄りに近い位置(-Y方向側の位置)に配置することで、かんざし筋17と一対の側板部13で肋筋31の少なくとも一部を囲繞している。この構造においては、かんざし筋17の+Y方向への移動が肋筋31によって規制されるので、かんざし筋17の支圧(局所的な圧縮力)によって、小梁1と大梁110の接合強度を一層向上させることが可能になる。なお、図13の例では、一対の側板部13のうち、所要本数(図13では3本)のかんざし筋17を配置するために最低限必要な高さ部分のみを大梁110に収容するものとしており、このため、不要な高さ部分には切り欠き18が形成され、切り欠かれている。なお、このような小梁1の大梁110への収容方法は任意であるが、例えば、大梁110の型枠に形成した切り欠き部111を介して、鋼製型枠10の端部を大梁110の型枠に収容し、肋筋31の少なくとも一部を囲繞するようにかんざし筋17を配置して側板部13に固定した状態で、大梁110の型枠と鋼製型枠10にコンクリートを打設してもよい。
 ただし、切り欠き18を設けることなく、単に一対の側板部13をそのままの高さで大梁110に収容するようにしてもよい。図14は、第5変形例に係る小梁1と大梁110との接合部付近を示す右側面図である(なお、第5~第8の変形例に関し、説明なき箇所は第4の変形例と同様である)。この図14に示すように、小梁1は、その一対の側板部13がそのままの高さで大梁110に向けて延出しており、この一対側板部13が、大梁110のかぶり厚以上の長さだけ、大梁110に収容されている。
 あるいは、一対の側板部13の一部と、支圧有効部分を大梁110に飲み込ませてもよい。図15は、第6変形例に係る小梁1と大梁110との接合部付近を示す右側面図、図16は、図15の小梁1の鋼製型枠10の端部の斜視図である。これら図15、16に示すように、小梁1は、その一対の側板部13がそのままの高さで大梁110に向けて延出しており(あるいは、鋼製型枠10のフランジ部14及び補強部15の一部と、底板部12の一部が切り欠かれており)、一対の側板部13が、大梁110のかぶり厚以上の長さL10だけ、大梁110に収容されている。この構造において、大梁110に収容される小梁1の一部には、かんざし筋17の支圧を受ける部分(支圧有効部分)を設ける必要がある。この支圧有効部分は、所望の支圧により異なり得るが、例えば、幅100mm(=切り欠くことなく残されたフランジ部14の一部のX方向の幅L12=50mmと、切り欠くことなく残された底板部12の一部のX方向の幅L13=50mmとの和)程度に設定される。この程度の幅の支圧有効部分であれば、肋筋31と干渉する可能性が低いため、大梁110にスムーズに飲み込ませることが可能になる。
 あるいは、大梁110の飲み込ませる部分を後付けしてもよい。図17は、第7変形例に係る小梁1と大梁110との接合部付近を示す右側面図である。この図17に示すように、小梁1の底板部12、フランジ部14、及び補強部15に加えて、一対の側板部13は、その大梁110側の端面が、大梁110の小梁1側の側面とほぼ面一となる位置に留まっている。ここで、一対の側板部13の外側面には、接合プレート19がドリルビスやボルトを含む任意の方法で固定されており、この接合プレート19のみが、大梁110の小梁1側の側面を超え、大梁110のかぶり厚以上の長さL11だけ、大梁110の内部に収容されている。このような構造では、複雑な形状の鋼製型枠10に対して切り欠きを設ける等の加工を施す必要がなく、単に接合プレート19を側板部13に後付けすればよいので、施工が容易である。
 また、大梁110の両側に配置した小梁1を相互に連結してもよい。図18は、第8変形例に係る小梁1と大梁110との接合部付近を示す側面図、図19は、図18の平面図である。これら図18、図19に示すように、大梁110の両側には、大梁110の長手方向に直交する方向に沿って配置された一対の小梁1が設けられており、これら一対の小梁1は、相互に対応する同一直線上の位置に配置され、大梁110に突き合わされている。そして、これら一対の小梁1は、そのフランジ14に上方から固定されたかんざし筋17’を介して相互に接続されている。この構造によれば、小梁1に対して大梁110から離れる方向への引張力が加わった場合でも、かんざし筋17’によりこの引張力に対抗することが可能になる。
 また、各実施の形態では、小梁コンクリート20と大梁コンクリートとを同時に打設したが、これに限らず、一つずつ打設しても構わない。例えば大梁コンクリートを先に打設する場合には、固化した大梁コンクリートの側面を、小梁1、50の軸断面形状と略一致する形状(ハット形状)に斫って、この斫った部分に小梁1、50の鋼製型枠10の端部を設置し、次に小梁コンクリート20を打設してもよい。
(フランジ部について)
 各実施の形態ではフランジ部14を設けたが、このフランジ部14を省略し、鋼製型枠10を軸断面形状が略U字状の部材として構成しても構わない。また、フランジ部14は側板部13の上端に設けたが、これに限らず、上端以外の位置(例えば、上端よりも所定距離(例えば数センチ)下方の位置)に設けても構わない。
(補強部について)
 各実施の形態ではフランジ部14の外端に補強部15を設けたが、フランジ部14がコンクリートの荷重に耐え得る場合には、当該補強部15を省略してもよい。また、当該補強部15に加えて、または代えて、さらにフランジ部14を補強するための補強手段を設けても構わない。例えば、フランジ部14の上面や下面に補強用の鋼板を貼り付けて補強しても構わない。このような鋼板は、フランジ部14の前後方向に通しで貼り付けてもよいし、あるいは、特に耐力を要する部分(例えば、フランジ部14の前後方向における中央付近)にのみ重点的に貼り付けても構わない。
 あるいは、補強部15の形状を変更してもよい。図20は、図1(a)のA-A矢視断面に対応する断面図であって、第9変形例に係る小梁200の鋼製型枠210の断面図である。この図20に示すように、鋼製型枠210には第2の補強部216が設けられている。この第2の補強部216は、補強部215の下端から側板部213に向けて延出する鋼板である。このように第2の補強部216を設けることにより、スラブコンクリート4を打設してフランジ部214がスラブの荷重を受けた場合の、フランジ部14の外端の局部座屈を一層効果的に抑止できる。また、第2の補強部216により強度の低い部分のみを局部的に補強することで、鋼製型枠210の全体的な薄肉化が可能となる。
 また、この第2の補強部216は、他の態様で設けることもできる。図21は、図1(a)のA-A矢視断面に対応する断面図であって、第10変形例に係る小梁200の鋼製型枠210の断面図である。この図21の例において、第2の補強部216は、フランジ部214の外端を側板部213に向けて折り返すことにより形成されており、補強部215は省略されている。
(Z形鋼について)
 各実施の形態では、一対のZ形鋼11を相互に重ね合わせてボルトにより接合したが、接合の具体的な方法はこれに限らない。図22は、図1(a)のA-A矢視断面に対応する断面図であって、図22(a)は、第11変形例に係る小梁200の鋼製型枠210の断面図、図22(b)は、第12変形例に係る小梁300の鋼製型枠310の断面図である。すなわち、図22(a)に示すように、一対のZ形鋼220の底板部221の互いに突き合わされた面を接合面222とし、この面同士を溶接接合してもよい。または、図22(b)に示すように、一対のZ形鋼320の底板部321の端部を上方に向けて折り返し、この折り返し部分322の内側側面を接合面323として合わせた状態で、カシメ金具324を用いて折り返し部分を接合してもよい。あるいは、一対のZ形鋼320の底板部321の端部同士に下方又は上方からドリルビスやネジを打ち込むことにより、これら端部同士を接合してもよい。この場合、ドリルビスやネジを一対のZ形鋼220の内部空間に例えば数cm程度突出させることで、この内部空間に打設した小梁コンクリート20とZ形鋼220との接合強度を一層高めてもよい。
(開き止め部材について)
 各実施の形態では、鋼製型枠10の形成時(一対のZ形鋼11を相互に接合するとき)に、一対のZ形鋼11の相対位置を固定するために端太角やコ字状のベニヤ板のような仮設部材(コンクリート打設前に取り外す部材)を設ける点について説明したが、当該仮設部材に代えて、または当該仮設部材に加えて、一対のZ形鋼11の相対位置を固定するための本設部材(コンクリート打設前に取り外さず、埋め殺す部材。以下、開き止め部材)を設けても構わない。図23は、図1(a)のA-A矢視断面に対応する断面図であって、図23(a)は、第13変形例に係る小梁400の鋼製型枠410、図23(b)は、第14変形例に係る小梁500の鋼製型枠510である。すなわち、図23(a)に示すように一対のZ形鋼420のフランジ部421同士を接続するような開き止め部材422を設けてもよいし、図23(b)に示すように、一対のZ形鋼520の側板部521同士を接続するような開き止め部材522を設けてもよい。これらのような開き止め部材422、522を設けて一対のZ形鋼420、520の相対位置を固定することで、小梁コンクリート20を打設した際に、小梁コンクリート20の重みによって一対のZ形鋼420、520が相互に外向きに開いてしまうことを防止できる。
 特に、図23(b)に示す開き止め部材522は、一対の側板部の上端位置から、当該上端位置よりも一対の側板部の高さの1/3だけ下方の位置、までの範囲内(図23(b)の寸法L12の範囲内)に設けることが好ましい。一対のZ形鋼420、520が相互に外向きに開こうとする場合には、底板部12と側板部13の境界を支点として側板部13が外側に回動しようとするため、側板部13の上端に近づく程、一対の側板部13の相互間の距離が開く傾向になる。しかしながら、上記の範囲内に開き止め部材522を設けることにより、一対の側板部13の上端に比較的近い位置でこれら一対の側板部13の相対位置を固定できるので、この範囲よりも下方の位置に開き止め部材522を設けた場合に比べて、一対の側板部13が相互に外向きに開いてしまうことを一層効果的に防止できる。
(主筋配筋ステップについて)
 各実施の形態では、鋼製型枠設置ステップの後に主筋配筋ステップを行ったが、これに限らず、主筋配筋ステップの後に鋼製型枠設置ステップを行ってもよい。この際には、まずは主筋配筋ステップにおいて主筋30を配置し、この主筋30を下方から覆うように一対のZ形鋼11を配置し、一対のZ形鋼11の底板部12同士を重ね合わせた状態で、底板部12の下方からボルトを挿通することにより一対のZ形鋼11を相互に接合してもよい。
(付記)
 付記1の鉄骨コンクリート梁は、底板部と、前記底板部の両端から上方向に延出する一対の側板部と、を有する鋼製型枠と、前記鋼製型枠の前記底板部と一対の前記側板部によって構成された溝部に打設されたコンクリートと、を備える。
 付記2の鉄骨コンクリート梁は、付記1に記載の鉄骨コンクリート梁において、前記鉄骨コンクリート梁の許容曲げモーメント又は許容せん断力が、下記の数式(1)により算定されている、請求項1に記載の鉄骨コンクリート梁。
 (数式1) F=FRC+β・F
 ただし、
 F:前記鉄骨コンクリート梁の許容曲げモーメント又は許容せん断力
 FRC:前記コンクリートの許容曲げモーメント又は許容せん断力
 β:前記鋼製型枠の許容曲げモーメント又は許容せん断力の負担係数であって0.5以下の負担係数
 F:前記鋼製型枠の許容曲げモーメント又は許容せん断力
 である。
 付記3の鉄骨コンクリート梁は、付記1又は2に記載の鉄骨コンクリート梁において、前記鉄骨コンクリート梁は、その一部が大梁に接合されるものであり、前記鋼製型枠は、前記鋼製型枠の長手方向における前記大梁側の端部であって、前記大梁の側面に形成された切り欠きを介して前記大梁に収容される、前記大梁のかぶり厚以上の長さの端部を備える。
 付記4の鉄骨コンクリート梁は、付記1から3のいずれか一項に記載の鉄骨コンクリート梁において、前記側板部及び前記コンクリートは、前記側板部と前記コンクリートとを貫通する貫通孔を形成可能な貫通孔形成部を有する。
 付記5の鉄骨コンクリート梁は、付記1から4のいずれか一項に記載の鉄骨コンクリート梁において、前記一対の側板部を相互に固定するための開き止め部材を、前記一対の側板部の上端位置から、当該上端位置よりも前記一対の側板部の高さの1/3だけ下方の位置、までの範囲内に設けた。
 付記6の鉄骨コンクリート梁は、付記1から5のいずれか一項に記載の鉄骨コンクリート梁において、前記鋼製型枠は、前記側板部の上端から外方向に延出するフランジ部を備える。
 付記7の鉄骨コンクリート梁は、付記6に記載の鉄骨コンクリート梁において、前記鋼製型枠は、前記フランジ部の外端から下方向又は上方向に延出する補強部を備える。
 付記8の鉄骨コンクリート梁の施工方法は、底板部と、前記底板部の両端から上方向に延出する一対の側板部と、を有する鋼製型枠を設置する鋼製型枠設置ステップと、前記鋼製型枠設置ステップにおいて設置した前記鋼製型枠の前記底板部と一対の前記側板部によって構成された溝部にコンクリートを打設する打設ステップと、を含む。
 付記9の鉄骨コンクリート梁の施工方法は、付記8に記載の鉄骨コンクリート梁の施工方法において、前記鉄骨コンクリート梁の許容曲げモーメント又は許容せん断力が、下記の数式(1)により算定されている、請求項8に記載の鉄骨コンクリート梁の施工方法。
 (数式1) F=FRC+β・F
 ただし、
 F:前記鉄骨コンクリート梁の許容曲げモーメント又は許容せん断力
 FRC:前記コンクリートの許容曲げモーメント又は許容せん断力
 β:前記鋼製型枠の許容曲げモーメント又は許容せん断力の負担係数であって0.5以下の負担係数
 F:前記鋼製型枠の許容曲げモーメント又は許容せん断力
 である。
(付記の効果)
 付記1に記載の鉄骨コンクリート梁、及び付記8に記載の鉄骨コンクリート梁の施工方法によれば、コンクリートの外郭が鋼製型枠によって覆われているため、梁の側面に貫通孔を形成した際の耐力の低下を抑制することができ、貫通孔を形成するために補強部材を別途取り付ける手間やコストを削減できる。
 付記2に記載の鉄骨コンクリート梁、及び付記9に記載の鉄骨コンクリート梁の施工方法によれば、鋼製型枠とコンクリートのそれぞれの負担割合を考慮した複合的な許容曲げモーメントや許容せん断力を計算することが可能になり、鉄骨コンクリート梁の設計を最適化することが可能になる。
 付記3に記載の鉄骨コンクリート梁によれば、鋼製型枠の端部であって大梁のかぶり厚以上の長さの端部を大梁に収容することで、小梁1と大梁の接合強度を一層向上させることが可能になる。
 付記4に記載の鉄骨コンクリート梁によれば、貫通孔形成部において貫通孔を形成できるので、貫通孔に配管や配線を相通させること等が可能になり、鉄骨コンクリート梁の利便性を高めることができる。特に、鉄骨コンクリート梁のコンクリートの外郭が鋼製型枠によって覆われているため、貫通孔を形成可能な部分が、従来技術のように補強部材を取付けた部分に限定されず、貫通孔の大きさや配置の自由度を高めることができる。
 付記5に記載の鉄骨コンクリート梁によれば、一対の側板の上端に比較的近い位置でこれら一対の側板の相対位置を固定できるので、この範囲よりも下方の位置に開き止め部材を設けた場合に比べて、一対の側板が相互に外向きに開いてしまうことを一層効果的に防止できる。
 付記6に記載の鉄骨コンクリート梁によれば、フランジ部を備えるので、鉄骨コンクリート梁で支持するスラブの荷重をフランジ部で受けてスムーズに鉄骨コンクリート梁へと流すことができ、鉄骨コンクリート梁の耐力が向上する。
 付記7に記載の鉄骨コンクリート梁によれば、フランジ部の外端に補強部を備えるので、鋼製型枠の溝部やフランジ部の上にコンクリートが打設された際のフランジ部の座屈を、補強部によって抑制することができ、鉄骨コンクリート梁の耐力が向上する。
1 小梁
2 大梁
2a 木製型枠
2b 小梁収容部
2c フランジ収容部
2d 封止材
3 デッキプレート
4 スラブコンクリート
10 鋼製型枠
11、11’ Z形鋼
12 底板部
13 側板部
13a 配筋孔
14 フランジ部
15 補強部
16 接合面
17、17’ かんざし筋
18 切り欠き
19 接合プレート
20 小梁コンクリート
30 主筋
31 肋筋
40 貫通孔
50 小梁
51 円形孔
52 円筒型枠
60 鋼板
100 小梁
110 大梁
111 切り欠き
120 チリトリ部材
200 小梁
210 鋼製型枠
213 側板部
214 フランジ部
215 補強部
216 第2の補強部
220 Z形鋼
221 底板部
222 接合面
300 小梁
310 鋼製型枠
320 Z形鋼
321 底板部
322 折り返し部分
323 接合面
324 カシメ金具
400 小梁
410 鋼製型枠
420 Z形鋼
421 フランジ部
422 開き止め部材
500 小梁
510 鋼製型枠
520 Z形鋼
521 側板部
522 開き止め部材
 

Claims (9)

  1.  底板部と、前記底板部の両端から上方向に延出する一対の側板部と、を有する鋼製型枠と、
     前記鋼製型枠の前記底板部と一対の前記側板部によって構成された溝部に打設されたコンクリートと、を備える、
     鉄骨コンクリート梁。
  2.  前記鉄骨コンクリート梁の許容曲げモーメント又は許容せん断力が、下記の数式(1)により算定されている、請求項1に記載の鉄骨コンクリート梁。
     (数式1) F=FRC+β・F
     ただし、
     F:前記鉄骨コンクリート梁の許容曲げモーメント又は許容せん断力
     FRC:前記コンクリートの許容曲げモーメント又は許容せん断力
     β:前記鋼製型枠の許容曲げモーメント又は許容せん断力の負担係数であって0.5以下の負担係数
     F:前記鋼製型枠の許容曲げモーメント又は許容せん断力
     である。
  3.  前記鉄骨コンクリート梁は、その一部が大梁に接合されるものであり、
     前記鋼製型枠は、前記鋼製型枠の長手方向における前記大梁側の端部であって、前記大梁の側面に形成された切り欠きを介して前記大梁に収容される、前記大梁のかぶり厚以上の長さの端部を備える、
     請求項1又は2に記載の鉄骨コンクリート梁。
  4.  前記側板部及び前記コンクリートは、前記側板部と前記コンクリートとを貫通する貫通孔を形成可能な貫通孔形成部を有する、
     請求項1から3のいずれか一項に記載の鉄骨コンクリート梁。
  5.  前記一対の側板部を相互に固定するための開き止め部材を、前記一対の側板部の上端位置から、当該上端位置よりも前記一対の側板部の高さの1/3だけ下方の位置、までの範囲内に設けた、
     請求項1から4のいずれか一項に記載の鉄骨コンクリート梁。
  6.  前記鋼製型枠は、
     前記側板部の上端から外方向に延出するフランジ部を備える、
     請求項1から5のいずれか一項に記載の鉄骨コンクリート梁。
  7.  前記鋼製型枠は、
     前記フランジ部の外端から下方向又は上方向に延出する補強部を備える、
     請求項6に記載の鉄骨コンクリート梁。
  8.  底板部と、前記底板部の両端から上方向に延出する一対の側板部と、を有する鋼製型枠を設置する鋼製型枠設置ステップと、
     前記鋼製型枠設置ステップにおいて設置した前記鋼製型枠の前記底板部と一対の前記側板部によって構成された溝部にコンクリートを打設する打設ステップと、を含む、
     鉄骨コンクリート梁の施工方法。
  9.  前記鉄骨コンクリート梁の許容曲げモーメント又は許容せん断力が、下記の数式(1)により算定されている、請求項8に記載の鉄骨コンクリート梁の施工方法。
     (数式1) F=FRC+β・F
     ただし、
     F:前記鉄骨コンクリート梁の許容曲げモーメント又は許容せん断力
     FRC:前記コンクリートの許容曲げモーメント又は許容せん断力
     β:前記鋼製型枠の許容曲げモーメント又は許容せん断力の負担係数であって0.5以下の負担係数
     F:前記鋼製型枠の許容曲げモーメント又は許容せん断力
     である。
PCT/JP2018/005970 2017-02-28 2018-02-20 鉄骨コンクリート梁及び鉄骨コンクリート梁の施工方法 WO2018159381A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019502898A JP7185616B2 (ja) 2017-02-28 2018-02-20 鉄骨コンクリート梁の施工方法、及び鉄骨コンクリート梁の設計方法
SG11201907593QA SG11201907593QA (en) 2017-02-28 2018-02-20 Steel-framed concrete beam and method for constructing steel-framed concrete beam
US16/549,198 US10988928B2 (en) 2017-02-28 2019-08-23 Steel-framed concrete beam and method for constructing steel-framed concrete beam

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-036749 2017-02-28
JP2017036749 2017-02-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/549,198 Continuation-In-Part US10988928B2 (en) 2017-02-28 2019-08-23 Steel-framed concrete beam and method for constructing steel-framed concrete beam

Publications (1)

Publication Number Publication Date
WO2018159381A1 true WO2018159381A1 (ja) 2018-09-07

Family

ID=63370582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/005970 WO2018159381A1 (ja) 2017-02-28 2018-02-20 鉄骨コンクリート梁及び鉄骨コンクリート梁の施工方法

Country Status (5)

Country Link
US (1) US10988928B2 (ja)
JP (1) JP7185616B2 (ja)
SG (1) SG11201907593QA (ja)
TW (1) TWI678451B (ja)
WO (1) WO2018159381A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021042568A (ja) * 2019-09-10 2021-03-18 Vuild株式会社 型枠、建築物及び建築方法
JP6977204B1 (ja) * 2021-05-18 2021-12-08 株式会社富士昭技研 合成小梁

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018193483A1 (en) * 2018-04-11 2018-10-25 Thavamani Pandi Vellaisamy System for construction of composite u shaped reinforced girders bridge deck and methods thereof
CA3050000A1 (en) * 2019-07-16 2021-01-16 Invent To Build Inc. Concrete fillable steel joist
CN112663951A (zh) * 2020-12-29 2021-04-16 晟通科技集团有限公司 梁模板及梁模组合

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2570564Y2 (ja) * 1991-02-15 1998-05-06 株式会社大林組 プレキャストコンクリート型枠
JPH10140654A (ja) * 1996-11-09 1998-05-26 Nippon Kokan Light Steel Kk 薄鋼板製打込み型枠

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2233291A (en) * 1939-10-14 1941-02-25 Leebov Nathan Building structure
US4211045A (en) * 1977-01-20 1980-07-08 Kajima Kensetsu Kabushiki Kaisha Building structure
JPS53114214A (en) * 1977-03-17 1978-10-05 Kajima Corp Building frame construction
US4125973A (en) * 1977-03-28 1978-11-21 Realsources, Inc. Form assembly for building framework
US4685264A (en) * 1986-04-09 1987-08-11 Epic Metals Corporation Concrete slab-beam form system for composite metal deck concrete construction
JPS6375231A (ja) * 1986-09-17 1988-04-05 鹿島建設株式会社 建築架構
FI84847C (fi) * 1990-10-30 1992-01-27 Seppo Salo Stomkonstruktion foer samverkansbalk.
JPH05179704A (ja) * 1991-12-26 1993-07-20 Maeda Corp Srcプレキャスト大梁とプレキャスト小梁の接合方法
TW320667B (en) * 1996-12-28 1997-11-21 Chii-Luen Gau A form plate fabric for prefabricated concrete
JPH1161980A (ja) * 1997-08-13 1999-03-05 Shimizu Corp スリーブ型枠
US5941035A (en) * 1997-09-03 1999-08-24 Mega Building System Ltd. Steel joist and concrete floor system
TW370998U (en) * 1998-09-07 1999-09-21 Sheng I Plastic Co Ltd Improved structure of connection system of precaution hole
KR100742577B1 (ko) * 2000-12-08 2007-08-02 다이버사코어 엘엘씨 복합 구조 프레임 시스템
JP2002220842A (ja) * 2001-01-26 2002-08-09 Takenaka Komuten Co Ltd 基礎構造
CA2407253C (en) * 2002-10-29 2006-09-19 Wilfred W. Siu Fast track building systems
JP2011094335A (ja) * 2009-10-28 2011-05-12 Takenaka Komuten Co Ltd 床スラブの構築方法
JP5427768B2 (ja) 2010-12-27 2014-02-26 株式会社日立製作所 ガスタービンシステム
US20140298749A1 (en) * 2011-03-23 2014-10-09 Entek Pty Ltd Beam and a method for reinforcing concrete slabs
JP6159535B2 (ja) 2013-01-31 2017-07-05 公益財団法人鉄道総合技術研究所 横架部構造

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2570564Y2 (ja) * 1991-02-15 1998-05-06 株式会社大林組 プレキャストコンクリート型枠
JPH10140654A (ja) * 1996-11-09 1998-05-26 Nippon Kokan Light Steel Kk 薄鋼板製打込み型枠

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021042568A (ja) * 2019-09-10 2021-03-18 Vuild株式会社 型枠、建築物及び建築方法
JP7270930B2 (ja) 2019-09-10 2023-05-11 Vuild株式会社 型枠、建築物及び建築方法
JP6977204B1 (ja) * 2021-05-18 2021-12-08 株式会社富士昭技研 合成小梁
JP2022177672A (ja) * 2021-05-18 2022-12-01 株式会社富士昭技研 合成小梁

Also Published As

Publication number Publication date
JP7185616B2 (ja) 2022-12-07
JPWO2018159381A1 (ja) 2019-12-19
TWI678451B (zh) 2019-12-01
US20190376289A1 (en) 2019-12-12
SG11201907593QA (en) 2019-09-27
US10988928B2 (en) 2021-04-27
TW201837281A (zh) 2018-10-16

Similar Documents

Publication Publication Date Title
WO2018159381A1 (ja) 鉄骨コンクリート梁及び鉄骨コンクリート梁の施工方法
EP2054563B1 (en) Reinforced masonry panel structures
US8769891B2 (en) Building method using multi-storey panels
US20220213684A1 (en) Modular composite action panel and structural systems using same
EP2313568A1 (en) Method for forming connecting structure between pillar and beam, and connecting structure between pillar and beam
KR100830240B1 (ko) 어댑터를 이용한 경량 합성구조 시스템의 상하층 경량합성벽체와 콘크리트 바닥 슬래브의 복합화방법
KR102110559B1 (ko) 연결성능이 보강된 벽체구조물 및 그 시공방법
WO2018159382A1 (ja) 鋼製型枠
JP5029271B2 (ja) 連続i桁橋およびその中間支点近傍のi桁の構造
KR100694763B1 (ko) 콘크리트 복합 형강보를 이용한 지하 구조물의 시공 방법
JP7526339B1 (ja) 接合構造および接合構造の構築方法
KR102632253B1 (ko) 증축 구조물
JP4329080B2 (ja) 鉄筋コンクリート梁
JP2012188870A (ja) 鋼コンクリート合成柱
JPH08232380A (ja) 鋼製部材と鉄筋コンクリートの結合部材、該結合部材を用いたモノコック構造用パネル及び該パネルを用いたモノコック構造建築物
JPH11152908A (ja) 既存建築物の耐震補強構造及びその方法
JPH08158358A (ja) 地中連続壁の接合方法
JP4967972B2 (ja) 連続i桁橋、その中間支点近傍のi桁の構造およびその構築方法
JP5463181B2 (ja) 既存の建物の梁に貫通穴を設ける前に梁を補強する方法
JPH03290543A (ja) Pc鋼管柱とpc鉄骨梁若しくはps鉄骨梁とからなる構造物の架構体
JP2009057761A (ja) 既存建物の補強構造、既存建物の補強方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18760444

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019502898

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18760444

Country of ref document: EP

Kind code of ref document: A1