WO2018155671A1 - 波長変換部材 - Google Patents

波長変換部材 Download PDF

Info

Publication number
WO2018155671A1
WO2018155671A1 PCT/JP2018/006874 JP2018006874W WO2018155671A1 WO 2018155671 A1 WO2018155671 A1 WO 2018155671A1 JP 2018006874 W JP2018006874 W JP 2018006874W WO 2018155671 A1 WO2018155671 A1 WO 2018155671A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength conversion
binder layer
conversion member
light
nanoparticles
Prior art date
Application number
PCT/JP2018/006874
Other languages
English (en)
French (fr)
Inventor
達也 奥野
将啓 中村
柔信 李
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to US16/488,578 priority Critical patent/US11131914B2/en
Priority to JP2019501854A priority patent/JP6731651B2/ja
Priority to DE112018001029.5T priority patent/DE112018001029B4/de
Publication of WO2018155671A1 publication Critical patent/WO2018155671A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/553Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on fluorides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • G02B5/0247Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of voids or pores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B2207/00Coding scheme for general features or characteristics of optical elements and systems of subclass G02B, but not including elements and systems which would be classified in G02B6/00 and subgroups
    • G02B2207/101Nanooptics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B2207/00Coding scheme for general features or characteristics of optical elements and systems of subclass G02B, but not including elements and systems which would be classified in G02B6/00 and subgroups
    • G02B2207/113Fluorescence
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/507Wavelength conversion elements the elements being in intimate contact with parts other than the semiconductor body or integrated with parts other than the semiconductor body

Definitions

  • the present invention relates to a wavelength conversion member using photoluminescence.
  • a wavelength converter using photoluminescence one composed of a plurality of phosphor particles emitting light upon irradiation with excitation light and a binder layer holding the plurality of phosphor particles is known.
  • the wavelength converter be irradiated with excitation light with high power density in order to improve light output.
  • excitation light with high power density such as a laser light source has come to be used as excitation light.
  • a light reflection film is provided at the interface between the wavelength converter and the substrate, and light emitted from the wavelength converter is partially reflected to improve the light extraction efficiency from the wavelength converter.
  • the form is known.
  • Patent Document 1 discloses a method of providing a reflective layer between a wavelength converter made of a phosphor plate and a substrate.
  • Patent Document 2 discloses a method of holding phosphor particles with silica using an oxide precursor.
  • the refractive index of the wavelength converter is as large as, for example, about 1.8.
  • the refractive index of the binder layer made of silica or the like is as large as about 1.45 to 1.50.
  • in-plane guided light increases and an output light spot A problem arises in that the diameter increases and the conversion efficiency of the wavelength converter decreases. In-plane guided light will be described with reference to FIG. FIG.
  • FIG. 2 is a schematic cross-sectional view of the conventional wavelength conversion member 100 in which the refractive index of the binder layer 150 is large.
  • the excitation lights 60A and 60B shown in FIG. 2 are shown for the sake of convenience, and usually, only one of the excitation lights 60A and 60B often enters the wavelength conversion body 130 in many cases.
  • the light reflection film 20 is a light reflection film provided on the surface of the substrate 10 on the wavelength conversion body 130 side in order to enhance the output of the wavelength conversion body 130 and the conversion efficiency.
  • the light reflecting film 20 a metal film of aluminum, silver or the like, a dielectric multilayer film such as a dichroic mirror, or a known light reflecting material is used.
  • the metal film has a property of absorbing a part of light and converting it to heat.
  • the dielectric multilayer film has the property of transmitting a part of light without reflecting it, because the reflectance is dependent on the incident angle and the wavelength. These properties are collectively referred to as light loss in the light reflection film for convenience in the present application.
  • the intensity of the in-plane guided wave light 82 is attenuated by the emission of the output light 81 and the occurrence of the optical loss 83 in the light reflection film 20 as the in-plane waveguide light is generated.
  • FIG. 2 conceptually shows the diameter of the output light composed of an assembly of the output light 81 as an output light spot diameter 90B.
  • the in-plane guided light beam 82 is composed of components constituting the excitation light 60 and the fluorescence 70, which are components larger than the critical angle determined by the refractive index step of the interface between the binder layer 50 and the air and Snell's law. For this reason, in general, as the refractive index of the binder layer 150 is larger, the ratio of generation of the output light 81 from the fluorescence 70 or the like is smaller, and the ratio of generation of the in-plane guided light 82 is larger.
  • the wavelength conversion member 100 having a larger ratio of the in-plane guided light 82 compared to the output light 81 has a high frequency of the light loss 83 in the light reflection film 20, so the intensity of the output light 81 decreases. It can be seen that the conversion efficiency is low, which results in low light extraction efficiency. Further, as shown in FIG. 2, in the wavelength conversion member 100 in which the ratio of the in-plane guided light 82 is higher than that of the output light 81, the number of times of reflection of the in-plane guided light 82 in the binder layer 150 increases. The diameter 90B becomes large.
  • the wavelength conversion member 100 in which the ratio of the in-plane guided light 82 is larger than that of the output light 81 has a low power density of the output light. Therefore, it can be seen that in the wavelength conversion member 100 in which the ratio of the in-plane guided light is higher than the output light, both the light extraction efficiency and the power density of the output light are low.
  • the wavelength converter and the wavelength conversion member be a light source having a high power density of output light, and use a high power laser light or the like and a small spot diameter as excitation light.
  • Light sources with high power density of output light have been developed.
  • the wavelength conversion member including the wavelength converter disclosed in Patent Document 2 the refractive index of the binder layer is large, and the ratio of in-plane guided light in the binder layer is large. For this reason, the wavelength conversion member including the wavelength converter disclosed in Patent Document 2 has a problem that both the light extraction efficiency and the power density of the output light are low.
  • An object of the present invention is to provide a wavelength conversion member having a high light extraction efficiency and a high power density of output light even when a high power density excitation light is irradiated.
  • the wavelength conversion member concerning the mode of the present invention is provided in the surface side of the substrate and the above-mentioned substrate, and phosphor particles excited by excitation light and the above-mentioned adjacent phosphor particles.
  • a wavelength conversion body including a binder layer to be fixed or adhered, and a light reflection film provided on at least a part of the interface between the substrate and the wavelength conversion body and reflecting the fluorescence emitted by the phosphor particles Preferably, the refractive index of the phosphor particles is larger than the refractive index of the binder layer.
  • wavelength conversion members 1A and 1B With a small refractive index of a binder layer concerning the 1st and 2nd embodiment. It is a typical sectional view of conventional wavelength conversion member 100 with a large refractive index of a binder layer. It is sectional drawing which expands the wavelength converter 30 (30A and 30B) shown in FIG. 1, and is shown typically. It is sectional drawing which expands the part A in the wavelength converter 30A of 1 A of wavelength conversion members which concern on 1st Embodiment shown in FIG. 3, and is shown typically. It is sectional drawing which expands the part A in the wavelength converter 30B of wavelength conversion member 1B which concerns on 2nd Embodiment shown in FIG. 3, and is shown typically.
  • FIG. It is a SEM (scanning electron microscope) photograph which shows the torn surface of wavelength converter 30B which comprises the wavelength conversion member which concerns on Example 3.
  • FIG. It is a SEM photograph which expands and shows the part B of FIG. It is a graph which shows the relationship between the void diameter of a nano void, and log differential pore volume distribution in an Example and a reference example.
  • FIG. 1 is a schematic cross-sectional view of wavelength conversion members 1A and 1B in which the refractive index of the binder layer is small according to the first and second embodiments.
  • the wavelength conversion member 1B according to the second embodiment differs from the wavelength conversion member 1A according to the first embodiment in the microscopic structure in the binder layer 50 (50A, 50B), and other than this The structure of is the same. Therefore, FIG. 1 also shows a wavelength conversion member 1B according to the second embodiment together with the wavelength conversion member 1A according to the first embodiment.
  • the binder layer 50A constituting the wavelength conversion member 1A according to the first embodiment is made of a fixed body to which the binder is fixed, and the adjacent phosphor particles 40 are fixed to each other.
  • the binder layer 50A is made of a fixed body of nanoparticles 51.
  • adheresion means that solids such as nanoparticles are fixed by an intermolecular force as described later.
  • binder layer 50B which constitutes wavelength conversion member 1B concerning a 2nd embodiment consists of a composite hardening object which a binder adhered, and adheres adjacent fluorescent substance particles 40 and 40 comrades.
  • adhesion means that solids such as nanoparticles are fixed to each other by a force other than an intermolecular force, for example, a chemical bond such as a covalent bond, an ionic bond or a hydrogen bond, as described later.
  • the binder layer 50B is made of a composite cured body including the nanoparticles 51 and the adhesion aiding substance 55 for bonding the adjacent nanoparticles 51, 51 to each other.
  • the binder is fixed between the binder layer 50A constituting the wavelength conversion member 1A according to the first embodiment and the binder layer 50B constituting the wavelength conversion member 1B according to the second embodiment.
  • the binder layer 50 is a concept including the binder layer 50A and the binder layer 50B.
  • the binder layer 50 can be said to be the binder layer 50 that fixes or adheres adjacent phosphor particles 40, 40 to each other.
  • the wavelength conversion member 1B according to the second embodiment will be described later.
  • the wavelength conversion member 1A includes a substrate 10, a wavelength converter 30A (30), and a light reflection film 20.
  • the wavelength conversion member 1A is a member in which the wavelength converter 30A emits fluorescence by excitation light emitted by a light emitting element (not shown).
  • a light emitting element a known light emitting element such as a light emitting element that emits laser light can be used. If the light emitting element emits laser light as the excitation light, the wavelength conversion member 1A can be irradiated with the excitation light with high power density, so the wavelength conversion member with high light extraction efficiency and power density of output light 1A is preferable because it is easy to obtain.
  • the light reflection film 20 is provided on at least a part of the interface between the substrate 10 and the wavelength converter 30A, and reflects part of the fluorescence 70 and the excitation light 60 emitted by the phosphor particles 40 contained in the wavelength converter 30A.
  • Membrane here, “at least a part of the interface between the substrate 10 and the wavelength conversion body 30A” means “an interface having at least a part of the entire area of the interface between the substrate 10 and the wavelength conversion body 30A". That is, the light reflection film 20 may be formed in a range corresponding to the entire area of the interface between the substrate 10 and the wavelength converter 30A, or is formed in a range corresponding to a part of the area of the interface It is also good.
  • the substrate 10 reinforces the wavelength conversion body 30A formed on the surface, and gives suitable wavelength characteristics to the wavelength conversion body 30A by selecting the material and thickness.
  • a light reflection film 20 is provided on at least a part of the interface between the substrate 10 and the wavelength converter 30A.
  • a substrate having transparency such as glass and sapphire, or a substrate having no transparency, such as a metal substrate
  • a metal substrate for example, a metal substrate made of aluminum, copper or the like is used.
  • the substrate 10 When the substrate 10 has translucency, it becomes possible to irradiate light to the phosphor particles 40 in the wavelength converter 30A through the substrate 10.
  • having translucency means that the material is transparent to visible light (wavelength 380 nm to 800 nm).
  • transparent means that in the present embodiment, the light transmittance of the material is preferably 80% or more, more preferably 90% or more.
  • the light absorption coefficient of visible light by the material used for the substrate 10 is as low as possible, since the phosphor particles 40 in the wavelength converter 30A can be sufficiently irradiated with light through the substrate 10.
  • the substrate 10 is made of a light transmitting material, because it becomes easy to construct a compact system.
  • the excitation light 60 is emitted to the wavelength converter 30A via the substrate 10 and the light reflection film 20 as the excitation light 60B.
  • the excitation light 60B means the excitation light 60 of the excitation light 60 which is irradiated to the wavelength converter 30A through the substrate 10 and the light reflection film 20.
  • the excitation light 60A described later means the excitation light 60 of the excitation light 60 that is irradiated to the wavelength converter 30A from the surface of the wavelength converter 30A opposite to the substrate 10.
  • the light reflection film 20 is formed so that the excitation light 60B can be transmitted through the substrate 10 and the light reflection film 20 by adjusting the film structure and the film thickness.
  • the light reflecting film 20 may be partially translucent by adjusting the film structure or the film thickness.
  • partially translucent means a property of selectively transmitting light of a specific wavelength, an incident angle, and a polarization direction, as described later.
  • the substrate 10 be a metal substrate because heat dissipation can be easily enhanced. That is, when the substrate 10 has a high thermal conductivity, the wavelength converter 30A can efficiently remove the heat generated in the process of converting the excitation light 60 (60A) into the fluorescence 70 or the like. For this reason, if the thermal conductivity of the substrate 10 is high, it is preferable because temperature quenching of the phosphor particles 40 and deterioration and charring of the binder layer 50A are easily suppressed.
  • the excitation light 60 is emitted to the wavelength conversion body 30A from the surface of the wavelength conversion body 30A opposite to the substrate 10 as the excitation light 60A.
  • the wavelength converter 30A is provided on the surface side of the substrate 10.
  • that the wavelength conversion body 30A is provided on the surface side of the substrate 10 means that the wavelength conversion body 30A is provided in an indirect or direct contact with the surface of the substrate 10.
  • a light reflection film 20 is provided on at least a part of the interface between the wavelength converter 30A and the substrate 10. For this reason, at least a portion of the wavelength converter 30A does not normally come in direct contact with the surface of the substrate 10.
  • the wavelength converter 30A includes the phosphor particles 40 excited by the excitation light 60, and the binder layer 50A fixing the adjacent phosphor particles 40 to each other.
  • the wavelength converter 30A usually has a film shape in which the phosphor particles 40 are fixed by the binder layer 50A.
  • the film thickness of the wavelength converter 30A is, for example, 10 ⁇ m to 1000 ⁇ m.
  • the phosphor particles 40 absorb a part of the energy of the irradiated excitation light 60, and the phosphor particles 40 emit fluorescence 70 of a wavelength different from that of the excitation light 60.
  • the excitation light 60 may be emitted to the wavelength converter 30A through the substrate 10 and the light reflection film 20 as the excitation light 60B, or as the excitation light 60A, the wavelength converter 30A.
  • the wavelength converter 30A may be irradiated from the surface on the opposite side to the substrate 10 among the surfaces of the above.
  • the surface of the wavelength conversion body 30A opposite to the substrate 10 is a surface of the wavelength conversion body 30A in contact with air, which is a so-called air interface.
  • the excitation lights 60A and 60B shown in FIG. 1 are shown for convenience, and usually, only one of the excitation lights 60A and 60B is often incident into the wavelength conversion body 30A.
  • the wavelength converter 30A when the wavelength converter 30A is irradiated with the excitation light 60B through the substrate 10 and the light reflecting film 20, generally, a substrate having translucency is used as the substrate 10, and the light reflecting film 20 will be described later.
  • a partially translucent material such as a dielectric multilayer film is used.
  • “partially translucent” means the property of selectively transmitting light of a specific wavelength, incident angle, and polarization direction.
  • the light reflecting film 20 having a partial light transmitting property for example, a film having a characteristic of transmitting light in the wavelength band of the excitation light 60B and reflecting light in the wavelength band of the fluorescent light 70 can be suitably used. .
  • the substrate 10 when the excitation light 60A is applied to the wavelength converter 30A from the surface of the wavelength converter 30A opposite to the substrate 10, the substrate 10 usually has no translucency and reflects light.
  • Any film may be used as the film 20.
  • the optional light reflecting film 20 a metal film described later, a dielectric multilayer film, a diffuse reflecting film, or the like is used.
  • the phosphor particles 40 and the binder layer 50A constituting the wavelength converter 30A will be described below.
  • the phosphor particles 40 are particles capable of photoluminescence.
  • the type of the phosphor particles 40 is not particularly limited as long as photoluminescence is possible and the refractive index is larger than the refractive index of the binder layer 50A.
  • phosphor particles for example, particles of crystals of garnet structure made of YAG, that is, Y 3 Al 5 O 12 , or phosphor particles made of (Sr, Ca) AlSiN 3 : Eu are used.
  • the average particle size of the phosphor particles is usually 100 ⁇ m or less, preferably 30 ⁇ m or less.
  • the average particle diameter of the phosphor particles is in the above range, the light guide of light confined by total reflection inside the phosphor is limited to the particle diameter range, so the output light spot diameter 90A can be reduced. It is preferable because it is possible.
  • the phosphor particles can be manufactured by an inexpensive manufacturing process such as a coating method while reducing the color variation of the output light of the wavelength conversion member 1A. Because it is preferable.
  • the average particle size of the phosphor particles is obtained by observing the wavelength converter 30A, which has been optionally pretreated, with a scanning electron microscope (SEM) or the like, and the average value of the diameter of 100 particles, for example, sufficiently statistically significant. Is required.
  • SEM scanning electron microscope
  • composition of the phosphor particles can be determined by a known analysis method such as energy dispersive X-ray analysis (EDX) or analysis of X-ray diffraction (XRD).
  • EDX energy dispersive X-ray analysis
  • XRD analysis of X-ray diffraction
  • the phosphor particles may be made of phosphors of the same composition, or may be a mixture of particles of phosphors of two or more compositions.
  • the refractive index of the phosphor particles 40 is larger than the refractive index of the binder layer 50A.
  • the refractive index of the phosphor particle 40 is larger than the refractive index of the binder layer 50A, light is confined inside the phosphor by total internal reflection. Therefore, the in-plane guided light 72 in the binder layer 50A has many components limited to the range of the particle diameter of the phosphor particles 40. Therefore, if the refractive index of the phosphor particles 40 is larger than the refractive index of the binder layer 50A, the output light spot diameter 90A can be easily reduced, which is preferable.
  • the binder layer 50A constitutes the wavelength converter 30A, is made of a fixed body to which the binder is fixed, and fixes the adjacent phosphor particles 40 to each other.
  • the binder layer 50A is a substance to which a plurality of phosphor particles 40 are fixed.
  • adheresion means that solids such as nanoparticles are fixed by intermolecular force.
  • the binder layer 50A preferably has a refractive index of 1.43 or less, more preferably 1.38 to 1.40.
  • the reason why the refractive index of 1.43 or less is preferable is that the refractive index of the silicone resin generally used as a matrix for dispersing the phosphor particles is 1.43, so that the refractive index of the binder layer 50A is lower than that of the silicone resin.
  • the refractive index of the binder layer 50A is 1.43 or less, the ratio of generation of the in-plane guided light 72 in the binder layer 50A is small, the light extraction efficiency of the wavelength conversion member 1A is high, and the output light spot diameter 90A is small. It is possible.
  • FIG. 3 is an enlarged cross-sectional view schematically showing the wavelength converter 30 (30A and 30B) shown in FIG.
  • FIG. 3 will be used to refer to the wavelength converter 30A shown in FIG.
  • FIG. 4 is a cross-sectional view schematically showing a portion A of the wavelength conversion body 30A of the wavelength conversion member 1A according to the first embodiment shown in FIG. 3 in an enlarged manner.
  • the binder layer 50A constituting the wavelength converter 30A is made of a fixed body to which a binder is fixed, and fixes adjacent phosphor particles 40, 40 together.
  • the binder layer 50A is made of a fixed body of nanoparticles 51.
  • the material of the binder forming the binder layer 50A specifically, the material of the nanoparticles 51 is selected so that the refractive index of the binder layer 50A is smaller than the refractive index of the phosphor particles 40.
  • the refractive index of the binder layer 50A is smaller than the refractive index of the phosphor particles 40, light is confined inside the phosphor by total internal reflection. For this reason, the in-plane guided light 72 in the binder layer 50A contains a large amount of light components limited to the wavelength range within the range of the particle diameter of the phosphor particles 40.
  • the output light spot diameter 90A can be easily reduced, which is preferable.
  • the refractive index of the binder layer 50A is usually larger than 1, which is the refractive index of air.
  • the binder layer 50A As a material of the binder layer 50A, specifically, as a material of the nanoparticles 51, an inorganic substance or an organic substance in which the refractive index of the binder layer 50A is smaller than the refractive index of the phosphor particles 40 is preferably used.
  • the nanoparticle 51 is an inorganic material in which the refractive index of the binder layer 50A is 1.43 or less, when using excitation light having a high power density such as a laser beam, the binder layer 50A burns due to the heat generation of the organic material. It does not generate
  • the nanoparticles 51 be an organic substance in which the refractive index of the binder layer 50A is 1.43 or less, since the formation of the binder layer 50A and the production of the wavelength conversion member with less color variation are easy.
  • an inorganic substance or an organic substance for example, an inorganic substance having a refractive index of 1.43 or less or an organic substance having a refractive index of 1.43 or less is preferably used.
  • the inorganic substance having a refractive index of 1.43 or less for example, fluoride, SiO 2 or the like is used.
  • fluoride for example, magnesium fluoride (refractive index 1.38), calcium fluoride (refractive index 1.399), lithium fluoride (refractive index 1.392) or the like is used.
  • magnesium fluoride is preferable because it is a stable substance with high reliability and low refractive index.
  • an organic substance having a refractive index of 1.43 or less for example, an organic substance containing fluorine is used.
  • the fluorine resin for example, polytetrafluoroethylene is used.
  • a fluorine resin is preferable because of its low refractive index.
  • the nanoparticles 51 have an average particle size of usually 100 nm or less, preferably 50 nm or less. It is preferable that the average particle diameter of the nanoparticles 51 is in the above-mentioned range, because the adhesion strength of the fixed body of the nanoparticles 51 constituting the binder layer 50A is high.
  • the average particle size of the nanoparticles 51 can be determined in the same manner as the average particle size of the phosphor particles.
  • the nanoparticles 51 any of nanoparticles of solid structure and hollow structure can be used.
  • the refractive index of the hollow portion of the nanoparticles 51 is 1.0, which is the refractive index of the air, so that the refractive index of the hollow nanoparticles is the refractive index of solid nanoparticles.
  • the refractive index of the atmosphere 1.0
  • the refractive index of the binder layer 50A tends to be smaller than the refractive index of the phosphor particles 40 or to be 1.43 or less.
  • the hollow structured nanoparticles various types of nanoparticles such as core-shell type and through-hole type are known. Any of these can be used in the wavelength conversion member 1A of the present embodiment.
  • the inside of the fixed body 52 of the nanoparticles 51, for example, the surface of the adjacent nanoparticles 51, 51 is a nanovoid having a mean diameter of 300 nm or less. It may contain more than one.
  • the nanovoids in the binder layer 50A refer to the nanoparticles 51, 51 in the fixed body 52 without opening in the surface of the fixed body 52 in the fixed body 52 in which the surfaces of the adjacent nanoparticles 51, 51 are bonded to each other. Of the average diameter of 300 nm or less formed between the surfaces of The nanovoids are not shown in FIG.
  • gap in the nanoparticle 51 does not correspond to a nano space
  • the refractive index of this nanopore is 1.0, which is the refractive index of the atmosphere. Therefore, for example, when the nanoparticles 51 of the binder layer 50A are SiO 2 , the fixed body of SiO 2 nanoparticles including nanovoids, ie, the effective refractive index of the binder layer 50A is the same as that of the SiO 2 nanoparticles 51 themselves. It is lower than the refractive index. Specifically, the effective refractive index of the binder layer 50A in which the nanoparticles 51 are SiO 2 is lower than the refractive index of the SiO 2 nanoparticles 51 itself due to the presence of the nanovoids, and is usually 1.43 or less become.
  • the effective refractive index of the binder layer 50A can be obtained from the Maxwell-Garnet equation using the refractive index and the porosity of the material of the binder layer 50A. Also, the nanovoids may not have a strictly spherical shape.
  • the effective refractive index can be easily made 1.43 or less.
  • the method of forming the nanovoids in the binder layer 50A is used, the choice of the material of the nanoparticles 51 is expanded, and the design freedom of the binder layer 50A is improved.
  • the average diameter of a nanopore means the average diameter at the time of assuming that a nanopore is a true sphere of the same volume.
  • the average diameter of the nanopores can be determined, for example, by a known analytical method such as a gas adsorption method. Since the nanopores have an average diameter of 300 nm or less, they affect the refractive index of the visible light region of the binder layer 50A.
  • the binder layer 50A may contain voids having an average diameter of more than 300 nm, that is, microvoids having an average diameter larger than that of the nanovoids, and micro impurities having an average diameter of more than 300 nm.
  • the binder layer 50A may include microvoids which are voids having an average diameter of more than 300 nm.
  • the microvoids in the binder layer 50A refer to the nanoparticles 51, 51 in the fixed body 52 without opening in the surface of the fixed body 52 in the fixed body 52 in which the surfaces of the adjacent nanoparticles 51, 51 are bonded to each other.
  • the mean diameter formed between the surfaces of is a cavity over 300 nm.
  • the mean diameter of the microvoids and the microimpurity is calculated in the same manner as the mean diameter of the nanovoids.
  • the microvoids and the micro-impurity do not affect the refractive index of the visible light region of the binder layer 50A because the effect of scattering light becomes remarkable because the average diameter exceeds 300 nm. Therefore, even if the binder layer 50A contains microvoids or microimpurities, the wavelength conversion member having high light extraction efficiency and power density of output light according to the present embodiment even when the excitation light with high power density is irradiated. The effect that can be obtained is sufficiently obtained.
  • the binder layer 50A contains an appropriate amount of micro voids or micro impurities
  • the micro voids or micro impurities cause the excitation light 60 or the fluorescence 70 to be scattered, and the color mixing property in the binder layer 50A becomes good. For this reason, it is preferable to easily obtain white light with little color shift if the binder layer 50A contains an appropriate amount of micro voids or micro impurities.
  • the presence or absence of the microvoids and the microimpurity in the binder layer 50A and the existence ratio thereof can be determined and measured by the following method. That is, it is possible to determine and measure by analysis of photographed image data by an electron microscope or CT scan method, a known analysis method such as a nitrogen adsorption method, or a combination of these analysis methods, peripheral technology or the like.
  • Identification of micro voids and micro impurities in the binder layer 50A can be performed by a known analysis method such as an EDX method or an XRD method, or a combination of these analysis methods, a peripheral technology, or the like.
  • the binder layer 50A may be made of a light emitting material or may be made of a non-light emitting material.
  • the light-emitting substance means a substance which emits light such as fluorescence or phosphorescence by being excited by excitation light emitted by a light-emitting element (not shown), or a substance which emits light by light other than excitation light emitted by the light-emitting element.
  • the non-luminescent substance means a substance other than the luminescent substance.
  • the light reflection film 20 is provided on at least a part of the interface between the substrate 10 and the wavelength converter 30A, and reflects part of the fluorescence 70 and the excitation light 60 emitted by the phosphor particles 40 contained in the wavelength converter 30A.
  • the light reflection film 20 is generally provided so as to cover at least a part of the surface of the substrate 10 on the wavelength conversion body 30A side.
  • the wavelength conversion member 1A has a high light extraction efficiency because the light reflection film 20 reflects a part of the fluorescence 70 and the excitation light 60 emitted by the phosphor particles 40 in the wavelength conversion body 30A.
  • the light reflection film 20 has a light reflectance of 80% or more and less than 100%, preferably 90% or more and less than 100%. In other words, the light reflection film 20 has a light absorption rate of more than 0% and 20% or less, preferably more than 0% and 10% or less.
  • a metal film of aluminum, silver or the like, or a dielectric multilayer film is suitably used as the light reflection film 20.
  • Aluminum is a material used also for the substrate 10. When the substrate 10 is aluminum, part of the surface of the substrate 10 can be regarded as the light reflecting film 20.
  • the dielectric multilayer film means a laminate of optical thin films using a plurality of types of dielectric materials having different refractive indexes.
  • the dielectric multilayer film usually has partial transparency.
  • the film thickness of the light reflection film 20 can be set arbitrarily according to the target reflectance.
  • the film thickness of the light reflecting film 20 is usually 0.1 ⁇ m to 1 ⁇ m. It is preferable that the film thickness of the light reflecting film 20 made of a metal film is 0.1 ⁇ m to 1 ⁇ m, since the light reflecting film 20 having high flatness and uniformity can be obtained by a vapor deposition method, a sputtering method, or the like.
  • the film thickness of the light reflection film 20 is usually 1 ⁇ m to 1 mm. It is preferable that the film thickness of the light reflection film 20 made of a diffuse reflection film is 1 ⁇ m to 1 mm because a sufficient reflectance can be obtained.
  • the light reflection film 20 and the substrate 10 may be the same material.
  • the substrate 10 can be made of aluminum, and the light reflection film 20 can be made of aluminum.
  • the substrate 10 made of aluminum and the light reflecting film 20 made of aluminum may be separately provided, but a part of the surface of the substrate 10 made of aluminum may be regarded as the light reflecting film 20 made of aluminum.
  • the thickness of the light reflecting film 20 is not particularly limited.
  • ⁇ Operation of wavelength conversion member> The operation of the wavelength conversion member 1A will be described with reference to FIG.
  • a part of the excitation light 60 entering the inside of the wavelength conversion body 30A and a part of the fluorescence 70 emitted from the phosphor particles 40 form the light reflection film 20 and the air interface in the binder layer 50A.
  • the light is in-plane guided light 72 which is guided in-plane while totally reflecting the light.
  • the intensity is attenuated due to the emission of the output light 71 and the occurrence of the light loss 73 in the light reflection film 20.
  • FIG. 1 conceptually shows the diameter of the output light composed of an assembly of the output light 71 (71a, 71b and 71c) as an output light spot diameter 90A.
  • the in-plane guided light beam 72 is composed of components constituting the excitation light 60 and the fluorescence 70, which are components larger than the critical angle determined by the refractive index step of the interface between the binder layer 50A and the air and Snell's law. For this reason, generally, the smaller the refractive index of the binder layer 50A, the smaller the ratio of the in-plane guided light 72 generated from the fluorescent light 70 or the like.
  • the refractive index of the phosphor particles 40 is larger than the refractive index of the binder layer 50A. That is, in the wavelength conversion member 1A, the refractive index of the binder layer 50A is smaller than the refractive index of the phosphor particles 40.
  • the refractive index of the binder layer 50A is preferably 1.43 or less. For this reason, according to the wavelength conversion member 1A of the present embodiment, the ratio of generation of the in-plane guided light 72 from the fluorescence 70 or the like decreases.
  • the wavelength conversion member 1A of the present embodiment since the ratio of the in-plane guided light 72 generated in the binder layer 50A decreases, the generation frequency of the light loss 73 in the light reflection film 20 decreases. For this reason, according to wavelength conversion member 1A of this embodiment, light extraction efficiency becomes high. In addition, since the wavelength conversion member 1A has a small ratio of the in-plane guided light 72, the output light spot diameter 90A decreases as described above. Therefore, according to the wavelength conversion member 1A of the present embodiment, the power density of the output light is high. Therefore, according to the wavelength conversion member 1A of the present embodiment, the wavelength conversion member 1A having high light extraction efficiency and high power density of output light can be obtained.
  • the ratio of the total energy amount of the excitation light 60 and the output light 71 not absorbed by the fluorescence 70 and the wavelength conversion body 30A extracted from the wavelength converter 30A divided by the energy amount of the irradiated excitation light 60 It is called conversion efficiency.
  • the high conversion efficiency indicates that a large amount of light can be obtained with a smaller amount of energy.
  • the wavelength conversion member 1A of the present embodiment has high light extraction efficiency as described above, and thus is suitable for optical devices such as a lighting device and a projector device.
  • the refractive index of the binder layer 50A constituting the wavelength converter 30A is usually larger than the refractive index of air. For this reason, in the wavelength conversion member 1A, total reflection occurs at the interface between the wavelength converter 30A and the outside (air), that is, the air interface. Therefore, as described above, a part of the excitation light 60 and the fluorescence 70 inside the wavelength conversion member 30A of the wavelength conversion member 1A repeats the total reflection and the reflection by the light reflection film 20, while the inside of the wavelength conversion member 30A is It becomes in-plane guided light guided in-plane.
  • the conventional wavelength conversion member 100 having a large refractive index of the binder layer 150 has a large amount of in-plane guided light 82, and the output light spot diameter 90B becomes large.
  • the power density is reduced by the fact that the spot diameter of the output light is broadened.
  • the wavelength conversion member 1A of the present embodiment the refractive index of the binder layer 50A and the phosphor particles 40 have a predetermined relationship, so the in-plane guided light 72 is small as shown in FIG.
  • the diameter 90A is small and the power density is high.
  • the wavelength conversion member 1A of the present embodiment has a high power density of output light, and thus is suitable for an optical device such as a lighting device or a projector device.
  • the proportion of the in-plane guided light 72 decreases, while the difference in refractive index between the phosphor particles 40 and the binder layer 50A increases. For this reason, at first glance, the wavelength conversion member 1A seems to not improve the light extraction efficiency of the wavelength conversion member 1A as compared with the conventional example, because the light extraction efficiency from the phosphor particles 40 decreases.
  • the fluorescence 70 extracted to the binder layer 50A while repeating total reflection inside the phosphor particles 40 in the wavelength conversion member 1A hardly receives the light attenuation effect such as the light loss 73 derived from the presence of the light reflection film 20. That is, light that has not been extracted from the inside of the phosphor particle 40 once by reflection at the interface between the phosphor particle 40 and the binder layer 50A is reflected inside the phosphor particle 40 while changing the angle at the interface with the binder layer 50A. repeat. Then, the light repeatedly reflected inside the phosphor particles 40 is finally extracted to the binder layer 50A side with almost no attenuation.
  • the spatial propagation range of the light which repeats reflection inside said fluorescent substance particle 40 is necessarily limited to the particle size range of the fluorescent substance particle 40.
  • FIG. For this reason, in the wavelength conversion member 1A, by controlling the particle diameter of the phosphor particles 40, it is easy to suppress the expansion of the spot diameter of the output light. Therefore, the wavelength conversion member 1A of the present embodiment can reduce the spatial propagation range while suppressing the light loss 73, so that the light extraction efficiency higher than the conventional example and the output light higher than the conventional example can be obtained. Power density is obtained.
  • the wavelength conversion member 1A is manufactured, for example, by forming the wavelength converter 30A on the light reflection film 20.
  • the wavelength converter 30A can be produced by any known method such as a wet process such as a coating method. Wet processes such as coating methods are preferred because of their low production costs.
  • FIG. 1 is a schematic cross-sectional view of wavelength conversion members 1A and 1B in which the refractive index of the binder layer is small according to the first and second embodiments.
  • the wavelength conversion member 1A according to the first embodiment is also shown in FIG. 1 together with the wavelength conversion member 1B according to the second embodiment.
  • FIG. 1 is used to refer to the wavelength conversion member 1B according to the second embodiment.
  • a wavelength conversion member 1B according to the second embodiment includes a substrate 10, a wavelength converter 30B (30), and a light reflection film 20.
  • the wavelength conversion member 1B according to the second embodiment is different from the wavelength conversion member 1A according to the first embodiment in that a binder layer 50B is used instead of the binder layer 50A, and the other structure is the same. is there. Therefore, in the following description of the wavelength conversion member 1B according to the second embodiment, the same members as those of the wavelength conversion member 1A according to the first embodiment are denoted by the same reference numerals, and the description of the configuration and operation is appropriately omitted. Do. That is, the following description mainly relates to the binder layer 50B.
  • the binder layer 50B constitutes the wavelength conversion body 30B, is made of a composite cured body to which the binder is adhered, and adheres adjacent phosphor particles 40, 40 to each other.
  • the binder layer 50B is a substance to which a plurality of phosphor particles 40 are adhered.
  • adhesion means that solids such as nanoparticles are fixed by a force other than an intermolecular force, for example, a chemical bond such as a covalent bond, an ionic bond, or a hydrogen bond.
  • FIG. 3 is an enlarged cross-sectional view schematically showing the wavelength converter 30 (30A and 30B) shown in FIG.
  • FIG. 3 is used to refer to the wavelength converter 30B shown in FIG.
  • FIG. 5 is an enlarged cross-sectional view schematically showing a portion A of the wavelength converter 30B of the wavelength conversion member 1B according to the second embodiment shown in FIG.
  • the binder layer 50B constituting the wavelength conversion body 30B is made of a composite cured body to which a binder is adhered, and adheres adjacent phosphor particles 40, 40 to each other.
  • the binder layer 50B is made of a composite cured body including the nanoparticles 51 and the adhesion aiding substance 55 for bonding the adjacent nanoparticles 51 and 51 to each other. More specifically, the binder layer 50B made of a composite cured body coats the nanoparticles 51 while impregnating the nanoparticles 51 and the adjacent nanoparticles 51, 51, and bonds the plurality of nanoparticles 51. And the adhesion auxiliary substance 55. In the binder layer 50B, the adhesion aiding substance 55 covers all the nanoparticles 51 to form a composite cured body.
  • the adhesion aiding substance 55 includes nano voids 58 which are cavities having an average diameter of 300 nm or less.
  • the nanovoids 58 in the binder layer 50B are cavities having an average diameter of 300 nm or less formed in the adhesion aiding material 55 without opening on the surface of the adhesion aiding material 55.
  • gap in the nanoparticle 51 does not correspond to a nano space
  • the binder layer 50B is impregnated with the raw material of the adhesion aiding substance 55 between the adjacent nanoparticles 51 and 51 in the binder layer 50A consisting of the fixed body of the nanoparticles 51 of the wavelength conversion member 1A according to the first embodiment and is cured.
  • the binder layer 50B is made of a composite cured body containing the nanoparticles 51 and the adhesion aiding substance 55, the binder layer 50B is compared with the binder layer 50A made of the adhesion material of the nanoparticles 51 of the wavelength conversion member 1A according to the first embodiment.
  • the mechanical strength of the binder layer 50B is high.
  • the wavelength conversion body 30B including the binder layer 50B is different from the wavelength conversion body 30A including the binder layer 50A of the wavelength conversion member 1A according to the first embodiment in terms of mechanical strength and peeling of the light reflection film 20.
  • the binder layer 50A has a small bond strength of the fixed body of the nanoparticles 51, there is a possibility that the nanoparticles 51 may be peeled from the light reflecting film 20 due to the collapse of the fixed body. Because of the large size, the risk of peeling from the light reflecting film 20 is small.
  • the binder layer 50B preferably has a refractive index of 1.43 or less, more preferably 1.38 to 1.40.
  • the refractive index of the binder layer 50B is 1.43 or less, the ratio of generation of the in-plane guided light 72 in the binder layer 50B is small, the light extraction efficiency of the wavelength conversion member 1B is high, and the output light spot diameter 90A is small. It is possible.
  • the adhesion aiding substance 55 improves the adhesion of the binder layer 50B itself and the adhesion of the binder layer 50B to the phosphor particles and the substrate by being filled with the nanoparticles 51.
  • the adhesion aiding substance 55 improves the mechanical strength of the wavelength conversion body 30B, for example, the resistance of the wavelength conversion body 30B to scratching, and the substrate adhesion which is the adhesion between the binder layer 50B and the substrate 10.
  • the adhesion aiding substance 55 can also exhibit a function as a gas barrier that protects the substance from sulfurization.
  • the material of the adhesion aiding substance 55 is not particularly limited, and for example, an inorganic substance or an organic substance is used. It is preferable that the material of the adhesion aiding substance 55 is an inorganic substance because heat resistance can be enhanced. It is preferable that the material of the adhesion aiding substance 55 is an organic substance, because the manufacturing variation of the wavelength converter 30B can be easily suppressed.
  • the suppression of the production variation is that, when the wavelength converter 30B is formed by a wet process such as a coating method, the sedimentation speed of the phosphor particles in the raw material coating liquid containing the adhesion auxiliary substance 55 is suppressed, It is due to the viscosity of the solution becoming stable.
  • the inorganic substance for example, a material including silica glass (SiO 2 ) having at least one of polysilazane and a polysilazane derivative as a precursor, and silica glass having at least one of an alkoxysilane and an alkoxysilane derivative as a precursor is used.
  • silica glass SiO 2
  • silica glass having at least one of an alkoxysilane and an alkoxysilane derivative as a precursor
  • Silica glass using at least one of polysilazane and a polysilazane derivative as a precursor is obtained by hydrolysis of the precursor.
  • polysilazane means a polymer having a cyclic or linear Si-N skeleton structure in which one or more Si-N bonds are continuous, and all Si and N side chains are H.
  • the polysilazane derivative means a polymer having a structure in which one or more of side chains or terminal groups constituting the polysilazane are substituted with a group other than H, for example, a hydrocarbon group.
  • silica glass is obtained.
  • silica glass SiO 2 is generated from (-SiH 2 NH-) by a hydrolysis reaction.
  • alkoxysilane means a substance in which O of an alkoxy group is bonded to Si.
  • the alkoxysilane derivative means a substance having a structure in which one or more of H constituting the alkoxysilane is substituted with a group other than H.
  • hydrolytic condensation means the reaction which a hydrolysis reaction and a condensation reaction produce.
  • the alkoxysilane may Si 5 O 4 (OC 2 H 5) is 12, Si 5 O 4 (OC 2 H 5) 12 produces a silanol Si 5 O 4 (OH) 12 by hydrolysis reaction.
  • silanol Si 5 O 4 (OH) 12 produces silica glass SiO 2 by a condensation reaction.
  • silica glass using polysilazane, polysilazane derivative, alkoxysilane and alkoxysilane derivative as precursors is a wet process.
  • the production of silica glass using polysilazane, a polysilazane derivative, an alkoxysilane and an alkoxysilane derivative as a precursor is preferable because the film forming property is higher than the thin film formation by the conventional sol-gel method.
  • silica glass (SiO 2 ) having polysilazane, polysilazane derivative, alkoxysilane and alkoxysilane derivative as precursors has a relatively low refractive index among inorganic metal oxides, and therefore points of light extraction efficiency and output spot diameter Preferred.
  • the organic substance that is the material of the adhesion aiding substance 55 may be a material that partially contains an inorganic component.
  • An organic substance containing an inorganic component in part is preferable because it is easier to improve heat resistance than a pure organic substance.
  • the adhesion auxiliary substance 55 and the nanoparticles 51 may be made of the same material. If the material of the adhesion aiding substance 55 and the nanoparticles 51 is the same, phonon scattering is suppressed at the interface between the adhesion aiding substance 55 and the nanoparticles 51, so it is easy to increase the thermal conductivity of the wavelength converter 30B. preferable.
  • the thickness of the adhesion aiding substance 55 is usually 1 to 100 nm.
  • the thickness of the adhesion aiding substance 55 means the thickness of the adhesion aiding substance 55 covering the surface of the nanoparticles 51 located on the surface of the composite cured body.
  • the thickness of the adhesion aiding material 55 present between the adjacent nanoparticles 51 is not particularly limited, and is, for example, 1 to 100 nm.
  • the thickness of the adhesion aiding substance 55 is small as described above, the adhesion aiding substance 55 has little effect of scattering light. For this reason, the optical influence of the adhesion aiding substance 55 on the binder layer 50B is usually only the effective refractive index of the binder layer 50B due to the nanovoids 58 inside the adhesion aiding substance 55.
  • the adhesion aiding substance 55 covers all the nanoparticles 51 to form a composite cured body.
  • the adhesion aiding substance 55 may form a composite cured body partially covering the nanoparticles 51.
  • “the adhesion assisting substance 55 partially covers the nanoparticles 51” means that a part of the total number of nanoparticles 51 constituting the binder layer 50 is not covered with the adhesion assisting substance 55. It means that.
  • the adhesion aiding substance 55 of the binder layer 50B includes nano voids 58 which are cavities having an average diameter of 300 nm or less.
  • the refractive index of the nano gap 58 is 1.0, which is the refractive index of the atmosphere. Therefore, for example, when the nanoparticles 51 of the binder layer 50B are SiO 2 , a composite cured body containing the SiO 2 nanoparticles 51 and the adhesion aiding substance 55 including the nanovoids 58, ie, effective refraction of the binder layer 50B.
  • the index is lower than the refractive index of the SiO 2 nanoparticles 51 itself.
  • the effective refractive index of the binder layer 50B in which the nanoparticles 51 are SiO 2 is lower than the refractive index of the SiO 2 nanoparticles 51 itself due to the presence of the nanovoids 58, usually 1.43. It becomes below.
  • the effective refractive index of the binder layer 50B can be obtained from the Maxwell-Garnet equation using the refractive index and the porosity of the material of the binder layer 50B.
  • the nanovoids 58 may not have a strictly spherical shape.
  • the effective refractive index of the binder layer 50B is reduced while the wavelength converter 1B is made It is easy to increase mechanical strength.
  • an inorganic material or an organic material is preferably used as the material of the nanoparticles 51 such that the refractive index of the binder layer 50B is smaller than the refractive index of the phosphor particles 40.
  • the material of the nanoparticles 51 an inorganic substance in which the refractive index of the binder layer 50B is smaller than the refractive index of the phosphor particles 40 by configuring the binder layer 50B in combination with the adhesion auxiliary substance 55. Or organic substances are preferably used.
  • the material of the nanoparticles 51 constituting the binder layer 50B can be the same as the material of the nanoparticles 51 constituting the binder layer 50A of the wavelength conversion member 1A according to the first embodiment. For this reason, the description about the material of the nanoparticle 51 which comprises binder layer 50B is abbreviate
  • an inorganic material is preferably used as the material of the adhesion aiding substance 55 such that the refractive index of the binder layer 50B is smaller than the refractive index of the phosphor particles 40.
  • the refractive index of the binder layer 50B is smaller than the refractive index of the phosphor particle 40, light is confined within the phosphor particle 40 by total reflection, and the confined light is limited to the range of the particle diameter thereof Contains a lot of Therefore, when the refractive index of the binder layer 50B is smaller than the refractive index of the phosphor particles 40, the output light spot diameter 90A can be easily reduced, which is preferable. Further, the refractive index of the binder layer 50B is usually larger than 1, which is the refractive index of air.
  • the refractive index of the binder layer 50B is better than the refractive index of the phosphor particles 40.
  • Inorganic substances are preferably used, which also become smaller.
  • the inorganic substance constituting the fixed auxiliary substances 55 for example, a silicon compound having a SiO 2 skeleton structure of silica or the like is used.
  • the refractive index of SiO 2 itself is about 1.44 to 1.50.
  • the binder layer 50B usually contains nanovoids 58 which are voids having an average diameter of 300 nm or less inside the adhesion aiding material 55.
  • the refractive index of the nano gap 58 is 1.0, which is the refractive index of the atmosphere.
  • the effective refractive index of the adhesion aiding material 55 including the nanovoids 58 is lower than the refractive index of SiO 2 itself, and is usually 1.43 or less.
  • the effective refractive index of the binder layer 50B including the adhesion auxiliary substance 55 including the nanovoids 58 and the nanoparticles 51 is also generally 1.
  • the refractive index of the material of the nanoparticles 51 is 1.43 or less. 43 or less.
  • the effective refractive index of the binder layer 50B can be determined from the Maxwell-Garnet equation or the like using the refractive index and the abundance ratio of each of the nanoparticles 51, the nanovoids 58, and the adhesion aiding substance 55.
  • the nanovoids 58 and the nanoparticles 51 may not have a strictly spherical shape.
  • the presence or absence of the nanoparticles 51, the nanovoids 58, and the adhesion aiding substance 55 in the binder layer 50B and the ratio thereof can be determined and measured by the following method. That is, it is possible to determine and measure by analysis of photographed image data by an electron microscope or CT scan method, a known analysis method such as a nitrogen adsorption method, or a combination of these analysis methods, peripheral technology or the like.
  • Identification of the nanoparticles 51 and the adhesion aiding substance 55 in the binder layer 50B can be performed by a known analysis method such as an EDX method or an XRD method, or a combination of these analysis methods, a peripheral technology, or the like.
  • gap 58 means the average diameter at the time of assuming that the nano space
  • the average diameter of the nano voids 58 can be determined, for example, by a known analysis method such as a gas adsorption method.
  • the nano-voids 58 have almost no effect of scattering light because the mean diameter is 300 nm or less, and thus affect the refractive index of the visible light region of the binder layer 50B.
  • the binder layer 50B may contain voids having an average diameter of more than 300 nm, that is, micro voids having an average diameter larger than that of the nano voids 58, or micro impurities having an average diameter of more than 300 nm.
  • the binder layer 50B may include microvoids which are voids having an average diameter of more than 300 nm.
  • the microvoids in the binder layer 50B are cavities having an average diameter of more than 300 nm formed in the adhesion aiding material 55 without opening on the surface of the adhesion aiding material 55.
  • the mean diameter of the microvoids and the microimpurity is calculated in the same manner as the mean diameter of the nanovoids 58.
  • the microvoids and the micro-impurity do not affect the refractive index of the visible light region of the binder layer 50B because the effect of scattering light becomes remarkable because the average diameter exceeds 300 nm. Therefore, even if the binder layer 50B contains micro voids or micro impurities, the wavelength conversion member having high light extraction efficiency and power density of output light according to this embodiment even when the excitation light with high power density is irradiated. The effect that can be obtained is sufficiently obtained.
  • the binder layer 50B contains an appropriate amount of microvoids or microimpurities, the microvoids or microimpurity scatters the excitation light 60 or the fluorescent light 70, and the color mixing property of the binder layer 50B is improved. For this reason, it is preferable to easily obtain white light with little color shift if the binder layer 50B contains an appropriate amount of micro voids or micro impurities.
  • the measurement of the presence or absence of the microvoids or the microimpurity in the binder layer 50B is the same as the measurement of the presence or absence of the microvoids or the microimpurity in the binder layer 50A.
  • Identification of micro voids and micro impurities in the binder layer 50B is similar to identification of micro voids and micro impurities in the binder layer 50A.
  • the binder layer 50B may be made of a light emitting material or may be made of a non-light emitting material.
  • the light emitting substance and the non-light emitting substance mean the same substance as the light emitting substance and the non-light emitting substance described in the binder layer 50A constituting the wavelength conversion member 1A according to the first embodiment.
  • the nanovoids 58 contained in the binder layer 50B are provided in the binder layer 50B such that the refractive index of the binder layer 50B is smaller than the refractive index of the phosphor particles 40.
  • the wavelength converter may be peeled off from the substrate due to thermal shock or the like.
  • the wavelength conversion member 1B according to the second embodiment since the adhesion auxiliary substance 55 adjusts the thermal expansion coefficient of the binder layer 50B, it is possible to improve the possibility of the peeling.
  • the binder layer 50B is formed of an inorganic material having a relatively low thermal expansion coefficient
  • the substrate 10 is formed of a metal having a relatively large thermal expansion coefficient
  • the binder layer 50B made of a composite cured product in which the nanoparticles 51 and the adhesion aiding substance 55 are used in combination is filled between the phosphor particles 40 as compared with the case of using an inorganic precursor as a binder layer as in Patent Document 2 and the like. It is easy to increase the volume of the binder layer 50B. Therefore, according to the binder layer 50B, the distance between the phosphor particles 40 can be easily increased, and as a result, the number of phosphor particles per unit volume of the wavelength converter 30B can be easily reduced.
  • the wavelength converter 30B has a high irradiation position dependency, as in the case of using a wavelength converter 30B having a small number of phosphor particles per unit volume and having a relatively small spot diameter such as laser light as excitation light. It is suitable when the color misregistration tends to be large. The reason is that the wavelength conversion body 30B having a small number of phosphor particles per unit volume as described above easily relaxes the chromaticity deviation of the output light due to the irradiation position of the excitation light.
  • the wavelength conversion member 1B provided with the binder layer 50B has a high dependence on the irradiation position of the wavelength converter 30B by using a relatively small spot diameter such as a laser beam as excitation light, and the color shift tends to be large. It is suitable for the device.
  • the operation of the wavelength conversion member 1B according to the second embodiment is the same as the operation of the wavelength conversion member 1A according to the first embodiment, and therefore the description thereof is omitted.
  • the wavelength conversion member 1B is manufactured, for example, by forming the wavelength converter 30B on the light reflection film 20.
  • the wavelength conversion body 30B can be produced, for example, by curing the raw material of the fixing auxiliary substance by the sol-gel method using the phosphor particles 40, the nanoparticles 51, and the raw material of the fixing auxiliary substance.
  • the binder layer 50B of the wavelength conversion member according to the second embodiment has higher mechanical strength and peel strength than the binder layer 50A of the wavelength conversion member according to the first embodiment. For this reason, according to the wavelength conversion member 1B according to the second embodiment, the mechanical strength and the light reflection of the wavelength conversion body 30B including the binder layer 50B as compared to the wavelength conversion member 1A according to the first embodiment The peel strength to the membrane 20 is high.
  • the binder layer 50 adheres adjacent phosphor particles 40, 40 from the binder layer 50A of the wavelength conversion member 1A according to the first embodiment and the binder layer 50B of the wavelength conversion member 1B according to the second embodiment. Or it can be said that it adheres.
  • the binder layer 50B is made of a composite cured body including the nanoparticles 51 and the adhesion aiding substance 55 for bonding the adjacent nanoparticles 51, 51 to each other.
  • the binder layer 50 can be made to be a composite cured body made of only the adhesion aiding substance 55 which does not contain the nanoparticles 51.
  • cured material which consists only of the adhesion
  • the wavelength converter of the wavelength conversion member according to the modification of the second embodiment can be produced by a known and arbitrary method such as a wet process such as a coating method. Wet processes such as coating methods are preferred because of their low production costs.
  • the wavelength conversion member according to the modification of the second embodiment According to the wavelength conversion member according to the modification of the second embodiment, the wavelength conversion member with high light extraction efficiency and power density of output light can be obtained even when the excitation light with high power density is irradiated.
  • Example 1 (Production of wavelength conversion member) Powder of magnesium fluoride nanoparticles (refractive index 1.38) with an average particle diameter of 40 nm prepared by a vapor phase method is mixed with ion-exchanged water, dispersed by ultrasonic waves, and dispersed 15 mass% of magnesium fluoride Liquid D1 was obtained.
  • YAG particles with an average particle diameter of 19 ⁇ m (Yeag 374A165 manufactured by Nemoto Lumimaterial, refractive index 1.8) as yellow-green phosphors
  • SCASN particles are (Sr, Ca) AlSiN 3 : Eu phosphors.
  • the magnesium fluoride dispersion D1, YAG particles, and SCASN particles were mixed in a weight ratio of 1: 2.1: 0.18, respectively, to obtain a fluorescence solution P1.
  • an Ag film as a light reflecting film was formed in a thickness of 120 nm on a part of the surface of an aluminum substrate having a reflectance of 95% to produce a substrate member made of the aluminum substrate and the Ag film. In the substrate member, the film was formed such that the area of the Ag film was smaller than the area of the surface of the aluminum substrate.
  • Wavelength conversion member No. 1 is a wavelength converter No.
  • Wavelength conversion member No. 1 was attached so that the substrate was in contact with a metal heat sink. Next, a laser beam with a central wavelength of 450 nm and a power density of about 4.5 W / mm 2 was used as excitation light to convert the wavelength converter No. When it was irradiated to the surface of 1, a mixed color consisting of blue light, yellowish green light and red light of excitation light was obtained. The wavelength spectrum and the illuminance were measured for this mixed color using an integrating sphere, a spectrophotometer and a luminometer, and the energy amount of the mixed color was obtained.
  • the amount of energy of the mixed color was calculated by integrating the energy of the region in the wavelength range of 380 nm to 800 nm.
  • the conversion efficiency was calculated by dividing the energy amount of the mixed color by the energy amount of the excitation light.
  • the conversion efficiency was calculated in the same manner as in this example in Example 2 described later.
  • the conversion efficiency of the present example (Example 1) was divided by the conversion efficiency of Example 2 to calculate the conversion efficiency ratio.
  • the conversion efficiency ratio is shown in Table 1.
  • the conversion efficiency and the conversion efficiency ratio are indices indicating that the higher the numerical value, the higher the light extraction efficiency of the wavelength conversion member.
  • Example 2 (Production of wavelength conversion member) Polysilazane (Merck Co., Ltd., NL 120A), YAG particles similar to those of Example 1 and SCASN particles similar to those of Example 1 were prepared. Polysilazane, YAG particles and SCASN particles were mixed at a weight ratio of 1: 2.1: 0.18 to obtain a fluorescent solution P51.
  • Polysilazane Aquamica (registered trademark) NL120A manufactured by Merck Performance Materials, Inc. was used as polysilazane. Aquamica NL120A contained a palladium-based catalyst that promoted silica conversion, and the solvent was a mixed solvent of dibutyl ether and anisole. Then, a wavelength conversion member (wavelength conversion member No.
  • Wavelength converter No. No. 51 is formed on the substrate in the same manner as in Example 1 except that the fluorescent liquid P51 is used instead of the fluorescent liquid P1. 51).
  • Wavelength converter No. No. 51 had YAG particles and SCASN particles adhered with a binder layer.
  • the binder layer was a fixing auxiliary substance made of silica, and the refractive index was 1.38 or more and less than 1.50, and the average value was 1.45.
  • Wavelength conversion member No. No. 51 represents the wavelength converter No. 5 on the light reflection film formed on a part of the surface of the aluminum substrate. 51 is formed.
  • Example 1 ⁇ Relationship between conversion efficiency and refractive index of binder layer>
  • the main difference between Example 1 and Example 2 is the composition of the binder layer. From the comparison of the conversion efficiency ratio of Example 1 and Example 2, the improvement of the conversion efficiency of Example 1 to Example 2 is considered to be due to the difference in the composition of the binder layer.
  • the binder layer of Example 2 is silica derived from polysilazane (refractive index 1.45), and the binder layer of Example 1 is a magnesium fluoride fixed body and nanovoids (refractive index about 1.2). is there. For this reason, it is considered that the conversion efficiency is improved by lowering the refractive index of the binder layer in Example 1.
  • Example 3 (Production of wavelength conversion member) 1 part by mass of powder of magnesium fluoride nanoparticles (refractive index 1.38) having an average particle diameter of 40 nm prepared by a vapor phase method and 9 parts by mass of polysilazane are mixed, and dispersed by ultrasonic waves, A magnesium dispersion D2 was obtained.
  • the polysilazane Aquamica (registered trademark) NL120A manufactured by Merck Performance Materials, Inc. was used. Aquamica NL120A contained a palladium-based catalyst that promoted silica conversion, and the solvent was a mixed solvent of dibutyl ether and anisole.
  • YAG particles which are the same as the yellow-green phosphor and SCASN particles which are the red phosphor as in Example 1 were prepared.
  • the magnesium fluoride dispersion D2, YAG particles, and SCASN particles were mixed at a weight ratio of 1: 2.1: 0.18, respectively, to obtain a fluorescence solution P2.
  • Wavelength conversion member No. Two were produced two or more. Wavelength converter No. No. 2 had YAG particles and SCASN particles adhered by a binder layer, as the observation results described later.
  • the refractive index of the binder layer was 1.38 or more and less than 1.50, and the average value was 1.42.
  • FIG. 6 shows the wavelength conversion member No. 6 according to the third embodiment.
  • No. 2 wavelength converter No. 2 It is a SEM (scanning electron microscope) photograph which shows the torn surface of 2.
  • FIG. 7 is an SEM photograph showing a portion B of FIG. 6 in an enlarged manner. As shown in FIG. In 2 (shown as 30B in FIG.
  • the phosphor particles 40 composed of YAG particles and SCASN particles are adhered by the binder layer 50B.
  • the binder layer 50B includes nanoparticles 51 made of magnesium fluoride (MgF 2 ), and an adhesion aiding substance 55 made of silica by bonding the adjacent nanoparticles 51 and 51 with each other. It turned out that it consists of a composite hardening body. In addition, it was found that the adhesion auxiliary substance 55 contains the nanovoids 58.
  • each wavelength converter (wavelength converters No. 1 and No. 2) of the wavelength conversion members (wavelength conversion members No. 1 and No. 2) of Example 1 and Example 3 is crushed to obtain a powder sample.
  • the powder sample of Example 1 contained phosphor particles consisting of YAG particles and SCASN particles, and nanoparticles constituting the binder layer.
  • the powder sample of Example 3 contained phosphor particles consisting of YAG particles and SCASN particles, and nanoparticles and adhesion aiding material constituting the binder layer.
  • a powder sample was produced in which the YAG particles and SCASN particles used in Example 1 and Example 3 were blended at the same blending ratio as in Example 1 and Example 3. This powder sample consists only of phosphor particles, and does not contain the material constituting the binder layer.
  • Reference Example 1 corresponds to the blank sample for Example 1 and Example 3.
  • the pore diameter (nm) and the log differential pore volume distribution of the pores in the powder samples of Example 1 and Example 3 and Reference Example 1 were measured by the nitrogen adsorption method. The results are shown in FIG.
  • the powder sample of Example 1 includes nanovoids which are voids having a mode value of the void diameter of about 50 (nm) and an average diameter of 300 nm or less. In addition, it was found that the powder sample of Example 1 contains a large number of nanovoids because the log differential pore volume is very large.
  • the powder sample of Example 3 was found to contain nanovoids, which are voids with a mode value of void diameter of about 20 (nm) and an average diameter of 300 nm or less. In addition, it was found that the powder sample of Example 3 contains a large number of nanovoids because the log differential pore volume is a little large.
  • the powder sample of Reference Example 1 was found to contain nanovoids, which are voids of which the mode value of the void diameter is about 50 (nm) and the mean diameter is 300 nm or less. However, this is due to noise on measurement or unintended dust or the like contained in the powder sample, and the powder sample of Reference Example 1 has a very small log differential pore volume, so It turned out that it does not contain substantially.
  • the void diameter (nm) of the voids and the log differential pore volume distribution of only the binder layer of Example 1 are evaluated. can do.
  • the void diameter (nm) and the log differential pore volume distribution of the voids only for the binder layer of Example 3 And can be evaluated. From the difference between the measurement results of Example 1 and Reference Example 1 in FIG. 8, it was found that the binder layer of Example 1 contains a large number of nanovoids, which are voids having an average diameter of 300 nm or less. Further, from the difference between the measurement results of Example 3 and Reference Example 1 in FIG. 8, it was found that the binder layer of Example 3 slightly contains a large number of nanovoids that are voids having an average diameter of 300 nm or less.
  • the peeling strength of the wavelength converter was evaluated for the wavelength conversion members (wavelength conversion members No. 1 and No. 2) of Example 1 and Example 3. Specifically, a polyimide tape (manufactured by 3M Co., Ltd.) was attached to the surface of the wavelength conversion body of the wavelength conversion member, and then the end of the attached tape was gripped and peeled off. Thereby, it was observed whether the wavelength converter peeled off from the substrate.
  • No. 2 did not have peeling of the wavelength converter in the whole area of the wavelength converter which peeled the tape.
  • the wavelength conversion member of the present invention even when the excitation light with high power density is irradiated, the wavelength conversion member with high light extraction efficiency and power density of output light can be obtained.
  • Wavelength conversion member 10 Substrate 20 Light reflection film 30, 30A, 30B, 130 Wavelength conversion body 40, 140 Phosphor particles 50, 50A, 50B, 150 Binder layer 51 Nanoparticle 52 fixed particle 55 Fixing auxiliary material 58 Nano air gap 60, 60A, 60B Excitation light 70 Fluorescence 71, 81 Output light 72, 82 In-plane guided light 73, 83 Optical loss in light reflection film 20 90A, 90B Output light spot diameter

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Multimedia (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Optical Filters (AREA)
  • Semiconductor Lasers (AREA)
  • Led Device Packages (AREA)

Abstract

本発明の波長変換部材1は、基板10と、基板10の表面側に設けられ、励起光60により励起される蛍光体粒子40と、隣接する蛍光体粒子40同士を固着又は接着するバインダ層50と、を含む波長変換体30と、基板10と波長変換体30との界面の少なくとも一部に設けられ、蛍光体粒子40が放射する蛍光70を反射する光反射膜20と、を備え、蛍光体粒子40の屈折率は、バインダ層50の屈折率よりも大きい。前記バインダ層は、内部に平均径300nm以下の空隙であるナノ空隙を含むことが好ましい。

Description

波長変換部材
 本発明は、フォトルミネッセンスを利用する波長変換部材に関する。
 従来、フォトルミネッセンスを利用する波長変換体として、励起光の照射により発光する複数個の蛍光体粒子と、これら複数個の蛍光体粒子を保持するバインダ層と、から構成されるものが知られている。また、近年、波長変換体には、光出力の向上のために、パワー密度の高い励起光を照射されることが望まれている。例えば、励起光としてレーザー光源等のパワー密度の高い励起光が用いられるようになってきている。その中でも、波長変換体と基板の界面に光反射膜を設け、波長変換体で発生した蛍光や励起光の一部を反射させることで、波長変換体からの光取出し効率を向上させようとする形態が公知である。
 例えば、特許文献1に蛍光体プレートから成る波長変換体と基板の間に反射層を設ける方法が公開されている。また、特許文献2に酸化物前躯体を用いて蛍光体粒子をシリカで保持する方法が公開されている。
特開2015-119046号公報 特開2015-38960号公報
 しかしながら、特許文献1に開示された波長変換体は、YAG等の蛍光体を用いるため、波長変換体の屈折率が例えば1.8程度と大きい。また、特許文献2に開示された波長変換体は、シリカ等からなるバインダ層の屈折率が1.45~1.50程度と大きい。ここで、特許文献1や特許文献2に開示された波長変換体のように、波長変換体そのものや蛍光体を包むバインダ層の屈折率が大きいと、面内導波光が増大し、出力光スポット径が大きくなり、波長変換体の変換効率が低くなる、という問題が生じる。面内導波光について、図2を参照して説明する。図2は、バインダ層150の屈折率が大きい従来の波長変換部材100の模式的な断面図である。なお、図2に示す励起光60A及び60Bは、便宜的に示したものであり、通常は、励起光60A及び60Bの一方のみが波長変換体130内に入射されることが多い。
 図2に示すように、波長変換体130の内部へ進入した励起光60の一部や、蛍光体粒子140から発する蛍光70の一部は、バインダ層50内で光反射膜20と空気界面との間を全反射しながら面内導波する面内導波光82となる。ここで、光反射膜20は、波長変換体130の出力や変換効率を高めるために、基板10の表面のうちの波長変換体130側の表面に設けられる光反射膜である。
 光反射膜20としては、アルミニウム、銀等の金属膜や、ダイクロイックミラー等の誘電体多層膜、公知の光反射物質が用いられる。金属膜は、光の一部を吸収し、熱に変換する性質を有する。誘電体多層膜は、反射率に入射角度や波長依存性があるため、一部の光を反射せずに透過させる性質を有する。これらの性質をまとめて、本願では便宜上、光反射膜における光損失とよぶ。図2に示すように、面内導波光82は、面内導波するにつれて、出力光81の出射や光反射膜20における光損失83が生じることにより、強度が減衰する。図2に、出力光81の集合体からなる出力光の径を概念的に出力光スポット径90Bとして示す。
 なお、面内導波光82は、励起光60や蛍光70を構成する成分のうち、バインダ層50と空気界面の屈折率段差及びスネルの法則により決定される臨界角より大きな成分からなる。このため、通常、バインダ層150の屈折率が大きいほど、蛍光70等から出力光81の生じる割合が少なく、面内導波光82の生じる割合が多くなる。
 図2より、出力光81に比較して面内導波光82の割合が多い波長変換部材100は、光反射膜20における光損失83の頻度が高いため、出力光81の強度が低下し光の変換効率が低くなり、この結果、光取り出し効率が低くなることが分かる。また、図2より、出力光81に比較して面内導波光82の割合が多い波長変換部材100は、バインダ層150内での面内導波光82の反射の回数が多くなり、出力光スポット径90Bが大きくなる。このため、出力光81に比較して面内導波光82の割合が多い波長変換部材100は、出力光のパワー密度が低いことが分かる。したがって、出力光に比較して面内導波光の割合が多い波長変換部材100では、光取り出し効率及び出力光のパワー密度が共に低いことが分かる。
 ところで、近年、波長変換体及び波長変換部材には、出力光のパワー密度の高い光源であることが望まれており、励起光にレーザー光等のハイパワーでスポット径の小さなものを用いた、出力光のパワー密度の高い光源が開発されている。しかしながら、特許文献2に開示された波長変換体を含む波長変換部材は、バインダ層の屈折率が大きくバインダ層内の面内導波光の割合が多い。このため、特許文献2に開示された波長変換体を含む波長変換部材は、光取り出し効率及び出力光のパワー密度が共に低いという問題があった。
 また、特許文献1及び特許文献2に開示された波長変換体には、上記のように、出力光スポット径が大きくなり、波長変換体の変換効率が低くなるため、出力光のパワー密度が低いという問題があった。
 本発明は、上記課題に鑑みてなされたものである。本発明は、パワー密度の高い励起光が照射された場合でも光取り出し効率及び出力光のパワー密度の高い波長変換部材を提供することを目的とする。
 上記課題を解決するために、本発明の態様に係る波長変換部材は、基板と、前記基板の表面側に設けられ、励起光により励起される蛍光体粒子と、隣接する前記蛍光体粒子同士を固着又は接着するバインダ層と、を含む波長変換体と、前記基板と前記波長変換体との界面の少なくとも一部に設けられ、前記蛍光体粒子が放射する蛍光を反射する光反射膜と、を備え、前記蛍光体粒子の屈折率は、前記バインダ層の屈折率よりも大きいことを特徴とする。
第1及び第2の実施形態に係る、バインダ層の屈折率が小さい波長変換部材1A及び1Bの模式的な断面図である。 従来の、バインダ層の屈折率が大きい波長変換部材100の模式的な断面図である。 図1に示した波長変換体30(30A及び30B)を拡大して模式的に示す断面図である。 図3に示した第1の実施形態に係る波長変換部材1Aの波長変換体30Aにおける部分Aを拡大して模式的に示す断面図である。 図3に示した第2の実施形態に係る波長変換部材1Bの波長変換体30Bにおける部分Aを拡大して模式的に示す断面図である。 実施例3に係る波長変換部材を構成する波長変換体30Bの破断面を示すSEM(走査型電子顕微鏡)写真である。 図6の部分Bを拡大して示すSEM写真である。 実施例及び参考例における、ナノ空隙の空隙径とlog微分細孔容積分布との関係を示すグラフである。
 以下、本実施形態に係る波長変換部材について図面を参照して説明する。
[波長変換部材]
 (第1の実施形態)
 図1は、第1及び第2の実施形態に係る、バインダ層の屈折率が小さい波長変換部材1A及び1Bの模式的な断面図である。なお、第2の実施形態に係る波長変換部材1Bは、第1の実施形態に係る波長変換部材1Aに比較して、バインダ層50(50A、50B)における微視的な構造が異なり、これ以外の構造は同じである。このため、図1には、第1の実施形態に係る波長変換部材1Aに併せて第2の実施形態に係る波長変換部材1Bも示す。
 なお、第1の実施形態に係る波長変換部材1Aを構成するバインダ層50Aと、第2の実施形態に係る波長変換部材1Bを構成するバインダ層50Bと、の微視的な構造の差異の概要は、以下のとおりである。すなわち、第1の実施形態に係る波長変換部材1Aを構成するバインダ層50Aは、バインダが固着した固着体からなり、隣接する蛍光体粒子40、40同士を固着するものである。具体的には、バインダ層50Aは、図4に示すように、ナノ粒子51の固着体からなる。ここで、固着とは、後述のように、ナノ粒子等の固体同士が分子間力により固定されることを意味する。
 一方、第2の実施形態に係る波長変換部材1Bを構成するバインダ層50Bは、バインダが接着した複合硬化体からなり、隣接する蛍光体粒子40、40同士を接着するものである。ここで、接着とは、後述のように、ナノ粒子等の固体同士が、分子間力以外の力、例えば、共有結合、イオン結合、水素結合等の化学結合により固定されることを意味する。具体的には、バインダ層50Bは、図5に示すように、ナノ粒子51と、隣接するナノ粒子51、51同士を結合する固着補助物質55と、を含む複合硬化体からなるものである。
 このように、第1の実施形態に係る波長変換部材1Aを構成するバインダ層50Aと、第2の実施形態に係る波長変換部材1Bを構成するバインダ層50Bと、の間には、バインダが固着した固着体と、バインダが接着した複合硬化体という差異がある。しかし、バインダ層50Aとバインダ層50Bとの微視的構造の差異は図1には現れないため、図1に波長変換部材1Aと波長変換部材1Bとを、併せて示す。なお、バインダ層50は、バインダ層50A及びバインダ層50Bを包含する概念である。このため、バインダ層50は、隣接する蛍光体粒子40、40同士を固着又は接着するバインダ層50ということができる。第2の実施形態に係る波長変換部材1Bについては後述する。
 図1に示すように、第1の実施形態に係る波長変換部材1Aは、基板10と、波長変換体30A(30)と、光反射膜20と、を備える。波長変換部材1Aは、図示しない発光素子が放射する励起光により波長変換体30Aが蛍光を放射する部材である。発光素子としては、レーザー光を放射する発光素子等の公知の発光素子を用いることができる。発光素子は、励起光としてレーザー光を放射するものであると、パワー密度の高い励起光を波長変換部材1Aに照射可能であることから、光取り出し効率及び出力光のパワー密度の高い波長変換部材1Aを得やすいため好ましい。
 光反射膜20は、基板10と波長変換体30Aとの界面の少なくとも一部に設けられ、波長変換体30A中に含まれる蛍光体粒子40が放射する蛍光70および励起光60の一部を反射する膜である。ここで、「基板10と波長変換体30Aとの界面の少なくとも一部」とは、「基板10と波長変換体30Aとの界面の全面積の少なくとも一部の面積を有する界面」を意味する。すなわち、光反射膜20は、基板10と波長変換体30Aとの界面の全面積に相当する範囲に形成されていてもよいし、前記界面の面積の一部に相当する範囲に形成されていてもよい。
 (基板)
 基板10は、表面に形成された波長変換体30Aを補強するとともに、材質及び厚みの選択により、波長変換体30Aに対して好適な光学的特性、熱的特性を付与するものである。基板10と波長変換体30Aとの界面の少なくとも一部には、光反射膜20が設けられる。
 基板10としては、例えば、ガラス及びサファイア等の透光性を有するものや、金属基板等の透光性を有しないものが用いられる。金属基板としては、例えば、アルミニウム、銅等からなる金属基板が用いられる。
 基板10が透光性を有する場合、基板10を介して波長変換体30A中の蛍光体粒子40に光を照射することが可能になる。ここで、透光性を有するとは、材質が可視光(波長380nm~800nm)に対して透明であることを意味する。また、透明とは、本実施形態において、材質における光の透過率が好ましくは80%以上、より好ましくは90%以上であることを意味する。さらに、基板10に用いられる材質による可視光の吸光係数が極力低いと、基板10を介して波長変換体30A中の蛍光体粒子40に十分に光を照射することが可能であるため好ましい。このように、基板10が透光性を有する材質からなると、小型なシステムを構築しやすくなるため好ましい。
 基板10が透光性を有する場合、励起光60は、励起光60Bのように基板10及び光反射膜20を介して波長変換体30Aに照射される。ここで、励起光60Bとは、励起光60のうち、基板10及び光反射膜20を介して波長変換体30Aに照射される励起光60を意味する。なお、後述の励起光60Aとは、励起光60のうち、波長変換体30Aの表面のうち基板10と反対側の表面から波長変換体30Aに照射される励起光60を意味する。
 光反射膜20は、膜構造や膜厚を調整することにより、基板10及び光反射膜20を介して励起光60Bが透過可能になるように形成される。また、光反射膜20は、膜構造や膜厚を調整することにより、さらに一部透光性を有するようにしてもよい。ここで、一部透光性とは、後述のように、特定波長や入射角度、偏光方向の光を選択的に透過させる性質を意味する。
 また、基板10が金属基板であると、放熱性を高めやすいため好ましい。すなわち、基板10は、熱伝導率が高いと、波長変換体30Aにおいて、励起光60(60A)が蛍光70に変換される過程等で生じる熱を効率的に除去可能となる。このため、基板10の熱伝導率が高いと、蛍光体粒子40の温度消光や、バインダ層50Aの劣化や焦げを抑制しやすいため好ましい。基板10が金属基板である場合、励起光60は、励起光60Aのように波長変換体30Aの表面のうち基板10と反対側の表面から波長変換体30Aに照射される。
 (波長変換体)
 波長変換体30Aは、基板10の表面側に設けられる。ここで、波長変換体30Aが基板10の表面側に設けられるとは、波長変換体30Aが、基板10の表面に間接的又は直接的に接触する形態で設けられることを意味する。なお、波長変換体30Aと基板10との界面の少なくとも一部には光反射膜20が設けられる。このため、波長変換体30Aの少なくとも一部は、通常、基板10の表面と直接接触しない。
 波長変換体30Aは、励起光60により励起される蛍光体粒子40と、隣接する前記蛍光体粒子40同士を固着するバインダ層50Aと、を含む。波長変換体30Aは、通常、蛍光体粒子40がバインダ層50Aにより固着された膜形状のものとなる。波長変換体30Aの膜厚は、例えば10μm~1000μmである。
 波長変換体30Aは、照射された励起光60のエネルギの一部を蛍光体粒子40が吸収し、蛍光体粒子40が励起光60とは別の波長の蛍光70を発するものである。図1に示すように、励起光60は、励起光60Bのように基板10及び光反射膜20を介して波長変換体30Aに照射されてもよいし、励起光60Aのように波長変換体30Aの表面のうち基板10と反対側の表面から波長変換体30Aに照射されてもよい。
 なお、波長変換部材1において、波長変換体30Aの表面のうち基板10と反対側の表面とは、波長変換体30Aの表面のうち空気と接する表面であり、いわゆる空気界面である。また、図1に示す励起光60A及び60Bは、便宜的に示したものであり、通常は、励起光60A及び60Bの一方のみが波長変換体30A内に入射されることが多い。
 上記のように励起光60Bが基板10及び光反射膜20を介して波長変換体30Aに照射される場合、通常、基板10として透光性を有するものが用いられ、光反射膜20として後述の誘電体多層膜等の一部透光性を有するものが用いられる。ここで、一部透光性とは、特定波長や入射角度、偏光方向の光を選択的に透過させる性質を意味する。一部透光性を有する光反射膜20としては、例えば、励起光60Bの波長帯域の光を透過させ、蛍光70の波長帯域の光を反射させる特性をもつものを、好適に用いることができる。また、励起光60Aが波長変換体30Aの表面のうち基板10と反対側の表面から波長変換体30Aに照射される場合、通常、基板10として透光性を有しないものが用いられ、光反射膜20として任意のものが用いられる。ここで、任意の光反射膜20とは、後述の金属膜や、誘電体多層膜、拡散反射膜等が用いられる。
 以下、波長変換体30Aを構成する蛍光体粒子40及びバインダ層50Aについて説明する。
  <蛍光体粒子>
 蛍光体粒子40は、フォトルミネッセンスが可能な粒子である。蛍光体粒子40としては、フォトルミネッセンスが可能で、かつバインダ層50Aの屈折率よりも大きい屈折率を有する限り、その種類は特に限定されない。蛍光体粒子としては、例えば、YAG、すなわちYAl12からなるガーネット構造の結晶の粒子や、(Sr,Ca)AlSiN:Euからなる蛍光体粒子が用いられる。
 蛍光体粒子の平均粒子径は、通常100μm以下、好ましくは30μm以下である。蛍光体粒子の平均粒子径が上記範囲内にあると、蛍光体内部に全反射により閉じ込められる光の導波が粒子径の範囲に限定されることから、出力光スポット径90Aを小さくすることが可能であるため好ましい。また、蛍光体粒子の平均粒子径が上記範囲内にあると、波長変換部材1Aの出力光の色ばらつきを低減しつつ、塗布法等の安価な製造プロセスで蛍光体粒子の製造が可能であるため好ましい。
 蛍光体粒子の平均粒子径は、任意に前処理加工した波長変換体30Aを、走査型電子顕微鏡(SEM)等で観察し、統計的に十分有意な、例えば100個の粒子の直径の平均値として求められる。
 また、蛍光体粒子の組成は、エネルギー分散型X線分析法(EDX)やX線回折(XRD)の分析等の公知の分析方法によって、判別が可能である。
 蛍光体粒子は、同じ組成の蛍光体からなるものであってもよいし、2種以上の組成の蛍光体の粒子の混合体であってもよい。
 蛍光体粒子40の屈折率は、バインダ層50Aの屈折率よりも大きい。蛍光体粒子40の屈折率がバインダ層50Aの屈折率よりも大きいと、全反射により光が蛍光体内部に閉じ込められる。このため、バインダ層50A内の面内導波光72は蛍光体粒子40の粒子径の範囲に限定される成分が多くなる。したがって、蛍光体粒子40の屈折率がバインダ層50Aの屈折率よりも大きいと、出力光スポット径90Aを小さくしやすいため好ましい。
  <バインダ層>
 バインダ層50Aは、波長変換体30Aを構成し、バインダが固着した固着体からなり、隣接する蛍光体粒子40同士を固着するものである。バインダ層50Aは、複数個の蛍光体粒子40を固着させる物質である。ここで、固着とは、ナノ粒子等の固体同士が分子間力により固定されることを意味する。
 バインダ層50Aは、屈折率が好ましくは1.43以下、より好ましくは1.38~1.40である。なお、屈折率1.43以下が好ましい理由は、蛍光体粒子を分散させるマトリックスとして一般的に用いられるシリコーン樹脂の屈折率が1.43であることから、バインダ層50Aにシリコーン樹脂以下の屈折率を付与することにある。バインダ層50Aの屈折率が1.43以下であると、バインダ層50A内で面内導波光72の生じる割合が少なく、波長変換部材1Aの光取り出し効率が高くなり、出力光スポット径90Aを小さくすることが可能である。
 バインダ層50Aについて図面を参照して説明する。図3は、図1に示した波長変換体30(30A及び30B)を拡大して模式的に示す断面図である。以下の説明では、図3を、図1に示した波長変換体30Aを参照するために用いる。図4は、図3に示した第1の実施形態に係る波長変換部材1Aの波長変換体30Aにおける部分Aを拡大して模式的に示す断面図である。
 図3及び図4に示すように、波長変換体30Aを構成するバインダ層50Aは、バインダが固着した固着体からなり、隣接する蛍光体粒子40、40同士を固着するものである。具体的には、バインダ層50Aは、図4に示すように、ナノ粒子51の固着体からなる。
 バインダ層50Aを形成するバインダの材質、具体的には、ナノ粒子51の材質は、バインダ層50Aの屈折率が、蛍光体粒子40の屈折率よりも小さくなるように選択される。バインダ層50Aの屈折率が蛍光体粒子40の屈折率よりも小さいと、全反射により光が蛍光体内部に閉じ込められる。このため、バインダ層50A内の面内導波光72は蛍光体粒子40の粒子径の範囲内にある波長領域に限定される光成分を多く含むものとなる。したがって、バインダ層50Aの屈折率が蛍光体粒子40の屈折率よりも小さいと、出力光スポット径90Aを小さくしやすいため好ましい。また、バインダ層50Aの屈折率は、通常、空気の屈折率である1よりも大きい。
 バインダ層50Aの材質、具体的には、ナノ粒子51の材質としては、バインダ層50Aの屈折率が蛍光体粒子40の屈折率よりも小さくなるような、無機物質又は有機物質が好ましく用いられる。
 ナノ粒子51が、バインダ層50Aの屈折率が1.43以下になる無機物質であると、レーザー光等のパワー密度が高い励起光を用いる場合に、バインダ層50Aに有機物質の発熱による焼け焦げが発生せず、バインダ層50Aの耐熱性が高くなるため、好ましい。すなわち、ナノ粒子51が、バインダ層50Aの屈折率が1.43以下になる無機物質であると、バインダ層50Aの耐熱性が高くなるため好ましい。一方、ナノ粒子51が、バインダ層50Aの屈折率が1.43以下になる有機物質であると、バインダ層50Aの成形や色ばらつきが少ない波長変換部材の作製が容易であるため好ましい。このような無機物質又は有機物質としては、例えば、屈折率が1.43以下の無機物質、又は屈折率が1.43以下の有機物質が好ましく用いられる。
 屈折率が1.43以下の無機物質としては、例えば、フッ化物、SiO等が用いられる。フッ化物としては、例えば、フッ化マグネシウム(屈折率1.38)、フッ化カルシウム(屈折率1.399)、フッ化リチウム(屈折率1.392)等が用いられる。フッ化物のうち、フッ化マグネシウムは、安定な物質で信頼性が高く、かつ屈折率が低いため好ましい。
 屈折率が1.43以下の有機物質としては、例えば、フッ素を含む有機物が用いられる。フッ素を含む有機物としては、例えば、フッ素樹脂(屈折率1.35)、フッ素ゴム(屈折率=1.38)等が用いられる。フッ素樹脂としては、例えば、ポリテトラフルオロエチレンが用いられる。フッ素を含む有機物のうち、フッ素樹脂は、屈折率が低いため好ましい。
 ナノ粒子51は、平均粒子径が、通常100nm以下、好ましくは50nm以下である。ナノ粒子51の平均粒子径が上記範囲内にあると、バインダ層50Aを構成するナノ粒子51の固着体の固着強度が高いため好ましい。ナノ粒子51の平均粒子径は、蛍光体粒子の平均粒子径と同様にして求めることができる。
 また、ナノ粒子51としては、中実構造及び中空構造のナノ粒子のいずれも用いることができる。ナノ粒子51が中空構造であると、ナノ粒子51の中空部の屈折率が大気の屈折率である1.0となるため、中空なナノ粒子の屈折率が、中実なナノ粒子の屈折率と大気の屈折率(1.0)との間の値になる。このため、ナノ粒子51が中空構造であると、バインダ層50Aの屈折率が蛍光体粒子40の屈折率よりも小さくなったり、1.43以下になったりしやすい。中空構造のナノ粒子としては、コア-シェル型、貫通孔型等の様々な形態のナノ粒子が公知である。本実施形態の波長変換部材1Aではこれらのいずれも用いることができる。
 バインダ層50Aがナノ粒子51の固着体52からなる場合、ナノ粒子51の固着体52の内部、例えば隣接するナノ粒子51、51の表面間に、平均径300nm以下の空洞であるナノ空隙を1個以上含んでいてもよい。ここで、バインダ層50Aにおけるナノ空隙とは、隣接するナノ粒子51、51の表面同士が結合した固着体52において、固着体52の表面に開口せずに固着体52内のナノ粒子51、51の表面間に形成される平均径300nm以下の空洞である。図4には、ナノ空隙は図示しない。なお、ナノ粒子51が中空構造である場合、ナノ粒子51内の空隙は、ナノ空隙に該当しない。
 このナノ空隙の屈折率は大気の屈折率である1.0となる。このため、たとえばバインダ層50Aのナノ粒子51がSiOである場合、ナノ空隙を含む、SiOナノ粒子の固着体、すなわちバインダ層50Aの実効的な屈折率は、SiOナノ粒子51自体の屈折率よりも低下する。具体的には、ナノ粒子51がSiOであるバインダ層50Aの実効的な屈折率は、ナノ空隙の存在によりSiOナノ粒子51自体の屈折率よりも低下して、通常、1.43以下になる。このバインダ層50Aの実効的な屈折率は、バインダ層50Aの材料の屈折率及び空隙率を用いて、マクスウェル・ガーネットの式から求めることができる。また、ナノ空隙は厳密に真球の形状を成していなくてもよい。
 このように、ナノ空隙をバインダ層50A内部に形成すると、ナノ粒子51自体の材料の屈折率が1.43より大きな場合でも、実効的な屈折率を1.43以下にしやすくなる。このため、ナノ空隙をバインダ層50A内部に形成する手法を用いると、ナノ粒子51の材料の選択肢が広がり、バインダ層50Aの設計自由度が向上する。
 なお、ナノ空隙の平均径とは、ナノ空隙を同容積の真球と仮定した場合の平均直径を意味する。ナノ空隙の平均径は、例えば、ガス吸着法等の公知の分析手法で求められる。ナノ空隙は、平均径が300nm以下であるため、バインダ層50Aの可視光領域の屈折率に影響を与える。
 バインダ層50Aは、平均径が300nmを超える空隙、すなわちナノ空隙よりも平均径の大きい空隙であるマイクロ空隙や、平均径が300nmを超える不純物であるマイクロ不純物を含んでいてもよい。例えば、バインダ層50Aが平均径300nmを超える空隙であるマイクロ空隙を含んでいてもよい。ここで、バインダ層50Aにおけるマイクロ空隙とは、隣接するナノ粒子51、51の表面同士が結合した固着体52において、固着体52の表面に開口せずに固着体52内のナノ粒子51、51の表面間に形成される平均径が300nmを超える空洞である。
 マイクロ空隙やマイクロ不純物の平均径は、ナノ空隙の平均径と同様にして算出される。マイクロ空隙やマイクロ不純物は、平均径が300nmを超えることから光を散乱させる効果が顕著となるため、バインダ層50Aの可視光領域の屈折率に影響を与えない。このため、バインダ層50Aが、マイクロ空隙やマイクロ不純物を含んでいても、本実施形態の、パワー密度の高い励起光が照射された場合でも光取り出し効率及び出力光のパワー密度の高い波長変換部材が得られる、という効果は十分に得られる。
 また、バインダ層50Aがマイクロ空隙やマイクロ不純物を適当量含むと、マイクロ空隙やマイクロ不純物が励起光60や蛍光70を散乱させてバインダ層50Aでの混色性が良好になる。このため、バインダ層50Aがマイクロ空隙やマイクロ不純物を適当量含むと、色ずれの少ない白色光を得やすいため好ましい。
 バインダ層50A中におけるマイクロ空隙やマイクロ不純物の存在の有無やこれらの存在比率は、以下の方法により判別、測定が可能である。すなわち、電子顕微鏡やCTスキャン法による撮影画像データの解析、窒素吸着法等の公知の分析方法、又はこれらの分析方法の組み合わせ、周辺技術等により判別、測定が可能である。
 バインダ層50A中におけるマイクロ空隙やマイクロ不純物の同定は、EDX法、XRD法等の公知の分析方法、又はこれらの分析方法の組み合わせ、周辺技術等により可能である。
 バインダ層50Aは発光物質からなっていてもいいし非発光物質からなっていてもよい。ここで、発光物質とは、図示しない発光素子が放射する励起光で励起されることにより蛍光や燐光等の発光をする物質、又は発光素子が放射する励起光以外の光により発光する物質を意味する。非発光物質とは、発光物質以外の物質を意味する。
 (光反射膜)
 光反射膜20は、基板10と波長変換体30Aとの界面の少なくとも一部に設けられ、波長変換体30A中に含まれる蛍光体粒子40が放射する蛍光70および励起光60の一部を反射する膜である。光反射膜20は、通常、基板10の表面のうち、波長変換体30A側の表面の少なくとも一部を被覆するように設けられる。波長変換部材1Aは、光反射膜20が波長変換体30A中の蛍光体粒子40が放射する蛍光70および励起光60の一部を反射するため、光取り出し効率が高い。
 光反射膜20は、光の反射率が80%以上100%未満、好ましくは90%以上100%未満である。換言すれば、光反射膜20は、光の吸収率が0%を超え20%以下、好ましくは0%を超え10%以下である。光反射膜20としては、例えば、アルミニウム、銀等の金属膜や、誘電体多層膜が好適に用いられる。なお、アルミニウムは、基板10でも用いられる材質である。基板10がアルミニウムである場合、基板10の表面の一部を光反射膜20とみなすことができる。光反射膜20において、誘電体多層膜とは、異なる屈折率を有する複数種の誘電体材料を用いた、光学薄膜の積層体を意味する。誘電体多層膜は、通常、一部透光性を有する。
 光反射膜20の膜厚は、目的とする反射率に応じて任意に設定することができる。例えば、光反射膜20が金属膜である場合、光反射膜20の膜厚は、通常0.1μm~1μmである。金属膜からなる光反射膜20の膜厚が0.1μm~1μmであると、蒸着法やスパッタ法等で平坦性、均一性の高い光反射膜20が得られるため好ましい。
 また、光反射膜20が拡散反射膜である場合、光反射膜20の膜厚は、通常1μm~1mmである。拡散反射膜からなる光反射膜20の膜厚が1μm~1mmであると、十分な反射率が得られるため好ましい。
 なお、光反射膜20と基板10とは、場合により、同じ材質になることがある。例えば、基板10をアルミニウム製とし、光反射膜20をアルミニウム製とすることができる。この場合、アルミニウム製の基板10とアルミニウム製の光反射膜20とは、別途設けてもよいが、アルミニウム製の基板10の表面の一部をアルミニウム製の光反射膜20とみなしてもよい。基板10の表面の一部を光反射膜20とみなす場合、光反射膜20の膜厚は、特に規定されない。
  <波長変換部材の作用>
 図1を参照して、波長変換部材1Aの作用を説明する。図1に示すように、波長変換体30Aの内部へ進入した励起光60の一部や、蛍光体粒子40から発する蛍光70の一部は、バインダ層50A内で光反射膜20と空気界面との間を全反射しながら面内導波する面内導波光72となる。面内導波光72は、面内導波するにつれて、出力光71の出射や光反射膜20における光損失73が生じることにより、強度が減衰する。具体的には、出力光71(71a、71b)及び光反射膜20における光損失73により、面内導波光72の強度は、面内導波光72a1、72a2、72b1、72b2の順番で後者ほど減衰する。図1に、出力光71(71a、71b及び71c)の集合体からなる出力光の径を概念的に出力光スポット径90Aとして示す。
 なお、面内導波光72は、励起光60や蛍光70を構成する成分のうち、バインダ層50Aと空気界面の屈折率段差及びスネルの法則により決定される臨界角より大きな成分からなる。このため、通常、バインダ層50Aの屈折率が小さいほど、蛍光70等から面内導波光72が生じる割合が少なくなる。本実施形態の波長変換部材1Aは、蛍光体粒子40の屈折率がバインダ層50Aの屈折率よりも大きい。すなわち、波長変換部材1Aは、バインダ層50Aの屈折率が蛍光体粒子40の屈折率よりも小さい。また、バインダ層50Aの屈折率は、好ましくは、1.43以下である。このため、本実施形態の波長変換部材1Aによれば、蛍光70等から面内導波光72が生じる割合が少なくなる。
 このように、本実施形態の波長変換部材1Aは、バインダ層50A内で面内導波光72の生じる割合が少なくなることから光反射膜20における光損失73の発生頻度が小さくなる。このため、本実施形態の波長変換部材1Aによれば、光取り出し効率が高くなる。また、波長変換部材1Aは、面内導波光72の生じる割合が少ないことから上記のように出力光スポット径90Aが小さくなる。このため、本実施形態の波長変換部材1Aによれば、出力光のパワー密度が高い。したがって、本実施形態の波長変換部材1Aによれば、光取り出し効率が高く、かつ出力光のパワー密度が高い波長変換部材1Aが得られる。
 ところで、波長変換体30Aから取り出される蛍光70及び波長変換体30Aにより吸収されなかった励起光60や出力光71の合計のエネルギ量を、照射された励起光60のエネルギ量、で除した割合を変換効率という。変換効率が高いことは、より少ないエネルギ量で出力の大きな光が得られることを示す。近年、照明装置やプロジェクタ装置等では、光取り出し効率の高いことが望まれている。本実施形態の波長変換部材1Aは、上記のように光取り出し効率が高いため、照明装置やプロジェクタ装置等の光学機器に好適である。
 また、波長変換部材1Aでは、通常、波長変換体30Aを構成するバインダ層50Aの屈折率が空気の屈折率よりも大きい。このため、波長変換部材1Aでは、波長変換体30Aと外部(空気)との界面、すなわち空気界面において全反射が発生する。このため、波長変換部材1Aの波長変換体30A内部の励起光60及び蛍光70の一部は、上記のように、全反射と光反射膜20での反射を繰り返しながら、波長変換体30A内部を面内導波する面内導波光となる。
 なお、図2に示すように、バインダ層150の屈折率が大きい従来の波長変換部材100は、面内導波光82が多く、出力光スポット径90Bが大きくなる。このため、従来の波長変換部材100では、出力光のスポット径が広がることで、そのパワー密度が低下する。これに対し、本実施形態の波長変換部材1Aは、バインダ層50A及び蛍光体粒子40の屈折率が所定の関係にあるため、図1に示すように面内導波光72が少なく、出力光スポット径90Aが小さく、パワー密度が高い。このように本実施形態の波長変換部材1Aは、出力光のパワー密度が高いため、照明装置やプロジェクタ装置等の光学機器に好適である。
 本実施形態の波長変換部材1Aでは、面内導波光72の生じる割合が少なくなる一方で、蛍光体粒子40とバインダ層50Aとの屈折率の差が大きくなる。このため、一見すると、波長変換部材1Aは、蛍光体粒子40からの光取り出し効率が低下することにより、従来例と比較して波長変換部材1Aの光取り出し効率が向上しないようにも思われる。
 しかし、波長変換部材1Aにおいて蛍光体粒子40内部で全反射を繰り返しながらバインダ層50Aに取り出される蛍光70は、光反射膜20の存在に由来する光損失73等の光減衰作用をほとんど受けない。すなわち、一旦蛍光体粒子40とバインダ層50Aとの界面での反射により蛍光体粒子40内部から取り出されなかった光は、バインダ層50Aとの界面で角度を変えながら蛍光体粒子40内部で反射を繰り返す。そして、この蛍光体粒子40内部で反射を繰り返した光は、最終的にはほとんど減衰することなくバインダ層50A側に取り出される。
 なお、上記の蛍光体粒子40内部で反射を繰り返す光の空間的な伝搬範囲は、必然的に蛍光体粒子40の粒径範囲に限定される。このため、波長変換部材1Aでは、蛍光体粒子40の粒径を制御することにより、出力光のスポット径の拡大を抑制しやすい。従って、本実施形態の波長変換部材1Aは、光損失73を抑制しつつその空間的な伝搬範囲を小さくすることができるため、従来例よりも高い光取り出し効率と従来例よりも高い出力光のパワー密度が得られる。
  <波長変換部材の製造方法>
 波長変換部材1Aは、例えば、光反射膜20上に波長変換体30Aを形成することにより製造される。波長変換体30Aは、塗布法等のウェットプロセス等の、公知かつ任意の方法で作製することができる。塗布法等のウェットプロセスは、生産コストが低いため好ましい。
 (波長変換部材の効果)
 第1の実施形態に係る波長変換部材によれば、パワー密度の高い励起光が照射された場合でも光取り出し効率及び出力光のパワー密度の高い波長変換部材が得られる。
 (第2の実施形態)
 次に、第2の実施形態について説明する。図1は、第1及び第2の実施形態に係る、バインダ層の屈折率が小さい波長変換部材1A及び1Bの模式的な断面図である。なお、図1には、第2の実施形態に係る波長変換部材1Bに併せて第1の実施形態に係る波長変換部材1Aも示されている。以下の説明では、図1を、第2の実施形態に係る波長変換部材1Bを参照するために用いる。
 図1に示すように、第2の実施形態に係る波長変換部材1Bは、基板10と、波長変換体30B(30)と、光反射膜20と、を備える。第2の実施形態に係る波長変換部材1Bは、第1の実施形態に係る波長変換部材1Aに比較して、バインダ層50Aに代えてバインダ層50Bを用いる点で異なり、他の構造は同じである。このため、以下の第2の実施形態に係る波長変換部材1Bの説明では、第1の実施形態に係る波長変換部材1Aと同じ部材に同じ符号を付して、構成及び作用の説明を適宜省略する。すなわち、以下の説明は、主にバインダ層50Bに関して行う。
  <バインダ層>
 バインダ層50Bは、波長変換体30Bを構成し、バインダが接着した複合硬化体からなり、隣接する蛍光体粒子40、40同士を接着するものである。バインダ層50Bは、複数個の蛍光体粒子40を接着させる物質である。ここで、接着とは、ナノ粒子等の固体同士が、分子間力以外の力、例えば、共有結合、イオン結合、水素結合等の化学結合により固定されることを意味する。
 バインダ層50Bについて図面を参照して説明する。図3は、図1に示した波長変換体30(30A及び30B)を拡大して模式的に示す断面図である。以下の説明では、図3を、図1に示した波長変換体30Bを参照するために用いる。図5は、図3に示した第2の実施形態に係る波長変換部材1Bの波長変換体30Bにおける部分Aを拡大して模式的に示す断面図である。
 図3及び図5に示すように、波長変換体30Bを構成するバインダ層50Bは、バインダが接着した複合硬化体からなり、隣接する蛍光体粒子40、40同士を接着するものである。
 具体的には、バインダ層50Bは、図5に示すように、ナノ粒子51と、隣接するナノ粒子51、51同士を結合する固着補助物質55と、を含む複合硬化体からなる。より具体的には、複合硬化体からなるバインダ層50Bは、ナノ粒子51と、隣接するナノ粒子51、51同士間に含浸しつつナノ粒子51を被覆して複数個のナノ粒子51を結合する固着補助物質55と、を含む。バインダ層50Bでは、固着補助物質55は、全てのナノ粒子51を被覆して複合硬化体を形成している。
 また、固着補助物質55は、平均径300nm以下の空洞であるナノ空隙58を内包している。ここで、バインダ層50Bにおけるナノ空隙58とは、固着補助物質55の表面に開口せずに固着補助物質55内に形成される平均径300nm以下の空洞である。なお、ナノ粒子51が中空構造である場合、ナノ粒子51内の空隙は、ナノ空隙に該当しない。
 バインダ層50Bは、第1の実施形態に係る波長変換部材1Aのナノ粒子51の固着体からなるバインダ層50Aにおいて、隣接するナノ粒子51、51間に固着補助物質55の原料を含浸させ硬化させたものに相当するものである。
 バインダ層50Bは、ナノ粒子51と固着補助物質55と、を含む複合硬化体からなるため、第1の実施形態に係る波長変換部材1Aのナノ粒子51の固着体からなるバインダ層50Aに比較して、バインダ層50Bの機械的強度が高い。このため、バインダ層50Bを含む波長変換体30Bは、第1の実施形態に係る波長変換部材1Aのバインダ層50Aを含む波長変換体30Aに比較して、機械的強度及び光反射膜20に対する剥離強度が高い。例えば、バインダ層50Aはナノ粒子51の固着体の結合力が小さいため固着体の崩壊により光反射膜20からナノ粒子51が剥離するおそれがあるが、バインダ層50Bは複合硬化体の結合力が大きいため光反射膜20から剥離するおそれが小さい。
 バインダ層50Bは、屈折率が好ましくは1.43以下、より好ましくは1.38~1.40である。バインダ層50Bの屈折率が1.43以下であると、バインダ層50B内で面内導波光72の生じる割合が少なく、波長変換部材1Bの光取り出し効率が高くなり、出力光スポット径90Aを小さくすることが可能である。
   [固着補助物質]
 固着補助物質55とは、ナノ粒子51とともに充填されることにより、バインダ層50B自体の密着性や、蛍光体粒子や基板に対するバインダ層50Bの密着性を高めるものである。固着補助物質55は、波長変換体30Bの機械的強度、例えば引っ掻きに対する波長変換体30Bの耐性や、バインダ層50Bと基板10との密着性である基板密着性を向上させる。また、固着補助物質55は、バインダ層50Bがナノ粒子51に加えて銀等の硫化性の高い物質を含む場合に、この物質を硫化から保護するガスバリアとしての機能も発現しうる。
 固着補助物質55の材質としては特に限定されないが、例えば無機物や有機物が用いられる。固着補助物質55の材質が無機物であると、耐熱性を高めることが可能であるため好ましい。固着補助物質55の材質が有機物であると、波長変換体30Bの製造ばらつきを抑制しやすいため好ましい。この製造ばらつきの抑制は、塗布法等のウェットプロセスによって波長変換体30Bを形成する際に、固着補助物質55を含む原料塗液中の蛍光体粒子の沈降速度が抑制されることや、原料塗液の粘度が安定することによるものである。
 無機物としては、例えば、ポリシラザン及びポリシラザン誘導体の少なくとも一方を前駆体とするシリカガラス(SiO)や、アルコキシシラン及びアルコキシシラン誘導体の少なくとも一方を前駆体とするシリカガラスを含む物質が用いられる。
 ポリシラザン及びポリシラザン誘導体の少なくとも一方を前駆体とするシリカガラスは、前駆体の加水分解で得られる。ここで、ポリシラザンとは、Si-N結合が1個以上連続した環状又は直鎖状のSi-N骨格構造を有し、かつSi及びNの側鎖が全てHである構造のポリマーを意味する。また、ポリシラザン誘導体とは、ポリシラザンを構成する側鎖又は末端基の1個以上がH以外の基、例えば炭化水素基で置換された構造のポリマーを意味する。ポリシラザン及びポリシラザン誘導体の少なくとも一方が加水分解されるとシリカガラスが得られる。例えば、ポリシラザンが分子中に(-SiHNH-)の構造を有する場合、加水分解反応により(-SiHNH-)からシリカガラスSiOが生成される。
 アルコキシシラン及びアルコキシシラン誘導体の少なくとも一方を前駆体とするシリカガラスは、前駆体の加水分解縮合で得られる。ここで、アルコキシシランとは、Siにアルコキシ基のOが結合している物質を意味する。また、アルコキシシラン誘導体とは、アルコキシシランを構成するHの1個以上がH以外の基で置換された構造の物質を意味する。
 また、加水分解縮合とは、加水分解反応と縮合反応とが生じる反応を意味する。例えば、アルコキシシランがSi(OC12である場合、Si(OC12は加水分解反応によりシラノールSi(OH)12を生成する。また、シラノールSi(OH)12は、縮合反応によりシリカガラスSiOを生成する。
 ポリシラザン、ポリシラザン誘導体、アルコキシシラン及びアルコキシシラン誘導体を前駆体とするシリカガラスの製造は、ウェットプロセスである。このため、ポリシラザン、ポリシラザン誘導体、アルコキシシラン及びアルコキシシラン誘導体を前駆体とするシリカガラスの製造は、従来のゾルゲル法による薄膜形成よりも成膜性が高いため好ましい。また、ポリシラザン、ポリシラザン誘導体、アルコキシシラン及びアルコキシシラン誘導体を前駆体とするシリカガラス(SiO)は、無機金属酸化物のうちでも比較的屈折率が低いため、光取り出し効率や出力スポット径の点で好ましい。
 固着補助物質55の材質である有機物は一部に無機成分を含む材質であってもよい。一部に無機成分を含む有機物は、純粋な有機物よりも耐熱性を高めやすいため好ましい。
 また、固着補助物質55とナノ粒子51とは材質が同一であってもよい。固着補助物質55とナノ粒子51との材質が同一であると、固着補助物質55とナノ粒子51との界面においてフォノン散乱が抑制されることから、波長変換体30Bの熱伝導率を高めやすいため好ましい。
 固着補助物質55がナノ粒子51の表面を被覆する場合、固着補助物質55の厚さは、通常1~100nmである。ここで、固着補助物質55の厚さとは、複合硬化体の表面に位置するナノ粒子51の表面を被覆する固着補助物質55の厚さを意味する。隣接するナノ粒子51、51間に存在する固着補助物質55の厚さは、特に限定されないが、例えば1~100nmである。
 固着補助物質55の厚さが上記のように小さいため、固着補助物質55には光を散乱させる効果はほとんどない。このため、バインダ層50Bに対する固着補助物質55の光学的影響は、通常、固着補助物質55内部のナノ空隙58による、バインダ層50Bの実効的な屈折率のみである。
 なお、図5に示すバインダ層50Bでは、固着補助物質55は、全てのナノ粒子51を被覆して複合硬化体を形成している。しかし、図5に示す実施形態の変形例として、固着補助物質55がナノ粒子51を部分的に被覆する複合硬化体を形成していてもよい。ここで、「固着補助物質55がナノ粒子51を部分的に被覆する」とは、バインダ層50を構成するナノ粒子51の全個数のうちの一部の個数が、固着補助物質55で被覆されない、という意味である。
 バインダ層50Bの固着補助物質55は、平均径300nm以下の空洞であるナノ空隙58を内包する。このナノ空隙58の屈折率は大気の屈折率である1.0となる。このため、たとえばバインダ層50Bのナノ粒子51がSiOである場合、SiOナノ粒子51と、ナノ空隙58を含む固着補助物質55とを含む複合硬化体、すなわちバインダ層50Bの実効的な屈折率はSiOナノ粒子51自体の屈折率よりも低下する。具体的には、ナノ粒子51がSiOであるバインダ層50Bの実効的な屈折率は、ナノ空隙58の存在によりSiOナノ粒子51自体の屈折率よりも低下して、通常、1.43以下になる。このバインダ層50Bの実効的な屈折率は、バインダ層50Bの材料の屈折率及び空隙率を用いて、マクスウェル・ガーネットの式から求めることができる。また、ナノ空隙58は厳密に真球の形状を成していなくてもよい。したがって、ナノ粒子51と、ナノ空隙58を含む固着補助物質55とを含む複合硬化体からなるバインダ層50Bによれば、バインダ層50Bの実効的な屈折率を小さくしつつ、波長変換体1Bの機械的強度を高めやすい。
 バインダ層50Bを形成するバインダの材質のうち、ナノ粒子51の材質としては、バインダ層50Bの屈折率が、蛍光体粒子40の屈折率よりも小さくなるような、無機物質又は有機物質が好ましく用いられる。
 また、ナノ粒子51の材質としては、固着補助物質55と併用してバインダ層50Bを構成することにより、バインダ層50Bの屈折率が蛍光体粒子40の屈折率よりも小さくなるような、無機物質又は有機物質が好ましく用いられる。バインダ層50Bを構成するナノ粒子51の材質は、第1の実施形態に係る波長変換部材1Aのバインダ層50Aを構成するナノ粒子51の材質と同じものを用いることができる。このため、バインダ層50Bを構成するナノ粒子51の材質についての説明を省略する。
 バインダ層50Bを形成するバインダの材質のうち、固着補助物質55の材質は、バインダ層50Bの屈折率が、蛍光体粒子40の屈折率よりも小さくなるような、無機物質が好ましく用いられる。
 バインダ層50Bの屈折率が蛍光体粒子40の屈折率よりも小さいと、全反射により光が蛍光体粒子40内部に閉じ込められ、閉じ込められた光はその粒子径の範囲内に限定される光成分を多く含むものとなる。したがって、バインダ層50Bの屈折率が蛍光体粒子40の屈折率よりも小さいと、出力光スポット径90Aを小さくしやすいため好ましい。また、バインダ層50Bの屈折率は、通常、空気の屈折率である1よりも大きい。
 また、バインダ層50Bの材質のうち、固着補助物質55の材質としては、ナノ粒子51と併用してバインダ層50Bを構成することにより、バインダ層50Bの屈折率が蛍光体粒子40の屈折率よりも小さくなるような、無機物質が好ましく用いられる。固着補助物質55を構成する無機物質としては、例えば、シリカ等のSiO骨格構造を有する珪素化合物が用いられる。
 なお、固着補助物質55がSiO骨格構造を有する珪素化合物である場合、SiO自体の屈折率は1.44~1.50程度である。しかし、バインダ層50Bは、図5に示すように、通常、固着補助物質55の内部に平均径300nm以下の空隙であるナノ空隙58を含む。このナノ空隙58の屈折率は大気の屈折率である1.0となる。このため、ナノ空隙58を含む固着補助物質55の実効的な屈折率は、SiO自体の屈折率よりも低下して、通常、1.43以下になる。また、ナノ空隙58を含む固着補助物質55とナノ粒子51とを含むバインダ層50Bの実効的な屈折率も、ナノ粒子51の材質の屈折率が1.43以下である場合、通常、1.43以下になる。バインダ層50Bの実効的な屈折率は、ナノ粒子51、ナノ空隙58及び固着補助物質55の、それぞれの屈折率と存在比率とを用いて、マクスウェル・ガーネットの式などから求めることができる。また、ナノ空隙58及びナノ粒子51は厳密に真球の形状を成していなくてもよい。
 バインダ層50B中におけるナノ粒子51、ナノ空隙58や固着補助物質55の有無やこれらの存在比率は、以下の方法により判別、測定が可能である。すなわち、電子顕微鏡やCTスキャン法による撮影画像データの解析、窒素吸着法等の公知の分析方法、又はこれらの分析方法の組み合わせ、周辺技術等により判別、測定が可能である。
 バインダ層50B中におけるナノ粒子51と固着補助物質55の同定は、EDX法、XRD法等の公知の分析方法、又はこれらの分析方法の組み合わせ、周辺技術等により可能である。
 なお、ナノ空隙58の平均径とは、ナノ空隙58を同容積の真球と仮定した場合の平均直径を意味する。ナノ空隙58の平均径は、例えば、ガス吸着法等の公知の分析手法で求められる。ナノ空隙58は、平均径が300nm以下であることから光を散乱させる効果がほとんどなくなるため、バインダ層50Bの可視光領域の屈折率に影響を与える。
 バインダ層50Bは、平均径が300nmを超える空隙、すなわちナノ空隙58よりも平均径の大きい空隙であるマイクロ空隙や、平均径が300nmを超える不純物であるマイクロ不純物を含んでいてもよい。例えば、バインダ層50Bが平均径300nmを超える空隙であるマイクロ空隙を含んでいてもよい。ここで、バインダ層50Bにおけるマイクロ空隙とは、固着補助物質55の表面に開口せずに固着補助物質55内に形成される平均径が300nmを超える空洞である。
 マイクロ空隙やマイクロ不純物の平均径は、ナノ空隙58の平均径と同様にして算出される。マイクロ空隙やマイクロ不純物は、平均径が300nmを超えることから光を散乱させる効果が顕著となるため、バインダ層50Bの可視光領域の屈折率に影響を与えない。このため、バインダ層50Bが、マイクロ空隙やマイクロ不純物を含んでいても、本実施形態の、パワー密度の高い励起光が照射された場合でも光取り出し効率及び出力光のパワー密度の高い波長変換部材が得られる、という効果は十分に得られる。
 また、バインダ層50Bがマイクロ空隙やマイクロ不純物を適当量含むと、マイクロ空隙やマイクロ不純物が励起光60や蛍光70を散乱させてバインダ層50Bでの混色性が良好になる。このため、バインダ層50Bがマイクロ空隙やマイクロ不純物を適当量含むと、色ずれの少ない白色光を得やすいため好ましい。
 バインダ層50B中におけるマイクロ空隙やマイクロ不純物の存在の有無やその存在比率の測定は、バインダ層50A中におけるマイクロ空隙やマイクロ不純物の存在の有無やその存在比率の測定と同様である。
 バインダ層50B中におけるマイクロ空隙やマイクロ不純物の同定は、バインダ層50A中におけるマイクロ空隙やマイクロ不純物の同定と同様である。
 バインダ層50Bは発光物質からなっていてもいいし非発光物質からなっていてもよい。ここで、発光物質及び非発光物質とは、第1の実施形態に係る波長変換部材1Aを構成するバインダ層50Aで説明した発光物質及び非発光物質と同じ物質を意味する。
 また、バインダ層50B中に内包されるナノ空隙58は、バインダ層50Bの屈折率が、蛍光体粒子40の屈折率よりも小さくなる含有量になるようにバインダ層50Bに設けられる。
 なお、従来の波長変換部材においてバインダ層と基板の熱膨張係数の差が大きい場合は、熱衝撃等で波長変換体が基板から剥離するおそれが生じる。これに対し、第2の実施形態に係る波長変換部材1Bによれば、固着補助物質55がバインダ層50Bの熱膨張係数を調整するため、上記剥離のおそれを改善することが可能である。例えばバインダ層50Bを比較的熱膨張係数の低い無機物で構成し、基板10を比較的熱膨張係数の大きい金属で構成した場合に、上記剥離のおそれを有効に改善することができる。
 ナノ粒子51と固着補助物質55とを併用した複合硬化体からなるバインダ層50Bは、特許文献2等のようにバインダ層として無機前躯体を用いる場合に比較して、蛍光体粒子40間に充填されるバインダ層50Bの体積を大きくしやすい。このため、バインダ層50Bによれば、蛍光体粒子40間の距離を大きくしやすくなり、この結果、波長変換体30Bの単位体積あたりの蛍光体粒子数を少なくしやすくなる。この単位体積あたりの蛍光体粒子数が少ない波長変換体30Bは、励起光としてレーザー光等の比較的スポット径の小さなものを用いる場合等のように、波長変換体30Bが照射位置依存性が高く色ずれが大きくなりやすい場合に、好適である。なぜならば、上記の単位体積あたりの蛍光体粒子数が少ない波長変換体30Bは、励起光の照射位置による、出力光の色度ずれを緩和しやすくなるからである。したがって、バインダ層50Bを備えた波長変換部材1Bは、励起光としてレーザー光等の比較的スポット径の小さなものを用いることにより波長変換体30Bの照射位置依存性が高く色ずれが大きくなりやすい発光装置に好適である。
  <波長変換部材の作用>
 第2の実施形態に係る波長変換部材1Bの作用は、第1の実施形態に係る波長変換部材1Aの作用と同様であるため説明を省略する。
 <波長変換部材の製造方法>
 波長変換部材1Bは、例えば、光反射膜20上に波長変換体30Bを形成することにより製造される。波長変換体30Bは、例えば、蛍光体粒子40とナノ粒子51と固着補助物質の原料とを用い、ゾルゲル法で固着補助物質の原料を硬化させることにより作製することができる。
 (波長変換部材の効果)
 第2の実施形態に係る波長変換部材によれば、第1の実施形態に係る波長変換部材と同様に、パワー密度の高い励起光が照射された場合でも光取り出し効率及び出力光のパワー密度の高い波長変換部材が得られる。
 また、第2の実施形態に係る波長変換部材のバインダ層50Bは、第1の実施形態に係る波長変換部材のバインダ層50Aに比較して、機械的強度及び剥離強度が高い。このため、第2の実施形態に係る波長変換部材1Bによれば、第1の実施形態に係る波長変換部材1Aに比較して、バインダ層50Bを含む波長変換体30Bの機械的強度及び光反射膜20に対する剥離強度が高い。
 (第1及び第2の実施形態のバインダ層)
 上記第1の実施形態に係る波長変換部材1Aのバインダ層50A及び第2の実施形態に係る波長変換部材1Bのバインダ層50Bより、バインダ層50は、隣接する蛍光体粒子40、40同士を固着又は接着するものであるといえる。
 (第2の実施形態の変形例)
 上記第2の実施形態に係る波長変換部材1Bでは、バインダ層50Bは、ナノ粒子51と、隣接するナノ粒子51、51同士を結合する固着補助物質55と、を含む複合硬化体からなる。これに対し、第2の実施形態に係る波長変換部材1Bの変形例として、バインダ層50を、ナノ粒子51を含まない固着補助物質55のみからなる複合硬化体とすることができる。また、バインダ層50を構成する固着補助物質55のみからなる複合硬化体は、第2の実施形態に係る波長変換部材1Bと同様にナノ空隙58を内包することができる。
  <波長変換部材の作用>
 第2の実施形態の変形例に係る波長変換部材の作用は、第2の実施形態に係る波長変換部材1Bの作用と同様であるため説明を省略する。
 <波長変換部材の製造方法>
 第2の実施形態の変形例に係る波長変換部材の波長変換体は、塗布法等のウェットプロセス等の、公知かつ任意の方法で作製することができる。塗布法等のウェットプロセスは、生産コストが低いため好ましい。
 (波長変換部材の効果)
 第2の実施形態の変形例に係る波長変換部材によれば、パワー密度の高い励起光が照射された場合でも光取り出し効率及び出力光のパワー密度の高い波長変換部材が得られる。
 以下、本実施形態を実施例によりさらに詳細に説明するが、本実施形態はこれら実施例に限定されるものではない。
 [実施例1]
 (波長変換部材の作製)
 気相法により作製された平均粒子径40nmのフッ化マグネシウムナノ粒子(屈折率1.38)の粉体を、イオン交換水と混合し、超音波により分散させ、15質量%のフッ化マグネシウム分散液D1を得た。
 また、黄緑色蛍光体として平均粒子径19μmのYAG粒子(株式会社ネモト・ルミマテリアル製YAG374A165、屈折率1.8)と、赤色蛍光体として平均粒径10μmのSCASN粒子(三菱化学株式会社製BR-102、屈折率>1.8)とを用意した。SCASN粒子は、(Sr,Ca)AlSiN:Eu蛍光体である。フッ化マグネシウム分散液D1、YAG粒子、SCASN粒子をそれぞれ1:2.1:0.18の重量比で混合して、蛍光液P1を得た。
 次に、反射率が95%のアルミニウム基板の表面の一部に光反射膜としてのAg膜を厚み120nmで成膜して、アルミニウム基板とAg膜とからなる基板部材を作製した。基板部材において、Ag膜の面積が、アルミニウム基板の表面の面積よりも小さくなるように製膜した。そして、金属製バーを具備したアプリケータを用い、金属製バーを4mm/sの速度で駆動させることで、基板部材のAg膜上に蛍光液P1を塗布した。これを常温で乾燥させたところ、基板部材上に波長変換体(波長変換体No.1)が形成された波長変換部材(波長変換部材No.1)が得られた。波長変換体No.1は、YAG粒子及びSCASN粒子がバインダ層で固着されたものになっており、バインダ層は、フッ化マグネシウムナノ粒子同士が固着した固着体になっていた。バインダ層の屈折率は約1.38以下であった。波長変換部材No.1は、アルミニウム基板の表面の一部に形成された光反射膜上に波長変換体No.1が形成されたものである。
 なお、蛍光液P1の塗布の際、基板部材はアプリケータのステージ上に、厚さ100μmの固定用テープにより貼付けて固定させた。また、蛍光液P1の塗布の際、蛍光液P1は、固定用テープと基板部材の表面とで囲まれた部分に適当量滴下された後、金属製バーを転がして滴下された塗布物を基板部材上に押し付けることにより塗布した。
 (波長変換部材の変換効率の評価) 
 波長変換部材No.1を、基板が金属製のヒートシンクに接するように貼付けた。次に、中心波長450nm、パワー密度約4.5W/mmのレーザー光を励起光として波長変換体No.1の表面へ照射したところ、励起光の青色光と黄緑色光と赤色光とからなる混合色が得られた。
 この混合色につき、積分球、分光光度計及び照度計を用いて、波長スペクトル、照度を計測し、混合色のエネルギ量を得た。混合色のエネルギ量は、波長380nm~800nmの範囲内の領域のエネルギを積分することにより算出した。
 次に、混合色のエネルギ量を励起光のエネルギ量で除して変換効率を算出した。この変換効率は後述の実施例2でも本実施例と同様にして算出した。そして、本実施例(実施例1)の変換効率を、実施例2の変換効率で除して変換効率比を算出した。変換効率比を表1に示す。なお、変換効率及び変換効率比は、数値が高いほど波長変換部材の光取り出し効率が高いことを示す指標である。
Figure JPOXMLDOC01-appb-T000001
 [実施例2]
 (波長変換部材の作製)
 ポリシラザン(メルク株式会社、NL120A)と、実施例1と同様のYAG粒子と、実施例1と同様のSCASN粒子とを用意した。ポリシラザン、YAG粒子、SCASN粒子を1:2.1:0.18の重量比で混合して、蛍光液P51を得た。ポリシラザンとしては、メルクパフォーマンスマテリアル株式会社製アクアミカ(登録商標)NL120Aを用いた。アクアミカNL120Aは、シリカ転化を促進するパラジウム系触媒を含み、溶媒がジブチルエーテル及びアニソールの混合溶媒であった。
 そして、蛍光液P1に代えて蛍光液P51を用いる以外は実施例1と同様にして、基板上に波長変換体(波長変換体No.51)が形成された波長変換部材(波長変換部材No.51)を得た。波長変換体No.51は、YAG粒子及びSCASN粒子がバインダ層で接着されたものになっていた。バインダ層は、シリカからなる固着補助物質になっており、屈折率は1.38以上1.50未満で、平均値が1.45であった。波長変換部材No.51は、アルミニウム基板の表面の一部に形成された光反射膜上に波長変換体No.51が形成されたものである。
 (波長変換部材の変換効率の評価) 
 実施例1と同様にして変換効率及び変換効率比を算出した。変換効率比を表1に示す。
 (実施例1及び実施例2の評価の比較)
  <変換効率比の比較>
 表1より、実施例1の変換効率比は、実施例2の変換効率比よりも高いことが分かった。すなわち、実施例1の光取り出し効率は、実施例2の光取り出し効率に比較して高いことが分かった。
  <変換効率とバインダ層の屈折率との関係について>
 実施例1と実施例2との主な差異はバインダ層の組成にある。実施例1及び実施例2の変換効率比の比較より、実施例2に対する実施例1の変換効率の向上は、バインダ層の組成の違いによるものと考えられる。具体的には、実施例2のバインダ層はポリシラザン由来のシリカ(屈折率1.45)であり、実施例1のバインダ層はフッ化マグネシウム固着体とナノ空隙(屈折率約1.2)である。このため、実施例1はバインダ層の低屈折率化により変換効率が向上したものと考えられる。
 [実施例3]
 (波長変換部材の作製)
 気相法により作製された平均粒子径40nmのフッ化マグネシウムナノ粒子(屈折率1.38)の粉体1質量部と、ポリシラザン9質量部と、と混合し、超音波により分散させ、フッ化マグネシウム分散液D2を得た。ポリシラザンとして、メルクパフォーマンスマテリアル株式会社製アクアミカ(登録商標)NL120Aを用いた。アクアミカNL120Aは、シリカ転化を促進するパラジウム系触媒を含み、溶媒がジブチルエーテル及びアニソールの混合溶媒であった。
 また、実施例1と同じ黄緑色蛍光体であるYAG粒子及び赤色蛍光体であるSCASN粒子を用意した。フッ化マグネシウム分散液D2、YAG粒子、SCASN粒子をそれぞれ1:2.1:0.18の重量比で混合して、蛍光液P2を得た。
 蛍光液P1に代えて蛍光液P2を用いる以外は、実施例1と同様にして、基板上に波長変換体(波長変換体No.2)が形成された波長変換部材(波長変換部材No.2)を得た。波長変換部材No.2は複数個作製した。波長変換体No.2は、後述の観察結果のとおり、YAG粒子及びSCASN粒子がバインダ層で接着されたものになっていた。バインダ層の屈折率は1.38以上1.50未満で、平均値が1.42であった。波長変換部材No.2は、アルミニウム基板の表面の一部に形成された光反射膜上に波長変換体No.2が形成されたものである。
 (波長変換体の観察)
 得られた波長変換部材No.2について、基板上の波長変換体No.2を破断した。この波長変換体No.2の破断面についてFE-SEMを用いてSEM(走査型電子顕微鏡)写真を撮影した。結果を図6及び図7に示す。図6は、実施例3に係る波長変換部材No.2を構成する波長変換体No.2の破断面を示すSEM(走査型電子顕微鏡)写真である。図7は、図6の部分Bを拡大して示すSEM写真である。
 図6に示すように、波長変換体No.2(図6中、30Bと表示する)は、YAG粒子及びSCASN粒子からなる蛍光体粒子40が、バインダ層50Bで接着されたものになっていた。また、図7に示すように、バインダ層50Bは、フッ化マグネシウム(MgF)からなるナノ粒子51と、隣接するナノ粒子51、51同士を結合しシリカからなる固着補助物質55と、を含む複合硬化体からなることが分かった。また、固着補助物質55は、ナノ空隙58を内包することが分かった。
 (ナノ空隙の評価)
 実施例1及び実施例3の波長変換部材(波長変換部材No.1及びNo.2)について、以下のようにして、各バインダ層中に含まれる空隙の空隙径(nm)とlog微分細孔容積分布とを測定した。
 はじめに、実施例1及び実施例3の波長変換部材(波長変換部材No.1及びNo.2)の各波長変換体(波長変換体No.1及びNo.2)を少量破砕して粉末試料を作製した。実施例1の粉末試料は、YAG粒子及びSCASN粒子からなる蛍光体粒子と、バインダ層を構成するナノ粒子とを含んでいた。実施例3の粉末試料は、YAG粒子及びSCASN粒子からなる蛍光体粒子と、バインダ層を構成するナノ粒子及び固着補助物質とを含んでいた。
 また、参考例1として、実施例1及び実施例3で用いられるYAG粒子及びSCASN粒子を実施例1及び実施例3と同じ配合比率で配合した粉末試料を作製した。この粉末試料は、蛍光体粒子のみからなり、バインダ層を構成する材質を含まないものである。参考例1は、実施例1及び実施例3に対するブランク試料に相当する。
 次に、窒素吸着法により、実施例1及び実施例3、並びに参考例1の粉末試料中の空隙の空隙径(nm)とlog微分細孔容積分布とを測定した。結果を図8に示す。
 図8に示すように、実施例1の粉末試料は、空隙径の最頻値が約50(nm)であり、平均径300nm以下の空隙であるナノ空隙を含むことが分かった。また、実施例1の粉末試料は、log微分細孔容積が非常に大きいため、ナノ空隙を非常に多く含むことが分かった。
 実施例3の粉末試料は、空隙径の最頻値が約20(nm)であり、平均径300nm以下の空隙であるナノ空隙を含むことが分かった。また、実施例3の粉末試料は、log微分細孔容積がやや大きいため、ナノ空隙をやや多く含むことが分かった。
 参考例1の粉末試料は、空隙径の最頻値が約50(nm)であり、平均径300nm以下の空隙であるナノ空隙を含むことが分かった。ただし、これは測定上のノイズか、粉末試料に含まれる意図しないダスト等の物質に起因するものであり、参考例1の粉末試料は、log微分細孔容積が非常に小さいため、ナノ空隙を実質的に含まないことが分かった。
 図8の実施例1の測定結果と参考例1の測定結果との差分をとると、実施例1のバインダ層のみについての、空隙の空隙径(nm)とlog微分細孔容積分布とを評価することができる。また、同様にして、実施例3の測定結果と参考例1の測定結果との差分をとると、実施例3のバインダ層のみについての、空隙の空隙径(nm)とlog微分細孔容積分布とを評価することができる。
 図8の実施例1と参考例1との測定結果の差分より、実施例1のバインダ層は、平均径300nm以下の空隙であるナノ空隙を非常に多く含むことが分かった。
 また、図8の実施例3と参考例1との測定結果の差分より、実施例3のバインダ層は、平均径300nm以下の空隙であるナノ空隙をやや多く含むことが分かった。
 (波長変換体の剥離強度の評価)
 実施例1及び実施例3の波長変換部材(波長変換部材No.1及びNo.2)について、波長変換体の剥離強度の評価を行った。具体的には、波長変換部材の波長変換体の表面に、ポリイミドテープ(スリーエム株式会社製)を貼付した後、貼付したテープの端をつまみ、それを引き剥がした。これにより、基板から波長変換体が剥離するか否かを観察した。
 実施例1の波長変換部材No.1は、テープを剥離した波長変換体の全面積中の一部において波長変換体が剥離していた。実施例3の波長変換部材No.2は、テープを剥離した波長変換体の全面積において波長変換体の剥離がなかった。
 (実施例1及び実施例3の評価の比較)
 上記実施例1及び実施例3の評価結果より、実施例3の波長変換部材のバインダ層は、実施例1の波長変換部材のバインダ層に比較して、ナノ空隙を多く含むことが分かった。
 また、実施例3の波長変換部材は、実施例1の波長変換部材に比較して、波長変換体の機械的強度及び基板に対する剥離強度が高いことが分かった。
 特願2017-034968号(出願日:2017年2月27日)及び特願2017-126169号(出願日:2017年6月28日)の全内容は、ここに援用される。
 以上、実施例に沿って本実施形態の内容を説明したが、本実施形態はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
 本発明の波長変換部材によれば、パワー密度の高い励起光が照射された場合でも光取り出し効率及び出力光のパワー密度の高い波長変換部材が得られる。
1、1A、1B、100 波長変換部材
10 基板
20 光反射膜
30、30A、30B、130 波長変換体
40、140 蛍光体粒子
50、50A、50B、150 バインダ層
51 ナノ粒子
52 ナノ粒子の固着体
55 固着補助物質
58 ナノ空隙
60、60A、60B 励起光
70 蛍光
71、81 出力光
72、82 面内導波光
73、83 光反射膜20における光損失
90A、90B 出力光スポット径

Claims (15)

  1.  基板と、
     前記基板の表面側に設けられ、励起光により励起される蛍光体粒子と、隣接する前記蛍光体粒子同士を固着又は接着するバインダ層と、を含む波長変換体と、
     前記基板と前記波長変換体との界面の少なくとも一部に設けられ、前記蛍光体粒子が放射する蛍光を反射する光反射膜と、を備え、
     前記蛍光体粒子の屈折率は、前記バインダ層の屈折率よりも大きいことを特徴とする波長変換部材。
  2.  前記バインダ層は、内部に平均径300nm以下の空隙であるナノ空隙を含むことを特徴とする請求項1に記載の波長変換部材。
  3.  前記バインダ層の屈折率は1.43以下であることを特徴とする請求項1又は2に記載の波長変換部材。
  4.  前記バインダ層は、無機物質からなることを特徴とする請求項1~3のいずれか1項に記載の波長変換部材。
  5.  前記励起光がレーザー光であることを特徴とする、請求項1~4のいずれか1項に記載の波長変換部材。
  6.  前記蛍光体粒子の平均粒子径が100μm以下であることを特徴とする請求項1~5のいずれか1項に記載の波長変換部材。
  7.  前記バインダ層は、平均粒子径100nm以下のナノ粒子を含むことを特徴とする請求項1~6のいずれか1項に記載の波長変換部材。
  8.  前記バインダ層は、ナノ粒子の固着体からなることを特徴とする請求項1~7のいずれか1項に記載の波長変換部材。
  9.  前記バインダ層は、ナノ粒子と、隣接する前記ナノ粒子同士を結合する固着補助物質と、を含む複合硬化体からなることを特徴とする請求項1~7のいずれか1項に記載の波長変換部材。
  10.  前記複合硬化体は、ナノ粒子と、隣接する前記ナノ粒子同士間に含浸しつつ前記ナノ粒子を被覆して複数個の前記ナノ粒子を結合する固着補助物質と、を含み、
     前記固着補助物質は、平均径300nm以下の空洞であるナノ空隙を内包することを特徴とする請求項9記載の波長変換部材。
  11.  前記固着補助物質とナノ粒子とは、材質が同一であることを特徴とする請求項9又は10に記載の波長変換部材。
  12.  前記バインダ層が平均径300nmを超える空隙であるマイクロ空隙を含むことを特徴とする請求項1~11のいずれか1項に記載の波長変換部材。
  13.  前記固着補助物質は、ポリシラザン及びポリシラザン誘導体の少なくとも一方を前駆体とするシリカガラスを含むことを特徴とする請求項9~12のいずれか1項に記載の波長変換部材。
  14.  前記固着補助物質は、アルコキシシラン及びアルコキシシラン誘導体の少なくとも一方を前駆体とし、この前駆体の加水分解縮合で得られるシリカガラスを含むことを特徴とする請求項9~13のいずれか1項に記載の波長変換部材。
  15.  前記基板は、金属基板であることを特徴とする請求項1~14のいずれか1項に記載の波長変換部材。
PCT/JP2018/006874 2017-02-27 2018-02-26 波長変換部材 WO2018155671A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/488,578 US11131914B2 (en) 2017-02-27 2018-02-26 Wavelength conversion member
JP2019501854A JP6731651B2 (ja) 2017-02-27 2018-02-26 波長変換部材
DE112018001029.5T DE112018001029B4 (de) 2017-02-27 2018-02-26 Wellenlängenumwandlungselement

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-034968 2017-02-27
JP2017034968 2017-02-27
JP2017126169 2017-06-28
JP2017-126169 2017-06-28

Publications (1)

Publication Number Publication Date
WO2018155671A1 true WO2018155671A1 (ja) 2018-08-30

Family

ID=63252843

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2017/040583 WO2018154868A1 (ja) 2017-02-27 2017-11-10 波長変換部材
PCT/JP2018/006874 WO2018155671A1 (ja) 2017-02-27 2018-02-26 波長変換部材

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/040583 WO2018154868A1 (ja) 2017-02-27 2017-11-10 波長変換部材

Country Status (4)

Country Link
US (1) US11131914B2 (ja)
JP (1) JP6731651B2 (ja)
DE (1) DE112018001029B4 (ja)
WO (2) WO2018154868A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3450413A1 (en) * 2017-08-31 2019-03-06 Nichia Corporation Fluorescent member, optical component, and light emitting device
JP2020154030A (ja) * 2019-03-18 2020-09-24 セイコーエプソン株式会社 波長変換素子、光源装置及びプロジェクター
WO2020213455A1 (ja) * 2019-04-18 2020-10-22 日本電気硝子株式会社 波長変換部材及びその製造方法、並びに発光装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017098730A1 (ja) * 2015-12-11 2017-06-15 パナソニックIpマネジメント株式会社 波長変換体、波長変換部材及び発光装置
JP6922939B2 (ja) * 2019-03-18 2021-08-18 セイコーエプソン株式会社 波長変換素子、光源装置、プロジェクター、及び波長変換素子の製造方法
CN114008800B (zh) * 2019-06-05 2023-03-24 亮锐有限责任公司 磷光体转换器发射器的结合
CN114080676A (zh) 2019-06-25 2022-02-22 亮锐有限责任公司 用于微led应用的磷光体层
US11177420B2 (en) 2019-10-09 2021-11-16 Lumileds Llc Optical coupling layer to improve output flux in LEDs
US11362243B2 (en) 2019-10-09 2022-06-14 Lumileds Llc Optical coupling layer to improve output flux in LEDs
US20230159367A1 (en) * 2020-04-28 2023-05-25 Kyocera Corporation Wavelength conversion element and method for manufacturing wavelength conversion element
CN114981593B (zh) * 2020-06-08 2023-08-08 日本特殊陶业株式会社 荧光板、波长转换构件和光源装置
TWI848219B (zh) * 2020-06-08 2024-07-11 日商日本特殊陶業股份有限公司 螢光板、波長轉換構件及光源裝置
US11411146B2 (en) 2020-10-08 2022-08-09 Lumileds Llc Protection layer for a light emitting diode
CN113280920A (zh) * 2021-05-31 2021-08-20 理至(深圳)科技有限公司 一种量子点探测模组、光电探测器及微型全光谱光谱仪

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005197476A (ja) * 2004-01-07 2005-07-21 Koito Mfg Co Ltd 発光モジュール及び車両用灯具
WO2009154193A1 (ja) * 2008-06-16 2009-12-23 株式会社ニコン セラミックス組成物、蛍光体セラミックス及びその製造方法、並びに発光素子
JP2012074273A (ja) * 2010-09-29 2012-04-12 Stanley Electric Co Ltd 光源装置および照明装置
JP2014019844A (ja) * 2012-07-23 2014-02-03 Konica Minolta Inc 蛍光体分散液及びled装置の製造方法
JP2014127495A (ja) * 2012-12-25 2014-07-07 Konica Minolta Inc Led装置、及びその製造方法
WO2017098730A1 (ja) * 2015-12-11 2017-06-15 パナソニックIpマネジメント株式会社 波長変換体、波長変換部材及び発光装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005310756A (ja) * 2004-03-26 2005-11-04 Koito Mfg Co Ltd 光源モジュールおよび車両用前照灯
WO2006030848A1 (ja) * 2004-09-16 2006-03-23 Nikon Corporation 非晶質酸化珪素バインダを有するMgF2光学薄膜、及びそれを備える光学素子、並びにそのMgF2光学薄膜の製造方法
DE102005061828B4 (de) * 2005-06-23 2017-05-24 Osram Opto Semiconductors Gmbh Wellenlängenkonvertierendes Konvertermaterial, lichtabstrahlendes optisches Bauelement und Verfahren zu dessen Herstellung
JP4357544B2 (ja) * 2007-05-15 2009-11-04 シャープ株式会社 13族窒化物蛍光体およびその製造方法
US8232117B2 (en) * 2010-04-30 2012-07-31 Koninklijke Philips Electronics N.V. LED wafer with laminated phosphor layer
JP5966501B2 (ja) 2012-03-28 2016-08-10 日亜化学工業株式会社 波長変換用無機成形体及びその製造方法、並びに発光装置
JP5672622B2 (ja) * 2012-05-22 2015-02-18 パナソニックIpマネジメント株式会社 波長変換素子およびその製造方法ならびに波長変換素子を用いたled素子および半導体レーザ発光装置
WO2014006987A1 (ja) * 2012-07-04 2014-01-09 シャープ株式会社 蛍光材料、蛍光塗料、蛍光体基板、電子機器およびledパッケージ
JP2015038960A (ja) 2013-05-16 2015-02-26 株式会社日本セラテック 発光装置
JP6123619B2 (ja) * 2013-09-30 2017-05-10 住友大阪セメント株式会社 複合波長変換粒子及び複合波長変換粒子含有樹脂組成物並びに発光装置
JP6253392B2 (ja) 2013-12-18 2017-12-27 スタンレー電気株式会社 発光装置及びそれを用いたプロジェクター用光源
JP6471488B2 (ja) * 2014-12-17 2019-02-20 日本電気硝子株式会社 波長変換部材及び発光デバイス
JP6925100B2 (ja) * 2015-05-21 2021-08-25 日亜化学工業株式会社 発光装置
JP6697225B2 (ja) * 2015-05-25 2020-05-20 スタンレー電気株式会社 照明装置
JP2017028251A (ja) * 2015-07-23 2017-02-02 パナソニックIpマネジメント株式会社 波長変換部材、光源装置、照明装置車両、および波長変換部材の製造方法
JP6592360B2 (ja) 2015-07-30 2019-10-16 積水化学工業株式会社 電力管理方法
US9753277B2 (en) * 2015-08-11 2017-09-05 Delta Electronics, Inc. Wavelength conversion device
JP2017126169A (ja) 2016-01-13 2017-07-20 東芝テック株式会社 カード処理装置
JP2016194697A (ja) * 2016-05-10 2016-11-17 ウシオ電機株式会社 蛍光光源装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005197476A (ja) * 2004-01-07 2005-07-21 Koito Mfg Co Ltd 発光モジュール及び車両用灯具
WO2009154193A1 (ja) * 2008-06-16 2009-12-23 株式会社ニコン セラミックス組成物、蛍光体セラミックス及びその製造方法、並びに発光素子
JP2012074273A (ja) * 2010-09-29 2012-04-12 Stanley Electric Co Ltd 光源装置および照明装置
JP2014019844A (ja) * 2012-07-23 2014-02-03 Konica Minolta Inc 蛍光体分散液及びled装置の製造方法
JP2014127495A (ja) * 2012-12-25 2014-07-07 Konica Minolta Inc Led装置、及びその製造方法
WO2017098730A1 (ja) * 2015-12-11 2017-06-15 パナソニックIpマネジメント株式会社 波長変換体、波長変換部材及び発光装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3450413A1 (en) * 2017-08-31 2019-03-06 Nichia Corporation Fluorescent member, optical component, and light emitting device
US10442987B2 (en) 2017-08-31 2019-10-15 Nichia Corporation Fluorescent member, optical component, and light emitting device
JP2020154030A (ja) * 2019-03-18 2020-09-24 セイコーエプソン株式会社 波長変換素子、光源装置及びプロジェクター
JP7238506B2 (ja) 2019-03-18 2023-03-14 セイコーエプソン株式会社 波長変換素子、光源装置及びプロジェクター
WO2020213455A1 (ja) * 2019-04-18 2020-10-22 日本電気硝子株式会社 波長変換部材及びその製造方法、並びに発光装置
JPWO2020213455A1 (ja) * 2019-04-18 2020-10-22
US11530798B2 (en) 2019-04-18 2022-12-20 Nippon Electric Glass Co., Ltd. Wavelength conversion member, method for manufacturing same, and light emission device

Also Published As

Publication number Publication date
US20200142288A1 (en) 2020-05-07
JPWO2018155671A1 (ja) 2019-12-12
DE112018001029T5 (de) 2019-12-12
WO2018154868A1 (ja) 2018-08-30
JP6731651B2 (ja) 2020-07-29
US11131914B2 (en) 2021-09-28
DE112018001029B4 (de) 2023-06-29

Similar Documents

Publication Publication Date Title
WO2018155671A1 (ja) 波長変換部材
JP7094496B2 (ja) 波長変換部材及び発光デバイス
JP5362777B2 (ja) 発光装置、照明装置
KR101997113B1 (ko) 파장 변환 장치 및 그 관련 발광 장치
EP2223352B1 (en) Side emitting device with hybrid top reflector
KR101926475B1 (ko) 난반사 재료, 난반사층, 파장 변환 장치 및 광원 시스템
WO2018074132A1 (ja) 波長変換部材、発光デバイス及び波長変換部材の製造方法
EP3712663B1 (en) Wavelength conversion element
EP3450413B1 (en) Fluorescent member, optical component, and light emitting device
JP6068473B2 (ja) 波長変換粒子、波長変換部材及び発光装置
WO2022071230A1 (ja) 発光装置及び発光装置の製造方法
WO2019021846A1 (ja) 波長変換部材及び発光装置
WO2018123219A1 (ja) 波長変換体及び波長変換部材
KR20240024027A (ko) 조명 디바이스
JP2022058212A (ja) 発光装置及び発光装置の製造方法
JP2022115222A (ja) 波長変換部材及びそれを備える光源装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18756814

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019501854

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18756814

Country of ref document: EP

Kind code of ref document: A1