WO2018155651A1 - 線維芽細胞を含む心臓疾患を治療するための注射用組成物、及び治療用線維芽細胞の製造方法 - Google Patents

線維芽細胞を含む心臓疾患を治療するための注射用組成物、及び治療用線維芽細胞の製造方法 Download PDF

Info

Publication number
WO2018155651A1
WO2018155651A1 PCT/JP2018/006795 JP2018006795W WO2018155651A1 WO 2018155651 A1 WO2018155651 A1 WO 2018155651A1 JP 2018006795 W JP2018006795 W JP 2018006795W WO 2018155651 A1 WO2018155651 A1 WO 2018155651A1
Authority
WO
WIPO (PCT)
Prior art keywords
fibroblasts
cells
positive
cell
human
Prior art date
Application number
PCT/JP2018/006795
Other languages
English (en)
French (fr)
Inventor
貴紘 岩宮
Original Assignee
株式会社メトセラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to DK18758465.1T priority Critical patent/DK3476395T3/da
Application filed by 株式会社メトセラ filed Critical 株式会社メトセラ
Priority to JP2019501845A priority patent/JP6618066B2/ja
Priority to EP18758465.1A priority patent/EP3476395B1/en
Priority to CN201880003050.1A priority patent/CN109890398B/zh
Priority to AU2018223739A priority patent/AU2018223739B2/en
Priority to KR1020197003364A priority patent/KR102407387B1/ko
Priority to ES18758465T priority patent/ES2885080T3/es
Priority to SG11201900810WA priority patent/SG11201900810WA/en
Priority to CA3032654A priority patent/CA3032654A1/en
Publication of WO2018155651A1 publication Critical patent/WO2018155651A1/ja
Priority to US16/263,321 priority patent/US11096969B2/en
Priority to IL267958A priority patent/IL267958B2/en
Priority to US17/379,671 priority patent/US20210346436A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/33Fibroblasts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/04Inotropic agents, i.e. stimulants of cardiac contraction; Drugs for heart failure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis

Definitions

  • the present invention relates to an injectable composition for treating a heart disease comprising fibroblasts, and more particularly to an injectable composition for treating a heart disease comprising fibroblasts expressing a specific protein. .
  • the present invention also relates to a method for producing therapeutic fibroblasts that can be used in an injectable composition.
  • Patent Document 1 discloses a cell sheet, and development to autologous skeletal myoblasts is being studied.
  • Patent Document 2 and the like discuss the treatment of heart diseases with a myocardial sheet using induced pluripotent stem cells.
  • no method has been reported to restore the heart function that has been significantly lost over a long period of time, and a method for long-term and drastic healing of the necrotic heart tissue region to restore the heart function. Establishment is required.
  • a functional cardiac cell sheet can be obtained using fibroblasts that are positive for cellular cell adhesion molecule-1 (VCAM-1, CD106) (patents). Reference 3).
  • JP 2010-081829 A International Publication No. 2013/137491 International Publication No. 2016/006262
  • the present inventors have studied to solve the above-mentioned problems, and found that a specific fibroblast can be treated (injected) into a necrotic heart tissue region to treat a heart disease, and the present invention has been completed. .
  • the present invention includes the following first aspect (Invention A).
  • A1 An injectable composition for treating heart disease, comprising fibroblasts, the fibroblasts comprising vascular cell adhesion molecule-1 (VCAM-1, CD106) positive fibroblasts Composition.
  • A2) The injectable composition according to (A1), wherein the fibroblasts include Thymus cell antigen-1 (Thy-1, CD90) positive fibroblasts.
  • A3) The injectable composition according to (A1) or (A2), wherein the fibroblasts include Connexin 43 (Cx43) positive fibroblasts.
  • the ratio of CD106 positive fibroblasts is 0.03% or more with respect to the total amount of fibroblasts contained in the injectable composition, according to any one of (A1) to (A3) Injectable composition.
  • the present invention also includes the following second aspect (Invention B).
  • (B1) A method for producing therapeutic fibroblasts, comprising the steps of preparing fibroblasts and screening CD106 positive cells from the fibroblasts.
  • (B2) The production method according to (B1), wherein the therapeutic fibroblast is used for treatment of a heart disease.
  • (B3) The method according to (B1) or (B2), further comprising the step of screening CD90 positive cells from fibroblasts.
  • B4 The production method according to any one of (B1) to (B3), wherein the therapeutic fibroblasts include fibroblasts that are positive for Connexin 43.
  • (B5) The production according to any one of (B1) to (B4), wherein the ratio of CD106 positive fibroblasts (based on the number of cells) is 0.03% or more with respect to the total amount of the therapeutic fibroblasts. Method.
  • the present invention also includes the following third aspect (Invention C).
  • C1 A method of treating a heart disease by injecting a composition for injection containing fibroblasts into or around a necrotic heart tissue region and / or injecting it into a coronary artery, the fibroblasts Wherein the method comprises CD106 positive fibroblasts.
  • C2 The method for treating a heart disease according to (C1), wherein the fibroblasts comprise CD90 positive fibroblasts.
  • C3 The method for treating a heart disease according to (C1), wherein the fibroblasts comprise Connexin 43 positive fibroblasts.
  • C4) Treating the heart disease according to (C1), wherein the ratio of CD106 positive fibroblasts (based on the number of cells) is 0.03% or more with respect to the total amount of fibroblasts contained in the injectable composition Method.
  • the present invention also includes the following fourth aspect (Invention D).
  • (D1) Use of a fibroblast as an injectable composition, wherein the fibroblast comprises a CD106 positive fibroblast.
  • (D2) The use according to (D1), wherein the fibroblasts comprise CD90 positive fibroblasts.
  • (D3) The use according to (D1) or (D2), wherein the fibroblasts comprise Connexin 43 positive fibroblasts.
  • the ratio of CD106 positive fibroblasts (based on the number of cells) is 0.03% or more with respect to the total amount of fibroblasts contained in the injectable composition, any of (D1) to (D3) Use of description.
  • the present invention provides an effective means for healing a necrotic heart tissue region and restoring cardiac function.
  • the verification of the effect of treating chronic heart failure with CD106 positive human fibroblasts was performed by echocardiographic observation of cardiac function every 2 weeks from the cell administration date until 18 weeks.
  • the optimal dose of CD106 positive human fibroblasts was examined by echocardiography by echocardiography every 2 weeks up to 8 weeks from the cell administration date.
  • the control was followed by monitoring of cardiac function by echocardiography at 2 weeks, 4 weeks, 8 weeks, 12 weeks, 16 weeks and 18 weeks after medium administration.
  • the cardiac function recovery effect of a rat chronic heart failure model by administration of CD106 positive rat fibroblasts (2.0 ⁇ 10 6 cells / 50 ⁇ L) is shown.
  • LVEF Left ventricular ejection fraction
  • LVFS Left ventricular diameter shortening rate
  • LVEDV Left ventricle End diastolic volume
  • LVESV left ventricular end systolic volume
  • CD106 positive human fibroblasts The localization of stromal cell / mesenchymal stem cell marker (Vimentin), epithelial cell marker (Cytokeratin), and cardiomyocyte gap junction marker (Connexin 43) was evaluated. STRO-1 positive cell ratio (%) of CD106 positive human fibroblasts. After recognizing the cell region with FSC-A and SSC-A, among the cell groups positive for CD106 (VioBlue-A) and CD90 (PE-A), the percentage of cells positive for STRO-1 (FITC-A) ( %). As the negative control, the Isotype Control of the above antibody was used.
  • the cardiac function recovery effect of a rat chronic heart failure model by administration of CD106 positive human fibroblasts (2.0 ⁇ 10 6 cells / 50 ⁇ L) is shown.
  • LVEF Left ventricular ejection fraction
  • LVFS Left ventricular diameter shortening rate
  • LVEDV Left ventricle End diastolic volume
  • LVESV left ventricular end systolic volume
  • LVEF Left ventricular ejection fraction
  • LVFS Left ventricular diameter shortening rate
  • LVEDV Left ventricle End diastolic volume
  • LVESV left ventricular end systolic volume
  • One embodiment of the present invention is an injectable composition for treating heart disease, comprising fibroblasts, which fibroblasts comprise CD106 positive (hereinafter also referred to as CD106 +) fibroblasts.
  • Fibroblasts include all cells that eventually become fibroblasts or myofibroblasts. In other words, cells that are in the process of differentiation or maturation, and cannot be identified as fibroblasts or myofibroblasts at that time, but eventually become fibroblasts or myofibroblasts. For example, in this embodiment, it is included in the range of fibroblasts. Furthermore, cells that are not called fibroblasts, for example, stromal cells, progenitor cells, stem cells, myoblasts, etc., cells that have the same function as fibroblasts and are CD106 + are used in this embodiment. Included in the range of fibroblasts.
  • CD106 + fibroblasts are positive for Vimentin, a cytoskeletal marker for fibroblasts and mesenchymal stem cells, while STRO-, one of the most well-known molecular markers for mesenchymal stem cells (MSC). 1 is negative.
  • fibroblasts there is no limitation on the origin of fibroblasts, and pluripotent stem cells such as embryonic stem cells (ES cells), induced pluripotent stem cells (iPS cells) and Muse cells, and adult stem cells such as mesenchymal stem cells are differentiated. It may be used. Further, primary cells collected from animals (including humans) may be used, or established cells may be used. Heart-derived fibroblasts are preferably used, and epicardial fibroblasts are more preferably used.
  • human-derived fibroblasts have a very low ratio of CD106 + fibroblasts compared to mice and the like. In our study, the ratio is at most 9.1% (converted to the number of cells). Therefore, a human-derived fibroblast population in which the proportion of human-derived CD106 + fibroblasts is improved by the screening step described later can also be included in the present invention.
  • it may be a human-derived fibroblast population in which the ratio (number of cells) of human-derived CD106 + fibroblasts in all human-derived fibroblasts is 10% or more.
  • the ratio (number of cells) of CD106 + fibroblasts in the total fibroblasts may be 15% or more, 20% or more, 25% or more, or 30% or more. 40% or more, 50% or more, 60% or more, 70% or more, 80% or more, 90% or more, 100% %.
  • the human-derived fibroblast population may be a human heart-derived fibroblast population, a human adult heart-derived fibroblast, or a human fetal heart-derived fibroblast population. Note that the cell sorting process can be omitted by selecting cells known to be CD106 +.
  • CD106 is also called VCAM-1, and is a protein known as a cell adhesion molecule expressed in vascular endothelial cells and the like.
  • CD106 +, or VCAM-1 positive (VCAM-1 +) fibroblasts is used as an injectable composition for treating heart disease.
  • CD106 + fibroblasts used as an injectable composition can be directly injected into a necrotic heart tissue region to treat heart disease. Further, it may be injected into the periphery of a necrotic heart tissue region, may be injected into a coronary artery, or may be injected into a vein, artery, lymph node, or lymph vessel.
  • the injection into the coronary artery and the injection into the vein, artery, and lymph vessel may be performed by injection into the pulse, may be performed by a catheter, or other known methods may be used.
  • the injection method is not particularly limited, and known injection methods such as needle injection and needleless injection can be applied, and the catheter method used for injection can also be a known method, and is not particularly limited.
  • the injectable composition may contain other fibroblasts and other components as long as it contains a therapeutically effective amount of CD106 + fibroblasts as an active ingredient. If it contains other fibroblasts, the injectable composition
  • the ratio of CD106 + fibroblasts to the total amount of fibroblasts contained in the product may be 0.03% or more, 0.1% or more, 1% or more based on the number of cells, It may be 2% or more, 4% or more, 5% or more, 10% or more, 20% or more, 30% or more, 40% May be 50% or more, 60% or more, 70% or more, 80% or more, 90% or more, 95% or more It may be 98% or more and 99% or more.
  • the CD106 + fibroblasts contained in the injectable composition may be cells co-cultured with other cells, such as cardiomyocytes.
  • the heart disease includes diseases caused by heart tissue damage, deficiency, dysfunction, and the like, such as heart failure, ischemic heart disease, myocardial infarction, cardiomyopathy, myocarditis, hypertrophic cardiomyopathy, dilated cardiomyopathy. Examples include, but are not limited to.
  • the CD106 + fibroblasts contained in the injectable composition may be CD90 positive (CD90 +). That is, the injectable composition may comprise CD90 positive fibroblasts.
  • CD90 also called Thy-1, is a glycosyl-phosphatidylinositol (GPI) -binding molecule rich in sugar chains, and is expressed in various stromal cell lines such as nerve tissue and connective tissue, Not expressed. Therefore, it is shown that CD90 + fibroblasts do not contain cardiomyocytes.
  • “CD90 + fibroblasts do not contain cardiomyocytes” is a concept that allows some inclusion, and is 5 on the basis of the number of cells relative to the total number of cells contained in the composition for injection.
  • CD106 + fibroblasts the percentage of CD90 + fibroblasts (based on the number of cells) may be 30% or more, 40% or more, 50% or more, or 60% or more. It may be 70% or more, 80% or more, 90% or more, 95% or more, 98% or more, or 100%.
  • a fibroblast population comprising CD106 + and CD90 + fibroblasts can be provided.
  • CD106 + and CD90 + fibroblasts are in excess of 8.2%, 8.5%, 9%, 10%, 15%, 20% or more in terms of the number of cells. 30% or more, 40% or more, 50% or more, 60% or more, 70% or more, 80% or more, 90% or more, 95% or more, 97% or more, 98% or more, 99% or more, or 100% .
  • the CD106 + and CD90 + fibroblasts can be, for example, human.
  • the CD106 + and CD90 + fibroblasts can be, for example, heart-derived fibroblasts.
  • the CD106 + and CD90 + fibroblasts can be, for example, human heart-derived fibroblasts.
  • CD106 + and CD90 + fibroblasts can be obtained, for example, by concentrating cells that are CD106 + and CD90 + from a tissue using a cell sorter or the like.
  • the fibroblasts may be fibroblasts collected from a human fetus.
  • CD106 + and CD90 + fibroblasts secrete cytokines etc. to maintain organ homeostasis and regulate the inflammatory response, and the secreted cytokines / chemokines etc. form a microenvironment suitable for the regeneration of myocardial tissue, May promote cardiac function by promoting proliferation, cardiomyocyte pulsation, or angiogenesis.
  • CD106 + and CD90 + fibroblasts can also suppress the progression of fibrosis. Therefore, the present specification may include an invention of a cardiac inflammation response regulator (or a cardiac inflammation inhibitor) comprising CD106 + and CD90 + fibroblasts, or a purified product of the cells.
  • CD106 + and CD90 + fibroblasts or cardiac cell cytokine secretion promoter, CD106 + and CD90 + fibroblasts cell lysate or culture supernatant, or purified product of the cells
  • the invention of the cytokine secretion regulator containing may be included. It may also include the invention of a microenvironmental agent in heart tissue, including CD106 + and CD90 + fibroblasts.
  • the invention may also include inventions of cardiomyocyte proliferating agents, cardiomyocyte pulsation modulating agents, cardiomyocyte maturation or angiogenesis promoting agents, including CD106 + and CD90 + fibroblasts.
  • it may be a method for adjusting the cardiac inflammatory response, comprising the step of injecting CD106 + and CD90 + fibroblasts into or around the necrotic heart tissue region and / or injecting it into the coronary artery. Further, it is a method for regulating cytokine secretion or a method for promoting secretion of cytokines, comprising the step of injecting CD106 + and CD90 + fibroblasts into a necrotic heart tissue region or its periphery and / or injecting it into the coronary artery or the like It can be a method.
  • a microenvironment formation method in heart tissue which may include a step of injecting CD106 + and CD90 + fibroblasts into or around necrotic heart tissue region and / or injecting into coronary artery or the like.
  • Cytokines are proteins relating to information transmission mainly related to immunity and inflammation, and include known ones.
  • the CD106 + fibroblasts contained in the injectable composition may be Connexin 43 positive (Connexin 43+) fibroblasts. That is, the composition for injection may contain Connexin 43 positive fibroblasts.
  • Connexin 43 is a transmembrane protein that is known to be expressed with arteriosclerotic plaques on the surface of blood vessels and to bind to adjacent cells as a cardiomyocyte gap junction and propagate the electrical excitation of the heart .
  • the present inventors believe that Connexin 43 positive enables the exchange of electrical signals within the heart tissue and improves the therapeutic effect of the injectable composition.
  • the ratio of Connexin 43+ fibroblasts may be 30% or more, 40% or more, 50% or more, or 60% or more. 70% or more, 80% or more, 90% or more, 95% or more, 98% or more, or 100%.
  • the injectable composition may contain other components that are physiologically acceptable as an injectable composition.
  • other components include physiological saline, cell preservation solution, cell culture solution, hydrogel, extracellular matrix, and cryopreservation solution.
  • the proportion of CD106 + fibroblasts contained in the injectable composition is appropriately set based on the mode of injection or infusion, etc., and it is sufficient that a therapeutically effective amount of CD106 + fibroblasts is contained as an active ingredient.
  • the ratio of the number of CD106 + fibroblasts based on the total number of cells in the injectable composition is 0.03% or more, 1% or more, 5% or more, 10% or more. 25% or more, 50% or more, 90% or more, 95% or more, 98% or more, 100%, Good.
  • the number of CD106 + fibroblasts contained in the composition for injection is, for example, 1.0 ⁇ 10 2 cells / mL or more, 1.0 ⁇ 10 3 cells / mL or more, 1.0 ⁇ 10 4 cells / mL or more, It can be 1.0 ⁇ 10 5 cells / mL or more, 5.0 ⁇ 10 6 cells / mL or more, or 1.0 ⁇ 10 7 cells / mL or more.
  • the number of CD106 + and CD90 + fibroblasts contained in the injectable composition is, for example, 1.0 ⁇ 10 2 cells / mL or more, 1.0 ⁇ 10 3 cells / mL or more, 1.0 ⁇ 10 4 cells / mL.
  • the number of CD106 + fibroblasts contained in the injectable composition may be further increased or decreased depending on the state of the heart disease.
  • Step of preparing fibroblasts In the step of preparing fibroblasts, the origin of fibroblasts is not particularly limited and is as already described. On the other hand, it may be in the form of autologous transplantation, in which case cardiac fibroblasts isolated from the heart tissue of patients suffering from heart disease and adult (somatic) stem cells of patients are differentiated and isolated. Prepare cardiac fibroblasts. Alternatively, it may be a fibroblast recovered by differentiating iPS cells.
  • cardiac fibroblasts isolated from heart tissue derived from a donor tissue that provides heart cells, heart tissue prepared using animals, etc.
  • An isolated cardiac fibroblast is prepared by differentiating adult (somatic) stem cells.
  • it may be a fibroblast collected by differentiating donor-derived iPS cells.
  • the prepared fibroblasts can be separated for culture, typically by treatment with an enzyme such as dispase or collagenase.
  • the separation may be performed by an enzyme such as dispase or collagenase, or may be other treatment, for example, mechanical treatment, as long as the separation required before the primary culture is possible.
  • Fibroblasts may be screened to increase the proportion of CD90 + fibroblasts. This screening can exclude cardiomyocytes from fibroblasts. Examples of the screening include cell sorting methods such as flow cytometry, magnetic bead method, affinity column method, and panning method using an anti-CD90 antibody. Specifically, magnetic cell separation (MACS), fluorescence-labeled cell separation (FACS), or the like can be used. A commercially available anti-CD90 antibody may be used, or an anti-CD90 antibody prepared by a known method may be used. Moreover, although either a monoclonal antibody or a polyclonal antibody may be used, it is preferable to use a monoclonal antibody from the viewpoint of specificity.
  • MCS magnetic cell separation
  • FACS fluorescence-labeled cell separation
  • screening may be performed by introducing a drug resistance gene and excluding CD90 negative fibroblasts.
  • a fluorescent protein-encoding gene may be introduced, and fluorescent protein-positive cells may be isolated using fluorescence labeled cell separation (FACS) or the like.
  • Fibroblasts may be screened using differences in adhesion.
  • CD90 positive fibroblasts have the property of being engrafted in a non-coated culture dish (not coated with gelatin or the like), and this step can increase the purity of fibroblasts.
  • fibroblasts are seeded in a non-coated culture dish, and cultured for 2 hours, 4 hours, 6 hours, 8 hours, 12 hours, or 24 hours, for example, and fibroblasts engrafted in the culture dish are By collecting, screening is possible.
  • Step of screening CD106 + fibroblasts In order to include CD106 + fibroblasts in an injectable composition, the fibroblasts are typically subjected to a step of screening for CD106 + fibroblasts. If CD106 + fibroblasts can be obtained without going through these steps, this step can be omitted.
  • cell sorting methods such as flow cytometry, magnetic bead method, affinity column method, panning method, etc. using anti-CD106 antibody (anti-VCAM-1 antibody) are exemplified. Specifically, magnetic cell separation (MACS), fluorescence-labeled cell separation (FACS), or the like can be used.
  • a commercially available anti-CD106 antibody may be used, or an anti-CD106 antibody prepared by a known method may be used. Furthermore, screening may be performed by introducing a drug resistance gene and excluding CD106 negative fibroblasts. Alternatively, a fluorescent protein-encoding gene may be introduced, and fluorescent protein-positive cells may be isolated using fluorescence labeled cell separation (FACS) or the like. Moreover, although either a monoclonal antibody or a polyclonal antibody may be used, it is preferable to use a monoclonal antibody from the viewpoint of specificity. Alternatively, the expression group of the CD106 gene may be isolated by confirming the expression of the CD106 gene in the cell using techniques such as real-time PCR, next-generation sequencer, and in situ hybridization.
  • FACS fluorescence labeled cell separation
  • the fibroblasts may be subjected to a culture step for the purpose of reaching a desired number of cells and / or having a desired function.
  • a culture step There is no restriction
  • the culture solution used for culturing can be appropriately set depending on the type of cells to be cultured, and for example, DMEM, ⁇ -MEM, RPMI-1640 and the like can be used.
  • Nutritional substances such as FCS and FBS, growth factors, cytokines, antibiotics, and the like may be added to the culture solution.
  • the number of days can be appropriately set according to the purpose such as until the desired number of cells is reached and / or until a desired function is provided. For example, 1 day, 2 days, 3 days, 4 days, 5 days, 6 days, 7 days, 8 days, 9 days, 10 days, 2 weeks, 1 month, 2 months, 3 months, 6 months, etc. can give.
  • the culture temperature can be appropriately set according to the type of cells to be cultured.
  • the culture temperature may be 10 ° C or higher, 15 ° C or higher, 20 ° C or higher, 25 ° C or higher, 30 ° C or higher, and 60 ° C or lower, 55 It may be not higher than 50 ° C, not higher than 50 ° C, not higher than 45 ° C, and not higher than 40 ° C.
  • the culture step may be performed a plurality of times. For example, the purity of a desired fibroblast can be improved by screening, and culture can be performed each time.
  • the cultured fibroblasts are recovered by a recovery step.
  • the cells may be detached and recovered with a protease such as trypsin, but the cells may be detached by temperature change using a temperature-responsive culture dish and recovered.
  • Another embodiment of the present invention may be a method for producing a therapeutic fibroblast comprising the step of screening CD106 + fibroblasts among the above steps. Moreover, it can be a method for producing a therapeutic fibroblast comprising the steps of screening for CD106 + fibroblasts and screening for CD90 + fibroblasts. Furthermore, it can be a method for producing therapeutic fibroblasts by arbitrarily combining one or more of the above steps.
  • an injectable composition containing fibroblasts is applied to a necrotic heart tissue region or its periphery and / or in a coronary artery, or a vein, artery, lymph node, or lymph vessel.
  • a method of treating heart disease by infusion wherein the fibroblasts comprise CD106 + fibroblasts.
  • it can be used as an injectable composition of fibroblasts, wherein the fibroblasts comprise CD106 + fibroblasts.
  • it may be a planar or three-dimensional cellular tissue comprising CD106 + fibroblasts.
  • CD106 + fibroblasts may be planar or three-dimensional cellular tissue after co-cultured with other cells such as cardiomyocytes, but function effectively as planar or three-dimensional cellular tissue without co-culture.
  • planar or three-dimensional cell tissues include, but are not limited to, cell sheets, cell fibers, and cell tissues formed by a 3D printer.
  • Mouse cardiac fibroblasts were obtained from wild type C57BL / 6 mice (newborn, 1 day old) according to previous reports (Matsuura K, et al., Biomaterials. 2011; 32: 7355-7362). The obtained cells were cultured in high-glucose DMEM + 10% FBS in a 10 cm culture dish. Three to five days after the start of culture, the cells were detached with 0.05% trypsin / EDTA and subcultured in another 10 cm culture dish. Mouse embryonic stem cells (ES cells) -derived cardiomyocytes (Cor. AT) were purchased from Axiogenesis (Cologne, Germany). Cardiomyocyte differentiation and purification were performed according to the instructions.
  • ES cells embryonic stem cells
  • Cor. AT were purchased from Axiogenesis (Cologne, Germany). Cardiomyocyte differentiation and purification were performed according to the instructions.
  • the tracheal tube was orally intubated and artificially ventilated (Tidal volume: 2.0-2.5 mL / min) using a small animal ventilator (model SN-480-7 ⁇ 2T, Shinano Manufacturing Co., Ltd.). Stroke, respiratory rate: 75 strokes / min) was applied, and maintenance anesthesia was performed using 2% isoflurane with an inhalation anesthesia apparatus (model KN-1071, Natsume Seisakusho Co., Ltd.), and then fixed to the dorsal or lateral position.
  • a small animal ventilator model SN-480-7 ⁇ 2T, Shinano Manufacturing Co., Ltd.
  • maintenance anesthesia was performed using 2% isoflurane with an inhalation anesthesia apparatus (model KN-1071, Natsume Seisakusho Co., Ltd.), and then fixed to the dorsal or lateral position.
  • lidocaine was sprayed to alleviate the pain.
  • atropine sulfate (0.02 mg / kg) was intramuscularly administered as necessary to prevent arrhythmia.
  • the left anterior descending coronary artery (LAD) was occluded for 30 minutes using a suture needle with thread (6-0 VICRYL) (Johnson & Johnson, NJ).
  • the electrocardiogram was monitored, and the presence or absence of occlusion (occurrence of myocardial ischemia) was confirmed by increasing ST-potential and whitening the myocardium (visual observation).
  • VF ventricular fibrillation
  • resuscitation direct stimulation of the heart with ring insulator tweezers
  • An ischemia reperfusion model was created by reperfusion of blood flow 30 minutes after occlusion.
  • Rats were divided into four treatment groups: (S1) CD106 + injection of murine fibroblasts and mouse cardiomyocytes (fibroblasts: 4 ⁇ 10 5 cells, high-glucose DMEM + 10% New Born Calf Serum containing 1.6 ⁇ 10 6 cells cardiomyocytes (NBCS) 50 [mu] L) (S2) Injection of CD106 + mouse fibroblasts (fibroblasts: high-glucose DMEM containing 2 ⁇ 10 6 cells, 50 ⁇ L of 10% NBCS) (S3) Group in which only surgical treatment was performed (S4) Group in which surgical treatment was not performed Cells were injected into two places around the damaged area (25 ⁇ L / injection).
  • S1 CD106 + injection of murine fibroblasts and mouse cardiomyocytes (fibroblasts: 4 ⁇ 10 5 cells, high-glucose DMEM + 10% New Born Calf Serum containing 1.6 ⁇ 10 6 cells cardiomyocytes (NBCS) 50 [mu] L)
  • S2 Injection of CD
  • the left ventricular function of the prepared model rat was monitored by cardiac ultrasonography (echocardiography), and the cardiac function was monitored every two weeks from week 0 to week 10 after cell injection for comparative evaluation.
  • An ultrasonic diagnostic apparatus Nolus, Hitachi, Ltd. was used for cardiac ultrasonography (echocardiography). Specifically, a superficial linear probe was placed on the chest of a rat and left ventricular end-diastolic diameter (LVIDd), left ventricular end-systolic diameter (LVIDs), left ventricular end-diastolic wall thickness (LVAWd) by M-mode.
  • LVPWd Left ventricular end-diastolic free wall thickness
  • LVPWs left ventricular end-systolic free wall thickness
  • Left ventricular diameter shortening rate (FS) and the left ventricular ejection fraction (EF) were calculated from the following formula and FIG.
  • Left chamber diameter shortening rate FS (LVIDd ⁇ LVIDs) / LVIDd ⁇ 100
  • Left ventricular ejection fraction EF (LVEDV ⁇ LVESV) / LVEDV) ⁇ 100
  • ⁇ Histological experiment> The extracted left ventricle of the heart was immersed and fixed in 10% buffered formalin solution. The left ventricle was divided into three in the short-axis direction so that the length in the long-axis direction was divided into three equal parts from just below the ligation to the apex. Each myocardium was embedded in one paraffin block with the origin side as the embedding surface. Thinly sliced and stained with Masson trichrome. Masson / Trichrome stained specimens were taken into an image analyzer (general-purpose image processing “Win ROOF Version 5.5”, Mitani Corp.), and the myocardial infarction area (%) was measured with an image analyzer for each of the three sites. .
  • FIG. 1A ⁇ Localization of VCAM-1 protein in mouse cardiac fibroblasts>
  • the region of CD106 + fibroblasts was strictly selected to exclude negative cells. About 39.2% of cardiac fibroblasts were CD106 + fibroblasts.
  • CD106 + fibroblasts were cultured in vitro until 18 weeks, and the expression of VCAM-1 protein was evaluated. (FIG. 1B). High expression levels of VCAM-1 protein continued to be maintained for 18 weeks for all CD106 + fibroblasts.
  • CD106 + fibroblasts highly expressed Connexin 43, that is, a gap junction protein for myocardial electrical network transmission (FIG. 1C). From these findings, it can be seen that CD106 + fibroblasts continue to express the VCAM-1 protein and in addition have the ability to propagate the electrical excitation of the heart.
  • Echocardiography showed improvement in the S1 and S2 groups compared to the S3 and S4 groups in terms of left ventricular ejection fraction (EF) and left ventricular diameter shortening rate (FS) between 2 and 10 weeks after injection.
  • EF left ventricular ejection fraction
  • FS left ventricular diameter shortening rate
  • CD106 + fibroblasts not only improved the contractile function of damaged heart including myocardial infarction, but also greatly suppressed collagen fibrosis. And the presence of cardiomyocytes was not important in the composition of the injectable composition.
  • VCAM-1 positive fibroblasts demonstrate for the first time the importance of VCAM-1 positive fibroblasts in the effective treatment of ischemic heart disease, and that administration of CD106 + fibroblasts can produce favorable results in the treatment of heart disease. Understandable. Administration of VCAM-1 positive fibroblasts can be used for treatment for effective improvement of ischemic heart disease. In addition, administration of cardiac fibroblasts expressing VCAM-1 resulted in a marked improvement in cardiac function and a marked suppression of collagen fibrosis, which is effective for the treatment of other heart diseases. It can be understood that.
  • Cell sorting Cells were primary immunostained with CD106 (VCAM-1) -Biotin antibodies, rat (Miltenyi Biotec) and secondary immunostained with Anti-Biotin MicroBeads (Miltenyi Biotec). The stained cells were autoMACS (Miltenyi Biotec), and only CD106-positive cells were collected and used as CD106 + rat fibroblasts.
  • inhaled anesthetic gas was connected to a ventilator to maintain anesthesia.
  • the patient was fixed in the supine position, and 2-3 pieces between the left third rib and the fifth rib were cut longitudinally at the position of the costal cartilage and opened.
  • the surgical field was enlarged with a retractor, and the pericardium was peeled to expose the heart.
  • the left atrium was lifted, and a thread was passed through the left ventricle at a depth of about 2 mm and a length of 4-5 mm using a weak testicle needle with a blood vessel thread (6-0: Nescosme). Both ends of the thread were put together and the snare prepared with a polyethylene tube (PESO, Becton Dickinson) was passed through, and the coronary artery was ischemic for 30 minutes by squeezing the thread using the arterial clamp (snar method). After 30 minutes, reperfusion was performed, and when the condition was stabilized, it was confirmed that there was no bleeding, chest drainage was performed, and the muscle layer and skin were sutured. The skin was subjected to intracutaneous suture.
  • PESO polyethylene tube
  • LVEF left ventricular ejection fraction
  • CD106 + human fibroblasts were diluted with high-glucose DMEM + 10% NBCS, and a cell suspension of 2.0 ⁇ 10 6 cells / 50 ⁇ L was administered to each individual as the number of viable cells.
  • 50 ⁇ L of DMEM + 10% NBCS alone was administered.
  • N 4.
  • the animals were kept under anesthesia using the same technique as that used for the model preparation, and were divided into two locations of the infarct under management of artificial respiration, and 50 ⁇ L of the cell suspension was administered using a catheter with a 30G needle.
  • the cardiac function value excluding HR is represented by one decimal place (rounded to the second decimal place), and the secondary item HR is represented by two decimal places (rounded to the third decimal place).
  • Cardiac fibroblasts were purchased from the following manufacturers. Caucasian fetal (21 weeks) heart-derived fibroblasts (c21wFCF, Cell Applications, San Diego, CA) Caucasian adult (50s) heart-derived fibroblasts (c50yACF, Cell Applications, San Diego, CA) Black adult (60s) heart-derived fibroblasts (b60yACF, Lonza, Basel, Switzerland)
  • Cell sorting Cells were primary immunostained with CD106 (VCAM-1) -Biotin antibodies, human (Miltenyi Biotec) and secondary immunostained with Anti-Biotin MicroBeads (Miltenyi Biotec). The stained cells were autoMACS (Miltenyi Biotec), and only CD106 positive cells were collected and used as CD106 + human fibroblasts.
  • the antibody was purchased from the following manufacturer. BV421 Rat IgG2a, Isotype Control RUO (BD Biosciences) PE-REA Control (S) Isotype Control (Miltenyi Biotec) Oct3 / 4-PE (Miltenyi Biotec) Nanog-PE (Miltenyi Biotec) Sox2-PE (Miltenyi Biotec) Rabbit polyclonal anti-Connexin 43 (Cell signaling technology) Human STRO-1 Alexa Fluor 488-conjugated Antibody (R & D Systems, Minneapolis, MN) All other antibodies were purchased from Abcam. Secondary antibodies were purchased from Jackson Immuno Research Laboratories.
  • the antibody recognizing the cell membrane surface protein was subjected to immunofluorescence staining after fixing the cells with 4% paraformaldehyde.
  • CD106 + human fibroblasts were treated with 0.1% Triton-X (Sigma Aldrich, St. Louis, MO) for 30 minutes (room temperature) and cell membrane permeabilization. Performed and immunofluorescent stained.
  • a chronic heart failure model was prepared by the same method as described above, and echocardiography was measured.
  • Pigs purchased 35-40 kg LWD, SPF domestic pigs (Okayama JA Livestock Co., Ltd., Okayama, Japan).
  • a porcine heart failure model was prepared by inflating the left anterior descending branch with a balloon catheter for 60 minutes and infusing the middle part of the left anterior descending branch again for 60 minutes after a 30 minute interval.
  • Echocardiography was measured using MRI on the day before the cell administration day for 1 week after model preparation. Individuals with a left ventricular ejection fraction (EF) of less than 45% were considered as chronic heart failure models, and administration experiments of CD106 + human fibroblasts were performed.
  • EF left ventricular ejection fraction
  • the produced porcine heart failure model was fixed to the operating table in the supine position after the induction of anesthesia. Similar to the production of the above-mentioned chronic heart failure pig model, a 6Fr sheath was inserted from the buttocks, and a 6Fr guiding catheter was inserted into the ascending aorta with a 0.035 inch guide wire in advance. The 0.035 inch guide wire was removed and the guiding catheter was evacuated to engage the left coronary artery main trunk. After engagement, confirmation angiography was performed at an angle of the median and LA030 ° to confirm the state of the coronary artery.
  • a microcatheter was inserted along the 0.014 inch guide wire immediately after the left front descending branch entrance.
  • a 50 mL syringe (2.0 ⁇ 10 7 cells / 40 mL) pre-filled with CD106 + human fibroblasts was set in the syringe pump, connected to the inserted microcatheter, and administered at a flow rate of 1 mL / min for 40 minutes.
  • 5 mL of physiological saline was administered at the same flow rate as flushing in the microcatheter.
  • the catheter and sheath were removed, the sheath insertion site was compressed and hemostatic, awakened from anesthesia, and returned to the cage.
  • LVEF left ventricular ejection fraction%
  • SV stroke volume mL
  • EDV end diastolic volume mL
  • ESV (end systolic volume mL)
  • HR heart rate bpm
  • PFR maximum filling speed mL / s
  • PER maximum ejection speed mL / s
  • myocardial timing change analysis Perfusion and delayed contrast LGE analysis were performed, and the infarct / fibrosis region present in the myocardial non-normal site was also quantitatively calculated.
  • Myocardial time-change analysis Perfusion first rapidly infused a contrast agent (for omniscan 32% intravenous injection) from the venous J rate, and visualized the process of the contrast agent first passing through the myocardium (short-axis cross section). The data obtained by imaging was analyzed using the software application Cardiac VX.
  • FastGRE imaging was first performed (short axis cross section) 10-20 minutes after intravenous administration of a contrast medium (Omniscan intravenous 32% 0.25 mL / kg).
  • VCAM-1 positive fibroblasts demonstrate the importance of VCAM-1 positive fibroblasts in the effective treatment of chronic heart failure, and it can be understood that administration of CD106 + fibroblasts produces favorable results in the treatment of chronic heart failure.
  • the injection of VCAM-1 positive fibroblasts can treat not only chronic heart failure but also myocardial infarction as described above, and thus may be effective for treating other heart diseases.
  • FCF cardiac fibroblasts
  • ACF cardiac fibroblasts
  • c50yACF is localized at a CD106-positive cell rate of 12.53%, a CD90-positive cell rate of 5.79%, and both positive cells (CD106 + human fibroblasts) rate of 1.79%. became.
  • b60yACF is localized at a CD106 positive cell rate of 5.55%, a CD90 positive cell rate of 96.39%, and a positive rate of both positive cells (CD106 + human fibroblasts) of 5.43%. It was.
  • the above positive cell rates are all based on the number of cells. From this result, it was revealed that CD106 + human fibroblasts are localized in all cardiac fibroblasts.
  • CD106 + human fibroblasts In order to collect CD106 + human fibroblasts with high purity from cardiac fibroblasts collected from the human heart, cell sorting of CD106 + human fibroblasts was performed with autoMACS. The cellular properties of CD106 + human fibroblasts sorted with autoMACS were evaluated. The results are shown in FIG. It was revealed that the collected CD106 + human fibroblasts were 95.98% of CD106 positive cells, 92.28% of CD90 positive cells, and 89.15% of both positive cells. Therefore, it was revealed that almost all cells were positive for CD106 and CD90, which are marker proteins indicating the population of CD106 + human fibroblasts. The above positive cell rates are all based on the number of cells.
  • CD106 + human fibroblasts were immunofluorescently stained with Oct3 / 4, Nanog and Sox2, and the positive cell rate (%, Cell number conversion) was evaluated. The result is shown in FIG. CD106 + human fibroblasts were negative for the above markers and did not have tumorigenic or pluripotent stem cell properties.
  • CD106 + human fibroblasts were immunofluorescently stained with Vimentin, a cytoskeletal marker of fibroblasts and mesenchymal stem cells, Cytokeratin, a marker of epithelial cells, and Connexin 43, a marker of cardiomyocyte gap junctions. Human fibroblasts were found to express Vimentin and Connexin43. The result is shown in FIG. Moreover, when the STRO-1 expression rate of CD106 + human fibroblasts was evaluated by flow cytometry, CD106 + human fibroblasts were 0.29% positive for STRO-1, and almost all CD106 + human fibroblasts were STRO-1. It was revealed that -1 was not expressed.
  • STRO-1 is one of the most well-known molecular markers of mesenchymal stem cells (MSCs), a single-transmembrane protein that changes its localization from the endoplasmic reticulum to the cell membrane in response to loss of intracellular calcium.
  • MSCs mesenchymal stem cells
  • a single-transmembrane protein that changes its localization from the endoplasmic reticulum to the cell membrane in response to loss of intracellular calcium.
  • ⁇ Therapeutic effect of rat heart failure model with CD106 + human fibroblasts The sorted and collected CD106 + human fibroblasts were intramyocardically administered to a rat chronic heart failure model, and the recovery effect of heart failure was evaluated for 18 weeks after cell administration. The result is shown in FIG. It was revealed that in the group administered with CD106 + human fibroblasts, EF was improved by 32.60% and FS was improved by 17.85% at 18 weeks after administration, compared with the control group. In addition, an extreme increase / decrease in LVEDV and an increase in LVESV were not observed over 18 weeks after administration.
  • Tables 10 to 18 show the breakdown of the main items (LVEF, LVFS, LVEDV, LVESV) and the subitems (LVIDd, LVIDs, IVSTd, LVPWTd, HR).
  • LVEF LVEF
  • LVFS LVFS
  • LVEDV LVESV
  • LVIDd LVIDs
  • IVSTd LVPWTd
  • HR HR
  • CD106 + human fibroblasts were administered intramyocardially at two concentrations (2.0 ⁇ 10 6 cells / 50 ⁇ L and 5.0 ⁇ 10 5 cells / 50 ⁇ L) to a rat chronic heart failure model. The recovery effect was evaluated 8 weeks after cell administration. The result is shown in FIG. It is clear that the CD106 + human fibroblast (2.0 ⁇ 10 6 cells / 50 ⁇ L) administration group improves EF by 30.18% and FS by 15.65% after 8 weeks of administration compared to the control group. It became. Moreover, an extreme increase / decrease in LVEV and an increase in LVESV were not confirmed over 8 weeks after administration.
  • the infarct weight (fibrosis region weight) calculated by ROI analysis was 10.2 g, and the left ventricular myocardial weight was 78.1 g. Therefore, the infarct focus (fibrosis region) (%) was 13.1. % Became clear.
  • LVEF at 4 weeks after administration of CD106 + human fibroblasts was 58%
  • SV was 38.6 mL
  • EDV was 66.9 mL
  • ESV was 28.2 mL
  • HR was 98 bpm
  • PFR was 232 mL / s
  • PER was It was 215 mL / s. It was revealed that LVEF improved by 15% at 4 weeks after administration of CD106 + human fibroblasts, and SV improved by 8.2 mL.
  • the ESV decreased by 11.8 mL and the PER increased to 54 mL / s, which revealed that the cardiac function was improved.
  • the infarct weight (fibrosis region weight) calculated by ROI analysis was 8.23 g, and the left ventricular myocardial weight was 89.2 g. Therefore, the infarct focus (fibrosis region) (%) was 9.23. % Became clear. This result revealed that CD106 + human fibroblasts reduced the infarct weight (fibrosis area weight) by 1.97 g.
  • LVEF at 52 weeks after administration of CD106 + human fibroblasts SV is 35.9 mL, EDV is 69.2 mL, ESV is 33.3 mL, HR is 92 bpm, PFR is 263 mL / s, PER is 156 mL / s was. LVEF was found to improve 8% 8 weeks after administration of CD106 + human fibroblasts.
  • the infarct weight (fibrosis region weight) calculated by ROI analysis was 8.51 g, and the left ventricular myocardial weight was 91.6 g. Therefore, the infarct focus (fibrosis region) (%) was 9.29. % Became clear.
  • CD106 + human fibroblasts have a high cardiac function recovery effect even in porcine heart failure, which is considered to be anatomically and physiologically close to humans.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Cardiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Epidemiology (AREA)
  • Zoology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Biotechnology (AREA)
  • Hospice & Palliative Care (AREA)
  • Virology (AREA)
  • Immunology (AREA)
  • Vascular Medicine (AREA)
  • Biomedical Technology (AREA)
  • Cell Biology (AREA)
  • Urology & Nephrology (AREA)
  • Dermatology (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicinal Preparation (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

未だ確立されていない、壊死した心臓組織領域を長期的かつ抜本的に治癒し、心臓の機能性を回復させる有用な手法を提供することを課題とする。 線維芽細胞を含む、心臓疾患を治療するための注射用組成物であって、該線維芽細胞はCD106ポジティブ線維芽細胞を含む、好ましくはCD90ポジティブ線維芽細胞を含む注射用組成物により課題を解決する。

Description

線維芽細胞を含む心臓疾患を治療するための注射用組成物、及び治療用線維芽細胞の製造方法
 本発明は、線維芽細胞を含む心臓疾患を治療するための注射用組成物に関し、更に詳細には、特定のタンパク質を発現した線維芽細胞を含む心臓疾患を治療するための注射用組成物に関する。また、注射用組成物に使用し得る治療用線維芽細胞を製造する方法に関する。
 心筋梗塞や心筋症に伴う心不全の生命予後は極めて不良であり、現在のところ根本的な治療方法は心臓移植のみである。しかしながら現状は、日本のみならず世界的に深刻なドナー不足であり、患者は十分な治療法を受けることができない問題がある。そこで近年、再生医療による心疾患治療に注目が集まっており、技術開発が行われている。
 例えば、特許文献1等には細胞シートが開示されており、自己骨格筋芽細胞への展開が検討されている。また、特許文献2等には人工多能性幹細胞を用いた心筋シートによる心疾患の治療が検討されている。
 しかしながらこれらの検討はあるものの、未だ長期にわたって有意に失われた心機能を回復させる手法は報告されておらず、壊死した心臓組織領域を長期的かつ抜本的に治癒し、心機能を回復させる手法の確立が求められている。
 このような状況下、本発明者らはVascular cell adhesion molecule-1(VCAM-1、CD106)ポジティブである線維芽細胞を用いて、機能的な心臓細胞シートが得られることを見出している(特許文献3参照)。
特開2010-081829号公報 国際公開第2013/137491号 国際公開第2016/006262号
 本発明では、未だ確立されていない、壊死した心臓組織領域を長期的かつ抜本的に治癒し、心機能を回復させる有用な手法を提供することを課題とする。
 本発明者らは上記課題を解決すべく検討を進め、特定の線維芽細胞を壊死した心臓組織領域に投与(注入)することで、心臓疾患を治療し得ることを見出し、発明を完成させた。本発明は以下の第1の側面(発明A)を含む。
(A1)線維芽細胞を含む、心臓疾患を治療するための注射用組成物であって、該線維芽細胞はVascular cell adhesion molecule-1(VCAM-1、CD106)ポジティブ線維芽細胞を含む、注射用組成物。
(A2)前記線維芽細胞はThymus cell antigen-1(Thy-1, CD90)ポジティブ線維芽細胞を含む(A1)に記載の注射用組成物。
(A3)前記線維芽細胞はConnexin43(Cx43)ポジティブ線維芽細胞を含む(A1)又は(A2)に記載の注射用組成物。
(A4)前記注射用組成物に含まれる線維芽細胞全量に対し、CD106ポジティブ線維芽細胞の割合(細胞数基準)が0.03%以上である(A1)~(A3)のいずれかに記載の注射用組成物。
 また本発明は以下の第2の側面(発明B)を含む。
(B1)線維芽細胞を準備するステップ、及び
 該線維芽細胞からCD106ポジティブ細胞をスクリーニングするステップ、を含む、治療用線維芽細胞の製造方法。
(B2)前記治療用線維芽細胞が心臓疾患の治療に用いられる、(B1)に記載の製造方法。
(B3)更に、線維芽細胞からCD90ポジティブ細胞をスクリーニングするステップ、を含む、(B1)又は(B2)に記載の製造方法。
(B4)前記治療用線維芽細胞が、Connexin43ポジティブである線維芽細胞を含む、(B1)~(B3)のいずれかに記載の製造方法。
(B5)前記治療用線維芽細胞の細胞全量に対し、CD106ポジティブ線維芽細胞の割合(細胞数基準)が0.03%以上である、(B1)~(B4)のいずれかに記載の製造方法。
 また本発明は以下の第3の側面(発明C)を含む。
(C1)線維芽細胞を含む注射用組成物を、壊死した心臓組織領域、或いはその周辺に注射、及び/又は冠動脈内に注入することにより心臓疾患を治療する方法であって、該線維芽細胞はCD106ポジティブ線維芽細胞を含む、方法。
(C2)前記線維芽細胞がCD90ポジティブ線維芽細胞を含む、(C1)に記載の心臓疾患を治療する方法。
(C3)前記線維芽細胞がConnexin43ポジティブ線維芽細胞を含む、(C1)に記載の心臓疾患を治療する方法。
(C4)前記注射用組成物に含まれる線維芽細胞全量に対し、CD106ポジティブ線維芽細胞の割合(細胞数基準)が0.03%以上である、(C1)に記載の心臓疾患を治療する方法。
 また本発明は以下の第4の側面(発明D)を含む。
(D1)線維芽細胞の注射用組成物としての使用であって、該線維芽細胞はCD106ポジティブ線維芽細胞を含む、使用。
(D2)前記線維芽細胞がCD90ポジティブ線維芽細胞を含む、(D1)に記載の使用。
(D3)前記線維芽細胞が、Connexin43ポジティブ線維芽細胞を含む、(D1)又は(D2)に記載の使用。
(D4)前記注射用組成物に含まれる線維芽細胞全量に対し、CD106ポジティブ線維芽細胞の割合(細胞数基準)が0.03%以上である、(D1)~(D3)のいずれかに記載の使用。
 本発明により、壊死した心臓組織領域を治癒し、心機能を回復させる有効な手段が提供される。
CD106ポジティブマウス線維芽細胞のVCAM-1タンパク質の局在化を示すグラフである。 CD106ポジティブマウス線維芽細胞のVCAM-1ポジティブの免疫蛍光画像である(図面代用写真)。 それぞれの線維芽細胞のConnexin43ポジティブの免疫蛍光画像である(図面代用写真)。 CD106ポジティブマウス線維芽細胞注射後の心機能(Ejection Fraction、左室駆出率)を示すグラフである。 CD106ポジティブマウス線維芽細胞注射後の心機能(fractional shortening、左室内径短縮率)を示すグラフである。 ラット心臓の心エコーイメージである(図面代用写真)。 ラット心臓の膠原線維化された梗塞領域のイメージである(図面代用写真)。 ラット心臓の膠原線維化された梗塞領域の面積を示すグラフである。 左室内径短縮率(FS)及び左室駆出率(EF)の算出に用いたグラフである。 心エコーによるラット慢性心不全モデルの心機能経過観察スケジュールを示す。CD106ポジティブラット線維芽細胞による慢性心不全治療効果の検証は、細胞投与日から2週間ごとに18週間まで心エコーで心機能の経過観察を行った。 心エコーによるラット慢性心不全モデルの心機能経過観察スケジュールを示す。CD106ポジティブヒト線維芽細胞による慢性心不全治療効果の検証は、細胞投与日から2週間ごとに18週間まで心エコーで心機能の経過観察を行った。CD106ポジティブヒト線維芽細胞の最適投与量の検討は、細胞投与日から2週間ごとに8週間まで心エコーで心機能の経過観察を行った。コントロールは培地投与後、2週、4週、8週、12週、16週、18週で心エコーによる心機能の経過観察を行った。 CD106ポジティブラット線維芽細胞(2.0×10cells/50μL)投与によるラット慢性心不全モデルの心機能回復効果を示す。(A)は左室駆出率(LVEF=(LVIDd3-LVIDs3)/LVIDd3)、(B)は左室内径短縮率(LVFS=(LVIDd-LVIDs)×100/LVIDd)、(C)は左室拡張末期容積(LVEDV)、(D)は左室収縮末期容積(LVESV)をそれぞれ示す。N=4。 各種の心臓線維芽細胞におけるCD106及びCD90の陽性細胞率(%)を示す。白人胎児(21週)心臓由来線維芽細胞(c21wFCF)、白人成体(50代)心臓由来線維芽細胞(c50yACF)、黒人成体(60代)心臓由来線維芽細胞(b60yACF)の3種を比較解析した。 autoMACSによりソーティングし、回収したCD106ポジティブヒト線維芽細胞のCD106-CD90陽性細胞率(%)を示す。 (A)はCD106ポジティブヒト線維芽細胞のOct3/4陽性細胞率(%)、(B)はCD106ポジティブヒト線維芽細胞のNanog陽性細胞率(%)、(C)はCD106ポジティブヒト線維芽細胞のSox2陽性細胞率(%)を示す。N=3。N.S.=not significant。 CD106ポジティブヒト線維芽細胞の細胞特性。間質細胞・間葉系幹細胞マーカー(Vimentin)、上皮細胞マーカー(Cytokeratin)、心筋細胞のギャップジャンクションマーカー(Connexin43)の局在を評価した。 CD106ポジティブヒト線維芽細胞のSTRO-1陽性細胞率(%)。FSC-A及びSSC-Aで細胞領域を認識後、CD106(VioBlue-A)とCD90(PE-A)に両陽性の細胞群の内、STRO-1(FITC-A)に陽性の細胞率(%)を評価した。Negative Controlは上記抗体のIsotype Controlを使用した。 CD106ポジティブヒト線維芽細胞(2.0×10cells/50μL)投与によるラット慢性心不全モデルの心機能回復効果を示す。(A)は左室駆出率(LVEF=(LVIDd3-LVIDs3)/LVIDd3)、(B)は左室内径短縮率(LVFS=(LVIDd-LVIDs)×100/LVIDd)、(C)は左室拡張末期容積(LVEDV)、(D)は左室収縮末期容積(LVESV)をそれぞれ示す。N=4。 CD106ポジティブヒト線維芽細胞投与量の違いによるラット慢性心不全モデルの心機能回復効果を示す。(A)は左室駆出率(LVEF=(LVIDd3-LVIDs3)/LVIDd3)、(B)は左室内径短縮率(LVFS=(LVIDd-LVIDs)×100/LVIDd)、(C)は左室拡張末期容積(LVEDV)、(D)は左室収縮末期容積(LVESV)をそれぞれ示す。N=4。N.S.=not significant。 CD106ポジティブヒト線維芽細胞投与日前日の、ブタ慢性心不全モデルの心機能評価の結果を示す(図面代用写真)。 CD106ポジティブヒト線維芽細胞投与4週後の、ブタ慢性心不全モデルの心機能評価の結果を示す(図面代用写真)。 CD106ポジティブヒト線維芽細胞投与8週後の、ブタ慢性心不全モデルの心機能評価の結果を示す(図面代用写真)。
 以下、本発明について具体的実施形態を用いて詳細に説明するが、本発明は示された具体的実施形態にのみ限定されるものではない。
 本発明の一実施形態は、線維芽細胞を含む、心臓疾患を治療するための注射用組成物であり、該線維芽細胞はCD106ポジティブ(以下CD106+とも表記する)線維芽細胞を含む。
 線維芽細胞は、最終的に線維芽細胞または筋線維芽細胞となる全ての細胞が含まれる。すなわち、分化又は成熟段階の途中の細胞であって、その時点では線維芽細胞または筋線維芽細胞と同定できないものであっても、最終的に線維芽細胞または筋線維芽細胞となるものであれば、本実施形態において線維芽細胞の範囲に含まれる。さらに線維芽細胞と称されない細胞、例えば間質細胞、前駆細胞、幹細胞、筋芽細胞等であっても線維芽細胞と同様の機能を有する細胞であってCD106+である細胞は、本実施形態において線維芽細胞の範囲に含まれる。
 なお、CD106+線維芽細胞は、線維芽細胞や間葉系幹細胞の細胞骨格マーカーであるVimentinにポジティブである一方、間葉系幹細胞(MSC)の最もよく知られた分子マーカーのひとつであるSTRO-1にネガティブであるという特徴を有する。
 線維芽細胞の由来に制限はなく、胚性幹細胞(ES細胞)、人工多能性幹細胞(iPS細胞)及びMuse細胞等の多能性幹細胞や、間葉系幹細胞などの成体幹細胞を分化させて用いてもよい。また、動物(ヒトを含む)から採取したプライマリー細胞を用いてもよく、株化した細胞を用いてもよい。心臓由来の線維芽細胞を用いることが好ましく、心外膜由来の線維芽細胞を用いることがより好ましい。
 特に、ヒト由来の線維芽細胞を用いることで、注射による心臓疾患治療効果が高い。なお、ヒト由来の線維芽細胞は、CD106+の線維芽細胞の割合がマウス等と比較して極めて低い。本発明者らの研究では、その割合は多くとも9.1%(細胞数換算)程度である。従って、後述するスクリーニングステップ等によりヒト由来CD106+線維芽細胞の割合を向上させたヒト由来線維芽細胞集団ついても、本発明に含まれ得る。例えば、本発明の別の形態として、全ヒト由来線維芽細胞に占めるヒト由来CD106+線維芽細胞の割合(細胞数)が10%以上である、ヒト由来線維芽細胞集団であり得る。なお、全線維芽細胞に占めるCD106+線維芽細胞の割合(細胞数)は15%以上であってよく、20%以上であってよく、25%以上であってよく、30%以上であってよく、40%以上であってよく、50%以上であってよく、60%以上であってよく、70%以上であってよく、80%以上であってよく、90%以上であってよく、100%であってよい。なお、ここでのヒト由来線維芽細胞集団は、ヒト心臓由来線維芽細胞集団であってよく、ヒト成人心臓由来線維芽細胞であってよく、ヒト胎児心臓由来線維芽細胞集団であってよい。
 なお、CD106+であることが知られた細胞を選択することで、細胞選別の処理を省くことができる。
 CD106は、VCAM-1とも称され、血管内皮細胞等に発現する細胞接着分子として既知のタンパク質である。本実施形態では、CD106+、即ちVCAM-1ポジティブ(VCAM-1+)線維芽細胞を、心臓疾患を治療するための注射用組成物として用いる。
 注射用組成物として用いるCD106+線維芽細胞は、壊死した心臓組織領域に直接注射されることで、心臓疾患を治療することが可能となる。また、壊死した心臓組織領域の周辺部に注射してもよく、冠動脈内に注入してもよく、静脈、動脈、リンパ節、リンパ管へ注入してもよい。冠動脈内への注入や静脈、動脈、リンパ管への注入は、脈内へ注射によるものでもよく、カテーテルにより注入されるものでもよく、その他の既知の手法を用いてもよい。
 注射の方法は特段限定されず、有針注射、無針注射等既知の注射手法を適用することができ、注入に用いるカテーテルの方法も既知の方法を適用することができ、特段限定されない。
 注射用組成物は有効成分として治療上有効量のCD106+線維芽細胞が含まれていれば、他の線維芽細胞や他の成分を含んでもよく、他の線維芽細胞を含む場合、注射用組成物に含まれる線維芽細胞全量に対し、CD106+線維芽細胞の割合は細胞数基準で0.03%以上であってよく、0.1%以上であってよく、1%以上であってよく、2%以上であってよく、4%以上であってよく、5%以上であってよく、10%以上であってよく、20%以上であってよく、30%以上であってよく、40%以上であってよく、50%以上であってよく、60%以上であってよく、70%以上であってよく、80%以上であってよく、90%以上であってよく、95%以上であってよく、98%以上であってよく、99%以上であってよい。
 また、注射用組成物に含まれるCD106+線維芽細胞は他の細胞、例えば心筋細胞と共培養した細胞であってよい。
 本実施形態において心臓疾患は、心臓組織の障害、欠損、機能不全などに起因する疾患が含まれ、心不全、虚血性心疾患、心筋梗塞、心筋症、心筋炎、肥大型心筋症、拡張型心筋症などが例示されるが、これらに限られない。
 注射用組成物に含まれるCD106+線維芽細胞は、CD90ポジティブ(CD90+)であってよい。すなわち、注射用組成物はCD90ポジティブ線維芽細胞を含んでもよい。CD90は、Thy-1とも称され、糖鎖に富むグリコシル-フォスファチジルイノシトール(GPI)結合型分子であり、また神経組織、結合組織など様々なストロマ細胞株に発現するが、心筋細胞には発現しない。そのため、CD90+線維芽細胞は、心筋細胞を含まないことを示す。なおここでいう「CD90+線維芽細胞は、心筋細胞を含まない」とは、多少含まれていることは許容する概念であり、注射用組成物に含まれる全細胞に対して細胞数基準で5%以下、4%以下、3%以下、2%以下、1%以下、0.5%以下、0.1%以下、0.01%以下であってよい。
 CD106+線維芽細胞のうち、CD90+線維芽細胞である割合(細胞数基準)は30%以上であってよく、40%以上であってよく、50%以上であってよく、60%以上であってよく、70%以上であってよく、80%以上であってよく、90%以上であってよく、95%以上であってよく、98%以上であってよく、100%であってよい。
 本発明のある態様では、CD106+かつCD90+の線維芽細胞を含む線維芽細胞集団が提供され得る。線維芽細胞集団中では、CD106+かつCD90+の線維芽細胞は、細胞数の割合において、8.2%を超える、8.5%以上、9%以上、10%以上、15%以上、20%以上、30%以上、40%以上、50%以上、60%以上、70%以上、80%以上、90%以上、95%以上、97%以上、98%以上、99%以上または100%であり得る。これらの態様において、CD106+かつCD90+の線維芽細胞は、例えば、ヒト由来であり得る。これらの態様において、CD106+かつCD90+の線維芽細胞は、例えば、心臓由来線維芽細胞であり得る。これらの態様において、CD106+かつCD90+の線維芽細胞は、例えば、ヒト心臓由来線維芽細胞であり得る。CD106+かつCD90+の線維芽細胞は、例えば、組織からCD106+であり、かつCD90+である細胞をセルソーター等で濃縮して得ることができる。これらの態様では、線維芽細胞は、ヒト胎児から採取された線維芽細胞としてもよい。
 CD106+かつCD90+線維芽細胞は、臓器の恒常性維持のためサイトカイン等を分泌して炎症反応を調整し、分泌されたサイトカイン・ケモカイン等が心筋組織の再生に適した微小環境を形成し、心筋細胞の増殖、心筋細胞の拍動調整、または血管新生を促すことで、心臓機能を改善させ得る。また、CD106+かつCD90+線維芽細胞は線維症の進行を抑制し得る。
 従って本明細書には、CD106+かつCD90+線維芽細胞、または当該細胞の精製物を含む心臓炎症反応調整剤(または心臓の炎症抑制剤)の発明を含み得る。また、CD106+かつCD90+線維芽細胞、または当該細胞の培養上清を含む、心臓細胞のサイトカイン分泌促進剤、或いはCD106+かつCD90+線維芽細胞の細胞溶解物または培養上清、または当該細胞の精製物を含むサイトカイン類分泌調整剤の発明を含み得る。また、CD106+かつCD90+線維芽細胞を含む、心臓組織における微小環境形成剤の発明を含み得る。そして、CD106+かつCD90+線維芽細胞を含む、心筋細胞増殖剤、心筋細胞の拍動調整剤、心筋細胞の成熟または血管新生促進剤の発明を含み得る。
 換言すると、心臓炎症反応調整方法であって、CD106+かつCD90+線維芽細胞を壊死した心臓組織領域、或いはその周辺に注射する、及び/又は冠動脈内に注入するステップ、を含む方法であり得る。また、サイトカイン類分泌調整方法若しくはサイトカイン類分泌促進方法であって、CD106+かつCD90+線維芽細胞を壊死した心臓組織領域、或いはその周辺に注射する、及び/又は冠動脈内等に注入するステップ、を含む方法であり得る。また、心臓組織における微小環境形成方法であって、CD106+かつCD90+線維芽細胞を壊死した心臓組織領域、或いはその周辺に注射する、及び/又は冠動脈内等に注入するステップ、を含む方法であり得る。
 サイトカイン類は、主に免疫や炎症に関係する情報伝達に関するタンパク質であり、既知のものが含まれる。
 注射用組成物に含まれるCD106+線維芽細胞は、Connexin43ポジティブ(Connexin43+)線維芽細胞であってよい。すなわち、注射用組成物はConnexin43ポジティブ線維芽細胞を含んでもよい。
 Connexin43は、血管の表面で動脈硬化性プラークとともに発現することや、心筋細胞のギャップジャンクションとして隣接する細胞と結合し、心臓の電気的な興奮を伝搬することが知られている膜貫通タンパク質である。Connexin43ポジティブであることで、心臓組織内の電気的シグナルのやりとりが可能となり、注射用組成物による治療効果を改善させると本発明者らは考えている。
 CD106+線維芽細胞のうち、Connexin43+線維芽細胞の割合(細胞数基準)は30%以上であってよく、40%以上であってよく、50%以上であってよく、60%以上であってよく、70%以上であってよく、80%以上であってよく、90%以上であってよく、95%以上であってよく、98%以上であってよく、100%であってよい。
 注射用組成物は、注射用組成物として生理学的に許容される他の成分を含有してもよい。このような他の成分としては、生理食塩水、細胞保存液、細胞培養液、ハイドロゲル、細胞外マトリクス、凍結保存液等があげられる。
 注射用組成物に含まれるCD106+線維芽細胞の割合は注射又は注入の態様等に基づいて適宜設定され、有効成分として治療上有効量のCD106+線維芽細胞が含まれていればよい。通常、注射用組成物において細胞全量に対するCD106+線維芽細胞の細胞数基準の割合は0.03%以上であってよく、1%以上であってよく、5%以上であってよく、10%以上であってよく、25%以上であってよく、50%以上であってよく、90%以上であってよく、95%以上であってよく、98%以上であってよく、100%であってよい。
 なお、注射用組成物に含まれるCD106+線維芽細胞数は、例えば1.0×10cells/mL以上、1.0×10cells/mL以上、1.0×10cells/mL以上、1.0×10cells/mL以上、5.0×10cells/mL以上、1.0×10cells/mL以上とすることができる。また、注射用組成物に含まれるCD106+かつCD90+の線維芽細胞数は、例えば1.0×10cells/mL以上、1.0×10cells/mL以上、1.0×10cells/mL以上、1.0×10cells/mL以上、5.0×10cells/mL以上、1.0×10cells/mL以上とすることができる。注射用組成物に含まれるCD106+線維芽細胞数は、心臓疾患の状態に応じてさらに増減させてもよい。
 以下、注射用組成物に含まれる線維芽細胞の製造方法を説明する。線維芽細胞の製造に関しては、本発明者らの既報(国際公開第2016/006262号)が参照され、これに従ってもよい。
(線維芽細胞を準備するステップ)
 線維芽細胞を準備するステップにおいて、線維芽細胞の由来は特に限定はされず、既に述べたとおりである。一方で、自家移植による形態であってよく、その場合には心臓疾患を患っている患者の心臓組織から単離した心臓線維芽細胞や、患者の成体(体性)幹細胞を分化させて単離した心臓線維芽細胞を準備する。また、iPS細胞を分化させて、回収した線維芽細胞であってもよい。加えて、他家移植による形態であってよく、その場合には心臓細胞を提供するドナー由来の心臓組織や、動物等を利用して作製した心臓組織から単離した心臓線維芽細胞や、ドナーの成体(体性)幹細胞を分化させて単離した心臓線維芽細胞を準備する。また、ドナー由来のiPS細胞を分化させて、回収した線維芽細胞であってもよい。
(線維芽細胞を分離するステップ)
 準備された線維芽細胞は、典型的にはディスパーゼ、コラゲナーゼのような酵素により処理されることで、培養のため分離され得る。分離はディスパーゼ、コラゲナーゼのような酵素により行われる他、初代培養前に必要とされる分離が可能であれば、その他の処理、例えば機械的処理であってよい。
(CD90ポジティブ線維芽細胞をスクリーニングするステップ)
 線維芽細胞は、CD90+線維芽細胞の割合を増やすためにスクリーニングされてよい。本スクリーニングにより、線維芽細胞から心筋細胞を除外することができる。スクリーニングには、抗CD90抗体を用いた、フローサイトメトリー、磁気ビーズ法、アフィニティーカラム法、又はパニング法等のセルソーティング法が例示される。具体的には磁気細胞分離法(MACS)や蛍光標識細胞分離法(FACS)などを用いることができる。抗CD90抗体は市販のものを用いてよく、また既知の方法により作製したものを用いてもよい。また、モノクローナル抗体又はポリクローナル抗体のいずれを用いてもよいが、特異性の観点からモノクローナル抗体を用いることが好ましい。更には、薬剤耐性遺伝子を導入し、CD90ネガティブ線維芽細胞を除外することで、スクリーニングしてもよい。また、蛍光タンパク質コード遺伝子を導入し、蛍光タンパク質ポジティブ細胞を蛍光標識細胞分離法(FACS)などを用いて単離してもよい。
(接着力を有する細胞をスクリーニングするステップ)
 線維芽細胞は、接着力の違いを利用してスクリーニングしてもよい。CD90ポジティブ線維芽細胞は、ノンコート(ゼラチン等でコーティングを施していない)の培養皿に生着する性質を有しており、本ステップにより線維芽細胞の純度を高めることができる。具体的には、ノンコートの培養皿に線維芽細胞を播種し、例えば2時間、4時間、6時間、8時間、12時間、又は24時間培養を行い、培養皿に生着した線維芽細胞を回収することで、スクリーニングができる。
(CD106+線維芽細胞をスクリーニングするステップ)
 注射用組成物にCD106+線維芽細胞を含有させるため、典型的には、線維芽細胞はCD106+線維芽細胞をスクリーニングするステップに供される。このようなステップを経ずともCD106+線維芽細胞を入手できる場合には、本ステップは省略し得る。CD106+線維芽細胞のスクリーニングには、抗CD106抗体(抗VCAM-1抗体)を用いた、フローサイトメトリー、磁気ビーズ法、アフィニティーカラム法、又はパニング法等のセルソーティング法が例示される。具体的には磁気細胞分離法(MACS)や蛍光標識細胞分離法(FACS)などを用いることができる。抗CD106抗体は市販のものを用いてよく、また既知の方法により作製したものを用いてもよい。更には、薬剤耐性遺伝子を導入し、CD106ネガティブ線維芽細胞を除外することで、スクリーニングしてもよい。また、蛍光タンパク質コード遺伝子を導入し、蛍光タンパク質ポジティブ細胞を蛍光標識細胞分離法(FACS)などを用いて単離してもよい。また、モノクローナル抗体又はポリクローナル抗体のいずれを用いてもよいが、特異性の観点からモノクローナル抗体を用いることが好ましい。また、リアルタイムPCR、次世代シーケンサー、及びin situハイブリダイゼーション等の手法を用いて、細胞におけるCD106遺伝子の発現を確認し、CD106遺伝子の発現群を単離してもよい。
(培養ステップ)
 線維芽細胞は、所望の細胞数となるまで、及び/又は所望の機能が備わるまで等の目的で、培養ステップに供されてもよい。培養の条件に制限はなく、既知の細胞培養方法により行ってよい。
 培養に用いられる培養液は、培養する細胞の種類等により適宜設定可能であるが、たとえば、DMEM、α-MEM、RPMI-1640等が使用可能である。当該培養液にFCSやFBS等の栄養物質や増殖因子、サイトカイン、抗生物質等を添加してもよい。
 培養期間は、所望の細胞数となるまで、及び/又は所望の機能が備わるまで等の目的に応じて日数を適宜設定できる。例えば、1日、2日、3日、4日、5日、6日、7日、8日、9日、10日、2週間、1カ月、2カ月、3カ月、6カ月等の期間があげられる。
 培養温度は、培養する細胞の種類に合わせて適宜設定可能であるが、例えば10℃以上、15℃以上、20℃以上、25℃以上、30℃以上であってよく、また60℃以下、55℃以下、50℃以下、45℃以下、40℃以下であってよい。
 培養ステップは、複数回行ってもよい。例えばスクリーニングにより所望の線維芽細胞の純度を向上させ、その都度培養を行うことができる。
(回収ステップ)
 培養した線維芽細胞は、回収ステップにより回収される。回収ステップは、トリプシン等のプロテアーゼにより細胞を剥離して回収してよいが、温度応答性培養皿を使用して、温度変化により細胞を剥離させ、回収してもよい。
 本発明の別の実施形態としては、上記ステップのうち、CD106+線維芽細胞をスクリーニングするステップ、を含む治療用線維芽細胞の製造方法であり得る。
 また、上記ステップのうち、CD106+線維芽細胞をスクリーニングするステップ、及びCD90+線維芽細胞をスクリーニングするステップ、を含む治療用線維芽細胞の製造方法であり得る。
 さらに、上記ステップのうち、1つ乃至2つ以上を任意に組み合わせた治療用線維芽細胞の製造方法であり得る。
 また、本発明の別の実施形態としては、線維芽細胞を含む注射用組成物を、壊死した心臓組織領域、或いはその周辺、及び/又は冠動脈内、或いは静脈、動脈、リンパ節、リンパ管に注入することにより心臓疾患を治療する方法であって、該線維芽細胞はCD106+線維芽細胞を含む、方法であり得る。
 更に、線維芽細胞の注射用組成物としての使用であって、該線維芽細胞はCD106+線維芽細胞を含む、使用であり得る。
 更に、別の実施形態として、CD106+線維芽細胞を含む、平面または立体の細胞組織であってよい。CD106+線維芽細胞は他の細胞、例えば心筋細胞を共培養した上で平面または立体の細胞組織としてもよいが、共培養しなくても平面または立体の細胞組織として有効に機能する。平面または立体の細胞組織としては、例えば細胞シートや、セルファイバー、3Dプリンタにて形成された細胞組織などが例示されるが、これらに限られない。
 以下に実施例を示し、本発明をより詳細に説明するが、これにより本発明の範囲が限定されるものではない。
[CD106+マウス線維芽細胞の投与による心臓機能改善]
<動物と試薬>
 ワイルドタイプC57BL/6マウスと、ワイルドタイプSlc:SDラットは、日本エスエルシー株式会社(静岡、日本)から購入した。
 以下の抗体は免疫蛍光染色及び蛍光標識細胞分離法(FACS)に使用された:マウスモノクローナル抗CD106(VCAM-1)-PE(Miltenyi Biotec, Bergisch Gladbach, Germany)、ウサギポリクローナル抗Connexin43(Cell signaling technology, MA)、マウスモノクローナル抗ビメンチン(Abcam, Cambridge, UK)、及びHoechst33258溶液(St. Louis, MI)。
 二次抗体はJackson Immuno Reserch Laboratories(West Grove, PA)から購入した。
<線維芽細胞と心筋細胞>
 マウス心臓線維芽細胞は、ワイルドタイプC57BL/6マウス(新生仔、1日齢)から、既報に従って得た(Matsuura K, et al., Biomaterials. 2011;32:7355-7362)。得られた細胞は、10cm培養皿にてhigh-glucose DMEM+10%FBSで培養した。培養開始から3~5日後、細胞を0.05%トリプシン/EDTAで剥離し、他の10cm培養皿で継代培養した。
 マウスの胚性幹細胞(ES細胞)由来の心筋細胞(Cor.AT)はアキシオジェネシス社(Cologne, Germany)より購入した。心筋細胞の分化及び精製は指示書に従って行った。
<CD106+ マウス心臓線維芽細胞の蛍光標識細胞分離(FACS)>
 マウス心臓線維芽細胞(2×10個/実験)をマウス抗CD106(VCAM-1)-PE抗体で染色した。染色は指示書に沿って行った。CD106+線維芽細胞を、S3eセルソーター(Bio-Rad, PA)により分離した。
<免疫蛍光染色>
 細胞を、既報(Matsuura K, et al., Biomaterials. 2011;32:7355-7362)に記載のとおり、4%パラホルムアルデヒドで固定し、免疫蛍光染色を行った。染色サンプルは、IN Cell Analyzer 2200 (GE Healthcare, Buckinghamshire, UK)及びIN Cell Developer Toolbox 1.9.2(GE Healthcare)により解析された。
<外科処置手順>
 ラットの心不全は吸入麻酔下で、左冠動脈前下行枝(LAD)を30分間閉塞し、その後血流を再灌流させることにより誘発させた。具体的には、まず11日~12週齢の雄Slc:SDラットを準備した(369.0-506.5g, 日本エスエルシー株式会社,静岡)。塩酸メデトミジン0.15mg/kg、ミダゾラム2mg/kg、酒石酸ブトルファノール2.5mg/kgとなるように三種を混合し、生理食塩液で希釈したものを10 mL/kgの容量でラットに腹腔内投与して麻酔し、胸部周囲を毛刈り及び除毛した。除毛後、気管チューブを経口的に気管挿管し、小動物用人工呼吸器(型式SN-480-7×2T、株式会社シナノ製作所)により人工呼吸(Tidal volume:2.0~2.5 mL/stroke、呼吸回数:75 strokes/min)を施し、吸入麻酔装置(型式KN-1071、株式会社夏目製作所)により2%イソフルランを用いて維持麻酔後、背位又は側臥位に固定した。
 切開部位をイソジン液で消毒後、リドカインをスプレーして痛みを緩和した。胸部側壁を開胸して心臓を露出後、必要に応じて不整脈予防のため、アトロピン硫酸塩(0.02 mg/kg)を筋肉内投与した。糸付縫合針(6-0 VICRYL)(Johnson & Johnson, NJ)を用いて左冠動脈前下行枝(LAD)を30分間閉塞した。心電図をモニタし、ST 電位の上昇及び心筋の白色化(肉眼観察)で閉塞の有無(心筋虚血の発生)を確認した。なお、心室細動(ventricular fibrillation:VF)が出現した場合は蘇生(リング鑷子ピンセットにより心臓を直接刺激)を行い、心室細動を消失させた。閉塞30分後に血流を再灌流させることにより虚血再灌流モデルを作製した。
 再灌流後、心筋内注射してから閉胸して糸付縫合針(3-0 VICRYL)(Johnson & Johnson, NJ)で縫合し、縫合部位をイソジン液で消毒した。
 ラットは以下の4つの処置グループに分けられた。
(S1)CD106+マウス線維芽細胞及びマウス心筋細胞の注射(線維芽細胞:4×10個、心筋細胞1.6×10個を含むhigh-glucose DMEM+10%New Born Calf Serum(NBCS)50μL)
(S2)CD106+マウス線維芽細胞の注射(線維芽細胞:2×10個を含むhigh-glucose DMEM+10%NBCS50μL)
(S3)外科処置のみ行ったグループ
(S4)外科処置を行わなかったグループ
 細胞は、損傷領域周辺部2カ所に注射した(25μL/注射)。
<心機能の評価>
 作製したモデルラットの左心室機能は心臓超音波検査(心エコー検査)により、細胞注射後0週から10週まで、2週間おきに心機能をモニタし、比較評価を行った。
 心臓超音波検査(心エコー検査)は、超音波診断装置(Nolus、株式会社日立製作所)を用いた。具体的には、ラットの胸部に表在用リニア型探触子を当てM-modeで左室拡張末期径(LVIDd)、左室収縮末期径(LVIDs)、左室拡張末期前壁厚(LVAWd)、左室拡張末期自由壁厚(LVPWd)及び左室収縮末期自由壁厚(LVPWs)を測定した。左室拡張末期容積(LVEDV)及び左室収縮末期容積(LVESV)は、エコー装置に自動的に算出された値を採用した。さらに描出したM-mode画像から左室心外膜面の変位(D2)を測定した。左室伸展性指標EMI=(LVPWs-LVPWd)/(LVPWs×D2)とその簡略化指標DWS=(LVPWs-LVPWd)/LVPWsを算出した。また、下記の式と図4から左室内径短縮率(FS)及び左室駆出率(EF)を算出した。
左室内径短縮率FS =(LVIDd-LVIDs)/LVIDd×100
左室駆出率EF =(LVEDV-LVESV)/LVEDV)×100
<組織学的実験>
 摘出した心臓の左心室は10%緩衝ホルマリン液に浸漬固定した。左心室は結紮直下から心尖部にかけて長軸方向の長さが3等分になるよう短軸方向に3分割した。それぞれの心筋は起始部側を包埋面とし、1つのパラフィンブロックに包埋した。薄切し、マッソン・トリクローム染色を行った。マッソン・トリクローム染色の標本は画像解析装置(汎用画像処理”Win ROOF Version 5.5”、株式会社三谷商事)に取り込み、それぞれ3部位について、画像解析装置により心筋梗塞面積(%)を測定した。
<統計分析>
 心機能の評価は平均±SE(標準誤差)で表す。その他すべてのデータは平均±SD(標準偏差)で表す。3群以上の変動差は一元配置分散分析により算出した。その後、3群間の有意差は、Tukey-Kramer Multiple Comparison Testにより算出した。0.05より低いp値は有意に異なると見なした。すべての統計計算はStatcelソフトウエアを用いて行った。
<マウス心臓線維芽細胞における、VCAM-1タンパク質の局在>
 心筋細胞の増殖と遊走を向上させるCD106+線維芽細胞を分離するため、マウス心臓線維芽細胞におけるVCAM-1タンパク質の発現を調べた(図1A)。CD106+線維芽細胞の領域は、ネガティブ細胞を除くため、厳密に選択された。約39.2%の心臓線維芽細胞がCD106+線維芽細胞であった。次に、CD106+線維芽細胞が長期間均一にVCAM-1を発現しているか否かを評価するため、in vitroで18週までCD106+線維芽細胞を培養し、VCAM-1タンパク質の発現を評価した(図1B)。すべてのCD106+線維芽細胞について、18週にわたりVCAM-1タンパク質の高い発現レベルが維持され続けた。また、CD106+線維芽細胞はConnexin43、即ち心筋電気的ネットワーク伝達のギャップ結合タンパク質を高発現していた(図1C)。これらの知見から、CD106+線維芽細胞はVCAM-1タンパク質を発現し続け、加えて、心臓の電気的な興奮を伝搬する能力を有すると理解できる。
<CD106+マウス線維芽細胞による、心筋梗塞の心臓機能の改善>
 心エコーにより、注射後2~10週において、左室駆出率(EF)と左室内径短縮率(FS)に関し、S1及びS2グループはS3及びS4グループと比較して改善が見られた。一方、S1及びS2グループ間で、EFとFSでの有意差は見られなかった(図1A、図2B)。それゆえ、CD106+線維芽細胞の投与は心筋梗塞において損傷した心臓の収縮機能を改善したことが理解できる。そして、注射用組成物の組成において心筋細胞の存在は重要ではなかった。
<CD106+マウス線維芽細胞による、膠原線維化された梗塞領域の改善>
 注射後10週において、心臓の病理組織標本を作製し、マッソン・トリクローム染色を行ったところ、S1及びS2グループの膠原線維化された梗塞領域は、有意に小さいことが確認できた(図3A)。また、画像解析装置により、膠原線維化された梗塞領域の面積(%)を測定したところS2で有意に線維症の領域が小さいことが明らかとなった(図3B)。それゆえ、CD106+線維芽細胞の投与が心筋梗塞を始めとする損傷した心臓の収縮機能を改善しただけでなく、膠原線維化を大きく抑制したことが理解できる。そして、注射用組成物の組成において心筋細胞の存在は重要ではなかった。
 以上の実験より虚血性心疾患の効果的な治療における、VCAM-1ポジティブの線維芽細胞の重要性が初めて実証され、CD106+線維芽細胞の投与が、心臓疾患の治療において好ましい結果を生むことが理解できる。VCAM-1ポジティブ線維芽細胞の投与は、虚血性心疾患の効果的な改善のための治療に使用され得る。また、VCAM-1を発現している心臓線維芽細胞の投与により、心臓機能の著しい改善と膠原線維化の著しい抑制が見られたことから、他の心臓疾患の治療に対しても、効果的であることが理解できる。
[CD106+ラット線維芽細胞の投与による心臓機能改善]
 次に、CD106+ラット線維芽細胞の、ラットへの投与による心臓機能改善を確認した。
<線維芽細胞と心筋細胞>
 ラット心臓線維芽細胞は、Slc:SD胎仔ラット(胎生20日齢)から心臓を採材し、gentleMACS(Miltenyi Biotec)で組織を破砕した後、基材表面への接着性の違いにより回収した。得られた細胞は、10cm培養皿にて10%NBCS添加high-glucose DMEMで培養した。培養開始から3~5日後、細胞を0.05%トリプシン/EDTAで剥離し、他の10cm培養皿で継代培養した。
<セルソーティング>
 細胞は、CD106(VCAM-1)-Biotin antibodies,rat(Miltenyi Biotec)で一次免疫染色し、Anti-Biotin MicroBeads(Miltenyi Biotec)で二次免疫染色した。染色した細胞は、autoMACS(Miltenyi Biotec)で、CD106陽性細胞のみを回収し、CD106+ラット線維芽細胞とした。
<慢性心不全ラットモデルの作製と心エコーの計測>
 ヌードラット(F344/N Jcl-rnu/rnu)8週齢、雄は日本クレア(Tokyo,Japan)から購入した。1週間の馴化後、動物は実験動物用吸入麻酔器(ソフトランダー(新鋭工業株式会社,Saitama,Japan))を用いて、2%イソフルラン(麻酔補助剤;笑気:酸素=7:3)にて吸入麻酔し、刈毛した。すばやく気管挿管を行い、そのまま0.5-2%イソフルラン(麻酔補助剤;笑気:酸素=7:3)吸入麻酔ガスを人工呼吸器に接続して、麻酔を維持した。人工呼吸管理のもと、仰臥位に固定し、左第3肋骨から第5肋骨までの間で2-3本、肋軟骨の位置で縦方向に切断して開胸した。開創器により、術野を拡大後、心嚢膜を剥離して心臓を露出させた。左心房を持ち上げ、血管用糸付弱弯丸針(6-0:ネスコスーチャー)を用いて左心室の深さ約2mm、長さ4-5mmに糸を通した。糸の両端を合わせてポリエチレンチューブ(PESO,Becton Dickinson)で作製したsnareを通し、動脈クレンメを用いて糸を絞り(snare法)冠動脈を30分間虚血した。30分後、再灌流させ、状態が安定したら、出血がない事を確認し、胸腔ドレナージを行い、筋層及び皮膚を縫合した。皮膚は、皮内縫合を行うが、通常縫合を行った場合には、術後状態を観察しながら抜糸を行った。モデル作製後1週間の細胞投与日前日に、超音波画像診断装置(Xario SSA-660A 東芝メディカルシステムズ株式会社,Tochigi,Japan)を用いて心エコーを測定した。左室駆出率(LVEF=(LVIDd3-LVIDs3)/LVIDd3)が55%以下の個体を慢性心不全モデルとみなし、CD106+ヒト線維芽細胞の投与実験を行った。
<慢性心不全ラットモデルへのCD106+ラット線維芽細胞の投与>
 投与試験当日にCD106+ヒト線維芽細胞は、high-glucose DMEM+10%NBCSで希釈し、生存細胞数として、各個体につき、2.0×10cells/50μLの細胞懸濁液を投与した。コントロールは、DMEM+10%NBCSのみを50μL投与した。各群はN=4で実施した。
 動物は、モデル作製時と同一の手法で麻酔を維持し、人工呼吸管理のもと、梗塞巣の2ヶ所に分けて、30G針付きカテーテルを用いて細胞懸濁液を50μL全量投与した。状態が安定した後に、投与液の漏出及び出血がない事を確認し、胸腔ドレナージを行い、筋層及び皮膚を縫合した。皮膚は、皮内縫合を行うが、通常縫合を行った場合には、術後状態を観察しながら抜糸を行った。
<心エコーによる慢性心不全モデルラットの心機能評価>
 CD106+ラット線維芽細胞の投与を行った慢性心不全モデルは、図5に示すスケジュールに従い、超音波画像診断装置(Xario SSA-660A 東芝メディカルシステムズ株式会社,Tochigi,Japan)を用いて心エコーを測定し、経過観察を行った。具体的には、動物の胸部をバリカンにて毛刈し、胸部にプローブを当てM-modeで以下の項目を測定した。主項目として、左室駆出率(LVEF=(LVIDd3-LVIDs3)/LVIDd3)、左室内径短縮率(LVFS=(LVIDd-LVIDs)×100/LVIDd)、左室拡張末期容積(LVEDV)、左室収縮末期容積(LVESV)を測定した。副次項目としては、左室拡張末期径(LVIDd)、左室収縮末期径(LVIDs)、拡張末期左室前壁厚(LVAWd=IVSTd)、拡張末期左室後壁厚(LVPWTd)、心拍数(HR)を測定した。HRを除く心機能値は、小数点以下1桁(小数点以下第2位を四捨五入する)で表し、副次項目のHRは小数点以下2桁(小数点以下第3位を四捨五入する)で表す。
[CD106+ヒト線維芽細胞の投与による心臓機能改善]
 次に、CD106+ヒト線維芽細胞の、ラット及びブタへの投与による心臓機能改善を確認した。
<細胞と抗体>
 心臓線維芽細胞は、次のメーカーから購入した。
白人胎児(21週)心臓由来線維芽細胞(c21wFCF,Cell Applications,San Diego, CA)
白人成体(50代)心臓由来線維芽細胞(c50yACF,Cell Applications,San Diego, CA)
黒人成体(60代)心臓由来線維芽細胞(b60yACF,Lonza,Basel, Switzerland)
<セルソーティング>
 細胞は、CD106(VCAM-1)-Biotin antibodies,human(Miltenyi Biotec)で一次免疫染色し、Anti-Biotin MicroBeads(Miltenyi Biotec)で二次免疫染色した。染色した細胞は、autoMACS(Miltenyi Biotec)で、CD106陽性細胞のみを回収し、CD106+ヒト線維芽細胞とした。
 抗体は,次のメーカーから購入した。
BV421 Rat IgG2a, Isotype Control RUO(BD Biosciences)
PE-REA Control(S)Isotype Control(Miltenyi Biotec)
Oct3/4-PE(Miltenyi Biotec)
Nanog-PE(Miltenyi Biotec)
Sox2-PE(Miltenyi Biotec)
ウサギポリクローナル抗Connexin43(Cell signaling technology)
Human STRO-1 Alexa Fluor 488-conjugated Antibody(R&D Systems, Minneapolis, MN)
その他の抗体は、すべてAbcamから購入した。
二次抗体はJackson Immuno Reserch Laboratoriesから購入した。
 細胞膜表面タンパク質を認識する抗体は、細胞を4%パラホルムアルデヒドで固定した上で、免疫蛍光染色を実施した。Oct3/4-PE、Nanog-PE、Sox2-PEに関しては、CD106+ヒト線維芽細胞を0.1%Triton-X(Sigma Aldrich,St. Louis, MO)で30分間(室温)、細胞膜透過処理を実施し、免疫蛍光染色した。
<フローサイトメトリー>
 免疫蛍光染色した細胞は1.0×10cells/per trialの濃度で調製し、フローサイトメーター(MACSQuant,Miltenyi Biotec)で解析した。FSC-A及びSSC-Aで細胞領域を認識後、各種のマーカータンパク質に対する陽性細胞率(%、細胞数換算)を評価した。
<慢性心不全ラットモデルの作製と心エコーの計測>
 上記に記載の手法と同じ方法で慢性心不全モデルを作製し、心エコーの計測を行った。
<慢性心不全ラットモデルへのCD106+ヒト線維芽細胞の投与>
 投与試験当日にCD106+ヒト線維芽細胞は、high-glucose DMEM+10%NBCSで希釈し、生存細胞数として、各個体につき、2.0×10cells/50μL、及び5.0×10cells/50μLの細胞懸濁液を投与した。各群はN=4で実施した。動物の麻酔維持と細胞投与方法、及び縫合・抜糸は、上記に記載の方法と同様にで行った。
<心エコーによる慢性心不全モデルラットの心機能評価>
 CD106+ヒト線維芽細胞の投与を行った慢性心不全モデルは、図6に示すスケジュールに従い、2週間ごとに超音波画像診断装置(Xario SSA-660A 東芝メディカルシステムズ株式会社,Tochigi,Japan)を用いて心エコーを測定し、経過観察を行った。具体的な手法は、上記に示したものと同様である。
<慢性心不全ブタモデルの作製と心エコーの計測>
 ブタは35-40kgのLWD種、SPF家畜ブタを購入した(岡山JA畜産株式会社,Okayama,Japan)。ブタの心不全モデルは、左前下行枝抹消をバルーンカテーテルで60分間インフレーションさせ、30分間のインターバル後に左前下行枝中間部を再度60分間インフレーションさせることで作製した。
 モデル作製後1週間の細胞投与日前日に、MRIを用いて心エコーを測定した。左室駆出率(EF)が45%未満の個体を慢性心不全モデルとみなし、CD106+ヒト線維芽細胞の投与実験を行った。
<慢性心不全ブタモデルへのCD106+ヒト線維芽細胞の投与>
 作製したブタ心不全モデルは、麻酔導入後、仰臥位で術台に固定した。上記慢性心不全ブタモデルの作製の際と同様に、鼠蹂部から6Frシースを刺入させ、6Frガイディングカテーテルを0.035インチガイドワイヤを先行させ、上行大動脈部まで挿入させた。0.035インチガイドワイヤを抜去し、ガイディングカテーテル内のエアーを抜き、左冠動脈主幹部にエンゲージさせた。エンゲージ後、正中及びLA030°の角度で確認造影を行い、冠動脈の状態を確認した。0.014インチガイドワイヤに沿わせて左前下行枝入口部直後にマイクロカテーテルを挿入させた。予めCD106+ヒト線維芽細胞が充填された50mLシリンジ(2.0×10cells/40mL)を、シリンジポンプにセットし、挿入したマイクロカテーテルに接続させ、1mL/minの流速で40分間投与した。細胞の投与終了後、マイクロカテーテル内のフラッシングとして、同様の流速で生理食塩液5mLを投与した。すべての投与終了後、カテーテル、シースを抜去し、シース挿入箇所を圧迫止血し、麻酔から覚醒させ、ケージに戻した。なお、CD106+ヒト線維芽細胞の投与は、N=1で実施した。
<MRIによる慢性心不全モデルブタの心機能評価>
 ブタは、細胞投与日前、投与後4週、投与後8週にMRI検査を行った。深麻酔状態のブタをMRI室内の検査台の上に乗せ、仰臥位の状態で麻酔器の配管と気管チューブを接続し、胸部に心電図用電極を貼付した。胸部を覆うようにコイルを装着させ、MRI本体(Signa EXCITE XI TwinSpeed 1.5T Ver.11.1,GE Healthcare)の筒の中に入れ、撮像を行った。具体的にはまず、シネMRIで心臓をカバーする範囲を体軸断面(Axial断面)で、2D Fiesta撮像した。次に得られたデータの中から、心尖部から左心室の長軸を通るような断面で、1心拍あたり20スライス、2D Fiesta撮像した。撮像データの中から、拡張期のスライスを選び、心尖部から僧房弁付近を通るような長軸断面で2D Fiesta撮像した。さらに、拡張期のスライスを選び、左心室の長軸に対して垂直に通るような断面で、幅6-8mm間隔、心尖部から10-12スライス、2D Fiesta撮像した(短軸断面)。撮像で得られたデータは、ソフトフェアアプリケーションCardiac VXを使用し、解析を行った。心機能の評価項目として、LVEF(左室駆出率%)、SV(一回拍出量mL)、EDV(拡張末期容量mL)、ESV((収縮末期容量mL)を算出した。速度に関する指標として、HR(心拍数bpm)、PFR(最大充填速度mL/s)、PER(最大駆出速度mL/s)を算出した。その他には、Mass ED(g)、Cardiac Output(L/min)、Mass(g)、Mass ES(g)、End-Diastolic Epicardial Volume(mL)、End-Systolic Epicardial Volume(mL)を算出した。
 また、心筋計時変化解析Perfusionと遅延造影LGE解析を実施し、心筋非正常部位に存在する梗塞・線維化領域も定量的に算出した。心筋計時変化解析Perfusionは、まず造影剤(オムニスキャン静注32%静注用)を静脈Jレートから急速静注し、造影剤が心筋を最初に通過する過程を画像化した(短軸断面)、撮像で得られたデータは、ソフトフェアアプリケーションCardiacVXを使用し、解析を行った。遅延造影LGE解析は、まず造影剤(オムニスキャン静注32%静注用0.25mL/kg)を静脈投与してから10-20分後にFastGRE撮像した(短軸断面)。撮像で得られたデータは、ソフトフェアアプリケーションCardiacVXを使用し、解析を行った。梗塞領域、線維化領域では、高信号に描写されるため、正常領域との違いをRegion Of Interest(ROI)解析で定量的に算出した。左室機能解析と同様に、数点を設定しオートで計測するが、明らかに領域が違うと思われる場合は、修正を行った。なお、心筋組織中の梗塞部位の割合を%でも表した。
<統計解析>
 in vitroにおける検証のデータは平均±SD(標準偏差)で表す。in vivoにおける検証のデータは平均±SE(標準誤差)で表す。2群間の有意差は、student’s t-testで算出した。3群以上の変動差は一元配置分散分析により算出した。その後、3群間の有意差は、Tukey-Kramer Multiple Comparison Testにより算出した。0.05より低いp値は有意に異なると見なした。
 以下、実験結果を示す。
<CD106+ラット線維芽細胞によるラット慢性心不全モデルの治療効果>
 セルソーティングし、回収したCD106+ラット線維芽細胞を、ラット慢性心不全モデルに心筋内投与し、心不全の回復効果を細胞投与後18週間で評価した。その結果を図7に示す。CD106+ラット線維芽細胞の投与群はコントロールと比較して、投与後18週においては、EFが32.9%改善し、FSが12.4%改善することが明らかとなった。また、LVEDVの極端な増大・減少や、LVESVの増大は投与後18週にわたって確認されなかった。なお、主項目(LVEF、LVFS、LVEDV、LVESV)の内訳と、副次項目(LVIDd、LVIDs、IVSTd、LVPWTd、HR)の内訳を表1~9に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 以上の実験より慢性心不全の効果的な治療における、VCAM-1ポジティブの線維芽細胞の重要性が実証され、CD106+線維芽細胞の投与が、慢性心不全の治療において好ましい結果を生むことが理解できる。VCAM-1ポジティブ線維芽細胞の注射は、慢性心不全だけでなく、上記示したとおり心筋梗塞も治療できたことから、他の心臓疾患治療に対しても、効果的であることが考えられる。
<ヒト心臓線維芽細胞内のCD106+ヒト線維芽細胞の局在>
 ヒト胎児心臓から回収した心臓線維芽細胞(FCF)と、ヒト成体心臓から回収した心臓線維芽細胞(ACF)を2種用意し、マウスCD106とマウスCD90に相同性を有するヒトCD106とヒトCD90の発現レベルをフローサイトメトリーで評価した。結果を図8に示す。ACFはエピジェネティクスの影響を考慮し、2種類用意した。その結果、c21wFCFは、CD106陽性細胞率が9.13%、CD90陽性細胞率が24.5%、両陽性細胞(CD106+ヒト線維芽細胞)率が8.20%で局在することが明らかとなった。一方で、c50yACFは、CD106陽性細胞率が12.53%、CD90陽性細胞率が5.79%、両陽性細胞(CD106+ヒト線維芽細胞)率が1.79%で局在することが明らかとなった。また、b60yACFは、CD106陽性細胞率が5.55%、CD90陽性細胞率が96.39%、両陽性細胞(CD106+ヒト線維芽細胞)率が5.43%で局在することが明らかとなった。なお、上記陽性細胞率は全て細胞数基準である。
 本結果から、すべての心臓線維芽細胞にCD106+ヒト線維芽細胞が局在することが明らかとなった。
<CD106+ヒト線維芽細胞のセルソーティング>
 ヒト心臓から回収した心臓線維芽細胞からCD106+ヒト線維芽細胞を高純度に回収するため、autoMACSでCD106+ヒト線維芽細胞のセルソーティングを行った。autoMACSでソーティングしたCD106+ヒト線維芽細胞の細胞特性を評価した。結果を図9に示す。回収したCD106+ヒト線維芽細胞はCD106陽性細胞が95.98%で、CD90陽性細胞が92.28%で、両陽性細胞が89.15%であることが明らかとなった。従って、ほぼすべての細胞がCD106+ヒト線維芽細胞のポピュレーションを示すマーカータンパク質であるCD106、CD90に陽性であることが明らかとなった。なお、上記陽性細胞率は全て細胞数基準である。
 また、CD106+ヒト線維芽細胞が造腫瘍性及び多能性幹細胞のマーカーに陽性であるかを評価するため、CD106+ヒト線維芽細胞をOct3/4、Nanog、Sox2で免疫蛍光染色し、陽性細胞率(%、細胞数換算)の評価を行った。その結果を図10に示す。CD106+ヒト線維芽細胞は、上記のマーカーに陰性であり、造腫瘍性や多能性幹細胞の性質は有さなかった。
<CD106+ヒト線維芽細胞の細胞特性>
 CD106+ヒト線維芽細胞を線維芽細胞や間葉系幹細胞の細胞骨格マーカーであるVimentin、上皮細胞のマーカーであるCytokeratin、心筋細胞のギャップジャンクションのマーカーであるConnexin43で免疫蛍光染色したところ、すべてのCD106+ヒト線維芽細胞がVimentinとConnexin43を発現していることが分かった。その結果を図11に示す。
 また、CD106+ヒト線維芽細胞のSTRO-1発現率をフローサイトメトリーで評価したところ、CD106+ヒト線維芽細胞はSTRO-1に0.29%陽性であり、ほぼすべてのCD106+ヒト線維芽細胞がSTRO-1を発現しないことが明らかとなった。その結果を図12に示す。「STRO-1とは、間葉系幹細胞(MSC)の最もよく知られた分子マーカーのひとつで、細胞内カルシウムの喪失に応答して小胞体から細胞膜に局在を変える1回膜貫通型タンパク質である(Barkhordarian A, Sison J, Cayabyab R, et al. Epigenetic regulation of osteogenesis: human embryonic palatal mesenchymal cells. Bioinformation 2011; 5:278-281.)。骨髄ストローマ細胞からSTRO-1陽性、glycophorin A陰性の細胞分画を単離すると、高いコロニー形成能と多分化能を有する細胞集団を得ることができると知られている(Simmons PJ, Torok-Storb B. Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. Blood1991; 78: 55-62.,Tomohiko Kazama.Basic Research and Clinical Application in Mesenchymal Stem Cells. Journal of Nihon University Medical Association. 2016; 75(2): 61-66.)。」
<CD106+ヒト線維芽細胞によるラット慢性心不全モデルの治療効果>
 上記ソーティングし、回収したCD106+ヒト線維芽細胞を、ラット慢性心不全モデルに心筋内投与し、心不全の回復効果を細胞投与後18週間評価した。その結果を図12に示す。CD106+ヒト線維芽細胞の投与群はコントロールと比較して、投与後18週においては、EFが32.60%改善し、FSが17.85%改善することが明らかとなった。また、LVEDVの極端な増大・減少や、LVESVの増大は投与後18週にわたって確認されなかった。なお、主項目(LVEF、LVFS、LVEDV、LVESV)の内訳と、副次項目(LVIDd、LVIDs、IVSTd、LVPWTd、HR)の内訳を表10~18に示す。コントロールの結果は、CD106+ラット線維芽細胞によるラット慢性心不全モデルの治療効果の実験で得た結果を用いた。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
<CD106+ヒト線維芽細胞の投与量の検討>
 ソーティングし、回収したCD106+ヒト線維芽細胞を、ラット慢性心不全モデルに2種類の濃度(2.0×10cells/50μL、及び5.0×10cells/50μL)で心筋内投与し、心不全の回復効果を細胞投与後8週間で評価した。その結果を図14に示す。CD106+ヒト線維芽細胞(2.0×10cells/50μL)投与群はコントロールと比較して、投与8週後においてEFが30.18%改善し、FSが15.65%改善することが明らかとなった。また、LVEDVの極端な増大・減少や、LVESVの増大は投与後8週にわたって確認されなかった。一方で、CD106+ヒト線維芽細胞(5.0×10cells/50μL)投与群は、コントロールと比較して、投与8週後においてEFが26.90%改善し、FSが13.63%改善することが明らかとなった。なお、投与8週後において、CD106+ヒト線維芽細胞(2.0×10cells/50μL)投与群とCD106+ヒト線維芽細胞(5.0×10cells/50μL)投与群にEF及びFSの有意な差は確認できなかった。しかしながら、投与量の増加に応じて、心不全治療効果が早期に確認できることが明らかとなった。コントロールの結果は、CD106+ラット線維芽細胞によるラット慢性心不全モデルの治療効果の実験で得た結果を用いた。CD106+ヒト線維芽細胞(2.0×10cells/50μL)投与群の結果は、表2で得た結果を用いた。
 また、主項目(LVEF、LVFS、LVEDV、LVESV)の内訳と、副次項目(LVIDd、LVIDs、IVSTd、LVPWTd、HR)の内訳は表19-27に示した。
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
 
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
<CD106+ヒト線維芽細胞によるブタ慢性心不全モデルの治療効果>
 次に、解剖学的・生理学的にヒトに近しい心臓を有することが報告されているブタで、慢性心不全モデルを作製し、CD106+ヒト線維芽細胞による心不全の治療効果を評価した。結果を図15、16及び17に示す。CD106+ヒト線維芽細胞投与日前日のLVEFは43%、SVは30.4mL、EDVは70.5mL、ESVは40.0mL、HRは100bpm、PFRは231mL/s、PERは161mL/sだった。また、ROI解析により算出した梗塞重量(線維化領域重量)は10.2gで、左室心筋重量は78.1gであったことから、梗塞巣(線維化領域)(%)は、13.1%であることが明らかとなった。
 一方で、CD106+ヒト線維芽細胞の投与後4週時点のLVEFは58%、SVは38.6mL、EDVは66.9mL、ESVは28.2mL、HRは98bpm、PFRは232mL/s、PERは215mL/sだった。LVEFはCD106+ヒト線維芽細胞の投与後4週で15%改善し、SVは8.2mL改善することが明らかとなった。また、ESVが11.8mL低減し、PERが54mL/sに向上していることから、心機能が改善されたことが明らかとなった。また、ROI解析により算出した梗塞重量(線維化領域重量)は8.23gで,左室心筋重量は89.2gであったことから、梗塞巣(線維化領域)(%)は、9.23%であることが明らかとなった。本結果から、CD106+ヒト線維芽細胞が梗塞重量(線維化領域重量)を1.97g低減することが明らかとなった。
 CD106+ヒト線維芽細胞の投与後8週時点のLVEFは52%、SVは35.9mL、EDVは69.2mL、ESVは33.3mL、HRは92bpm、PFRは263mL/s、PERは156mL/sだった。LVEFはCD106+ヒト線維芽細胞の投与後8週で8%改善することが明らかとなった。また、ROI解析により算出した梗塞重量(線維化領域重量)は8.51gで,左室心筋重量は91.6gであったことから、梗塞巣(線維化領域)(%)は、9.29%であることが明らかとなった。本結果から、CD106+ヒト線維芽細胞の投与が梗塞重量(線維化領域重量)を投与から8週間で1.69g低減させることが明らかとなった。また,梗塞・線維化領域(%)は移植後4週とほぼ変化がなかった。本結果から、CD106+ヒト線維芽細胞は、解剖学的・生理学的にヒトに近しいとされるブタの心不全においても、高い心機能回復効果をもたらすことが明らかとなった。

Claims (9)

  1.  線維芽細胞を含む、心臓疾患を治療するための注射用組成物であって、該線維芽細胞はCD106ポジティブ線維芽細胞を含む、注射用組成物。
  2.  前記線維芽細胞はCD90ポジティブ線維芽細胞を含む、請求項1に記載の注射用組成物。
  3.  前記線維芽細胞はConnexin43ポジティブ線維芽細胞を含む、請求項1又は2に記載の注射用組成物。
  4.  前記注射用組成物に含まれる線維芽細胞全量に対し、CD106ポジティブ線維芽細胞の割合(細胞数基準)が0.03%以上である、請求項1~3のいずれか1項に記載の注射用組成物。
  5.  線維芽細胞を準備するステップ、及び
     該線維芽細胞からCD106ポジティブ線維芽細胞をスクリーニングするステップ、を含む、治療用線維芽細胞の製造方法。
  6.  前記治療用線維芽細胞が心臓疾患の治療に用いられる、請求項5に記載の製造方法。
  7.  更に、線維芽細胞からCD90ポジティブ線維芽細胞をスクリーニングするステップ、を含む、請求項5又は6に記載の製造方法。
  8.  前記治療用線維芽細胞が、Connexin43ポジティブ線維芽細胞を含む、請求項5~7のいずれか1項に記載の製造方法。
  9.  前記治療用線維芽細胞の細胞全量に対し、CD106ポジティブ線維芽細胞の割合(細胞数基準)が0.03%以上である、請求項5~8のいずれか1項に記載の製造方法。 
PCT/JP2018/006795 2017-02-24 2018-02-23 線維芽細胞を含む心臓疾患を治療するための注射用組成物、及び治療用線維芽細胞の製造方法 WO2018155651A1 (ja)

Priority Applications (12)

Application Number Priority Date Filing Date Title
KR1020197003364A KR102407387B1 (ko) 2017-02-24 2018-02-23 섬유아세포를 포함하고, 심장 질환들의 치료를 위하여 사용될 수 있는 주사용 조성물, 및 치료 용도를 위하여 섬유아세포를 생산하는 방법
JP2019501845A JP6618066B2 (ja) 2017-02-24 2018-02-23 線維芽細胞を含む心臓疾患を治療するための注射用組成物、及び治療用線維芽細胞の製造方法
EP18758465.1A EP3476395B1 (en) 2017-02-24 2018-02-23 Injectable composition comprising fibroblasts for use in the treatment of heart diseases
CN201880003050.1A CN109890398B (zh) 2017-02-24 2018-02-23 可用于治疗心脏疾病并含有成纤维细胞的注射用组合物以及用于生产用于治疗用途的成纤维细胞的方法
AU2018223739A AU2018223739B2 (en) 2017-02-24 2018-02-23 Composition for injection which can be used for treatment of heart diseases and contains fibroblasts, and method for producing fibroblast for therapy use
DK18758465.1T DK3476395T3 (da) 2017-02-24 2018-02-23 Injicerbar sammensætning omfattende fibroblaster til anvendelse i behandlingen af hjertesygdomme
ES18758465T ES2885080T3 (es) 2017-02-24 2018-02-23 Composición inyectable que comprende fibroblastos para su utilización en el tratamiento de cardiopatías
SG11201900810WA SG11201900810WA (en) 2017-02-24 2018-02-23 Composition for injection which can be used for treatment of heart diseases and contains fibroblasts, and method for producing fibroblast for therapy use
CA3032654A CA3032654A1 (en) 2017-02-24 2018-02-23 Composition for injection which can be used for treatment of heart diseases and contains fibroblasts, and method for producing fibroblast for therapy use
US16/263,321 US11096969B2 (en) 2017-02-24 2019-01-31 Composition for injection which can be used for treatment of heart diseases and contains fibroblasts, and method for producing fibroblast for therapy use
IL267958A IL267958B2 (en) 2017-02-24 2019-07-09 An injectable preparation that can be used to treat heart diseases and contains fibroblasts, and a method for producing fibroblasts for medical use
US17/379,671 US20210346436A1 (en) 2017-02-24 2021-07-19 Composition for injection which can be used for treatment of heart diseases and contains fibroblasts, and method for producing fibroblast for therapy use

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017033624 2017-02-24
JP2017-033624 2017-02-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/263,321 Continuation-In-Part US11096969B2 (en) 2017-02-24 2019-01-31 Composition for injection which can be used for treatment of heart diseases and contains fibroblasts, and method for producing fibroblast for therapy use

Publications (1)

Publication Number Publication Date
WO2018155651A1 true WO2018155651A1 (ja) 2018-08-30

Family

ID=63253929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/006795 WO2018155651A1 (ja) 2017-02-24 2018-02-23 線維芽細胞を含む心臓疾患を治療するための注射用組成物、及び治療用線維芽細胞の製造方法

Country Status (12)

Country Link
US (2) US11096969B2 (ja)
EP (1) EP3476395B1 (ja)
JP (2) JP6618066B2 (ja)
KR (1) KR102407387B1 (ja)
CN (1) CN109890398B (ja)
AU (1) AU2018223739B2 (ja)
CA (1) CA3032654A1 (ja)
DK (1) DK3476395T3 (ja)
ES (1) ES2885080T3 (ja)
IL (1) IL267958B2 (ja)
SG (1) SG11201900810WA (ja)
WO (1) WO2018155651A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020045547A1 (ja) 2018-08-29 2020-03-05 株式会社メトセラ 線維芽細胞の製造方法及びg-csf陽性線維芽細胞集団
JPWO2021177387A1 (ja) * 2020-03-04 2021-09-10
JP2021525107A (ja) * 2018-12-29 2021-09-24 ヘルプ・ステム・セル・イノベイションズ・カンパニー・リミテッドHelp Stem Cell Innovations Co., Ltd. 心筋細胞製剤及びその製造方法、並びに応用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4249585A1 (en) * 2022-03-25 2023-09-27 Technische Universität München - TUM Heart tissue models, method of producing heart tissue models and uses of heart tissue models

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060057124A1 (en) * 2004-08-26 2006-03-16 Shim Winston S N Methods and compositions for culturing cardiomyocyte-like cells
JP2016027797A (ja) * 2014-07-11 2016-02-25 貴紘 岩宮 心臓細胞培養材料
JP2016519938A (ja) * 2013-05-20 2016-07-11 セル セラピー リミテッドCell Therapy Limited 特定の間葉系幹細胞において、細胞の集団を同定するための、マルチカラーフローサイトメトリー方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003901668A0 (en) * 2003-03-28 2003-05-01 Medvet Science Pty. Ltd. Non-haemopoietic precursor cells
CA2487254A1 (en) * 2002-05-08 2003-11-20 The Regents Of The University Of California System and method for treating cardiac arrhythmias with fibroblast cells
JP2005524496A (ja) * 2002-05-08 2005-08-18 ザ リージェンツ オブ ザ ユニヴァーシティー オブ カリフォルニア 非破壊性心伝導ブロック形成用システム及び方法
US20040161412A1 (en) * 2002-08-22 2004-08-19 The Cleveland Clinic Foundation Cell-based VEGF delivery
US7470538B2 (en) * 2002-12-05 2008-12-30 Case Western Reserve University Cell-based therapies for ischemia
EP1689284A4 (en) * 2003-11-10 2010-03-17 Symphony Medical Inc METHOD FOR REGULATING VENTRICULAR RHYTHM IN AURICULAR FIBRILLATION PATIENTS
ES2325715B1 (es) * 2007-08-03 2010-06-17 Genetrix, S.L. Poblacion de celulas madre adultas derivadas de tejido adiposo cardiaco y su uso en regeneracion cardiaca.
JP5378743B2 (ja) 2008-09-30 2013-12-25 テルモ株式会社 医療用細胞シートの製造方法
US8802144B2 (en) * 2011-08-25 2014-08-12 Wisconsin Alumni Research Foundation 3-dimensional cardiac fibroblast derived extracellular matrix
EP2826855B1 (en) 2012-03-15 2018-08-29 iHeart Japan Corporation Myocardial sheet
US20140072611A1 (en) * 2012-09-07 2014-03-13 Fibrocell Technologies, Inc. Methods and Compositions for Treating Post-Cardial Infarction Damage
KR20150009655A (ko) * 2013-07-16 2015-01-27 학교법인 동아학숙 Gcp-2 유전자를 과발현하는 지방 간엽줄기세포를 포함하는 허혈성 질환 치료용 조성물

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060057124A1 (en) * 2004-08-26 2006-03-16 Shim Winston S N Methods and compositions for culturing cardiomyocyte-like cells
JP2016519938A (ja) * 2013-05-20 2016-07-11 セル セラピー リミテッドCell Therapy Limited 特定の間葉系幹細胞において、細胞の集団を同定するための、マルチカラーフローサイトメトリー方法
JP2016027797A (ja) * 2014-07-11 2016-02-25 貴紘 岩宮 心臓細胞培養材料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI XIAO-HONG ET AL.: "Connexin 43 gene -modified BMSCs for treating myocardial infarction", SOUTH CHINA JOURNAL OF CARDIOLOGY, vol. 12, no. 2, 2011, pages 112 - 117, XP009515608, DOI: 10.16268/j.cnki.44-1512/r.2011.02.007 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020045547A1 (ja) 2018-08-29 2020-03-05 株式会社メトセラ 線維芽細胞の製造方法及びg-csf陽性線維芽細胞集団
JPWO2020045547A1 (ja) * 2018-08-29 2021-02-15 株式会社メトセラ 線維芽細胞の製造方法及びg−csf陽性線維芽細胞集団
KR20210049892A (ko) 2018-08-29 2021-05-06 가부시키가이샤 메토세라 섬유아세포의 제조 방법 및 g-csf 양성 섬유아세포 집단
JP2021525107A (ja) * 2018-12-29 2021-09-24 ヘルプ・ステム・セル・イノベイションズ・カンパニー・リミテッドHelp Stem Cell Innovations Co., Ltd. 心筋細胞製剤及びその製造方法、並びに応用
JP7070965B2 (ja) 2018-12-29 2022-05-18 ヘルプ・ステム・セル・イノベイションズ・カンパニー・リミテッド 心筋細胞製剤及びその製造方法、並びに応用
JPWO2021177387A1 (ja) * 2020-03-04 2021-09-10
WO2021177387A1 (ja) 2020-03-04 2021-09-10 株式会社メトセラ エリスロポエチン産生能が亢進された線維芽細胞
KR20220148184A (ko) 2020-03-04 2022-11-04 가부시키가이샤 메토세라 에리트로포이에틴 산생능이 항진된 섬유 아세포
JP7229618B2 (ja) 2020-03-04 2023-02-28 株式会社メトセラ エリスロポエチン産生能が亢進された線維芽細胞

Also Published As

Publication number Publication date
JP2019218408A (ja) 2019-12-26
SG11201900810WA (en) 2019-02-27
JPWO2018155651A1 (ja) 2019-11-07
CN109890398A (zh) 2019-06-14
JP7072135B2 (ja) 2022-05-20
ES2885080T3 (es) 2021-12-13
CN109890398B (zh) 2024-01-16
EP3476395A4 (en) 2020-02-26
US11096969B2 (en) 2021-08-24
KR20190117468A (ko) 2019-10-16
IL267958A (en) 2019-09-26
DK3476395T3 (da) 2021-08-16
IL267958B1 (en) 2023-04-01
KR102407387B1 (ko) 2022-06-10
US20190224250A1 (en) 2019-07-25
IL267958B2 (en) 2023-08-01
EP3476395A1 (en) 2019-05-01
AU2018223739A1 (en) 2019-02-14
JP6618066B2 (ja) 2019-12-11
US20210346436A1 (en) 2021-11-11
CA3032654A1 (en) 2018-08-30
AU2018223739B2 (en) 2023-06-22
EP3476395B1 (en) 2021-07-21

Similar Documents

Publication Publication Date Title
Bao et al. C-Kit Positive cardiac stem cells and bone marrow–derived mesenchymal stem cells synergistically enhance angiogenesis and improve cardiac function after myocardial infarction in a paracrine manner
JP7072135B2 (ja) 線維芽細胞を含む心臓疾患を治療するための注射用組成物、及び治療用線維芽細胞の製造方法
US10639335B2 (en) Pluripotent stem cell that induces repair and regeneration after myocardial infarction
Grauss et al. Mesenchymal stem cells from ischemic heart disease patients improve left ventricular function after acute myocardial infarction
Liu et al. Transplantation of parthenogenetic embryonic stem cells ameliorates cardiac dysfunction and remodelling after myocardial infarction
JP6883904B2 (ja) 線維芽細胞の製造方法及びg−csf陽性線維芽細胞集団
US20200085875A1 (en) Platelet vesicle-engineered cells for targeted tissue repair
Fatkhudinov et al. Bone Marrow‐Derived Multipotent Stromal Cells Promote Myocardial Fibrosis and Reverse Remodeling of the Left Ventricle
JP5894071B2 (ja) 心臓組織由来細胞
WO2017012226A1 (zh) 间质干细胞、其克隆源性扩增的方法、其分离方法及其应用
JP2018530992A6 (ja) 間葉系幹細胞、そのクローン原性増殖方法、分離方法及び用途
Bērziņš et al. Characterisation and Safety of Canine Adipose-Derived Stem Cells
JP2021066732A (ja) 脂肪由来血管内皮(前駆)細胞を含む細胞集団を含む医薬組成物
CN117120063A (zh) 淋巴管新生促进因子表达成纤维细胞以及含有该细胞的医药组合物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18758465

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3032654

Country of ref document: CA

Ref document number: 20197003364

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019501845

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018758465

Country of ref document: EP

Effective date: 20190123

ENP Entry into the national phase

Ref document number: 2018223739

Country of ref document: AU

Date of ref document: 20180223

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE