WO2018154744A1 - 半導体装置、半導体装置の製造方法 - Google Patents

半導体装置、半導体装置の製造方法 Download PDF

Info

Publication number
WO2018154744A1
WO2018154744A1 PCT/JP2017/007311 JP2017007311W WO2018154744A1 WO 2018154744 A1 WO2018154744 A1 WO 2018154744A1 JP 2017007311 W JP2017007311 W JP 2017007311W WO 2018154744 A1 WO2018154744 A1 WO 2018154744A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
plunger
semiconductor device
lead frame
pressure
Prior art date
Application number
PCT/JP2017/007311
Other languages
English (en)
French (fr)
Inventor
坂本 健
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to DE112017007135.6T priority Critical patent/DE112017007135T5/de
Priority to CN201780087194.5A priority patent/CN110326102B/zh
Priority to PCT/JP2017/007311 priority patent/WO2018154744A1/ja
Priority to KR1020197024301A priority patent/KR102303894B1/ko
Priority to JP2019500977A priority patent/JP6806232B2/ja
Priority to US16/473,560 priority patent/US20190371625A1/en
Publication of WO2018154744A1 publication Critical patent/WO2018154744A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/565Moulds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/561Batch processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/291Oxides or nitrides or carbides, e.g. ceramics, glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3135Double encapsulation or coating and encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/433Auxiliary members in containers characterised by their shape, e.g. pistons
    • H01L23/4334Auxiliary members in encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49568Lead-frames or other flat leads specifically adapted to facilitate heat dissipation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49575Assemblies of semiconductor devices on lead frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49579Lead-frames or other flat leads characterised by the materials of the lead frames or layers thereon
    • H01L23/49586Insulating layers on lead frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49541Geometry of the lead-frame
    • H01L23/49548Cross section geometry
    • H01L23/49551Cross section geometry characterised by bent parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to a semiconductor device in which a semiconductor chip is sealed with a resin and a method for manufacturing the semiconductor device.
  • Patent Document 1 discloses a technique for forming a mold resin on a workpiece. Specifically, after the pot resin is supplied into the pot, the cavity resin is supplied into the cavity recess. Next, by clamping the mold, the plunger is pressed so as to mix the molten pot resin and the cavity resin, and the cavity is filled with the molten resin. Next, the molten resin in the cavity recess is held at a predetermined resin pressure and cured by heating.
  • the present invention has been made to solve the above-described problems, and an object thereof is to provide a low-cost and high-quality semiconductor device and a method for manufacturing the semiconductor device.
  • a semiconductor device includes a lead frame, a semiconductor chip fixed to the upper surface of the lead frame, a first resin in contact with the lower surface of the lead frame, and a second resin provided on the first resin.
  • the first resin has a higher thermal conductivity than the second resin, and the semiconductor chip is covered with the first resin and the second resin.
  • a plunger chip is provided in a hole formed in a concave portion of a lower mold, a first resin is provided on the plunger chip, and the first resin is provided on the first resin.
  • An upper mold was placed, a mold clamping step of clamping the semiconductor chip in a state provided by the lower mold and the upper mold, and the first resin and the second resin were melted
  • an injection step of bringing the first resin into contact with the lower surface of the lead frame by raising the plunger tip to provide the second resin in the cavity and then providing the first resin; From the plunger tip, the first resin and the second tree Characterized in that and a pressure holding process of pressure holding exert pressure on.
  • a plunger chip is provided in a hole formed in a recess of a lower mold, a resin providing step for providing resin on the plunger chip, and a semiconductor chip on a lower surface.
  • a mounting step of placing the fixed lead frame on the upper surface of the recess, and a heat dissipation sheet having a higher thermal conductivity than the resin is sandwiched between the lead frame and the upper die, and placed on the lower die.
  • Another method of manufacturing a semiconductor device includes: a resin providing step of providing a plunger chip in a hole formed in a lower mold having a plurality of recesses and providing a resin on the plunger chip; A mounting step of placing the fixed lead frame on the upper surface of the lower mold, an upper mold placed on the lower mold, a plurality of cavities formed by the plurality of recesses, and the plurality of cavities A mold clamping step of clamping in a state where a runner gate is formed, and after the resin is melted, the plunger tip is raised to a predetermined position, and the plurality of cavities and the runner gate And an injecting step for supplying the resin, and a pressure-holding step for applying pressure to the resin from the plunger tip to hold the resin, and the plunger tip is raised to the predetermined position.
  • the movable block When the pressure that the resin in the runner gate exerts on the movable block in the runner gate is detected and the pressure is greater than a predetermined pressure, the movable block is retracted from the runner gate. When the pressure is smaller than a predetermined pressure, the movable block is moved in a direction to advance into the runner gate.
  • the first resin having a high thermal conductivity is provided on the lower surface of the lead frame, and the second resin having a lower thermal conductivity than the first resin is provided on the lead frame.
  • a high-quality semiconductor device can be provided.
  • FIG. 1 is a cross-sectional view of a semiconductor device according to a first embodiment.
  • 3 is a flowchart showing a method for manufacturing the semiconductor device according to the first embodiment. It is sectional drawing, such as 1st resin and 2nd resin. It is sectional drawing, such as a lead frame. It is sectional drawing, such as a lower mold and an upper mold, which are clamped. It is sectional drawing which shows having raised the plunger tip. It is sectional drawing, such as a ball plunger. It is a top view, such as a ball plunger. It is a perspective view of a plurality of plunger rods.
  • FIG. 10 is a cross-sectional view of a mold or the like corresponding to the plunger device of FIG. 9. FIG.
  • FIG. 10 is a cross-sectional view showing the method for manufacturing the semiconductor device according to the second embodiment.
  • 10 is a flowchart illustrating a method for manufacturing a semiconductor device according to a third embodiment. It is a block diagram of the apparatus used for manufacture of a semiconductor device. It is a figure which shows having supplied resin to the cavity and the runner gate. It is a figure which shows the structural example of a controller. It is a figure which shows another structural example of a controller.
  • FIG. 10 is a diagram showing a method for manufacturing the semiconductor device according to the fourth embodiment. It is a figure which shows the manufacturing method of the semiconductor device which concerns on a comparative example.
  • a semiconductor device and a method for manufacturing the semiconductor device according to an embodiment of the present invention will be described with reference to the drawings.
  • the same or corresponding components are denoted by the same reference numerals, and repeated description may be omitted.
  • FIG. 1 is a sectional view of a semiconductor device 10 according to the first embodiment of the present invention.
  • the semiconductor device 10 includes a lead frame 12.
  • a semiconductor chip 14 is fixed to the upper surface of the lead frame 12.
  • the semiconductor chip 14 is a switching element made of, for example, Si or SiC.
  • the first resin 20 is in contact with the lower surface of the lead frame 12.
  • a second resin 22 is provided on the first resin 20.
  • the semiconductor chip 14 is covered with the first resin 20 and the second resin 22.
  • the first resin 20 and the second resin 22 function as a package.
  • the first resin 20 has a higher thermal conductivity than the second resin 22. If this condition is satisfied, the materials of the first resin 20 and the second resin 22 are not particularly limited.
  • the first resin 20 is, for example, alumina, and the second resin 22 is, for example, silica.
  • the thermal conductivity of the first resin 20 is preferably 2 W / m ⁇ K or more.
  • the lead frame 12 has a die pad portion for fixing the semiconductor chip 14, an inner lead portion provided in the resin, and an outer lead portion extending outside the resin.
  • a control chip 24 that outputs a control signal to the semiconductor chip 14 is provided in the inner lead portion in the second resin 22.
  • the semiconductor chip 14 and the inner lead part are connected by a wire 26.
  • the semiconductor chip 14 and the control chip 24 are connected by a wire 28.
  • the first resin 20 is provided only below the lower surface of the lead frame 12.
  • the first resin 20 is in contact with the lower surface of the semiconductor chip 14 via the lead frame 12, and the second resin 22 is in contact with the side surface and the upper surface of the semiconductor chip 14.
  • Most of the package is the second resin 22, and the volume of the first resin 20 in the entire package is small. Therefore, the volume of the second resin 22 is larger than that of the first resin 20.
  • the first resin 20 is exposed below the semiconductor chip 14, and the second resin 22 is exposed above the semiconductor chip 14.
  • FIG. 2 is a flowchart showing a method for manufacturing a semiconductor device according to the first embodiment of the present invention. A method for manufacturing the semiconductor device 10 will be described with reference to this flowchart.
  • step S1 the first resin and the second resin are provided on the plunger tip.
  • FIG. 3 is a diagram showing the first resin 20a and the second resin 22a.
  • the lower mold 30 has a recess 30A.
  • a hole 30a is formed in the recess 30A.
  • the portion where the hole 30a is formed is referred to as a pot 30B.
  • a plunger tip 32 is provided in the hole 30a.
  • the side surface of the plunger tip 32 is in contact with the pot 30B.
  • the plunger tip 32 is supported by a plunger rod 34. When the plunger rod 34 moves in the y positive / negative direction, the plunger tip 32 also moves in the y positive / negative direction in conjunction therewith.
  • the first resin 20a is provided on the plunger chip 32, and the second resin 22a having a lower thermal conductivity than the first resin 20a is provided on the first resin 20a.
  • the first resin 20a and the second resin 22a are granular.
  • the first resin 20a is granular alumina
  • the second resin 22a is granular silica.
  • the process of providing the resin on the plunger chip 32 is referred to as a resin providing process.
  • FIG. 3 also shows the upper mold 40.
  • the upper mold 40 has a recess 40A.
  • a movable pin 42 penetrating the recess 40A is provided.
  • the movable pin 42 can move in the y positive / negative direction through the recess 40A. Such movement can be realized by a motor.
  • step S ⁇ b> 2 the lead frame 12 is placed on the lower mold 30.
  • FIG. 4 shows the lead frame 12 placed on the lower mold 30.
  • step S ⁇ b> 2 the lead frame 12 with the semiconductor chip 14 fixed on the upper surface is placed on the upper surface of the recess 30 ⁇ / b> A of the lower mold 30. This process is called a mounting process.
  • step S ⁇ b> 3 the mold is clamped by the lower mold 30 and the upper mold 40.
  • FIG. 5 is a view showing the lower mold 30 and the upper mold 40 which are clamped.
  • the lower mold 30 and the upper mold 40 are accommodated in the mold clamping device, the upper mold 40 is placed on the lower mold 30, and a predetermined mold clamping force is applied thereto.
  • the mold is clamped in a state where the semiconductor chip 14 is accommodated in the cavity 50 provided by the lower mold 30 and the upper mold 40. This process is called a mold clamping process.
  • the movable pin 42 In the mold clamping process, the movable pin 42 is brought into contact with the upper surface of the lead frame 12.
  • the movable pin 42 prevents the lead frame 12 from floating upward when resin is injected into the cavity 50 and when pressure is maintained.
  • the plurality of movable pins 42 are preferably brought into contact with the upper surface of the lead frame 12.
  • step S4 after the first resin 20a and the second resin 22a are melted, the plunger tip 32 is raised.
  • FIG. 6 is a view showing that the plunger tip 32 is raised.
  • the plunger tip 32 moves upward, first, the second resin 22a is provided in the cavity 50, and then the first resin 20a is provided. Therefore, the second resin 22 is provided above the cavity 50, and the first resin 20 is provided below the cavity 50.
  • the height of the upper surface of the plunger tip 32 coincides with the height of the bottom surface of the recess 30A of the lower mold 30, the raising of the plunger tip 32 is stopped.
  • the first resin 20 comes into contact with the lower surface of the lead frame 12. This process is called an injection process.
  • step S5 pressure holding and curing are performed. Specifically, pressure is applied from the plunger tip 32 to the first resin 20 and the second resin 22 to hold the pressure. This process is called a pressure holding process.
  • step S6 the plunger tip 32 is moved downward. By releasing the molded product, the semiconductor device 10 shown in FIG. 1 is completed.
  • a package having the first resin 20 and the second resin 22 is molded by the compression method as described above. Therefore, the flow of the resin is small as compared with the transfer molding method in which the resin is provided to the cavity via a narrow runner. Therefore, significant mixing of the first resin 20 and the second resin 22 does not occur, and the state in which the first resin 20 and the second resin 22 are substantially separated can be maintained.
  • the first resin 20 having a high thermal conductivity can be supplied only under the lead frame 12 by utilizing such a feature of the compression method.
  • the heat generated in the semiconductor chip 14 is released to the outside mainly through the lead frame 12 and the first resin 20 having high thermal conductivity. Then, the cost of the semiconductor device can be reduced by adopting the second resin 22 whose thermal conductivity is lower than that of the first resin 20 in a portion that is not so important for improving heat dissipation.
  • the first resin 20 has high electrical insulation. Therefore, when the first resin 20 is provided on the lower surface of the lead frame 12, the resin under the lead frame 12 can be made thinner than when the second resin made of silica is provided on the lower surface of the lead frame 12.
  • the insulation performance when the 450 ⁇ m second resin is formed under the lead frame 12 is equivalent to the insulation performance when the 150 ⁇ m first resin 20 is formed under the lead frame 12. Therefore, the semiconductor device can be reduced in size and heat dissipation without impairing the insulation performance of the semiconductor device.
  • the movable pin 42 is brought into contact with the upper surface of the lead frame 12 to prevent the lead frame 12 from being lifted. Thereby, generation
  • the resin can be compression-molded using the same plunger tip 32 as the plunger tip used in the transfer molding method. Therefore, a common plunger mechanism can be used among the types.
  • FIG. 7 is a cross-sectional view of the ball plunger 54 and the like that support the plunger rod 34.
  • a support base 52 is fixed to the upper surface of the plunger block 51.
  • the support base 52 has a recess, and the lower end of the plunger rod 34 is accommodated in the recess. The lower end of the plunger rod 34 may contact the support base 52, but is not fixed to the support base 52.
  • a ball plunger 54 that can extend and contract in the lateral direction is attached to the support base 52.
  • a ball or pin is provided at the tip 54A of the ball plunger 54.
  • a main body 54B is connected to the tip 54A.
  • a spring is built in the main body 54B.
  • the plunger rod 34 is preferably provided with a narrow portion 34a, and the tip portion 54A of the ball plunger 54 is preferably brought into contact with the narrow portion 34a.
  • FIG. 8 is a plan view of the plunger rod 34 and the ball plunger 54.
  • Four ball plungers 54 are in contact with the side surfaces of the plunger rod 34.
  • the ball plunger 54 contracts, and the position of the plunger rod 34 can be displaced accordingly. Therefore, the plunger rod 34 can move up and down, left and right in a plan view, and can rotate in a plan view.
  • the plunger tip 32 moves in the hole 30a in the positive y / negative direction. At this time, it is preferable that the plunger tip 32 moves smoothly in the pot 30B without the plunger tip 32 exerting a strong force on the pot 30B. Therefore, as described with reference to FIGS. 7 and 8, the plunger rod 34 is supported by the ball plunger 54 so that the plunger rod 34 can be moved or rotated slightly. Thereby, the plunger tip 32 moves smoothly in the pot 30B without the plunger tip 32 exerting a strong force on the pot 30B. It is preferable to implement the semiconductor device manufacturing method using the plunger block 51, the support base 52, and the ball plunger 54 shown in FIG.
  • FIG. 9 shows that one plunger block 60 is provided with a plurality of plunger rods 62.
  • One plunger tip 64 is fixed to one plunger rod 62. It is preferable to hold the plunger rod 62 in a displaceable state using the ball plunger 54 described above.
  • FIG. 10 is a cross-sectional view of a mold or the like corresponding to the plunger device of FIG.
  • a plurality of recesses 70 ⁇ / b> A are formed in the lower mold 70.
  • One hole 70a is formed in one recess 70A.
  • the upper mold 72 has a plurality of recesses 72A.
  • the injection process and the pressure holding process can be performed collectively for a plurality of cavities.
  • resin can be provided from the plunger tip 64 for every cavity, it is not necessary to provide a cal runner part in a metal mold
  • the lower mold 70 and the upper mold 72 can be reduced in size. Also, by making the area of the plunger tip 64 in plan view smaller than the area of the bottom surface of the recess 70A, it is possible to apply a greater hydrostatic pressure to the resin than when these areas are equivalent.
  • the package is formed of two resins having different thermal conductivities without significant mixing.
  • the semiconductor device and the manufacturing method of the semiconductor device according to the first embodiment can be modified as appropriate without departing from this feature.
  • the amount of the first resin 20 may be increased and the first resin 20 may be provided above the lower surface of the die pad portion of the lead frame 12.
  • an intermediate resin having an intermediate thermal conductivity between the first resin 20 and the second resin 22 may be provided on the first resin 20, and the second resin 22 may be provided on the intermediate resin.
  • heat radiation in the left-right direction of the semiconductor device 10 can be promoted by the intermediate resin.
  • the movable pin 42 may be omitted.
  • the semiconductor chip 14 is not limited to a switching element.
  • a diode may be employed as the semiconductor chip.
  • a plurality of semiconductor chips may be accommodated in the package, and for example, an inverter circuit may be configured with them.
  • the semiconductor device and the method for manufacturing the semiconductor device according to the following embodiment can be applied to the semiconductor device and the method for manufacturing the semiconductor device according to the following embodiment. It should be noted that the semiconductor device and the method for manufacturing the semiconductor device according to the following embodiment have many similarities to the first embodiment, and therefore, differences from the first embodiment will be mainly described.
  • FIG. FIG. 11 is a cross-sectional view illustrating the method of manufacturing the semiconductor device according to the second embodiment.
  • the resin 23 is provided on the plunger chip 32 in the resin providing step.
  • the lead frame 12 having the semiconductor chip 14 fixed to the lower surface is placed on the upper surface of the recess 30A.
  • the die pad portion of the lead frame 12 is above the semiconductor chip 14.
  • the heat dissipation sheet 80 includes, for example, an insulating layer 80A and a heat sink 80B provided by being stacked on the insulating layer 80A.
  • the insulating layer 80A is preferably made of a mold resin such as silica and epoxy resin or a similar material.
  • the material of the heat sink 80B is, for example, copper.
  • the configuration of the heat dissipation sheet 80 is not particularly limited as long as the thermal conductivity can be made higher than that of the resin.
  • the upper surface of the heat dissipation sheet 80 comes into contact with the bottom surface of the recess 40 ⁇ / b> A of the upper mold 40, and the lower surface of the heat dissipation sheet 80 comes into contact with the upper surface of the lead frame 12.
  • the plunger tip 32 is raised to provide the resin 23 in the cavity 50.
  • the plunger tip 32 is raised until the upper surface of the plunger tip 32 becomes the same height as the bottom surface of the recess 30 ⁇ / b> A of the lower mold 30.
  • pressure is applied from the plunger tip 32 to the resin 23 to hold the pressure.
  • the heat dissipation of the apparatus can be improved.
  • the heat radiating sheet 80 by providing the heat radiating sheet 80, the heat radiating property of the apparatus is improved as compared with the case where the first resin 20 is used. Since the heat dissipation of the device can be enhanced by the heat dissipation sheet 80, the resin 23 is not required to have high thermal conductivity. Therefore, for example, a material having a lower thermal conductivity than alumina such as silica can be used as the material of the resin 23.
  • FIG. 12 is a flowchart showing a method for manufacturing a semiconductor device according to the third embodiment.
  • the lower mold 90 is formed with at least two concave portions 90A and 90B.
  • the plunger tip 32A is supported by the plunger rod 34A.
  • the plunger tip 32B is supported by the plunger rod 34B.
  • a motor 100 is connected to the plunger rods 34A, 34B.
  • the plunger tip 32A, 32B is moved in the y positive / negative direction by the motor 100.
  • the upper mold 92 has at least two concave portions 92A and 92B.
  • a movable block 102 is provided between the recesses 92A and 92B.
  • the movable block 102 is connected to a motor 106 via a spring 104.
  • the movable block 102 can be moved in the positive and negative directions by the motor 106.
  • the motors 100 and 106 are preferably servo motors.
  • the motors 100 and 106 are connected to the controller 110.
  • a resin providing step is performed in step S1.
  • plunger chips 32A and 32B are provided in the holes formed in the lower mold 90 shown in FIG. 13, and the resin 23 is provided on the plunger chips 32A and 32B.
  • a mounting process is performed in step S2.
  • the lead frames 12 and 13 to which the semiconductor chip 14 shown in FIG. 13 is fixed are placed on the upper surface of the lower mold 90.
  • the lead frame 13 is placed on both the recesses 90A and 90B.
  • FIG. 13 is a cross-sectional view of a mold and the like after clamping.
  • the cavity 50A is formed by the recesses 90A and 92A
  • the cavity 50B is formed by the recesses 90B and 92B.
  • the two cavities 50A and 50B are connected by a runner gate 50C.
  • the volume of the runner gate 50 ⁇ / b> C depends on the position of the movable block 102. If the movable block 102 is below, the volume of the runner gate 50C is small, and if the movable block 102 is above, the volume of the runner gate 50C is large.
  • step S4 an injection process is performed in step S4.
  • the plunger chips 32A and 32B are raised to a predetermined position according to a command from the controller 110.
  • the plunger tips 32A and 32B are raised until the top surfaces of the plunger tips 32A and 32B coincide with the bottom surfaces of the recesses 90A and 90B.
  • the resin 23 is provided in the cavities 50A and 50B and the runner gate 50C.
  • Such a plunger block can be provided in the motor 100.
  • FIG. 14 is a diagram showing that the resin 23 is provided to the cavities 50A and 50B and the runner gate 50C.
  • the pressure exerted on the movable block 102 by the resin 23 in the runner gate 50C is detected.
  • This pressure can be detected by detecting the pressure exerted on the motor 106 by the movable block 102 via the spring 104, for example.
  • a sensor is provided in the motor 106. Information on the detected pressure is notified to the controller 110.
  • step S5 the controller 110 determines whether the pressure notified to the controller 110 is a predetermined pressure.
  • the “predetermined pressure” can be an arbitrary pressure range.
  • the controller 110 moves the movable block 102 in a direction to retract from the runner gate 50C. That is, the movable block 102 is moved upward. Thereby, the resin pressure in the cavities 50A and 50B is set to a predetermined pressure.
  • the controller 110 moves the movable block 102 in a direction to advance into the runner gate 50C. That is, the movable block 102 is moved downward. Thereby, the resin pressure in the cavities 50A and 50B is set to a predetermined pressure.
  • Step S6 is a step of adjusting the position of the movable block 102 in this way.
  • the control of the resin thickness can be realized by feeding back the positions of the plunger tips 32A and 32B to the controller 110, and the controller 110 raises the plunger tips 32A and 32B to a predetermined position.
  • step S5 If it is determined in step S5 that the detected pressure is a predetermined pressure, the process proceeds to step S7.
  • step S7 a pressure holding process is performed. In the pressure holding step, pressure is applied to the resin 23 from the plunger tips 32A and 32B to hold the pressure. Finally, in step S8, the plunger tips 32A and 32B are moved downward.
  • a product in which one lead frame 13 is provided in a plurality of packages is formed by one molding process.
  • FIG. 15 is a diagram illustrating a configuration example of the controller 110.
  • the controller 110 includes a receiving device 110A, a processing circuit 110B, and a transmitting device 110C. Information on the pressure exerted on the motor 106 by the movable block 102 via the spring 104 is transmitted to the receiving device 110A.
  • Each function described above performed in the controller 110 is realized by the processing circuit 110B. That is, the processing circuit 110B determines whether or not the received pressure is a predetermined pressure, and calculates how much the movable block 102 is moved according to the determination result.
  • the processing circuit 110B is dedicated hardware, a CPU that executes a program stored in a memory (Central Processing Unit, central processing unit, processing unit, arithmetic unit, microprocessor, microcomputer, processor, DSP) It may be.
  • the processing circuit is dedicated hardware, the processing circuit is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof.
  • the determination of the pressure and the calculation of the movement amount of the movable block 102 may be realized by separate processing circuits, or may be realized by a single processing circuit.
  • FIG. 16 shows a configuration example of the controller 110 when the processing circuit is a CPU.
  • each function of the controller 110 is realized by software or a combination of software and firmware.
  • Software or firmware is described as a program and stored in the memory 110E.
  • the processor 110D implements each function by reading and executing a program stored in the memory 110E. That is, a memory 110E is provided for storing a program that will eventually execute steps S4 to S8 in FIG. These programs can be said to cause a computer to execute the procedures and methods of steps S4 to S8.
  • the memory corresponds to, for example, a nonvolatile or volatile semiconductor memory such as RAM, ROM, flash memory, EPROM, or EEPROM, a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, or a DVD.
  • the molding pressure and the pressure can be controlled by controlling the position of the movable block 102 according to the pressure of the resin 23 supplied to the cavities 50A and 50B and the runner gate 50C.
  • the thickness of the resin can be made uniform. Therefore, it is possible to minimize the variation between products having insulation and heat dissipation from the outside.
  • the semiconductor device manufacturing method according to the third embodiment can be variously modified without losing this characteristic.
  • the number of cavities formed during mold clamping is not limited to two, and three or more cavities may be formed.
  • FIG. 17 is a diagram illustrating the method of manufacturing the semiconductor device according to the fourth embodiment.
  • FIG. 17 shows the plunger tip 32 and the like in the injection process. A sectional view is shown in the upper stage, and a plan view is shown in the lower stage. The lower plan view shows that the plunger tip 32 is circular in plan view.
  • the outer circumference can be made shorter than a non-circular plunger tip having the same area. That is, the outer periphery of the circular plunger tip 32 is smaller than the outer periphery of any other shape of the plunger tip.
  • the amount of resin burr that enters between the plunger tip 32 and the pot 30B can be suppressed. Thereby, the friction between the plunger tip 32 and the pot 30B can be minimized.
  • the bottom surface 30C of the recess 30A is quadrangular in plan view.
  • the area of the plunger tip 32 is smaller than the area of the bottom surface 30C of the recess 30A in plan view.
  • the area of the plunger tip 32 in plan view is preferably less than or equal to half the area of the bottom surface 30C.
  • a resin ring 33 is provided along the outer periphery of the plunger tip 32.
  • the resin ring 33 mainly contacts the pot 30B, whereby the plunger tip 32 can be protected.
  • FIG. 18 is a diagram illustrating a method for manufacturing a semiconductor device according to a comparative example.
  • a sectional view is shown in the upper stage, and a plan view is shown in the lower stage.
  • the plunger tip 32 of the comparative example is quadrangular in plan view. Further, the area of the plunger tip 32 in plan view is equal to the area of the bottom surface 30C of the recess 30A. Thus, when the area of the plunger tip 32 is large, the resin tends to accumulate between the plunger tip 32 and the pot 30B, and the lower mold 30 must be frequently cleaned.
  • the area of the plunger chip 32 is made sufficiently smaller than the area of the bottom surface 30C of the recess 30A of the lower mold 30. Therefore, in the injection process, in addition to the flow of the resin 23 going upward, the flow of the resin 23 going left and right is generated. Therefore, the void directly above the die pad portion can be suppressed. Further, providing the plunger tip 32 at the center of the bottom surface 30C of the recess 30A also contributes to the resin 23 spreading to every corner of the cavity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

上面と下面を有するリードフレームと、該リードフレームの該上面に固定された半導体チップと、該リードフレームの該下面と接する第1樹脂と、該第1樹脂の上に設けられた第2樹脂と、を備える。該第1樹脂と該第2樹脂は接触している。該第1樹脂と該第2樹脂の材料は、該第1樹脂の熱伝導率が該第2樹脂の熱伝導率より高くなるように選択される。そして、該第1樹脂と該第2樹脂で該半導体チップを覆っていることを特徴とする。

Description

半導体装置、半導体装置の製造方法
 この発明は、半導体チップを樹脂封止した半導体装置と、その半導体装置の製造方法に関する。
 特許文献1には、ワークにモールド樹脂を形成する技術が開示されている。具体的にはポット内にポット用樹脂を供給した後、キャビティ凹部内にキャビティ用樹脂を供給する。次いで、モールド金型を型締めすることによって、溶融したポット用樹脂およびキャビティ用樹脂を混ぜ合わせるようにプランジャで押圧し、キャビティ凹部内に溶融樹脂を充填する。次いで、キャビティ凹部内の溶融樹脂を所定の樹脂圧で保圧して加熱硬化させる。
日本特開2012-166432号公報
 リードフレームに固定された半導体チップを樹脂封止する半導体装置では、装置を小型化したり、装置の放熱性を高めたり、意図しない電気的影響から半導体チップを守るために絶縁性を高めたりする必要がある。低コストでしかも質の高い半導体装置を提供することが求められている。
 本発明は上述の問題を解決するためになされたものであり、低コストでしかも質の高い半導体装置と、その半導体装置の製造方法を提供することを目的とする。
 本願の発明にかかる半導体装置は、リードフレームと、該リードフレームの上面に固定された半導体チップと、該リードフレームの下面と接する第1樹脂と、該第1樹脂の上に設けられた第2樹脂と、を備え、該第1樹脂は該第2樹脂よりも熱伝導率が高く、該第1樹脂と該第2樹脂で該半導体チップを覆うことを特徴とする。
 本願の発明にかかる半導体装置の製造方法は、下金型の凹部に形成された穴にプランジャチップを設け、該プランジャチップの上に第1樹脂を提供し、該第1樹脂の上に該第1樹脂よりも熱伝導率が低い第2樹脂を提供する樹脂提供工程と、上面に半導体チップが固定されたリードフレームを、該凹部の上面にのせる搭載工程と、該下金型の上に上金型を置き、該下金型と該上金型によって提供されたキャビティに該半導体チップを収容した状態で型締めする型締め工程と、該第1樹脂と該第2樹脂を溶融させた後、該プランジャチップを上昇させて該キャビティの中に該第2樹脂を提供しその後該第1樹脂を提供することで、該リードフレームの下面に該第1樹脂を接触させる注入工程と、該プランジャチップから該第1樹脂と該第2樹脂に圧力を及ぼし保圧する保圧工程と、を備えたことを特徴とする。
 本願の発明にかかる他の半導体装置の製造方法は、下金型の凹部に形成された穴にプランジャチップを設け、該プランジャチップの上に樹脂を提供する樹脂提供工程と、下面に半導体チップが固定されたリードフレームを、該凹部の上面にのせる搭載工程と、該樹脂よりも熱伝導率が高い放熱シートを該リードフレームと上金型の間に挟みつつ、該下金型の上に該上金型を置き、該下金型と該上金型によって提供されたキャビティに該半導体チップを収容した状態で型締めする型締め工程と、該樹脂を溶融させた後、該プランジャチップを上昇させて該キャビティの中に該樹脂を提供する注入工程と、該プランジャチップから該樹脂に圧力を及ぼし保圧する保圧工程と、を備えたことを特徴とする。
 本願の発明にかかる他の半導体装置の製造方法は、複数の凹部を有する下金型に形成された穴にプランジャチップを設け該プランジャチップの上に樹脂を提供する樹脂提供工程と、半導体チップが固定されたリードフレームを、該下金型の上面にのせる搭載工程と、該下金型の上に上金型を置き、該複数の凹部により形成された複数のキャビティと、該複数のキャビティをつなぐランナーゲートとを形成した状態で型締めする型締め工程と、該樹脂を溶融させた後、該プランジャチップを予め定められた位置まで上昇させて、該複数のキャビティ及び該ランナーゲートの中に該樹脂を提供する注入工程と、該プランジャチップから該樹脂に圧力を及ぼし保圧する保圧工程と、を備え、該プランジャチップが該予め定められた位置まで上昇したとき、該ランナーゲートの内の該樹脂が該ランナーゲートの中の可動ブロックに及ぼす圧力を検知し、該圧力が予め定められた圧力より大きいときは該可動ブロックを該ランナーゲートから退避させる方向へ移動させ、該圧力が予め定められた圧力より小さいときは該可動ブロックを該ランナーゲートの中へ進出させる方向へ移動させることを特徴とする。
 本発明のその他の特徴は以下に明らかにする。
 この発明によれば、例えば熱伝導率の高い第1樹脂をリードフレームの下面に設けつつ、第1樹脂よりは熱伝導率が低い第2樹脂をリードフレームの上に設けることで、低コストかつ高品質の半導体装置を提供することができる。
実施の形態1に係る半導体装置の断面図である。 実施の形態1に係る半導体装置の製造方法を示すフローチャートである。 第1樹脂と第2樹脂等の断面図である。 リードフレーム等の断面図である。 型締めされた下金型と上金型等の断面図である。 プランジャチップを上昇させたことを示す断面図である。 ボールプランジャ等の断面図である。 ボールプランジャ等の平面図である。 複数のプランジャロッド等の斜視図である。 図9のプランジャ装置に対応した金型等の断面図である。 実施の形態2に係る半導体装置の製造方法を示す断面図である。 実施の形態3に係る半導体装置の製造方法を示すフローチャートである。 半導体装置の製造に使用する装置の構成図である。 キャビティとランナーゲートに樹脂を供給したことを示す図である。 コントローラの構成例を示す図である。 コントローラの別の構成例を示す図である。 実施の形態4に係る半導体装置の製造方法を示す図である。 比較例に係る半導体装置の製造方法を示す図である。
 本発明の実施の形態に係る半導体装置と半導体装置の製造方法について図面を参照して説明する。同じ又は対応する構成要素には同じ符号を付し、説明の繰り返しを省略する場合がある。
実施の形態1.
 図1は、本発明の実施の形態1に係る半導体装置10の断面図である。半導体装置10はリードフレーム12を備えている。リードフレーム12の上面に半導体チップ14が固定されている。半導体チップ14は例えばSi又はSiCで形成されたスイッチング素子である。リードフレーム12の下面に第1樹脂20が接触している。この第1樹脂20の上に第2樹脂22が設けられている。第1樹脂20と第2樹脂22で半導体チップ14が覆われている。第1樹脂20と第2樹脂22がパッケージとして機能する。第1樹脂20は第2樹脂22よりも熱伝導率が高い。この条件を満たせば第1樹脂20と第2樹脂22の材料は特に限定されない。第1樹脂20は例えばアルミナであり、第2樹脂22は例えばシリカである。第1樹脂20の熱伝導率は2W/m・K以上であることが好ましい。
 リードフレーム12は、半導体チップ14を固定するダイパッド部、樹脂の中に設けられたインナーリード部及び樹脂の外に伸びるアウターリード部を有する。第2樹脂22の中にあるインナーリード部には半導体チップ14に対し制御信号を出力する制御チップ24が設けられている。半導体チップ14とインナーリード部はワイヤ26で接続されている。半導体チップ14と制御チップ24はワイヤ28で接続されている。
 第1樹脂20はリードフレーム12の下面よりも下方にだけ設けられている。第1樹脂20はリードフレーム12を介して半導体チップ14の下面に接し、第2樹脂22は半導体チップ14の側面と上面に接している。パッケージの大部分は第2樹脂22であり、第1樹脂20のパッケージ全体に占める体積は小さい。したがって、第1樹脂20よりも第2樹脂22の体積が大きい。半導体チップ14の下方では第1樹脂20が露出し、半導体チップ14の上方では第2樹脂22が露出している。
 図2は、本発明の実施の形態1に係る半導体装置の製造方法を示すフローチャートである。このフローチャートに沿って半導体装置10の製造方法を説明する。まず、ステップS1にて、プランジャチップの上に第1樹脂と第2樹脂を提供する。
 図3は、第1樹脂20aと第2樹脂22aを示す図である。下金型30は凹部30Aを有している。この凹部30Aに穴30aが形成されている。穴30aが形成された部分をポット30Bという。穴30aの中にプランジャチップ32が設けられている。プランジャチップ32の側面はポット30Bに接している。プランジャチップ32はプランジャロッド34によって支持されている。プランジャロッド34がy正負方向に動くとそれに連動してプランジャチップ32もy正負方向に動く。
 このようなプランジャチップ32の上に第1樹脂20aを提供し、第1樹脂20aの上に第1樹脂20aよりも熱伝導率が低い第2樹脂22aを提供する。第1樹脂20aと第2樹脂22aは粒状である。例えば第1樹脂20aは粒状のアルミナであり、第2樹脂22aは粒状のシリカである。このように、プランジャチップ32の上に樹脂を提供する工程を樹脂提供工程という。
 図3には上金型40も示されている。上金型40は凹部40Aを有している。凹部40Aを貫通する可動ピン42が設けられている。可動ピン42は、凹部40Aを貫通してy正負方向に移動することができる。そのような移動はモータによって実現することができる。
 次いでステップS2に処理を進める。ステップS2では、リードフレーム12を下金型30にのせる。図4には、下金型30にのせられたリードフレーム12が示されている。ステップS2では、上面に半導体チップ14が固定されたリードフレーム12を、下金型30の凹部30Aの上面にのせる。この工程を搭載工程という。
 次いでステップS3に処理を進める。ステップS3では、下金型30と上金型40で型締めする。図5は、型締めされた下金型30と上金型40を示す図である。型締め装置に下金型30と上金型40を収容し、下金型30の上に上金型40を置き、これらに予め定められた型締力を付与する。このとき、下金型30と上金型40によって提供されたキャビティ50に半導体チップ14を収容した状態で型締めする。この工程を型締め工程という。
 型締め工程では、可動ピン42をリードフレーム12の上面に接触させる。可動ピン42は樹脂をキャビティ50に注入したとき及び保圧しているときに、リードフレーム12が上方に浮き上がることを抑制する。この浮き上がりを確実に防止するためには、複数の可動ピン42をリードフレーム12の上面に接触させることが好ましい。
 次いで、ステップS4に処理を進める。ステップS4では、第1樹脂20aと第2樹脂22aを溶融させた後、プランジャチップ32を上昇させる。図6は、プランジャチップ32を上昇させたことを示す図である。プランジャチップ32の上昇を進めると、まず、キャビティの50の中に第2樹脂22aが提供され、その後第1樹脂20aが提供される。そのため、キャビティ50の上方に第2樹脂22が提供され、キャビティ50の下方に第1樹脂20が提供される。プランジャチップ32の上面の高さが、下金型30の凹部30Aの底面の高さに一致したときにプランジャチップ32の上昇を停止する。このように樹脂を射出することでリードフレーム12の下面に第1樹脂20が接触する。この工程を注入工程という。
 次いで、ステップS5へ処理を進める。ステップS5では、保圧とキュアを行う。具体的には、プランジャチップ32から第1樹脂20と第2樹脂22に圧力を及ぼし保圧する。この工程を保圧工程という。次いで、ステップS6へ処理を進める。ステップS6ではプランジャチップ32を下方へ移動させる。成形品を離型することで、図1に示す半導体装置10が完成する。
 本発明の実施の形態1では、上述のとおりコンプレッション法によって第1樹脂20と第2樹脂22を有するパッケージを成形する。そのため、狭いランナーを経由してキャビティに樹脂を提供するトランスファーモールド法と比較して樹脂の流動が少ない。したがって、第1樹脂20と第2樹脂22の有意な混合は生じず、第1樹脂20と第2樹脂22が実質的に分離した状態を維持できる。このようなコンプレッション法の特徴を利用して、リードフレーム12の下にだけ熱伝導率の高い第1樹脂20を供給することができる。半導体チップ14で生じた熱は、主として、リードフレーム12と熱伝導率の高い第1樹脂20を介して外部に放出される。そして、放熱性を高めるうえであまり重要とならない部分には、熱伝導率が第1樹脂20より低い第2樹脂22を採用することで半導体装置のコストを低減できる。
 第1樹脂20は高い電気絶縁性を有する。そのため、リードフレーム12の下面に第1樹脂20を設けた場合、リードフレーム12の下面にシリカを材料とする第2樹脂を設けた場合と比べて、リードフレーム12の下の樹脂を薄くできる。リードフレーム12の下に450μmの第2樹脂を形成したときの絶縁性能と、リードフレーム12の下に150μmの第1樹脂20を形成したとき絶縁性能は同等である。したがって、半導体装置の絶縁性能を損ねることなく、半導体装置の小型化及び放熱性向上ができる。
 本発明の実施の形態1に係る半導体装置の製造方法における注入工程と保圧工程では、可動ピン42をリードフレーム12の上面に接触させてリードフレーム12の浮き上がりを防止する。これにより、リードフレーム12の浮き上がりによる不良品の発生を抑制できる。
 本発明の実施の形態1では、トランスファーモールド法で用いるプランジャチップと同じプランジャチップ32を用いて樹脂を圧縮成形することができる。よって、品種間で共通のプランジャ機構を用いることができる。
 図7は、プランジャロッド34を支持するボールプランジャ54等の断面図である。プランジャブロック51の上面に支持台52が固定されている。この支持台52は凹部を有しており、その凹部にプランジャロッド34の下端部が収容されている。プランジャロッド34の下端部は支持台52と接しても良いが、支持台52に固定されない。支持台52には横方向に伸縮できるボールプランジャ54が取り付けられている。ボールプランジャ54の先端部54Aにはボール又はピンが設けられている。この先端部54Aに本体部54Bが接続されている。本体部54Bにはスプリングが内蔵されている。そのため、先端部54Aに荷重が加わると本体部54Bが縮み、当該荷重が解除されると本体部54Bが元の長さに戻る。プランジャロッド34に幅狭部34aを設け、その幅狭部34aにボールプランジャ54の先端部54Aを接触させることが好ましい。
 図8は、プランジャロッド34とボールプランジャ54の平面図である。プランジャロッド34の側面に4つのボールプランジャ54が接触している。プランジャロッド34からボールプランジャ54に対して力が及ぼされると、ボールプランジャ54が縮むので、その分だけプランジャロッド34の位置を変位させることができる。そのため、プランジャロッド34は平面視で上下左右に移動したり、平面視で回転したりすることができる。
 図7におけるプランジャブロック51がy正負方向に移動することで、プランジャチップ32が穴30aの中をy正負方向に移動する。このときプランジャチップ32がポット30Bに強い力を及ぼすことなく、ポット30Bの中をプランジャチップ32が滑らかに移動することが好ましい。そこで、図7、8を参照しつつ説明したように、プランジャロッド34をボールプランジャ54で支持することで、プランジャロッド34が僅かに移動したり回転したりすることができるようにした。これにより、プランジャチップ32がポット30Bに強い力を及ぼすことなく、プランジャチップ32がポット30Bの中を滑らかに移動する。図7に示すプランジャブロック51、支持台52及びボールプランジャ54を用いて上記の半導体装置の製造方法を実施することが好ましい。
 本発明の実施の形態1に係る半導体装置の製造方法では、1つのキャビティ50に樹脂を注入することを説明した。しかしながら、1つのプランジャブロックに複数のプランジャロッドを固定し一度に複数のキャビティに樹脂を注入しても良い。図9には、1つのプランジャブロック60に複数のプランジャロッド62を設けたことが示されている。1つのプランジャロッド62に1つのプランジャチップ64が固定されている。上述のボールプランジャ54を用いてプランジャロッド62を変位可能な状態で保持することが好ましい。
 図10は、図9のプランジャ装置に対応した金型等の断面図である。下金型70には複数の凹部70Aが形成されている。1つの凹部70Aに1つの穴70aが形成されている。上金型72には複数の凹部72Aが形成されている。型締めすると1つの凹部70Aと1つの凹部72Aで1つのキャビティが形成される結果、複数のキャビティが提供される。図9、10に示す装置を採用することで、注入工程と保圧工程を、複数のキャビティに対して一括して実施することができる。また、キャビティ毎にプランジャチップ64から樹脂を提供することができるので、金型にカルランナー部を設ける必要はない。そのため、下金型70と上金型72を小型化できる。また、凹部70Aの底面の面積より、プランジャチップ64の平面視での面積を小さくすることで、これらの面積が同等の場合と比べて、樹脂に対し大きい静水圧をかけることができる。
 実施の形態1に係る半導体装置と半導体装置の製造方法の重要な特徴は、有意な混合がない2つの熱伝導率の異なる樹脂でパッケージを形成することである。実施の形態1に係る半導体装置と半導体装置の製造方法は、この特徴を逸脱しない範囲で適宜変形することができる。例えば、第1樹脂20の量を増やし、リードフレーム12のダイパッド部の下面より上に第1樹脂20を設けても良い。また、第1樹脂20の上に、第1樹脂20と第2樹脂22の中間の熱伝導率を有する中間樹脂を設け、中間樹脂の上に第2樹脂22を設けてもよい。この場合、中間樹脂により半導体装置10の左右方向への放熱を促進できる。さらに、例えば、可動ピン42は省略しても良い。樹脂によって及ぼされる圧力が小さい場合、可動ピン42によるリードフレーム12の固定は不要である。半導体チップ14はスイッチング素子に限定されない。例えば、半導体チップとしてダイオードを採用してもよい。パッケージ内に複数の半導体チップを収容して、それらで例えばインバータ回路を構成してもよい。
 実施の形態1で説明した特徴および変形例は以下の実施の形態に係る半導体装置と半導体装置の製造方法にも応用できる。なお、以下の実施の形態に係る半導体装置と半導体装置の製造方法では、実施の形態1と類似点が多いので、実施の形態1との相違点を中心に説明する。
実施の形態2.
 図11は、実施の形態2に係る半導体装置の製造方法を示す断面図である。実施の形態2に係る半導体装置の製造方法では、まず、樹脂提供工程で、プランジャチップ32の上に樹脂23を提供する。次いで、搭載工程で、下面に半導体チップ14が固定されたリードフレーム12を、凹部30Aの上面にのせる。リードフレーム12のダイパッド部が半導体チップ14より上にある。
 次いで、型締め工程に処理を進める。型締め工程では、放熱シート80をリードフレーム12と上金型40の間に挟みつつ、下金型30の上に上金型40を置き、下金型30と上金型40によって提供されたキャビティ50に半導体チップ14を収容した状態で型締めする。放熱シート80は、例えば絶縁層80Aと、絶縁層80Aに積層して設けられたヒートシンク80Bとを有する。絶縁層80Aは、例えばシリカとエポキシ樹脂などのモールド樹脂又はこれに類似する材料とすることが好ましい。ヒートシンク80Bの材料は例えば銅である。放熱シート80の構成は、樹脂よりも熱伝導率を高くできれば、特に限定されない。型締めされると、放熱シート80の上面が上金型40の凹部40Aの底面に接触し、放熱シート80の下面がリードフレーム12の上面に接触する。
 次いで、注入工程では、樹脂23を溶融させた後プランジャチップ32を上昇させてキャビティ50の中に樹脂23を提供する。注入工程では、例えば、プランジャチップ32の上面が下金型30の凹部30Aの底面と同じ高さになるまでプランジャチップ32を上昇させる。次いで、保圧工程では、プランジャチップ32から樹脂23に圧力を及ぼし保圧する。
 実施の形態1では熱伝導率の高い第1樹脂20をリードフレーム12の下面に接触させて、その第1樹脂20を外部に露出させたので装置の放熱性を高めることができる。しかしながら、さらに装置の放熱性を高めるようとした場合、第1樹脂20では限界がある。そこで、実施の形態2では、放熱シート80を設けることで、第1樹脂20を用いた場合より装置の放熱性を高めることとした。放熱シート80により装置の放熱性を高めることができるので、樹脂23には高い熱伝導率が要求されない。そのため、例えばシリカなどのアルミナよりは熱伝導率が低いものを樹脂23の材料にできる。
実施の形態3.
 図12は、実施の形態3に係る半導体装置の製造方法を示すフローチャートである。図12に沿って半導体装置の製造方法を説明する前に、図13を参照して半導体装置の製造に使用する装置の構成を説明する。下金型90には少なくとも2つの凹部90A、90Bが形成されている。凹部90Aに設けられた穴にプランジャチップ32Aがある。プランジャチップ32Aはプランジャロッド34Aに支持されている。凹部90Bに設けられた穴にプランジャチップ32Bがある。プランジャチップ32Bはプランジャロッド34Bに支持されている。プランジャロッド34A、34Bにはモータ100が接続されている。モータ100によってプランジャチップ32A、32Bはy正負方向に移動させられる。
 上金型92は少なくとも2つの凹部92A、92Bを有している。凹部92A、92Bの間には可動ブロック102が設けられている。可動ブロック102は、ばね104を介してモータ106に接続されている。モータ106によって可動ブロック102をy正負方向に移動することができる。なお、モータ100、106はサーボモータとすることが好ましい。モータ100、106はコントローラ110に接続されている。
 実施の形態3に係る半導体装置の製造方法では、まずステップS1にて樹脂提供工程を行う。樹脂提供工程では、図13に示される下金型90に形成された穴にプランジャチップ32A、32Bを設け、プランジャチップ32A、32Bの上に樹脂23を提供する。次いで、ステップS2にて搭載工程を行う。搭載工程では、図13に示される半導体チップ14が固定されたリードフレーム12、13を、下金型90の上面にのせる。リードフレーム13は凹部90A、90Bの両方にのせられる。
 次いで、ステップS3にて型締め工程を行う。型締め工程では、下金型90の上に上金型92を置く。図13は型締め後の金型等の断面図である。型締めが終わると、凹部90A、92Aによりキャビティ50Aが形成され、凹部90B、92Bによりキャビティ50Bが形成される。2つのキャビティ50A、50Bはランナーゲート50Cによってつながれている。ランナーゲート50Cの容積は、可動ブロック102の位置に依存する。可動ブロック102が下方にあればランナーゲート50Cの容積が小さくなり、可動ブロック102が上方にあればランナーゲート50Cの容積が大きくなる。
 次いで、ステップS4にて注入工程を行う。注入工程では、樹脂23を溶融させた後、コントローラ110の指令によってプランジャチップ32A、32Bを予め定められた位置まで上昇させる。例えば、プランジャチップ32A、32Bの上面が凹部90A、90Bの底面に一致するところまで、プランジャチップ32A、32Bを上昇させる。これにより、キャビティ50A、50B及びランナーゲート50Cの中に樹脂23を提供する。このとき、1つのプランジャブロックで2つのプランジャチップ32A、32Bを動かすことが好ましい。モータ100の中にそのようなプランジャブロックを設けることができる。
 図14は、キャビティ50A、50Bとランナーゲート50Cに樹脂23が提供されたことを示す図である。プランジャチップ32A、32Bが予め定められた位置まで上昇したとき、ランナーゲート50Cの内の樹脂23が可動ブロック102に及ぼす圧力を検知する。この圧力は、例えば可動ブロック102がばね104を介してモータ106に及ぼす圧力を検知することで検知できる。そのような圧力を検知するために例えばモータ106の内部にセンサを設ける。検知した圧力の情報はコントローラ110に通知される。
 ステップS5では、コントローラ110において、コントローラ110に通知された圧力が予め定められた圧力であるか判定する。「予め定められた圧力」は任意の圧力範囲とすることができる。検知した圧力が予め定められた圧力より大きいときは、コントローラ110が可動ブロック102をランナーゲート50Cから退避させる方向へ移動させる。すなわち、可動ブロック102を上方へ移動させる。これによりキャビティ50A、50B内の樹脂圧を予め定められた圧力にする。
 他方、検知した圧力が予め定められた圧力より小さいときは、コントローラ110が可動ブロック102をランナーゲート50Cの中へ進出させる方向へ移動させる。すなわち、可動ブロック102を下方へ移動させる。これにより、キャビティ50A、50B内の樹脂圧を予め定められた圧力にする。
 このように可動ブロック102が移動することで、成形圧力と樹脂の厚みを均一にする。ステップS6は、このように可動ブロック102の位置を調整するステップである。なお、樹脂厚みの制御は、プランジャチップ32A、32Bの位置をコントローラ110にフィードバックし、コントローラ110がプランジャチップ32A、32Bを予め定められた位置まで上昇させることで実現できる。
 ステップS5にて、検知した圧力が予め定められた圧力であると判定された場合、ステップS7へ処理を進める。ステップS7では保圧工程を行う。保圧工程では、プランジャチップ32A、32Bから樹脂23に圧力を及ぼし保圧する。最後にステップS8にてプランジャチップ32A、32Bを下方へ移動させる。こうして1つのリードフレーム13が複数のパッケージに設けられる製品が、1回のモールド処理で形成される。
 図15は、コントローラ110の構成例を示す図である。コントローラ110は、受信装置110A、処理回路110B及び送信装置110Cを備えている。可動ブロック102がばね104を介してモータ106に及ぼす圧力の情報は、受信装置110Aに伝送される。コントローラ110の中で行う上述の各機能は処理回路110Bによって実現される。すなわち処理回路110Bにおいて、受信した圧力が予め定められた圧力であるか否かを判定し、判定結果に応じてどの程度可動ブロック102を動かすかを算出する。処理回路110Bは専用のハードウェアであっても、メモリに格納されるプログラムを実行するCPU(Central Processing Unit、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、DSPともいう)であってもよい。処理回路が専用のハードウェアである場合、処理回路はたとえば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC、FPGA、またはこれらを組み合わせたものが該当する。圧力の判定と、可動ブロック102の移動量算出を別々の処理回路で実現してもよいし、これらをまとめて1つの処理回路で実現してもよい。
 図16には、処理回路がCPUの場合のコントローラ110の構成例が示されている。この場合、コントローラ110の各機能は、ソフトウェアまたはソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェア又はファームウェアはプログラムとして記述されメモリ110Eに格納される。プロセッサ110Dはメモリ110Eに記憶されたプログラムを読み出して実行することにより各機能を実現する。すなわち、図12のステップS4~S8が結果的に実行されることになるプログラムを格納するメモリ110Eを備える。これらのプログラムはステップS4~S8の手順及び方法をコンピュータに実行させるものであるともいえる。ここでメモリとは、例えばRAM、ROM、フラッシュメモリー、EPROM、EEPROM等の、不揮発性又は揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク又はDVD等が該当する。当然ながら、上記各機能の一部をハードウェアで実現し、一部をソフトウェア又はファームウェアで実現するようにしてもよい。
 本発明の実施の形態3に係る半導体装置に製造方法によれば、キャビティ50A、50B及びランナーゲート50Cに供給された樹脂23の圧力に応じて可動ブロック102の位置を制御することで成形圧力と樹脂の厚みを均一化することができる。したがって、外部との絶縁性及び放熱性の製品間バラツキを最小にすることができる。実施の形態3に係る半導体装置の製造方法は、この特徴を失わない範囲で様々な変形が可能である。例えば、型締め時に形成されるキャビティの数は2つに限定されず、3つ以上のキャビティを形成してもよい。
実施の形態4.
 図17は、実施の形態4に係る半導体装置の製造方法を示す図である。図17は注入工程におけるプランジャチップ32等を示す図である。上段に断面図が示され、下段に平面図が示されている。下段の平面図には、プランジャチップ32は平面視で円形であることが示されている。プランジャチップ32を平面視で円形にすることで、同じ面積の非円形のプランジャチップよりも外周を短くできる。つまり、円形のプランジャチップ32の外周は他のどのような形状のプランジャチップの外周よりも小さい。プランジャチップ32の外周を小さくすることで、プランジャチップ32とポット30Bの間に入りこむ樹脂バリ量を抑制できる。これにより、プランジャチップ32とポット30Bの摩擦を最小にできる。
 また、凹部30Aの底面30Cは平面視で四角形である。図17の下段に示されるように、平面視でプランジャチップ32の面積は凹部30Aの底面30Cの面積より小さい。平面視でプランジャチップ32の面積は底面30Cの面積の半分以下であることが好ましい。また、プランジャチップ32は平面視で底面30Cの中央にあることが好ましい。プランジャチップ32の面積を底面30Cの面積より小さくすることで、キャビティに注入された樹脂23がダイパッド部の直下から左右に分散しやすくなる。図17の矢印は樹脂の流れ方向を示す。ボイド22vは、半導体チップ14の直上には形成されづらい。そのため、放熱性の製品間ばらつきを抑制できる。
 プランジャチップ32がポット30Bの穴の中を上昇することによるプランジャチップ32とポット30Bの摩擦を抑制するために、プランジャチップ32の外周に沿って樹脂リング33を設けた。プランジャチップ32の上昇時には主として樹脂リング33がポット30Bに接することで、プランジャチップ32を保護することができる。
 図18は、比較例に係る半導体装置の製造方法を示す図である。上段に断面図が示され、下段に平面図が示されている。比較例のプランジャチップ32は平面視で四角形である。また、平面視でプランジャチップ32の面積は凹部30Aの底面30Cの面積と同等である。このようにプランジャチップ32の面積が大きい場合、プランジャチップ32とポット30Bの間に樹脂が溜まりやすく、頻繁に下金型30を清掃しなければならない。
 図18の矢印は樹脂の流れを示す。比較例の場合、プランジャチップ32の面積が大きいので、上方に向かう樹脂23の流れが支配的となる。そのため、樹脂23の流れがリードフレーム12のダイパッド部によって妨害されてしまう。そうすると、ダイパッド部の直上にボイド22vができて、装置の絶縁性が確保できないおそれがある。
 ところが、実施の形態4に係る半導体装置に製造方法では、プランジャチップ32の面積を下金型30の凹部30Aの底面30Cの面積より十分に小さくした。そのため、注入工程において上方に向かう樹脂23の流れに加えて、左右へ向かう樹脂23の流れが生じる。よって、ダイパッド部の直上のボイドを抑制できる。また、凹部30Aの底面30Cの中央にプランジャチップ32を設けることも、樹脂23がキャビティの隅々まで広がることに貢献する。
 なお、上記の各実施の形態に係る半導体装置と半導体装置の製造方法の特徴は、組み合わせてもよい。
 10 半導体装置、 12 リードフレーム、 14 半導体チップ、 20 第1樹脂、 22 第2樹脂、 30 下金型、 30A 凹部、 32 プランジャチップ、 40 上金型、 40A 凹部

Claims (16)

  1.  リードフレームと、
     前記リードフレームの上面に固定された半導体チップと、
     前記リードフレームの下面と接する第1樹脂と、
     前記第1樹脂の上に設けられた第2樹脂と、を備え、
     前記第1樹脂は前記第2樹脂よりも熱伝導率が高く、
     前記第1樹脂と前記第2樹脂で前記半導体チップを覆うことを特徴とする半導体装置。
  2.  前記第1樹脂はアルミナであり、前記第2樹脂はシリカであることを特徴とする請求項1に記載の半導体装置。
  3.  前記半導体チップの下方では前記第1樹脂が露出し、前記半導体チップの上方では前記第2樹脂が露出したことを特徴とする請求項1又は2に記載の半導体装置。
  4.  前記第1樹脂は前記リードフレームの下面よりも下方にだけ設けられたことを特徴とする請求項1~3のいずれか1項に記載の半導体装置。
  5.  下金型の凹部に形成された穴にプランジャチップを設け、前記プランジャチップの上に第1樹脂を提供し、前記第1樹脂の上に前記第1樹脂よりも熱伝導率が低い第2樹脂を提供する樹脂提供工程と、
     上面に半導体チップが固定されたリードフレームを、前記凹部の上面にのせる搭載工程と、
     前記下金型の上に上金型を置き、前記下金型と前記上金型によって提供されたキャビティに前記半導体チップを収容した状態で型締めする型締め工程と、
     前記第1樹脂と前記第2樹脂を溶融させた後、前記プランジャチップを上昇させて前記キャビティの中に前記第2樹脂を提供しその後前記第1樹脂を提供することで、前記リードフレームの下面に前記第1樹脂を接触させる注入工程と、
     前記プランジャチップから前記第1樹脂と前記第2樹脂に圧力を及ぼし保圧する保圧工程と、を備えたことを特徴とする半導体装置の製造方法。
  6.  前記注入工程と前記保圧工程では、可動ピンを前記リードフレームの上面に接触させて前記リードフレームの浮き上がりを防止することを特徴とする請求項5に記載の半導体装置の製造方法。
  7.  前記第1樹脂はアルミナであり、前記第2樹脂はシリカであることを特徴とする請求項5又は6に記載の半導体装置の製造方法。
  8.  下金型の凹部に形成された穴にプランジャチップを設け、前記プランジャチップの上に樹脂を提供する樹脂提供工程と、
     下面に半導体チップが固定されたリードフレームを、前記凹部の上面にのせる搭載工程と、
     前記樹脂よりも熱伝導率が高い放熱シートを前記リードフレームと上金型の間に挟みつつ、前記下金型の上に前記上金型を置き、前記下金型と前記上金型によって提供されたキャビティに前記半導体チップを収容した状態で型締めする型締め工程と、
     前記樹脂を溶融させた後、前記プランジャチップを上昇させて前記キャビティの中に前記樹脂を提供する注入工程と、
     前記プランジャチップから前記樹脂に圧力を及ぼし保圧する保圧工程と、を備えたことを特徴とする半導体装置の製造方法。
  9.  前記放熱シートは、絶縁層と、前記絶縁層に積層して設けられたヒートシンクとを有することを特徴とする請求項8に記載の半導体装置の製造方法。
  10.  複数の凹部を有する下金型に形成された穴にプランジャチップを設け前記プランジャチップの上に樹脂を提供する樹脂提供工程と、
     半導体チップが固定されたリードフレームを、前記下金型の上面にのせる搭載工程と、
     前記下金型の上に上金型を置き、前記複数の凹部により形成された複数のキャビティと、前記複数のキャビティをつなぐランナーゲートとを形成した状態で型締めする型締め工程と、
     前記樹脂を溶融させた後、前記プランジャチップを予め定められた位置まで上昇させて、前記複数のキャビティ及び前記ランナーゲートの中に前記樹脂を提供する注入工程と、
     前記プランジャチップから前記樹脂に圧力を及ぼし保圧する保圧工程と、を備え、
     前記プランジャチップが前記予め定められた位置まで上昇したとき、前記ランナーゲートの内の前記樹脂が前記ランナーゲートの中の可動ブロックに及ぼす圧力を検知し、前記圧力が予め定められた圧力より大きいときは前記可動ブロックを前記ランナーゲートから退避させる方向へ移動させ、前記圧力が予め定められた圧力より小さいときは前記可動ブロックを前記ランナーゲートの中へ進出させる方向へ移動させることを特徴とする半導体装置の製造方法。
  11.  平面視で前記プランジャチップの面積は前記凹部の底面の面積より小さいことを特徴とする請求項5~10のいずれか1項に記載の半導体装置の製造方法。
  12.  平面視で前記プランジャチップの面積は前記凹部の底面の面積の半分以下であることを特徴とする請求項5~10のいずれか1項に記載の半導体装置の製造方法。
  13.  平面視で前記プランジャチップは前記凹部の前記底面の中央にあることを特徴とする請求項11又は12に記載の半導体装置の製造方法。
  14.  前記プランジャチップは平面視で円形であることを特徴とする請求項5~13のいずれか1項に記載の半導体装置の製造方法。
  15.  前記プランジャチップはプランジャロッドに支持され、
     前記プランジャロッドの側面にボールプランジャを接触させたことを特徴とする請求項5~14のいずれか1項に記載の半導体装置の製造方法。
  16.  前記注入工程と前記保圧工程を、複数のキャビティに対して一括して実施することを特徴とする請求項5~15のいずれか1項に記載の半導体装置の製造方法。
PCT/JP2017/007311 2017-02-27 2017-02-27 半導体装置、半導体装置の製造方法 WO2018154744A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE112017007135.6T DE112017007135T5 (de) 2017-02-27 2017-02-27 Halbleitervorrichtung und Verfahren zur Herstellung der Halbleitervorrichtung
CN201780087194.5A CN110326102B (zh) 2017-02-27 2017-02-27 半导体装置、半导体装置的制造方法
PCT/JP2017/007311 WO2018154744A1 (ja) 2017-02-27 2017-02-27 半導体装置、半導体装置の製造方法
KR1020197024301A KR102303894B1 (ko) 2017-02-27 2017-02-27 반도체 장치, 반도체 장치의 제조 방법
JP2019500977A JP6806232B2 (ja) 2017-02-27 2017-02-27 半導体装置の製造方法
US16/473,560 US20190371625A1 (en) 2017-02-27 2017-02-27 Semiconductor device and method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/007311 WO2018154744A1 (ja) 2017-02-27 2017-02-27 半導体装置、半導体装置の製造方法

Publications (1)

Publication Number Publication Date
WO2018154744A1 true WO2018154744A1 (ja) 2018-08-30

Family

ID=63252476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/007311 WO2018154744A1 (ja) 2017-02-27 2017-02-27 半導体装置、半導体装置の製造方法

Country Status (6)

Country Link
US (1) US20190371625A1 (ja)
JP (1) JP6806232B2 (ja)
KR (1) KR102303894B1 (ja)
CN (1) CN110326102B (ja)
DE (1) DE112017007135T5 (ja)
WO (1) WO2018154744A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11107746B2 (en) * 2016-02-09 2021-08-31 Mitsubishi Electric Corporation Power semiconductor apparatus and manufacturing method therefor
JP2021184414A (ja) * 2020-05-21 2021-12-02 三菱電機株式会社 半導体装置、電力変換装置、半導体装置の検査方法、半導体装置の製造方法、学習装置および推論装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11621181B2 (en) * 2020-05-05 2023-04-04 Asmpt Singapore Pte. Ltd. Dual-sided molding for encapsulating electronic devices
JP7528634B2 (ja) * 2020-08-25 2024-08-06 富士電機株式会社 半導体装置及び半導体装置の製造方法
KR102554393B1 (ko) * 2022-12-12 2023-07-12 에스피반도체통신 주식회사 반도체 칩의 처짐을 방지하는 반도체 패키지용 몰딩 금형
CN116666229B (zh) * 2023-08-02 2024-06-07 碳芯微电子科技(深圳)有限公司 一种芯片框及其加工方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09148352A (ja) * 1995-11-21 1997-06-06 Matsushita Electric Ind Co Ltd 樹脂封止方法、電子部品製造方法及び電子部品
JPH10144827A (ja) * 1996-11-13 1998-05-29 Oki Electric Ind Co Ltd 樹脂封止半導体装置、その製造方法及びその金型
JP2001326238A (ja) * 2000-05-17 2001-11-22 Toshiba Corp 半導体装置、半導体装置の製造方法、樹脂封止金型及び半導体製造システム
JP2012235014A (ja) * 2011-05-06 2012-11-29 Toyota Motor Corp 半導体装置の製造方法
JP2013020997A (ja) * 2011-07-07 2013-01-31 Semiconductor Components Industries Llc 半導体装置の製造方法
JP2014183302A (ja) * 2013-03-21 2014-09-29 Mitsubishi Electric Corp 半導体モジュール及びその製造方法
JP2015135907A (ja) * 2014-01-17 2015-07-27 三菱電機株式会社 電力用半導体装置及びその製造方法
JP2015162598A (ja) * 2014-02-27 2015-09-07 トヨタ自動車株式会社 半導体装置の製造方法および製造装置
WO2015173906A1 (ja) * 2014-05-14 2015-11-19 三菱電機株式会社 半導体装置の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5607447B2 (ja) * 2010-07-22 2014-10-15 セミコンダクター・コンポーネンツ・インダストリーズ・リミテッド・ライアビリティ・カンパニー 回路装置
JP5799422B2 (ja) 2011-02-14 2015-10-28 アピックヤマダ株式会社 樹脂モールド方法および樹脂モールド装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09148352A (ja) * 1995-11-21 1997-06-06 Matsushita Electric Ind Co Ltd 樹脂封止方法、電子部品製造方法及び電子部品
JPH10144827A (ja) * 1996-11-13 1998-05-29 Oki Electric Ind Co Ltd 樹脂封止半導体装置、その製造方法及びその金型
JP2001326238A (ja) * 2000-05-17 2001-11-22 Toshiba Corp 半導体装置、半導体装置の製造方法、樹脂封止金型及び半導体製造システム
JP2012235014A (ja) * 2011-05-06 2012-11-29 Toyota Motor Corp 半導体装置の製造方法
JP2013020997A (ja) * 2011-07-07 2013-01-31 Semiconductor Components Industries Llc 半導体装置の製造方法
JP2014183302A (ja) * 2013-03-21 2014-09-29 Mitsubishi Electric Corp 半導体モジュール及びその製造方法
JP2015135907A (ja) * 2014-01-17 2015-07-27 三菱電機株式会社 電力用半導体装置及びその製造方法
JP2015162598A (ja) * 2014-02-27 2015-09-07 トヨタ自動車株式会社 半導体装置の製造方法および製造装置
WO2015173906A1 (ja) * 2014-05-14 2015-11-19 三菱電機株式会社 半導体装置の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11107746B2 (en) * 2016-02-09 2021-08-31 Mitsubishi Electric Corporation Power semiconductor apparatus and manufacturing method therefor
JP2021184414A (ja) * 2020-05-21 2021-12-02 三菱電機株式会社 半導体装置、電力変換装置、半導体装置の検査方法、半導体装置の製造方法、学習装置および推論装置
JP7446156B2 (ja) 2020-05-21 2024-03-08 三菱電機株式会社 半導体装置、電力変換装置、半導体装置の検査方法、半導体装置の製造方法、学習装置および推論装置

Also Published As

Publication number Publication date
KR20190105639A (ko) 2019-09-17
JPWO2018154744A1 (ja) 2019-11-07
US20190371625A1 (en) 2019-12-05
KR102303894B1 (ko) 2021-09-17
CN110326102B (zh) 2023-06-09
CN110326102A (zh) 2019-10-11
DE112017007135T5 (de) 2019-11-07
JP6806232B2 (ja) 2021-01-06

Similar Documents

Publication Publication Date Title
WO2018154744A1 (ja) 半導体装置、半導体装置の製造方法
JP5560479B2 (ja) 樹脂モールド金型及び樹脂モールド装置、並びに樹脂モールド方法
US8624408B2 (en) Circuit device and method of manufacturing the same
US10332816B2 (en) Circuit device and method of manufacturing the same
JP7050679B2 (ja) 少なくとも2つの個別制御可能なアクチュエータを有する電子部品封止用のプレス機、アクチュエータセットおよび方法
US8410593B2 (en) Process and system for manufacturing an encapsulated semiconductor device
JP5892683B2 (ja) 樹脂封止方法
JP6111459B2 (ja) 樹脂モールド方法および樹脂モールド装置
JP2009152507A (ja) 樹脂封止金型および半導体パッケージの樹脂封止成形方法
TWI648140B (zh) 使用微柱封裝位於載體上的電子元件的模具、模壓機以及方法
JP2000003923A (ja) 半導体装置の樹脂封止方法及びその樹脂封止装置
JP2016167583A (ja) 樹脂モールド方法及び樹脂モールド装置
JP3787131B2 (ja) Bgaパッケージの製造に用いるモールド金型
JP7504008B2 (ja) 半導体モジュールおよび半導体モジュールの製造方法
US8614397B2 (en) Circuit device
JP2012244112A (ja) ゲート切断装置およびゲート切断方法
JPH10209194A (ja) 半導体装置、その製造方法およびそれに用いる樹脂モールド工程装置
JP2003234436A (ja) マトリクス基板及び樹脂モールド方法
KR101606117B1 (ko) 히트 싱크 유닛 및 이의 제조방법
JP2003234365A (ja) モールド金型及び樹脂モールド方法
JP2023061300A (ja) モールド金型、および半導体装置の製造方法
TW202330231A (zh) 樹脂密封模具
US20020063314A1 (en) Tapeless micro-leadframe
WO2013061603A1 (ja) 回路装置の製造方法
JP2022166592A (ja) 成形型、樹脂成形装置及び樹脂成形品の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17897399

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019500977

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197024301

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17897399

Country of ref document: EP

Kind code of ref document: A1