WO2018150891A1 - 摩擦攪拌接合方法および接合構造体の製造方法 - Google Patents

摩擦攪拌接合方法および接合構造体の製造方法 Download PDF

Info

Publication number
WO2018150891A1
WO2018150891A1 PCT/JP2018/003418 JP2018003418W WO2018150891A1 WO 2018150891 A1 WO2018150891 A1 WO 2018150891A1 JP 2018003418 W JP2018003418 W JP 2018003418W WO 2018150891 A1 WO2018150891 A1 WO 2018150891A1
Authority
WO
WIPO (PCT)
Prior art keywords
joined
joining
tool
friction stir
stir welding
Prior art date
Application number
PCT/JP2018/003418
Other languages
English (en)
French (fr)
Inventor
卓矢 池田
椋田 宗明
圭典 村瀬
聖又 石本
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US16/470,371 priority Critical patent/US11141812B2/en
Priority to CN201880007205.9A priority patent/CN110290893B/zh
Priority to JP2018568102A priority patent/JP6928011B2/ja
Priority to DE112018000895.9T priority patent/DE112018000895T5/de
Publication of WO2018150891A1 publication Critical patent/WO2018150891A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • B23K20/1265Non-butt welded joints, e.g. overlap-joints, T-joints or spot welds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/26Auxiliary equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • B23K20/1245Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding characterised by the apparatus
    • B23K20/1255Tools therefor, e.g. characterised by the shape of the probe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • B23K20/1245Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding characterised by the apparatus
    • B23K20/126Workpiece support, i.e. backing or clamping

Definitions

  • the present application relates to a friction stir welding method and a manufacturing method of a bonded structure.
  • Friction Stir Welding is one of metal joining techniques, and a rotating tool called a tool is inserted into the joining part of the members to be joined and moved along the joining line while rotating the tool. This is a method of solid phase bonding by stirring the bonded portion. Further, the friction stir welding has many advantages such as a reduction in strength of the joint due to the transformation of the metal structure and a small deformation because the members to be joined can be joined at the melting temperature or lower.
  • the shape of the joint of friction stir welding depends on the shape of the tool.
  • a general tool is composed of a thick-diameter portion called a shoulder and a portion called a probe installed at the tip thereof.
  • the conventional rotary tool for friction stirrer and the processing method using the same have a problem that the range of conditions under which defects can be joined is narrow and the joining speed is slow. Further, there is a problem that the strength of the probe is lowered due to the influence of the shape of the screw groove provided in the probe.
  • the present application has been made to solve the above-described problems, and a friction stir welding method and a joint capable of forming a joint having a narrow joint width without using a joint tool having a special shape. The object is to obtain a method of manufacturing a structure.
  • a first bonded member made of metal or resin and a second bonded member made of metal or resin and having a first stepped portion are arranged to overlap each other,
  • a friction stir welding method for performing friction stir welding with a welding tool wherein the first member to be joined is provided with a gap between a step support surface of the first step portion and a side surface of the first step portion. And pressing the joining tool into the first member to be joined from the surface opposite to the back surface of the first member to be in contact with the step supporting surface, A joining tool insertion step of inserting until the step support surface of the joining member is reached, and rotating the joining tool to agitate the first joined member and the second joined member to form a joined portion.
  • a stirring step to form, and Than is.
  • the first member to be bonded is disposed on the second member to be bonded having the first step portion, and the side surface of the first step portion and the first target member are arranged.
  • FIG. 6 is a cross-sectional view for explaining the friction stir welding method according to Embodiment 1.
  • FIG. 6 is a cross-sectional view for explaining a friction stir welding method according to Embodiment 2.
  • FIG. It is sectional drawing which shows the welding tool used for the general friction stir welding method. It is sectional drawing which shows the welding tool used for the general friction stir welding method.
  • 6 is a cross-sectional view for explaining a friction stir welding method according to Embodiment 2.
  • FIG. 9 is a cross-sectional view for explaining a friction stir welding method according to Embodiment 3.
  • FIG. 9 is a cross-sectional view for explaining a friction stir welding method according to Embodiment 4.
  • FIG. 10 is a cross-sectional view for explaining a friction stir welding method according to a fifth embodiment.
  • FIG. 10 is a cross-sectional view for explaining a friction stir welding method according to a fifth embodiment.
  • FIG. 10 is a cross-sectional view for explaining a friction stir welding method according to a fifth embodiment.
  • FIG. 10 is a cross-sectional view for explaining a friction stir welding method according to a fifth embodiment.
  • FIG. 10 is a cross-sectional view for explaining a friction stir welding method according to a sixth embodiment.
  • FIG. 10 is a cross-sectional view showing a welding tool used for a friction stir welding method according to a sixth embodiment.
  • FIG. 10 is a cross-sectional view for explaining a friction stir welding method according to a seventh embodiment.
  • FIG. 10 is a cross-sectional view for explaining a friction stir welding method according to a seventh embodiment.
  • FIG. 10 is a schematic plan view for explaining a friction stir welding method according to an eighth embodiment.
  • FIG. 10 is a schematic cross-sectional view for explaining a friction stir welding method according to an eighth embodiment.
  • FIG. 10 is a schematic cross-sectional view for explaining a friction stir welding method according to an eighth embodiment.
  • FIG. 10 is a schematic plan view for explaining a friction stir welding method according to a ninth embodiment.
  • FIG. 10 is a schematic sectional view for illustrating a friction stir welding method according to a ninth embodiment.
  • FIG. 1 is a cross-sectional view for explaining the friction stir welding method according to the first embodiment.
  • a bonded structure 50 according to Embodiment 1 includes a first bonded member 1 made of metal or resin and a second bonded member made of metal or resin and having a first step portion 10. And a member 2.
  • the first member 1 is disposed on the step support surface 12 in the first step portion 10 of the second member 2. Further, a gap 4 is formed between the side surface 11 of the first stepped portion 10 of the second member 2 and the outer side surface 13 of the first member 1.
  • a friction stir welding portion 3 formed by stirring with the welding tool 5 is provided at the overlapping portion of the first member to be bonded 1 and the second member to be bonded 2. As will be described later, the joining metal may flow into the gap 4 due to the formation of the friction stir welding portion 3.
  • the friction stir welding method includes a gap 4 between the step support surface 12 of the first step portion 10 and the side surface 11 of the first step portion 10.
  • the joining tool insertion step of inserting until the stepped support surface 12 of the second joined member 2 is reached, and the joining tool 5 are rotated, whereby the first joined member 1 and the second joined member 2 are rotated.
  • a heat insulating layer is formed at that portion. Is done. Since the heat of the first member to be bonded 1 is likely to be generated at the heat insulating layer, the temperature rises and the bonding metal softened in the direction of the gap 4 easily flows. As a result, the amount of metal or the like stirred in the upper surface direction of the first member to be joined is reduced, and even when the joining tool 5 having a small shoulder diameter is used, the stirred metal and the like can be sufficiently suppressed. . Therefore, it is possible to form the friction stir welding portion 3 having a narrow joining width without using the joining tool 5 having a special shape.
  • the friction stir welding method according to the first embodiment is suitable when the first member 1 or the second member 2 is an aluminum alloy or copper.
  • the 2nd to-be-joined member 2 is a jacket of a box-type cooler, for example, and the 1st to-be-joined member 1 is plate-shaped components, such as a heat sink, for example.
  • Joined material A6063-A6063, plate thickness 3mm, lap joint tool: shoulder diameter 5mm, probe length 3.2mm
  • Rotation speed 1,500-3,000rpm
  • Joining speed 200-800mm / min
  • the friction stir welding part 3 having no joining defect is formed by the above-described materials and joining conditions.
  • the agitated joining metal easily flows into the gap 4, the generation of burrs can be suppressed.
  • the shape of the probe 7 in the above-described bonding experiment example is a truncated cone shape, and the diameter of the base of the probe 7 is ⁇ 3 mm, and the diameter of the tip of the probe 7 is ⁇ 2 mm.
  • the welding tool 5 provided with a spiral groove corresponding to an M3 screw is used in the probe 7, and the rotation direction of the welding tool 5 is opposite to the spiral groove provided in the probe 7 (reversely Screw) direction.
  • FIG. 3A and 3B are cross-sectional views showing a welding tool used in a general friction stir welding method.
  • the welding tool 5 used in the friction stir welding method is composed of a thick-diameter portion called a shoulder 6 and a thin-diameter portion called a probe 7 installed at the tip thereof.
  • the probe 7 is inserted into the metal to be joined, and the joining metal that is about to be scraped from the upper surface of the joining metal is held by the shoulder 6 and joined.
  • the shoulder 6 has a cylindrical shape and the probe 7 has a truncated cone shape.
  • the shoulder 6 includes a shape having an upwardly convex curved surface or a tapered shape
  • the probe 7 has a cylindrical shape and a tip having a curved shape.
  • the joining shape of the friction stir welding depends on the shape of the joining tool 5.
  • the joining width is determined by the diameter L1 of the shoulder 6, and the joining depth is determined by the length L2 of the probe 7.
  • the diameter L1 of the shoulder 6 is about 3 to 6 times the length L2 of the probe 7.
  • the bonding width is generally wider than the bonding depth.
  • a friction stir welding method using a joining tool 5 having a high aspect ratio is required. That is, it is necessary to reduce the diameter L1 of the shoulder 6 without changing the length L2 of the probe 7.
  • the diameter L1 of the shoulder 6 is made smaller than the length L2 of the probe 7, for example, if the diameter L1 of the shoulder 6 is about 1 to 2 times the length L2 of the probe 7, the agitated metal cannot be suppressed.
  • a large amount of metal stirred from the upper surface direction of the first member 1 is generated as burrs, and defects (voids) are generated inside.
  • the welding tool 5 In friction stir welding at high speed rotation, the welding tool 5 is heavily worn, so that the life of the welding tool 5 is shortened.
  • the side surface 11 of the first step portion 10 provided on the second member 2 to be joined, and the first member to be joined.
  • a gap 4 was provided between the outer side surface 13 of the member 1. Therefore, the amount of metal or the like stirred in the upper surface direction of the first member to be bonded 1 is reduced, and the friction stir welding portion 3 having a narrow bonding width can be formed without restrictions on the shape of the welding tool 5.
  • FIG. FIG. 2 is a cross-sectional view for explaining the friction stir welding method according to the second embodiment.
  • FIG. 4 is a cross-sectional view for explaining the friction stir welding method according to the second embodiment.
  • the same reference numerals as those in the first embodiment are the same as those in the first embodiment, and the description thereof will be omitted.
  • the bonding structure 50 according to the second embodiment has a width W1 of the gap 4 of 0.03 to 0.2 times the plate thickness t1 of the first member 1 to be bonded.
  • W2 is limited in the range of 0.5 times to 2 times the plate thickness t1 of the first member 1 to be joined. The designation of these dimensions affects the thickness t1 of the friction stir weld 3.
  • the metal agitated on the upper surface of the first member 1 is reduced by releasing the agitation metal and the like agitated in the gap 4, and the diameter L1 of the shoulder 6 is reduced.
  • the friction stir welding portion 3 can be formed without defects. For this reason, when the gap 4 becomes larger than 0.2 times the plate thickness t1 of the first member 1 to be bonded, the amount of bonding metal flowing into the gap 4 increases, and the plate thickness t1 of the friction stir welding portion 3 decreases. As a result, a predetermined bonding strength cannot be obtained.
  • the joining width W2 greatly affects the amount of joining metal. If the joining width W2 is larger than twice the plate thickness t1 of the first member 1 to be joined, the joining metal cannot be accommodated in the gap 4 and the first coverage is obtained. A joining metal flows out from the upper surface of the joining member 1, and a defect arises. Further, when the joining width W2 becomes smaller than 0.5 times the plate thickness t1 of the first member 1 to be joined, the joining metal flowing into the gap 4 is reduced, and the gap 4 is hardly filled. In such a state, the joining metal is freely stirred and internal defects may occur.
  • the width W1 of the gap 4 is 0.03 times to 0.2 times the plate thickness t1 of the first member 1 to be joined, and the joining width W2 is It is preferable to set the thickness to be in the range of 0.5 to 2 times the plate thickness t1 of the first member 1 to be joined.
  • FIG. 4 is a cross-sectional view for explaining the friction stir welding method in the second embodiment, and is a cross-sectional view showing a position where the welding tool 5 is inserted.
  • the length L3 from the central axis 20 of the welding tool 5 that is the insertion position of the welding tool 5 to the outer side surface 13 of the first member 1 to be joined is set as the first workpiece. It is preferable that the thickness be in the range of 0.5 to 1 times the plate thickness t1 of the joining member 1.
  • the agitated joining metal and the gap 4 become far away.
  • the joining metal may flow out as burrs from the upper surface of the first member 1 without flowing in. As a result, internal defects may occur, and a good friction stir weld 3 may not be formed.
  • the side surface 11 of the second member to be bonded 2 is stirred. There is.
  • the second member 2 is agitated, the side surface 11 of the first step portion 10 is softened, and the agitated joining metal cannot be suppressed. Therefore, in the second embodiment, the length L3 from the central axis 20 of the joining tool 5 to the outer side surface 13 of the first joined member 1 is the first joining member 1 in the agitating step.
  • the side surface 11 of the first step portion 10 of the second bonded member 2 has an effect of suppressing the bonding metal, and the heat input to the second bonded member 2 is suppressed.
  • the relationship between the friction stir welding region and the gap 4 and the position at which the welding tool 5 is inserted affect the bonding quality, and this relationship has a high aspect ratio (joining depth / joining width). This is important in forming the friction stir weld 3.
  • FIG. 5 is a cross-sectional view for explaining the friction stir welding method according to the third embodiment.
  • a space 8 is provided along the outer shape of the first member to be bonded 1 on the back side of the first member 1 to be in contact with the step support surface 12.
  • the space 8 is configured such that the width W3 is 0.5 to 1 times the plate thickness t1 of the first member 1 to be joined, and the depth D1 is 0.3 to 0.8 times.
  • the friction stir welding part 3 is formed by superposing the first member 1 and the second member 2 and performing friction stir welding along the space 8.
  • a heat insulation layer can be made on the opposite side of the gap 4 on the outer side surface 13 of the first member 1 and the side surface 11 of the first step portion 10 of the second member 2. Since the joining metal easily flows into the space 8, the joining metal that is agitated on the upper surface side of the first member to be joined 1 is reduced, and even when the joining tool 5 having a thin shoulder 6 is used, the friction stir joining portion is free from defects. 3 can be formed. Moreover, in FIG. 5, since the space 8 is provided, the gap 4 may be almost absent.
  • FIG. 6 is a cross-sectional view for explaining the friction stir welding method according to the fourth embodiment.
  • FIG. 6 in Embodiment 4, it has the same structure as the joining structure 50 shown in FIG. 1, and the upper surface side of the friction stir welding part 3 is connected from the joining structure 50 shown in FIG.
  • the groove 21 is formed by removing along the friction stir weld 3.
  • burrs may occur at a portion in contact with the shoulder 6 of the welding tool 5.
  • the fourth embodiment is characterized in that the diameter L1 of the shoulder 6 is reduced and friction stir welding with a high aspect ratio (joining depth / joining width) is performed. In particular, the generation of burrs increases.
  • the removal amount is such that 60 to 95% of the plate thickness t1 of the first member to be joined is left. If the amount larger than that is removed, the plate thickness of the friction stir welding portion 3 becomes thin, and the joining strength decreases.
  • the first joined member 1 and the step support surface 12 of the second joined member are overlapped and friction stir welded, and then the first joined member along the friction stir weld 3.
  • the upper surface of the joining portion is removed leaving 60% to 95% of the plate thickness of 1, and the groove portion 21 is provided along the joining portion of the first member 1 to be joined.
  • a method of sealing the groove portion 21 formed by removing the upper surface of the friction stir welding portion 3 is also useful. is there.
  • FIG. 7, 8, 9, and 10 are cross-sectional views for explaining the friction stir welding method according to the fifth embodiment. 7 basically has the same configuration as FIG. 1, and the second member 2 is a second step portion provided at the end of the step support surface 12 of the first step portion 10. 23. Further, the second step portion 23 includes a step wall surface 24 and a step bottom surface 22. Between the step support surface 12 of the first step portion 10 and the step bottom surface 22 of the second step portion 23 is the above-described step wall surface 24, and the step wall surface 24 is at the end of the first step portion 10. Further, the step bottom surface 22 is connected to the end portion of the step wall surface 24.
  • the second member 2 to be joined includes a first rib structure 9 on a step bottom surface 22 independent of the step support surface 12.
  • the height H1 of the first rib structure 9 is desirably the same height as the step support surface 12 of the first step portion 10.
  • the friction stir welding method according to the fifth embodiment after the first member to be joined 1 is disposed on the first rib step support surface 28 and the step support surface 12 which are the upper surfaces of the first rib structure 9, first, 1 to-be-joined member 1 and the 1st rib level
  • the first to-be-joined member 1 is restrained by friction stir welding the first rib step support surface 28 that is the upper surface of the first rib structure 9 and the first to-be-joined member, and the first The position of the gap 4 between the member to be bonded 1 and the side surface 11 of the second member to be bonded 2 is fixed. Thereby, there exists an effect by which the clearance gap 4 is maintained in an appropriate position.
  • the friction stir welding method according to the fifth embodiment is suitable for, for example, a sealed container in which four sides of the first member 1 to be joined are sealed and an internal pressure is applied.
  • the first rib structure 9 is symmetric with respect to the first rib structure 9, and the friction stir welding portion 3 and the gap 4 are formed on the first rib structure 9. It is also on the opposite side (right side in the figure) (not shown). Therefore, by first friction-stirring the first rib structure 9, the gap 4 of the friction stir welding portion 3 of the first stepped portion 10 on the left and right with the first rib structure 9 as the center is appropriately set on both the left and right sides. Can be kept in position.
  • the friction stir welding portion 3 of either one of the first step portions 10 is formed first, the first member 1 to be joined is drawn toward the one where the friction stir welding portion 3 is formed first, and the other gap 4 Will become bigger.
  • the first rib structure 9 When the first rib structure 9 is not provided, when the first member 1 is bonded, the first member 1 contracts in the first bonding direction, and the gap 4 on the opposite surface increases. .
  • the first rib structure 9 and joining the first rib structure 9 first the first member 1 to be joined is fixed, and the gap 4 is appropriately maintained. Therefore, the friction stir welding with a high aspect ratio can be stably performed.
  • pressure resistance is also improved by installing the 1st rib structure 9 in the center part of the surface 14 to which the pressure which is the back surface side of the 1st to-be-joined member 1 is applied.
  • the second member to be joined 2 is used for the cooler by keeping the height H1 from the back surface of the first member to be joined 1 to the step bottom surface 22 of the second member to be joined 2 within 0.5 mm. If you do, you can keep the cooling capacity. Furthermore, by keeping the height H1 constant, for example, the cooling effect can be maintained when the second bonded member 2 is used in a cooler. Further, in the joining at the center, it is desirable that the position where the joining tool 5 is pulled out is a part far from the joining interface. For example, when the first rib structure 9 has a cylindrical shape, the pressure resistance is further improved by setting the center of the first rib structure 9 to the position where the joining tool 5 is removed.
  • FIG. 8 basically has the same configuration as that of FIG. 1, and has a structure including a first rib structure 9 at a position independent of the first stepped portion 10 in the second member 2 to be joined. . Further, a protrusion 15 having a height equivalent to the plate thickness t1 of the first member 1 to be joined is provided on the first rib step support surface 28 that is the upper surface of the first rib structure 9. In addition, an opening 16 is provided in the first member 1 to be fitted to the protrusion 15. The opening 16 may not be a through hole. As shown in FIG. 8, first, the protrusion 15 of the first rib structure 9 is fitted to the opening 16 of the first member 1 to be friction stir welded.
  • the step support surface 12 of the first step portion 10 of the second member to be joined 2 and the first member to be joined are friction stir welded along the outer shape of the first member 1 to be joined.
  • the first rib structure 9 is formed by providing the first rib structure 9 with a protrusion 15 and fitting it with the first member 1 to be joined. It plays the role of a positioning pin and has the further effect of facilitating positioning.
  • FIG. 9 shows a friction stir welding method for the bonded structure 50 having the same effect as that of FIG. 7, and has a configuration in which the second rib structure 17 is provided on the first bonded member 1 side.
  • the second rib structure 17 has the same height as the height from the step bottom surface 22 to the step support surface 12 of the second member 2 to be joined.
  • the second rib step support surface 29 that is the upper surface of the second rib structure 17 and the step bottom surface 22 of the second member 2 to be joined are overlapped with each other, and the opposite side of the step bottom surface 22 of the second member 2 to be joined.
  • the step support surface 12 of the second member 2 and the first member 1 are overlapped, and the friction stir welding is performed along the outer shape of the first member 1. Yes.
  • the second bonded member is placed on the second rib step support surface 29 that is the upper surface of the second rib structure 17 of the first bonded member 1.
  • a convex portion 18 having a height corresponding to the thickness of the two step bottom surfaces 22 is provided, and the convex portion 18 of the second rib structure 17 is provided on the step bottom surface 22 of the second bonded member 2.
  • the convex portion 18 of the second rib structure 17 is fitted with the concave portion 19 of the second member to be bonded 2, and friction is caused from the opposite side of the step bottom surface 22 of the second member to be bonded 2.
  • the step support surface 12 of the second member 2 and the first member 1 are overlapped and friction stir welding is performed along the outer shape of the first member 1.
  • FIG. 11 is a cross-sectional view for explaining the friction stir welding method according to the sixth embodiment.
  • FIG. 11 has the same configuration as FIG. 1, and the tool contact area A1 between the welding tool 5 and the first member to be joined 1 is that of the first step portion 10 provided on the second member to be joined 2. It shows that the step support surface 12 has a step width W4 or less.
  • the tool contact area A1 is larger than the step width W4 of the step support surface 12, the shape of the first step portion 10 cannot be maintained due to a load applied during friction stir welding, and abnormal deformation occurs. Therefore, the tool contact area A1 where the welding tool 5 and the first member 1 are in contact with each other is smaller than the step width W4 of the first step portion 10 provided in the second member 2 to be joined. It is desirable.
  • FIG. 12 is a cross-sectional view showing a welding tool used in the friction stir welding method according to the sixth embodiment.
  • FIG. 12 shows a bonding tool 5 suitable for making the tool contact area A1 where the bonding tool 5 and the first member 1 are in contact with each other smaller than the step width W4 provided in the second member 2 to be bonded.
  • the shape is shown. This is an inverted fillet type tool in which the probe diameter increases from the tip of the probe 7 toward the shoulder 6 in a tapered shape, and the probe 7 and the shoulder 6 are connected by a smooth curve.
  • the joining tool 5 of this shape not only reduces the tool contact area A1, but also has almost no stress concentration, so that the strength of the joining tool 5 is improved and it is difficult to break.
  • the tolerance of the insertion depth of the welding tool 5 is high, and it is possible to deal with members to be joined having various plate thicknesses.
  • a threaded groove in the tapered portion.
  • the groove shape is preferably a trapezoidal screw shape or the like in order to reduce stress concentration in the trough portion of the groove.
  • FIG. FIG. 13 is a cross-sectional view for explaining the friction stir welding method according to the seventh embodiment.
  • FIG. 13 has the same configuration as FIG. 1, and the tip of the probe 7 is set to a thickness 0 of the plate thickness t 1 of the first member to be joined 1 with respect to the step support surface 12 of the second member 2 to be joined. Inserted by controlling to a depth D2 of 01 times or more and 0.3 times or less, the step support surface 12 of the second member 2 to be joined and the first member 1 are overlapped to form the first member to be joined. Friction stir welding is performed along the outer shape of the member 1.
  • the probe 7 When the probe 7 is inserted into the second member 2 to be deeper than 0.3 times the plate thickness t1 of the first member 1, the amount of metal to be agitated increases and the diameter L1 of the shoulder 6 is thin. In the tool 5, the joining metal cannot be suppressed. Therefore, high aspect ratio friction stir welding cannot be performed. Further, when the insertion depth into the second member 2 to be joined is 0.01 times or less the plate thickness t1 of the first member 1 to be joined, it becomes impossible to join due to wear of the joining tool 5 and the strength is obtained. It may not be possible.
  • the insertion depth of the joining tool 5 in the second member 2 is The friction stir welding with a high aspect ratio can be performed by setting the thickness t1 of the member 1 to be joined to 0.01 times or more and 0.3 times or less.
  • FIG. 14 is a schematic plan view for explaining the friction stir welding method according to the eighth embodiment.
  • 15 and 16 are schematic cross-sectional views for explaining the friction stir welding method according to the eighth embodiment.
  • FIG. 15 shows a state before the joining tool 5 is inserted
  • FIG. 16 is a cut surface taken along line AA of FIG. 14 and shows a state during joining.
  • the first member 1 is a plate-like component such as a heat sink
  • the second member 2 is a jacket of a box-type cooler, for example.
  • the bonding tool 5 moves while rotating along the outer shape of the first member to be bonded 1.
  • the side where the tool rotation direction of the welding tool 5 and the tool moving direction coincide with the side where the tool rotation direction coincides with the welding line through which the rotation center axis 20 of the welding tool 5 passes is formed.
  • the joining state becomes asymmetric in the inner region and the outer region of the line.
  • the above asymmetry of the joining state is applied to a butting structure such as the outer side surface 13 of the first member to be joined 1 and the side surface 11 of the second member to be joined 2, for example, the tool rotation direction and the tool movement direction.
  • the first joined member 1 on the side where the two coincide with each other serves as a starting point of shear flow, and frictional stirring occurs predominantly, and the first joined member 1 on the side where the tool rotation direction and the tool moving direction do not coincide with each other stays in thermal deformation.
  • the ratio increases.
  • the first member 1 on the side where the tool rotation direction and the tool movement direction coincide with each other with respect to the first member 1 on the side where the tool rotation direction and the tool movement direction of the welding tool 5 do not coincide with each other.
  • the friction stir welding portion 3 has a higher ratio of the first member 1 on the side where the tool rotation direction and the tool movement direction coincide with each other, and at the same time, the tool rotation direction and the tool movement.
  • a bonding interface is likely to be formed on the side where the directions do not match.
  • the asymmetry of the joining state described above can be achieved, for example, by joining the stepped support surface 12 of the first stepped portion 10 and the overlapping portion such as the plate-like first member 1 to be joined disposed thereon.
  • the rate of thermal deformation increases on the side where the tool rotation direction and the tool movement direction do not match, and the superimposed second lower member to be joined 2 is not stirred, and swells due to thermal deformation occur. It is easy to cause unjoined parts to be long, and it is easy to cause deterioration in joining quality.
  • the plate-shaped first member 1 to be joined is superimposed on the first step portion 10 of the second member 2 to be joined.
  • the tool rotation direction 25 of the welding tool 5 and the tool moving direction 27a are set to be the same direction in the inner region 30 of the welding line.
  • the side surface 11 of the first step portion 10 provided on the second member to be bonded 2 and the outer side surface 13 of the first member to be bonded 1 are described. A gap 4 is provided between them.
  • the first member 1 and the second member 2 are overlapped to bring the welding tool 5 in the tool rotation direction 25 (counterclockwise). While rotating, the tool is inserted in the tool insertion direction 26 with respect to the first member 1 to be joined. Then, while rotating the welding tool 5 in the tool rotation direction 25 (counterclockwise), the tool is moved in the tool movement direction 27a (from the front side to the back side) along the outer shape of the first member 1 to be joined.
  • the friction stir welding part 3 is formed by friction stir welding the first member 1 and the second member 2 to be joined.
  • the central axis 20 of the rotating welding tool 5 is disposed in the vicinity of the outer side surface 13 of the first member 1 to be joined, and the side surface 11 of the first step portion 10 of the second member 2 and the first
  • the welding tool 5 is connected to the first member 1 from the central axis 20 of the rotation of the welding tool 5 with respect to the first member 1 or the second member 2.
  • the rotation center axis 20 of the joining tool 5 is coaxial with the outer side surface 13 of the first joined member 1 with respect to the first joined member 1 or the second joined member 2. From this position, it is inserted into the inner region 30 side within a range of not more than 1 times the outer diameter L4 of the welding tool 5.
  • the insertion depth D3 of the second member 2 to be joined from the step support surface 12 is controlled to be 0.01 times or more and 0.3 times or less the plate thickness t1 of the first member 1 to be inserted. . Then, while maintaining the position, the tool movement direction 27a and the tool rotation direction 25 are moved along the outer shape of the first member to be joined 1 so that they coincide with each other in the inner region 30 of the first member 1 to be joined.
  • the to-be-joined member 1 and the second to-be-joined member 2 are friction stir welded.
  • the welding tool 5 is screwed in the direction opposite to the tool rotation direction 25, that is, a positive screw when the welding tool 5 is counterclockwise, and a screw when the welding tool 5 is clockwise.
  • a higher effect can be obtained by providing a reverse screw.
  • FIG. 17 is a schematic plan view for explaining the friction stir welding method according to the ninth embodiment.
  • FIG. 18 is a cross-sectional view showing a section cut along the line BB in FIG.
  • the first rib structure 9 or the second rib structure 9 is attached to the first member 1 or the second member 2, respectively.
  • the friction stir welding method for the joint structure 50 provided with the rib structure 17 will be described.
  • FIG. 17 shows a friction stir welding method for a joint structure 50 in which the first rib structure 9 is provided on the first member 1 to be joined shown in FIG.
  • the friction stir welding joins the members to be joined by moving the welding tool 5 while rotating it. Therefore, the joining state along the welding line depends on the tool rotation direction of the welding tool 5 relative to the tool movement direction. Asymmetry is formed.
  • the tip of the welding tool 5 is inserted deeper than the first rib step support surface 28 in the friction stir welding of the second member 2 having the first rib structure 9.
  • the tool rotating direction (counterclockwise) 25 of the welding tool 5 and the tool moving direction 27b are in the same direction on the rib outer peripheral side 31 of the first rib structure 9. Friction stir welding is performed so that Specifically, in the friction stir welding between the first rib step support surface 28 of the first rib structure 9 and the first member 1 to be joined, the welding tool 5 is moved from the first rib step support surface 28.
  • the tool moving direction 27b (from the back side to the near side) Friction stir welding is performed so that the tool rotation direction 25 (counterclockwise) coincides with the outer peripheral side 31 of the rib.
  • the strength is greatly improved by using the friction stir welding method as described above.
  • improvement of joining strength is anticipated by making the tool rotation direction and tool movement direction of the joining tool 5 of the side where load becomes high into the same direction.
  • the friction stir welding method for the bonded structure 50 in which the first rib structure 9 or the second rib structure 17 is provided on the first bonded member 1 or the second bonded member 2, respectively.
  • FIG. 10 also shows the second rib in the friction stir welding of the first member 1 having the second rib structure 17 as in FIG. 8.
  • a superposition joining structure in which the tip of the joining tool 5 is inserted deeper than the step support surface 29 so that the tool rotating direction and the tool moving direction of the joining tool 5 are in the same direction on the rib outer peripheral side 31 of the second rib structure 17. Friction stir welding is performed. Also in the friction stir welding method for the joining structure 50 shown in FIG.
  • the joining tool 5 is The tool rotation direction and the tool movement while maintaining the insertion depth from the second rib step support surface 29 at a depth not less than 0.01 times and not more than 0.3 times the plate thickness t1 of the first member 1 to be joined. It joins so that a direction may correspond in the rib outer peripheral side 31.
  • FIG. As described above, the bonded structure 50 is manufactured by friction stir welding using the friction stir welding method according to the first to ninth embodiments. It should be noted that the embodiments can be combined, or the embodiments can be modified or omitted as appropriate.

Abstract

摩擦攪拌接合方法は、金属または樹脂からなる第1の被接合部材(1)と、金属または樹脂からなり第1の段差部(10)を有する第2の被接合部材(2)とを重ね合せて配置し、接合ツール(5)により摩擦攪拌接合する摩擦攪拌接合方法であって、第1の段差部(10)の段差支持面(12)に、第1の段差部(10)の側面(11)との間に隙間(4)をあけて第1の被接合部材(1)を配置する工程と、段差支持面(12)と接する第1の被接合部材(1)の裏面とは反対側の表面から第1の被接合部材(1)に接合ツール(5)を回転させながら押し込み、第2の被接合部材(2)の段差支持面(12)に達するまで挿入する接合ツール挿入工程と、接合ツール(5)を回転させることにより、第1の被接合部材(1)と第2の被接合部材(2)とを攪拌して接合部(3)を形成する攪拌工程と、を備えたものである。

Description

摩擦攪拌接合方法および接合構造体の製造方法
 本願は、摩擦攪拌接合方法および接合構造体の製造方法に関するものである。
 摩擦攪拌接合(FSW:Friction Stir Welding)は、金属接合技術の一つであり、被接合部材の接合部にツールと呼ばれる回転工具を挿入し、ツールを回転させながら接合線に沿って移動させ、接合部を攪拌することにより固相接合する方法である。また、摩擦攪拌接合は、溶融温度以下で被接合部材の接合が可能であるため、金属組織の変態による接合部の強度低下や、変形が小さいなど多くの利点がある。
 摩擦攪拌接合の接合部の形状は、ツールの形状に依存する。一般的なツールは、ショルダーと言われる太径の部分と、その先端に設置されたプローブと言われる部位で構成されている。
 従来の摩擦攪拌接合は、プローブを被接合部材である金属の内部に挿入し、その際にかき出された金属をショルダーで抑えて接合しており、接合幅はショルダー径に依存している。そのため、接合幅を狭くするには、使用するツールのショルダー径を細くする必要がある。しかし、ショルダー径を細くすると、攪拌した際にかき出された金属を抑えきれず、被接合部材上面から攪拌した際にかき出された金属がバリとして多量に発生し、欠陥が発生してしまう。
 従来の摩擦攪拌用回転工具では、プローブにねじ溝を設け、ねじ谷の面積がねじ山の面積以上にされた特殊な形状のツールを用いることにより、ショルダーを接合金属に押し付けることなく、小さい接合幅での接合を可能にしている(例えば、特許文献1参照)。
特開2003-136259号公報
 しかしながら、従来の摩擦攪拌用回転工具及びそれを用いた処理方法では、欠陥のない接合が可能な条件の範囲が狭く、接合速度が遅いという問題点がある。また、プローブに設けるネジ溝形状の影響により、プローブの強度が下がってしまうという問題点がある。
 本願は、前述のような課題を解決するためになされたものであり、特別な形状の接合ツールを使用することなく、接合幅の狭い接合部を形成することが可能な摩擦攪拌接合方法および接合構造体の製造方法を得ることを目的とするものである。
 本願に開示される摩擦攪拌接合方法は、金属または樹脂からなる第1の被接合部材と、金属または樹脂からなり第1の段差部を有する第2の被接合部材とを重ね合せて配置し、接合ツールにより摩擦攪拌接合する摩擦攪拌接合方法であって、前記第1の段差部の段差支持面に、前記第1の段差部の側面との間に隙間をあけて前記第1の被接合部材を配置する工程と、前記段差支持面と接する前記第1の被接合部材の裏面とは反対側の表面から前記第1の被接合部材に前記接合ツールを回転させながら押し込み、前記第2の被接合部材の前記段差支持面に達するまで挿入する接合ツール挿入工程と、前記接合ツールを回転させることにより、前記第1の被接合部材と前記第2の被接合部材とを攪拌して接合部を形成する攪拌工程と、を備えたものである。
 本願に開示される摩擦攪拌接合方法によれば、第1の被接合部材を、第1の段差部を有する第2の被接合部材に配置し、第1の段差部の側面と第1の被接合部材との間に隙間を設けることにより、第1の被接合部材上面方向に攪拌される金属等が少なくなり、ショルダー径の細い接合ツールでも、攪拌された金属等を十分に抑えられるようになる。よって、特別な形状の接合ツールを用いることなく、接合幅の狭い接合部を形成することが可能になる。
実施の形態1による摩擦攪拌接合方法を説明するための断面図である。 実施の形態2による摩擦攪拌接合方法を説明するための断面図である。 一般的な摩擦攪拌接合方法に使用する接合ツールを示す断面図である。 一般的な摩擦攪拌接合方法に使用する接合ツールを示す断面図である。 実施の形態2による摩擦攪拌接合方法を説明するための断面図である。 実施の形態3による摩擦攪拌接合方法を説明するための断面図である。 実施の形態4による摩擦攪拌接合方法を説明するための断面図である。 実施の形態5による摩擦攪拌接合方法を説明するための断面図である。 実施の形態5による摩擦攪拌接合方法を説明するための断面図である。 実施の形態5による摩擦攪拌接合方法を説明するための断面図である。 実施の形態5による摩擦攪拌接合方法を説明するための断面図である。 実施の形態6による摩擦攪拌接合方法を説明するための断面図である。 実施の形態6による摩擦攪拌接合方法に使用する接合ツールを示す断面図である。 実施の形態7による摩擦攪拌接合方法を説明するための断面図である。 実施の形態8による摩擦攪拌接合方法を説明するための平面模式図である。 実施の形態8による摩擦攪拌接合方法を説明するための断面模式図である。 実施の形態8による摩擦攪拌接合方法を説明するための断面模式図である。 実施の形態9による摩擦攪拌接合方法を説明するための平面模式図である。 実施の形態9による摩擦攪拌接合方法を説明するための断面模式図である。
実施の形態1.
 以下、図面に基づいて実施の形態1について説明する。
 図1は、実施の形態1による摩擦攪拌接合方法を説明するための断面図である。図1に示すように、実施の形態1による接合構造体50は、金属または樹脂からなる第1の被接合部材1と、金属または樹脂からなり第1の段差部10を有する第2の被接合部材2とを備えている。第1の被接合部材1は、第2の被接合部材2の第1の段差部10における段差支持面12上に配置されている。また、第2の被接合部材2の第1の段差部10の側面11と第1の被接合部材1の外形側面13との間には、隙間4が形成されている。また、第1の被接合部材1と第2の被接合部材2との重ね合わせ部には、接合ツール5により攪拌されて形成された摩擦攪拌接合部3が設けられている。隙間4には、後述するように、摩擦攪拌接合部3の形成により接合金属が流入する場合もある。
 図1に示すように、実施の形態1による摩擦攪拌接合方法は、第1の段差部10の段差支持面12に、第1の段差部10の側面11との間に隙間4をあけて第1の被接合部材1を配置する工程と、段差支持面12と接する第1の被接合部材1の裏面とは反対側の表面から第1の被接合部材1に接合ツール5を回転させながら押し込み、第2の被接合部材2の段差支持面12に達するまで挿入する接合ツール挿入工程と、接合ツール5を回転させることにより、第1の被接合部材1と第2の被接合部材2とを攪拌して摩擦攪拌接合部3を形成する攪拌工程と、を有している。
 第2の被接合部材2に設けた第1の段差部10の側面11と、第1の被接合部材1の外形側面13との間に隙間4を設けることにより、その部位に断熱層が形成される。断熱層の部分で第1の被接合部材1の熱が篭りやすくなるため、温度が上昇して隙間4の方向に軟化された接合金属等が流動しやすくなる。その結果、第1の被接合部材上面方向に攪拌される金属等が少なくなり、ショルダー径の細い接合ツール5を用いた場合であっても、攪拌された金属等を十分に抑えられるようになる。よって、特別な形状の接合ツール5を用いることなく、接合幅の狭い摩擦攪拌接合部3を形成することが可能となる。
 特に、実施の形態1による摩擦攪拌接合方法は、第1の被接合部材1または第2の被接合部材2が、アルミ合金や銅などである場合に好適である。また、第2の被接合部材2は、例えば箱型の冷却器のジャケットであり、第1の被接合部材1は、例えばヒートシンクなどの板状部品である。
 ここで、以下に実際の摩擦攪拌接合方法による接合実験例を示す。
   被接合材料:A6063-A6063、板厚3mm、重ね継手
   ツール:ショルダー径5mm、プローブ長さ3.2mm
   回転数:1,500~3,000rpm
   接合速度:200~800mm/min
 実施の形態1による摩擦攪拌接合方法においては、前述の材料および接合条件により、接合欠陥のない摩擦攪拌接合部3が形成される。また、攪拌された接合金属が隙間4に流動しやすくなるため、バリの発生も抑制できる。なお、前述の接合実験例のプローブ7の形状は、円錐台形状になっており、プローブ7の付け根の直径がφ3mm、プローブ7の先端の直径がφ2mmである。また、攪拌力を上げるため、プローブ7にM3ねじ相当のらせん状の溝を設けた接合ツール5を使用し、接合ツール5の回転方向は、プローブ7に設けたらせん状の溝と反対(逆ねじ)方向にしている。
 図3Aおよび図3Bは、一般的な摩擦攪拌接合方法に使用する接合ツールを示す断面図である。
 図3Aに示すように、摩擦攪拌接合方法に使用する接合ツール5は、ショルダー6といわれる太い径の部分と、その先端に設置されたプローブ7と言われる細径の部分で構成されている。プローブ7を接合する金属の内部に挿入し、その際に接合金属上面からかき出されようとする接合金属をショルダー6で抑えて接合している。また、図3Aでは、ショルダー6が円筒形状、プローブ7が円錐台形状で図示されているが、その他の形状のものでも問題ない。例えば、ショルダー6は上凸形状の曲面がある形状や、先細りのテーパ形状になっているもの、プローブ7は円筒形状、先端が曲面形状になっているものなどがある。
 摩擦攪拌接合の接合形状は、接合ツール5の形状に依存する。接合幅はショルダー6の直径L1、接合深さはプローブ7の長さL2によって決まる。一般的な接合ツール5では、ショルダー6の直径L1がプローブ7の長さL2の3~6倍程度になっている。そのため、摩擦攪拌接合は、接合深さに対し、接合幅が広くなることがほとんどである。これにより、一般的な摩擦攪拌接合では、接合幅が広くなるため、変形が大きくなる、接合部の範囲が狭いところに適用できないなどの欠点がある。
 そのため、接合範囲の狭い部位に摩擦攪拌接合を適用するには、高アスペクト比(接合深さ/接合幅)の接合ツール5による摩擦攪拌接合方法が必要になる。つまり、プローブ7の長さL2を変化させないまま、ショルダー6の直径L1を細くする必要がある。しかし、ショルダー6の直径L1をプローブ7の長さL2に対し細くする、例えば、ショルダー6の直径L1をプローブ7の長さL2の1~2倍程度にすると、攪拌された金属を抑えきれず、第1の被接合部材1の上面方向から攪拌した金属がバリとして多量に発生し、内部に欠陥(空隙)が発生してしまう。
 接合範囲の狭い部位を接合する摩擦攪拌接合方法として、図3Bに示すような接合ツール5を使用する方法が提案されている。これは、プローブ7に設置されているねじ溝形状を工夫することにより、被接合部材にショルダー6を接触させることなく摩擦攪拌接合する方法である。ショルダー6が被接合部材に接触しないため、幅の狭い接合が可能になっている。
 しかし、このような接合ツール5を使用する方法では、欠陥のない接合が狭く、接合速度が速くできないという欠点がある。また、ショルダー6による入熱がないため、摩擦攪拌接合に必要な摩擦熱を得るために、高速回転の条件が必要である。高速回転の摩擦攪拌接合では、接合ツール5の磨耗が激しくなるため、接合ツール5の寿命が短くなるという欠点があった。
 前述したように、実施の形態1による摩擦攪拌接合方法においては、これらの欠点を補うため、第2の被接合部材2に設けた第1の段差部10の側面11と、第1の被接合部材1の外形側面13との間に隙間4を設けた。よって、第1の被接合部材1の上面方向に攪拌される金属等が少なくなり、接合ツール5の形状の制約なしで、狭い接合幅の摩擦攪拌接合部3を形成することが可能である。
実施の形態2.
 図2は、実施の形態2による摩擦攪拌接合方法を説明するための断面図である。また、図4は、実施の形態2による摩擦攪拌接合方法を説明するための断面図である。実施の形態2において、実施の形態1と同一の符号については、実施の形態1と同一の構成であるので説明を省略する。図2に示すように、実施の形態2による接合構造体50は、隙間4の幅W1を第1の被接合部材1の板厚t1の0.03倍以上から0.2倍以下、接合幅W2を第1の被接合部材1の板厚t1の0.5倍以上から2倍以下の範囲で制限している。これらの寸法の指定は、摩擦攪拌接合部3の板厚t1に影響を与える。
 また、実施の形態2による摩擦攪拌接合方法は、隙間4に攪拌された接合金属等を逃がすことにより、第1の被接合部材1の上面に攪拌される金属を少なくし、ショルダー6の直径L1が細い接合ツール5を使用した場合であっても、欠陥なく摩擦攪拌接合部3を形成することができる。そのため、隙間4が第1の被接合部材1の板厚t1の0.2倍より広くなると、隙間4に流入する接合金属が多くなり、摩擦攪拌接合部3の板厚t1が薄くなる。その結果、所定の接合強度が得られなくなる。反対に、隙間4が第1の被接合部材1の板厚t1の0.03倍より狭くなると、隙間4に流入できる接合金属の量が少なくなり、実施の形態2の構成の効果が薄れ、欠陥が生じることが確認されている。
 接合幅W2は、接合金属の量に大きく影響し、接合幅W2を第1の被接合部材1の板厚t1の2倍より大きくすると、隙間4内に接合金属が収まらず、第1の被接合部材1の上面から接合金属が流出し、欠陥が生じるようになる。また、接合幅W2が第1の被接合部材1の板厚t1の0.5倍より小さくなった場合、隙間4に流入する接合金属が少なくなり、隙間4がほとんど埋まらない状態になる。このような状態になると、接合金属が自由に攪拌され、内部欠陥を生じることがある。
 以上の観点より、実施の形態2による摩擦攪拌接合方法では、隙間4の幅W1を第1の被接合部材1の板厚t1の0.03倍以上から0.2倍以下、接合幅W2を第1の被接合部材1の板厚t1の0.5倍以上から2倍以下の範囲に設定することが好適である。
 図4は、実施の形態2における摩擦攪拌接合方法を説明するための断面図であり、接合ツール5の挿入する位置を示した断面図である。図4のように、実施の形態2では、接合ツール5の挿入位置である接合ツール5の中心軸20から第1の被接合部材1の外形側面13までの長さL3を、第1の被接合部材1の板厚t1の0.5倍以上1倍以下の範囲にすることが好適である。接合ツール5の挿入位置が、第1の被接合部材1の板厚t1の1倍より大きくなり隙間4から離れると、攪拌された接合金属と隙間4が遠くなるため、隙間4に接合金属が流入せず、第1の被接合部材1の上面から接合金属がバリとして流出することがある。その結果、内部欠陥が発生し、良好な摩擦攪拌接合部3が形成できない場合がある。
 また、接合ツール5の挿入位置が、第1の被接合部材1の板厚t1の0.5倍より小さくなり隙間4に近づくと、第2の被接合部材2の側面11まで攪拌されることがある。第2の被接合部材2まで攪拌されると、第1の段差部10の側面11が軟化し、攪拌された接合金属を抑えられなくなる。
 したがって、実施の形態2においては、攪拌工程において接合ツール5は、接合ツール5の中心軸20から第1の被接合部材1の外形側面13までの長さL3が、第1の被接合部材1の板厚の0.5倍以上1.0倍以下の範囲内の位置に挿入されており、この挿入位置を保ちながら第1の被接合部材の外形に沿って接合ツール5を移動させることにより摩擦攪拌接合部3を形成する。また、実施の形態2は、第2の被接合部材2の第1の段差部10の側面11が接合金属を抑える効果があり、第2の被接合部材2への入熱を抑制することが可能である。実施の形態2においては、摩擦攪拌接合する領域と隙間4との関係、また、接合ツール5を挿入する位置が接合品質に影響し、この関係が高アスペクト比(接合深さ/接合幅)の摩擦攪拌接合部3を形成する上で重要となる。
実施の形態3.
 図5は、実施の形態3による摩擦攪拌接合方法を説明するための断面図である。図5に示すように、実施の形態3においては、段差支持面12と接する第1の被接合部材1の裏面側に第1の被接合部材1の外形に沿って空間8が設けられている。空間8は、幅W3が第1の被接合部材1の板厚t1の0.5倍以上1倍以下、深さD1が0.3倍以上0.8倍以下で構成されている。第1の被接合部材1と第2の被接合部材2とを重ね合わせ、空間8に沿って摩擦攪拌接合することにより摩擦攪拌接合部3が形成される。
 これにより、第1の被接合部材1の外形側面13と第2の被接合部材2の第1の段差部10の側面11にある隙間4の反対側に断熱層をつくることができる。空間8に接合金属が流入しやすくなるため、第1の被接合部材1の上面側に攪拌される接合金属が少なくなり、ショルダー6の細い接合ツール5を使用した場合でも欠陥なく摩擦攪拌接合部3の形成が可能になる。また、図5においては、空間8が設けられているので、隙間4がほとんどなくてもよい。なお、第1の被接合部材1と第2の被接合部材2との重ね合わせ部における第2の被接合部材2側に同様のスペースを作っても同様の効果を発揮する。
実施の形態4.
 図6は、実施の形態4による摩擦攪拌接合方法を説明するための断面図である。図6に示すように、実施の形態4においては、図1に示した接合構造体50と同じ構成になっており、図1に示した接合構造体50から摩擦攪拌接合部3の上面側を摩擦攪拌接合部3に沿って取り除き、溝部21を形成したことを特徴としている。
 摩擦攪拌接合部3では、接合ツール5のショルダー6と接触している部位でバリが発生する場合がある。実施の形態4においては、ショルダー6の直径L1を細くして、高アスペクト比(接合深さ/接合幅)の摩擦攪拌接合をすることを特徴としているため、攪拌された接合金属をショルダー6で抑えきれずに、特にバリの発生が多くなる。また、ショルダー6の直径L1が細いと、接合面が粗くなりやすい。そのため、摩擦攪拌接合部3の上面を取り除き、バリを除去することが望ましい。また、取り除く量は、第1の被接合部材の板厚t1の60~95%を残すように取り除くことが好適である。それ以上の量を取り除くと、摩擦攪拌接合部3の板厚が薄くなり、接合強度が低下する。実施の形態4では、第1の被接合部材1と第2の被接合部材の段差支持面12とを重ね合せて摩擦攪拌接合した後、摩擦攪拌接合部3に沿って第1の被接合部材1の板厚の60%から95%を残して接合部の上面を取り除き、第1の被接合部材1の接合部に沿って溝部21を設けるものである。また、実施の形態4の摩擦攪拌接合方法を水密性、気密性が必要な製品に適用する場合、摩擦攪拌接合部3の上面を取り除いたことにより形成される溝部21をシールする方法も有用である。
実施の形態5.
 図7、図8、図9、図10は、実施の形態5による摩擦攪拌接合方法を説明するための断面図である。図7は、基本的には図1と同じ構成になっており、第2の被接合部材2は、第1の段差部10の段差支持面12の端部に設けられた第2の段差部23を備えている。また、第2の段差部23は、段差壁面24と段差底面22とを備えている。第1の段差部10の段差支持面12と第2の段差部23の段差底面22との間には、前述の段差壁面24があり、第1の段差部10の端部に段差壁面24が繋がり、さらに段差壁面24の端部に段差底面22が繋がっている構成となっている。
 また、第2の被接合部材2は、段差支持面12とは独立した段差底面22上に第1のリブ構造9を備えている。また、この第1のリブ構造9の高さH1は、第1の段差部10の段差支持面12と同等の高さであることが望ましい。
 実施の形態5による摩擦攪拌接合方法では、第1のリブ構造9の上面である第1のリブ段差支持面28および段差支持面12に第1の被接合部材1を配置した後、まず、第1の被接合部材1と第1のリブ構造9の上面である第1のリブ段差支持面28を重ね合せて摩擦攪拌接合し、その後、第2の被接合部材2の段差支持面12と第1の被接合部材とを第1の被接合部材の外形に沿って摩擦攪拌接合する。
 先に、第1のリブ構造9の上面である第1のリブ段差支持面28と第1の被接合部材とを摩擦攪拌接合することにより、第1の被接合部材1が拘束され、第1の被接合部材1と第2の被接合部材2の側面11との隙間4の位置が固定される。これにより、隙間4が適切な位置に保たれる効果がある。
 実施の形態5による摩擦攪拌接合方法は、例えば、第1の被接合部材1の4辺を封止接合して内圧が加わる密封容器などに適切である。例えば、冷却器等の箱型の第2の被接合部材2では、第1のリブ構造9を中心に左右対称になっており、摩擦攪拌接合部3と隙間4が第1のリブ構造9の反対側(図中の右側)にもある(図示なし)。そのため、第1のリブ構造9を先に摩擦攪拌接合することで、第1のリブ構造9を中心として左右にある第1の段差部10の摩擦攪拌接合部3の隙間4を左右ともに適切な位置に保つことができる。どちらか一方の第1の段差部10の摩擦攪拌接合部3を先に形成すると、先に摩擦攪拌接合部3を形成した方に第1の被接合部材1が引き寄せられ、もう一方の隙間4が大きくなってしまう。
 第1のリブ構造9がない場合、第1の被接合部材1を接合した際に、最初に接合した方向に第1の被接合部材1が収縮し、反対側の面の隙間4が大きくなる。一方、第1のリブ構造9を設け、第1のリブ構造9を先に接合することで、第1の被接合部材1が固定され、隙間4が適切に保たれる。そのため、安定して高アスペクト比の摩擦攪拌接合が可能になる。
 また、第1の被接合部材1の裏面側である圧力がかかる面14の中央部に第1のリブ構造9を設置することで、耐圧性も向上する。さらに、第1の被接合部材1の裏面から第2の被接合部材2の段差底面22までの高さH1を0.5mm以内に収めることで、第2の被接合部材2を冷却器に使用する場合、冷却能力を保つことができる。さらに、高さH1を一定に保つことで、例えば、第2の被接合部材2を冷却器に使用した場合に冷却効果を保つことができる。また、中央部の接合では、接合ツール5の抜く位置を接合界面から遠い部分にすることが望ましい。例えば、第1のリブ構造9が円柱形状である場合、第1のリブ構造9の中心を接合ツール5の抜く位置にするとより耐圧性が向上する。
 図8は、基本的には図1と同じ構成になっており、第2の被接合部材2における第1の段差部10と独立した位置に第1のリブ構造9を備える構造になっている。また、第1のリブ構造9の上面である第1のリブ段差支持面28上に第1の被接合部材1の板厚t1と同等の厚さ分の高さを有する突起15が設けられており、第1の被接合部材1には突起15に嵌合できるように開口部16が設けられている。この開口部16は、貫通穴でなくてもよい。図8に示すように、まず、第1のリブ構造9の突起15を第1の被接合部材1の開口部16と嵌合させて摩擦攪拌接合する。その後、第2の被接合部材2の第1の段差部10の段差支持面12と第1の被接合部材を第1の被接合部材1の外形に沿って摩擦攪拌接合する。図8に示す摩擦攪拌接合方法においては、上述した効果に加えて、第1のリブ構造9に突起15を設け第1の被接合部材1と嵌合させることにより、第1のリブ構造9が位置決めピンの役割を果たし、位置決めが容易になるさらなる効果を有している。
 図9は、図7と同様の効果を有する接合構造体50に対する摩擦攪拌接合方法であり、第1の被接合部材1側に第2のリブ構造17を設けた構成となっている。第2のリブ構造17は、例えば、第2の被接合部材2の段差底面22から段差支持面12までの高さと同じ高さとなっている。第2のリブ構造17の上面である第2のリブ段差支持面29と第2の被接合部材2の段差底面22とを重ね合せて、第2の被接合部材2の段差底面22の反対側から摩擦攪拌接合した後、第2の被接合部材2の段差支持面12と第1の被接合部材1とを重ね合せて、第1の被接合部材1の外形に沿って摩擦攪拌接合している。
 また、図10に示すように接合構造体50において、第1の被接合部材1の第2のリブ構造17の上面である第2のリブ段差支持面29上には、第2の被接合部材2の段差底面22の板厚の厚さ分の高さを有する凸部18が設けられており、第2の被接合部材2の段差底面22には、第2のリブ構造17の凸部18が嵌合する凹部19が設けられている。図10に示すように、第2のリブ構造17の凸部18を第2の被接合部材2の凹部19と嵌合させて、第2の被接合部材2の段差底面22の反対側から摩擦攪拌接合した後、第2の被接合部材2の段差支持面12と第1の被接合部材1とを重ね合せて、第1の被接合部材1の外形に沿って摩擦攪拌接合している。
実施の形態6.
 図11は、実施の形態6による摩擦攪拌接合方法を説明するための断面図である。
 図11は、図1と同じ構成をしており、接合ツール5と第1の被接合部材1とのツール接触面積A1が、第2の被接合部材2に設けた第1の段差部10の段差支持面12の段差幅W4以下にすることを示している。ツール接触面積A1が段差支持面12の段差幅W4より広くなると、摩擦攪拌接合時に加わる荷重により、第1の段差部10の形状が保てなくなり、異常な変形が生じてしまう。そのため、接合ツール5と第1の被接合部材1との接触しているツール接触面積A1が、第2の被接合部材2に設けた第1の段差部10の段差幅W4より小さくなっていることが望ましい。
 図12は、実施の形態6による摩擦攪拌接合方法に使用する接合ツールを示す断面図である。図12は、接合ツール5と第1の被接合部材1との接触しているツール接触面積A1を第2の被接合部材2に設けた段差幅W4より小さくするのに好適な接合ツール5の形状を示している。これは、プローブ7の先端からショルダー6に向かってプローブの直径がテーパ状に大きくなるとともに、このプローブ7とショルダー6を滑らかな曲線で繋いだ逆フィレット型ツールである。この形状の接合ツール5は、ツール接触面積A1を小さくするだけでなく、応力集中がほとんどないため、接合ツール5の強度が向上し、折損しにくくなっている。また、テーパ形状部、滑らかな曲線部のいずれの挿入位置でも摩擦攪拌接合ができるため、接合ツール5の挿入深さの裕度が高く、様々な板厚の被接合部材に対応可能である。また、テーパ形状部には、ねじ状の溝を設けることが好適である。例えば、逆フィレット型ツールの先端曲面にピッチ0.3mm以上1.5mm以下のねじ形状を加工することが望ましい。また、溝形状は、溝の谷部分の応力集中を小さくするため、台形ねじ形状などを用いるほうが望ましい。
実施の形態7.
 図13は、実施の形態7による摩擦攪拌接合方法を説明するための断面図である。図13は、図1と同様の構成になっており、第2の被接合部材2の段差支持面12に対して、プローブ7の先端を第1の被接合部材1の板厚t1の0.01倍以上0.3倍以下の深さD2に制御して挿入し、第2の被接合部材2の段差支持面12と第1の被接合部材1とを重ね合せて、第1の被接合部材1の外形に沿って摩擦攪拌接合している。プローブ7を第1の被接合部材1の板厚t1の0.3倍より深く第2の被接合部材2に挿入すると、攪拌される接合金属量が多くなり、ショルダー6の直径L1が細い接合ツール5では、接合金属が抑え切れなくなる。そのため、高アスペクト比の摩擦攪拌接合ができない。また、第2の被接合部材2への挿入深さが第1の被接合部材1の板厚t1の0.01倍以下になると、接合ツール5の磨耗などにより、接合ができなくなり強度が得られなくなることがある。
 以上の観点より、第2の被接合部材2の段差支持面12と第1の被接合部材1との重ね合わせ部において、第2の被接合部材2における接合ツール5の挿入深さは、第1の被接合部材1の板厚t1の0.01倍以上0.3倍以下とすることによって、高アスペクト比の摩擦攪拌接合が可能となる。
 実施の形態8.
 図14は、実施の形態8による摩擦攪拌接合方法を説明するための平面模式図である。また、図15および図16は、実施の形態8による摩擦攪拌接合方法を説明するための断面模式図である。また、図15は、接合ツール5の挿入前の状態を示し、図16は図14のA‐A線の切断面であり、接合中の状態を示す。実施の形態8において、第1の被接合部材1は、例えばヒートシンクなどの板状部品であり、第2の被接合部材2は、例えば箱型の冷却器のジャケットである。
 前述のとおり、第1の被接合部材1と第2の被接合部材2とを摩擦攪拌接合する際には、第1の被接合部材1の外形に沿って接合ツール5を回転させながら移動することにより摩擦攪拌接合させるものであるが、接合ツール5の回転の中心軸20が通る接合線に対して、接合ツール5のツール回転方向とツール移動方向が一致する側と一致しない側ができ、接合線の内側領域と外側領域において接合状態が非対称となってしまう。
 特に、接合ツール5の移動時において、接合ツール5の近傍では、接合ツール5と第1の被接合部材1との摩擦によるせん断流動と同時に摩擦発熱による熱変形が発生し、ツール回転方向とツール移動方向が一致する側がせん断流動の起点となり摩擦攪拌が支配的に起こり、ツール回転方向とツール移動方向が異なる側はせん断流動に比して摩擦発熱による熱変形の割合が多くなる。
 前述の接合状態の非対称性を、例えば、第1の被接合部材1の外形側面13と第2の被接合部材2の側面11のような突き合わせ構造に適用した場合、ツール回転方向とツール移動方向が一致する側の第1の被接合部材1がせん断流動の起点となり摩擦攪拌が支配的に起こり、ツール回転方向とツール移動方向が一致しない側の第1の被接合部材1では熱変形にとどまる割合が多くなる。
 その結果として、接合ツール5のツール回転方向とツール移動方向が一致しない側の第1の被接合部材1に対して、ツール回転方向とツール移動方向が一致する側の第1の被接合部材1が攪拌され混合される状態が形成され、摩擦攪拌接合部3は、ツール回転方向とツール移動方向が一致する側の第1の被接合部材1の割合が多くなると同時に、ツール回転方向とツール移動方向が一致しない側に接合界面が形成されやすくなる。
 また、前述の接合状態の非対称性を、例えば、第1の段差部10の段差支持面12とその上に配置された板状の第1の被接合部材1のような重ね合わせ部の接合に適用した場合、ツール回転方向とツール移動方向が一致しない側で熱変形の割合が多くなり、重ね合せた下側の第2の被接合部材2が攪拌されずに熱変形による盛り上がる巻上げが発生しやすく、それによる未接合部が長くなり、接合品質の低下を招きやすい。
 そこで、実施の形態8においては、図14から図16に示すように、第2の被接合部材2の第1の段差部10に板状の第1の被接合部材1を重ね合せて、第1の被接合部材1の外形に沿って摩擦攪拌接合する際には、接合線の内側領域30で接合ツール5のツール回転方向25とツール移動方向27aが同じ方向となるようにする。これにより、接合後の負荷が大きい接合線の内側領域30に対して亀裂の起点となりやすい未接合部が少なく、接合強度が大きい接合構造体50とすることができる。なお、実施の形態8においては、実施の形態1と同様に、第2の被接合部材2に設けた第1の段差部10の側面11と、第1の被接合部材1の外形側面13との間に隙間4が設けられている。
 具体的には、図14から図16に示すように、第1の被接合部材1と第2の被接合部材2とを重ね合せて、接合ツール5をツール回転方向25(反時計回り)に回転させながら、第1の被接合部材1に対してツール挿入方向26に挿入する。そして、接合ツール5をツール回転方向25(反時計回り)に回転させながら、第1の被接合部材1の外形に沿ってツール移動方向27a(紙面手前側から奥側方向へ)へ移動させることにより、第1の被接合部材1と第2の被接合部材2とを摩擦攪拌接合して摩擦攪拌接合部3を形成するものである。実施の形態8では、接合線の内側領域30で接合ツール5のツール回転方向25とツール移動方向27aが同じ方向となるので、接合後の負荷が大きい接合線の内側領域30に対して亀裂の起点となりやすい未接合部が少なく、接合強度が大きい接合構造体50とすることができる。
 さらに、回転する接合ツール5の中心軸20を第1の被接合部材1の外形側面13の近傍に配置し、第2の被接合部材2の第1の段差部10の側面11と第1の被接合部材1の外形側面13を部分的な突き合わせ構造に含めた重ね合わせ接合構造とすることにより、段差重ね合わせ接合面から段差側面にかけて欠陥や未接合部がなく接合界面の長い強固な接合構造体50とすることができる。
 具体的には、攪拌工程において、接合ツール5は、第1の被接合部材1または第2の被接合部材2に対して、接合ツール5の回転の中心軸20から第1の被接合部材1の外形側面13までの長さが接合ツール5の外径L4の0倍以上、内側領域30方向に1.0倍以下の範囲に挿入される。つまり、接合ツール5は、第1の被接合部材1または第2の被接合部材2に対して、接合ツール5の回転の中心軸20が第1の被接合部材1の外形側面13と同軸となる位置から、内側領域30側に接合ツール5の外径L4の1倍以下の範囲内に挿入される。
 また、第2の被接合部材2の段差支持面12からの挿入深さD3を第1の被接合部材1の板厚t1の0.01倍以上0.3倍以下に制御して挿入される。そして、その位置を保ちながらツール移動方向27aとツール回転方向25が第1の被接合部材1の内側領域30で一致するように第1の被接合部材1の外形に沿って移動させ、第1の被接合部材1と第2の被接合部材2とを摩擦攪拌接合するものである。
 また、実施の形態8における摩擦攪拌接合方法においては、接合ツール5にツール回転方向25と逆方向のねじ、つまり、接合ツール5が反時計回りのときには正ねじ、接合ツール5が時計回りのときには逆ねじを設けるとさらに高い効果が得られるものである。
実施の形態9.
 図17は、実施の形態9による摩擦攪拌接合方法を説明するための平面模式図である。また、図18は図17のB‐B線切断面を示す断面図である。実施の形態9においては、図7、図8、図9、図10に示したように、第1の被接合部材1または第2の被接合部材2にそれぞれ第1のリブ構造9または第2のリブ構造17を設けた接合構造体50についての摩擦攪拌接合方法を示す。
 図17は、図8に示す第1の被接合部材1に第1のリブ構造9を設けた接合構造体50についての摩擦攪拌接合方法を示している。前述のとおり、摩擦攪拌接合は、接合ツール5を回転させながら移動させることで被接合部材同士の接合をするため、ツール移動方向に対する接合ツール5のツール回転方向によって、接合線に沿って接合状態の非対称性が形成される。
 そこで、図17および図18に示すように、第1のリブ構造9を有する第2の被接合部材2の摩擦攪拌接合に際し、第1のリブ段差支持面28より深く接合ツール5の先端を挿入する重ね合わせ接合構造とし、第1のリブ構造9のリブ外周側31に接合ツール5のツール回転方向(反時計回り)25とツール移動方向27b(紙面奥側から手前方向へ)が同じ方向になるように摩擦攪拌接合を行う。
 具体的には、第1のリブ構造9の第1のリブ段差支持面28と第1の被接合部材1との摩擦攪拌接合において、接合ツール5は、第1のリブ段差支持面28からの挿入深さD4を板状部品である第1の被接合部材1の板厚t1の0.01倍以上0.3倍以下に保ちながら、ツール移動方向27b(紙面奥側から手前方向へ)とツール回転方向25(反時計回り)がリブ外周側31で一致するように摩擦攪拌接合する。第1のリブ構造9では、リブ外周側31に大きな負荷がかかるため、前述したような摩擦攪拌接合方法を使用することで強度が大幅に向上する。なお、第1のリブ構造9以外の部分でも、負荷が高くなる側の接合ツール5のツール回転方向とツール移動方向を同じ方向にすることで接合強度の向上が見込まれる。
 実施の形態9においては、第1の被接合部材1または第2の被接合部材2にそれぞれ第1のリブ構造9または第2のリブ構造17を設けた接合構造体50の摩擦攪拌接合方法を代表して、図8に基づいて説明をおこなったが、図10についても図8と同様に、第2のリブ構造17を有する第1の被接合部材1の摩擦攪拌接合に際し、第2のリブ段差支持面29より深く接合ツール5の先端を挿入する重ね合わせ接合構造とし、第2のリブ構造17のリブ外周側31に接合ツール5のツール回転方向とツール移動方向が同じ方向になるように摩擦攪拌接合を行う。図10に示す接合構造体50に対する摩擦攪拌接合方法においても、第2のリブ構造17の第2のリブ段差支持面29と第2の被接合部材2との摩擦攪拌接合において、接合ツール5は、第2のリブ段差支持面29からの挿入深さを第1の被接合部材1の板厚t1の0.01倍以上0.3倍以下の深さに保ちながら、ツール回転方向とツール移動方向がリブ外周側31で一致するように接合されるものである。
 以上のとおり、実施の形態1から実施の形態9による摩擦攪拌接合方法を用いて、接合構造体50は摩擦攪拌接合され製造されるものである。
 なお、各実施の形態を組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。
 1 第1の被接合部材、2 第2の被接合部材、3 摩擦攪拌接合部、4 隙間、5 接合ツール、6 ショルダー、7 プローブ、8 空間、9 第1のリブ構造、10 第1の段差部、11 側面、12 段差支持面、13 外形側面、14 圧力がかかる面、15 突起、16 開口部、17 第2のリブ構造、18 凸部、19 凹部、20 中心軸、21 溝部、22 段差底面、23 第2の段差部、24 段差壁面、25 ツール回転方向、26 ツール挿入方向、27a ツール移動方向、27b ツール移動方向、28 第1のリブ段差支持面、29 第2のリブ段差支持面、30 内側領域、31 リブ外周側、50 接合構造体

Claims (15)

  1.  金属または樹脂からなる第1の被接合部材と、金属または樹脂からなり第1の段差部を有する第2の被接合部材とを重ね合せて配置し、接合ツールにより摩擦攪拌接合する摩擦攪拌接合方法であって、
     前記第1の段差部の段差支持面に、前記第1の段差部の側面との間に隙間をあけて前記第1の被接合部材を配置する工程と、
     前記段差支持面と接する前記第1の被接合部材の裏面とは反対側の表面から前記第1の被接合部材に前記接合ツールを回転させながら押し込み、前記第2の被接合部材の前記段差支持面に達するまで挿入する接合ツール挿入工程と、
     前記接合ツールを回転させることにより、前記第1の被接合部材と前記第2の被接合部材とを攪拌して接合部を形成する攪拌工程と、を備えたことを特徴とする摩擦攪拌接合方法。
  2.  前記第1の被接合部材は板状部材であり、
     前記隙間の幅は、前記第1の被接合部材の板厚の0.03倍以上0.2倍以下であり、
     前記第1の被接合部材の前記表面に形成された前記接合部の接合幅は、前記第1の被接合部材の板厚の0.5倍以上2倍以下であり、
     前記攪拌工程において前記接合ツールは、前記接合ツールの中心軸から前記第1の被接合部材の外形側面までの長さが、前記第1の被接合部材の板厚の0.5倍以上1.0倍以下の範囲内の位置に挿入されており、前記位置を保ちながら前記第1の被接合部材の外形に沿って移動することを特徴とする請求項1に記載の摩擦攪拌接合方法。
  3.  前記第1の被接合部材の前記裏面には、幅が前記第1の被接合部材の板厚の0.5倍以上1.0倍以下であり、深さが前記第1の被接合部材の板厚の0.3倍以上0.8倍以下である空間が前記第1の被接合部材の外形に沿って設けられており、
     前記第1の被接合部材と前記第2の被接合部材とを重ね合せて前記空間に沿って接合することを特徴とする請求項1または請求項2に記載の摩擦攪拌接合方法。
  4.  前記第1の被接合部材と前記第2の被接合部材の前記段差支持面とを重ね合せて接合した後、前記接合部に沿って前記第1の被接合部材の板厚の60%から95%を残して前記接合部の上面を取り除き、前記第1の被接合部材の前記接合部に沿って溝部を設けることを特徴とする請求項1から請求項3のいずれか1項に記載の摩擦攪拌接合方法を使用した接合構造体の製造方法。
  5.  前記第2の被接合部材は、前記段差支持面の端部に設けられ、段差壁面と段差底面を有する第2の段差部を備えており、
     前記第2の被接合部材は、前記段差底面に前記段差支持面とは独立した第1のリブ構造を備えており、
     前記第1のリブ構造の上面である第1のリブ段差支持面および前記段差支持面に前記第1の被接合部材を配置する工程と、
     前記第1のリブ構造の前記第1のリブ段差支持面と前記第1の被接合部材とを重ね合せて接合した後、前記第2の被接合部材の前記段差支持面と前記第1の被接合部材とを前記第1の被接合部材の外形に沿って接合することを特徴とする請求項1から請求項3のいずれか1項に記載の摩擦攪拌接合方法を使用した接合構造体の製造方法。
  6.  前記第2の被接合部材の前記第1のリブ段差支持面の上面には、前記第1の被接合部材の板厚の厚さ分の高さを有する突起が設けられており、
     前記第1の被接合部材には、前記突起が嵌合する開口部が設けられており、
     前記突起を前記第1の被接合部材の前記開口部と嵌合させて接合した後、前記第2の被接合部材の前記段差支持面と前記第1の被接合部材とを重ね合せて、前記第1の被接合部材の外形に沿って接合することを特徴とする請求項5に記載の接合構造体の製造方法。
  7.  前記第2の被接合部材は、前記段差支持面の端部に設けられ、段差壁面と段差底面を有する第2の段差部を備えており、
     前記第1の被接合部材は、前記第2の被接合部材の前記段差底面から前記段差支持面までの高さと同じ高さの第2のリブ構造を備えており、
     前記第2のリブ構造の上面である第2のリブ段差支持面と前記第2の被接合部材の前記段差底面とを重ね合せて前記段差底面の反対側から接合した後、前記第2の被接合部材の前記段差支持面と前記第1の被接合部材とを前記第1の被接合部材の外形に沿って接合することを特徴とする請求項1から請求項3のいずれか1項に記載の摩擦攪拌接合方法を使用した接合構造体の製造方法。
  8.  前記第1の被接合部材の前記第2のリブ段差支持面の上面には、前記第2の被接合部材の前記段差底面の板厚の厚さ分の高さを有する凸部が設けられており、
     前記第2の被接合部材の前記段差底面には、前記凸部が嵌合する凹部が設けられており、前記凸部を前記第2の被接合部材の前記凹部と嵌合させて接合した後、前記第2の被接合部材の前記段差支持面と前記第1の被接合部材とを前記第1の被接合部材の外形に沿って接合することを特徴とする請求項7に記載の接合構造体の製造方法。
  9.  前記第1の被接合部材と接触している前記接合ツールのツール接触面積が、前記第2の被接合部材の外形に沿って設けられた前記段差支持面の幅より小さいことを特徴とする請求項1から請求項3のいずれか1項に記載の摩擦攪拌接合方法を使用した接合構造体の製造方法。
  10.  前記接合ツールのプローブの先端からショルダーに向かって前記プローブの直径がテーパ状に大きくなるとともに、前記プローブと前記ショルダーとを滑らかな曲線で繋いだ逆フィレット型ツールを使用することを特徴とする請求項1から請求項3のいずれか1項に記載の摩擦攪拌接合方法を使用した接合構造体の製造方法。
  11.  前記逆フィレット型ツールの先端曲面にピッチ0.3mm以上1.5mm以下のねじ形状を加工したことを特徴とする請求項10に記載の接合構造体の製造方法。
  12.  前記第2の被接合部材の前記段差支持面に対して、前記プローブの先端を前記第1の被接合部材の板厚の0.01倍以上0.3倍以下の深さに制御して挿入し、前記第2の被接合部材と前記第1の被接合部材の外形を重ね合せて接合することを特徴とする請求項10または請求項11に記載の接合構造体の製造方法。
  13.  前記攪拌工程において、前記接合ツールのツール回転方向とツール移動方向が前記第1の被接合部材の内側領域で一致するように、前記接合ツールを前記第1の被接合部材の外形に沿って移動することを特徴とする請求項1に記載の摩擦攪拌接合方法を使用した接合構造体の製造方法。
  14.  前記第1のリブ構造の前記第1のリブ段差支持面と前記第1の被接合部材との摩擦攪拌接合において、前記接合ツールは、前記第1のリブ段差支持面からの挿入深さを前記第1の被接合部材の板厚の0.01倍以上0.3倍以下の深さに保ちながら、ツール回転方向とツール移動方向がリブ外周側で一致するように移動することを特徴とする請求項5または請求項6に記載の接合構造体の製造方法。
  15.  前記第2のリブ構造の前記第2のリブ段差支持面と前記第2の被接合部材との摩擦攪拌接合において、前記接合ツールは、前記第2のリブ段差支持面からの挿入深さを前記第1の被接合部材の板厚の0.01倍以上0.3倍以下の深さに保ちながら、ツール回転方向とツール移動方向がリブ外周側で一致するように移動することを特徴とする請求項7または請求項8に記載の接合構造体の製造方法。
PCT/JP2018/003418 2017-02-17 2018-02-01 摩擦攪拌接合方法および接合構造体の製造方法 WO2018150891A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/470,371 US11141812B2 (en) 2017-02-17 2018-02-01 Friction stir welding method and manufacturing method of welding structure
CN201880007205.9A CN110290893B (zh) 2017-02-17 2018-02-01 摩擦搅拌接合方法及接合构造体的制造方法
JP2018568102A JP6928011B2 (ja) 2017-02-17 2018-02-01 摩擦攪拌接合方法および接合構造体の製造方法
DE112018000895.9T DE112018000895T5 (de) 2017-02-17 2018-02-01 Reibrühr-schweissverfahren und verfahren zur herstellung einerschweissstruktur

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017027493 2017-02-17
JP2017-027493 2017-02-17

Publications (1)

Publication Number Publication Date
WO2018150891A1 true WO2018150891A1 (ja) 2018-08-23

Family

ID=63169848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003418 WO2018150891A1 (ja) 2017-02-17 2018-02-01 摩擦攪拌接合方法および接合構造体の製造方法

Country Status (5)

Country Link
US (1) US11141812B2 (ja)
JP (1) JP6928011B2 (ja)
CN (1) CN110290893B (ja)
DE (1) DE112018000895T5 (ja)
WO (1) WO2018150891A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6777226B2 (ja) * 2017-05-11 2020-10-28 日本軽金属株式会社 接合方法
JP2019058934A (ja) 2017-09-27 2019-04-18 日本軽金属株式会社 液冷ジャケットの製造方法
JP2019058933A (ja) 2017-09-27 2019-04-18 日本軽金属株式会社 液冷ジャケットの製造方法
JP6769427B2 (ja) 2017-12-18 2020-10-14 日本軽金属株式会社 液冷ジャケットの製造方法
JP2019181473A (ja) 2018-04-02 2019-10-24 日本軽金属株式会社 液冷ジャケットの製造方法
JP6927128B2 (ja) * 2018-04-02 2021-08-25 日本軽金属株式会社 液冷ジャケットの製造方法
US20210016388A1 (en) * 2018-06-14 2021-01-21 Nippon Light Metal Company, Ltd. Method for manufacturing composite slab
JP6927163B2 (ja) * 2018-06-15 2021-08-25 日本軽金属株式会社 接合方法及び複合圧延材の製造方法
JP7070389B2 (ja) 2018-12-19 2022-05-18 日本軽金属株式会社 接合方法
JP7377533B2 (ja) * 2020-03-03 2023-11-10 京浜ラムテック株式会社 金属構造体の製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1158039A (ja) * 1997-08-18 1999-03-02 Showa Alum Corp 摩擦撹拌接合による重ね継手及びその形成方法
JP2001207587A (ja) * 2000-01-27 2001-08-03 Hitachi Ltd 中空押し出し形材
JP2002153976A (ja) * 2000-11-17 2002-05-28 Hitachi Ltd 摩擦攪拌接合方法
JP2003094178A (ja) * 1999-05-28 2003-04-02 Hitachi Ltd 構造体の製作方法および装置
JP2010140951A (ja) * 2008-12-09 2010-06-24 Nippon Light Metal Co Ltd 液冷ジャケットの製造方法および摩擦攪拌接合方法
DE102012001877A1 (de) * 2012-02-01 2013-08-01 Christoph Lenz Kaltnahtstichel zur Herstellung einer mediendichten Nahtverbindung
WO2015107716A1 (ja) * 2014-01-14 2015-07-23 日本軽金属株式会社 液冷ジャケットの製造方法
WO2016072211A1 (ja) * 2014-11-05 2016-05-12 日本軽金属株式会社 液冷ジャケットの製造方法及び液冷ジャケット

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3341814B2 (ja) * 1997-06-04 2002-11-05 株式会社日立製作所 鉄道車両構体及び摩擦溶接方法
JP3589863B2 (ja) * 1997-07-23 2004-11-17 株式会社日立製作所 構造体および摩擦攪拌接合方法
JP3420502B2 (ja) * 1998-06-16 2003-06-23 株式会社日立製作所 構造体
TW460346B (en) 1999-05-28 2001-10-21 Hitachi Ltd A manufacturing method of a structure body and a manufacturing apparatus of a structure body
US6722286B2 (en) * 1999-12-14 2004-04-20 Hitachi, Ltd. Structure and railway car
JP3552978B2 (ja) * 2000-01-27 2004-08-11 株式会社日立製作所 中空形材
JP3589930B2 (ja) * 2000-02-25 2004-11-17 株式会社日立製作所 摩擦攪拌接合方法
JP3575749B2 (ja) * 2000-11-17 2004-10-13 株式会社日立製作所 摩擦攪拌接合方法
JP3751215B2 (ja) * 2001-04-16 2006-03-01 株式会社日立製作所 摩擦攪拌接合方法
JP2003136259A (ja) 2001-10-25 2003-05-14 Sunx Ltd レーザマーキング装置及びその印字制御方法
JP3795824B2 (ja) * 2002-04-16 2006-07-12 株式会社日立製作所 摩擦攪拌接合方法
US20050247756A1 (en) * 2004-03-31 2005-11-10 Frazer James T Connection mechanism and method
DE102011106505A1 (de) * 2011-06-15 2012-12-20 Eurocopter Deutschland Gmbh Schweißwerkzeug zum Verbinden von wenigstens zwei Werkstücken, Schweißverfahren sowie Werkstück

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1158039A (ja) * 1997-08-18 1999-03-02 Showa Alum Corp 摩擦撹拌接合による重ね継手及びその形成方法
JP2003094178A (ja) * 1999-05-28 2003-04-02 Hitachi Ltd 構造体の製作方法および装置
JP2001207587A (ja) * 2000-01-27 2001-08-03 Hitachi Ltd 中空押し出し形材
JP2002153976A (ja) * 2000-11-17 2002-05-28 Hitachi Ltd 摩擦攪拌接合方法
JP2010140951A (ja) * 2008-12-09 2010-06-24 Nippon Light Metal Co Ltd 液冷ジャケットの製造方法および摩擦攪拌接合方法
DE102012001877A1 (de) * 2012-02-01 2013-08-01 Christoph Lenz Kaltnahtstichel zur Herstellung einer mediendichten Nahtverbindung
WO2015107716A1 (ja) * 2014-01-14 2015-07-23 日本軽金属株式会社 液冷ジャケットの製造方法
WO2016072211A1 (ja) * 2014-11-05 2016-05-12 日本軽金属株式会社 液冷ジャケットの製造方法及び液冷ジャケット

Also Published As

Publication number Publication date
JPWO2018150891A1 (ja) 2019-11-07
US20190366474A1 (en) 2019-12-05
CN110290893B (zh) 2021-09-14
DE112018000895T5 (de) 2019-10-31
US11141812B2 (en) 2021-10-12
CN110290893A (zh) 2019-09-27
JP6928011B2 (ja) 2021-09-01

Similar Documents

Publication Publication Date Title
WO2018150891A1 (ja) 摩擦攪拌接合方法および接合構造体の製造方法
JP6766956B2 (ja) 液冷ジャケットの製造方法
WO2019150620A1 (ja) 液冷ジャケットの製造方法
EP2907611A1 (en) Method for producing heat exchanger plate and method for friction stir welding
WO2019150610A1 (ja) 液冷ジャケットの製造方法
WO2020095483A1 (ja) 液冷ジャケットの製造方法及び摩擦攪拌接合方法
JP2005324251A (ja) 摩擦攪拌接合方法、筒状部材の摩擦攪拌接合方法および中空体の製造方法
US11419237B2 (en) Method for manufacturing liquid-cooling jacket
JP2006239734A (ja) 溶接継手およびその形成方法
WO2019176125A1 (ja) 伝熱板の製造方法及び摩擦攪拌接合方法
KR20120024868A (ko) 접합 방법
US20200282489A1 (en) Heat transfer plate manufacturing method and friction stir welding method
JP2020124715A (ja) 接合方法
JP7003862B2 (ja) 液冷ジャケットの製造方法
JP6740960B2 (ja) 接合方法
JP2019195825A (ja) 接合方法
JP2018065164A (ja) 中空容器の製造方法
JP5879460B2 (ja) 積層材の接合方法
JP2021112757A (ja) 液冷ジャケットの製造方法
JP6927130B2 (ja) 伝熱板の製造方法
JP2021115597A (ja) 液冷ジャケットの製造方法及び摩擦攪拌接合方法
WO2024018776A1 (ja) 接合体の製造方法
JP2020175395A (ja) 液冷ジャケットの製造方法
JP2020175396A (ja) 液冷ジャケットの製造方法
WO2021145000A1 (ja) 液冷ジャケットの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18754283

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018568102

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18754283

Country of ref document: EP

Kind code of ref document: A1