WO2018150537A1 - 基板処理装置、半導体装置の製造方法およびプログラム - Google Patents

基板処理装置、半導体装置の製造方法およびプログラム Download PDF

Info

Publication number
WO2018150537A1
WO2018150537A1 PCT/JP2017/005888 JP2017005888W WO2018150537A1 WO 2018150537 A1 WO2018150537 A1 WO 2018150537A1 JP 2017005888 W JP2017005888 W JP 2017005888W WO 2018150537 A1 WO2018150537 A1 WO 2018150537A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
heating unit
reaction vessel
heating
processing apparatus
Prior art date
Application number
PCT/JP2017/005888
Other languages
English (en)
French (fr)
Inventor
周平 西堂
山口 天和
隆史 佐々木
Original Assignee
株式会社Kokusai Electric
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Kokusai Electric filed Critical 株式会社Kokusai Electric
Priority to JP2019500127A priority Critical patent/JP6736755B2/ja
Priority to PCT/JP2017/005888 priority patent/WO2018150537A1/ja
Priority to KR1020187011350A priority patent/KR102127130B1/ko
Publication of WO2018150537A1 publication Critical patent/WO2018150537A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping

Definitions

  • the present invention relates to a substrate processing apparatus, a semiconductor device manufacturing method, and a program.
  • a vertical substrate processing apparatus is used in the heat treatment of a substrate in a manufacturing process of a semiconductor device (device).
  • a vertical substrate processing apparatus a predetermined number of substrates are loaded and held on a substrate holder, the substrate holder is loaded into the processing chamber, and the substrate is heated by a side heater installed on the outer periphery of the processing chamber.
  • the processing gas is introduced into the room and the required processing is performed.
  • An object of the present invention is to provide a technique capable of increasing the productivity by shortening the heating time in the processing chamber and eliminating the dummy wafer.
  • a reaction vessel that houses a substrate holder for holding the substrate therein; A lid for closing the opening at the lower end of the reaction vessel; A cover portion covering the lid portion, The cover part is A middle-high portion formed so as to protrude into the reaction vessel; A flange portion formed at the lower end of the middle-high portion and disposed between the lid portion and the reaction vessel; A technique is provided in which a heat insulating part is installed in a hollow portion inside the middle and high part, and a heating part is installed between the heat insulating part and the middle and high part.
  • the present invention it is possible to increase the productivity by shortening the heating time in the processing chamber and eliminating the dummy wafer.
  • FIG. 3 is a diagram showing an AA cross section in FIG. 2. It is a longitudinal cross-sectional view which shows the modification of this invention. It is a longitudinal cross-sectional view which shows the modification of this invention. It is a longitudinal cross-sectional view which shows the modification of this invention. It is a longitudinal cross-sectional view which shows the modification of this invention. It is a longitudinal cross-sectional view which shows the modification of this invention. It is a longitudinal cross-sectional view which shows the modification of this invention. It is a longitudinal cross-sectional view which shows the modification of this invention. It is a longitudinal cross-sectional view which shows the modification of this invention. It is a longitudinal cross-sectional view which shows the modification of this invention.
  • the substrate processing apparatus is configured as a vertical substrate processing apparatus (hereinafter referred to as a processing apparatus) 2 that performs a substrate processing process such as a heat treatment as one process of the manufacturing process in the method of manufacturing a semiconductor device (device).
  • the processing apparatus 2 includes a cylindrical reaction tube 10 and a main heater (heater) 12 as a heating means (heating mechanism) installed on the outer periphery of the reaction tube 10.
  • the reaction tube is made of, for example, quartz or SiC.
  • a processing chamber 14 for processing a wafer W as a substrate is formed in a reaction vessel 11 described later.
  • the reaction tube 10 is provided with a temperature detector 16 as a temperature detector.
  • the temperature detector 16 is erected along the inner wall of the reaction tube 10.
  • a cylindrical manifold 18 is connected to the lower end opening of the reaction tube 10 via a seal member 20 such as an O-ring to support the lower end of the reaction tube 10.
  • the manifold 18 is formed of a metal such as stainless steel.
  • a reaction vessel 11 is constituted by the reaction tube 10 and the manifold 18.
  • the opening (furnace port) at the lower end of the reaction vessel 11 is opened and closed by a disk-shaped lid 22.
  • the lid 22 is made of metal, for example.
  • a sealing member 20 such as an O-ring is installed on the upper surface of the lid portion 22, and a cover portion 56 is further installed so as to cover the lid portion 22.
  • the cover part 56 is made of, for example, quartz.
  • a sealing member such as an O-ring is installed on the upper surface of the cover portion 56, whereby the inside of the reaction vessel 11 and the outside air are hermetically sealed. The detailed configuration of the furnace port will be described later.
  • the processing chamber 14 stores therein a boat 26 as a substrate holder for supporting a plurality of, for example, 25 to 150 wafers W vertically in a shelf shape.
  • the boat 26 is made of, for example, quartz or SiC.
  • the boat 26 is supported above the cover portion 56 by a rotating shaft 28 that passes through the holes of the lid portion 22 and the cover portion 56.
  • a magnetic fluid seal is provided at a portion of the lid portion 22 through which the rotation shaft 28 passes, and the rotation shaft 28 is connected to a rotation mechanism 30 installed below the lid portion 22.
  • the rotating shaft 28 is configured to be rotatable while the inside of the reaction vessel 11 is hermetically sealed.
  • the lid portion 22 is driven in the vertical direction by a boat elevator 32 as a lifting mechanism. Thereby, the boat 26 and the lid part 22 are moved up and down integrally, and the boat 26 is carried into and out of the reaction vessel 11.
  • the processing apparatus 10 includes a gas supply mechanism 34 that supplies a gas used for substrate processing into the processing chamber 14.
  • the gas supplied by the gas supply mechanism 34 is changed according to the type of film to be formed.
  • the gas supply mechanism 34 includes a source gas supply unit, a reaction gas supply unit, and an inert gas supply unit.
  • the raw material gas supply unit includes a gas supply pipe 36a.
  • a gas flow controller (MFC) 38a which is a flow rate controller (flow rate control unit), and a valve 40a, which is an on-off valve, are provided in order from the upstream direction. It has been.
  • the gas supply pipe 36 a is connected to a nozzle 44 a that penetrates the side wall of the manifold 18.
  • the nozzle 44 a is erected in the vertical direction in the reaction tube 10 and has a plurality of supply holes that open toward the wafers W held by the boat 26.
  • the source gas is supplied to the wafer W through the supply hole of the nozzle 44a.
  • the reaction gas is supplied to the wafer W from the reaction gas supply unit through the supply pipe 36b, the MFC 38b, the valve 40b, and the nozzle 44b with the same configuration.
  • an inert gas is supplied to the wafer W via supply pipes 36c and 36d, MFCs 38c and 38d, valves 40c and 40d, and nozzles 44a and 44b.
  • An exhaust pipe 46 is attached to the manifold 18.
  • the exhaust pipe 46 is connected with a pressure sensor 48 as a pressure detector (pressure detection unit) for detecting the pressure in the processing chamber 14 and an APC (Auto Pressure Controller) valve 40 as a pressure regulator (pressure adjustment unit).
  • a vacuum pump 52 as an evacuation device is connected.
  • a heat insulating portion 24 is disposed below the processing chamber 14 in the heat insulating region below the wafer processing region.
  • the cover portion 56 includes a middle-high portion 56A and a flange portion 56B formed at the lower end of the middle-high portion 56A.
  • the cover portion 56 is formed so that the middle-high portion 56A protrudes into the reaction tube 10, that is, enters the processing chamber 14.
  • the cover part 56 has a circular cross section, and a through hole 56 ⁇ / b> C through which the rotary shaft 28 passes is formed in the center of the cover part 56.
  • the heat insulation part 24 is installed in the hollow part inside the middle and high part 56A.
  • the heat insulating part 24 is made of, for example, carbon felt.
  • a heating part 58 as a heating mechanism is installed between the heat insulating part 24 and the middle / high part 56A.
  • the heating unit 58 is installed so as to cover the inside of the middle / high part 56A.
  • the heating unit 58 includes a first heating unit 58A, a second heating unit 58B, and a third heating unit 58C.
  • the first heating unit 58A is installed so as to face the ceiling of the middle-high part 56A so as to heat the wafer W below the boat 26. As shown in FIG.
  • the 2nd heating part 58B is installed in the side surface of the middle-high part 56A so that the furnace port part under reaction container 11 may be heated.
  • the third heating unit 58C is installed on the side surface of the middle / high part 56A on the side of the through hole 56C so as to heat the rotary shaft 28.
  • Rotating mechanism 30, boat elevator 32, MFCs 38a to 38d and valves 40a to 40d of gas supply mechanism 34, APC valve 50, heater 12 and heating unit 58 are connected to controller 100 for controlling them.
  • the controller 100 is composed of, for example, a microprocessor (computer) having a CPU, and is configured to control the operation of the processing device 2.
  • an input / output device 102 configured as a touch panel or the like is connected to the controller 100.
  • the controller 100 is connected to a storage unit 104 as a storage medium.
  • the storage unit 104 stores a control program for controlling the operation of the processing device 10 and a program (also referred to as a recipe) for causing each component unit of the processing device 2 to execute processing according to processing conditions in a readable manner.
  • the control program for controlling the operation of the processing device 10
  • a program also referred to as a recipe
  • the storage unit 104 may be a storage device (hard disk or flash memory) built in the controller 100, or a portable external recording device (magnetic disk such as magnetic tape, flexible disk or hard disk, CD or DVD, etc. It may be an optical disk, a magneto-optical disk such as an MO, or a semiconductor memory such as a USB memory or a memory card. Further, the program may be provided to the computer using a communication means such as the Internet or a dedicated line. The program is read from the storage unit 104 according to an instruction from the input / output device 102 as necessary, and the controller 100 executes processing according to the read recipe, so that the processing device 2 Under the control of 100, a desired process is executed.
  • a storage device hard disk or flash memory
  • a portable external recording device magnetic disk such as magnetic tape, flexible disk or hard disk, CD or DVD, etc. It may be an optical disk, a magneto-optical disk such as an MO, or a semiconductor memory such as a USB memory or a memory card.
  • the program may be
  • HCDS Si 2 Cl 6 : hexachlorodisilane
  • O 2 oxygen
  • SiO 2 silicon oxide
  • the processing chamber 14 is evacuated (reduced pressure) by the vacuum pump 52 so that the inside of the processing chamber 14 has a predetermined pressure (degree of vacuum).
  • the pressure in the processing chamber 14 is measured by the pressure sensor 48, and the APC valve 50 is feedback-controlled based on the measured pressure information.
  • the wafer W in the processing chamber 14 is heated by the heater 12 and the first heating unit 58A so as to reach a predetermined temperature.
  • the state of energization to the heater 12 and the first heating unit 58A is feedback-controlled based on the temperature information detected by the temperature detection unit 16 so that the processing chamber 14 has a predetermined temperature distribution.
  • heating by the second heating unit 58B and the third heating unit 58C is also started.
  • the rotation of the boat 26 and the wafer W by the rotation mechanism 30 is started.
  • O 2 gas is supplied to the wafer W in the processing chamber 14.
  • the O 2 gas is controlled to have a desired flow rate by the MFC 38b, and is supplied into the processing chamber 14 through the gas supply pipe 36b and the nozzle 44b.
  • a SiO 2 film having a predetermined composition and a predetermined film thickness can be formed on the wafer W.
  • processing conditions for forming the SiO 2 film on the wafer W include the following. Processing temperature (wafer temperature): 300 ° C. to 700 ° C. Processing pressure (pressure in processing chamber) 1 Pa to 4000 Pa, HCDS gas: 100 sccm to 10,000 sccm, O 2 gas: 100 sccm to 10,000 sccm, N 2 gas: 100 sccm to 10,000 sccm, By setting each processing condition to a value within the respective range, it is possible to appropriately progress the film forming process.
  • the heating temperature of the heating unit 58 is the same temperature as the processing temperature of the first heating unit 58A and the temperature of the second heating unit 58B is lower than that of the first heating unit 58A.
  • the temperature is such that it does not adhere, for example, 200 to 300 ° C.
  • the processing gas may be decomposed in the vicinity of the furnace port or the temperature uniformity in the processing chamber 14 may be deteriorated.
  • the third heating unit 58C is set to a temperature lower than that of the second heating unit 58B, for example, about 150 ° C. When the temperature of the third heating unit 58C is higher than that of the second heating unit 58B, a by-product may adhere to the rotating shaft 28.
  • the heat insulating part can be installed outside the processing chamber.
  • the bad influence of the wafer resulting from the material of a heat insulation part can be suppressed, and quality can be improved.
  • the heat insulating portion is outside the processing chamber, the volume inside the processing chamber can be reduced, the pressure reduction / pressure increase time can be shortened, and the throughput can be improved.
  • the material of the heat insulation part can be arbitrarily selected. For example, by selecting a material having a high heat insulating effect as the heat insulating material, the heat insulating region can be shortened and the product region can be expanded. Thereby, productivity can be improved. Further, it becomes possible to cope with a higher temperature process. Furthermore, by selecting a material having a small heat capacity as the heat insulating material, the recovery time at the time of temperature rise can be shortened, and the productivity can be further increased.
  • the heat insulating material is disposed inside the processing chamber, contamination due to the material of the heat insulating material is generated, so that the material of the heat insulating material may be limited to quartz, SiC, or the like.
  • the wall surface in contact with the process gas in the heat insulation region can be heated, the surface temperature can be increased, and the adhesion of by-products is suppressed. can do. Thereby, generation
  • the first heating unit upper heater
  • the temperature of the wafer below the processing chamber can be increased at high speed, and the recovery time can be shortened.
  • a dummy wafer for keeping the temperature of the wafer region uniform may be installed at the bottom of the boat.
  • the heating by the first heating unit can be suitably controlled, so that the wafer escapes. Heat can be compensated for, and there is no need to install dummy wafers. Thereby, since the soaking length can be extended, the number of wafers processed can be increased and the productivity can be improved.
  • a step may be provided on the ceiling of the cover part 56 so that the center part of the ceiling of the cover part 56 protrudes upward.
  • Modification 2 As shown in FIG. 5, may be divided first heating section 58A into the inner heating portion 58A 1 and the outer heating portion 58A 2. Further, the first heating unit 58A may be an annular heating unit instead of a planar heating unit. Or the height of the outside heating section 58A 2 lower than the height of inner heating portion 58A 1, by the temperature of the inner heating portion 58A 1 or higher than the temperature outside the heating section 58A 2, the processing chamber 14 downwardly Temperature uniformity can be improved. In addition, by dividing the first heating unit 58A into a plurality of zones in the radial direction, the in-plane temperature distribution at the bottom of the wafer region can be adjusted.
  • Modification 3 As shown in FIG. 6, you may form so that the ceiling of the cover part 56 may incline partially. Furthermore, as shown in FIG. 7, the ceiling of the cover portion 56 may be formed so as to be inclined downward from the center in the radial direction so as to be entirely inclined. With such a configuration, the amount of heat applied to the wafer can be adjusted.
  • a cooling passage may be provided so as to cool the inside of the heat insulating portion 24, and a cooling portion 60 configured to flow a refrigerant through the cooling passage may be provided.
  • the heat insulating portion 24 can be rapidly cooled by flowing the refrigerant through the cooling passage, and the temperature lowering time can be shortened.
  • the refrigerant for example, water or air can be flowed.
  • the above-mentioned embodiment and modification can be used in appropriate combination.
  • the heat insulation part outside the processing chamber as described above, it becomes possible to freely select the material of the heat insulating material, and it becomes possible to install a heating / cooling mechanism. It is possible to improve the usual heat insulation and controllability.
  • the productivity can be improved by shortening the heating time in the processing chamber and eliminating the dummy wafer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

[課題] 処理室内の昇温時間を短くし、かつ、ダミーウエハをなくすことにより生産性を向上させる。 [解決手段] 基板を保持する基板保持体を内部に収容する反応容器と、反応容器下端の開口部を閉塞する蓋部と、蓋部を覆うカバー部と、を備え、カバー部は、反応容器内に突出するように形成された中高部と、中高部の下端に形成され、蓋部および反応容器との間に配置されるフランジ部と、を有し、中高部の内側の中空部分には断熱部が設置され、断熱部と中高部との間には加熱部が設置される。

Description

基板処理装置、半導体装置の製造方法およびプログラム
 本発明は、基板処理装置、半導体装置の製造方法およびプログラムに関するものである。
 半導体装置(デバイス)の製造工程における基板の熱処理では、例えば、縦型基板処理装置が使用されている。縦型基板処理装置では所定枚数の基板を積載して基板保持具に保持し、基板保持具を処理室内に装入し、処理室外周に設置された側部ヒータによって基板を加熱した状態で処理室内に処理ガスを導入して所要の処理が行われる。
 上述のような縦型基板処理装置として、熱放出量の大きい処理室の下部に補助加熱用の面状サブヒータを設置して短時間で処理室全体の温度の回復と安定とを確保することにより、基板の処理時間の短縮を図ることがある(例えば、特許文献1)。
特開2001-15605
 しかしながら、上述した文献に記載の構成では、ウエハ領域から下方への熱逃げが大きいため断熱領域を長く取らざるを得ず、そのためにウエハの枚数を増やせず生産性を上げることができないことがある。
 本発明の目的は、処理室内の昇温時間を短くし、かつ、ダミーウエハをなくすことにより生産性を上げることができる技術を提供することにある。
 本発明の一態様によれば、
 基板を保持する基板保持体を内部に収容する反応容器と、
 前記反応容器下端の開口部を閉塞する蓋部と、
 前記蓋部を覆うカバー部と、を備え、
 前記カバー部は、
 前記反応容器内に突出するように形成された中高部と、
 前記中高部の下端に形成され、前記蓋部および前記反応容器との間に配置されるフランジ部と、を有し、
 前記中高部の内側の中空部分には断熱部が設置され、前記断熱部と前記中高部との間には加熱部が設置される技術が提供される。
 本発明によれば、処理室内の昇温時間を短くし、かつ、ダミーウエハをなくすことにより生産性を上げることができる。
本発明の実施形態で好適に用いられる基板処理装置の縦型処理炉の概略構成図であり、処理炉部分を縦断面図で示す図である。 本発明の実施形態で好適に用いられる基板処理装置の炉口部周辺を示す縦断面図である。 図2におけるA-A断面を示す図である。 本発明の変形例を示す縦断面図である。 本発明の変形例を示す縦断面図である。 本発明の変形例を示す縦断面図である。 本発明の変形例を示す縦断面図である。 本発明の変形例を示す縦断面図である。
 以下、本発明の一実施形態について、図1~3を用いて説明する。
 本実施形態において、基板処理装置は、半導体装置(デバイス)の製造方法における製造工程の一工程として熱処理等の基板処理工程を実施する縦型基板処理装置(以下、処理装置と称する)2として構成されている。図1に示すように、処理装置2は、円筒形状の反応管10と、反応管10の外周に設置された加熱手段(加熱機構)としてのメインヒータ(ヒータ)12とを備える。反応管は、例えば石英やSiCにより形成される。後述する反応容器11の内部には、基板としてのウエハWを処理する処理室14が形成される。反応管10には、温度検出器としての温度検出部16が設置される。温度検出部16は、反応管10の内壁に沿って立設されている。
 反応管10の下端開口部には、円筒形のマニホールド18が、Oリング等のシール部材20を介して連結され、反応管10の下端を支持している。マニホールド18は、例えばステンレス等の金属により形成される。反応管10とマニホールド18とにより反応容器11が構成される。反応容器11の下端の開口部(炉口部)は円盤状の蓋部22によって開閉される。蓋部22は、例えば金属により形成される。蓋部22の上面にはOリング等のシール部材20が設置されており、さらに、蓋部22を覆うようにカバー部56が設置されている。カバー部56は、例えば石英で構成される。カバー部56の上面にはOリング等のシール部材が設置されており、これにより、反応容器11内と外気とが気密にシールされる。炉口部の詳細な構成については後述する。
 処理室14は、複数枚、例えば25~150枚のウエハWを垂直に棚状に支持する基板保持具としてのボート26を内部に収納する。ボート26は、例えば石英やSiCより形成される。ボート26は、蓋部22およびカバー部56の孔を貫通する回転軸28により、カバー部56の上方に支持される。蓋部22の回転軸28が貫通する部分には、例えば、磁性流体シールが設けられ、回転軸28は蓋部22の下方に設置された回転機構30に接続される。これにより、回転軸28は反応容器11の内部を気密にシールした状態で回転可能に構成される。蓋部22は昇降機構としてのボートエレベータ32により上下方向に駆動される。これにより、ボート26および蓋部22が一体的に昇降され、反応容器11に対してボート26が搬入出される。
 処理装置10は、基板処理に使用されるガスを処理室14内に供給するガス供給機構34を備えている。ガス供給機構34が供給するガスは、成膜される膜の種類に応じて換えられる。ここでは、ガス供給機構34は、原料ガス供給部、反応ガス供給部および不活性ガス供給部を含む。
 原料ガス供給部は、ガス供給管36aを備え、ガス供給管36aには、上流方向から順に、流量制御器(流量制御部)であるマスフローコントローラ(MFC)38aおよび開閉弁であるバルブ40aが設けられている。ガス供給管36aはマニホールド18の側壁を貫通するノズル44aに接続される。ノズル44aは、反応管10内に上下方向に沿って立設し、ボート26に保持されるウエハWに向かって開口する複数の供給孔が形成されている。ノズル44aの供給孔を通してウエハWに対して原料ガスが供給される。
 以下、同様の構成にて、反応ガス供給部からは、供給管36b、MFC38b、バルブ40bおよびノズル44bを介して、反応ガスがウエハWに対して供給される。不活性ガス供給部からは、供給管36c、36d、MFC38c、38d、バルブ40c、40dおよびノズル44a、44bを介して、ウエハWに対して不活性ガスが供給される。
 マニホールド18には、排気管46が取り付けられている。排気管46には、処理室14内の圧力を検出する圧力検出器(圧力検出部)としての圧力センサ48および圧力調整器(圧力調整部)としてのAPC(Auto  Pressure  Controller)バルブ40を介して、真空排気装置としての真空ポンプ52が接続されている。このような構成により、処理室14内の圧力を処理に応じた処理圧力とすることができる。
 次に、炉口部の構成について説明する。
 図1に示すように、本実施形態ではウエハ処理領域下方の断熱領域において、断熱部24を処理室14の下部に配置している。図2に示すように、カバー部56は中高部56Aと中高部56Aの下端に形成されたフランジ部56Bとにより構成される。カバー部56は中高部56Aが反応管10内部に突出するように、すなわち、処理室14内部に入り込むように形成される。図3に示すように、カバー部56は断面円形であり、カバー部56の中央には回転軸28が貫通する貫通孔56Cが形成されている。
 中高部56Aの内側である中空部分には、断熱部24が設置されている。断熱部24は例えば、カーボンフェルトで構成される。また、断熱部24と中高部56Aとの間には加熱機構としての加熱部58が設置されている。加熱部58は、中高部56Aの内側を覆うように設置される。加熱部58は、第1加熱部58Aと、第2加熱部58Bと、第3加熱部58Cとで構成されている。第1加熱部58Aは、ボート26下方のウエハWを加熱するように、中高部56Aの天井に面するように設置される。図3に示すように、第2加熱部58Bは、反応容器11下方の炉口部を加熱するように、中高部56Aの側面に設置される。第3加熱部58Cは、回転軸28を加熱するように、中高部56Aの貫通孔56C側の側面に設置される。
 回転機構30、ボートエレベータ32、ガス供給機構34のMFC38a~38dおよびバルブ40a~40d、APCバルブ50、ヒータ12および加熱部58には、これらを制御するコントローラ100が接続される。コントローラ100は、例えば、CPUを備えたマイクロプロセッサ(コンピュータ)からなり、処理装置2の動作を制御するよう構成される。コントローラ100には、例えばタッチパネル等として構成された入出力装置102が接続されている。
 コントローラ100には記憶媒体としての記憶部104が接続されている。記憶部104には、処理装置10の動作を制御する制御プログラムや、処理条件に応じて処理装置2の各構成部に処理を実行させるためのプログラム(レシピとも言う)が、読み出し可能に格納される。
 記憶部104は、コントローラ100に内蔵された記憶装置(ハードディスクやフラッシュメモリ)であってもよいし、可搬性の外部記録装置(磁気テープ、フレキシブルディスクやハードディスク等の磁気ディスク、CDやDVD等の光ディスク、MO等の光磁気ディスク、USBメモリやメモリカード等の半導体メモリ)であってもよい。また、コンピュータへのプログラムの提供は、インターネットや専用回線等の通信手段を用いて行ってもよい。プログラムは、必要に応じて、入出力装置102からの指示等にて記憶部104から読み出され、読み出されたレシピに従った処理をコントローラ100が実行することで、処理装置2は、コントローラ100の制御のもと、所望の処理を実行する。
 次に、上述の処理装置2を用い、基板上に膜を形成する処理(成膜処理)について説明する。ここでは、ウエハWに対して、原料ガスとしてHCDS(Si2Cl :ヘキサクロロジシラン)ガスと、反応ガスとしてO2 (酸素)ガスとを供給することで、ウエハW上にシリコン酸化(SiO2)膜を形成する例について説明する。なお、以下の説明において、処理装置2を構成する各部の動作はコントローラ100により制御される。
(ウエハチャージおよびボートロード)
 複数枚のウエハWがボート26に装填(ウエハチャージ)されると、ボート26は、ボートエレベータ32によって処理室14内に搬入(ボートロード)され、反応容器11の開口部は蓋部22によって気密に閉塞(シール)された状態となる。
(圧力調整および温度調整)
 処理室14内が所定の圧力(真空度)となるように、真空ポンプ52によって真空排気(減圧排気)される。処理室14内の圧力は、圧力センサ48で測定され、この測定された圧力情報に基づきAPCバルブ50がフィードバック制御される。また、処理室14内のウエハWが所定の温度となるように、ヒータ12および第1加熱部58Aによって加熱される。この際、処理室14が所定の温度分布となるように、温度検出部16が検出した温度情報に基づきヒータ12および第1加熱部58Aへの通電具合がフィードバック制御される。また、第2加熱部58Bおよび第3加熱部58Cによる加熱も開始される。さらに、回転機構30によるボート26およびウエハWの回転を開始する。
(成膜処理)
[原料ガス供給工程]
 処理室14内の温度が予め設定された処理温度に安定すると、処理室14内のウエハWに対してHCDSガスを供給する。HCDSガスは、MFC38aにて所望の流量となるように制御され、ガス供給管36aおよびノズル44aを介して処理室14内に供給される。
[原料ガス排気工程]
 次に、HCDSガスの供給を停止し、真空ポンプ52により処理室14内を真空排気する。この時、不活性ガス供給部から不活性ガスとしてNガスを処理室14内に供給しても良い(不活性ガスパージ)。
[反応ガス供給工程]
 次に、処理室14内のウエハWに対してO2ガスを供給する。O2ガスは、MFC38bにて所望の流量となるように制御され、ガス供給管36bおよびノズル44bを介して処理室14内に供給される。
[反応ガス排気工程]
 次に、O2ガスの供給を停止し、真空ポンプ52により処理室14内を真空排気する。この時、不活性ガス供給部からNガスを処理室14内に供給しても良い(不活性ガスパージ)。
 上述した4つの工程を行うサイクルを所定回数(1回以上)行うことにより、ウエハW上に、所定組成および所定膜厚のSiO2膜を形成することができる。
(ボートアンロードおよびウエハディスチャージ)
 所定膜厚の膜を形成した後、不活性ガス供給部からNガスが供給され、処理室14内がNガスに置換されると共に、処理室14の圧力が常圧に復帰される。その後、ボートエレベータ32により蓋部22が降下されて、ボート26が反応容器11から搬出(ボートアンロード)される。その後、処理済ウエハWはボート26より取出される(ウエハディスチャージ)。
 ウエハWにSiO2膜を形成する際の処理条件としては、例えば、下記が例示される。
 処理温度(ウエハ温度):300℃~700℃、
 処理圧力(処理室内圧力)1Pa~4000Pa、
 HCDSガス:100sccm~10000sccm、
 O2ガス:100sccm~10000sccm、
 N2ガス:100sccm~10000sccm、
 それぞれの処理条件を、それぞれの範囲内の値に設定することで、成膜処理を適正に進行させることが可能となる。
 成膜処理時の加熱部58の加熱温度は、第1加熱部58Aを処理温度と同等程度、第2加熱部58Bを第1加熱部58Aより低い温度であり、炉口部に副生成物が付着しない程度の温度、例えば200~300℃とする。第2加熱部58Bが第1加熱部58Aより高い温度の場合、炉口部付近で処理ガスが分解してしまったり、処理室14内の温度均一性が悪化してしまったりする場合がある。第3加熱部58Cを第2加熱部58Bより低い温度、例えば150℃程度とする。第3加熱部58Cが第2加熱部58Bより高い温度の場合、回転軸28に副生成物が付着してしまう場合がある。
<本実施形態による効果>
 本実施形態によれば、以下に示す1つ又は複数の効果が得られる。
 (1)カバー部を入れ子形状(中央凸状)とすることにより、断熱部を処理室外部に設置することができる。これにより、断熱部の材質に起因するウエハの悪影響を抑制することができ、品質を向上させることができる。さらに、断熱部が処理室外部にあるため、処理室内部の容積を減らすことができ、減圧・昇圧時間を短縮することができ、スループットを向上させることができる。
 (2)断熱部を処理室外部に設置することにより、断熱部の材質を任意に選択することができる。例えば、断熱材として断熱効果の高い材質を選択することにより、断熱領域を短くすることができ、プロダクト領域を拡げることができる。これにより、生産性を向上させることができる。また、より高温のプロセスに対応することが可能となる。さらに、断熱材として熱容量の小さな材質を選択することで、昇温時のリカバリ時間を短くすることができ、生産性をさらに上げることができる。断熱材を処理室内部に配置する場合、断熱材の材質に起因する汚染が発生するため、断熱材の材質は石英やSiCなどに限られてしまうことがある。
(3)カバー部の内側に加熱部を設置することにより、メインヒータによる処理室内の加熱を補助することができ、処理室内の温度勾配を小さくすることができ、プロセスの安定性を向上させることができる。
 (4)カバー部内に第2加熱部(外側ヒータ)を設置することにより、断熱領域の処理ガスが接触する壁表面を加熱し、表面温度を高くすることができ、副生成物の付着を抑制することができる。これにより、パーティクルの発生を抑制することができ、メンテナンスサイクルを長くすることができる。また、第2加熱部を高さ方向に複数ゾーン分割することによって、任意の高さを任意の温度に設定することができ、より効果的に副生成物の付着を抑制することができる。
(5)カバー部内に第1加熱部(上方ヒータ)を設置することにより、処理室下方のウエハを高速に昇温でき、リカバリ時間を短くすることができる。ボート最下部にはウエハ領域の温度を均一に保つためのダミーウエハを設置することがあるが、本実施形態によれば、第1加熱部による加熱を好適に制御することができるため、ウエハから逃げる分の熱を補完でき、ダミーウエハを設置する必要がない。これにより、均熱長を伸ばすことができるため、ウエハ処理枚数を増やすことができ、生産性を向上させることができる。
 以上、本発明の実施形態を具体的に説明した。しかしながら、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
(変形例1)
 図4に示すように、カバー部56の天井の中央部が上方へ突出するように、カバー部56の天井に段差をつけても良い。このような構成により、処理室14下方のウエハWの中心部分を集中的に加熱することができるため、処理室14下方のウエハWの成膜均一性を向上させることができる。
(変形例2)
 図5に示すように、第1加熱部58Aを内側加熱部58Aと外側加熱部58Aとに分割しても良い。さらに、第1加熱部58Aを面状の加熱部ではなく、環状の加熱部としても良い。外側加熱部58Aの高さを内側加熱部58Aの高さよりも低くしたり、内側加熱部58Aの温度を外側加熱部58Aの温度よりも高くしたりすることにより、処理室14下方の温度均一性を向上させることができる。また、第1加熱部58Aを半径方向に複数ゾーン分割することによって、ウエハ領域最下部の面内温度分布を調整することができる。
(変形例3)
 図6に示すように、カバー部56の天井を一部傾斜するように形成しても良い。さらに、図7に示すように、カバー部56の天井を全面傾斜するように、中心から径方向外向きに向けて斜めに下がるように形成しても良い。このような構成により、ウエハに与える熱量を調整することができる。
(変形例4)
 図8に示すように、断熱部24内を冷却するように冷却通路を設置し、冷却通路に冷媒を流すよう構成された冷却部60を設置しても良い。降温時には冷却通路に冷媒を流すことにより断熱部24を急速に冷却することができ、降温時間を短縮することができる。冷媒としては、例えば水やエアを流すことができる。
 なお、上述の実施形態や変形例は、適宜組み合わせて用いることができる。以上のように断熱部を処理室外部に配置することによって断熱材の材質の選択が自在となり、また加熱・冷却機構を設置することができるようになり、昇温・降温時の応答性や定常時の断熱性、制御性などを向上させることが可能となる。
 処理室内の昇温時間を短くし、かつ、ダミーウエハをなくすことにより生産性を向上させることができる。
     2       処理装置
    24      断熱部
     56      カバー部
     58      加熱部
 

Claims (13)

  1.  基板を保持する基板保持体を内部に収容する反応容器と、
     前記反応容器下端の開口部を閉塞する蓋部と、
     前記蓋部を覆うカバー部と、を備え、
     前記カバー部は、
     前記反応容器内に突出するように形成された中高部と、
     前記中高部の下端に形成され、前記蓋部および前記反応容器との間に配置されるフランジ部と、を有し、
     前記中高部の内側の中空部分には断熱部が設置され、前記断熱部と前記中高部との間には加熱部が設置される基板処理装置。
  2.  前記加熱部は、前記中高部の天井の内側に設置される第1加熱部と、前記中高部の前記反応容器側の側面の内側に設置される第2加熱部とで構成される請求項1記載の基板処理装置。
  3.  前記中高部の中央に貫通孔が形成され、前記貫通孔には前記基板保持体に接続される回転軸が挿通される請求項2記載の基板処理装置。
  4.  前記加熱部は、前記中高部の前記貫通孔側の側面に設置される第3加熱部をさらに備える請求項3記載の基板処理装置。
  5.  前記第1加熱部の加熱温度は前記第2加熱部の加熱温度より高く、前記第3加熱部の加熱温度は前記第2加熱部の加熱温度より低い請求項4記載の基板処理装置。
  6.  前記中高部の天井は、少なくとも一部分が傾斜になっている請求項4記載の基板処理装置。
  7.  前記中高部の天井は、全面が傾斜になっている請求項6記載の基板処理装置。
  8.  前記中高部の天井は、段差がつけられている請求項4記載の基板処理装置。
  9.  前記第1加熱部は内側加熱部と外側加熱部とに分割されている請求項4記載の基板処理装置。
  10.  前記内側加熱部と前記外側加熱部は、それぞれ環状の加熱部である請求項9記載の基板処理装置。
  11.  前記断熱部内部に前記断熱部を冷却する冷却部を設置する請求項4記載の基板処理装置。
  12.  反応容器内に基板を保持する基板保持体を収容し、前記反応容器下端の開口部をカバー部によって覆われた蓋部で閉塞する工程と、
     前記反応容器内で前記基板を処理する工程と、を備え、
     前記基板を処理する工程では、
     前記反応容器内に突出するように形成され、その内側の中空部分に断熱部が設置された中高部と、前記中高部の下端に形成され、前記蓋部および前記開口部との間に配置されるフランジ部と、を有する前記カバー部の前記断熱部と前記中高部との間に設置された加熱部によって前記反応容器内が加熱される半導体装置の製造方法。
  13.  基板処理装置の反応容器内に基板を保持する基板保持体を収容し、前記反応容器下端の開口部をカバー部によって覆われた蓋部で閉塞する手順と、
     前記反応容器内で前記基板を処理する手順と、を備え、
     前記基板を処理する手順では、
     前記反応容器内に突出するように形成され、その内側の中空部分に断熱部が設置された中高部と、前記中高部の下端に形成され、前記蓋部および前記開口部との間に配置されるフランジ部と、を有する前記カバー部の前記断熱部と前記中高部との間に設置された加熱部によって前記反応容器内が加熱される手順と、を有するコンピュータによって前記基板処理装置に実行させるプログラム。
     
PCT/JP2017/005888 2017-02-17 2017-02-17 基板処理装置、半導体装置の製造方法およびプログラム WO2018150537A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019500127A JP6736755B2 (ja) 2017-02-17 2017-02-17 基板処理装置、半導体装置の製造方法およびプログラム
PCT/JP2017/005888 WO2018150537A1 (ja) 2017-02-17 2017-02-17 基板処理装置、半導体装置の製造方法およびプログラム
KR1020187011350A KR102127130B1 (ko) 2017-02-17 2017-02-17 기판 처리 장치, 반도체 장치의 제조 방법 및 프로그램

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/005888 WO2018150537A1 (ja) 2017-02-17 2017-02-17 基板処理装置、半導体装置の製造方法およびプログラム

Publications (1)

Publication Number Publication Date
WO2018150537A1 true WO2018150537A1 (ja) 2018-08-23

Family

ID=63170140

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/005888 WO2018150537A1 (ja) 2017-02-17 2017-02-17 基板処理装置、半導体装置の製造方法およびプログラム

Country Status (3)

Country Link
JP (1) JP6736755B2 (ja)
KR (1) KR102127130B1 (ja)
WO (1) WO2018150537A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11219096B2 (en) 2018-12-05 2022-01-04 Kokusai Electric Corporation Substrate processing apparatus and furnace opening assembly thereof
KR20240026092A (ko) 2022-08-19 2024-02-27 도쿄엘렉트론가부시키가이샤 열처리 장치
JP7502009B2 (ja) 2018-10-03 2024-06-18 エーエスエム・アイピー・ホールディング・ベー・フェー 基材処理装置および方法
KR102722486B1 (ko) 2018-10-03 2024-10-25 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치 및 방법

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01236615A (ja) * 1987-11-21 1989-09-21 Tel Sagami Ltd 縦型熱処理装置
JPH01273311A (ja) * 1988-02-11 1989-11-01 Soehlbrand Heinrich 半導体材料の熱処理方法とその装置
JPH0286123A (ja) * 1988-09-22 1990-03-27 Toshiba Corp 半導体熱処理装置
JPH02218117A (ja) * 1989-02-17 1990-08-30 Tel Sagami Ltd 熱処理装置
JP2001156005A (ja) * 1999-11-30 2001-06-08 Tokyo Electron Ltd 縦型熱処理装置及び熱処理方法
JP2002025911A (ja) * 2000-07-03 2002-01-25 Tokyo Electron Ltd 熱処理装置及びそのシール方法
JP2003218040A (ja) * 2002-01-24 2003-07-31 Hitachi Ltd 半導体製造装置
JP2005533378A (ja) * 2002-07-15 2005-11-04 アヴィザ テクノロジー インコーポレイテッド 熱処理装置及び設定可能な垂直チャンバ
JP2007180331A (ja) * 2005-12-28 2007-07-12 Ishikawajima Harima Heavy Ind Co Ltd 熱処理装置
JP2013021336A (ja) * 2011-07-13 2013-01-31 Asm Internatl Nv 加熱式回転基板支持体を有するウエハ処理装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001015605A (ja) 1999-06-30 2001-01-19 Matsushita Electric Ind Co Ltd 半導体集積回路の設計方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01236615A (ja) * 1987-11-21 1989-09-21 Tel Sagami Ltd 縦型熱処理装置
JPH01273311A (ja) * 1988-02-11 1989-11-01 Soehlbrand Heinrich 半導体材料の熱処理方法とその装置
JPH0286123A (ja) * 1988-09-22 1990-03-27 Toshiba Corp 半導体熱処理装置
JPH02218117A (ja) * 1989-02-17 1990-08-30 Tel Sagami Ltd 熱処理装置
JP2001156005A (ja) * 1999-11-30 2001-06-08 Tokyo Electron Ltd 縦型熱処理装置及び熱処理方法
JP2002025911A (ja) * 2000-07-03 2002-01-25 Tokyo Electron Ltd 熱処理装置及びそのシール方法
JP2003218040A (ja) * 2002-01-24 2003-07-31 Hitachi Ltd 半導体製造装置
JP2005533378A (ja) * 2002-07-15 2005-11-04 アヴィザ テクノロジー インコーポレイテッド 熱処理装置及び設定可能な垂直チャンバ
JP2007180331A (ja) * 2005-12-28 2007-07-12 Ishikawajima Harima Heavy Ind Co Ltd 熱処理装置
JP2013021336A (ja) * 2011-07-13 2013-01-31 Asm Internatl Nv 加熱式回転基板支持体を有するウエハ処理装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7502009B2 (ja) 2018-10-03 2024-06-18 エーエスエム・アイピー・ホールディング・ベー・フェー 基材処理装置および方法
KR102722486B1 (ko) 2018-10-03 2024-10-25 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치 및 방법
US11219096B2 (en) 2018-12-05 2022-01-04 Kokusai Electric Corporation Substrate processing apparatus and furnace opening assembly thereof
KR20240026092A (ko) 2022-08-19 2024-02-27 도쿄엘렉트론가부시키가이샤 열처리 장치

Also Published As

Publication number Publication date
KR102127130B1 (ko) 2020-06-26
JPWO2018150537A1 (ja) 2019-12-12
KR20180109844A (ko) 2018-10-08
JP6736755B2 (ja) 2020-08-05

Similar Documents

Publication Publication Date Title
US11495477B2 (en) Substrate processing apparatus
JP6621921B2 (ja) 基板処理装置、半導体装置の製造方法および記録媒体
US8417394B2 (en) Substrate processing apparatus, semiconductor device manufacturing method and temperature controlling method
JP2020017757A (ja) 基板処理装置、反応容器および半導体装置の製造方法
KR102043876B1 (ko) 기판 처리 장치 및 반도체 장치의 제조 방법
JP7236922B2 (ja) 熱処理装置、熱処理方法及び成膜方法
JP2018049853A (ja) 基板処理装置、半導体装置の製造方法および記録媒体
JP2020013967A (ja) 熱処理装置及び熱処理方法
WO2018150537A1 (ja) 基板処理装置、半導体装置の製造方法およびプログラム
WO2019058553A1 (ja) 基板処理装置、石英反応管、クリーニング方法並びにプログラム
JP6715894B2 (ja) 半導体装置の製造方法、基板処理装置およびプログラム
JP7158533B2 (ja) 基板処理装置、半導体装置の製造方法、プログラムおよび記録媒体
JP6591711B2 (ja) 基板処理装置、半導体装置の製造方法および記録媒体
JP6616917B2 (ja) 基板処理装置、半導体装置の製造方法および記録媒体
JP6561148B2 (ja) 基板処理装置、継手部および半導体装置の製造方法
JP2023005462A (ja) 成膜装置
JP2020092163A (ja) 基板処理装置及び半導体装置の製造方法
WO2020059110A1 (ja) 半導体装置の製造方法、基板処理装置およびプログラム
JP6680895B2 (ja) 基板処理装置、半導体装置の製造方法およびプログラム
JP7364547B2 (ja) 半導体装置の製造方法、基板処理装置およびプログラム
JP2019135776A (ja) 基板処理装置、半導体装置の製造方法および記録媒体
JP7317912B2 (ja) 炉口部構造、基板処理装置、および半導体装置の製造方法
JP6625256B2 (ja) 基板処理装置、半導体装置の製造方法および記録媒体
WO2024195077A1 (ja) 基板処理装置、基板処理方法、半導体装置の製造方法及びプログラム
US20240093813A1 (en) Conversion pipe arrangement, substrate processing apparatus, method of processing substrate, and method of manufacturing semiconductor device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187011350

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17896536

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019500127

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17896536

Country of ref document: EP

Kind code of ref document: A1