WO2018149387A1 - 一种动态非高斯结构监测数据异常识别方法 - Google Patents

一种动态非高斯结构监测数据异常识别方法 Download PDF

Info

Publication number
WO2018149387A1
WO2018149387A1 PCT/CN2018/076577 CN2018076577W WO2018149387A1 WO 2018149387 A1 WO2018149387 A1 WO 2018149387A1 CN 2018076577 W CN2018076577 W CN 2018076577W WO 2018149387 A1 WO2018149387 A1 WO 2018149387A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
monitoring data
dynamic
gaussian
whiten
Prior art date
Application number
PCT/CN2018/076577
Other languages
English (en)
French (fr)
Inventor
伊廷华
黄海宾
李宏男
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学 filed Critical 大连理工大学
Priority to US16/090,911 priority Critical patent/US11003738B2/en
Publication of WO2018149387A1 publication Critical patent/WO2018149387A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/18Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/213Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods
    • G06F18/2134Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods based on separation criteria, e.g. independent component analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/213Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods
    • G06F18/2135Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods based on approximation criteria, e.g. principal component analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/29Graphical models, e.g. Bayesian networks
    • G06F18/295Markov models or related models, e.g. semi-Markov models; Markov random fields; Networks embedding Markov models
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0008Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings of bridges
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • G06F2218/08Feature extraction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • G06F2218/12Classification; Matching

Definitions

  • the invention belongs to the field of civil engineering structural health monitoring, and proposes a dynamic non-Gaussian structure monitoring data anomaly identification method.
  • the anomaly identification of structural monitoring data is mainly realized by statistical methods. It is generally divided into two categories: 1) single variable control maps, such as Shewhart control charts, accumulation and control charts, etc. The monitoring data respectively establish control charts to identify anomalies in the monitoring data; 2) multivariate statistical analysis, such as principal component analysis, independent component analysis, etc., which uses a correlation between multiple measurement points to establish a statistical model. And define the corresponding statistics to identify the anomalies in the monitoring data.
  • the present invention aims to propose a dynamic non-Gaussian structure monitoring data modeling method, on the basis of which two statistics are defined for identifying anomalies in the data.
  • the technical solution is: first, define the past and current observation vectors for the monitoring data, and pre-whiten them; secondly, the past and current observations after the whitening

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Evolutionary Computation (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Physics (AREA)
  • Databases & Information Systems (AREA)
  • Probability & Statistics with Applications (AREA)
  • Operations Research (AREA)
  • Algebra (AREA)
  • Software Systems (AREA)
  • Computer Hardware Design (AREA)
  • Geometry (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)

Abstract

一种动态非高斯结构监测数据异常识别方法,属于土木工程结构健康监测领域。首先,对监测数据定义过去和当前观测向量,并对其进行预白化;其次,对白化后的过去和当前观测向量建立统计相关模型,得到动态白化数据;接着,将动态白化数据划分为系统相关和系统无关部分,并对其进行独立分量分析建模;最后,分别定义两个统计量并确定其控制限,当统计量超过控制限时判断监测数据中存在异常。由于同时考虑了结构监测数据的非高斯性和动态特性,基于此定义的统计量可有效识别数据中的异常。

Description

一种动态非高斯结构监测数据异常识别方法 技术领域
本发明属于土木工程结构健康监测领域,提出了一种动态非高斯结构监测数据异常识别方法。
背景技术
土木工程结构在长期荷载、环境侵蚀和疲劳效应等因素的共同作用下,其服役性能的退化不可避免。深入分析结构监测数据,可以及时发现结构的异常状态并提供准确的安全预警,对确保土木工程结构的安全运营具有重要的现实意义。目前,结构监测数据的异常识别主要通过统计方法实现,一般分为两大类:1)单变量控制图,如休哈特控制图、累积和控制图等,该类方法对每个测点的监测数据分别建立控制图,以识别监测数据中的异常;2)多变量统计分析,如主成分分析、独立分量分析等,该类方法利用多测点监测数据之间的相关性建立统计模型,并定义相应的统计量以识别监测数据中的异常。
由于结构变形的连续性,结构相邻测点的响应数据之间也具有相关性。实际工程应用中,能够考虑这种相关性的多变量统计分析方法更具优越性。然而,由于结构的非线性和测量噪声的复杂性等因素,结构监测数据往往呈现非高斯性;此外,结构监测数据中也存在动态特性(即自相关性)。若能在结构监测数据建模过程中同时考虑非高斯性和动态特性,则可提升多变量统计分析方法的异常识别能力,使其在工程应用中更具实用价值。
发明内容
本发明旨在提出一种动态非高斯结构监测数据建模方法,在此基础上定义两个统计量用于识别数据中的异常。其技术方案是:首先,对监测数据定义过去和当前观测向量,并对其进行预白化;其次,对白化后的过去和当前观测向

Claims (1)

  1. Figure PCTCN2018076577-appb-100001
PCT/CN2018/076577 2017-02-16 2018-02-12 一种动态非高斯结构监测数据异常识别方法 WO2018149387A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/090,911 US11003738B2 (en) 2017-02-16 2018-02-12 Dynamically non-gaussian anomaly identification method for structural monitoring data

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710084131.6 2017-02-16
CN201710084131.6A CN106897509B (zh) 2017-02-16 2017-02-16 一种动态非高斯结构监测数据异常识别方法

Publications (1)

Publication Number Publication Date
WO2018149387A1 true WO2018149387A1 (zh) 2018-08-23

Family

ID=59184032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/076577 WO2018149387A1 (zh) 2017-02-16 2018-02-12 一种动态非高斯结构监测数据异常识别方法

Country Status (3)

Country Link
US (1) US11003738B2 (zh)
CN (1) CN106897509B (zh)
WO (1) WO2018149387A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112560165A (zh) * 2020-06-11 2021-03-26 中车青岛四方机车车辆股份有限公司 一种城轨车辆及其客室车门故障诊断方法
CN114415609A (zh) * 2021-12-22 2022-04-29 华东理工大学 一种基于多子空间划分的动态过程精细化监测方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106897509B (zh) 2017-02-16 2020-06-16 大连理工大学 一种动态非高斯结构监测数据异常识别方法
CN109682561B (zh) * 2019-02-19 2020-06-16 大连理工大学 一种自动检测高速铁路桥梁自由振动响应以识别模态的方法
CN111242632A (zh) * 2020-01-07 2020-06-05 石化盈科信息技术有限责任公司 一种识别套现账户的方法、存储介质及电子设备
CN111474911B (zh) * 2020-04-28 2021-03-16 浙江浙能技术研究院有限公司 面向高端燃煤发电装备非平稳运行的高斯非高斯特征协同解析与监测方法
US11676071B2 (en) * 2020-06-30 2023-06-13 Oracle International Corporation Identifying and ranking anomalous measurements to identify faulty data sources in a multi-source environment
CN113722996B (zh) * 2021-08-31 2024-10-29 重庆大学 基于k近邻算法的桥梁损伤诊断方法
CN116484213A (zh) * 2022-12-13 2023-07-25 山东省交通规划设计院集团有限公司 基于投影重构与深度学习的公路结构健康预测方法及系统
CN117202077B (zh) * 2023-11-03 2024-03-01 恩平市海天电子科技有限公司 一种麦克风智能校正方法
CN118195641B (zh) * 2024-05-17 2024-08-06 智联信通科技股份有限公司 一种基于区块链的智能制造领域生产全流程溯源方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102323049A (zh) * 2011-07-18 2012-01-18 福州大学 数据不完备下基于一致性数据替换的结构异常检测方法
CN103116804A (zh) * 2013-01-31 2013-05-22 苏州科技学院 一种模糊神经网络模型及深基坑变形智能预测方法
CN103234753A (zh) * 2013-04-11 2013-08-07 华北电力大学 基于高斯过程建模的风电机组轴系状态监测方法
CN106384300A (zh) * 2016-09-27 2017-02-08 山东建筑大学 基于大数据和模糊模型的建筑异常用能检测方法及系统
CN106897509A (zh) * 2017-02-16 2017-06-27 大连理工大学 一种动态非高斯结构监测数据异常识别方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6892163B1 (en) * 2002-03-08 2005-05-10 Intellectual Assets Llc Surveillance system and method having an adaptive sequential probability fault detection test
US7590513B2 (en) * 2006-01-30 2009-09-15 Nec Laboratories America, Inc. Automated modeling and tracking of transaction flow dynamics for fault detection in complex systems
US9843596B1 (en) * 2007-11-02 2017-12-12 ThetaRay Ltd. Anomaly detection in dynamically evolving data and systems
CN101403923A (zh) * 2008-10-31 2009-04-08 浙江大学 基于非高斯成分提取和支持向量描述的过程监控方法
US20140108324A1 (en) * 2012-10-12 2014-04-17 Nec Laboratories America, Inc. Data analytic engine towards the self-management of complex physical systems
US20140278303A1 (en) * 2013-03-15 2014-09-18 Wallace LARIMORE Method and system of dynamic model identification for monitoring and control of dynamic machines with variable structure or variable operation conditions
CN104392136B (zh) * 2014-11-28 2017-12-19 东南大学 一种面向高动态非高斯模型鲁棒测量的高精度数据融合方法
CN104656635B (zh) * 2014-12-31 2017-10-13 重庆科技学院 非高斯动态高含硫天然气净化过程异常检测与诊断方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102323049A (zh) * 2011-07-18 2012-01-18 福州大学 数据不完备下基于一致性数据替换的结构异常检测方法
CN103116804A (zh) * 2013-01-31 2013-05-22 苏州科技学院 一种模糊神经网络模型及深基坑变形智能预测方法
CN103234753A (zh) * 2013-04-11 2013-08-07 华北电力大学 基于高斯过程建模的风电机组轴系状态监测方法
CN106384300A (zh) * 2016-09-27 2017-02-08 山东建筑大学 基于大数据和模糊模型的建筑异常用能检测方法及系统
CN106897509A (zh) * 2017-02-16 2017-06-27 大连理工大学 一种动态非高斯结构监测数据异常识别方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112560165A (zh) * 2020-06-11 2021-03-26 中车青岛四方机车车辆股份有限公司 一种城轨车辆及其客室车门故障诊断方法
CN114415609A (zh) * 2021-12-22 2022-04-29 华东理工大学 一种基于多子空间划分的动态过程精细化监测方法

Also Published As

Publication number Publication date
CN106897509B (zh) 2020-06-16
US20190121838A1 (en) 2019-04-25
CN106897509A (zh) 2017-06-27
US11003738B2 (en) 2021-05-11

Similar Documents

Publication Publication Date Title
WO2018149387A1 (zh) 一种动态非高斯结构监测数据异常识别方法
CN105158084B (zh) 一种材料的蠕变‑疲劳寿命预测方法
CN103576594B (zh) 一种基于张量全局-局部保持投影的间歇过程在线监控方法
CN105653851B (zh) 基于分阶段物理模型及粒子滤波的滚动轴承剩余寿命预测方法
CN106644464A (zh) 一种基于载荷谱分析的轧机传动系统关键零部件的疲劳寿命预警方法
CN104699050A (zh) 数据驱动的卷烟制丝过程制叶丝段在线监测和故障诊断方法
CN103279123A (zh) 对间歇控制系统进行分段故障监视的方法
US10943174B2 (en) Anomaly identification method for structural monitoring data considering spatial-temporal correlation
CN103336901A (zh) 一种竞争失效相关加速寿命试验统计分析方法
CN102831265A (zh) 一种锻造穿流和粗晶缺陷的分析及预防方法
CN104503436B (zh) 一种基于随机投影和k近邻的快速故障检测方法
CN103105477A (zh) 一种预测锻态钢锻造裂纹萌生的方法
CN110363339A (zh) 一种基于电机参数进行预测性维护的方法与系统
CN108490908A (zh) 一种面向百万千瓦超超临界机组变工况运行的动态分布式监测方法
Ompusunggu Pengaruh budaya organisasi dan motivasi kerja terhadap kinerja karyawan pada PT Amtek engineering Batam
CN106407555A (zh) 基于加速因子不变原则的加速退化数据分析方法
CN108875276A (zh) 一种数据驱动的闭环系统稳定性监测方法
CN108646573B (zh) 一种数据驱动的闭环系统稳定裕度确定方法
CN111045415A (zh) 一种基于局部概率密度双子空间的多模态过程故障检测方法
CN114417573A (zh) 一种基于随机子空间模态参数识别的结构健康监测方法
CN107818184B (zh) 一种构建材料变形抗力模型的方法
CN112685912B (zh) 一种多元广义Wiener过程性能退化可靠性分析方法
Fan et al. The analysis to tertiary-industry with ARIMAX model
CN110441081A (zh) 一种旋转机械故障的智能诊断方法及智能诊断系统
CN107203497B (zh) 一种基于偏最小二乘法的生物特征标记物提取方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18753727

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18753727

Country of ref document: EP

Kind code of ref document: A1