WO2018149387A1 - 一种动态非高斯结构监测数据异常识别方法 - Google Patents
一种动态非高斯结构监测数据异常识别方法 Download PDFInfo
- Publication number
- WO2018149387A1 WO2018149387A1 PCT/CN2018/076577 CN2018076577W WO2018149387A1 WO 2018149387 A1 WO2018149387 A1 WO 2018149387A1 CN 2018076577 W CN2018076577 W CN 2018076577W WO 2018149387 A1 WO2018149387 A1 WO 2018149387A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- data
- monitoring data
- dynamic
- gaussian
- whiten
- Prior art date
Links
- 238000012544 monitoring process Methods 0.000 title abstract description 18
- 238000000034 method Methods 0.000 title abstract description 9
- 230000002159 abnormal effect Effects 0.000 title abstract description 4
- 239000013598 vector Substances 0.000 abstract description 3
- 238000012880 independent component analysis Methods 0.000 abstract description 2
- 238000013179 statistical model Methods 0.000 abstract description 2
- 230000002087 whitening effect Effects 0.000 abstract description 2
- 230000005856 abnormality Effects 0.000 abstract 1
- 238000007619 statistical method Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 1
- 230000002301 combined effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 238000010921 in-depth analysis Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000000513 principal component analysis Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/18—Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/213—Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods
- G06F18/2134—Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods based on separation criteria, e.g. independent component analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/213—Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods
- G06F18/2135—Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods based on approximation criteria, e.g. principal component analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/29—Graphical models, e.g. Bayesian networks
- G06F18/295—Markov models or related models, e.g. semi-Markov models; Markov random fields; Networks embedding Markov models
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M5/00—Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
- G01M5/0008—Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings of bridges
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2218/00—Aspects of pattern recognition specially adapted for signal processing
- G06F2218/08—Feature extraction
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2218/00—Aspects of pattern recognition specially adapted for signal processing
- G06F2218/12—Classification; Matching
Definitions
- the invention belongs to the field of civil engineering structural health monitoring, and proposes a dynamic non-Gaussian structure monitoring data anomaly identification method.
- the anomaly identification of structural monitoring data is mainly realized by statistical methods. It is generally divided into two categories: 1) single variable control maps, such as Shewhart control charts, accumulation and control charts, etc. The monitoring data respectively establish control charts to identify anomalies in the monitoring data; 2) multivariate statistical analysis, such as principal component analysis, independent component analysis, etc., which uses a correlation between multiple measurement points to establish a statistical model. And define the corresponding statistics to identify the anomalies in the monitoring data.
- the present invention aims to propose a dynamic non-Gaussian structure monitoring data modeling method, on the basis of which two statistics are defined for identifying anomalies in the data.
- the technical solution is: first, define the past and current observation vectors for the monitoring data, and pre-whiten them; secondly, the past and current observations after the whitening
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Evolutionary Computation (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Artificial Intelligence (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Computational Mathematics (AREA)
- Mathematical Analysis (AREA)
- Mathematical Physics (AREA)
- Databases & Information Systems (AREA)
- Probability & Statistics with Applications (AREA)
- Operations Research (AREA)
- Algebra (AREA)
- Software Systems (AREA)
- Computer Hardware Design (AREA)
- Geometry (AREA)
- Testing And Monitoring For Control Systems (AREA)
- Testing Or Calibration Of Command Recording Devices (AREA)
Abstract
一种动态非高斯结构监测数据异常识别方法,属于土木工程结构健康监测领域。首先,对监测数据定义过去和当前观测向量,并对其进行预白化;其次,对白化后的过去和当前观测向量建立统计相关模型,得到动态白化数据;接着,将动态白化数据划分为系统相关和系统无关部分,并对其进行独立分量分析建模;最后,分别定义两个统计量并确定其控制限,当统计量超过控制限时判断监测数据中存在异常。由于同时考虑了结构监测数据的非高斯性和动态特性,基于此定义的统计量可有效识别数据中的异常。
Description
本发明属于土木工程结构健康监测领域,提出了一种动态非高斯结构监测数据异常识别方法。
土木工程结构在长期荷载、环境侵蚀和疲劳效应等因素的共同作用下,其服役性能的退化不可避免。深入分析结构监测数据,可以及时发现结构的异常状态并提供准确的安全预警,对确保土木工程结构的安全运营具有重要的现实意义。目前,结构监测数据的异常识别主要通过统计方法实现,一般分为两大类:1)单变量控制图,如休哈特控制图、累积和控制图等,该类方法对每个测点的监测数据分别建立控制图,以识别监测数据中的异常;2)多变量统计分析,如主成分分析、独立分量分析等,该类方法利用多测点监测数据之间的相关性建立统计模型,并定义相应的统计量以识别监测数据中的异常。
由于结构变形的连续性,结构相邻测点的响应数据之间也具有相关性。实际工程应用中,能够考虑这种相关性的多变量统计分析方法更具优越性。然而,由于结构的非线性和测量噪声的复杂性等因素,结构监测数据往往呈现非高斯性;此外,结构监测数据中也存在动态特性(即自相关性)。若能在结构监测数据建模过程中同时考虑非高斯性和动态特性,则可提升多变量统计分析方法的异常识别能力,使其在工程应用中更具实用价值。
发明内容
本发明旨在提出一种动态非高斯结构监测数据建模方法,在此基础上定义两个统计量用于识别数据中的异常。其技术方案是:首先,对监测数据定义过去和当前观测向量,并对其进行预白化;其次,对白化后的过去和当前观测向
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/090,911 US11003738B2 (en) | 2017-02-16 | 2018-02-12 | Dynamically non-gaussian anomaly identification method for structural monitoring data |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710084131.6A CN106897509B (zh) | 2017-02-16 | 2017-02-16 | 一种动态非高斯结构监测数据异常识别方法 |
CN201710084131.6 | 2017-02-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018149387A1 true WO2018149387A1 (zh) | 2018-08-23 |
Family
ID=59184032
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/076577 WO2018149387A1 (zh) | 2017-02-16 | 2018-02-12 | 一种动态非高斯结构监测数据异常识别方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11003738B2 (zh) |
CN (1) | CN106897509B (zh) |
WO (1) | WO2018149387A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112560165A (zh) * | 2020-06-11 | 2021-03-26 | 中车青岛四方机车车辆股份有限公司 | 一种城轨车辆及其客室车门故障诊断方法 |
CN114415609A (zh) * | 2021-12-22 | 2022-04-29 | 华东理工大学 | 一种基于多子空间划分的动态过程精细化监测方法 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106897509B (zh) | 2017-02-16 | 2020-06-16 | 大连理工大学 | 一种动态非高斯结构监测数据异常识别方法 |
CN109682561B (zh) * | 2019-02-19 | 2020-06-16 | 大连理工大学 | 一种自动检测高速铁路桥梁自由振动响应以识别模态的方法 |
CN111242632A (zh) * | 2020-01-07 | 2020-06-05 | 石化盈科信息技术有限责任公司 | 一种识别套现账户的方法、存储介质及电子设备 |
CN111474911B (zh) * | 2020-04-28 | 2021-03-16 | 浙江浙能技术研究院有限公司 | 面向高端燃煤发电装备非平稳运行的高斯非高斯特征协同解析与监测方法 |
US11676071B2 (en) * | 2020-06-30 | 2023-06-13 | Oracle International Corporation | Identifying and ranking anomalous measurements to identify faulty data sources in a multi-source environment |
CN117202077B (zh) * | 2023-11-03 | 2024-03-01 | 恩平市海天电子科技有限公司 | 一种麦克风智能校正方法 |
CN118195641B (zh) * | 2024-05-17 | 2024-08-06 | 智联信通科技股份有限公司 | 一种基于区块链的智能制造领域生产全流程溯源方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102323049A (zh) * | 2011-07-18 | 2012-01-18 | 福州大学 | 数据不完备下基于一致性数据替换的结构异常检测方法 |
CN103116804A (zh) * | 2013-01-31 | 2013-05-22 | 苏州科技学院 | 一种模糊神经网络模型及深基坑变形智能预测方法 |
CN103234753A (zh) * | 2013-04-11 | 2013-08-07 | 华北电力大学 | 基于高斯过程建模的风电机组轴系状态监测方法 |
CN106384300A (zh) * | 2016-09-27 | 2017-02-08 | 山东建筑大学 | 基于大数据和模糊模型的建筑异常用能检测方法及系统 |
CN106897509A (zh) * | 2017-02-16 | 2017-06-27 | 大连理工大学 | 一种动态非高斯结构监测数据异常识别方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6892163B1 (en) * | 2002-03-08 | 2005-05-10 | Intellectual Assets Llc | Surveillance system and method having an adaptive sequential probability fault detection test |
US7590513B2 (en) * | 2006-01-30 | 2009-09-15 | Nec Laboratories America, Inc. | Automated modeling and tracking of transaction flow dynamics for fault detection in complex systems |
US9843596B1 (en) * | 2007-11-02 | 2017-12-12 | ThetaRay Ltd. | Anomaly detection in dynamically evolving data and systems |
CN101403923A (zh) * | 2008-10-31 | 2009-04-08 | 浙江大学 | 基于非高斯成分提取和支持向量描述的过程监控方法 |
US20140108324A1 (en) * | 2012-10-12 | 2014-04-17 | Nec Laboratories America, Inc. | Data analytic engine towards the self-management of complex physical systems |
US20140278303A1 (en) * | 2013-03-15 | 2014-09-18 | Wallace LARIMORE | Method and system of dynamic model identification for monitoring and control of dynamic machines with variable structure or variable operation conditions |
CN104392136B (zh) * | 2014-11-28 | 2017-12-19 | 东南大学 | 一种面向高动态非高斯模型鲁棒测量的高精度数据融合方法 |
CN104656635B (zh) * | 2014-12-31 | 2017-10-13 | 重庆科技学院 | 非高斯动态高含硫天然气净化过程异常检测与诊断方法 |
-
2017
- 2017-02-16 CN CN201710084131.6A patent/CN106897509B/zh not_active Expired - Fee Related
-
2018
- 2018-02-12 US US16/090,911 patent/US11003738B2/en active Active
- 2018-02-12 WO PCT/CN2018/076577 patent/WO2018149387A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102323049A (zh) * | 2011-07-18 | 2012-01-18 | 福州大学 | 数据不完备下基于一致性数据替换的结构异常检测方法 |
CN103116804A (zh) * | 2013-01-31 | 2013-05-22 | 苏州科技学院 | 一种模糊神经网络模型及深基坑变形智能预测方法 |
CN103234753A (zh) * | 2013-04-11 | 2013-08-07 | 华北电力大学 | 基于高斯过程建模的风电机组轴系状态监测方法 |
CN106384300A (zh) * | 2016-09-27 | 2017-02-08 | 山东建筑大学 | 基于大数据和模糊模型的建筑异常用能检测方法及系统 |
CN106897509A (zh) * | 2017-02-16 | 2017-06-27 | 大连理工大学 | 一种动态非高斯结构监测数据异常识别方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112560165A (zh) * | 2020-06-11 | 2021-03-26 | 中车青岛四方机车车辆股份有限公司 | 一种城轨车辆及其客室车门故障诊断方法 |
CN114415609A (zh) * | 2021-12-22 | 2022-04-29 | 华东理工大学 | 一种基于多子空间划分的动态过程精细化监测方法 |
Also Published As
Publication number | Publication date |
---|---|
US20190121838A1 (en) | 2019-04-25 |
US11003738B2 (en) | 2021-05-11 |
CN106897509B (zh) | 2020-06-16 |
CN106897509A (zh) | 2017-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018149387A1 (zh) | 一种动态非高斯结构监测数据异常识别方法 | |
CN105425779B (zh) | 基于局部邻域标准化和贝叶斯推断的ica-pca多工况故障诊断方法 | |
Amiri et al. | A parameters reduction method for monitoring multiple linear regression profiles | |
WO2018214348A1 (zh) | 千米深井提升机主轴多失效模式可靠性评估方法 | |
Shardt et al. | A new soft-sensor-based process monitoring scheme incorporating infrequent KPI measurements | |
CN109297689B (zh) | 一种引入权重因子的大型水力机械智能诊断方法 | |
JP6141235B2 (ja) | 時系列データにおける異常を検出する方法 | |
CN104880217B (zh) | 一种基于测量值关联度的故障传感器信息重构方法 | |
CN106897505B (zh) | 一种考虑时-空相关性的结构监测数据异常识别方法 | |
CN112443479A (zh) | 压缩机故障诊断方法、装置、存储介质及电子设备 | |
CN107491579B (zh) | 一种输电线路覆冰厚度及风速的联合概率计算方法及系统 | |
CN104503436B (zh) | 一种基于随机投影和k近邻的快速故障检测方法 | |
CN103995985B (zh) | 基于Daubechies小波变换和弹性网的故障检测方法 | |
CN107818184B (zh) | 一种构建材料变形抗力模型的方法 | |
CN105760672B (zh) | 一种机械设备故障诊断方法 | |
CN108169019B (zh) | 一种准静态塑性压缩应力应变参量的识别方法 | |
Fan et al. | The analysis to tertiary-industry with ARIMAX model | |
WO2019080489A1 (zh) | 一种基于并发偏最小二乘的过程故障检测方法 | |
Guo et al. | Stability of GM (1, 1) power model on vector transformation | |
WO2020007375A1 (zh) | 基于连续监测的风机1p信号识别方法、装置、终端与计算机可读存储介质 | |
CN105868638A (zh) | 一种智能终端漏洞挖掘与恶意行为检测方法 | |
CN104063617A (zh) | 一种基于降维超平面的多元线性回归方法 | |
Chang | Comparison of two sampling intervals and three sampling intervals VSI charts for monitoring both means and variances | |
MA20150452A1 (fr) | Processus analytique structurale d'evaluation et de refonte organisationnelle fondee sur le referentiel cmmi-dev | |
Amiri et al. | Statistical analysis of total process capability index in two-stage processes with measurement errors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18753727 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18753727 Country of ref document: EP Kind code of ref document: A1 |