CN104503436B - 一种基于随机投影和k近邻的快速故障检测方法 - Google Patents

一种基于随机投影和k近邻的快速故障检测方法 Download PDF

Info

Publication number
CN104503436B
CN104503436B CN201410739736.0A CN201410739736A CN104503436B CN 104503436 B CN104503436 B CN 104503436B CN 201410739736 A CN201410739736 A CN 201410739736A CN 104503436 B CN104503436 B CN 104503436B
Authority
CN
China
Prior art keywords
data
neighbours
sample
accidental projection
subspace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410739736.0A
Other languages
English (en)
Other versions
CN104503436A (zh
Inventor
杨春节
周哲
文成林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201410739736.0A priority Critical patent/CN104503436B/zh
Publication of CN104503436A publication Critical patent/CN104503436A/zh
Application granted granted Critical
Publication of CN104503436B publication Critical patent/CN104503436B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0259Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the response to fault detection
    • G05B23/0275Fault isolation and identification, e.g. classify fault; estimate cause or root of failure
    • G05B23/0278Qualitative, e.g. if-then rules; Fuzzy logic; Lookup tables; Symptomatic search; FMEA

Abstract

本发公开了一种基于随机投影和k近邻的快速故障检测方法,属于工业过程监控与诊断技术领域。本发明结合随机投影和k近邻方法,利用随机投影在距离保持方面的优势以及k近邻在处理数据非高斯、非线性和多工况等问题的优越性能,对工业过程进行监控。相比于现有的其他方法,本发明方法不仅可以降低计算复杂度,而且可以保证k近邻在降维子空间中的检测性能,实现快速准确的检测。

Description

一种基于随机投影和k近邻的快速故障检测方法
技术领域
本发明属于工业过程监控与故障诊断领域,特别涉及一种基于随机投影和k近邻的快速故障检测方法。
背景技术
对于过程监控和故障诊断问题,传统的方法大多采用多元统计过程监控技术(Multivariable Statistical Process Monitoring,MSPM),其中以主元分析(PrincipalComponent Analysis,PCA)和偏最小二乘(Partial Least Squares,PLS)为代表等方法已在工业过程监控中得到了成功的应用。传统的MSPM方法均假设过程数据服从高斯分布,变量之间是线性关系且数据来自单一的操作工况下,但是实际中测量数据难以满足这些假设条件,常呈现非高斯、非线性和多工况等特性。尽管,一些改进的方法,如针对非高斯ICA,核PCA(Kernel PCA)等也被提出。但是,当上述非高斯、非线性和多工况等特性同时存在的时,这些方法仍然无法很好地解决。
近年来,k近邻(k Nearest Neighbor,kNN)方法被提出用于解决上述问题。它利用样本之间的距离关系来判断异常情况,如果一个在线测试样本与正常的历史数据集中的近邻都相距较远,那么认为该样本是故障样本,判定过程发生异常情况。相反,如果该样本与正常的历史数据集中的近邻都相近,那么可以认为它是正常样本,判定过程处于正常运行状态。k近邻方法正是因为利用样本之间的局部距离关系,从而能够较好地解决上述问题。但是,k近邻进行在线检测时,需要进行近邻搜索和排序,对于高维的应用对象来说,计算量会急剧增加,从而无法及时地给出检测结果。因而,有研究者进一步提出PC-kNN方法,即先利用PCA对数据进行降维,然后在主元子空间中运用k近邻检测算法进行监控。
尽管,PC-kNN能够解决计算复杂度高的问题。但是,经过PCA降维后的样本之间的距离无法保证,即原空间中样本之间的距离在主元子空间中无法保证,这必然会影响kNN在主元子空间中的检测性能,因为kNN正是利用样本间的距离进行故障检测。也就是说,原空间中被判定为故障的样本(明显偏离正常样本集),有可能会在主元子空间中被判定为正常样本,即漏报;反之,在原空间中被判定为正常的样本(接近正常样本集),有可能会在主元子空间中被判定被异常样本,即误报。
发明内容
本发明的目的在针对现有技术的不足,提供一种基于随机投影和k近邻的快速故障检测方法,将随机投影在距离保留和k近邻在解决非高斯、非线性和多工况问题方面的优势相结合,实现快速有效地故障检测。
本发明提出的一种基于随机投影和k近邻的快速故障检测方法,包括以下各步骤:
步骤一:离线训练,收集过程正常运行工况的数据,构建随机投影矩阵,将正常数据进行降维,投影到随机子空间,根据降维后的数据,利用k近邻方法建立控制限;
步骤二:在线检测,采集在线运行数据,利用步骤一所述的随机投影矩阵将其投影到随机子空间,并在子空间中计算k近邻距离,如果该k近邻距离超出步骤一所建立的控制限,则报警。
所述的步骤一:离线训练
1)收集过程正常运行工况的数据。利用多传感器数据采集系统收集过程正常工况运行下的监测数据构成数组其中,m表示过程传感器(监控变量)的个数,n表示所收集正常工况下样本个数,表示第i个正常样本;
2)构建随机投影矩阵。产生随机投影矩阵其中矩阵R中的元素rij是独立的随机变量,取值为1或-1,并且p(rij=1)=p(rij=-1)=0.5;
3)对正常数据进行降维。利用随机投影矩阵R将数据矩阵X投影到随机子空间
T=RX (5)
其中,表示正常数据样本进过投影降维后得到的数据集,ti所对应的是xi投影到子空间中的样本;
4)利用k近邻方法建立控制限。计算每个训练样本的k近邻距离,并确定检测控制限
4.4)从压缩数据集T中找每个样本ti的k近邻
di,j=||ti-tj||2,j=1,…,n,j≠i (6)
其中,||·||2表示l2范数,即采用欧式距离度量;
4.5)计算每个样本ti与其k近邻之间的平均距离
4.6)确定检测控制限
其中,是对按降序重新排列的序列。表示取n(1-a)的整数部分。
所述的步骤二:在线检测
1)采集在线运行数据,将其投影到随机子空间。在线采集测量数据将y投影到随机子空间:ty=Ry;
2)在随机子空间中找它的k近邻。根据式(2)从压缩数据集T中找ty的k近邻;
3)在随机子空间中计算它与k近邻的平均累积距离。根据式(3)计算ty与其k近邻之间的平均距离
4)与所建立的控制限进行判断。比较与式(4)中所建立的检测控制限之间的大小,如果则说明过程异常并报警;如果则说明过程正常运行。
本发明的有以下优势:
1.本发明首次提出一种基于随机投影和k近邻的故障检测方法,实现对复杂过程的监测;
2.本发明能够对高维情况进行有效地降维并保证检测性能,及时地检测到生产过程中的故障;
3.本发明能够解决过程数据存在的非高斯、非线性和多模态等问题,从而能够更有效地监控。
附图说明
图1是本发明方法的流程框图。
具体实施方式
本发明提出的一种基于稀疏表示的多工况过程监控方法,其流程框图如图1所示,包括以下各步骤:
步骤一:离线训练
1)收集过程正常运行工况的数据。利用多传感器数据采集系统收集过程正常工况运行下的监测数据构成数组其中,m表示过程传感器(监控变量)的个数,n表示所收集正常工况下样本个数,表示第i个正常样本;
2)构建随机投影矩阵。产生随机投影矩阵其中矩阵R中的元素rij是独立的随机变量,取值为1或-1,并且p(rij=1)=p(rij=-1)=0.5;
3)对正常数据进行降维。利用随机投影矩阵R将数据矩阵X投影到随机子空间
T=RX (9)
其中,表示正常数据样本进过投影降维后得到的数据集,ti所对应的是xi投影到子空间中的样本;
4)利用k近邻方法建立控制限。计算每个训练样本的k近邻距离,并确定检测控制限
4.1)从压缩数据集T中找每个样本ti的k近邻
di,j=||ti-tj||2,j=1,…,n,j≠i (10)
其中,||·||2表示l2范数,即采用欧式距离度量;
4.2)计算每个样本ti与其k近邻之间的平均距离
4.3)确定检测控制限
其中,是对按降序重新排列的序列。表示取n(1-a)的整数部分。
步骤二:在线检测
1)采集在线运行数据,将其投影到随机子空间。在线采集测量数据将y投影到随机子空间:ty=Ry;
2)在随机子空间中找它的k近邻。根据式(2)从压缩数据集T中找ty的k近邻;
3)在随机子空间中计算它与k近邻的平均累积距离。根据式(3)计算ty与其k近邻之间的平均距离
4)与所建立的控制限进行判断。比较与式(4)中所建立的检测控制限之间的大小,如果则说明过程异常并报警;如果则说明过程正常运行。
实施例
下面结合一个具体的半导体过程例子来说本发明方法的有效性。该过程的数据来自美国德州仪器公司分别在3个月份进行的三组实验,一共有127个批次可用数据,其中包括107批正常数据和20批故障数据,故障数据主要是通过人为改变某些变量如功率和压力等的变化引起。每一个批次的采样时间点为85,一共选取了17个非设定点过程变量用于监测,如表1所示。
接下来结合该具体过程对本发明的实施步骤进行详细地阐述:
步骤一:离线训练
1)收集过程正常运行工况的数据。本例中批次过程的三维数组按批次展开
2)得到两位数组即变量和样本数分别为1445和107;
3)构建随机投影矩阵这里随机子空间的维数近似等于原空间的一半;
4)对正常数据进行降维。得到降维之后的样本集
5)利用k近邻方法建立控制限。这里选取a=0.95,并根据(10)~(12)计算得到用于在线监控的控制限
步骤一:在线检测
1)对于在线数据同样展开,并根据R投影到随机子空间;
2)在随机子空间中找测试样本的k近邻;
3)根据式(10)~(12)计算样本的k近邻距离;
4)与所建立的控制限进行比较。
实验结果如表2所示,表中打勾表示该故障被相应方法正确地检测为故障,空缺表示没有被正确地检测出。从表2中可以看出,本发明方法,即经过随机投影降维后的k近邻方法,它检测出的故障与未降维直接应用k近邻方法的检测效果几乎相同。而PC-kNN的检测结果则与k近邻不同,从而说明了本发明方法不但能够减小计算复杂度,同时能够保证k近邻的故障检测性能。
表1:监控变量说明
变量序号 变量名称 变量序号 变量名称
1 10 RF功率
2 11 RF阻抗
3 RF底部功率 12 TCP调谐
4 A检测端点 13 TCP相位误差
5 氦压力 14 TCP阻抗
6 室压 15 TCP顶部功率
7 RF调谐 16 TCP负荷
8 RF负荷 17 Vat阀门
9 相位误差
表2:故障检测结果
故障序号 PC-kNN kNN RPkNN
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
上述实施例用来解释说明本发明,而不是对本发明进行限制,在本发明的精神和权利要求的保护范围内,对本发明做出的任何修改和改变,都落入本发明的保护范围。

Claims (2)

1.一种基于随机投影和k近邻的快速故障检测方法,其特征在于,该方法包括以下各步骤:
步骤一:离线训练,收集过程正常运行工况的数据,构建随机投影矩阵,将正常数据进行降维,投影到随机子空间,根据降维后的数据,利用k近邻方法建立控制限;
步骤二:在线检测,采集在线运行数据,利用步骤一所述的随机投影矩阵将其投影到随机子空间,并在子空间中计算k近邻距离,如果该k近邻距离超出步骤一所建立的控制限,则报警;
步骤一所述的离线训练过程如下:
1)利用多传感器数据采集系统收集过程正常工况运行下的监测数据构成数组其中,m表示监控变量的个数,n表示所收集正常工况下样本个数,表示第i个正常样本;
2)产生随机投影矩阵其中矩阵R中的元素rij是独立的随机变量,取值为1或-1,并且p(rij=1)=p(rij=-1)=0.5;
3)利用随机投影矩阵R将数据矩阵X投影到随机子空间
T=RX (1)
其中,表示正常数据样本进过投影降维后得到的数据集,ti所对应的是xi投影到子空间中的样本;
4)计算每个训练样本的k近邻距离,并确定检测控制限
4.1)从压缩数据集T中找每个样本ti的k近邻
di,j=||ti-tj||2,j=1,…,n,j≠i (2)
其中,||·||2表示l2范数,即采用欧式距离度量;
4.2)计算每个样本ti与其k近邻之间的平均距离
4.3)确定检测控制限
其中,是对按降序重新排列的序列, 表示取n(1-α)的整数部分。
2.根据权利要求1所述的一种基于随机投影和k近邻的快速故障检测方法,其特征在于,步骤二所述的在线检测过程如下:
1)在线采集测量数据将y投影到随机子空间:ty=Ry;
2)根据式(6)从压缩数据集T中找ty的k近邻;
3)根据式(7)计算ty与其k近邻之间的平均距离
4)比较与式(8)中所建立的检测控制限之间的大小,如果则说明过程异常并报警;如果则说明过程正常运行。
CN201410739736.0A 2014-12-08 2014-12-08 一种基于随机投影和k近邻的快速故障检测方法 Active CN104503436B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410739736.0A CN104503436B (zh) 2014-12-08 2014-12-08 一种基于随机投影和k近邻的快速故障检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410739736.0A CN104503436B (zh) 2014-12-08 2014-12-08 一种基于随机投影和k近邻的快速故障检测方法

Publications (2)

Publication Number Publication Date
CN104503436A CN104503436A (zh) 2015-04-08
CN104503436B true CN104503436B (zh) 2017-06-23

Family

ID=52944840

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410739736.0A Active CN104503436B (zh) 2014-12-08 2014-12-08 一种基于随机投影和k近邻的快速故障检测方法

Country Status (1)

Country Link
CN (1) CN104503436B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105425779B (zh) * 2015-12-24 2018-12-04 江南大学 基于局部邻域标准化和贝叶斯推断的ica-pca多工况故障诊断方法
CN110998648A (zh) * 2018-08-09 2020-04-10 北京嘀嘀无限科技发展有限公司 一种分配订单的系统和方法
CN109902704A (zh) * 2018-10-11 2019-06-18 华为技术有限公司 一种异常样本的识别方法、装置及存储介质
CN110045714B (zh) * 2019-04-08 2022-05-17 沈阳化工大学 一种基于权重近邻规则的工业过程监控方法
CN111913460B (zh) * 2019-05-20 2022-03-18 宁波大学 一种基于序列相关局部保持投影算法的故障监测方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4592235B2 (ja) * 2001-08-31 2010-12-01 株式会社東芝 生産装置の故障診断方法及び生産装置の故障診断システム
US7844440B2 (en) * 2006-07-07 2010-11-30 Edsa Micro Corporation Systems and methods for real-time dynamic simulation of uninterruptible power supply solutions and their control logic systems
CN101403923A (zh) * 2008-10-31 2009-04-08 浙江大学 基于非高斯成分提取和支持向量描述的过程监控方法
CN101738998B (zh) * 2009-12-10 2012-05-30 浙江大学 一种基于局部判别分析的工业过程监测系统及方法
CN103576594B (zh) * 2013-11-11 2015-12-02 浙江工业大学 一种基于张量全局-局部保持投影的间歇过程在线监控方法

Also Published As

Publication number Publication date
CN104503436A (zh) 2015-04-08

Similar Documents

Publication Publication Date Title
CN104503436B (zh) 一种基于随机投影和k近邻的快速故障检测方法
Li et al. Data-driven root cause diagnosis of faults in process industries
Qin Survey on data-driven industrial process monitoring and diagnosis
CN101446831B (zh) 一种分散的过程监测方法
Tong et al. Decentralized monitoring of dynamic processes based on dynamic feature selection and informative fault pattern dissimilarity
Jia et al. A deviation based assessment methodology for multiple machine health patterns classification and fault detection
Ji Statistics Mahalanobis distance for incipient sensor fault detection and diagnosis
CN101403923A (zh) 基于非高斯成分提取和支持向量描述的过程监控方法
Wang et al. Probabilistic fault diagnosis method based on the combination of nest-loop fisher discriminant analysis and analysis of relative changes
Miao et al. Nonlocal structure constrained neighborhood preserving embedding model and its application for fault detection
CN102566554B (zh) 一种基于单类支持向量机的半导体过程监测方法
TWI525728B (zh) 使用階層式分組及過濾在晶圓檢測過程中識別系統性缺陷之系統與方法
Wang et al. Fault diagnosis using kNN reconstruction on MRI variables
EP4035008A2 (en) Method and system for diagnosing anomaly in a manufacturing plant
CN105607631A (zh) 间歇过程弱故障模型控制限建立方法及弱故障监测方法
Ge Improved two-level monitoring system for plant-wide processes
CN106354125A (zh) 一种利用分块pca检测化工过程故障的方法
Doymaz et al. A strategy for detection and isolation of sensor failures and process upsets
Tchatchoua et al. 1D ResNet for fault detection and classification on sensor data in semiconductor manufacturing
CN108681653A (zh) 基于动态子空间高阶累积量分析的天然气净化过程异常监测方法
Mandal et al. A novel approach for fault detection and classification of the thermocouple sensor in nuclear power plant using singular value decomposition and symbolic dynamic filter
CN110045714B (zh) 一种基于权重近邻规则的工业过程监控方法
CN103376795A (zh) 一种基于集成学习建模技术的半导体过程监测方法
CN109522657B (zh) 一种基于相关性网络和svdd的燃气轮机异常检测方法
Dunia et al. Multivariate monitoring of a carbon dioxide removal process

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant