WO2018147188A1 - 内燃機関用ピストン及びその製造方法 - Google Patents

内燃機関用ピストン及びその製造方法 Download PDF

Info

Publication number
WO2018147188A1
WO2018147188A1 PCT/JP2018/003614 JP2018003614W WO2018147188A1 WO 2018147188 A1 WO2018147188 A1 WO 2018147188A1 JP 2018003614 W JP2018003614 W JP 2018003614W WO 2018147188 A1 WO2018147188 A1 WO 2018147188A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
piston
internal combustion
combustion engine
base material
Prior art date
Application number
PCT/JP2018/003614
Other languages
English (en)
French (fr)
Inventor
助川 義寛
高橋 智一
一等 杉本
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to US16/484,043 priority Critical patent/US20190390591A1/en
Priority to CN201880009933.3A priority patent/CN110268151A/zh
Publication of WO2018147188A1 publication Critical patent/WO2018147188A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0636Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston the combustion space having a substantially flat and horizontal bottom
    • F02B23/0639Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston the combustion space having a substantially flat and horizontal bottom the combustion space having substantially the shape of a cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/10Pistons  having surface coverings
    • F02F3/12Pistons  having surface coverings on piston heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2301/00Using particular materials
    • F01L2301/02Using ceramic materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F2200/00Manufacturing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/02Light metals
    • F05C2201/021Aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2251/00Material properties
    • F05C2251/04Thermal properties
    • F05C2251/048Heat transfer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a piston for an internal combustion engine and a method for manufacturing the same.
  • Patent Document 1 discloses a piston that constitutes an internal combustion engine, and the top surface of the piston is anodized with low thermal conductivity and low heat capacity.
  • a piston is disclosed in which a coating is formed and a metal coating having a relatively higher heat capacity than the anodic oxide film is disposed on the surface of the fuel injection region of the anodic oxide coating.
  • the piston contributes to high fuel efficiency and high-efficiency engine performance during steady running of the vehicle, and contributes to rapid temperature rise in the piston top surface and the combustion chamber when the vehicle is started. It is described that the piston can suppress the generation of HC and PM.
  • Patent Document 1 it is possible to achieve both the improvement of thermal efficiency and the reduction of emission, and the prevention of piston overheating and the prevention of knocking, occurrence of pre-ignition and reduction of air filling efficiency. It was difficult.
  • an object of the present invention is an internal combustion engine that can achieve both improvement in thermal efficiency and reduction in emissions, and can prevent the occurrence of knocking, pre-ignition, and reduction in air charging efficiency by preventing piston overheating. It is providing the piston for water and its manufacturing method.
  • the present invention provides a piston that constitutes a part of a combustion chamber of an internal combustion engine, a base material, a first film provided on a top surface of the base material that contacts the combustion chamber, and It has a second film.
  • the first film has a smaller thermal conductivity and heat capacity than the base material
  • the second film has a smaller thermal conductivity than the base material and a larger heat capacity than the first film.
  • membrane is provided in the part in which the 1st film
  • the present invention is also a method of manufacturing a piston for an internal combustion engine that constitutes a part of the inner wall surface of the combustion chamber of the internal combustion engine, the step of preparing the base material, and the thermal conductivity and the heat capacity smaller than the base material
  • a step of preparing a first film and a second film having a thermal conductivity smaller than that of the substrate and having a heat capacity larger than that of the first film; and the substrate, the first film, and the second film A step of preparing an insert material having a lower melting point, a step of placing the first film and the second film on the surface of the base material with the insert material interposed therebetween, and heating the insert material to form the base material and the first film And a joining step for joining the second membrane.
  • a method for manufacturing a piston for an internal combustion engine is provided.
  • a piston for an internal combustion engine that can achieve both improvement in thermal efficiency and reduction in emissions, and prevention of knocking, pre-ignition, and reduction in air charging efficiency by preventing overheating of the piston and its manufacture A method can be provided.
  • FIG. 1 is a longitudinal sectional view showing a first example of an internal combustion engine including a piston for an internal combustion engine according to the present invention. It is the top view which looked at the piston of FIG. 1 from the combustion chamber side. It is a graph which shows the heat conductivity and heat capacity (volume specific heat) of the base material 103, the 1st film
  • FIG. 21 is a schematic diagram showing a cross section of a piston for an internal combustion engine of the prior art.
  • the piston 100 ′ of the prior art (Patent Document 1) is provided with an anodic oxide coating 101 ′ having a low thermal conductivity and a low heat capacity on the surface of a base material 103 ′.
  • a metal coating 102 'having a relatively higher heat capacity than the anodic oxide coating 101' is provided on a part of the surface (fuel injection region). That is, the anodized film 101 ′ and the metal film 102 ′ are laminated on the surface of the base material 103 ′.
  • FIG. 22 is a graph showing temperature changes of the surfaces of the anodized film 101 ′ and the metal film 102 ′ within one cycle of the engine having the piston of FIG.
  • the dotted line indicates the base condition
  • the solid line indicates the surface temperature of the anodized film 101 ′ and the metal film 102 ′ when the thermal conductivity of the anodized film 101 ′ is further reduced with respect to the base condition.
  • the heat from the surface of the metal film 102 '(surface on the combustion chamber side) to the substrate 103' resistance R is the sum of the thermal resistance R 101 'of the thermal resistance R 102' and the anodic oxide coating 101 'of the metal coating 102'.
  • the thermal conductivity of the anodic oxide coating 101 ′ As much as possible and to increase the change width in the cycle of the surface temperature of the anodic oxide coating 101 ′. .
  • the thermal conductivity of the anodic oxide coating 101 ′ decreases (the thermal resistance R 101 ′ of the anodic oxide coating 101 ′ increases)
  • the thermal resistance R from the surface of the metal coating 102 ′ to the base material 103 ′ increases.
  • the surface temperature of the metal coating 102 ' also increases.
  • the metal coating 102 ′ promotes vaporization of the fuel liquid film by keeping the surface temperature high from the middle of the intake stroke to the middle of the compression stroke.
  • the temperature rises excessively knocking and pre-ignition deteriorate.
  • the air filling efficiency is reduced.
  • FIG. 23 is a schematic view showing a cross section of a piston for an internal combustion engine according to the present invention.
  • the piston for an internal combustion engine according to the present invention (hereinafter also simply referred to as “piston”) has a first film 101 having a low heat capacity and low thermal conductivity on the surface of the substrate 103 (the top of the piston).
  • the second film 102 having a high heat capacity and low thermal conductivity is formed on a portion of the surface of the base material 103 other than the portion where the first film 101 is provided.
  • FIG. 24 is a graph showing temperature changes of the surfaces of the first film 101 and the second film 102 in one cycle of the engine having the piston of FIG.
  • the dotted line indicates the base condition
  • the solid line indicates the surface temperature of the first film 101 and the second film 102 when the thermal conductivity of the first film 101 is further reduced with respect to the base condition.
  • the thermal resistance R 102 from the surface of the second film 102 (the surface on the combustion chamber side) to the base material 103 is not affected by the thermal resistance R 101 of the first film 101. Therefore, even when the thermal conductivity of the first film 101 is reduced and the effect of reducing the cooling loss by the temperature swing thermal insulation method is further increased, the surface temperature of the second film 102 is not overheated and knocking, In addition, pre-ignition does not occur and air filling efficiency does not decrease.
  • heat resistance R 102 of the second film 102 is controlled independently of the thermal resistance R 101 of the first film 101, for example, a second film in a portion where thicker fuel liquid film is formed etc. to further increase the thermal resistance R 102 of 102, according to the fuel liquid film thickness, there is a merit capable of changing the configuration of the heat resistance R 102 of the second film 102.
  • FIG. 1 is a longitudinal sectional view showing a first example of an internal combustion engine including a piston for an internal combustion engine according to the present invention, and FIG. It is the top view seen from the side.
  • An internal combustion engine 200 shown in FIG. 1 is a spark ignition type 4-cycle gasoline engine.
  • the combustion chamber 9 is formed by the engine head 7, the cylinder 8, the piston 100 a, the intake valve 3, and the exhaust valve 4.
  • the surface of the piston 100 a constitutes a part of the combustion chamber 9.
  • the engine head 7 is provided with a fuel injection valve 5, and the injection nozzle passes through the combustion chamber 9 to constitute a so-called in-cylinder direct injection engine.
  • An intake port 1 for taking air into the combustion chamber 9, an exhaust port 2 for discharging combustion gas in the combustion chamber 9, and an ignition plug 6 for igniting the air-fuel mixture are provided.
  • the piston 100a includes a base material 103, and a first film (heat insulating film) 101 and a second film (heat insulating film) 102 provided on the surface (top surface) of the base material 103 in contact with the combustion chamber.
  • the first film 101 is provided on a part of the top surface of the base material 103
  • the second film 102 is provided on the other part of the top surface of the base material 103. That is, the first film 101 and the second film 102 are arranged in parallel so as not to overlap each other on the piston top surface. That is, the first film 101 and the second film 102 are arranged in parallel when the piston 100a is viewed from the upper surface (the surface constituting the combustion chamber).
  • the base material 103 and the first film 101 are bonded to each other at all or most of the bottom surface 104 of the first film 101 and a part of the top surface of the base material 103.
  • the base material 103 and the second film 102 are joined by the base material 103 with all or most of the bottom surface 105 of the second film 102 and the other part of the top surface of the base material 103.
  • the second film 102 is disposed in the vicinity of the center of the piston 100a, and the first film 101 is disposed around the second film 102. Furthermore, the area of the first film 101 on the top surface of the piston 100a is larger than the area of the second film 102 on the top surface of the piston 100a.
  • the first film 101 is also referred to as a “heat shield film” and is a film having a function of insulating the combustion chamber and causing the temperature of the piston surface to follow the gas temperature in the combustion chamber with a small time delay. It is composed of a thin plate material or coating material having conductivity and a low heat capacity (low volume specific heat).
  • “low heat conduction” and “low heat capacity (low volume specific heat)” mean that the heat conductivity and heat capacity (volume specific heat) are lower than those of the base material 103.
  • the thermal conductivity is 0.5 W / mK or less
  • the volume specific heat is 500 kJ / m 3 K or less
  • the film thickness is 50 to 200 ⁇ m (50 to 200 ⁇ m). If the thermal conductivity is greater than 0.5 W / mK, the heat insulation performance of the combustion chamber will not be sufficient. Moreover, if the volumetric specific heat is larger than 500 kJ / m 3 K, the followability to the gas temperature is not sufficient. When the film thickness is less than 50 ⁇ m, the heat insulating property is not sufficient, and when it exceeds 200 ⁇ m, the thermal response is deteriorated.
  • the second film 102 is also referred to as a “heat insulating film” and is a film having a function of vaporizing the fuel adhering to the top surface of the piston. Consists of.
  • “high heat capacity (high volume specific heat)” means that the heat capacity (volume specific heat) is higher than that of the first film 101.
  • the thermal conductivity is preferably 1 to 10 W / mK, the volume specific heat is 1000 kJ / m 3 K or more, and the film thickness is preferably 200 ⁇ m or more. If the thermal conductivity is greater than 10 W / mK, the heat insulation performance of the combustion chamber will not be sufficient.
  • the volumetric specific heat is larger than 1000 kJ / m 3 K, the followability to the gas temperature is not sufficient. If the film thickness is less than 200 ⁇ m, the average temperature of the combustion chamber (average temperature with respect to time) becomes too low.
  • a conventional material can be used for the base material 103.
  • aluminum alloy, iron or titanium alloy is preferable, and the thermal conductivity is preferably 50 to 200 W / mK and the volume specific heat is 2000 to 3000 kJ / m 3 K.
  • FIG. 3 is a graph showing the thermal conductivity and heat capacity (volume specific heat) of the base material 103, the first film 101 and the second film 102 constituting the piston according to the present invention.
  • the thermal conductivity and volume specific heat of the first film 101 are smaller than the thermal conductivity and volume specific heat of the base material 103, respectively.
  • the thermal conductivity of the second film 102 is smaller than the thermal conductivity of the base material 103.
  • the volume specific heat of the second film 102 is larger than the volume specific heat of the first film 101.
  • FIG. 4 is a graph showing the relationship between the piston surface temperature and the crank angle during operation of the internal combustion engine having the piston according to the present invention. That is, it is a graph showing the time change of the piston top surface temperature during operation of the internal combustion engine. More specifically, FIG. 4 shows a change in the crank angle of the surface temperatures of the first film 101 and the second film 102 in one cycle including the intake, compression, expansion, and exhaust strokes of the engine. . For reference, FIG. 4 also shows the surface temperature of a piston made of only the base material 103 on which the first film 101 and the second film 102 are not provided.
  • the surface temperature can follow the gas temperature change in the combustion chamber with a small time delay and a small temperature difference. That is, from the middle of the intake stroke to the middle of the compression stroke, the in-cylinder gas temperature is lowered by introducing fresh air into the combustion chamber, and the surface temperature of the first film 101 is lowered following this. Further, since the in-cylinder gas temperature increases due to gas compression and combustion from the latter half of the compression stroke to the exhaust stroke, the surface temperature of the first film 101 increases accordingly. Thus, since the surface temperature of the first film 101 changes following the in-cylinder gas temperature, the amount of heat transfer between the gas and the wall surface is small, and the engine cooling loss can be reduced. This is a heat loss reduction technique called a so-called temperature swing heat insulation method.
  • the second film 102 since the second film 102 has a low thermal conductivity and a high heat capacity, its surface temperature is higher than the surface temperature of a normal piston not provided with the first film 101 and the second film 102, and It hardly responds to changes in the gas temperature in the combustion chamber within the cycle, and the surface temperature change width in the engine cycle is smaller than the surface temperature change width of the first film 101.
  • the change width of the surface temperature in the cycle of the first film 101 is about 500 ° C.
  • the change width of the surface temperature in the cycle of the second film 102 is about 50 ° C.
  • the surface temperature of the second film 102 becomes higher than the surface temperature of the first film 101 from the middle stage of the intake stroke to the middle stage of the compression stroke.
  • the surface temperature of the second film 102 is lower than the surface temperature of the first film 101 from the middle of the compression stroke to the middle of the intake stroke.
  • FIG. 5 is a view showing a state in which fuel is injected from the fuel injection valve 5 into the combustion chamber in FIG.
  • the injected fuel spray (spray beam) 20 travels in the combustion chamber 9 in the direction of the piston 100a, and its tip collides with the surface near the center of the piston 100a.
  • FIG. 6 is a plan view of the piston of FIG. 5 as viewed from the combustion chamber side.
  • FIG. 6 shows a state immediately after the fuel spray 20 collides with the piston 100a.
  • FIG. 6 shows a state immediately after the fuel spray 20 collides with the piston 100a.
  • FIG. 6 when the fuel spray 20 collides with the piston 100a, some of the droplets adhere to the center of the top surface of the piston 100a, and the fuel liquid film 21 is mainly formed on the surface of the second film 102. It is formed.
  • the surface temperature of the second film 102 is high from the middle of the intake stroke to the middle of the compression stroke. Further, since the heat capacity of the second film 102 is large, even if the fuel liquid film 21 having a relatively low temperature is formed, the high temperature is maintained without following the liquid film temperature. For this reason, the liquid film 21 formed on the surface of the second film 102 receives the heat of the second film 102 and quickly rises in temperature and vaporizes.
  • the surface temperature of the second film 102 hardly changes in the cycle, the cooling loss reduction effect is small as compared with the temperature swing heat insulation by the first film 101. Therefore, in the internal combustion engine 200 of the present embodiment, the surface area on the combustion chamber side of the first film 101 is made larger than the surface area on the combustion chamber side of the second film 102, and the cooling loss reduction effect due to the temperature swing heat insulation is reduced. It is increasing.
  • FIG. 7 is a longitudinal sectional view showing a second example of the internal combustion engine including the piston according to the present invention
  • FIG. 8 is a plan view of the piston of FIG. 7 viewed from the combustion chamber side.
  • the spray injected into the combustion chamber is composed of a plurality of fuel sprays 20 as shown in FIG. 7.
  • a plurality of second films 102 are formed by a pattern (spray position) of the liquid film 21 formed on the piston top surface. It is preferable to arrange them so as to match.
  • FIG. 8 shows an example in which the second film 102 is disposed at a position corresponding to each fuel liquid film 21 formed by six fuel sprays 20 formed from a six-hole fuel injection valve.
  • the surface area of the first film 101 on the combustion chamber side is the surface area of each second film 102 on the combustion chamber side.
  • the size of each second film 102 is determined so as to be larger than the total sum of the two.
  • the area ratio of the second film 102 to the top surface of the piston is reduced and the piston is reduced.
  • the fuel liquid film 21 on the top surface of the second film 102 can be efficiently vaporized using the heat of the second film 102. Since the area ratio of the first film 101 can be increased by reducing the area ratio of the second film 102 to the piston surface, the effect of reducing the cooling loss due to the temperature swing heat insulation can be maximized. .
  • FIG. 9 is a longitudinal sectional view showing a third example of the internal combustion engine including the piston according to the present invention.
  • the fuel liquid films 21 formed by the six fuel sprays formed from the six-hole fuel injection valve are divided into three groups, and the positions corresponding to the respective fuel liquid film groups are assigned to the first position.
  • An example in which two membranes 102 are arranged is shown.
  • the second films 102 are arranged corresponding to the fuel liquid films grouped in this way, the number of arranged second films 102 can be reduced while suppressing an increase in the area of the second film 102, and the piston Simplification of the manufacturing process and cost reduction can be achieved.
  • FIG. 10 is a longitudinal sectional view showing a fourth example of an internal combustion engine including a piston for an internal combustion engine according to the present invention
  • FIG. 11 is a plan view of the piston of FIG. 10 viewed from the combustion chamber side.
  • ignition retard operation is often performed immediately after the start of cold engine in order to quickly raise the temperature of the exhaust catalytic converter.
  • it is widely performed to provide a cavity (concave portion) on the piston surface.
  • the cavity is provided in the piston, the fuel injected into the cavity stays in the cavity, thereby forming a fuel mixture with high fuel concentration near the spark plug, which is stable during ignition delay operation. Combustion is realized.
  • FIG. 10 shows a piston 100d having such a cavity.
  • a cavity 110 is provided on the top surface of the piston 100d.
  • the second film 102 having a low thermal conductivity and a high heat capacity is joined in the cavity 110.
  • the first film 101 having a low thermal conductivity and a low heat capacity is joined to the top surface of the piston 100d other than the portion where the second film 102 is provided.
  • the fuel spray 20 is injected toward the inside of the cavity 110, and the surface of the cavity 110 is shown in FIG.
  • the fuel liquid film 21 is formed.
  • the surface temperature of the second film 102 having a low thermal conductivity and a high heat capacity is increased, so that the fuel liquid film 21 formed in the cavity 110 is heated and quickly vaporized. HC and PM emissions can be reduced.
  • most of the fuel liquid film 21 is formed in the bottom surface or side surface of the cavity 110. Therefore, it is more effective to form the second film 102 on the bottom surface and side surface of the cavity 110 as in this embodiment. In addition, fuel vaporization can be promoted.
  • the cooling loss can be reduced by the temperature swing heat insulation by the first film 101 having the low thermal conductivity and the low heat capacity provided outside the cavity 110.
  • the second film 102 is provided not in the entirety of the cavity 110 but in a part thereof, it is possible to obtain an effect of reducing HC and PM emissions.
  • the second film 102 is installed only in a portion where the fuel liquid film 21 in the cavity 110 is formed more, and the first film 101 is installed in the remaining cavity 110, whereby the HC formed by the second film 102 is obtained.
  • the effect of reducing the cooling loss by the first film 101 can be further increased while obtaining the effect of reducing haze.
  • FIG. 12 is a longitudinal sectional view showing a fifth example of the internal combustion engine including the piston according to the present invention
  • FIG. 13 is a graph showing the thickness of the liquid film of FIG.
  • the liquid film thickness is as shown in FIG. The distribution is as shown in. That is, the thickness of the fuel liquid film 21 is thicker near the tip of the nozzle of the fuel injection valve 5 and is thinner near the fuel injection valve.
  • FIG. 14 is a graph showing the relationship between the thermal resistance of the second film and the liquid film thickness
  • FIG. 15 shows the relationship between the thermal resistance of the second film and the distance between the fuel injection valve and the second film. It is a graph which shows a relationship.
  • the thickness of the fuel liquid film 21 increases, the time required for the vaporization becomes longer. Therefore, it is desirable to give more heat to the fuel liquid film 21 to promote the vaporization. Therefore, it is more preferable to change the thickness of the second film according to the thickness of the fuel liquid film formed on the piston top surface or the amount of the fuel liquid film. Therefore, as shown in FIG.
  • the thermal resistance R is defined by “the thickness of the second film 102 ⁇ the thermal conductivity of the second film 102”
  • the thickness of the second film 102 is increased.
  • the thermal conductivity of the second film 102 may be reduced.
  • the thickness of the second film 102 may be increased and the thermal conductivity of the second film 102 may be decreased.
  • the surface temperature of the second film 102 can be higher when the thermal resistance R is larger, a large amount of heat is applied to the fuel liquid film 21 having a large thickness, and the vaporization time can be shortened.
  • the surface temperature of the second film 102 becomes too high, knocking may occur during high-load operation of the engine, or the air charging efficiency may decrease. For this reason, it is desirable that the area of the high temperature portion of the piston top surface be as small as possible.
  • the thickness of the fuel liquid film 21 depends on the distance from the tip of the fuel injection valve 5 to the fuel liquid film 21. Therefore, as shown in FIG. 15, the thermal resistance R of the second film 102 may be increased as the distance between the tip of the fuel injection valve 5 and the second film 102 is shorter.
  • FIG. 16 is a longitudinal sectional view showing a sixth example of the internal combustion engine including the piston for use in the present invention.
  • the thickness of the second film 102 i provided at a position close to the tip of the fuel injection valve 5 is made thicker than the thickness of the second film 102 ii provided at a position far from the tip of the fuel injection valve 5. .
  • the film thicknesses of the second films 102 i and 102 ii are the same, and the thermal conductivity of the second film 102 i provided at a position near the tip of the fuel injection valve 5 is set at a position far from the tip of the fuel injection valve 5. It is also possible to make it smaller than the thermal conductivity of the second film 102ii provided on the substrate. By doing in this way, the thermal resistance of the 2nd film
  • FIG. 17 is a longitudinal sectional view showing a seventh example of the internal combustion engine including the piston according to the present invention
  • FIG. 18 is a longitudinal sectional view showing an eighth example of the internal combustion engine including the piston according to the present invention.
  • the first film 101 and the second film 102 are bonded to the base material 103 at most of the respective bottom surfaces, but the first film 101 is in the thickness direction of the piston.
  • the second film 102 may have a portion where they overlap each other.
  • the piston 100 h in FIG. 18 is provided so that an inclined portion 112 is provided at an end portion of the second film 102, and the first film 101 is placed on the inclined portion 112. 17 and 18, the first film 101 and the second film 102 do not overlap on the top surface of the piston, but the first film 101 and the second film 102 in the thickness direction of the piston. And overlap.
  • the thermal resistance R of the overlap part is the second.
  • the thermal resistance R 102 of the film 102 and to the sum of the thermal resistance R 101 of the first film 101 the heat capacity of the combustion chamber-side surface of the overlapping portion becomes larger, in the compression stroke from the intake stroke, the overlap
  • the surface temperature of the part is locally increased. Generation of such a local high temperature part causes knocking and pre-ignition.
  • the overlapping part when the first film 101 overlaps the upper part of the second film 102 in the overlapping part of the second film 102 and the first film 101, the overlapping part. Since the surface has a small heat capacity, the surface temperature follows with a small temperature difference from the gas temperature. Therefore, the surface temperature of the overlapping portion does not increase locally from the intake stroke to the compression stroke, and knocking and pre-ignition can be prevented.
  • FIG. 19 is a longitudinal sectional view showing a ninth example of the internal combustion engine including the piston according to the present invention.
  • a cooling part 113 is provided on the outer periphery of the piston.
  • the cooling unit 113 has a thermal conductivity equal to or higher than that of the base material 103, and all or most of the bottom surface of the cooling unit 113 is bonded to the base material 103.
  • the cooling unit 113 has a thermal conductivity equal to or higher than that of the piston base material, so that the gas at the outer peripheral portion of the combustion chamber is selectively cooled by the cooling unit 113.
  • Knocking is a phenomenon in which the end gas at the outer periphery of the combustion chamber is compressed and the temperature rises due to combustion, and self-ignition occurs. Therefore, by selectively cooling the gas in the outer peripheral portion of the combustion chamber by the cooling unit 113, it is possible to suppress the occurrence of knocking without significantly impairing the cooling loss reduction effect by the temperature swing heat shielding method.
  • FIG. 20 is a longitudinal sectional view showing a tenth example of an internal combustion engine including a piston according to the present invention.
  • the cooling unit 113 is composed of the base material 103 itself.
  • the cooling part 113 is formed by exposing the base material 103 to the piston surface of the outer peripheral part of the combustion chamber.
  • FIG. 25 is a cross-sectional view schematically showing the surface layer (first film and second film).
  • the surface layer 300 includes a mother phase 130 and hollow particles 134 dispersed in the mother phase 130.
  • the hollow particles 134 are particles having pores 135 inside.
  • the parent phase 130 has a metal phase 136 formed by combining a plurality of metal particles and a void 137, and the void 137 includes the hollow particles 134.
  • the volume ratio in which the voids 137 of the parent phase 130 and the pores 135 of the hollow particles 134 occupy the surface layer 300 is referred to as “porosity”. By increasing the porosity, the thermal conductivity and volumetric specific heat of the surface layer 300 can be reduced.
  • the porosity of the second film 102 is made smaller than the porosity of the first film 101.
  • the porosity of the second film is preferably about 20%, for example.
  • the first film 101 preferably has a porosity of, for example, about 50% in order to achieve low thermal conductivity and low volume specific heat.
  • the surface layer 300 is required to have high adhesion to the base material 103 and high tensile strength in order to withstand a severe environment (high temperature, high pressure and high vibration) in the internal combustion engine.
  • the matrix phase 130 constituting the main part of the surface layer 300, which is a porous body
  • the metal phase 136, high adhesion and high durability between the base material 103 made of metal and the surface layer 300 are obtained. Can do.
  • the voids 137 in the matrix 130 are contained in the voids 137, and the voids 137 in the matrix 130 and the pores 135 of the hollow particles 134 are combined to ensure the porosity required for low thermal conductivity.
  • the volume of the voids 137 in the parent phase 130 can be suppressed, and the strength of the surface layer 300 can be kept high.
  • FIG. 26 is an enlarged schematic view of metal particles constituting the metal phase 136 of FIG.
  • the metal phase 136 is preferably composed of a sintered metal in which metal particles are bonded by sintering. As shown in FIG. 26, it is preferable that a part of the metal particles 138 are bonded together by sintering and have a neck 139.
  • the neck 139 can secure a space between the metal particles and form the gap 137.
  • gap 137 can be controlled by controlling a sintering density, and the heat conductivity of the surface layer 300, a volume specific heat, and intensity
  • the metal phase 136 and the base material 103 preferably contain the same metal as the main component.
  • the base material 103 is preferably an aluminum (Al) alloy, and the metal phase 136 is preferably Al.
  • the metal phase 136 is preferably Al.
  • solid phase bonding is achieved at the interface between the base material 103 and the surface phase 300 having a porous structure by configuring the base material 103 and the metal phase 136 constituting the main part of the surface layer 300 to include the same metal.
  • the surface layer 300 having excellent durability can be realized by forming the portion to ensure high adhesion.
  • the material of the hollow particles 134 is preferably a material having a low thermal conductivity and high strength even if it is hollow in order to ensure the heat insulating performance of the surface layer 300.
  • a material include silica, alumina, zirconia and the like.
  • hollow particles mainly composed of silica include ceramic beads, silica airgel, porous glass, and the like.
  • the first film and the second film are prepared by first mixing the powders of the metal particles 138 and the hollow particles 134 as the raw material of the metal phase 136.
  • the mixed particles are heated to obtain a sintered body.
  • the sintering method pressure sintering capable of controlling the load and temperature at the time of sintering is preferable, and the pulse current sintering method is preferable.
  • pulsed energization is performed while the raw material powder is pressurized. Resistance heat generation and spark discharge are generated on the powder surface, the reaction on the powder surface is activated, and a neck 139 is generated at the contact portion between the metal particles. It's easy to do. For this reason, in the pulse electric current sintering method, metal particles can be firmly bonded at the neck 139 even if the porous sintered body contains a large amount of voids.
  • the ratio of the hollow particles 134 in the raw material powder is increased to reduce the pressure applied during sintering.
  • the ratio of the hollow particles 134 in the raw material powder is reduced to increase the pressure applied during sintering.
  • FIG. 27 is a diagram schematically showing a first film and a second film obtained by forming a sintered body.
  • the sintered body obtained in the above-described sintering step is molded into a predetermined thickness and shape, and the base sintered body 101b of the first film 101 and the base sintered body of the second film 102 are sintered.
  • a bonded body 102b is obtained.
  • FIG. 28 is a cross-sectional view and a plan view of an example of the base material.
  • the base material 103 is manufactured by casting an aluminum alloy or the like. Then, the base material 103 is machined, and as shown in FIG. 28, the concave portion 151 for installing the base sintered body 101b on the combustion chamber side surface of the base material 103 and the base sintered body 102b are installed. A recess 152 is formed.
  • FIG. 29 is a sectional view showing a state in which a base sintered body is installed on the surface of the base material
  • FIG. 30 is a base material of FIG. It is a schematic diagram which shows an apparatus for joining a base sintered compact.
  • the base sintered body 101 b is fitted into the recess 151
  • the base sintered body 102 b is fitted into the recess 152.
  • an insert material 153 having a lower melting point than the base material 103 and the base sintered bodies 101b and 102b is installed. Then, as shown in FIG.
  • the base sintered bodies 101 b and 102 b are brought into pressure contact with the base material 103 by the electrode 154 and pulsed by the power source 155. Then, the insert material 153 is melted by heat and diffused into the base sintered body 101b and the base sintered body 102b. As a result, the base sintered body 101b and the base sintered body 102b are bonded to the base material 103 by so-called diffusion bonding.
  • the pulse energization method for joining the base sintered bodies 101b and 102b and the base material 103 the base sintered bodies 101b and 102b containing many voids and the base material 103 can be firmly bonded. According to the piston manufacturing method described above, the first film 101 and the second film 102 having different thermal conductivities, volume specific heats, and thicknesses are bonded to the base material 103 at the same time. Simplification and cost reduction can be achieved.
  • FIG. 31 is a cross-sectional view schematically showing molding (machining) of the piston top surface.
  • the piston top surface is formed by machining so that the surfaces of the base sintered bodies 101b and 102b and the base material 103 have the same height (so that the piston top surface becomes flat).
  • FIG. 32 is a cross-sectional view schematically showing another example of the base material and the base sintered body.
  • the base sintered bodies 101b, 102b are molded in advance so as to match the final piston surface shape, and then bonded to the base material 103 by the above-described method. Machining after joining 102b to the base material 103 becomes unnecessary, and the man-hour for piston manufacture can be reduced.
  • FIG. 32 shows an example in which a cavity is formed in advance on the surface of the base sintered body 102 b of the second film 102 and the base sintered body 102 b is joined to the base material 103. Thereby, a piston with a cavity is formed without performing machining after joining.
  • the base sintered bodies 101b and 102b can be formed into final shapes while the base material 103 and the base sintered bodies 101b and 102b are sintered. Specifically, at the time of sintering molding, the raw material powder of the sintered body is put into a mold corresponding to the shape after the completion of the piston, and pulse current sintering is performed while applying pressure. By sintering and forming in this way, the base sintered bodies 101b and 102b can be formed into a final shape without machining, so that the number of manufacturing steps can be reduced.
  • the present invention for an internal combustion engine that can achieve both improvement in thermal efficiency and reduction in emissions, and can prevent the occurrence of knocking, pre-ignition, and reduction in air charging efficiency by preventing overheating of the piston. It has been shown that a piston and method for manufacturing the same can be provided. That is, the cooling loss can be reduced by the temperature swing heat insulation method using the first film 101 having low thermal conductivity and low heat capacity, and the fuel efficiency of the engine can be improved.
  • the second film 102 having a low thermal conductivity and a high heat capacity can promote vaporization of the fuel liquid film 21 formed on the piston surface and reduce HC and PM.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)

Abstract

熱効率の向上とエミッション低減を両立し、かつ、ピストンの過熱を防止してノッキング、プレイグニッションの発生及び空気充填効率の低下の防止することができる内燃機関用ピストンを提供する。本発明に係る内燃機関用ピストン(100a)は、内燃機関(200)の燃焼室(9)の一部を構成するピストンであって、基材(103)と、基材(103)の燃焼室(9)と接する頂面の一部分に設けられた第1の膜(101)と、頂面の他の部分に設けられた第2の膜(102)と、を有し、第1の膜(101)は、基材(103)よりも熱伝導率及び熱容量が小さく、第2の膜(102)は、基材(103)よりも熱伝導率が小さく、かつ、第1の膜(101)よりも熱容量が大きいことを特徴とする。

Description

内燃機関用ピストン及びその製造方法
 本発明は、内燃機関用ピストン及びその製造方法に関する。
 ガソリンエンジン等の内燃機関においては、燃焼によって生じた熱の一部が燃焼室内から壁面を通過して外部に排出され損失となる。内燃機関の熱効率を向上するためには、この冷却損失の低減が必要である。そこで、燃焼室壁面のうち比較的大きな面積を占めるピストン表面に、低熱伝導率かつ低熱容量の膜を形成して、燃焼室の断熱性を高めつつ、ピストン表面温度を少ない時間遅れで筒内燃焼ガス温度に追従させることでピストン表面の熱流束を低減する手法(いわゆる温度スイング遮熱法)が知られている。
 一方、このように低熱容量化したピストン表面に燃料液滴が付着すると、付着部分のピストン温度が低下し燃料の気化性が悪化する。これは、特に冷機始動時におけるPM(煤粒子)やHC(未燃炭化水素)等のエミッション(排ガス中の有害物質)増加を引き起こす。
 そこで熱効率の向上(冷却損失の低減)とエミッション低減を両立するため、例えば特許文献1には、内燃機関を構成するピストンであって、ピストン頂面には、低熱伝導率で低熱容量の陽極酸化被膜が形成されており、該陽極酸化被膜のうち、燃料噴射領域の表面には該陽極酸化膜よりも相対的に熱容量の高い金属皮膜が配されているピストンが開示されている。特許文献1の構成によれば、車両の定常走行時においては高燃費で高効率なエンジン性能に寄与するピストンとなり、車両の始動時においてはピストン頂面や燃焼室内の速やかな温度上昇に寄与してHCやPM等の発生を抑止することのできるピストンとなると記載されている。
特開2013-67823号公報
 しかしながら、上記特許文献1の構成では、熱効率の向上とエミッション低減を両立し、かつ、ピストンの過熱を防止してノッキング、プレイグニッションの発生及び空気充填効率の低下の防止の全てを達成することは、困難であった。
 本発明の目的は、上記事情に鑑み、熱効率の向上とエミッション低減を両立し、かつ、ピストンの過熱を防止してノッキング、プレイグニッションの発生及び空気充填効率の低下の防止することができる内燃機関用ピストン及びその製造方法を提供することにある。
 上記課題を解決するために、本発明は、内燃機関の燃焼室の一部を構成するピストンであって、基材と、基材の燃焼室と接する頂面に設けられた第1の膜及び第2の膜を有する。第1の膜は、基材よりも熱伝導率及び熱容量が小さく、第2の膜は、基材よりも熱伝導率が小さく、かつ、第1の膜よりも熱容量が大きい。そして、基材の頂面において、第1の膜が形成されていない部分に第2の膜が設けられている。
 また、本発明は、内燃機関の燃焼室の内側壁面の一部を構成する内燃機関用ピストンの製造方法であって、基材を準備する工程と、基材よりも熱伝導率及び熱容量が小さい第1の膜と、基材よりも熱伝導率が小さく、かつ、第1の膜よりも熱容量が大きい第2の膜とを準備する工程と、基材、第1の膜及び第2の膜より融点が低いインサート材を準備する工程と、基材の表面に、インサート材を挟んで第1の膜及び第2膜を配置する工程と、インサート材を加熱して基材と第1の膜及び第2膜とを接合する接合工程と、を有することを特徴とする内燃機関用ピストンの製造方法を提供する。
 本発明のより具体的な構成は、特許請求の範囲に記載される。
 本発明によれば、熱効率の向上とエミッション低減を両立し、かつ、ピストンの過熱を防止してノッキング、プレイグニッションの発生及び空気充填効率の低下の防止することができる内燃機関用ピストン及びその製造方法を提供することができる。
 上記以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
本発明に係る内燃機関用ピストンを含む内燃機関の第1の例を示す縦断面図である。 図1のピストンを燃焼室側から見た平面図である。 本発明に係るピストンを構成する基材103、第1の膜101及び第2の膜102の熱伝導率と熱容量(容積比熱)を示すグラフである。 本発明に係るピストンを備えた内燃機関の運転時のピストン表面温度とクランク角の関係を示すグラフである。 図1において燃料噴射弁5から燃焼室内に燃料が噴射されている状態を示す図である。 図5のピストンを燃焼室側から見た平面図である。 本発明に係るピストンを含む内燃機関の第2の例を示す縦断面図である。 図7のピストンを燃焼室側から見た平面図である。 本発明に係るピストンを含む内燃機関の第3の例を示す縦断面図である。 本発明に係る内燃機関用ピストンを含む内燃機関の第4の例を示す縦断面図である。 図10のピストンを燃焼室側から見た平面図である。 本発明に係るピストンを含む内燃機関の第5の例を示す縦断面図である。 図12の液膜の厚さを示すグラフである。 第2の膜の熱抵抗と液膜厚さとの関係を示すグラフである。 第2の膜の熱抵抗と、燃料噴射弁と第2の膜との間の距離との関係を示すグラフである。 本発明に係る用ピストンを含む内燃機関の第6の例を示す縦断面図である。 本発明に係るピストンを含む内燃機関の第7の例を示す縦断面図である。 本発明に係るピストンを含む内燃機関の第8の例を示す縦断面図である。 本発明に係るピストンを含む内燃機関の第9の例を示す縦断面図である。 本発明に係るピストンを含む内燃機関の第10の例を示す縦断面図である。 従来技術の内燃機関用ピストンの断面を示す模式図である。 図21のピストンを有するエンジンの1サイクル内の陽極酸化被膜101´及び金属被膜102´の表面の温度変化を示すグラフである。 本発明に係る内燃機関用ピストンの断面を示す模式図である。 図23のピストンを有するエンジンの1サイクル内の第1の膜101及び第2の膜102の表面の温度変化を示すグラフである。 表面層(第1の膜及び第2の膜)を模式的に示す断面図である。 図25の金属相136を構成する金属粒子を拡大した模式図である。 焼結体を成形して得た第1の膜及び第2の膜を模式的に示す図である。 基材の一例の断面図及び平面図である。 基材の表面にベース焼結体を設置した状態を示す断面図である。 図29の基材及びベース焼結体を接合するために装置を示す模式図である。 ピストン頂面の成形(機械加工)を模式的に示す断面図である。 基材及びベース焼結体の他の例を模式的に示す断面図である。
 以下、本発明の実施形態について、図面を用いて詳細に説明する。
 1.本発明の基本思想
 図21は従来技術の内燃機関用ピストンの断面を示す模式図である。図21に示すように、従来技術(特許文献1)のピストン100´は、基材103´の表面に低熱伝導率・低熱容量の陽極酸化被膜101´が設けられ、この陽極酸化被膜101´の表面の一部(燃料噴射領域)に、陽極酸化被膜101´よりも相対的に熱容量の高い金属被膜102´が設けられている。すなわち、基材103´の表面に、陽極酸化被膜101´及び金属被膜102´が積層されている。
 図22は図21のピストンを有するエンジンの1サイクル内の陽極酸化被膜101´及び金属被膜102´の表面の温度変化を示すグラフである。図22において、点線はベース条件、実線はベース条件に対して陽極酸化被膜101´の熱伝導率をさらに小さくした場合の陽極酸化被膜101´と金属被膜102´の表面温度を示している。図22に示すように、従来技術では陽極酸化被膜101´の表面に金属被膜102´が形成されているため、金属被膜102´の表面(燃焼室側の面)から基材103´への熱抵抗Rは、金属被膜102´の熱抵抗R102´と陽極酸化被膜101´の熱抵抗R101´の和となる。
 温度スイング遮熱法によって冷却損失の低減効果を高めるには、陽極酸化被膜101´の熱伝導率をできるだけ小さくして、陽極酸化被膜101´の表面温度のサイクル内変化幅を大きくするのが望ましい。しかし、陽極酸化被膜101´の熱伝導率が小さくなる(陽極酸化被膜101´の熱抵抗R101´が大きくなる)と、金属被膜102´の表面から基材103´への熱抵抗Rが増加するため、金属被膜102´の表面温度も上昇する。金属被膜102´は、吸気行程中期から圧縮行程中期に亘ってその表面温度を高く保つことで、燃料液膜の気化促進を図るものであるが、過度に温度が上昇するとノッキングやプレイグニッションの悪化及び空気充填効率の低下等を引き起こす。
 したがって、従来技術においては、冷却損失を低減するために陽極酸化被膜101´の熱伝導率を小さくすると、ノッキングやプレイグニッションの悪化及び空気充填効率の低下などの跳ね返りが生じるおそれがある。これを防ぐため、金属被膜102´の膜厚を小さくする方法も考えられるが、膜厚の減少によって金属被膜102´の耐久性や熱容量が不足したりするおそれがある。
 よって、従来技術の構成では、金属被膜102´の耐久性及び熱容量を十分に確保しつつ、更なる冷却損失の低減と、ノッキング、プレイグニッションの発生及び空気充填効率の低下の防止の全てを達成することは困難であった。
 そこで、本発明らは、上記課題を解決すべく鋭意検討を行った結果、以下の構成を見出し、本発明の完成に至った。図23は本発明に係る内燃機関用ピストンの断面を示す模式図である。図23に示すように、本発明に係る内燃機関用ピストン(以下、単に「ピストン」とも称する。)は、低熱容量・低熱伝導率の第1の膜101を基材103の表面(ピストンの頂面)に形成し、さらに高熱容量・低熱伝導率の第2の膜102を、基材103の表面の第1の膜101が設けられている部分以外の部分に形成する。
 図24は図23のピストンを有するエンジンの1サイクル内の第1の膜101及び第2の膜102の表面の温度変化を示すグラフである。図24において、点線はベース条件、実線はベース条件に対して第1の膜101の熱伝導率をさらに小さくした場合の第1の膜101と第2の膜102の表面温度を示している。
 本発明では、第1の膜101と第2の膜102が基材103に対して並列に形成されているため(第1の膜101と第2の膜102が積層されていないため)、第2の膜102の表面(燃焼室側の面)から基材103への熱抵抗R102は、第1の膜101の熱抵抗R101の影響を受けない。したがって、第1の膜101の熱伝導率を小さくして、温度スイング遮熱法による冷却損失の低減効果をより高めた場合においても、第2の膜102の表面温度は過熱せず、ノッキング、及びプレイグニッションが発生したり、空気充填効率が低下したりすることが無い。
 また、第2の膜102の熱抵抗R102が第1の膜101の熱抵抗R101と独立に制御することができるため、例えば、より厚い燃料液膜が形成される部分の第2の膜102の熱抵抗R102をより大きくする等、燃料液膜厚さに応じて、第2の膜102の熱抵抗R102の構成を変えることができるメリットがある。
 さらに、従来技術の構成では、異なる熱特性を持つ膜を積層しているため、製造工数が増加したり、膜の密着強度が低下したりする懸念がある。一方、本発明は、第1の膜101及び第2の膜102を積層したものではないので、このような問題も回避することができる。
 以下、本発明に係る内燃機関用ピストンの構成について詳述する。
 2.内燃機関用ピストン
  (2.1)ピストンの構成
 図1は本発明に係る内燃機関用ピストンを含む内燃機関の第1の例を示す縦断面図であり、図2は図1のピストンを燃焼室側から見た平面図である。図1に示す内燃機関200は、火花点火式4サイクルガソリンエンジンである。燃焼室9は、エンジンヘッド7、シリンダ8、ピストン100a、吸気弁3、排気弁4によって形成されている。ピストン100aの表面は、燃焼室9の一部を構成している。エンジンヘッド7には燃料噴射弁5が設けられ、その噴射ノズルは燃焼室9を貫通しており、いわゆる筒内直接噴射式エンジンを構成している。また、燃焼室9に空気を取り込むための吸気ポート1、燃焼室9の燃焼ガスを排出するための排気ポート2及び混合気に点火するための点火プラグ6が設けられている。
 ピストン100aは、基材103と、基材103の燃焼室と接する表面(頂面)に設けられた第1の膜(遮熱膜)101及び第2の膜(断熱膜)102を有する。第1の膜101は、基材103の頂面の一部分に設けられており、第2の膜102は、基材103の頂面の他の部分に設けられている。つまり、第1の膜101と第2の膜102とは、ピストン頂面では互いに重ならないように並列に配置されている。すなわち、第1の膜101及び第2の膜102が、ピストン100aを上面(燃焼室を構成する面)から見た時に、並列して配置されている。そして、基材103と第1の膜101とは、第1の膜101の底面104の全部又は大部分と基材103の頂面の一部分とで接合している。同様に、基材103と第2の膜102とは、第2の膜102の底面105の全部又は大部分と基材103の頂面の他の部分と基材103とで接合している。
 図2に示すように、本実施例においては、第2の膜102はピストン100aの中央近傍に配置され、その周囲に第1の膜101が配置されている。さらに、ピストン100aの頂面における第1の膜101の面積は、ピストン100aの頂面における第2の膜102の面積よりも大きくなっている。
 ここで、第1の膜101は、「遮熱膜」とも称され、燃焼室を断熱し、ピストン表面の温度を少ない時間遅れで燃焼室内のガス温度に追従させる機能を有する膜であり、低熱伝導率かつ低熱容量(低容積比熱)の薄板材又はコーティング材等で構成される。ここで、「低熱伝導」及び「低熱容量(低容積比熱)」とは、熱伝導率及び熱容量(容積比熱)が基材103よりも低いことを意味するものとする。具体的には、熱伝導率は0.5W/mK以下、容積比熱は500kJ/mK以下であり、膜厚が50~200μm(50μm以上200μm以下)であることが望ましい。熱伝導率が0.5W/mKより大きいと燃焼室の断熱性能が十分ではなくなる。また、容積比熱が500kJ/mKより大きいとガス温度への追従性が十分ではなくなる。膜厚が50μm未満であると断熱性が十分ではなくなり、200μmを超えると熱応答性が悪くなる。
 第2の膜102は、「断熱膜」とも称され、ピストン頂面に付着した燃料を気化する機能を有する膜であり、低熱伝導率かつ高熱容量(高容積比熱)の薄板材又はコーティング材等で構成される。ここで、「高熱容量(高容積比熱)」とは、熱容量(容積比熱)が第1の膜101よりも高いことを意味するものとする。その熱伝導率は、1~10W/mK、その容積比熱は1000kJ/mK以上、その膜厚は200μm以上であることが望ましい。熱伝導率が10W/mKより大きいと燃焼室の断熱性能が十分ではなくなる。また、容積比熱が1000kJ/mKより大きいとガス温度への追従性が十分ではなくなる。膜厚が200μm未満であると、燃焼室の平均温度(時間に対する平均温度)が低くなり過ぎてしまう。第1の膜101及び第2の膜102の構成及びその製造方法については、追って詳述する。
 基材103は、従来の材料を用いることができる。例えば、アルミ合金、鉄又はチタン合金等であり、その熱伝導率は、50~200W/mK、容積比熱は2000~3000kJ/mKであることが好ましい。
 図3は本発明に係るピストンを構成する基材103、第1の膜101及び第2の膜102の熱伝導率と熱容量(容積比熱)を示すグラフである。図3に示すように、第1の膜101の熱伝導率及び容積比熱は、基材103の熱伝導率及び容積比熱よりもそれぞれ小さい。また、第2の膜102の熱伝導率は、基材103の熱伝導率よりも小さい。さらに、第2の膜102の容積比熱は、第1の膜101の容積比熱よりも大きい。基材103、第1の膜101及び第2の膜102がこのような関係を有することで、上述した本発明の効果を得ることができる。
 図4は本発明に係るピストンを備えた内燃機関の運転時のピストン表面温度とクランク角の関係を示すグラフである。すなわち、内燃機関運転中のピストン頂面温度の時間変化を示すグラフである。より具体的には、図4には、エンジンの吸気、圧縮、膨脹、排気行程から成る1サイクル内の第1の膜101と第2の膜102の表面温度のクランク角変化が示されている。また、参考として、図4には第1の膜101及び第2の膜102が設けられていない基材103のみからなるピストンの表面温度も図示している。
 第1の膜101は、低熱伝導率かつ低熱容量であるので、その表面温度は燃焼室内のガス温度変化に対して小さな時間遅れと小さな温度差で追従することができる。すなわち、吸気行程中期から圧縮行程の中期までは、燃焼室への新気導入によって筒内ガス温度は低くなり、これに追従して第1の膜101の表面温度は低くなる。さらに、圧縮行程後期から排気行程までは、ガスの圧縮と燃焼によって筒内ガス温度は高くなるので、これに追従して第1の膜101の表面温度は高くなる。このように、第1の膜101では、筒内ガス温度に追従してその表面温度が変化するので、ガスと壁面間の伝熱量が少なく、エンジンの冷却損失を低減することができる。これは、いわゆる温度スイング遮熱法と呼ばれる熱損失低減手法である。
 一方、第2の膜102は低熱伝導率かつ高熱容量であるので、その表面温度は、第1の膜101及び第2の膜102を設けない通常ピストンの表面温度に比して高くなると共に、燃焼室内のガス温度のサイクル内変化に対しては殆ど応答せず、エンジンサイクル内での表面温度変化幅は第1の膜101の表面温度変化幅に対して小さい。例えば、第1の膜101のサイクル内での表面温度の変化幅は約500℃であるが、第2の膜102のサイクル内での表面温度の変化幅は約50℃である。この結果、吸気行程の中期から圧縮行程の中期にかけては第2の膜102の表面温度は第1の膜101の表面温度よりも高くなる。一方、圧縮行程中期から吸気行程中期にかけては、第2の膜102の表面温度は第1の膜101の表面温度よりも低くなる。
 本実施例では、吸気行程の中期において燃料噴射弁5より燃料であるガソリンを燃焼室内に噴射する。図5は図1において燃料噴射弁5から燃焼室内に燃料が噴射されている状態を示す図である。噴射された燃料噴霧(噴霧ビーム)20は、燃焼室9内をピストン100aの方向に進み、その先端はピストン100aの中央付近の表面に衝突する。図6は図5のピストンを燃焼室側から見た平面図である。図6では、燃料噴霧20がピストン100aに衝突した直後を示している。図6に示すように、ピストン100aに燃料噴霧20が衝突すると、液滴の一部がピストン100aの頂面の中央に付着し、主に第2の膜102の表面上に燃料液膜21が形成される。
 第2の膜102の表面温度は、前述したように吸気行程中期から圧縮行程中期において温度が高い。また、第2の膜102の熱容量は大きいため、比較的温度が低い燃料液膜21が形成されても、液膜温度に追従することなく高い温度を維持する。このため、第2の膜102の表面に形成された液膜21は、第2の膜102の熱を受けて速やかに昇温し気化する。
 第1の膜101のみを設けたピストン又は第1の膜101及び第2の膜102を設けないピストンでは、ピストン表面上に燃料液膜が形成されると、燃料液膜の気化が遅いため空気と充分に混合できず、未燃炭化水素(HC)や煤(PM)の排出が多くなる。しかし、本実施例の内燃機関では、第2の膜102の表面において燃料液膜が速やかに気化して燃焼するため、HCやPMの排出を低減することができる。一方、本実施例の内燃機関では、第1の膜101の表面における燃料液膜の形成は少ないため、HCやPMの排出を低く保ったまま、第1の膜101による温度スイング遮熱によって冷却損失を低減することができる。
 なお、第2の膜102の表面温度はサイクル内で殆ど変化しないため、第1の膜101による温度スイング遮熱に比べて冷却損失の低減効果は小さい。そこで、本実施例の内燃機関200では、第1の膜101の燃焼室側の表面積を第2の膜102の燃焼室側の表面積よりも大きくし、温度スイング遮熱による冷却損失の低減効果を高めている。
 上記から明らかなように、本発明のHC及びPMの低減効果を得るには、第2の膜102をピストン表面の燃料液膜が形成される場所に配置することが望ましい。図7は本発明に係るピストンを含む内燃機関の第2の例を示す縦断面図であり、図8は図7のピストンを燃焼室側から見た平面図である。図7に示すような多孔式の燃料噴射弁5の場合、燃焼室内に噴射される噴霧は、図7に示されるように複数の燃料噴霧20により構成される。このような多孔式燃料噴射弁の場合には、図7または図8に示されるように、複数の第2の膜102を、ピストン頂面上に形成される液膜21のパターン(噴霧位置)に一致させて配置することが好ましい。図8では6孔式燃料噴射弁から形成された6本の燃料噴霧20で形成されるそれぞれの燃料液膜21に対応する位置に第2の膜102を配置した事例が示されている。
 このように、複数の第2の膜102をピストンの頂面上に形成する場合においては、第1の膜101の燃焼室側の表面積が、各々の第2の膜102の燃焼室側の表面積の総和よりも大きくなるように、各々の第2の膜102の大きさが決められている。
 複数の第2の膜102を、ピストンの頂面に形成される燃料液膜21のパターンに一致させて配置すると、第2の膜102のピストンの頂面に占める面積割合を少なくしつつ、ピストンの頂面の燃料液膜21を第2の膜102の熱を使って効率的に気化させることができる。第2の膜102のピストン表面に占める面積割合を少なくすることで、第1の膜101の面積割合を増やすことができるので、温度スイング遮熱による冷却損失の低減効果を最大化することができる。
 図9は本発明に係るピストンを含む内燃機関の第3の例を示す縦断面図である。図9に示すピストン100cでは、6孔式燃料噴射弁から形成される6本の燃料噴霧で形成される燃料液膜21を3つのグループに振り分け、それぞれの燃料液膜グループに対応する位置に第2の膜102を配置した事例が示されている。このようにグループ化した燃料液膜に対応して第2の膜102を配置すると、第2の膜102の面積増加を抑えつつ、第2の膜102の配置個数を減らすことができ、ピストンの製造プロセスの簡素化及びコスト低減を図ることができる。
 図10は本発明に係る内燃機関用ピストンを含む内燃機関の第4の例を示す縦断面図であり、図11は図10のピストンを燃焼室側から見た平面図である。直噴式ガソリンエンジンでは、冷機始動直後において排気触媒コンバーターの早期昇温のため点火遅角運転を行うことが多い。大きな点火遅角条件において燃焼を安定化するため、ピストン表面にキャビティ(凹部)を設けることが広く行われている。ピストンにキャビティを設けた場合には、キャビティ内に向けて噴射された燃料がキャビティ内に留まることによって、点火プラグ近傍に燃料濃度の高い混合気を形成して、点火遅角運転での安定な燃焼が実現される。図10はそのようなキャビティを備えたピストン100dを示している。
 図10に示すように、ピストン100dの頂面にキャビティ110が設けられている。そして、キャビティ110内に、低熱伝導率・高熱容量の第2の膜102が接合されている。さらに、第2の膜102が設けられている部分以外のピストン100dの頂面には、低熱伝導率・低熱容量の第1の膜101が接合されている。
 このような構成のピストンを設けた内燃機関の冷機始動直後の点火遅角運転時においては、キャビティ110の内部に向けて燃料噴霧20が噴射され、キャビティ110の表面には、図11に示されるように燃料液膜21が形成される。吸気行程中期から圧縮行程中期にかけては、低熱伝導率・高熱容量の第2の膜102の表面温度は高くなるので、キャビティ110に形成された燃料液膜21は加熱され、速やかに気化するため、HCやPMの排出を低減することができる。冷機運転においては、燃料液膜21の殆どがキャビティ110の底面又は側面内に形成されるので、本実施例のようにキャビティ110の底面及び側面に第2の膜102を形成すると、より効果的に燃料の気化を促進することができる。
 一方、暖機後の通常点火タイミングでの運転においては、キャビティ110の外側に設けた低熱伝導率・低熱容量の第1の膜101による温度スイング遮熱によって冷却損失を低減することができる。
 第2の膜102は、キャビティ110の全部ではなく一部分に設けられている場合であっても、HCやPMの排出低減効果を得ることができる。第2の膜102をキャビティ110内の燃料液膜21がより多く形成される部分にのみ設置し、残りのキャビティ110内に第1の膜101を設置することで、第2の膜102によるHCや煤の低減効果を得つつ、第1の膜101による冷却損失の低減効果をより大きくすることができる。
 図12は本発明に係るピストンを含む内燃機関の第5の例を示す縦断面図であり、図13は図12の液膜の厚さを示すグラフである。図12に示されるように、燃料噴霧20がピストン100eに衝突して、ピストン頂面上に燃料液膜21が形成されると、その液膜厚さは燃焼室の径方向に対して図13に示されるような分布となる。すなわち、燃料液膜21の厚さは、燃料噴射弁5のノズル先端に近い方が厚く、燃料噴射弁から遠い方が薄くなる。これは、燃料噴射弁5からピストン100eまでの距離が近い場合は、遠い場合に比べて、燃料噴霧20の空気抵抗による減速時間が短く、より速い速度で燃料噴霧20がピストン100eに衝突するためである。また、距離が近い方が、燃料噴霧20の空間分散が少ないので、より高い噴霧密度でピストン100eに衝突するため、液膜厚さが厚くなる。
 図14は第2の膜の熱抵抗と液膜厚さとの関係を示すグラフであり、図15は第2の膜の熱抵抗と、燃料噴射弁と第2の膜との間の距離との関係を示すグラフである。燃料液膜21の厚さが大きくなると、その気化に必要な時間が長くなるので、より多くの熱を燃料液膜21に与えて気化を促進するのが望ましい。そこで、第2の膜の膜厚を、ピストン頂面に形成される燃料液膜の厚さ又は燃料液膜の量に応じて変えるのがより好ましい。したがって、図14に示されるように、液膜厚さが厚くなる部分の第2の膜102の熱抵抗Rを、液膜厚さが薄くなる部分の第2の膜102の熱抵抗Rよりも大きくする。熱抵抗Rは、「第2の膜102の厚さ÷第2の膜102の熱伝導率」で定義されるので、熱抵抗Rを大きくするには、第2の膜102の厚さを大きくするか、第2の膜102の熱伝導率を小さくすればよい。または、第2の膜102の厚さを大きくして、かつ、第2の膜102の熱伝導率を小さくすればよい。
 熱抵抗Rが大きい方が第2の膜102の表面温度をより高くできるので、厚さが大きい燃料液膜21に多くの熱を与えて、気化時間の短縮を図ることができる。一方、第2の膜102の表面温度が高くなり過ぎると、エンジンの高負荷運転時にノッキングが発生したり、空気充填効率が低下したりするおそれがある。このため、ピストン頂面の高温部分の面積はできるだけ小さい方が望ましい。熱抵抗Rを、燃料液膜21の厚さに応じて変えることで、厚さが大きい燃料液膜21を第2の膜102の熱を利用して効果的に気化促進しつつ、ノッキングや充填効率への跳ね返りを抑えることが可能である。
 前述したように、燃料液膜21の厚さは、燃料噴射弁5の先端と燃料液膜21までの距離に依存する。そこで、図15に示されるように、燃料噴射弁5の先端と第2の膜102の距離が近いほど第2の膜102の熱抵抗Rを大きくしてもよい。
 複数の第2の膜102を設ける場合には、それぞれの第2の膜102の熱抵抗Rを、燃料噴射弁5の先端との距離に応じて変更してもよい。図16は本発明に係る用ピストンを含む内燃機関の第6の例を示す縦断面図である。図16では、燃料噴射弁5の先端に近い位置に設けた第2の膜102iの厚さを、燃料噴射弁5の先端から遠い位置に設けた第2の膜102iiの厚さより厚くしている。この他、第2の膜102i,102iiの膜厚を同じにして、燃料噴射弁5の先端から近い位置に設けた第2の膜102iの熱伝導率を、燃料噴射弁5の先端から遠い位置に設けた第2の膜102iiの熱伝導率より小さくすることもできる。このようにすることで、燃料液膜21が厚く形成される部分に接触する第2の膜102iの熱抵抗を大きくし、燃焼の気化促進を図ることができる。
 図17は本発明に係るピストンを含む内燃機関の第7の例を示す縦断面図であり、図18は本発明に係るピストンを含む内燃機関の第8の例を示す縦断面図である。上述したピストンの構成において、第1の膜101と第2の膜102は、それぞれの底面の大部分が基材103と接合するものであるが、ピストンの厚さ方向において、第1の膜101と第2の膜102が互いに重なる部分を有していてもよい。
 図17のピストン100gは、第2の膜102の端部に段差部111を設け、この段差部111の上に第1の膜101を乗せるように配置されている。また、図18のピストン100hは、第2の膜102の端部に傾斜部112を設け、この傾斜部112の上に第1の膜101を乗せるように配置されている。図17及び図18ともに、ピストンの頂面においては、第1の膜101と第2の膜102とは重なっていないが、ピストンの厚さ方向において、第1の膜101と第2の膜102とが重なっている。
 このように、第2の膜102と第1の膜101の一部を重ねて設置することで、第2の膜102と第1の膜101の密着性がより高まり、第2の膜102及び第1の膜101が基材103から剥がれにくくなる。また、第2の膜102と第1の膜101の密着性が高まることで、両者の隙間に燃料が浸透してHCとして排出されることを防止することができる。
 第2の膜102と第1の膜101の重なり部において、第2の膜102が第1の膜101の上部(燃焼室側)になるように重ねると、重なり部の熱抵抗Rは第2の膜102の熱抵抗R102と第1の膜101の熱抵抗R101の和になるのに加えて、重なり部の燃焼室側表面の熱容量が大きくなるため、吸気行程から圧縮行程において、重なり部の表面温度が局所的に高くなるおそれがある。このような局所高温部の生成はノッキングやプレイグニッションの原因となる。
 一方、上述したピストン100g及び100hのように、第2の膜102と第1の膜101の重なり部において、第1の膜101が第2の膜102の上部になるように重ねると、重なり部の表面は熱容量が小さいので、その表面温度はガス温度と小さな温度差で追従する。従って、吸気行程から圧縮行程において、重なり部の表面温度が局所的に高くなることはなく、ノッキングやプレイグニッションを防止することができる。
 ところで、温度スイング遮熱法によって冷却損失の低減を図る場合には、圧縮行程での冷却熱も減少することから、圧縮上死点付近での未燃ガス温度が上がりノッキングが起り易くなる。これを防止するための実施例について図19を用いて説明する。
 図19は本発明に係るピストンを含む内燃機関の第9の例を示す縦断面図である。図19に示すピストン100iの燃焼室側表面には、第1の膜101と第2の膜102に加えて、ピストン外周部に冷却部113が設けられている。冷却部113は、その熱伝導率が基材103と同じかそれ以上であり、冷却部113の底面の全部、もしくは大部分が基材103と接合している。
 冷却部113は、その熱伝導率がピストン基材と同じかそれ以上であるため、燃焼室の外周部のガスは冷却部113によって選択的に冷やされる。ノッキングは燃焼によって燃焼室外周部のエンドガスが圧縮され温度上昇することで自己着火する現象である。したがって、冷却部113によって燃焼室外周部のガスを選択的に冷やすことで、温度スイング遮熱法による冷却損低減効果を大きく損なうこと無くノッキングの発生を抑えることが可能である。
 図20は本発明に係るピストンを含む内燃機関の第10の例を示す縦断面図である。図20では、冷却部113は、基材103自身で構成されている。図20に示されるように、燃焼室外周部のピストン表面に基材103を露出することで冷却部113が形成される。
 (2.2)表面層の構成
 次に、本発明に係るピストンに好適な第1の膜101及び第2の膜102(以下、両者を併せて表面層と称する。)の構成の一例について詳細を説明する。図25は表面層(第1の膜及び第2の膜)を模式的に示す断面図である。図25に示すように、表面層300は、母相130と、母相130に分散された中空粒子134とを含む。中空粒子134は、内部に空孔135を有する粒子である。そして、母相130は、複数の金属粒子が結合して構成された金属相136と、空隙137とを有し、この空隙137に中空粒子134が含まれている構成を有する。
 母相130が有する空隙137と、中空粒子134が有する空孔135が表面層300を占める体積割合を「気孔率」と称する。気孔率を高めることで、表面層300の熱伝導率及び容積比熱を小さくすることができる。
 第2の膜102は、第1の膜101に対して大きな熱容量とするため、その気孔率は第1の膜101の気孔率に比べて小さくする。第2の膜の気孔率は、例えば20%程度とすることが好ましい。一方、第1の膜101は、低熱伝導率・低容積比熱とするために、例えば50%程度の気孔率とすることが好ましい。
 表面層300は、内燃機関の中の過酷な環境(高温、高圧及び高振動)に耐えるため、基材103への高い密着性と高い引張り強さとが求められる。多孔体である表面層300の主要部分を構成する母相130の大部分を金属相136とすることで、金属からなる基材103と表面層300との高い密着性及び高い耐久性を得ることができる。また、母相130の空隙137中に中空粒子134を含有させ、母相130中の空隙137と中空粒子134の空孔135とを合わせることで、低熱伝導率化に必要な気孔率を確保しつつ、母相130中の空隙137の体積量を抑えて、表面層300の強度を高く保つことができる。
 図26は図25の金属相136を構成する金属粒子を拡大した模式図である。金属相136は、金属粒子が焼結によって結合された焼結金属で構成することが好ましい。図26に示すように、金属粒子138の一部同士が焼結によって結合し、ネック139を有していることが好ましい。このネック139によって金属粒子間の空間を確保し、空隙137を形成することができる。また、焼結密度を制御することで空隙137の割合を制御し、表面層300の熱伝導率、容積比熱及び強度を種々に変更することができる。
 金属相136と基材103は、同じ金属をそれぞれの主成分として含むことが好ましい。具体的には、基材103をアルミニウム(Al)合金とし、金属相136をAlとすることが好ましい。このように基材103と、表面層300の主要部分を構成する金属相136を同じ金属を含む構成にすることによって、基材103と多孔構造を有する表面相300の界面で強固な固相接合部を形成して高い密着性を確保し、耐久性に優れた表面層300を実現できる。
 中空粒子134の素材としては、表面層300の断熱性能を確保するため熱伝導率が小さく、中空であっても強度が高い材料が好ましい。このような材料としては、シリカ、アルミナ、ジルコニアなどが挙げられる。例えばシリカを主成分とする中空粒子としてはセラミックビーズ、シリカエアロゲル、多孔ガラス等がある。
 3.内燃機関用ピストンの製造方法
 次に、本発明に係るピストンの製造方法の一例について説明する。
 (3.1)第1の膜及び第2の膜の準備
 第1の膜及び第2の膜の作製は、まず、金属相136の原料となる金属粒子138と中空粒子134の粉末を混合し、この混合粒子を加熱して焼結体を得る。焼結法としては、焼結時の荷重と温度を制御可能な加圧焼結が好ましく、パルス通電焼結法が好適である。この方法は、原料粉末を加圧しながらパルス通電する方法であり、粉末表面で抵抗発熱とスパーク放電による発熱が発生し、粉末表面での反応を活性化し、金属粒子間接触部にネック139を生成しやすい。このためパルス通電焼結法では、空隙を多く含む多孔焼結体であってもネック139部分で金属粒子を強固に結合することができる。
 焼結時の加圧力を上げると焼結体の気孔率が小さくなり、下げると焼結体の気孔率が大きくなる。したがって、低熱伝導率・低容積比熱の第1の膜101を形成する場合には、原料粉末の中の中空粒子134の割合を大きくして、焼結時の加圧力を低くする。一方、低熱伝導率・高容積比熱の第2の膜102を形成する場合には、原料粉末の中の中空粒子134の割合を小さくして、焼結時の加圧力を高くする。
 図27は焼結体を成形して得た第1の膜及び第2の膜を模式的に示す図である。図27に示すように、上記した焼結工程で得た焼結体を、所定の厚さ及び形状に成型し、第1の膜101のベース焼結体101bと第2の膜102のベース焼結体102bを得る。
 (3.2)基材の準備
 図28は、基材の一例の断面図及び平面図である。基材103はアルミニウム合金等を鋳造して製作する。そして、基材103を機械加工し、図28に示すように、基材103の燃焼室側表面にベース焼結体101bを設置するための凹部151と、ベース焼結体102bを設置するための凹部152を形成する。
 (3.3)基材と第1の膜及び第2の膜の接合
 図29は基材の表面にベース焼結体を設置した状態を示す断面図であり、図30は図29の基材及びベース焼結体を接合するために装置を示す模式図である。図29に示すように、凹部151内にベース焼結体101bを嵌め込み、凹部152内にベース焼結体102bを嵌め込む。このとき、基材103とベース焼結体101b,102bとの間に、基材103、ベース焼結体101b,102bのいずれよりも融点が低いインサート材153を設置する。そして、図30に示すように、電極154によりベース焼結体101b,102bを基材103に加圧密着させ、電源155によりパルス通電する。すると、インサート材153が熱溶解してベース焼結体101b及びベース焼結体102bの内部に拡散する。この結果、いわゆる拡散結合によって、ベース焼結体101b及びベース焼結体102bと基材103とがそれぞれ接合される。ベース焼結体101b,102bと基材103との接合にパルス通電法を用いることで、空隙を多く含むベース焼結体101b,102bと基材103とを強固に結合することができる。以上説明したピストンの製造方法によれば、熱伝導率、容積比熱及び厚さが異なる第1の膜101及び第2の膜102の基材103への接合が同時に行われ、ピストンの製造プロセスの簡素化、低コスト化を図ることができる。
 (3.4)ピストン頂面の成形
 図31はピストン頂面の成形(機械加工)を模式的に示す断面図である。図31に示すように、ベース焼結体101b,102b及び基材103の表面が同じ高さになるように(ピストン頂面が平坦になるように)機械加工によってピストン頂面を成形する。
 図32は基材及びベース焼結体の他の例を模式的に示す断面図である。図32に示すように、ベース焼結体101b,102bを予め最終的なピストン表面形状に一致するように成形してから基材103に上記の方法で接合することで、ベース焼結体101b,102bを基材103に接合した後の機械加工が不要となり、ピストン製作のための工数を低減できる。
 また、図32では、第2の膜102のベース焼結体102bの表面にキャビティを予め形成し、ベース焼結体102bを基材103に接合する例が示されている。これによって、接合後の機械加工を行うことなくキャビティ付きピストンが形成される。
 さらに、基材103とベース焼結体101b,102bとを焼結しながら、ベース焼結体101b,102bを最終的な形状に成形することもできる。具体的には、焼結成形の際に、ピストン完成後の形状に一致した金型内に焼結体の原料粉末を入れ、圧力をかけながらパルス通電焼結する。このように焼結成形することで、機械加工をすることなく、ベース焼結体101b,102bを最終的な形状に成形できるため、製作工数を低減することができる。
 以上、説明した本発明によれば、熱効率の向上とエミッション低減を両立し、かつ、ピストンの過熱を防止してノッキング、プレイグニッションの発生及び空気充填効率の低下の防止することができる内燃機関用ピストン及びその製造方法を提供することができることが示された。すなわち、低熱伝導率・低熱容量の第1の膜101を利用した温度スイング遮熱法によって冷却損失が低減し、エンジンの燃費効率を高めることができる。一方、低熱伝導率・高熱容量の第2の膜102によって、ピストン表面に形成された燃料液膜21の気化を促進し、HCやPMを低減することができる。
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 1…吸気ポート、2…排気ポート、3…吸気弁、4…排気弁、5…燃料噴射弁、6…点火プラグ、7…エンジンヘッド、8…シリンダ、9…燃焼室、5…燃料噴射弁、20…燃料噴霧、21…燃料液膜、100a,100b,100c,100d,100e,100f,100g,100h,100i,100´…ピストン、101…第1の膜(遮熱膜)、101b…第1の膜のベース焼結体、101´…陽極酸化被膜、102,102i,102ii…第2の膜(断熱膜)、102´…金属被膜、102b…第2の膜のベース焼結体、103,103´…基材、104…第1の膜の底面、105…第2の膜の底面、110…キャビティ、111…段差部、112…傾斜部、113…冷却部、130…母相、134…中空粒子、135…空孔、136…金属相、137…空隙、138…金属粒子、139…ネック、151,152…凹部、153…インサート材、154…電極、155…電源、200…内燃機関、300…表面層。

Claims (20)

  1.  内燃機関の燃焼室の一部を構成する内燃機関用のピストンであって、
     基材と、前記基材の前記燃焼室と接する頂面の一部分に設けられた第1の膜と、前記頂面の他の部分に設けられた第2の膜と、を有し、
     前記第1の膜は、前記基材よりも熱伝導率及び熱容量が小さく、前記第2の膜は、前記基材よりも熱伝導率が小さく、かつ、前記第1の膜よりも熱容量が大きいことを特徴とする内燃機関用ピストン。
  2.  請求項1記載の内燃機関用ピストンにおいて、
     前記第1の膜及び前記第2の膜が、前記ピストンを上面から見た時に、並列して配置されていることを特徴とする内燃機関用ピストン。
  3.  請求項1記載の内燃機関用ピストンにおいて、
     前記基材の表面に凹部が設けられており、前記第2の膜は、前記凹部の底面、側面又はその両方に配置されていることを特徴とする内燃機関用ピストン。
  4.  請求項1記載の内燃機関用ピストンにおいて、
     前記第2の膜は、前記ピストンの頂面において、前記内燃機関が有する燃料噴射弁から噴霧される燃料が付着する部位に配置されていることを特徴とする内燃機関用ピストン。
  5.  請求項4記載の内燃機関用ピストンにおいて、
     前記ピストンの頂面において、前記燃料の付着量が多い部分ほど、又は前記燃料が前記ピストンの頂面に付着して形成される燃料液膜の厚さが大きい部分ほど前記第2の膜の熱抵抗が大きいことを特徴とする内燃機関用ピストン。
  6.  請求項4記載の内燃機関用ピストンにおいて、
     前記ピストンの頂面において、前記第2の膜と前記燃料噴射弁との間の距離が近い部分ほど前記第2の膜の熱抵抗が大きいことを特徴とする内燃機関用ピストン。
  7.  請求項1記載の内燃機関用ピストンにおいて、
     前記第1の膜及び前記第2の膜は、前記ピストンの深さ方向において、前記第1の膜と前記第2の膜との一部が互いに重なる部分を有し、
     前記第1の膜と前記第2の膜とが重なる部分において、前記第1の膜が前記第2の膜の上部に位置するように配置されていることを特徴とする内燃機関用ピストン。
  8.  請求項1記載の内燃機関用ピストンにおいて、
     前記ピストンの頂面の前記第1の膜及び前記第2の膜が配置されていない部分に、前記基材と同じかそれ以上の熱伝導率を有する冷却部が設けられていることを特徴とする内燃機関用ピストン。
  9.  請求項8記載の内燃機関用ピストンにおいて、
     前記冷却部は前記基材の一部で構成されていることを特徴とする内燃機関用ピストン。
  10.  請求項9記載の内燃機関用ピストンにおいて、
     前記冷却部は前記ピストンの外周部に配置されていることを特徴とする内燃機関用ピストン。
  11.  請求項1乃至10のいずれか1項に記載の内燃機関用ピストンにおいて、
     前記第1の膜の容積比熱は500kJ/mK以下、熱伝導率は0.5W/mK以下、膜厚は50~200μmであり、前記第2の膜の容積比熱は1000kJ/mK以上、熱伝導率は1~10W/mK、膜厚は200μm以上であることを特徴とする内燃機関用ピストン。
  12.  請求項1乃至10のいずれか1項に記載の内燃機関用ピストンにおいて、
     前記第1の膜及び前記第2の膜は、母相と、内部に空孔を有する中空粒子と、を含み、前記母相は、複数の金属粒子が結合して構成された金属相と、空隙と、を有し、前記空隙に前記中空粒子が含まれていることを特徴とする内燃機関用ピストン。
  13.  請求項1乃至10のいずれか1項に記載の内燃機関用ピストンにおいて、
     前記第2の膜は、前記ピストンの頂面に複数配置されており、複数の前記第2の膜の燃焼室側の表面積の総和が、前記第1の膜の燃焼室側の表面積よりも小さいことを特徴とする内燃機関用ピストン。
  14.  内燃機関の燃焼室の内側壁面の一部を構成する内燃機関用のピストンの製造方法であって、
     基材を準備する工程と、
     前記基材よりも熱伝導率及び熱容量が小さい第1の膜と、前記基材よりも熱伝導率が小さく、かつ、前記第1の膜よりも熱容量が大きい第2の膜とを準備する工程と、
     前記基材、前記第1の膜及び前記第2の膜より融点が低いインサート材を準備する工程と、
     前記基材の表面に、前記インサート材を挟んで前記第1の膜及び前記第2の膜を配置する工程と、
     前記インサート材を加熱して前記基材と前記第1の膜及び前記第2の膜とを接合する接合工程と、を有することを特徴とする内燃機関用ピストンの製造方法。
  15.  請求項14記載の内燃機関用ピストンの製造方法において、
     前記第1の膜と前記第2の膜とを準備する工程において、前記第1の膜の原料及び前記第2の膜の原料をパルス通電焼結法によって焼結して焼結体を得ることを特徴とする内燃機関用ピストンの製造方法。
  16.  請求項14記載の内燃機関用ピストンの製造方法において、
     前記接合工程における前記インサート材の加熱方法がパルス通電法であることを特徴とする内燃機関用ピストンの製造方法。
  17.  請求項14記載の内燃機関用ピストンの製造方法において、
     さらに、前記基材の表面に、前記第1の膜が篏合可能な凹部と、前記第2の膜が篏合可能な凹部と、を設ける工程を有することを特徴とする内燃機関用ピストンの製造方法。
  18.  請求項14記載の内燃機関用ピストンの製造方法において、
     前記第1の膜と前記第2の膜とを準備する工程において、前記第1の膜及び前記第2の膜の燃焼室側の表面を、前記ピストンの完成後の頂面の形状に一致するように焼結成形することを特徴とする内燃機関用ピストンの製造方法。
  19.  請求項14記載の内燃機関用ピストンの製造方法において、
     前記第1の膜と前記第2の膜とを準備する工程において、前記第1の膜及び前記第2の膜の燃焼室側の表面を、前記ピストンの完成後の頂面の形状に一致するように機械加工することを特徴とする内燃機関用ピストンの製造方法。
  20.  請求項14記載の内燃機関用ピストンの製造方法において、
     前記第1の膜と前記第2の膜とを準備する工程において、前記ピストンの完成後の形状に一致した金型の中に前記第1の膜及び前記第2の膜の原料粉末を入れ、
     前記第1の膜及び前記第2の膜を配置する工程において、前記金型を前記基材の表面に配置することを特徴とする内燃機関用ピストンの製造方法。
PCT/JP2018/003614 2017-02-09 2018-02-02 内燃機関用ピストン及びその製造方法 WO2018147188A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/484,043 US20190390591A1 (en) 2017-02-09 2018-02-02 Piston for internal combustion engine and method of manufacturing same
CN201880009933.3A CN110268151A (zh) 2017-02-09 2018-02-02 内燃机用活塞及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017022274A JP2018127972A (ja) 2017-02-09 2017-02-09 内燃機関用ピストン及びその製造方法
JP2017-022274 2017-02-09

Publications (1)

Publication Number Publication Date
WO2018147188A1 true WO2018147188A1 (ja) 2018-08-16

Family

ID=63107481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003614 WO2018147188A1 (ja) 2017-02-09 2018-02-02 内燃機関用ピストン及びその製造方法

Country Status (4)

Country Link
US (1) US20190390591A1 (ja)
JP (1) JP2018127972A (ja)
CN (1) CN110268151A (ja)
WO (1) WO2018147188A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7238751B2 (ja) * 2019-12-17 2023-03-14 マツダ株式会社 内燃機関の製造方法および内燃機関
CN111677598A (zh) * 2020-05-09 2020-09-18 天津大学 一种控制内燃机喷雾撞壁改善近壁区域燃烧的方法
CN115182811A (zh) * 2021-04-06 2022-10-14 何剑中 一种新型内燃机

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04231656A (ja) * 1990-06-22 1992-08-20 Kolbenschmidt Ag 軽金属製ピストン
JPH1190619A (ja) * 1997-09-16 1999-04-06 Mazda Motor Corp 金属部材の接合方法及び接合装置
JP2010185290A (ja) * 2009-02-10 2010-08-26 Toyota Central R&D Labs Inc 遮熱膜及びその形成方法
JP2010203334A (ja) * 2009-03-04 2010-09-16 Nissan Motor Co Ltd 内燃機関のピストン
JP2011220207A (ja) * 2010-04-08 2011-11-04 Toyota Motor Corp 内燃機関およびピストン作製方法
JP2012072746A (ja) * 2010-09-30 2012-04-12 Mazda Motor Corp 断熱構造体
JP2014020301A (ja) * 2012-07-19 2014-02-03 Mazda Motor Corp エンジンの燃焼室構造
JP2015081527A (ja) * 2013-10-21 2015-04-27 マツダ株式会社 エンジン燃焼室に臨む部材表面に設けられた断熱層
JP2015222060A (ja) * 2014-05-23 2015-12-10 トヨタ自動車株式会社 内燃機関のピストン
WO2016076341A1 (ja) * 2014-11-14 2016-05-19 株式会社日立製作所 遮熱コーティングを備えた耐熱部材及びその製造方法
JP2016102457A (ja) * 2014-11-28 2016-06-02 スズキ株式会社 遮熱膜の形成方法及び遮熱膜形成体、並びに内燃機関
JP2016186257A (ja) * 2015-03-27 2016-10-27 いすゞ自動車株式会社 直噴式エンジンの燃焼室構造

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015147162A1 (ja) * 2014-03-27 2015-10-01 スズキ株式会社 アルミニウム部材の表面被覆方法及び表面被覆アルミニウム部材並びに内燃機関用ピストン

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04231656A (ja) * 1990-06-22 1992-08-20 Kolbenschmidt Ag 軽金属製ピストン
JPH1190619A (ja) * 1997-09-16 1999-04-06 Mazda Motor Corp 金属部材の接合方法及び接合装置
JP2010185290A (ja) * 2009-02-10 2010-08-26 Toyota Central R&D Labs Inc 遮熱膜及びその形成方法
JP2010203334A (ja) * 2009-03-04 2010-09-16 Nissan Motor Co Ltd 内燃機関のピストン
JP2011220207A (ja) * 2010-04-08 2011-11-04 Toyota Motor Corp 内燃機関およびピストン作製方法
JP2012072746A (ja) * 2010-09-30 2012-04-12 Mazda Motor Corp 断熱構造体
JP2014020301A (ja) * 2012-07-19 2014-02-03 Mazda Motor Corp エンジンの燃焼室構造
JP2015081527A (ja) * 2013-10-21 2015-04-27 マツダ株式会社 エンジン燃焼室に臨む部材表面に設けられた断熱層
JP2015222060A (ja) * 2014-05-23 2015-12-10 トヨタ自動車株式会社 内燃機関のピストン
WO2016076341A1 (ja) * 2014-11-14 2016-05-19 株式会社日立製作所 遮熱コーティングを備えた耐熱部材及びその製造方法
JP2016102457A (ja) * 2014-11-28 2016-06-02 スズキ株式会社 遮熱膜の形成方法及び遮熱膜形成体、並びに内燃機関
JP2016186257A (ja) * 2015-03-27 2016-10-27 いすゞ自動車株式会社 直噴式エンジンの燃焼室構造

Also Published As

Publication number Publication date
JP2018127972A (ja) 2018-08-16
US20190390591A1 (en) 2019-12-26
CN110268151A (zh) 2019-09-20

Similar Documents

Publication Publication Date Title
US8813734B2 (en) Heat-insulating structure
US10502130B2 (en) Composite thermal barrier coating
WO2018147188A1 (ja) 内燃機関用ピストン及びその製造方法
JP6010944B2 (ja) 圧縮自己着火エンジン
JP5655813B2 (ja) 内燃機関とその製造方法
KR20190091332A (ko) 셔틀 전극을 갖는 스파크 플러그
JP5834649B2 (ja) 火花点火式直噴エンジン
JP5834650B2 (ja) 火花点火式直噴エンジン
JPH11193721A (ja) 筒内噴射式火花点火機関
JP6544378B2 (ja) エンジンの燃焼室構造
WO2018198786A1 (ja) 内燃機関のピストン及び内燃機関のピストン冷却制御方法
JP2013024142A (ja) ピストン
JP5899727B2 (ja) 直噴ガソリンエンジン
CN105986921A (zh) 用于内燃机的活塞、包括其的内燃机及其制造方法
JPS61142320A (ja) デイ−ゼル機関の燃焼室
JP2013087721A (ja) 遮熱膜の形成方法及び内燃機関
US10309293B2 (en) Internal combustion engine
JP5978677B2 (ja) 圧縮自己着火エンジン
US20190107045A1 (en) Multi-layer thermal barrier
JP2013068148A (ja) 火花点火式直噴エンジン
JP2015190419A (ja) 圧縮着火式エンジンの制御装置
JP5978678B2 (ja) 圧縮自己着火エンジン
JP2013087719A (ja) 遮熱膜の形成方法及び内燃機関
JP2021161977A (ja) エンジンの燃焼室構造
JPS643797Y2 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18750968

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18750968

Country of ref document: EP

Kind code of ref document: A1