WO2018145516A1 - 一种确定架空导线分层电流幅值与相位的方法 - Google Patents

一种确定架空导线分层电流幅值与相位的方法 Download PDF

Info

Publication number
WO2018145516A1
WO2018145516A1 PCT/CN2017/116392 CN2017116392W WO2018145516A1 WO 2018145516 A1 WO2018145516 A1 WO 2018145516A1 CN 2017116392 W CN2017116392 W CN 2017116392W WO 2018145516 A1 WO2018145516 A1 WO 2018145516A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
layer
phase
conductors
current
Prior art date
Application number
PCT/CN2017/116392
Other languages
English (en)
French (fr)
Inventor
刘刚
陈垣
李炀
王亦清
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Priority to US16/483,936 priority Critical patent/US20190346496A1/en
Publication of WO2018145516A1 publication Critical patent/WO2018145516A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R25/00Arrangements for measuring phase angle between a voltage and a current or between voltages or currents
    • G01R25/02Arrangements for measuring phase angle between a voltage and a current or between voltages or currents in circuits having distributed constants
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0092Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring current only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/08Measuring current density
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/16Cables, cable trees or wire harnesses

Definitions

  • the invention relates to the technical field of internal temperature gradient distribution calculation of overhead wires, in particular to a method for determining the amplitude and phase of stratified current of overhead wires.
  • the overhead line state equation finds the temperature or tension in another state based on the temperature-tension in a known state, thereby finding the sag of the wire.
  • the state equation simplifies the structural characteristics of the overhead conductor during the derivation process: the whole conductor is considered to be an isothermal body, and the stress distribution of the section is evenly distributed.
  • the overhead conductors are mostly steel-cored aluminum stranded wires, which are stranded by several strands of conductors, so that there is an air gap between the conductors of each layer, and the temperature mainly falls in the air relative to the large heat transfer coefficient of the metal conductor, and The heat dissipation condition of the outer surface is better than that of the inner part, so the internal temperature of the steel core aluminum stranded wire is higher than the outer layer temperature.
  • the wire is mainly carried by the steel core, and the radial temperature difference can reach more than ten degrees. For this reason, accurately calculating the steel core temperature or radial temperature difference of the steel wire aluminum stranded wire of the overhead wire will play an important role in improving the calculation accuracy of such a model.
  • VTMorgan et al. considered the contact thermal resistance of air gap and air thermal resistance, and considered that the heat generation rate of the conductor is evenly distributed in the conductor cross section.
  • WZBlack is in accordance with the current.
  • the heat conduction equation is established, and the radial heat transfer coefficient is divided under different carrier currents, different wind speeds and different tension conditions.
  • the combination of parameter identification and thermoelectric simulation method was established, and the radial temperature thermal path model was established and verified by experiments.
  • the object of the present invention is to solve the above-mentioned drawbacks of the prior art and to provide a method for determining the amplitude and phase of a layered current of an overhead conductor.
  • a method of determining a layered current amplitude and phase of an overhead conductor comprising:
  • step S101 is specifically:
  • Each phase of the three-phase wires has m layers, which are coded as 1, 2...m from inside to outside, and each layer has n conductors. There is no distinction between the wires inside each layer. Determine the radius of the overhead conductor and the radius of each conductor only when deriving the following subscripts a, b, and c;
  • n is the number of conductors in the ith layer
  • step S102 is specifically:
  • the electrical resistivity and magnetic permeability of various conductors are determined according to the overhead conductors being steel core aluminum stranded wires, aluminum stranded wires and copper wires.
  • calculation formula of the mutual inductance Maiaj in the step S201 is specifically:
  • n is the number of conductors in the jth layer
  • D ij is the geometric mean of the distances of the conductors between the ith layer and the jth layer
  • r i is the ith layer
  • r j is the distance from the center of the single conductor of the jth layer to the center of the wire
  • ⁇ ik - ⁇ ji is the center of the kth conductor of the i layer and the 1st conductor of the j layer The angle at which the center of the circle is open relative to the center of the wire.
  • the calculation formula of the self-inductance La aiai in the step S202 is specifically:
  • D ii is the geometric mean of the distances of the individual conductors in the ith layer
  • r i is the distance from the center of the single conductor of the ith layer to the center of the conductor
  • ⁇ ik - ⁇ i1 The angle between the center of the k-th conductor of the i-layer and the center of the first conductor of the i-layer relative to the total center of the conductor, r eq is the equivalent radius of the first conductor of the i-layer.
  • step S301 is specifically:
  • the three-phase is symmetrical and the line-to-line equivalent distance is D eq , and the distance between the wires is considered to be much larger than the distance between the individual strands in the one-phase wire.
  • the i-th layer conductor is formed by the j-th layer. The flux generated by the current in the conductor:
  • the total mutual inductance between the ith layer conductor of the A-phase conductor and the A-th layer conductor of the A-phase is:
  • step S302 is specifically:
  • step S4 is specifically:
  • V r 1 i 1 +j(X 11 i 1 +X 12 i 2 +X 13 i 3 +...X 1m i m )
  • V r 2 i 2 +j(X 21 i 1 +X 22 i 2 +X 23 i 3 +...X 2m i m )
  • V r 3 i 1 +j(X 31 i 1 +X 32 i 2 +X 33 i 3 +...X 3m i m ),
  • V r m i 1 +j(X m1 i 1 +X m2 i 2 +X m3 i 3 +...X mm i m )
  • the method for determining the amplitude and phase of the stratified current of the overhead conductor disclosed by the present invention is pushed into the flow considering the electromagnetic coupling effect between the conductors.
  • the current of each layer of conductor was passed, and the accuracy of the model was compared by the electromagnetic simulation software ANSOFT MAXWELL.
  • FIG. 1 is a flow chart of a method for determining the amplitude and phase of a layered current of an overhead conductor disclosed by the present invention.
  • a LGJ300/40 type A-phase wire is used as the calculation object, and a method for calculating the stratified current of the overhead line is proposed.
  • the method is not limited to the LGJ300/40 type wire, and the 2D sectional view of the LGJ 300/40 type wire is composed of
  • the four-layer composition consists of a steel core with a center radius of 1.33mm from the inside to the outside, and six steel cores with a radius of 1.33mm on the circle with a radius of 2.66mm.
  • the center of the circle is evenly distributed in the radius. It is a 9.958mm nine-aluminum core with a radius of 1.995mm and a center of fifteen aluminum cores with a radius of 1.995mm on a circle with a radius of 9.975mm.
  • FIG. 1 is a flow chart of a method for determining the amplitude and phase of a layered current of an overhead conductor, and the method specifically includes the following steps:
  • the step further includes the following sub-steps:
  • the 2D cross-sectional view of the LGJ 300/40 type conductor consists of four layers, from the inside to the outside, a steel core with a center radius of 1.33 mm and a center of the circle uniformly distributed at a radius of 2.66 mm.
  • Six steel cores with an upper radius of 1.33mm and nine cores with a radius of 1.995mm on a circle with a radius of 5.985mm are evenly distributed.
  • the center of the circle is evenly distributed on a circle with a radius of 9.975mm and a radius of 1.995mm.
  • n is the number of conductors in the ith layer
  • the first and second layers of the conductor material of the overhead conductor are steel, and the specific resistance is 5 ⁇ 10-7 ⁇ m. Since the metal steel is a ferromagnetic material, the current permeability changes, and the relative magnetic permeability takes a value of 1. Between 2000 and 2000; the third and fourth layers of conductor material are aluminum, the resistivity is 2.83 ⁇ 10-8 ⁇ m, which is a non-ferromagnetic material, and the relative magnetic permeability is 1.0.
  • the step specifically includes the following sub-steps:
  • n is the number of conductors in the jth layer
  • D ij is the geometric mean of the distances of the conductors between the ith layer and the jth layer
  • r i is the ith layer
  • r j is the distance from the center of the single conductor of the jth layer to the center of the wire
  • ⁇ ik - ⁇ ji is the center of the kth conductor of the i layer and the 1st conductor of the j layer The angle at which the center of the circle is open relative to the center of the wire.
  • D ii is the geometric mean of the distances of the individual conductors in the ith layer
  • r i is the distance from the center of the single conductor of the ith layer to the center of the conductor
  • ⁇ ik - ⁇ i1 The angle between the center of the k-th conductor of the i-layer and the center of the first conductor of the i-layer relative to the total center of the conductor, r eq is the equivalent radius of the first conductor of the i-layer.
  • the three-phase is symmetrical and the line-to-line equivalent distance is D eq , and the distance between the wires is considered to be much larger than the distance between the individual strands in the phase conductor.
  • the j-th layer conductor The magnetic flux generated by the current in:
  • f is the grid frequency
  • X ij is used to indicate the mutual inductance between the i-th layer and the j-th layer of a certain phase, ie
  • the steel core aluminum stranded wire has a non-uniform current distribution at the power frequency and mainly flows through the aluminum conductor layer, the heat generation inside the conductor mainly occurs in the aluminum conductor layer.
  • the calculation result of the patent of the present invention differs greatly in the simulation results of the steel core conductor and the finite element, for the aluminum conductor layer having a large heat generation rate, by correcting the relative magnetic permeability, the error can be reduced by 0.125%, and The method can reflect the phase difference between the conductors of the layers. Therefore, when calculating the internal radial temperature distribution of the overhead conductor or calculating the steel core temperature, the calculation method of this patent can be used to calculate the current distribution of each layer and the heat generation rate of each layer.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Insulated Conductors (AREA)
  • Coils Of Transformers For General Uses (AREA)

Abstract

本发明公开了一种确定架空导线分层电流幅值与相位的方法,该方法包括下列步骤:S1、确定导线的规格尺寸和主要技术参数;S2、单相导线内各导体之间互感与自感的计算;S3、三相系统单相导线各导体的自感抗和互感抗的计算;S4、各层电流分布的计算。该方法考虑导线内部各导体之间的磁场耦合作用,能够准确的计算流过导线各层导体的电流,并能准确的反映各层导体之间的相位关系。

Description

一种确定架空导线分层电流幅值与相位的方法 技术领域
本发明涉及架空导线内部温度梯度分布计算技术领域,具体涉及一种确定架空导线分层电流幅值与相位的方法。
背景技术
架空线状态方程式根据一种已知状态下的温度-张力,求出另一种状态下的温度或者张力,从而求出导线弧垂。状态方程式在推导过程中对架空导线的结构特点进行了简化:认为整个导线为等温体,截面应力分布呈均匀分布。然而,架空导线多为钢芯铝绞线,由数股导体绞合而成,从而各层导体之间存在空气间隙,相对于金属导体较大的传热系数,温度主要降落在空气中,并且外表面的散热条件优于内部,所以钢芯铝绞线的内部温度要高与外表层温度。在高温范围,导线主要由钢芯承担,而径向温差能达十几度。为此,准确计算架空导线的钢线铝绞线的钢芯温度或者径向温差,将对提高此类模型的计算精度带来重要作用。
目前,国内外研究人员对架空导线的径向温度分布做了一定的研究,并取得了很多突出成果。如V.T.Morgan等人考虑了空气间隙的接触热阻以及空气热阻,并认为导体的生热率是均匀分布在导体截面,在此基础上详细推导了径向温度计算公式;W.Z.Black在电流按照直流串并联分布的情况下,建立了热传导方程,在不同载流,不同风速,以及不同张力条件下对径向热传导系数进行了划分取值。国内应展烽等人结合参数辨识和热电 比拟方法,建立了径向温度热路模型,并通过实验验证。然而,上述综述中,有的简化了导线的实际结构,认为钢芯铝绞线为同轴双导体;有的虽然考虑了导线的绞合结构,但是在计算各层导体的产热率上仍然没有考虑集肤效应对电流分布以及欧姆损耗的影响,而两个方面又是影响径向梯度存在的主要因素。因此,准确计算交流频率下架空导线各层导体电流分布,以及各层导体的实际产热率,对于准确评估钢芯温度将是至关重要的。
发明内容
本发明的目的是为了解决现有技术中的上述缺陷,提供一种确定架空导线分层电流幅值与相位的方法。
本发明的目的可以通过采取如下技术方案达到:
一种确定架空导线分层电流幅值与相位的方法,所述方法包括:
S1、确定导线的规格尺寸和主要技术参数,该步骤具体为:
S101、确定架空导线层数和各层导体数以及规划尺寸;
S102、确定各层导体材料和相应的电阻率和磁导率;
S2、计算单相导线内各导体之间互感与自感,该步骤具体为:
S201、计算单相导线第i层导体与第j层导体之间的互感;
S202、计算单相导线第i层导体的自感;
S3、计算三相系统内各导体的自感抗和互感抗,该步骤具体为:
S301、计算三相系统中,A相导线第i层导体与第j层导体总的互感抗;
S302、计算三相系统中,A相导线第i层导体自感抗;
S4、计算各层电流分布。
进一步地,所述步骤S101具体为:
对导线进行编号,三相导线每一相均有m层,由内到外分别编为1、2…m,每层导线有n根导体,每层内部的导线之间不做区分,三相仅在推 导时以下标a、b、c区分,确定架空导线半径、每根导体的半径;
对于电流用
Figure PCTCN2017116392-appb-000001
表示第i层的总的电流,用
Figure PCTCN2017116392-appb-000002
表示第i层内部一个导线上的电流,即
Figure PCTCN2017116392-appb-000003
其中,n为第i层中的导体数,
Figure PCTCN2017116392-appb-000004
仅在结果分析中出现以比较集肤效应的影响。
进一步地,所述步骤S102具体为:
根据架空导线是钢芯铝绞线、铝绞线和铜导线确定各种导体的电阻率和磁导率。
进一步地,所述步骤S201中互感M aiaj的计算公式具体为:
Figure PCTCN2017116392-appb-000005
其中,
Figure PCTCN2017116392-appb-000006
其中,m为第i层中导体的数目,n为第j层中导体的数目,D ij为第i层与第j层之间各个导体距离的几何平均值,r i为第i层的单根导体的圆心距离导线中心的距离,r j为第j层的单根导体的圆心距离导线中心的距离,θ ikji为i层第k个导体的圆心与j层第l个导体的圆心相对于导线总的圆心所张开的角度。
进一步地,所述步骤S202中自感L aiai的计算公式具体为:
Figure PCTCN2017116392-appb-000007
其中,
Figure PCTCN2017116392-appb-000008
其中,m为第i层中导体的数目,D ii为第i层内各个导体距离的几何平均值,r i为第i层的单根导体的圆心距离导线中心的距离,θ iki1为i层第k个导体的圆心与i层第1个导体的圆心相对于导线总的圆心所张开的角度,r eq为i层第一个导体的等值半径。
进一步地,所述步骤S301具体为:
设该系统中电流三相对称,即
i ai+i bi+i ci=0
导线经过轮换后三相对称并且线间等值距离为D eq,并且认为线间距离远大于一相导线内各根绞线之间的距离,则对于A相导线第i层导体由第j层导体中的电流产生的磁链:
Figure PCTCN2017116392-appb-000009
故在三相对称系统中A相导线第i层导体与A相第j层导体之间总的互感:
Figure PCTCN2017116392-appb-000010
在三相对称系统中A相导线第i层导体与A相第j层导体之间总的互感抗:
Figure PCTCN2017116392-appb-000011
进一步地,所述步骤S302具体为:
将互感抗
Figure PCTCN2017116392-appb-000012
中令i=j可以得到第i层导体的自感抗
Figure PCTCN2017116392-appb-000013
进一步地,所述步骤S4具体为:
设一相内由内到外各层的电阻分别为r 1、r 2、r 3…r m,取单位长度的导线,在该段导线上的各层的电压降应该相等,记为V,则有
V=r 1i 1+j(X 11i 1+X 12i 2+X 13i 3+...X 1mi m)
V=r 2i 2+j(X 21i 1+X 22i 2+X 23i 3+...X 2mi m)
V=r 3i 1+j(X 31i 1+X 32i 2+X 33i 3+...X 3mi m),
...
V=r mi 1+j(X m1i 1+X m2i 2+X m3i 3+...X mmi m)
将上式联立,消去V与D eq可得
Figure PCTCN2017116392-appb-000014
Figure PCTCN2017116392-appb-000015
Figure PCTCN2017116392-appb-000016
Figure PCTCN2017116392-appb-000017
当使用相量表示时
Figure PCTCN2017116392-appb-000018
通过上述求解可得到各层电流之间的比例分配,再加上
Figure PCTCN2017116392-appb-000019
即算出各层的电流分布。
本发明相对于现有技术具有如下的优点及效果:
本发明公开的一种确定架空导线分层电流幅值与相位的方法,结合LGJ300/40导线的实际结构规格尺寸和物理技术参数,在考虑各导体之间电磁耦合效应的情况下,推到了流过每层导体的电流,并通过电磁仿真软件ANSOFT MAXWELL对比了所见模型的准确性。
附图说明
图1是本发明公开的一种确定架空导线分层电流幅值与相位的方法流程图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提 下所获得的所有其他实施例,都属于本发明保护的范围。
实施例
本实施例结合LGJ300/40型A相导线为计算对象,提出一种架空线分层电流计算方法,但该方法并不局限于LGJ300/40型导线,LGJ 300/40型导线的2D截面图由四层组成,由内到外分别是圆心位于中心半径为1.33mm的一根钢芯、圆心间隔均匀分布在半径为2.66mm的圆上半径为1.33mm的六根钢芯、圆心间隔均匀分布在半径为5.985mm的圆上半径为1.995mm的九根铝芯、圆心间隔均匀分布在半径为9.975mm的圆上半径为1.995mm的根十五根铝芯。
如图1中公开的一种确定架空导线分层电流幅值与相位的方法流程图,该方法具体包括以下步骤:
S1、确定导线的规格尺寸和主要技术参数,该步骤又具体包括下列子步骤:
S101、确定架空导线层数和各层导体数以及规划尺寸;
具体实施方式中,LGJ 300/40型导线的2D截面图由四层组成,由内到外分别是圆心位于中心半径为1.33mm的一根钢芯、圆心间隔均匀分布在半径为2.66mm的圆上半径为1.33mm的六根钢芯、圆心间隔均匀分布在半径为5.985mm的圆上半径为1.995mm的九根铝芯、圆心间隔均匀分布在半径为9.975mm的圆上半径为1.995mm的根十五根铝芯。
电流用
Figure PCTCN2017116392-appb-000020
表示第i层的总的电流,用
Figure PCTCN2017116392-appb-000021
表示第i层内部一个导线上的电流,即
Figure PCTCN2017116392-appb-000022
其中,n为第i层中的导体数,
Figure PCTCN2017116392-appb-000023
仅在结果分析中出现以比较集肤效应的影响。
S102、确定各层导体材料和相应的电阻率和磁导率;
具体实施方式中,架空导线第一、二层导体材料为钢,电阻率为5× 10-7Ωm,由于金属钢为铁磁材料会随着电流的变化而变化,相对磁导率取值为1~2000之间变化;第三、四层导体材料为铝,电阻率2.83×10-8Ωm,为非铁磁材料,相对磁导率取值为1.0。
S2、计算A相导线内各导体之间互感与自感,该步骤具体包含下列子步骤为:
S201、计算A相导线第i层导体与第j层导体之间的互感
Figure PCTCN2017116392-appb-000024
其中,
Figure PCTCN2017116392-appb-000025
其中,m为第i层中导体的数目,n为第j层中导体的数目,D ij为第i层与第j层之间各个导体距离的几何平均值,r i为第i层的单根导体的圆心距离导线中心的距离,r j为第j层的单根导体的圆心距离导线中心的距离,θ ikji为i层第k个导体的圆心与j层第l个导体的圆心相对于导线总的圆心所张开的角度。
S202、计算A相导线第i层导体的自感
Figure PCTCN2017116392-appb-000026
其中,
Figure PCTCN2017116392-appb-000027
其中,m为第i层中导体的数目,D ii为第i层内各个导体距离的几何平均值,r i为第i层的单根导体的圆心距离导线中心的距离,θ iki1为i层第k个导体的圆心与i层第1个导体的圆心相对于导线总的圆心所张开的角度,r eq为i层第一个导体的等值半径。
S3、计算三相系统各单相导线内导体的自感抗和互感抗,该步骤具 体包含下列子步骤为:
S301、计算三相系统中,A相导线中第i层导体与第j层导体总的互感抗。
设该系统中电流三相对称,即
Figure PCTCN2017116392-appb-000028
导线经过轮换后三相对称并且线间等值距离为D eq,并且认为线间距离远大于一相导线内各根绞线之间的距离,则对于A相第i层导体由第j层导体中的电流产生的磁链:
Figure PCTCN2017116392-appb-000029
在三相对称系统中A相导线第i层导体与A相第j层导体之间总的互感
Figure PCTCN2017116392-appb-000030
在三相对称系统中A相导线第i层导体与A相第j层导体之间总的互感抗
Figure PCTCN2017116392-appb-000031
其中,f为电网频率,由于系统三相对称,之后用X ij表示某一相第i层与第j层之间的互感抗,即
Figure PCTCN2017116392-appb-000032
S302、计算三相系统中,A相导线第i层导体自感抗;
在上式中令i=j可以得到第i层导体的自感抗
Figure PCTCN2017116392-appb-000033
S4、计算各层电流分布。
设一相内由内到外各层的电阻分别为r 1、r 2、r 3、r 4,取单位长度的导线,在该段导线上的各层的电压降应该相等,记为V,则有
Figure PCTCN2017116392-appb-000034
将上式联立,消去V与D eq可得
Figure PCTCN2017116392-appb-000035
Figure PCTCN2017116392-appb-000036
Figure PCTCN2017116392-appb-000037
Figure PCTCN2017116392-appb-000038
当使用相量表示时
Figure PCTCN2017116392-appb-000039
通过上述求解可以得到各层电流之间的比例,再加上
Figure PCTCN2017116392-appb-000040
即算出各层的电流分布。
模型效果分析:
采用上述模型计算过程,对LGJ300/40型号导线各层电流进行计算,施加的总电有效值为700A,相角0°。将计算结果与有限元计算结果对比,对比结果如下表1:
表1.计算结果对比表
Figure PCTCN2017116392-appb-000041
考虑到钢芯铝绞线在工频下,电流分布并不均匀,主要在铝导体层中流过,所以导体内部的产热主要发生在铝导体层中。采用本发明专利的计算结果虽然在钢芯导体和有限元仿真结果相差较大,但是对于产热率较大的铝导体层中,通过修正相对磁导率,可将误差缩小得到0.125%,并且本方法可反映各层导体之间的相位差。所以,计算架空导线内部径向温度分布时或者计算钢芯温度时,可采用本专利计算方法计算各层电流分布和各层的产热率。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (8)

  1. 一种确定架空导线分层电流幅值与相位的方法,其特征在于,所述方法包括:
    S1、确定导线的规格尺寸和主要技术参数,该步骤具体为:
    S101、确定架空导线层数和各层导体数以及规划尺寸;
    S102、确定各层导体材料和相应的电阻率和磁导率;
    S2、计算单相导线内各导体之间互感与自感,该步骤具体为:
    S201、计算单相第i层导体与第j层导体之间的互感;
    S202、计算单相第i层导体的自感;
    S3、计算三相系统内单相导线各导体的自感抗和互感抗,该步骤具体为:
    S301、计算三相系统中,A相导线第i层导体与第j层导体总的互感抗;
    S302、计算三相系统中,A相导线第i层导体自感抗;
    S4、计算单相导线各层导体电流分布。
  2. 根据权利要求1所述的一种确定架空导线分层电流幅值与相位的方法,其特征在于,所述步骤S101具体为:
    对导线进行编号,三相导线每一相均有m层,由内到外分别编为1、2…m,每层导线有n根导体,每层内部的导线之间不做区分,三相仅在推导时以下标a、b、c区分,确定架空导线半径、每根导体的半径;
    对于电流用
    Figure PCTCN2017116392-appb-100001
    表示第i层的总的电流,用
    Figure PCTCN2017116392-appb-100002
    表示第i层内部一个导线上的电流,即
    Figure PCTCN2017116392-appb-100003
    其中,n为第i层中的导体数,
    Figure PCTCN2017116392-appb-100004
    仅在结果分析中出现以比较集肤效应的影响。
  3. 根据权利要求1所述的一种确定架空导线分层电流幅值与相位的方法,其特征在于,所述步骤S102具体为:
    根据架空导线是钢芯铝绞线、铝绞线和铜导线确定各种导体的电阻率和磁导率。
  4. 根据权利要求1所述的一种确定架空导线分层电流幅值与相位的方法,其特征在于,所述步骤S201中互感M aiaj的计算公式具体为:
    Figure PCTCN2017116392-appb-100005
    其中,
    Figure PCTCN2017116392-appb-100006
    其中,m为第i层中导体的数目,n为第j层中导体的数目,D ij为第i层与第j层之间各个导体距离的几何平均值,r i为第i层的单根导体的圆心距离导线中心的距离,r j为第j层的单根导体的圆心距离导线中心的距离,θ ikji为i层第k个导体的圆心与j层第l个导体的圆心相对于导线总的圆心所张开的角度。
  5. 根据权利要求1所述的一种确定架空导线分层电流幅值与相位的方法,其特征在于,所述步骤S202中自感L aiai的计算公式具体为:
    Figure PCTCN2017116392-appb-100007
    其中,
    Figure PCTCN2017116392-appb-100008
    其中,m为第i层中导体的数目,D ii为第i层内各个导体距离的几何平均值,r i为第i层的单根导体的圆心距离导线中心的距离,θ iki1为i层第k个导体的圆心与i层第1个导体的圆心相对于导线总的圆心所张开的角度,r eq为i层第一个导体的等值半径。
  6. 根据权利要求1所述的一种确定架空导线分层电流幅值与相位的方法,其特征在于,所述步骤S301具体为:
    设该系统中电流三相对称,即
    i ai+i bi+i ci=0
    导线经过轮换后三相对称并且线间等值距离为D eq,并且认为线间距离远大于一相导线内各根绞线之间的距离,则对于A相第i层导体由第j层导体中的电流产生的磁链:
    Figure PCTCN2017116392-appb-100009
    故在三相对称系统中A相导线第i层导体与A相第j层导体之间总的互感:
    Figure PCTCN2017116392-appb-100010
    在三相对称系统中A相导线第i层导体与A相第j层导体之间总的互感抗:
    Figure PCTCN2017116392-appb-100011
  7. 根据权利要求6所述的一种确定架空导线分层电流幅值与相位的方法,其特征在于,所述步骤S302具体为:
    将互感抗
    Figure PCTCN2017116392-appb-100012
    中令i=j可以得到第i层导体的自感抗
    Figure PCTCN2017116392-appb-100013
  8. 根据权利要求1所述的一种确定架空导线分层电流幅值与相位的方法,其特征在于,所述步骤S4具体为:
    设一相内由内到外各层的电阻分别为r 1、r 2、r 3…r m,取单位长度的导线,在该段导线上的各层的电压降应该相等,记为V,则有
    Figure PCTCN2017116392-appb-100014
    将上式联立,消去V与D eq可得
    Figure PCTCN2017116392-appb-100015
    Figure PCTCN2017116392-appb-100016
    Figure PCTCN2017116392-appb-100017
    Figure PCTCN2017116392-appb-100018
    当使用相量表示时
    Figure PCTCN2017116392-appb-100019
    通过上述求解可得到各层电流之间的比例分配,再加上
    Figure PCTCN2017116392-appb-100020
    即算出各层的电流分布。
PCT/CN2017/116392 2017-02-10 2017-12-15 一种确定架空导线分层电流幅值与相位的方法 WO2018145516A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/483,936 US20190346496A1 (en) 2017-02-10 2017-12-15 Method for Determining Amplitude and Phase of Stratified Current of Overhead Wire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710073379.2A CN106934098B (zh) 2017-02-10 2017-02-10 一种确定架空导线分层电流幅值与相位的方法
CN201710073379.2 2017-02-10

Publications (1)

Publication Number Publication Date
WO2018145516A1 true WO2018145516A1 (zh) 2018-08-16

Family

ID=59424645

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/116392 WO2018145516A1 (zh) 2017-02-10 2017-12-15 一种确定架空导线分层电流幅值与相位的方法

Country Status (3)

Country Link
US (1) US20190346496A1 (zh)
CN (1) CN106934098B (zh)
WO (1) WO2018145516A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113609689A (zh) * 2021-08-09 2021-11-05 中国工程物理研究院激光聚变研究中心 复杂腔型中聚变靶丸的模拟方法、品质预测方法和系统
CN118136328A (zh) * 2024-03-15 2024-06-04 广东新亚光电缆股份有限公司 一种铝合金导体防水型光伏电缆

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106934098B (zh) * 2017-02-10 2020-04-28 华南理工大学 一种确定架空导线分层电流幅值与相位的方法
CN108334695B (zh) * 2018-02-01 2021-07-20 华南理工大学 一种基于地线与预绞丝接触电阻的有限元设置方法
CN109782067A (zh) * 2019-01-21 2019-05-21 山东农业大学 混压同塔多回输电线路电气参数计算方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101697291A (zh) * 2009-10-19 2010-04-21 中国电力科学研究院 利用改进综合法计算opgw光缆短路电流热效应的方法
CN102323997A (zh) * 2011-09-29 2012-01-18 广东电网公司广州供电局 电缆导体温度计算方法及装置
WO2012159221A1 (fr) * 2011-05-20 2012-11-29 Bacab S.A. Cable electrique et application de ce cable
CN104408249A (zh) * 2014-11-24 2015-03-11 广州供电局有限公司 单芯电缆导体热性参数的确定方法及系统
CN106202610A (zh) * 2016-06-22 2016-12-07 华南理工大学 一种基于ansys cfx的架空线径向温度场仿真方法
CN106712011A (zh) * 2017-02-06 2017-05-24 华南理工大学 一种考虑环向电流修正的架空导线分层电流的计算方法
CN106934098A (zh) * 2017-02-10 2017-07-07 华南理工大学 一种确定架空导线分层电流幅值与相位的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6798189B2 (en) * 2001-06-14 2004-09-28 Koa Corporation Current detection resistor, mounting structure thereof and method of measuring effective inductance
CN101266274B (zh) * 2008-05-06 2010-06-02 杭州海康雷鸟信息技术有限公司 架空输电线路动态载流量的监测方法及其装置
CN101872974B (zh) * 2010-04-29 2012-07-04 华中科技大学 一种基于空间磁场的同杆并架输电线路的建模方法
CN103413047B (zh) * 2013-08-14 2016-06-29 中国电力工程顾问集团西南电力设计院有限公司 一种单芯电缆金属层过电压的确定方法
CN105004949B (zh) * 2015-07-03 2017-10-20 华南理工大学 一种在线运行耐张线夹最大载流量的测试方法和测试装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101697291A (zh) * 2009-10-19 2010-04-21 中国电力科学研究院 利用改进综合法计算opgw光缆短路电流热效应的方法
WO2012159221A1 (fr) * 2011-05-20 2012-11-29 Bacab S.A. Cable electrique et application de ce cable
CN102323997A (zh) * 2011-09-29 2012-01-18 广东电网公司广州供电局 电缆导体温度计算方法及装置
CN104408249A (zh) * 2014-11-24 2015-03-11 广州供电局有限公司 单芯电缆导体热性参数的确定方法及系统
CN106202610A (zh) * 2016-06-22 2016-12-07 华南理工大学 一种基于ansys cfx的架空线径向温度场仿真方法
CN106712011A (zh) * 2017-02-06 2017-05-24 华南理工大学 一种考虑环向电流修正的架空导线分层电流的计算方法
CN106934098A (zh) * 2017-02-10 2017-07-07 华南理工大学 一种确定架空导线分层电流幅值与相位的方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113609689A (zh) * 2021-08-09 2021-11-05 中国工程物理研究院激光聚变研究中心 复杂腔型中聚变靶丸的模拟方法、品质预测方法和系统
CN113609689B (zh) * 2021-08-09 2023-07-04 中国工程物理研究院激光聚变研究中心 复杂腔型中聚变靶丸的模拟方法、品质预测方法和系统
CN118136328A (zh) * 2024-03-15 2024-06-04 广东新亚光电缆股份有限公司 一种铝合金导体防水型光伏电缆

Also Published As

Publication number Publication date
CN106934098A (zh) 2017-07-07
US20190346496A1 (en) 2019-11-14
CN106934098B (zh) 2020-04-28

Similar Documents

Publication Publication Date Title
WO2018145516A1 (zh) 一种确定架空导线分层电流幅值与相位的方法
WO2019144657A1 (zh) 一种动态确定高压电缆暂态热路中绝缘最佳分层数的方法
KR100934448B1 (ko) 병렬로 연결된 복수의 초전도 선재에 흐르는 전류의비접촉식 측정방법
CN109473949B (zh) 干式空心并联电抗器组匝间短路故障继电保护方法及装置
CN106777659B (zh) 一种不依赖表皮温度的多回电缆暂态温升获取方法
CN105653818B (zh) 一种电气化铁路牵引网阻抗计算方法
CN114462279A (zh) 考虑绞合结构和节距的非完全绞合利兹线损耗计算方法
CN109992739A (zh) 非正弦电流波形激励下方形利兹线最优单股直径和股数计算方法
CN103576007B (zh) 碳纤维加强芯架空绝缘电缆载流量发热试验装置及其试验方法
Li et al. Research on a novel HTS double pancake coil based on CORC: used for kA-level SMES of accelerator
CN106934096B (zh) 一种基于架空导线表面温度求解钢芯温度的方法
CN107092722A (zh) 一种高频无线电能传输线圈阻抗仿真计算方法
WO2022077566A1 (zh) 一种超导电缆通电导体制造方法
Lyu et al. Litzimp: A fast impedance extraction algorithm for Litz wire coil
CN109239544B (zh) 一种振荡波系统用空心电抗器设计方法
CN107153146A (zh) 一种匝间短路故障状态下电抗器电感计算方法
Ryu et al. AC losses of the 5 m BSCCO cables with shield
Kozub et al. SIS 300 dipole model
CN106712011B (zh) 一种考虑环向电流修正的架空导线分层电流的计算方法
Fukui et al. Analysis of AC loss and current distribution characteristics of multi-layer triaxial HTS cable for 3-phase AC power transmission
Zhang et al. Study on AC resistance of overhead conductors by numerical simulation
CN113707389A (zh) 一种双极同轴高温超导直流电缆均流的设计方法
CN103093892B (zh) 一种高压交联聚乙烯绝缘电力电缆的制造方法
JP6200354B2 (ja) 交流用超電導ケーブルの製造方法
CN204884599U (zh) 新型架空绞线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17895528

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/12/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17895528

Country of ref document: EP

Kind code of ref document: A1