WO2018142789A1 - 音叉型振動子 - Google Patents
音叉型振動子 Download PDFInfo
- Publication number
- WO2018142789A1 WO2018142789A1 PCT/JP2017/045510 JP2017045510W WO2018142789A1 WO 2018142789 A1 WO2018142789 A1 WO 2018142789A1 JP 2017045510 W JP2017045510 W JP 2017045510W WO 2018142789 A1 WO2018142789 A1 WO 2018142789A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tuning
- fork type
- arm
- vibrating piece
- base
- Prior art date
Links
- 229910052751 metal Inorganic materials 0.000 claims description 126
- 239000002184 metal Substances 0.000 claims description 126
- 239000000463 material Substances 0.000 claims description 8
- 238000005304 joining Methods 0.000 claims description 2
- 238000007790 scraping Methods 0.000 abstract 1
- 239000013078 crystal Substances 0.000 description 104
- 239000010408 film Substances 0.000 description 99
- 238000000034 method Methods 0.000 description 16
- 230000005284 excitation Effects 0.000 description 15
- 238000010586 diagram Methods 0.000 description 9
- 238000000605 extraction Methods 0.000 description 8
- 239000010931 gold Substances 0.000 description 6
- 239000010453 quartz Substances 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 5
- 229910052737 gold Inorganic materials 0.000 description 5
- 238000007747 plating Methods 0.000 description 5
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 4
- 230000003139 buffering effect Effects 0.000 description 3
- 229910010293 ceramic material Inorganic materials 0.000 description 3
- 238000009713 electroplating Methods 0.000 description 3
- 238000005452 bending Methods 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/02—Details
- H03H9/05—Holders; Supports
- H03H9/10—Mounting in enclosures
- H03H9/1007—Mounting in enclosures for bulk acoustic wave [BAW] devices
- H03H9/1014—Mounting in enclosures for bulk acoustic wave [BAW] devices the enclosure being defined by a frame built on a substrate and a cap, the frame having no mechanical contact with the BAW device
- H03H9/1021—Mounting in enclosures for bulk acoustic wave [BAW] devices the enclosure being defined by a frame built on a substrate and a cap, the frame having no mechanical contact with the BAW device the BAW device being of the cantilever type
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/15—Constructional features of resonators consisting of piezoelectric or electrostrictive material
- H03H9/21—Crystal tuning forks
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/02—Details
- H03H9/05—Holders; Supports
- H03H9/10—Mounting in enclosures
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/02—Details
- H03H9/125—Driving means, e.g. electrodes, coils
- H03H9/13—Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/15—Constructional features of resonators consisting of piezoelectric or electrostrictive material
- H03H9/21—Crystal tuning forks
- H03H9/215—Crystal tuning forks consisting of quartz
Definitions
- the present invention relates to a tuning fork vibrator used for a clock source of various electronic devices.
- the tuning fork vibrator is built in with various oscillation devices, especially in various electronic devices including a clock as a clock source.
- the tip of the arm of the tuning fork type vibrating piece becomes the bottom surface of the package. There is a risk that it will be damaged by a large impact applied to it.
- the tip of the arm portion of the tuning fork type vibrating piece is the portion where the frequency fluctuates most due to damage.
- a pillow portion is provided on the bottom surface of the package, and when the tuning fork type vibrating piece is bent by an impact, the pillow portion is on the way to the tip of the arm portion of the tuning fork type vibrating piece. This part is in contact. This prevents the tip of the arm portion of the tuning-fork type vibration piece from coming into contact with the bottom surface of the package and being damaged.
- the built-in tuning fork vibrator has an ultra-small size such that the external dimensions of the rectangular in plan view are, for example, 1.2 mm ⁇ 1.0 mm or less and the thickness is 0.35 mm or less. Therefore, a thin type is required.
- the present invention has been made in view of the above points, and an object of the present invention is to provide a tuning fork vibrator having good impact resistance with suppressed frequency fluctuation.
- the inventors of the present invention have conventionally found that the arm tip electrode formed over the entire circumference of the tip of the arm portion is exposed to the bottom surface of the package by an external impact.
- the present invention was completed by obtaining the knowledge that, by contacting the pillow portion, it was partially scraped, thereby resulting in frequency fluctuations.
- the tuning fork vibrator according to the present invention includes a tuning fork vibrating piece having a base and a plurality of arms extending from the base, and a package in which the tuning fork vibrating piece is housed, and the tuning fork vibration
- the base is joined to the electrode of the housing portion of the package, and the arm portion, which is the free end side of the tuning fork type vibrating piece, is bent toward the bottom surface of the housing portion of the package.
- the abutting portion that abuts on the pillow portion of the arm portion is an electrodeless region where an electrode is not formed and the base of the vibrating piece is exposed.
- the electrodeless region may extend to the tip of the arm part including at least the contact part of the arm part.
- the tip of the arm portion which is a free end, is prevented from coming into contact with the bottom surface of the package, so that the tip of the arm portion having the largest frequency fluctuation can be prevented from being damaged by the damage.
- the contact portion of the arm portion that contacts the pillow portion on the bottom surface of the package is an electrodeless region where no electrode is formed. Therefore, even if the non-electrode region contacts the pillow portion due to an impact from the outside, the electrode is not scraped. Thereby, the fluctuation
- the tuning fork vibrator according to the present invention includes a tuning fork type vibrating piece having a base and a plurality of arms extending from the base, and a package in which the tuning fork type vibrating piece is housed, and the tuning fork type vibration
- the base is joined to the electrode of the housing portion of the package, and the arm portion, which is the free end side of the tuning fork type vibrating piece, is bent toward the bottom surface of the housing portion of the package.
- the abutting portion that abuts on the pillow portion of the arm portion is provided with a buffering portion that cushions an impact caused by the abutting on the pillow portion.
- the tip of the arm portion which is a free end, is prevented from coming into contact with the bottom surface of the package, so that the tip of the arm portion having the largest frequency fluctuation can be prevented from being damaged by the damage.
- the shock-absorbing portion is provided at the contact portion of the arm portion that contacts the pillow portion on the bottom surface of the package, the shock-absorbing portion is brought into contact with the pillow portion and the shock-absorbing portion. There is no shaving. Thereby, the fluctuation
- the buffer portion is preferably made of a metal film, and the thickness of the metal film is preferably 1 ⁇ m or more.
- the buffer portion is made of a metal film having a thickness of 1 ⁇ m or more, it is possible to sufficiently buffer an impact caused by contact with the pillow portion.
- a metal bump for joining the tuning fork type resonator element to the electrode of the housing part of the package is formed on the base, and the metal film and the metal bump are made of the same material.
- the metal film and the metal bump can be formed in the same process.
- a metal film for frequency adjustment is formed in a region on the front end side of one main surface of the front and back main surfaces of the arm portion, and the contact portion is formed on the other main surface of the front and back main surfaces of the arm portion. Preferably there is.
- the width of the arm portion in the tip side region where the frequency adjusting metal film is formed is preferably wider than the width of the arm portion other than the tip side region.
- the pillow portion on the bottom surface extends in a direction orthogonal to the extending direction of the arm portion so as to face the wide-side region of the arm portion of the tuning-fork type vibrating piece that is cantilevered. It is preferable.
- the base portion of the tuning fork type vibrating piece is mounted on the package by being bonded to the electrode of the housing portion of the package, even if the mounting variation occurs in the width direction of the base portion, the wide area of the arm portion When the tuning fork-type vibrating piece is bent, the pillow portion that extends so as to face the contact portion can be brought into contact.
- the tip of the arm portion which is a free end is a contact portion on the way to the tip of the arm portion. Is brought into contact with the pillow portion protruding from the bottom surface of the package, thereby preventing contact with the bottom surface of the package. Thereby, it is possible to prevent the tip of the arm part having the largest frequency fluctuation from being damaged.
- the contact portion of the arm portion that contacts the pillow portion on the bottom surface of the package is an electrodeless region where no electrode is formed.
- the contact portion cushions the shock caused by the contact. Is provided, the electrode is not scraped by contact with the pillow portion. As a result, it is possible to obtain a tuning fork vibrator having excellent impact resistance by suppressing frequency fluctuation due to external impact.
- FIG. 1 is a schematic cross-sectional view of a tuning fork type crystal resonator according to an embodiment of the present invention.
- FIG. 2 is a plan view of the tuning fork type crystal resonator of FIG. 1 with the lid removed.
- FIG. 3 is a view showing one main surface side of the tuning fork type crystal vibrating piece.
- FIG. 4 is a view showing the other main surface side of the tuning-fork type crystal vibrating piece.
- FIG. 5 is a view for explaining rough frequency adjustment by irradiating a tuning fork type crystal vibrating piece with a laser beam.
- FIG. 6 is a schematic cross-sectional view showing the vicinity of the tip of a tuning fork type crystal vibrating piece housed in a package.
- FIG. 1 is a schematic cross-sectional view of a tuning fork type crystal vibrating piece housed in a package.
- FIG. 7 is a diagram for explaining the target frequencies of the electrode forming step, the weighting step, and the laser processing step.
- FIG. 8 is a diagram corresponding to FIG. 7 of the conventional example.
- FIG. 9 is a diagram corresponding to FIG. 4 of another embodiment of the present invention.
- FIG. 10 is a schematic sectional view corresponding to FIG. 6 of the embodiment of FIG.
- FIG. 11A is a diagram showing another embodiment of the present invention.
- FIG. 11B is a diagram showing still another embodiment of the present invention.
- FIG. 12 is an external view of a tuning-fork type crystal vibrating piece according to another embodiment of the present invention.
- FIG. 13 is an external view of a tuning-fork type crystal vibrating piece according to still another embodiment of the present invention.
- FIG. 14 is an external view of a tuning-fork type crystal vibrating piece according to another embodiment of the present invention.
- FIG. 1 is a schematic cross-sectional view of a tuning fork type crystal resonator according to an embodiment of the present invention.
- FIG. 2 is a plan view of the state in which the lid 5 of FIG. 1 is removed.
- FIG. 3 is a view showing one main surface side of the tuning-fork type crystal vibrating piece 3.
- FIG. 4 is a view showing the other main surface side of the tuning-fork type crystal vibrating piece 3.
- the tuning-fork type crystal vibrating piece 3 shows a state before part of the frequency adjusting metal films 19 and 20 is removed by laser beam irradiation.
- FIG. 2 shows a state in which a part of the frequency adjusting metal films 19 and 20 is removed by laser beam irradiation and the base of the crystal 26 is exposed.
- a tuning fork type crystal vibrating piece 3 is housed in a package 2 made of ceramic or the like.
- a base 4 as a package body and a lid 5 are joined via a sealing member 6.
- the tuning-fork type crystal vibrating piece 3 is bonded to the pair of electrode pads 7 and 7 of the base 4 whose upper part is opened via a pair of metal bumps 8 and 8 as bonding materials.
- a plate-like lid 5 is joined so as to seal the opening of the base 4.
- the bonding material is not limited to the metal bump 8, and a conductive resin adhesive, a brazing material, or the like may be used.
- the nominal frequency of the tuning fork type crystal resonator 1 of this embodiment is 32.768 kHz.
- the nominal frequency is an example and can be applied to other frequencies.
- the base 4 of the package 2 is an insulating container made of a ceramic material or a glass material.
- the base 4 is made of a ceramic material and is formed by firing.
- the base 4 has a peripheral wall portion 4a around it and has a concave shape in cross section with an upper opening, and the inside of the base 4 is a housing portion for the tuning-fork type crystal vibrating piece 3.
- a pair of the electrode pads 7 and 7 are formed on the bottom surface on one end side in the longitudinal direction of the base 4 (left and right direction in FIGS. 1 and 2).
- Each electrode pad 7.7 is electrically connected to a terminal electrode (not shown) on the back surface of the base 4 via a wiring pattern (not shown).
- the pillow portion 9 On the bottom surface on the other end side in the longitudinal direction of the base 4, the pillow portion 9 is provided so as to extend in a direction perpendicular to the longitudinal direction of the base 4 (vertical direction in FIG. 2).
- This pillow portion 9 has a tip end of the tuning-fork type crystal vibrating piece 3 which is a free end when the tuning-fork type crystal vibrating piece 3 supported in a cantilever manner is bent to the bottom surface side of the base 4 by an external impact. Prevents contact with the bottom surface of the base 4 and damage.
- the lid 5 is made of, for example, a metal material, a ceramic material, or a glass material, and is formed into a single plate having a rectangular shape in plan view.
- the lid 5 is made of a metal material.
- the tuning fork type crystal resonator 1 of this embodiment is an ultra-compact and thin tuning fork type crystal resonator, and the package 2 has a rectangular outer dimension of, for example, 1.2 mm ⁇ 1.0 mm.
- the thickness (height) including 5 is, for example, 0.35 mm.
- the present invention is not limited to the external dimensions, and for example, the external dimensions of the tuning fork type crystal resonator package in a plan view rectangle are, for example, 2.0 mm ⁇ 1.6 mm or 1.6 mm ⁇ 1.
- the thickness including the lid 5 may be 0.45 mm, for example.
- the thickness t1 of the bottom portion of the base 4 shown in FIG. 1 is, for example, 0.09 mm
- the thickness (height) t2 of the peripheral wall portion 4a of the base 4 is, for example, 0.15 mm. Since the tuning fork type crystal vibrating piece 3 having a thickness of, for example, about 0.08 mm is accommodated in the recess of the base 4, the upper and lower clearances of the tuning fork type crystal vibrating piece 3 in the package 2 are, for example, about 0.035 mm. It becomes.
- tuning fork type crystal vibrating pieces 3 are formed from a single crystal wafer (not shown), and the outer shape of the tuning fork type crystal vibrating piece 3 is, for example, wet using a resist or a metal film as a mask by using a photolithography technique (photolithographic method). A large number are formed at once by etching.
- the tuning fork type crystal vibrating piece 3 includes a base portion 10 and a pair of first and second arm portions 11 that are vibration portions extending in parallel from one end face side of the base portion 10. , 12.
- the base portion 10 includes a joint portion 13 that extends in a direction opposite to the extending direction of the first and second arm portions 11 and 12 and is joined to the base 4.
- the joint portion 13 of this embodiment extends in a direction opposite to the extending direction of the first and second arm portions 11 and 12, and is further one of the directions orthogonal to the extending direction (right side in FIG. 3). It extends to.
- the pair of first and second arm portions 11 and 12 has tip portions 11a and 12a that are perpendicular to the extending direction of the arm portions 11 and 12, that is, the width direction (see FIG. 3 in the horizontal direction of FIG. As shown in FIG. 3, the width is W1.
- the pillow portion 9 on the bottom surface of the base 4 is protruded so as to face the wide area of the front end portions 11a and 12a of the first and second arm portions 11 and 12 and the width W1. .
- the protruding height of the pillow part 9, that is, the thickness is, for example, 0.01 mm.
- first and second arm portions 11 and 12 have groove portions 14 and 14 extending along the extending direction of the arm portions 11 and 12 on both main surfaces shown in FIGS. 3 and 4, respectively. Is formed.
- the tuning fork type crystal vibrating piece 3 has two first excitation electrodes 15 and second excitation electrodes 16, and these excitation electrodes 15 and 16 are electrically connected to the electrode pads 7 and 7 of the base 4, respectively.
- extraction electrodes 17 and 18 extracted from the respective excitation electrodes 15 and 16 are provided.
- Part of the two first and second excitation electrodes 15 and 16 are formed inside the groove portions 14 and 14 on both main surfaces.
- the first excitation electrode 15 is formed on both main surfaces including the groove portion 14 of the first arm portion 11 and both side surfaces of the second arm portion 12, and is commonly connected to the extraction electrode 17.
- the second excitation electrode 16 is formed on both main surfaces including the groove portion 14 of the second arm portion 12 and both side surfaces of the first arm portion 11, and is commonly connected to the extraction electrode 18.
- arm tip electrodes 25 and 24 are formed in the wide regions of the first arm portion 11 and the tip end portions 11a and 12a of the second arm portion 12 on one main surface side shown in FIG.
- the arm tip electrode 25 formed on the distal end portion 11 a is connected to the second excitation electrode 16 formed on both side surfaces of the first arm portion 11.
- the arm tip electrode 24 formed on the distal end portion 12 a is connected to the first excitation electrode 15 formed on both side surfaces of the second arm portion 12.
- the arm tip electrodes 24 and 25 are not formed in the wide regions of the end portions 11a and 12a of the 11 and second arm portions 12 except for a part on the base 10 side.
- the regions where the arm tip electrodes 24 and 25 are not formed are electrodeless regions 21 and 21 where the quartz base is exposed.
- the tuning-fork type crystal vibration is performed by reducing the mass of the metal film by beam irradiation such as a laser beam.
- Frequency adjusting metal films 19 and 20 for coarsely adjusting the frequency of the piece 3 are formed.
- the frequency adjusting metal films 19 and 20 are formed with a slightly smaller area than the arm tip electrodes 25 and 24.
- the frequency adjusting metal films 19 and 20 extend to the tips of the arms 11 and 12, that is, the tips of the wide tips 11a and 12a, respectively.
- the first and second excitation electrodes 15 and 16, the extraction electrodes 17 and 18, and the arm tip electrodes 24 and 25 of the tuning fork type crystal vibrating piece 3 are formed with a chromium layer on the respective arm portions 11 and 12 by metal deposition. It is a thin film formed by forming a metal such as gold on a chromium layer. This thin film is formed on the entire surface of the substrate by a technique such as vacuum deposition or sputtering, and then formed into a desired shape by metal etching by photolithography.
- the first and second excitation electrodes 15 and 16, the extraction electrodes 17 and 18 and the arm tip electrodes 24 and 25 are not limited to chrome and gold, but may be chrome, silver, or the like.
- the metal films 19 and 20 for frequency adjustment formed on the respective distal end portions 11a and 12a of the respective arm portions 11 and 12 are plated by a technique such as an electrolytic plating method.
- a technique such as an electrolytic plating method.
- gold (Au) is used as the metal films 19 and 20 for frequency adjustment.
- two metal bumps 8, 8 made of, for example, gold are formed at the joint portion 13 on the other main surface side shown in FIG. Specifically, one metal bump 8 is formed on the extraction electrode 17 extracted from the first excitation electrode 15 of the first joint portion 13b. The other metal bump 8 is formed on the extraction electrode 18 extracted from the second excitation electrode 16 of the second bonding portion 13a.
- the joint portion 13 constituting a part of the base portion 10 is joined to the electrode pads 7 and 7 of the base 4 and functions as a support portion that supports the tuning fork type crystal vibrating piece 3.
- the planar view shape of the metal bumps 8 and 8 is an elliptical shape, but may be a circular shape or a polygonal shape including a rectangle or a square.
- the metal bumps 8, 8 are formed by plating such as electrolytic plating.
- the width W1 of the tip portions 11a and 12a of the first and second arm portions 11 and 12 on which the frequency adjusting metal films 19 and 20 are formed is larger in the width direction than the width W2 of other portions. Widely formed.
- the width W1 of the tip portions 11a and 12a is, for example, three times or more the width W2 of other portions.
- leading ends 11a and 12a of the first and second arm portions 11 and 12 on which the frequency adjusting metal films 19 and 20 are thus formed are wide for the following reason.
- the frequency of the tuning fork type crystal resonator is inversely proportional to the square of the length of the arm portion of the tuning fork type crystal vibrating piece and proportional to the width of the arm portion. Therefore, when trying to shorten the length of the arm of the tuning fork type resonator element in order to reduce the size of the tuning fork type crystal resonator, the frequency increases.
- the formation region of the metal film that becomes the frequency adjusting weight portion on the side must be enlarged. Although it is conceivable to reduce the frequency by increasing the width of the arm portion, the CI (crystal impedance) value becomes very poor when the width of the arm portion is reduced.
- the tip where the frequency adjusting metal film that becomes the weight portion of the tuning fork type crystal vibrating piece supported in a cantilever manner is formed.
- the part becomes large and the length of the arm part is shortened, the part becomes wide as described above.
- the tuning fork crystal resonator is made thinner, the upper and lower clearances of the tuning fork crystal resonator element in the package become smaller.
- the inventors of the present invention opened the tuning fork type crystal resonator package in which a positive frequency fluctuation was recognized by an impact resistance test, removed the tuning fork type crystal vibrating piece, and observed the tuning fork type crystal vibrating piece. When bent, it was confirmed that the arm tip electrode at the tip of the arm that abuts on the pillow was partially scraped.
- the distal end portions 11 a of the first arm portion 11 and the second arm portion 12 In the wide region 12a, there are electrodeless regions 21 and 21 where the arm tip electrodes 24 and 25 are not formed except for a part on the base 10 side.
- the frequency adjusting metal films 19 and 20 formed on one main surface side of the tuning-fork type crystal vibrating piece 3 are partially removed by irradiation with a beam such as a laser beam, so that the frequency can be roughly adjusted. Done.
- FIG. 5 is a diagram for explaining rough frequency adjustment by laser beam irradiation.
- FIG. 5 representatively shows the state of laser beam irradiation on the frequency adjusting metal film 19 at the distal end portion 11a of the first arm portion 11 of the both arm portions 11 and 12, but the second arm portion. The same applies to the irradiation of the laser beam to the frequency adjusting metal film 20 of the 12 tip portions 12a.
- This laser beam irradiation is performed by making a laser beam irradiation source (not shown) face the other main surface side of each tuning-fork type crystal vibrating piece 3 in the crystal wafer state, and adjusting the frequency adjusting metal on one main surface side.
- the film 19 is removed.
- This laser beam irradiation starts scanning from the front end side (right side in FIG. 5) where the frequency increase due to mass decrease is greatest along the width direction of the first arm portion 11 (perpendicular to the paper surface in FIG. 5). Then, the first arm portion 11 is sequentially moved toward the base portion 10 side (left side in FIG. 5) and scanned.
- the irradiated laser beam passes through the crystal 26 inside the tuning fork type crystal vibrating piece 3 from the other main surface side of each tuning fork type crystal vibrating piece 3 in the crystal wafer state, and is on the one main surface side on the opposite side.
- the arm tip electrode 25 and the frequency adjusting metal film 19 on one main surface side are removed.
- the frequency adjusting metal film 19 is irradiated with the laser beam from above so as to pass through the crystal 26 inside the tuning fork type crystal vibrating piece 3, and the frequency adjustment formed only on one main surface side.
- the metal film 19 is removed. Accordingly, it is possible to prevent the metal scrap of the frequency adjusting metal film 19 from being scattered downwardly away from the frequency adjusting metal film 19 and reattaching to the tuning fork type crystal vibrating piece 3.
- the frequency adjusting metal film may be irradiated with a laser beam from below so as to pass through the crystal inside the tuning fork type crystal vibrating piece. In this embodiment, a green laser is used as the laser beam, but a YAG laser or a laser having another wavelength may be used.
- FIG. 6 is a schematic cross-sectional view showing the vicinity of the tip of the tuning-fork type crystal vibrating piece 3 in a state of being housed in the package 2.
- the distal end portion 11 a of the first arm portion 11 of the both arm portions 11 and 12 is representatively shown, but the distal end portion 12 a of the second arm portion 12 is the same.
- the frequency adjusting metal film 19 formed on one main surface side is opposed to the inner surface of the lid 5, and the other main surface side is It faces the bottom surface of the base 4.
- the pillow portion 9 on the bottom surface of the base 4 is placed on a portion other than the tip of the first arm portion 11.
- a certain contact part 11b contacts. This prevents the distal end of the wide distal end portion 11 a of the first arm portion 11 from being in contact with the bottom surface of the base 4 and being damaged.
- the abutting portion 12b (not shown) of the second arm portion 12 also comes into contact with the pillow portion 9 when the tuning fork type crystal vibrating piece 3 is bent toward the bottom surface side of the base 4, thereby The distal end of the wide distal end portion 12 a of the arm portion 12 is prevented from coming into contact with the bottom surface of the base 4 and being damaged.
- the electrodeless region 21 provided on the other main surface side of the distal end portion 11 a of the first arm portion 11 includes the tuning-fork type crystal vibrating piece 3 that is cantilevered by an external impact.
- the electrodeless region 21 of the distal end portion 12a of the second arm portion 12 also includes at least the contact portion 12b of the second arm portion 12 that contacts the pillow portion 9 when the tuning fork type crystal vibrating piece 3 is bent. And extends to the distal end of the wide distal end portion 12 a of the second arm portion 12.
- the contact portions 11b and 12b of the first and second arm portions 11 and 12 that are in contact with the pillow portion 9 on the bottom surface of the base 4 are electrodeless regions 21 and 21 where no armtip electrodes are formed. Therefore, even if the contact portions 11b and 12b come into contact with the pillow portion 9 due to an impact from the outside, the arm tip electrode is not scraped, and the frequency is prevented from changing to the plus side due to the impact from the outside. be able to.
- the electrodeless region 21 extends not only to the contact portions 11b and 12b of the first and second arm portions 11 and 12 that contact the pillow portion 9, but also to the tips of the first and second arm portions 11 and 12. Although formed, only the contact portions 11b and 12b may be electrodeless regions.
- the tuning-fork type crystal vibrating piece 3 when the tuning-fork type crystal vibrating piece 3 is bent toward the bottom surface side of the base 4 due to an external impact, the arm portions 11 and 12 are brought into contact with the pillow portion 9 on the bottom surface of the base 4. The parts 11b and 12b abut. This prevents the tips of the arm portions 11 and 12 from coming into contact with the bottom surface of the base 4 and being damaged. Furthermore, in this embodiment, when the tuning-fork type crystal vibrating piece 3 is bent toward the lid 5, the wide tips 11 a and 12 a of the arms 11 and 12 are placed on the inner surface of the lid 5. It prevents contact and damage.
- the frequency adjusting metal films 19 and 20, part of which have been removed by laser beam irradiation face the inner surface of the lid 5, and the tuning fork type crystal vibrating piece due to external impact.
- the three arm portions 11 and 12 are bent toward the lid body 5 side, they are brought into contact with the inner surface of the lid body 5. This prevents the distal ends of the wide distal end portions 11 a and 12 a of the arm portions 11 and 12 from coming into contact with the inner surface of the lid 5.
- the thickness of the frequency adjusting metal films 19 and 20 is increased, for example, 9 ⁇ m or more.
- the frequency adjusting metal films 19 and 20 are formed by plating as described above, and the film thickness is, for example, about 10 ⁇ m.
- the removal amount of the frequency adjusting metal films 19 and 20 is: Each tuning fork type crystal vibrating piece 3 is different.
- the frequency adjustment metal films 19 and 20 are used for frequency adjustment along the longitudinal direction of the arm portions 11 and 12 (left and right direction in FIG. 6). More than half of the metal film forming region in the longitudinal direction remains.
- the length L2 in the longitudinal direction of the frequency adjusting metal films 19 and 20 shown in FIG. 6 after the rough adjustment is performed is the frequency adjusting metal film 19 shown in FIG. 5 before the rough adjustment is performed.
- L1 is 0.2 mm, for example, and therefore L2 is, for example, a length exceeding 0.1 mm.
- the frequency adjusting metal films 19 and 20 removed by the laser beam irradiation are not more than half of the length L1 along the longitudinal direction, that is, the frequency adjusting metal films 19 and 20 have the longitudinal length thereof. Since it remains over half of the length L1 along the direction, when the arm portions 11 and 12 of the tuning-fork type crystal vibrating piece 3 are bent toward the lid 5, the remaining frequency adjusting metal film 19, 20 abuts against the inner surface of the lid 5. As a result, the tips of the wide tips 11a and 12a of the arms 11 and 12 are prevented from coming into contact with the inner surface of the lid 5 so that the tips of the arms 11 and 12 are not damaged.
- the thickness t of the frequency adjusting metal films 19 and 20 is as thick as, for example, 9 ⁇ m or more, the impact is reduced when the frequency adjusting metal films 19 and 20 come into contact with the inner surface of the lid 5. be able to.
- the length L2 in the longitudinal direction of the frequency adjusting metal films 19 and 20 after the rough adjustment is performed exceeds, for example, 0.1 mm
- the removal of the frequency adjusting metal films 19 and 20 is performed.
- the length d from the tip of the portion thus formed is, for example, 0.1 mm or less.
- L is, for example, 0.9 mm.
- the ratio of the length d of the portion removed by the laser beam irradiation of the frequency adjusting metal films 19 and 20 to the length L of the tuning-fork type crystal vibrating piece 3 is d is 0.1 mm or less.
- d / L ⁇ 0.1 / 0.9 0.11. That is, d / L ⁇ 0.11 It becomes.
- the thickness of the frequency adjusting metal films 19 and 20 is t, and the distance from the inner surface of the lid 5 to the portion of the arm portion 11 where the frequency adjusting metal films 19 and 20 are not formed is H, this implementation is performed.
- the distance H is, for example, 35 ⁇ m
- the thickness t of the frequency adjusting metal films 19, 20 is preferably, for example, 9 ⁇ m or more and 15 ⁇ m or less.
- the preferred range is 0.25 ⁇ t / H ⁇ 0.43 It becomes.
- the ratio of the thickness t of the frequency adjusting metal films 19 and 20 to the distance H is preferably 0.25 or more and 0.43 or less.
- the arms 11 and 12 of the tuning-fork type crystal vibrating piece 3 are bent toward the lid 5 due to an external impact.
- the distal ends of the wide end portions 11 a and 12 a of the arm portions 11 and 12 are placed on the inner surface of the lid body 5.
- the tip may be damaged by contact.
- the shock when the frequency adjusting metal films 19 and 20 contact the inner surface of the lid 5 cannot be sufficiently buffered.
- the thickness t of the frequency adjusting metal films 19 and 20 exceeds 15 ⁇ m, the remaining frequency adjusting metal films 19 and 20 are applied to the metal lid 5 only by a slight impact from the outside. There is a risk of contact.
- the following is performed.
- the state of the quartz wafer that is, in a state where a plurality of tuning fork type vibrating pieces are integrally connected to the quartz wafer, electrodes are formed on the base of the tuning fork type vibrating piece and the plurality of arms extending from the base.
- the first target frequency in the electrode forming step for forming the is made higher than the conventional first target frequency.
- FIG. 7 is a diagram for explaining the target frequency of the electrode forming process, the weighting process for forming the frequency adjusting metal films 19 and 20, and the rough frequency adjusting (laser processing) process by laser beam irradiation in this embodiment.
- FIG. FIG. 8 is a diagram corresponding to FIG. 7 of the conventional example. 7 and 8, the horizontal axis indicates the frequency, and the vertical axis indicates the frequency.
- the first target frequency fo1 shown in FIG. 7 is higher than the first target frequency fo1 ′ in the conventional electrode forming process shown in FIG.
- the second target frequency fo2 shown in FIG. 7 in the weight attaching step of forming the frequency adjusting metal films 19 and 20 on the tip portions 11a and 12a of the respective arm portions 11 and 12 of the tuning fork type crystal vibrating piece 3 is the conventional example. This is the same as the second target frequency fo2 shown in FIG. 8 in the weighting step.
- the amount of formation of the frequency adjusting metal films 19 and 20 (weights) in the weight attaching step of forming the frequency adjusting metal films 19 and 20 on the tips 11a and 12a of the arms 11 and 12 of the tuning fork type crystal vibrating piece 3 The applied amount) is larger than the conventional example.
- the third target frequency fo3 in the rough adjustment step of the frequency by the laser beam irradiation after the weighting step is the nominal frequency 32.768 kHz, and is shown in FIG. 8 in the conventional rough adjustment step of the frequency by the laser beam irradiation. This is the same as the third target frequency fo3.
- the removal amount of the frequency adjusting metal films 19 and 20 in the rough frequency adjusting process by the irradiation of the laser beam is substantially the same as the conventional example.
- a large number of tuning fork type crystal vibrating pieces 3 in a crystal wafer state whose frequency is roughly adjusted by laser beam irradiation are broken off from the crystal wafer and separated into individual tuning fork type crystal vibrating pieces 3. Thereafter, the metal bumps 8 of the separated tuning-fork type crystal vibrating piece 3 are joined to the electrode pads 7 of the base 4 of the package 2, accommodated in the base 2, and sealed with the lid 5.
- of the frequency difference between the first target frequency fo1 of the tuning fork type vibrating piece in the electrode forming step and the second target frequency fo2 in the weighting step The ratio (
- this ratio (
- the frequency adjusting metal films 19 and 20 to be removed in the coarse adjustment process with respect to the formation amount of the frequency adjusting metal films 19 and 20 formed on the ends of the arms 11 and 12 in the weighting process can be reduced as compared with the conventional example.
- the metal films 19 and 20 for frequency adjustment after the rough adjustment process can be left more than half along the longitudinal direction.
- the arms 11 and 12 of the tuning-fork type crystal vibrating piece 3 are bent toward the base 4 by an impact from the outside, and the contact portions 11b and 12b of the arms 11 and 12 are Even if it comes into contact with the pillow portion 9 on the bottom surface of the base 4, the arm tip electrode is not shaved and the frequency does not fluctuate as in the prior art.
- the respective arm portions 11 and 12 of the tuning-fork type crystal vibrating piece 3 are bent due to the frequency fluctuation caused by the bending toward the base 4 side and the bending due to the lid 5 side. Any frequency fluctuation of the frequency fluctuation can be suppressed. As a result, a tuning fork crystal resonator having good impact resistance can be obtained.
- the frequency is adjusted by irradiating the laser beam, but other energy beams such as an ion beam other than the laser beam may be used.
- FIG. 9 is a diagram corresponding to FIG. 4 of another embodiment of the present invention, and portions corresponding to the above-described embodiment are denoted by the same reference numerals and description thereof is omitted.
- the contact portions 11b and 12b that contact the pillow portion 9 are provided.
- the included region was defined as electrodeless regions 21 and 21 where no armtip electrodes were formed.
- the arm tip electrodes 25 and 24 are formed over the entire circumference of the tip end portions 11a and 12a of the first and second arm portions 11 and 12, as in the conventional case.
- the metal film 22 has a thickness of 1 ⁇ m or more, in this example, for example, 10 ⁇ m so as to obtain a buffering effect.
- the metal film 22 is made of, for example, gold, like the metal bump 8, and is formed by plating using a technique such as electrolytic plating. Therefore, the metal film 22 can be formed simultaneously with the metal bumps 8.
- the metal film 22 is provided in a region where the first and second arm portions 11 and 12 are brought into contact with the pillow portion 9 when the first and second arm portions 11 and 12 are bent toward the bottom surface side of the base 4 due to an external impact.
- the metal film 22 is provided on the base 10 side at the center position in the width direction of the wide end portions 11a, 12a of the first and second arm portions 11, 12.
- the shape of the metal film 22 is substantially circular in plan view.
- the metal films 22 and 22 that buffer the impact caused by the contact with the pillow portion 9 are 1 ⁇ m.
- Each of the above thicknesses is formed by plating.
- the formation position of the metal film 22 on the other main surface side of the tuning-fork type crystal vibrating piece 3 is a contact portion that is a portion other than the tip of the arm portion. For this reason, even if the tip side portions of the arm portions of the frequency adjusting metal films 19 and 20 are shaved by laser beam irradiation, the metal film 22 is not reduced. Thereby, the impact of the contact between the tuning fork type crystal vibrating piece 3 and the pillow portion can be buffered by the metal film 22, and the remaining frequency adjusting metal films 19 and 20 can be used to absorb the tip of each arm and the inner surface of the lid. Can also be prevented.
- the metal film 22 as the buffer portion is not limited to one location, and may be provided at a plurality of locations, for example, as shown in FIG. 11A.
- the metal film 22 is not limited to a circular shape in plan view, and may have other shapes.
- the metal film 22 is seen in plan view along the width direction of the distal end portions 11a and 12a of the arm portions 11 and 12. You may form in a rectangle.
- the arm tip electrodes 24 and 25 are formed on the portion where the metal film 22 that is the buffer portion is formed.
- the metal film 22 that is the buffer portion and its It is good also as an electrodeless area
- the joint portion 13 constituting a part of the base portion 10 extends in a direction opposite to the extending direction of the first and second arm portions 11 and 12, and extends in a direction perpendicular to the extending direction.
- the joint portion 13 extends in both the orthogonal directions (left and right in FIG. 12). It may be a symmetric shape extending in the same direction.
- it extends in both the orthogonal directions (left and right in FIG. 13), and further extends in parallel with the extending direction of the first and second arm portions 11 and 12, respectively.
- the shape may be symmetrical.
- the shape may extend from between the first and second arm portions 11 and 12 in the same direction as the extending direction of the first and second arm portions 11 and 12.
- the two metal bumps 8 and 8 which are bonding portions to be bonded to the electrode pads 7 and 7 of the base 4 are connected to each other as shown in FIGS. 13 near the end extended as described above.
- the junction part 13 the part extended in the direction orthogonal to the said extension direction and the part extended in the same direction as the said extension direction do not need to be formed.
Landscapes
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
Abstract
パッケージのベースには、音叉型振動片の腕部の先端以外の当接部に当接する枕部が突設され、腕部の前記枕部に当接する当接部は、電極が形成されていない無電極領域とされ、枕部との当接によって、電極が削れて周波数の変動が生じるのを防止している。
Description
本発明は、各種電子機器のクロック源などに用いられる音叉型振動子に関する。
音叉型振動子は、特にクロック源として時計を含む各種電子機器に発振回路と共に内蔵される。
かかる音叉型振動子では、パッケージ内に片持ち支持された音叉型振動片が、外部からの衝撃によって厚さ方向に撓んだときに、音叉型振動片の腕部の先端が、パッケージの底面に当接して大きな衝撃が加わって損傷する虞がある。音叉型振動片の腕部の先端は、損傷によって最も周波数が変動する部分である。
このため、例えば、特許文献1では、パッケージの底面に枕部を設けて、衝撃で音叉型振動片が撓んだ際に、前記枕部に、音叉型振動片の腕部の先端に至る途中の部分が当接するようにしている。これによって、音叉型振動片の腕部の先端がパッケージの底面に当接して損傷するのを防止している。
近年では、各種電子機器の小型化に伴い、内蔵される音叉型振動子には、平面視矩形の外形寸法が、例えば1.2mm×1.0mm以下、厚さが0.35mm以下といった超小型、薄型のものが求められるようになっている。
このような超小型、薄型の音叉型振動子では、上記のようにパッケージの底面に枕部を設けたものであっても、外部衝撃等によって、周波数変動を生じる場合がある。
本発明は、上記のような点に鑑みて為されたものであって、周波数変動を抑制した良好な耐衝撃性を有する音叉型振動子を提供することを目的とする。
本件発明者らは、周波数変動を抑制するために、鋭意研究した結果、従来、腕部の先端部の全周に亘って形成されている腕先電極が、外部からの衝撃によって、パッケージ底面の枕部に当接することによって、部分的に削れ、これによって、周波数の変動が生じるとの知見を得て、本発明を完成した。
すなわち、本発明の音叉型振動子は、基部と該基部から延出する複数の腕部とを有する音叉型振動片と、前記音叉型振動片が収納されるパッケージとを備え、前記音叉型振動片は、前記基部が前記パッケージの収納部の電極に接合され、前記パッケージの収納部の底面には、前記音叉型振動片の自由端側である前記腕部が、前記底面側へ撓んだときに、前記腕部の先端以外の部分である当接部に当接して前記先端が、前記底面に当接するのを阻止する枕部が突設されている音叉型振動子であって、前記腕部の前記枕部に当接する前記当接部は、電極が形成されていない、振動片の素地が露出した無電極領域である。
前記無電極領域は、前記腕部の少なくとも前記当接部を含んで前記腕部の先端まで延びていてもよい。
本発明によると、外部からの衝撃によって、音叉型振動片が、厚さ方向に撓んだときに、腕部の先端に至る途中の当接部が、パッケージの底面に突設された枕部に当接する。これによって、自由端である腕部の先端は、パッケージの底面に当接するのが阻止されるので、損傷によって最も周波数変動が大きい腕部の前記先端が損傷するのを防止することができる。
更に、腕部の、パッケージの底面の枕部に当接する当接部は、電極が形成されていない無電極領域である。したがって、外部からの衝撃によって、無電極領域が枕部に当接しても、電極が削れたりすることがない。これによって、外部からの衝撃による周波数の変動を抑制することができる。
また、本発明の音叉型振動子は、基部と該基部から延出する複数の腕部とを有する音叉型振動片と、前記音叉型振動片が収納されるパッケージとを備え、前記音叉型振動片は、前記基部が前記パッケージの収納部の電極に接合され、前記パッケージの収納部の底面には、前記音叉型振動片の自由端側である前記腕部が、前記底面側へ撓んだときに、前記腕部の先端以外の部分である当接部に当接して前記先端が、前記底面に当接するのを阻止する枕部が突設されている音叉型振動子であって、前記腕部の前記枕部に当接する前記当接部には、前記枕部との当接による衝撃を緩衝する緩衝部が設けられる。
本発明によると、外部からの衝撃によって、音叉型振動片が、厚さ方向に撓んだときに、腕部の先端に至る途中の当接部が、パッケージの底面に突設された枕部に当接する。これによって、自由端である腕部の先端は、パッケージの底面に当接するのが阻止されるので、損傷によって最も周波数変動が大きい腕部の前記先端が損傷するのを防止することができる。
更に、腕部の、パッケージの底面の枕部に当接する当接部には、衝撃を緩衝する緩衝部が設けられるので、枕部と緩衝部とが当接してその衝撃が緩衝され、電極が削れたりすることがない。これによって、外部からの衝撃による周波数の変動を抑制することができる。
前記緩衝部は、金属膜からなるのが好ましく、金属膜の厚みは、1μm以上であるのが好ましい。
この構成によれば、緩衝部は1μm以上の厚みの金属膜からなるので、枕部との当接による衝撃を十分に緩衝することができる。
前記基部には、前記音叉型振動片を、前記パッケージの収納部の前記電極に接合するための金属バンプが形成されており、前記金属膜と前記金属バンプが同じ材質からなるのが好ましい。
この構成によれば、前記金属膜と前記金属バンプとを同一の工程で形成することができる。
前記腕部の表裏主面の一方の主面の先端側の領域には、周波数調整用金属膜が形成されており、前記当接部は、前記腕部の表裏主面の他方の主面にあるのが好ましい。
前記周波数調整用金属膜が形成されている前記先端側の領域の腕部の幅は、前記先端側の領域以外の腕部の幅より広いのが好ましい。
この構成によれば、周波数調整用金属膜の形成領域を幅方向に広くできるので、超小型の音叉型振動片であっても周波数調整量を多く確保することができる。
前記底面の前記枕部は、片持ち支持された前記音叉型振動片の前記腕部の幅広の前記先端側の領域に対向するように、前記腕部の延出方向に直交する方向に延びているのが好ましい。
この構成によれば、音叉型振動片の基部を、パッケージの収納部の電極に接合させてパッケージに搭載する際に、基部の幅方向で搭載にばらつきが生じても、腕部の幅広の領域に対向するように延びている枕部を、音叉型振動片が撓んだときに、当接させることができる。
本発明によれば、外部からの衝撃によって、音叉型振動片が、厚さ方向に撓んだときに、自由端である腕部の先端は、腕部の前記先端に至る途中の当接部がパッケージの底面に突設された枕部に当接することによって、パッケージの底面に当接するのが阻止される。これによって、最も周波数変動が大きい腕部の前記先端が損傷するのを防止することができる。
更に、腕部の、パッケージの底面の枕部に当接する当接部は、電極が形成されていない無電極領域とされ、あるいは、前記当接部には、当接による衝撃を緩衝する緩衝部が設けられるので、枕部との当接によって、電極が削れたりすることがない。これによって、外部からの衝撃による周波数の変動を抑制し、良好な耐衝撃性を有する音叉型振動子を得ることができる。
以下、本発明の実施形態を図面に基づいて詳細に説明する。
[実施形態1]
図1は、本発明の一実施形態に係る音叉型水晶振動子の概略断面図である。図2は、図1の蓋体5を外した状態の平面図である。図3は、音叉型水晶振動片3の一方の主面側を示す図である。図4は、音叉型水晶振動片3の他方の主面側を示す図である。図3では、説明の便宜上、音叉型水晶振動片3は、レーザービームの照射によって周波数調整用金属膜19,20の一部が除去される前の状態を示している。また、図2では、レーザービームの照射によって周波数調整用金属膜19,20の一部が除去されて水晶26の素地が露出している状態が示されている。
図1は、本発明の一実施形態に係る音叉型水晶振動子の概略断面図である。図2は、図1の蓋体5を外した状態の平面図である。図3は、音叉型水晶振動片3の一方の主面側を示す図である。図4は、音叉型水晶振動片3の他方の主面側を示す図である。図3では、説明の便宜上、音叉型水晶振動片3は、レーザービームの照射によって周波数調整用金属膜19,20の一部が除去される前の状態を示している。また、図2では、レーザービームの照射によって周波数調整用金属膜19,20の一部が除去されて水晶26の素地が露出している状態が示されている。
この実施形態の音叉型水晶振動子1は、セラミック等からなるパッケージ2内に、音叉型水晶振動片3が収納されている。パッケージ2は、パッケージ本体としてのベース4と蓋体5とが、封止部材6を介して接合されている。具体的には、上部が開口したベース4の一対の電極パッド7,7上に、音叉型水晶振動片3が接合材としての一対の金属バンプ8,8を介して接合されている。このベース4の開口を封止するように、板状の蓋体5が接合されている。接合材としては、金属バンプ8に限らず、導電性樹脂接着剤、ろう材などを用いてもよい。
この実施形態の音叉型水晶振動子1の公称周波数は32.768kHzとなっている。なお、公称周波数は一例であり、他の周波数にも適用可能である。
パッケージ2のベース4は、セラミック材料やガラス材料からなる絶縁性の容器体である。本実施形態では、ベース4は、セラミック材料からなり、焼成によって形成されている。ベース4は、周囲に周壁部4aを有し、上部が開口した断面視凹形状で、ベース4の内部は、音叉型水晶振動片3の収納部となっている。ベース4の長手方向(図1,図2の左右方向)の一端側の底面には、一対の上記電極パッド7,7が形成されている。各電極パッド7.7は、配線パターン(図示せず)を介してベース4の裏面の図示しない端子電極に電気的に接続されている。ベース4の長手方向の他端側の底面には、枕部9が、ベース4の長手方向に直交する方向(図2の上下方向)に延びるように設けられている。この枕部9は、片持ち支持された音叉型水晶振動片3が、外部からの衝撃によって、ベース4の底面側に撓んだ際に、自由端側である音叉型水晶振動片3の先端が、ベース4の底面に当接して損傷するのを防止する。
蓋体5は、例えば金属材料やセラミック材料、ガラス材料などからなり、平面視矩形状の一枚板に成形されている。この実施形態では、蓋体5は、金属材料からなる。
この実施形態の音叉型水晶振動子1は、超小型、薄型の音叉型水晶振動子であり、そのパッケージ2の平面視矩形の外形寸法は、例えば1.2mm×1.0mmであり、蓋体5を含む厚さ(高さ)は、例えば、0.35mmである。
なお、本発明は、当該外形寸法に限定されるものではなく、例えば、音叉型水晶振動子のパッケージの平面視矩形の外形寸法が、例えば2.0mm×1.6mmや、1.6mm×1.0mmであってもよく、蓋体5を含む厚さが、例えば、0.45mmであってもよい。
この実施形態では、図1に示されるベース4の底部の厚みt1は、例えば0.09mmであって、ベース4の周壁部4aの厚み(高さ)t2は、例えば0.15mmである。このベース4の凹部内に、厚みが、例えば0.08mm程度の音叉型水晶振動片3が収納されるので、パッケージ2内の音叉型水晶振動片3の上下のクリアランスは、例えば0.035mm程度となる。
音叉型水晶振動片3は、図示しない1枚の水晶ウェハから多数成形され、音叉型水晶振動片3の外形は、フォトリソグラフィ技術(フォトリソ工法)を用いて、レジストまたは金属膜をマスクとして例えばウェットエッチングによって一括して多数成形される。
音叉型水晶振動片3は、図3、図4に示すように、基部10と、基部10の一方の端面側から平行に延出された振動部である一対の第1,第2腕部11,12とを備える。基部10は、第1,第2腕部11,12の延出方向とは逆方向に延びて、ベース4に接合される接合部13を含んでいる。この実施形態の接合部13は、第1,第2腕部11,12の延出方向とは逆方向に延びて、更に、前記延出方向に直交する方向の一方(図3では右方)へ延びている。
一対の第1,第2腕部11,12は、その先端部11a,12aが、他の部分に比べて、各腕部11,12の延出方向に直交する方向、すなわち、幅方向(図3,図4の左右方向)に広く形成されている。図3に示すように、その幅はW1である。ベース4の底面の枕部9は、図2に示されるように、第1,第2腕部11,12の先端部11a,12aの幅W1の幅広領域に対向するように突設されている。この枕部9の突出高さ、すなわち、厚みは、例えば0.01mmである。
また、第1,第2腕部11,12には、図3及び図4に示される両主面に、各腕部11,12の延出方向に沿って延びる各溝部14,14が、それぞれ形成されている。
音叉型水晶振動片3には、2つの第1励振電極15及び第2励振電極16と、これら各励振電極15,16を、ベース4の電極パッド7,7にそれぞれ電気的に接続させるために、各励振電極15,16からそれぞれ引き出された引出電極17,18とが設けられている。2つの第1,第2励振電極15,16の一部は、両主面の溝部14,14の内部に形成されている。
第1励振電極15は、第1腕部11の溝部14を含む両主面と第2腕部12の両側面に形成されており、上記引出電極17に共通接続されている。同様に、第2励振電極16は、第2腕部12の溝部14を含む両主面と第1腕部11の両側面に形成されており、上記引出電極18に共通接続されている。
また、図3に示される一方の主面側の第1腕部11及び第2腕部12の先端部11a,12aの幅広領域には、腕先電極25,24がそれぞれ形成されている。先端部11aに形成された腕先電極25は、第1腕部11の両側面に形成された第2励振電極16に接続されている。先端部12aに形成された腕先電極24は、第2腕部12の両側面に形成された第1励振電極15に接続されている。
この実施形態では、後述のように、外部からの衝撃による周波数の変動を抑制するために、図4に示されるように、ベース4の底面に対向する他方の主面側における、第1腕部11及び第2腕部12の先端部11a,12aの幅広領域には、基部10側の一部を除いて腕先電極24,25は形成されていない。この腕先電極24,25が形成されていない領域は、水晶の素地が露出した無電極領域21,21となっいる。
図3に示される一方の主面側の幅広の各先端部11a,12aの腕先電極25,24上には、レーザービームなどのビーム照射によって金属膜の質量削減を行うことで音叉型水晶振動片3の周波数を粗調整するための周波数調整用金属膜19,20が形成されている。この周波数調整用金属膜19,20は、各腕先電極25,24に比べて若干小さな面積で形成されている。周波数調整用金属膜19,20は、各腕部11,12の先端、すなわち、幅広の各先端部11a,12aの先端までそれぞれ延びている。
音叉型水晶振動片3の第1,第2励振電極15,16、引出電極17,18及び腕先電極24,25は、金属蒸着によって各腕部11,12上にクロム層が形成され、このクロム層上に金属、例えば金が形成されて構成される薄膜である。この薄膜は、真空蒸着法やスパッタリング法等の手法により基板全面に形成された後、フォトリソグラフィ法によりメタルエッチングして所望の形状に形成される。なお、第1,第2励振電極15,16、引出電極17,18及び腕先電極24,25は、クロム、金に限らず、クロム、銀などであってもよい。
各腕部11,12の各先端部11a,12aにそれぞれ形成された周波数調整用金属膜19,20は、例えば、電解めっき法などの手法によりめっき形成される。これらの金属膜19,20をめっき形成する際には、後述の金属バンプ8と同じ工程で同時に形成するのが好ましい。本実施形態では、周波数調整用金属膜19,20として金(Au)が使用されている。
図4に示される他方の主面側の接合部13には、ベース4の各電極パッド7,7との接合部位となる、例えば金からなる2つの金属バンプ8,8が形成される。具体的には、一方の金属バンプ8は、第1接合部13bの、第1励振電極15から引き出された引出電極17上に形成される。他方の金属バンプ8は、第2接合部13aの、第2励振電極16から引き出された引出電極18上に形成される。基部10の一部を構成する接合部13は、ベース4の各電極パッド7,7に接合されて、音叉型水晶振動片3を支持する支持部として機能する。金属バンプ8,8の平面視形状は、楕円形であるが、円形状、あるいは、長方形や正方形を含む多角形状のものなどであってもよい。この金属バンプ8,8は、電解めっき法などの手法によりめっき形成する。
上記のように、周波数調整用金属膜19,20が形成された第1,第2腕部11,12の先端部11a,12aの幅W1は、他の部分の幅W2に比べて幅方向に広く形成されている。この実施形態では、先端部11a,12aの幅W1は、他の部分の幅W2の、例えば3倍以上となっている。
このように周波数調整用金属膜19,20が形成された第1,第2腕部11,12の先端部11a,12aが、幅広であるのは次の理由による。
音叉型水晶振動子の周波数は、音叉型水晶振動片の腕部の長さの二乗に反比例し、腕部の幅に比例する。したがって、音叉型水晶振動子の超小型化を図るために、音叉型振動片の腕部の長さを短くしようとすると、周波数が大きくなるので、それを抑制するためには、腕部の先端側の周波数調整用の錘部となる金属膜の形成領域を大きくしなればならない。なお、腕部の幅を狭くして、周波数が大きくなるのを抑制することも考えられるが、腕部の幅を狭くすると、CI(クリスタルインピーダンス)値が非常に悪くなる。
このため、CI値を悪化させずに、音叉型水晶振動子の超小型化を図ろうとすると、片持ち支持された音叉型水晶振動片の錘部となる周波数調整用金属膜が形成される先端部が大きくなり、腕部の長さを短くしようとすると、上記のように幅広となる。
このように音叉型水晶振動片の腕部の先端部が大きくなると、外部からの衝撃によって撓み易くなる。
更に、音叉型水晶振動子の薄型化を図ろうとすると、パッケージ内の音叉型水晶振動片の上下のクリアランスが小さくなる。
したがって、従来の超小型で薄型の音叉型水晶振動子では、ベースの底面に、枕部を突設し、外部からの衝撃によって、片持ち支持された音叉型水晶振動片が撓んだときに、自由端である振動腕の先端に至る途中の当接部が、枕部に当接するようにしている。これによって、振動腕の、損傷によって最も周波数が変動する先端が、ベースの底面に当接しないようにしている。しかし、耐衝撃試験を行うと、周波数がプラス側へ変動する場合があり、耐衝撃性が十分でない。
本件発明者らは、耐衝撃試験によって、周波数のプラス側の変動が認められた音叉型水晶振動子のパッケージを開封し、音叉型水晶振動片を外して観察したところ、音叉型水晶振動片が撓んだときに、枕部に当接する、腕部の先端部の腕先電極が部分的に削れていることを確認した。
そこで、この実施形態では、上記のように、ベース4の底面に対向する他方の主面側において、図4に示されるように、第1腕部11及び第2腕部12の先端部11a,12aの幅広領域には、基部10側の一部を除いて腕先電極24,25を形成しない無電極領域21,21としている。
上記のように、音叉型水晶振動片3の一方の主面側に形成された周波数調整用金属膜19,20は、レーザービームなどのビーム照射によってその一部が除去されて周波数の粗調整が行われる。
図5は、レーザービーム照射による周波数の粗調整を説明するための図である。この図5では、両腕部11,12の内、第1腕部11の先端部11aの周波数調整用金属膜19に対するレーザービームの照射の状態を代表的に示しているが、第2腕部12の先端部12aの周波数調整用金属膜20に対するレーザービームの照射も同様である。
このレーザービームの照射は、水晶ウェハ状態の各々の音叉型水晶振動片3の他方の主面側にレーザービーム照射源(図示せず)を対向させて、一方の主面側の周波数調整用金属膜19を除去するようにしている。
このレーザービームの照射は、質量の減少による周波数の上昇が最も大きい先端側(図5の右側)から、第1腕部11の幅方向(図5の紙面に垂直方向)に沿って走査が開始され、第1腕部11の基部10側(図5の左側)へ向かって順次移動させて走査される。
照射されたレーザービームは、水晶ウェハ状態の各々の音叉型水晶振動片3の他方の主面側から音叉型水晶振動片3の内部の水晶26を透過して、反対側の一方の主面側に形成された周波数調整用金属膜19に至る。このレーザービームによって、一方の主面側の腕先電極25及び周波数調整用金属膜19が除去される。
このように周波数調整用金属膜19に対して、レーザービームを、上方から音叉型水晶振動片3の内部の水晶26を通り抜けるように照射して、一方の主面側のみに形成された周波数調整用金属膜19を除去するようにしている。これによって、周波数調整用金属膜19の金属屑が、周波数調整用金属膜19から遠ざかるように下方へ飛散し、音叉型水晶振動片3へ再付着するのを防止することができる。なお、周波数調整用金属膜に対して、レーザービームを、下方から音叉型水晶振動片の内部の水晶を通り抜けるように照射してもよい。この実施形態では、レーザービームとしてグリーンレーザーを用いているが、YAGレーザーや他の波長を有するレーザーを使用してもよい。
水晶ウェハの状態で、レーザービームの照射によって周波数の粗調整がされた多数の音叉型水晶振動片3は、水晶ウェハから個片の音叉型水晶振動片3としてそれぞれ分離される。分離された音叉型水晶振動片は、パッケージ2のベース4の電極パッド7に接合されて実装される。なお、音叉型水晶振動片3を、パッケージ2のベース4の電極パッド7に接合させた状態で、最終の周波数微調整が行われる。周波数調整用金属膜19,20は、周波数微調整が行われる一方の主面側のみに形成されているので、効率的であると共に、金属の使用量を低減することができる。
図6はパッケージ2内に収納された状態の音叉型水晶振動片3の先端部付近を示す概略断面図である。この図6では、両腕部11,12の内、第1腕部11の先端部11aを代表的に示しているが、第2腕部12の先端部12aも同様である。
音叉型水晶振動片3は、パッケージ2内に収納された状態では、一方の主面側に形成された周波数調整用金属膜19が、蓋体5の内面に対向し、他方の主面側が、ベース4の底面に対向する。
外部からの衝撃によって、片持ち支持された音叉型水晶振動片3がベース4の底面側に撓んだときには、ベース4の底面の枕部9に、第1腕部11の先端以外の部分である当接部11bが当接する。これによって、第1腕部11の幅広の先端部11aの先端が、ベース4の底面に当接して損傷するのを防止している。同様に、第2腕部12の当接部12b(図示せず)も、音叉型水晶振動片3がベース4の底面側に撓んだときに、枕部9に当接することによって、第2腕部12の幅広の先端部12aの先端が、ベース4の底面に当接して損傷するのを防止している。
更に、図6に示すように第1腕部11の先端部11aの他方の主面側に設けられる無電極領域21は、外部からの衝撃によって、片持ち支持された音叉型水晶振動片3がベース4の底面側に撓んだときに、枕部9に当接する第1腕部11の当接部11bを少なくとも含むと共に、第1腕部11の幅広の先端部11aの先端まで延びている。同様に、第2腕部12の先端部12aの無電極領域21も、音叉型水晶振動片3が撓んだときに、枕部9に当接する第2腕部12の当接部12bを少なくとも含むと共に、第2腕部12の幅広の先端部12aの先端まで延びている。
このようにベース4の底面の枕部9に当接する第1,第2腕部11,12の当接部11b,12bは、腕先電極が形成されていない無電極領域21,21である。したがって、外部からの衝撃によって、当接部11b,12bが枕部9に当接しても、腕先電極が削れることがなく、外部からの衝撃によって周波数が、プラス側へ変動するのを抑制することができる。
なお、無電極領域21は、枕部9に当接する第1,第2腕部11,12の当接部11b,12bのみならず、第1,第2腕部11,12の先端まで延びて形成されたが、当接部11b,12bのみ無電極領域としてもよい。
上記のように、外部からの衝撃によって、音叉型水晶振動片3が、ベース4の底面側に撓んだときに、ベース4の底面の枕部9に、各腕部11,12の当接部11b,12bが当接する。これによって、各腕部11,12の先端が、ベース4の底面に当接して損傷するのを防止する。更に、この実施形態では、音叉型水晶振動片3が、蓋体5側へ撓んだときに、各腕部11,12の幅広の先端部11a,12aの先端が、蓋体5の内面に当接して損傷するのを防止している。
すなわち、この実施形態では、レーザービームの照射によって、その一部が除去された周波数調整用金属膜19,20は、蓋体5の内面に対向し、外部からの衝撃によって、音叉型水晶振動片3の各腕部11,12が、蓋体5側へ撓んだときに、蓋体5の内面に当接するようにしている。これによって、各腕部11,12の幅広の先端部11a,12aの先端が、蓋体5の内面に当接するのを阻止している。
このため、周波数調整用金属膜19,20の厚みを厚くし、例えば9μm以上の厚さとしている。この実施形態では、周波数調整用金属膜19,20は、上記のようにめっきによって形成され、その膜厚は、例えば10μm程度としている。
水晶ウェハ状態の各音叉型水晶振動片3の周波数を、所要の周波数範囲内に収めるために行われるレーザービームの照射による周波数の粗調整では、周波数調整用金属膜19,20の除去量は、各音叉型水晶振動片3で異なることになる。この実施形態では、レーザービームの照射による粗調整が行われた後に、周波数調整用金属膜19,20が、腕部11,12の長手方向(図6の左右方向)に沿って、周波数調整用金属膜の形成領域の長手方向の半分を超えて残存するようにしている。
すなわち、粗調整が行われた後の図6に示される周波数調整用金属膜19,20の長手方向の長さL2は、粗調整が行われる前の図5に示される周波数調整用金属膜19,20の長手方向の長さをL1とすると、
L2>0.5L1
としている。
L2>0.5L1
としている。
この実施形態では、上記L1は、例えば0.2mmであり、したがって、上記L2は、例えば0.1mmを超える長さとなる。
このようにレーザービームの照射によって、除去される周波数調整用金属膜19,20は、その長手方向に沿う長さL1の半分以下である、すなわち、周波数調整用金属膜19,20は、その長手方向に沿う長さL1の半分を超えて残存するので、音叉型水晶振動片3の各腕部11,12が、蓋体5側へ撓んだときに、残存する周波数調整用金属膜19,20が、蓋体5の内面に当接する。これによって、各腕部11,12の幅広の先端部11a,12aの先端が、蓋体5の内面に当接するのが阻止され、各腕部11,12の先端が損傷しないようにしている。
また、周波数調整用金属膜19,20は、その厚さtが、例えば9μm以上と厚いので、周波数調整用金属膜19,20が、蓋体5の内面に当接したときの衝撃を緩和することができる。
また、上記のように、粗調整が行われた後の周波数調整用金属膜19,20の長手方向の長さL2が、例えば0.1mmを超えるので、周波数調整用金属膜19,20の除去された部分の先端からの長さdは、例えば0.1mm以下となる。なお、周波数調整用金属膜19,20のレーザービームの照射によって除去された部分の長さdは、上記のように、音叉型水晶振動片毎に異なり、d=0の場合もある。
ここで、図3に示す音叉型水晶振動片3の長さをLとすると、この実施形態では、Lは、例えば0.9mmである。
したがって、音叉型水晶振動片3の長さLに対する、周波数調整用金属膜19,20のレーザービームの照射によって除去された部分の長さdの比は、dが0.1mm以下であるので、
d/L≦0.1/0.9=0.11
すなわち、
d/L≦0.11
となる。
d/L≦0.1/0.9=0.11
すなわち、
d/L≦0.11
となる。
また、周波数調整用金属膜19,20の厚さをt、蓋体5の内面から腕部11の周波数調整用金属膜19,20が形成されていない部分までの間隔をHとすると、この実施形態では、間隔Hは、例えば35μmであり、周波数調整用金属膜19,20の厚さtは、例えば9μm以上、15μm以下であるのが好ましい。
したがって、前記間隔Hに対する、周波数調整用金属膜19,20の厚さtの比t/Hは、
9/35=0.257
15/35=0.429
となり、
好ましい範囲は、
0.25≦t/H≦0.43
となる。
9/35=0.257
15/35=0.429
となり、
好ましい範囲は、
0.25≦t/H≦0.43
となる。
すなわち、前記間隔Hに対する、周波数調整用金属膜19,20の厚さtの比は、0.25以上、0.43以下であるのが好ましい。
なお、周波数調整用金属膜19,20の厚さtが、9μm未満になると、外部からの衝撃によって、音叉型水晶振動片3の各腕部11,12が、蓋体5側へ撓んだときに、残存する周波数調整用金属膜19,20が、蓋体5の内面に当接する前に、各腕部11,12の幅広の先端部11a,12aの先端が、蓋体5の内面に当接して前記先端が損傷することがある。また、周波数調整用金属膜19,20が、蓋体5の内面に当接したときの衝撃を十分に緩衝することができない。
また、周波数調整用金属膜19,20の厚さtが、15μmを超えると、外部から僅かな衝撃が加わっただけで、残存する周波数調整用金属膜19,20が金属製の蓋体5に接触してしまう虞がある。
上記のように、レーザービームの照射によって、除去される周波数調整用金属膜19,20の長手方向に沿う長さを、半分以下にするために、次のようにしている。この実施形態では、水晶ウェハの状態、すなわち、水晶ウェハに複数の音叉型振動片が一体的に連結された状態で、音叉型振動片の基部及び該基部から延出する複数の腕部に電極を形成する電極形成工程における第1目標周波数を、従来の第1目標周波数よりも高くしている。
図7は、この実施形態における電極形成工程、周波数調整用金属膜19,20を形成する錘付け工程、及び、レーザービームの照射による周波数の粗調整(レーザー加工)工程の目標周波数を説明するための図である。図8は、従来例の図7に対応する図である。図7及び図8において、横軸は周波数を、縦軸は度数を示している。
この実施形態では、水晶ウェハに複数の音叉型振動片が一体的に連結された状態で、音叉型振動片の基部及び該基部から延出する複数の腕部に電極を形成する電極形成工程における図7に示される第1目標周波数fo1を、図8に示される従来例の電極形成工程における第1目標周波数fo1´よりも高い周波数としている。
音叉型水晶振動片3の各腕部11,12の先端部11a,12aに周波数調整用金属膜19,20を形成する錘付け工程における図7に示される第2目標周波数fo2は、従来例の錘付け工程における図8に示される第2目標周波数fo2と同じである。
したがって、音叉型水晶振動片3の各腕部11,12の先端部11a,12aに周波数調整用金属膜19,20を形成する錘付け工程における周波数調整用金属膜19,20の形成量(錘付け量)は、従来例に比べて多い。
錘付け工程後のレーザービームの照射による周波数の粗調整工程における第3目標周波数fo3は、上記公称周波数32.768kHzであり、従来例のレーザービームの照射による周波数の粗調整工程における図8に示される第3目標周波数fo3と同じである。
したがって、レーザービームの照射による周波数の粗調整工程における周波数調整用金属膜19,20の除去量は、従来例と略同じである。
レーザービームの照射によって周波数の粗調整がされた水晶ウェハ状態の多数の音叉型水晶振動片3は、水晶ウェハから折り取られて個々の音叉型水晶振動片3に分離される。その後、パッケージ2のベース4の電極パッド7に、分離された音叉型水晶振動片3の金属バンプ8が接合されてベース2内に収容され、蓋体5で封止される。
この実施形態では、電極形成工程における音叉型振動片の第1目標周波数fo1と錘付け工程における第2目標周波数fo2との周波数の差の絶対値|fo1-fo2|に対する、第2目標周波数fo2と粗調整工程における第3目標周波数fo3との周波数の差の絶対値|fo2-fo3|の比率(|fo2-fo3|/|fo1-fo2|)を、0.5以下としている。すなわち、
(|fo2-fo3|/|fo1-fo2|)≦0.5
である。
(|fo2-fo3|/|fo1-fo2|)≦0.5
である。
この実施形態では、この比率(|fo2-fo3|/|fo1-fo2|)を、例えば、0.4程度としている。
このようにすることによって、錘付け工程で各腕部11,12の端部に形成する周波数調整用金属膜19,20の形成量に対する、粗調整工程で除去する周波数調整用金属膜19,20の除去量の割合を、従来例に比べて小さくすることができる。
これによって、粗調整工程後の周波数調整用金属膜19,20を、長手方向に沿って半分を超えて残存させることができる。
したがって、外部からの衝撃によって、音叉型水晶振動片3の各腕部11,12が、蓋体5側へ撓んだときに、残存する周波数調整用金属膜19,20が、蓋体5の内面に当接する。これによって、各腕部11,12の幅広の先端部11a,12aの先端が、蓋体5の内面に当接して損傷するのを防止することができ、周波数変動を抑制することができる。
この実施形態によれば、外部からの衝撃によって、音叉型水晶振動片3の各腕部11,12が、ベース4側へ撓んで、各腕部11,12の各当接部11b,12bが、ベース4の底面の枕部9に当接しても、従来のように腕先電極が削れて周波数が変動するといったことがない。
更に、外部からの衝撃によって、音叉型水晶振動片3の各腕部11,12が、枕部9が突設されたベース4とは反対側の蓋体5側へ撓んだときには、残存する周波数調整用金属膜19,20が、蓋体5の内面に当接する。これによって、各腕部11,12の先端が、蓋体5の内面に当接して損傷するのを防止して周波数変動を抑制することができる。
このように外部からの衝撃によって、音叉型水晶振動片3の各腕部11,12が、ベース4側に撓むことに起因する周波数変動、及び、蓋体5側に撓むことに起因する周波数変動のいずれの周波数変動も抑制することができる。これによって、良好な耐衝撃性を有する音叉型水晶振動子を得ることができる。
上記実施形態では、レーザービームを照射して周波数を調整したが、レーザービーム以外のイオンビームなどの他のエネルギービームを使用してもよい。
[実施形態2]
図9は、本発明の他の実施形態の図4に対応する図であり、上述の実施形態に対応する部分には、同一の参照符号を付してその説明を省略する。
図9は、本発明の他の実施形態の図4に対応する図であり、上述の実施形態に対応する部分には、同一の参照符号を付してその説明を省略する。
上述の実施形態では、外部からの衝撃によって、第1,第2腕部11,12が、ベース4の底面側へ撓んだときに、枕部9に当接する当接部11b,12bを少なくとも含む領域を、腕先電極が形成されていない無電極領域21,21とした。
この実施形態では、従来と同様に、第1,第2腕部11,12の先端部11a,12aの全周に亘って腕先電極25,24が形成されている。
この実施形態では、図9及び図10の概略断面図に示されるように、第1,第2腕部11,12の先端部11a,12aのベース4の底面に対向する他方の主面側には、当接の際の衝撃を緩衝する緩衝部としての金属膜22,22がそれぞれ形成されている。各金属膜22,22は、外部からの衝撃によって、第1,第2腕部11,12が、ベース4の底面側へ撓んだときに、枕部9に当接する領域にそれぞれ形成されている。
この金属膜22は、緩衝効果が得られるように、厚さが1μm以上、この例では、例えば10μmである。この金属膜22は、上記金属バンプ8と同様に、例えば金からなり、電解めっき法などの手法によりめっき形成する。したがって、この金属膜22は、金属バンプ8と同時に形成することができる。
この金属膜22は、外部からの衝撃によって、第1,第2腕部11,12が、ベース4の底面側へ撓んだときに、枕部9に当接する領域に設けられるものである。この実施形態では、金属膜22は、第1,第2腕部11,12の幅広の先端部11a,12aの幅方向の中央位置であって、基部10側に設けられている。この金属膜22の形状は、平面視略円形である。
このように第1,第2腕部11,12の、ベース4の底面の枕部9に当接する領域には、枕部9との当接による衝撃を緩衝する金属膜22,22が、1μm以上の厚さでそれぞれめっきによって形成されている。これによって、外部からの衝撃によって、音叉型水晶振動片3が撓んで、各腕部11,12の金属膜22,22が、ベース4の底面の枕部9に当接しても、金属膜22,22が剥離しにくい。また、その当接の衝撃が、金属膜22,22によって充分に緩衝され、腕先電極25が削れるといったことがない。したがって、外部からの衝撃によって周波数が、プラス側へ変動するのを抑制することができる。また、図10の概略断面図に示されるように、音叉型水晶振動片3の他方の主面側の金属膜22の形成位置は、腕部の先端以外の部分である当接部である。このため、レーザービームの照射によって周波数調整用金属膜19,20の腕部の先端側の部分が削られても、金属膜22は削減されることがない。これにより、音叉型水晶振動片3と枕部との当接の衝撃を、金属膜22によって緩衝できるとともに、残存した周波数調整用金属膜19,20によって各腕部の先端部と蓋体の内面との接触も防止できる。
なお、緩衝部としての金属膜22は、一箇所に限らず、複数個所、例えば、図11Aに示すように、二箇所設けてもよい。
また、金属膜22は、平面視円形に限らず、他の形状でもよく、例えば、図11Bに示すように、各腕部11,12の各先端部11a,12aの幅方向に沿って平面視長方形に形成してもよい。
この実施形態では、緩衝部である金属膜22が形成された部分には、腕先電極24,25が形成されたが、本発明の他の実施形態として、緩衝部である金属膜22及びその周囲の領域には腕先電極を形成することなく、水晶素地が露出した無電極領域としてもよい。
上記各実施形態では、基部10の一部を構成する接合部13は、第1,第2腕部11,12の延出方向とは逆方向に延びて、前記延出方向に直交する方向の一方(図3では右方)へ延びていたが、接合部13は、図12の音叉型水晶振動片3の外形図に示すように、前記直交する方向の両方(図12の左方及び右方)へ延びる左右対称な形状であってもよい。あるいは、図13に示すように、前記直交する方向の両方(図13の左方及び右方)へ延びて、更に、第1,第2腕部11,12の延出方向にそれぞれ平行に延びる左右対称な形状であってもよい。あるいは、図14に示すように、第1,第2腕部11,12の間から、第1,第2腕部11,12の延出方向と同方向に延びる形状であってもよい。これら各形状の音叉型水晶振動片3では、ベース4の各電極パッド7,7に接合される接合部位である2つの金属バンプ8,8は、図12~図14に示すように、接合部13の上記のように延びた終端付近とすることができる。なお、接合部13は、前記延出方向に直交する方向へ延びる部分や前記延出方向と同方向へ延びる部分が形成されていなくてもよい。
上記各実施形態では、音叉型水晶振動片に適用して説明したが、これに限るものではなく、水晶以外の他の圧電材料を用いてもよい。
1 音叉型水晶振動子
2 パッケージ
3 音叉型水晶振動片
4 ベース
5 蓋体
7 電極パッド
8 金属バンプ
9 枕部
10 基部
11 第1腕部
12 第2腕部
13 接合部
15 第1励振電極
16 第2励振電極
17,18 引出電極
19,20 周波数調整用金属膜
21 無電極領域
22 金属膜(緩衝部)
24,25 腕先電極
26 水晶
2 パッケージ
3 音叉型水晶振動片
4 ベース
5 蓋体
7 電極パッド
8 金属バンプ
9 枕部
10 基部
11 第1腕部
12 第2腕部
13 接合部
15 第1励振電極
16 第2励振電極
17,18 引出電極
19,20 周波数調整用金属膜
21 無電極領域
22 金属膜(緩衝部)
24,25 腕先電極
26 水晶
Claims (9)
- 基部と該基部から延出する複数の腕部とを有する音叉型振動片と、前記音叉型振動片が収納されるパッケージとを備え、前記音叉型振動片は、前記基部が前記パッケージの収納部の電極に接合され、前記パッケージの収納部の底面には、前記音叉型振動片の自由端側である前記腕部が、前記底面側へ撓んだときに、前記腕部の先端以外の部分である当接部に当接して前記先端が、前記底面に当接するのを阻止する枕部が突設されている音叉型振動子であって、
前記腕部の前記枕部に当接する前記当接部は、電極が形成されていない、振動片の素地が露出した無電極領域である、
音叉型振動子。 - 基部と該基部から延出する複数の腕部とを有する音叉型振動片と、前記音叉型振動片が収納されるパッケージとを備え、前記音叉型振動片は、前記基部が前記パッケージの収納部の電極に接合され、前記パッケージの収納部の底面には、前記音叉型振動片の自由端側である前記腕部が、前記底面側へ撓んだときに、前記腕部の先端以外の部分である当接部に当接して前記先端が、前記底面に当接するのを阻止する枕部が突設されている音叉型振動子であって、
前記腕部の前記枕部に当接する前記当接部には、前記枕部との当接による衝撃を緩衝する緩衝部が設けられる、
音叉型振動子。 - 前記無電極領域は、前記腕部の少なくとも前記当接部を含んで前記腕部の先端まで延びている、
請求項1に記載の音叉型振動子。 - 前記緩衝部が、金属膜からなる、
請求項2に記載の音叉型振動子。 - 前記金属膜の厚みが、1μm以上である、
請求項4に記載の音叉型振動子。 - 前記基部には、前記音叉型振動片を、前記パッケージの収納部の前記電極に接合するための金属バンプが形成されており、前記金属膜と前記金属バンプが同じ材質からなる、
請求項4または5に記載の音叉型振動子。 - 前記腕部の表裏主面の一方の主面の先端側の領域には、周波数調整用金属膜が形成されており、
前記当接部は、前記腕部の表裏主面の他方の主面にある、
請求項1ないし5のいずれかに記載の音叉型振動子。 - 前記周波数調整用金属膜が形成されている前記先端側の領域の腕部の幅は、前記先端側の領域以外の腕部の幅より広い、
請求項7に記載の音叉型振動子。 - 前記底面の前記枕部は、片持ち支持された前記音叉型振動片の前記腕部の幅広の前記先端側の領域に対向するように、前記腕部の延出方向に直交する方向に延びている、
請求項8に記載の音叉型振動子。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201780066196.6A CN109891746B (zh) | 2017-01-31 | 2017-12-19 | 音叉型振子 |
US16/473,409 US11239824B2 (en) | 2017-01-31 | 2017-12-19 | Tuning fork-type vibrator |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017015344A JP6436175B2 (ja) | 2017-01-31 | 2017-01-31 | 音叉型振動子 |
JP2017-015344 | 2017-01-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018142789A1 true WO2018142789A1 (ja) | 2018-08-09 |
Family
ID=63040574
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/045510 WO2018142789A1 (ja) | 2017-01-31 | 2017-12-19 | 音叉型振動子 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11239824B2 (ja) |
JP (1) | JP6436175B2 (ja) |
CN (1) | CN109891746B (ja) |
TW (1) | TWI729260B (ja) |
WO (1) | WO2018142789A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020000766A (ja) * | 2018-06-30 | 2020-01-09 | 株式会社三洋物産 | 遊技機 |
US11688457B2 (en) * | 2020-12-26 | 2023-06-27 | International Business Machines Corporation | Using ferroelectric field-effect transistors (FeFETs) as capacitive processing units for in-memory computing |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003060470A (ja) * | 2001-08-14 | 2003-02-28 | Seiko Epson Corp | 圧電デバイス、圧電デバイスの周波数調整方法、圧電デバイスを利用した携帯電話装置及び圧電デバイスを利用した電子機器 |
JP2007228431A (ja) * | 2006-02-24 | 2007-09-06 | Kyocera Corp | 構造体 |
JP2012044235A (ja) * | 2010-08-12 | 2012-03-01 | Seiko Epson Corp | 圧電デバイス及び電子機器 |
JP2012169890A (ja) * | 2011-02-15 | 2012-09-06 | Seiko Epson Corp | 圧電デバイス |
JP2015103927A (ja) * | 2013-11-22 | 2015-06-04 | 株式会社大真空 | 音叉型圧電振動片、および圧電振動子 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2459781C2 (de) | 1974-12-18 | 1983-06-23 | Hergeth KG Maschinenfabrik und Apparatebau, 4408 Dülmen | Vorrichtung zur Ausscheidung von Fasernissen, Faserverklebungen, Fremdstoffpartikeln (Strips) und Kurzfasern beim Krempeln oder Kardieren von Faserstoffen |
JP4389924B2 (ja) * | 2006-11-07 | 2009-12-24 | エプソントヨコム株式会社 | 圧電デバイス |
JP5123056B2 (ja) * | 2008-05-30 | 2013-01-16 | 京セラクリスタルデバイス株式会社 | 容器体 |
US8400048B2 (en) * | 2008-09-26 | 2013-03-19 | Daishinku Corporation | Tuning-fork type piezoelectric resonator plate comprising leg portions and a bonding portion respectively provided on first and second end faces of a base portion |
JP2014032137A (ja) * | 2012-08-06 | 2014-02-20 | Seiko Epson Corp | 振動片、電子デバイスおよび電子機器 |
WO2015072057A1 (ja) * | 2013-11-13 | 2015-05-21 | 株式会社大真空 | 圧電ウェハ、圧電振動片、及び圧電振動子 |
-
2017
- 2017-01-31 JP JP2017015344A patent/JP6436175B2/ja active Active
- 2017-12-19 WO PCT/JP2017/045510 patent/WO2018142789A1/ja active Application Filing
- 2017-12-19 CN CN201780066196.6A patent/CN109891746B/zh active Active
- 2017-12-19 US US16/473,409 patent/US11239824B2/en active Active
-
2018
- 2018-01-24 TW TW107102538A patent/TWI729260B/zh active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003060470A (ja) * | 2001-08-14 | 2003-02-28 | Seiko Epson Corp | 圧電デバイス、圧電デバイスの周波数調整方法、圧電デバイスを利用した携帯電話装置及び圧電デバイスを利用した電子機器 |
JP2007228431A (ja) * | 2006-02-24 | 2007-09-06 | Kyocera Corp | 構造体 |
JP2012044235A (ja) * | 2010-08-12 | 2012-03-01 | Seiko Epson Corp | 圧電デバイス及び電子機器 |
JP2012169890A (ja) * | 2011-02-15 | 2012-09-06 | Seiko Epson Corp | 圧電デバイス |
JP2015103927A (ja) * | 2013-11-22 | 2015-06-04 | 株式会社大真空 | 音叉型圧電振動片、および圧電振動子 |
Also Published As
Publication number | Publication date |
---|---|
TWI729260B (zh) | 2021-06-01 |
US20200144988A1 (en) | 2020-05-07 |
US11239824B2 (en) | 2022-02-01 |
JP2018125655A (ja) | 2018-08-09 |
CN109891746B (zh) | 2023-07-21 |
TW201830856A (zh) | 2018-08-16 |
CN109891746A (zh) | 2019-06-14 |
JP6436175B2 (ja) | 2018-12-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2624450B1 (en) | Piezoelectric vibrating reed, piezoelectric vibrator, method for manufacturing piezoelectric vibrating reed, and method for manufacturing piezoelectric vibrator | |
CN106169917B (zh) | 压电振动片的制造方法、压电振动片及压电振动器 | |
JP2004343541A (ja) | 音叉型圧電振動片および音叉型圧電振動子 | |
KR20110081950A (ko) | 음차형 압전 진동편, 및 음차형 압전 진동 디바이스 | |
TWI663757B (zh) | 壓電晶圓、壓電振動片及壓電振動子 | |
WO2018142790A1 (ja) | 音叉型振動子及び音叉型振動子の製造方法 | |
JP2003133879A (ja) | 圧電振動子及び圧電デバイスの製造方法 | |
TWI724249B (zh) | 壓電振動元件的頻率調整方法 | |
WO2018142789A1 (ja) | 音叉型振動子 | |
WO2014208251A1 (ja) | 音叉型圧電振動片、および音叉型圧電振動子 | |
TWI841691B (zh) | 壓電振動片、壓電振動子、壓電振動片之製造方法及壓電振動子之製造方法 | |
US9748922B2 (en) | Tuning-fork type crystal resonator plate and crystal resonator device | |
JP2009055354A (ja) | 圧電振動デバイス用パッケージ、および圧電振動デバイス | |
JP6708224B2 (ja) | 音叉型振動子の製造方法 | |
CN109891743B (zh) | 音叉型振动片、音叉型振子及其制造方法 | |
JP7232574B2 (ja) | 圧電振動片の製造方法、及び圧電振動子の製造方法 | |
JP2010119127A (ja) | 音叉型圧電振動子 | |
JP4900489B2 (ja) | 音叉型圧電振動子 | |
JP4508204B2 (ja) | 音叉型圧電振動子 | |
JP2009239731A (ja) | 圧電振動デバイス、音叉型圧電振動片、および音叉型圧電振動片の製造方法 | |
JP2017085345A (ja) | 音叉型水晶振動素子 | |
JP2014192802A (ja) | 圧電振動片、圧電振動片の製造方法、及び圧電デバイス | |
JP2021068955A (ja) | 音叉型圧電振動片および当該音叉型圧電振動片を用いた音叉型圧電振動子 | |
JP2018152668A (ja) | 圧電振動片および圧電振動子 | |
JP2006339692A (ja) | 圧電振動子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17895217 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17895217 Country of ref document: EP Kind code of ref document: A1 |