WO2018142061A1 - Procede de fabrication d'un film bidimensionnel de structure cristalline hexagonale - Google Patents

Procede de fabrication d'un film bidimensionnel de structure cristalline hexagonale Download PDF

Info

Publication number
WO2018142061A1
WO2018142061A1 PCT/FR2018/050217 FR2018050217W WO2018142061A1 WO 2018142061 A1 WO2018142061 A1 WO 2018142061A1 FR 2018050217 W FR2018050217 W FR 2018050217W WO 2018142061 A1 WO2018142061 A1 WO 2018142061A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
film
support substrate
metal film
growth
Prior art date
Application number
PCT/FR2018/050217
Other languages
English (en)
Inventor
Bruno Ghyselen
Jean-Marc Bethoux
Original Assignee
Soitec
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Soitec filed Critical Soitec
Priority to US16/481,767 priority Critical patent/US11913134B2/en
Priority to SG11201906821PA priority patent/SG11201906821PA/en
Priority to EP18705964.7A priority patent/EP3577257A1/fr
Priority to CN201880009436.3A priority patent/CN110234800B/zh
Priority to JP2019541704A priority patent/JP7341059B2/ja
Priority to KR1020197025738A priority patent/KR102523183B1/ko
Publication of WO2018142061A1 publication Critical patent/WO2018142061A1/fr
Priority to US18/461,226 priority patent/US20230416940A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/186Epitaxial-layer growth characterised by the substrate being specially pre-treated by, e.g. chemical or physical means
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/025Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/66Crystals of complex geometrical shape, e.g. tubes, cylinders
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/06Joining of crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/185Joining of semiconductor bodies for junction formation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support

Definitions

  • the present invention relates to the growth of a two-dimensional film of a Group IV material of the periodic table of elements having a hexagonal crystalline structure, especially graphene, and a structure comprising such a film.
  • Graphene films have a growing interest in different technologies, including electronics, optoelectronics, energy, sensors, biotechnology, composite materials.
  • a graphene film is composed of carbon atoms arranged in the form of a two-dimensional hexagonal crystalline structure.
  • the mobility of the charge carriers we can note the mobility of the charge carriers, the thermal conductivity in the plane of the film, the optical transparency, good mechanical properties such as strong cohesion or tensile strength, flexibility, or even biocompatibility.
  • a first technique uses as support substrate a metal foil ("foil” in the English terminology), in particular copper or nickel, and implements a chemical vapor deposition process (CVD), which stands for Anglo-Saxon. "Chemical Vapor Deposition”) for growing a graphene layer on said support substrate.
  • CVD chemical vapor deposition process
  • the graphene film thus formed can then be transferred to another medium.
  • CTE coefficients of Thermal expansion
  • a second disadvantage of the aforementioned technique is that, in order to perfectly and reproducibly control the number of deposited atomic layers of graphene (in particular by avoiding forming areas where an additional layer begins to form), it must be possible to guarantee that the only source of carbon atoms comes from the deposition atmosphere and not from the growth substrate itself.
  • the metal sheets tend to absorb the carbon atoms, moreover voluntarily strongly present in the deposition atmosphere, and to release them unintentionally during growth or cooling.
  • copper it is considered that this absorption is localized, essentially through the grain boundaries and other defects present in copper sheets, which are polycrystalline.
  • nickel it is considered that it tends to temporarily absorb carbon throughout its thickness, or at least several microns from the surface exposed to the carbon atmosphere.
  • the limiting solubility of carbon in nickel decreases with temperature, leading to a release of carbon during cooling following growth of the graphene film.
  • the copper sheet is well textured and / or oriented (for example by having only oriented grains (1 1 1), because the arrangement different grains (in the manner of a mosaic) can significantly affect the properties of the graphene film.
  • a second technique therefore aims to replace the aforementioned metal sheet with a composite substrate formed of a layer of copper deposited on a silicon or sapphire substrate [Miller 2012] [Miller 2013] [Ismach 2010] [Rahimi 2014] [Tao 2012 ].
  • the deposition of the copper layer is optimized to promote the orientation (1 1 1) along the axis normal to the substrate, said layer remains textured (polycrystalline) with the presence of orientation variants in the plan ("twins" according to the English terminology).
  • the annealing of a copper layer at high temperature makes it possible to grow certain grains but their dimension remains well below one millimeter.
  • the graphene films deposited on these composite substrates are of comparable quality to those obtained on copper foils.
  • this third technique does not solve the problem of the difference in coefficient of thermal expansion. Moreover, the use of copper monocrystals, which are very expensive and too small, does not lend itself to industrial application. Finally, this technique does not solve the problem of the volume absorption by nickel.
  • Wrinkles ("wrinkles" according to the English terminology) of the graphene film are therefore generally observed.
  • the metal layer obtained by deposit is polycrystalline.
  • the roughness of the deposited films is generally high, which may be greater than ten nanometers.
  • the thickness control for deposited films is therefore delicate for low thicknesses, that is to say less than 10 nm.
  • An object of the invention is to overcome the aforementioned drawbacks and to design a method for manufacturing a two-dimensional film of a Group IV material having a hexagonal crystalline structure, in particular graphene, which makes it possible to precisely control the growth of one or more atomic layers and which provides a film of better quality than currently available films.
  • the invention provides a method for producing a two-dimensional film of a Group IV material having a hexagonal crystalline structure, said method comprising:
  • the metal film comprises at least one of the following metals: nickel, copper, platinum, cobalt, chromium, iron, zinc, aluminum, iridium, ruthenium, silver.
  • the metal film has a thickness less than or equal to 1 ⁇ , preferably less than or equal to 0.1 ⁇ .
  • the support substrate may be a substrate of quartz, graphite, silicon, sapphire, ceramic, nitride, carbide, alumina or metal.
  • the support substrate has, vis-à-vis the material of the two-dimensional film, a difference in thermal expansion coefficient lower than between the metal film and said two-dimensional film.
  • the transfer of the metal film comprises:
  • Said monocrystalline metal donor substrate is advantageously obtained by drawing an ingot.
  • the method further comprises a step of forming an embrittlement zone in the donor substrate, so as to delimit the monocrystalline metal film to be transferred, and the thinning of the donor substrate comprises a detachment of the donor substrate along the weakened zone.
  • the weakening zone is formed by implantation of atomic species in the donor substrate.
  • the assembly of the donor substrate and the support substrate is implemented by gluing.
  • the monocrystalline metal film is in the form of a plurality of blocks each transferred to the support substrate.
  • Each block advantageously has the same area as the donor substrate, said area being less than the area of the support substrate.
  • the growth substrate comprises a removable interface.
  • Said interface can be configured to be disassembled by a laser lift-off technique, a chemical attack, or a mechanical stress.
  • the method may comprise, after the growth of the two-dimensional film, a step of separating said two-dimensional film from the growth substrate.
  • said separation may comprise a delamination of the interface between the monocrystalline metal film and the support substrate.
  • said separation may comprise implantation of atomic species into the support substrate so as to form an embrittlement zone, and then detachment of the growth substrate along said embrittlement zone.
  • the method comprises, after said separation, the transfer of a new monocrystalline metal film onto the support substrate, so as to form a new growth substrate, then the growth of a new two-dimensional film of a Group IV material having a hexagonal crystal structure on said novel growth substrate.
  • said separation comprises a delamination of the interface between the two-dimensional film and the monocrystalline metal film of the growth substrate.
  • the method comprises, after said separation, the reuse of the growth substrate to grow a new two-dimensional film of a group IV material having a hexagonal crystal structure on said substrate.
  • the method may comprise, after the growth of the two-dimensional film, an etching of the metal film so as to transfer the two-dimensional film on the support substrate.
  • the two-dimensional film is a graphene film.
  • Another object of the invention relates to a structure obtained by the method which has just been described.
  • Said structure successively comprises a support substrate, a monocrystalline metal film and a two-dimensional film of a Group IV material having a hexagonal crystalline structure on the metal film.
  • the metal film is in the form of a plurality of blocks distributed on the surface of the support substrate.
  • said two-dimensional film consists of one or more monatomic layers.
  • the two-dimensional film is a graphene film.
  • FIG. 1 illustrates a substrate for the growth of a graphene film according to one embodiment of the invention
  • FIG. 2 illustrates a substrate for the growth of a graphene film according to an alternative embodiment of the invention
  • FIGS. 3A to 3B illustrate the principal of a method of manufacturing the substrate of FIG. 1 according to one embodiment of the invention
  • FIGS. 4A to 4B illustrate the main steps of a method of manufacturing the substrate of FIG. 2 according to one embodiment of the invention
  • FIGS. 5A to 5B illustrate the main steps of a method of manufacturing the substrate of FIG. 2 according to an alternative embodiment of the invention
  • FIG. 6 illustrates a structure comprising a graphene film formed by epitaxial growth on the substrate of FIG. 1;
  • FIG. 7 illustrates a structure comprising a graphene film on a growth substrate comprising a removable interface
  • FIG. 8 illustrates a structure in which the metal film of the growth substrate has been etched after growth of the graphene film.
  • the following description relates to the growth of a graphene film, but the invention also applies to the other elements of group IV of the periodic table of elements which make it possible to form a two-dimensional film of crystalline structure.
  • hexagonal namely silicon (the film material is called “silicene”), germanium (the film material is called “Germanian”) and tin (the film material is called “stanene”).
  • FIG. 1 illustrates a substrate 100 for the growth of a graphene film according to one embodiment of the invention.
  • Said substrate comprises a monocrystalline metal film 1 adapted for the growth of graphene, on a support substrate 2.
  • Said substrate is obtained by transfer of the metal film onto the support substrate from a donor substrate.
  • This transfer can be carried out by the Smart Cut TM process as described below, but other transfer processes involving an assembly of the donor substrate on the support substrate and then a thinning of the donor substrate until the thickness is obtained. desired for the metal film can be implemented.
  • the metal film 1 comprises at least one of the following metals: nickel, copper, platinum, cobalt, chromium, iron, zinc, aluminum, iridium, ruthenium, silver.
  • the film may consist of an alloy of said metals, or even an alloy comprising at least one of said metals and at least one other metal.
  • the thickness of the monocrystalline film is advantageously less than or equal to 1 ⁇ , preferably less than or equal to 0.1 ⁇ .
  • This thickness is typically at least 10 times lower than the thickness of metal foils conventionally used for the growth of graphene.
  • the absorption effect of the atoms mentioned above is therefore considerably reduced, especially in the case of nickel for which the absorption phenomenon occurs throughout the thickness of the film.
  • Such a thickness is sufficient to fulfill the main function of the metal film, which is to constitute a seed layer for the growth of graphene.
  • the monocrystalline nature of the metal film makes it possible to form a graphene film having excellent crystalline quality.
  • the metal film has little influence on the thermal expansion of the substrate during the growth of the graphene film, said thermal expansion being essentially due to the thermal expansion of the support substrate.
  • the support substrate 2 has the main function of mechanically supporting the metal film during the growth of the graphene film.
  • the material of the support substrate 2 must therefore withstand the conditions (in particular temperature and chemical environment) of the growth of the graphene film, which may vary according to the deposition technique chosen.
  • chemical vapor deposition is carried out at a higher temperature than molecular beam epitaxy (MBE), the acronym for the term "Molecular Beam Epitaxy”.
  • the material of the support substrate 2 is chosen to have, vis-à-vis the graphene, a difference in coefficient of thermal expansion lower than between the metal film and graphene.
  • the difference in coefficient of thermal expansion between graphene and the material of the support substrate is minimized, it being recalled, however, that the difference in the coefficient of thermal expansion between the graphene and the substrate substrate material is all the more acceptable if the graphene growth temperature is low.
  • the support substrate 2 is advantageously monocrystalline because this configuration is more favorable for polishing the surface of said substrate before the transfer of the metal film (when this transfer involves bonding), but this property is not imperative.
  • the support substrate may optionally be formed by deposition.
  • the preferred materials for the support substrate include quartz, graphite, silicon, sapphire, ceramics, nitrides, carbides, alumina, and metals.
  • the support substrate may have, at the interface with the metal film, an encapsulation layer (not shown) intended to promote adhesion between the metal film and the support substrate, and / or to form a diffusion barrier to prevent pollution of graphene by elements of the support substrate.
  • the material of the support substrate may in some cases show signs of decomposition or deterioration when it is directly exposed to the growth atmosphere of the graphene film, or when exposed to the conditions of assembly of the film. metallic.
  • a diffusion barrier also makes it possible to eliminate or limit these effects.
  • Said encapsulation layer may for example be formed of one of the following materials among oxides, nitrides and carbides.
  • the metal film is not necessarily continuous on the surface of the support substrate.
  • the metal film 1 may be formed of a set of monocrystalline metal blocks 10 distributed on the surface of the support substrate 2, said blocks 10 being contiguous or distant from each other, as shown in FIG.
  • these blocks make it possible to exploit small metal monocrystals with respect to the dimension of the support substrate.
  • dimension here means the area of the surfaces in contact with the blocks and the support substrate.
  • the pavers are advantageously rectangular, but this form is not limiting.
  • these blocks can also be in the form of bands, disks, hexagons, etc. Those skilled in the art are able to determine the shape of the blocks and their distribution on the surface of the support substrate depending on the geometry of the donor substrates at its disposal and the area of the graphene film to be formed.
  • the monocrystalline metal film 1 is copper and the support substrate 2 is a silicon substrate successively covered with a film of 0.4 ⁇ of Si0 2 and a film of 0.1 ⁇ of copper intended for ensure a direct Cu / Cu metal bonding between the support substrate 2 and the metal film 1.
  • Example 2
  • the monocrystalline metal film 1 is nickel and the support substrate 2 is a molybdenum substrate, each being covered with a film of 0.2 ⁇ of copper intended to ensure a direct Cu / Cu metal bonding between the substrate support 2 and the metal film 1.
  • the monocrystalline metal film 1 is nickel and the support substrate 2 is a polycrystalline AlN ceramic coated successively with a film of 0.3 ⁇ of Si 3 N 4 and a film of 0.5 ⁇ of Si0 2 .
  • the monocrystalline metal film 1 is copper and the support substrate 2 is sapphire coated with a film of 0.3 ⁇ of Si0 2 .
  • the monocrystalline metal film 1 is copper and the support substrate 2 is a 20 ⁇ thick polycrystalline copper film assembled by direct Cu / Cu metal bonding on a donor substrate after formation of an embrittlement zone. implantation in this one.
  • the monocrystalline metal film 1 is copper and the support substrate 2 is a nickel film deposited by electrolytic deposition up to a thickness of 15 ⁇ directly on a donor substrate after formation of an embrittlement zone by implantation in this one.
  • the monocrystalline metal film 1 is copper and the support substrate 2 is a nickel-copper alloy film electroplated to a thickness of 15 ⁇ directly on a donor substrate after formation of an embrittlement zone. by implantation in it.
  • the monocrystalline metal film 1 is a nickel-copper alloy and the support substrate 2 is a nickel film electroplated to a thickness of 15 ⁇ directly on a donor substrate after formation of an embrittlement zone. implantation in this one.
  • the monocrystalline metal film 1 is in the form of a plurality of monocrystalline nickel blocks 10 positioned contiguously on a plane support and the support substrate 2 is a nickel film deposited directly on a weakened face by implantation. of the plurality of blocks, the deposition of said nickel film being performed by electrolytic deposition to a thickness of 10 ⁇ .
  • a donor substrate 1 1 formed of a single crystal metal.
  • An embrittlement zone 12 in the donor substrate is formed by implantation of atomic species (schematized by the arrows), said weakening zone delimiting, on the surface of the donor substrate 11, the monocrystalline metal film to be transferred onto the support substrate.
  • Said atomic species may in particular comprise hydrogen.
  • Helium is another species particularly interesting from this point of view, replacing hydrogen or in combination with hydrogen.
  • the donor substrate 11 is assembled on a support substrate 2, the metal film to be transferred being at the bonding interface.
  • this assembly is made by bonding substrates 2 and 1 1.
  • this assembly is carried out by depositing the support substrate 2 on the donor substrate 1 1, by any suitable deposition technique depending on the nature of the support substrate.
  • the donor substrate is detached along the embrittlement zone 12, said detachment being capable of being initiated, for example, by mechanical, chemical, and / or thermal stress.
  • This detachment results in the transfer of the monocrystalline metal film 1 onto the support substrate 2.
  • the structure shown in FIG. 1 is thus obtained.
  • a finishing treatment of the surface of the monocrystalline metal film is carried out, in order to make it suitable for the subsequent deposition of the graphene film.
  • This may be for example a polishing operation, annealing and / or etching.
  • This method of transferring the metal film comprises variants.
  • a first variant relates to the mode of assembly of the donor substrate and the support substrate.
  • the assembly can consist of a deposition of the support substrate on the donor substrate, the film to be transferred lying on the side of the donor substrate on which the deposit is made.
  • a diffusion barrier layer is formed between the donor substrate and the support substrate to prevent diffusion of undesirable species from the support substrate to the graphene layer during growth thereof.
  • a second variant - possibly combinable with the first - relates to the mode of thinning of the donor substrate to transfer the metal film on the support substrate.
  • the blocks are assembled successively and then transferred collectively to the support substrate.
  • a donor substrate 1 1 formed of a single metal crystal, whose area is smaller than that of the support substrate 2 intended to receive it.
  • a weakening zone 12 is formed in the donor substrate 11.
  • a first donor substrate 11 is then glued to the support substrate 2.
  • a second donor substrate 1 1 is bonded to the support substrate 2, and this assembly operation is continued until the bonding of all the donor substrates required to obtain all the pavers on the support substrate 2.
  • said donor substrate is detached along the zone of weakness to transfer a first monocrystalline metal pad on the support substrate, and this sequence is repeated with a subsequent donor substrate until the transfer of all the blocks 10 onto the support substrate 2.
  • the donor substrate may optionally be the same as that in which the pad 10 has been removed, and thus be used repeatedly to transfer a pad on the same support substrate 2.
  • the donor substrate may be different from that in which block 10 has been removed.
  • all donor substrates 1 1 can be reused to achieve a new cycle. Recycling operations may be desirable or even necessary. For example a polishing operation will start from a surface roughness adequate assembly of good quality.
  • the new donor substrate 1 1 is shown remote from the already transferred pad 10, it could be positioned contiguously to the pad 10 already transferred.
  • the blocks 10 are assembled and transferred collectively on the support substrate 2.
  • a plurality of donor substrates 11 are assembled on an intermediate substrate 13, the said intermediate substrate serving essentially as mechanical support or as a handling tool for the donor substrates 1.
  • the donor substrates 1 1 are shown distant from each other, but they could also be juxtaposed contiguously.
  • a weakening zone 12 is formed in each donor substrate, before or after their assembly on the intermediate substrate 13, so as to delimit a block 10 to transfer the support substrate.
  • the intermediate substrate 13 carrying the donor substrates 11 is bonded to the support substrate 2, the free surface of the donor substrates 11 being at the bonding interface.
  • the detachment step is performed collectively, for all the donor substrates.
  • the detachment step can be carried out successively for each donor substrate.
  • the intermediate substrate 13 carrying the remainder of the donor substrates may be recycled for a new collective transfer of blocks.
  • the free surface of the donor substrates is treated to remove defects related to detachment, a new weakening zone is formed in all the donor substrates, and the intermediate substrate carrying the weakened donor substrates is bonded to a new substrate support.
  • the preparation of the blocks is organized upstream of the process for manufacturing the growth substrate.
  • metal ingots are assembled together before being cut collectively to form the donor substrates, then are collectively implanted before being assembled to the support substrate.
  • the growth substrate having a continuous or discontinuous monocrystalline metal film is then used for the growth of a graphene film.
  • CVD chemical vapor deposition
  • MBE molecular beam epitaxy
  • Figure 6 shows a graphene film 3 formed on a growth substrate 100.
  • the graphene film advantageously consists of one or more monatomic layers of graphene, said layers being complete (i.e. continuous over the entire surface of the metal film) or not.
  • This quality control of the graphene film is made possible not only by the parameters of the graphene deposition process but also by the excellent crystalline quality and / or the small thickness of the metal film which serves as a seed for the growth of graphene.
  • the precise control of the number of monoatomic layers formed is based on the fact that the carbon atoms constituting the graphene layer come solely from the deposition atmosphere and not from the growth substrate itself.
  • the monocrystalline film used in the invention is of better quality than the copper foils used in the state of the art, which are polycrystalline. Insofar as the presence of grain boundaries or other crystalline defects is minimized in the copper film according to the invention, the absorption sites of the carbon atoms are thus minimized.
  • the superior quality of the monocrystalline film used in the invention has the same advantage as in the case of copper, to which is added a minimum volume for the absorption of carbon atoms, due to the thickness significantly reduced monocrystalline film compared to the usual sheets used.
  • the support substrate 2 is chosen to have a small difference in coefficient of thermal expansion vis-à-vis the graphene film (the monocrystalline metal film being sufficiently thin to have a negligible influence)
  • the Mechanical stresses applied to the graphene film during its cooling are minimized. This avoids or reduces the phenomena of relaxation or damage to the graphene film. This also contributes to a better quality of the graphene film.
  • the metal film of the invention is monocrystalline makes it possible to control the orientation (for example 1 1 1) of the graphene film over the entire surface of the metal film.
  • the graphene film After the formation of the graphene film, it can be separated from the growth substrate, to be transferred to another medium or not.
  • This separation can be done in different ways.
  • the growth substrate comprises a removable interface, that is to say an interface at which the application of a bias (or a treatment) allows detachment of two parts of the substrate. It is necessary here to hear the term interface in the broad sense, in particular in that it can contain one or more layers of non-zero thickness.
  • any separation technique known in the field of microelectronics can be employed, the person skilled in the art being able to select the appropriate materials according to the chosen technique.
  • Said removable interface may be located between the monocrystalline metal film and the support substrate, or located inside the support substrate.
  • FIG. 7 thus illustrates an embodiment in which the removable interface I is located within the support substrate 2.
  • said interface I may consist of a bonding interface, a region of a material adapted to confine a mechanical fracture, such as a porous layer (for example made of silicon), a layer allowing selective etching with respect to on the other hand, an embrittlement zone formed by implantation in the support substrate, etc.
  • the separation of the graphene film from the growth substrate can be based on any disassembly technique known in the graphene field.
  • the disassembly of the graphene film comprises a delamination of the interface between the metal film and the support substrate, and optionally a chemical etching of the metal film.
  • the support substrate can be reused for the transfer of a new metal film, to form a new substrate for the growth of graphene.
  • the disassembly of the graphene film comprises a delamination of the interface between the graphene film and the metal film.
  • a delamination technique is described in [Wang 201 1], in the case of a growth substrate consisting of a copper sheet.
  • the growth substrate can be reused for the growth of a new graphene film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Geometry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Recrystallisation Techniques (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

L'invention concerne un procédé de fabrication d'un film bidimensionnel d'un matériau du groupe IV présentant une structure cristalline hexagonale, notamment de graphène, comprenant : - la formation d'un substrat de croissance (100), comprenant le transfert d'un film métallique (1) monocristallin adapté pour la croissance dudit film bidimensionnel sur un substrat support (2), et - la croissance par épitaxie du film (3) bidimensionnel sur le film métallique dudit substrat (100).

Description

PROCEDE DE FABRICATION D'UN FILM BIDIMENSIONNEL
DE STRUCTURE CRISTALLINE HEXAGONALE
DOMAINE DE L'INVENTION
La présente invention concerne la croissance d'un film bidimensionnel d'un matériau du groupe IV de la classification périodique des éléments présentant une structure cristalline hexagonale, notamment du graphène, ainsi qu'une structure comprenant un tel film.
ETAT DE LA TECHNIQUE
Les films de graphène présentent un intérêt croissant dans différentes technologies, notamment l'électronique, l'optoélectronique, l'énergie, les capteurs, la biotechnologie, les matériaux composites. Un film de graphène est constitué d'atomes de carbone agencés sous la forme d'une structure cristalline hexagonale bidimensionnelle. Parmi les propriétés particulièrement intéressantes du graphène, on peut noter la mobilité des porteurs de charge, la conductivité thermique dans le plan du film, la transparence optique, de bonnes propriétés mécaniques telle que la forte cohésion ou la résistance à la tension, la flexibilité, ou encore la biocompatibilité.
II existe déjà des procédés pour faire croître un film de graphène, sous la forme d'une couche monoatomique, voire quelques couches atomiques, sur un substrat support.
Une première technique utilise comme substrat support un feuillet métallique (« foil » selon la terminologie anglo-saxonne), notamment de cuivre ou de nickel, et met en œuvre un procédé de dépôt chimique en phase vapeur (CVD, acronyme du terme anglo-saxon « Chemical Vapor Déposition ») pour faire croître une couche de graphène sur ledit substrat support. Eventuellement, le film de graphène ainsi formé peut être ensuite transféré sur un autre support.
Un premier inconvénient de cette technique est que les coefficients de dilatation thermique (CTE, acronyme du terme anglo-saxon « Coefficient of Thermal Expansion » du graphène et du substrat support de cuivre ou de nickel sont très différents.
Or, la croissance du film de graphène étant réalisée à haute température (typiquement de l'ordre de 1000 à 1 100°C), cette différence de coefficient de dilatation thermique génère de fortes contraintes dans le film de graphène lors du retour à température ambiante.
Le film de graphène étant constitué au plus de quelques couches atomiques, ces contraintes engendrent une déformation et un endommagement du graphène lors du refroidissement. Ces effets sont éventuellement exacerbés lors d'étapes ultérieures de procédé subies par le film de graphène. Un deuxième inconvénient de la technique précitée est que, pour contrôler parfaitement et de manière reproductible le nombre de couches atomiques de graphène déposées (notamment en évitant de former des zones où une couche supplémentaire commence à se former), on doit pouvoir garantir que la seule source d'atomes de carbone provient de l'atmosphère de dépôt et non du substrat de croissance lui-même.
Or les feuillets métalliques tendent à absorber les atomes de carbone par ailleurs volontairement fortement présents dans l'atmosphère de dépôt, et à les libérer de manière intempestive pendant la croissance ou le refroidissement. S'agissant du cuivre, on considère que cette absorption est localisée, essentiellement au travers des joints de grains et autres défauts présents dans les feuillets de cuivre, qui sont polycristallins. S'agissant du nickel, on considère qu'il tend à absorber temporairement du carbone dans la totalité de son épaisseur, ou tout au moins sur plusieurs micromètres à partir de la surface exposée à l'atmosphère de carbone. Or la solubilité limite du carbone dans le nickel décroît avec la température, conduisant à un relargage du carbone lors du refroidissement suivant la croissance du film de graphène.
Enfin, pour contrôler précisément et de manière reproductible la croissance de graphène, il ne suffit pas que le feuillet de cuivre soit bien texturé et/ou orienté (par exemple en ne présentant que des grains orientés (1 1 1 ), car l'agencement des différents grains (à la manière d'une mosaïque) peut influer de manière significative sur les propriétés du film de graphène.
Une deuxième technique vise donc à remplacer le feuillet métallique susmentionné par un substrat composite formé d'une couche de cuivre déposée sur un substrat de silicium ou de saphir [Miller 2012] [Miller 2013] [Ismach 2010] [Rahimi 2014] [Tao 2012].
Cependant, même lorsque le dépôt de la couche de cuivre est optimisé pour favoriser l'orientation (1 1 1 ) le long de l'axe normal au substrat, ladite couche reste texturée (polycristalline) avec la présence de variantes d'orientation dans le plan (« twins » selon la terminologie anglo-saxonne). De même le recuit d'une couche de cuivre à haute température (autour de 950°C) permet de faire croître certains grains mais leur dimension reste bien inférieure au millimètre.
Les films de graphène déposés sur ces substrats composites sont de qualité comparable à ceux obtenus sur feuillets de cuivre.
Pour pallier les inconvénients de la polycristallinité du cuivre, des essais ont été réalisés en procédant au dépôt de graphène sur de petits cristaux de cuivre monocristallins, exempts par nature de joints de grains [Gao 2010].
Cependant, cette troisième technique ne résout pas le problème de la différence de coefficient de dilatation thermique. Par ailleurs, l'utilisation de monocristaux de cuivre, qui sont très onéreux et de trop petite taille, ne se prête pas à une application industrielle. Enfin, cette technique ne remédie pas au problème de l'absorption volumique par le nickel.
Le document US 8,501 ,531 propose quant à lui de s'affranchir du dépôt du graphène par CVD et décrit un procédé dans lequel on dépose une couche métallique présentant une concentration déterminée en carbone sur un substrat, on met en œuvre un traitement thermique comprenant une étape de chauffage visant à faire diffuser le carbone à l'intérieur de la couche métallique puis une étape de refroidissement suffisamment rapide visant à faire migrer le carbone hors de la couche métallique et s'organiser sous forme de graphène à la surface de ladite couche métallique. Cependant cette technique présente certains inconvénients. D'abord, il convient de noter que la température de formation du graphène est mal définie. En effet, cette technique nécessite d'exposer la structure à des températures élevées afin d'incorporer du carbone dans la couche métallique, et le graphène se forme lors du refroidissement du fait d'une sursaturation en carbone. Des pliures (« wrinkles » selon la terminologie anglo-saxonne) du film de graphène sont donc généralement observées. Par ailleurs, la couche métallique obtenue par dépôt est polycristalline. La rugosité des films déposés est en généralement élevée, pouvant être supérieure à la dizaine de nanomètres. Le contrôle de l'épaisseur pour des films déposés est donc délicat pour des épaisseurs faibles, c'est-à- dire inférieure à 10nm.
EXPOSE DE L'INVENTION
Un but de l'invention est de pallier les inconvénients précités et de concevoir un procédé de fabrication d'un film bidimensionnel d'un matériau du groupe IV présentant une structure cristalline hexagonale, notamment de graphène, qui permette de contrôler précisément la croissance d'une ou plusieurs couches atomiques et qui procure un film de meilleure qualité que les films réalisables actuellement.
A cet effet, l'invention propose un procédé de fabrication d'un film bidimensionnel d'un matériau du groupe IV présentant une structure cristalline hexagonale, ledit procédé comprenant :
- la formation d'un substrat de croissance, comprenant le transfert d'un film métallique monocristallin adapté pour la croissance dudit film bidimensionnel sur un substrat support, et
- la croissance par épitaxie du film bidimensionnel sur le film métallique dudit substrat.
De manière avantageuse, le film métallique comprend au moins un des métaux suivants : nickel, cuivre, platine, cobalt, chrome, fer, zinc, aluminium, iridium, ruthénium, argent. De préférence, le film métallique présente une épaisseur inférieure ou égale à 1 μηη, de préférence inférieure ou égale à 0,1 μηη.
Le substrat support peut être un substrat de quartz, de graphite, de silicium, de saphir, de céramique, de nitrure, de carbure, d'alumine ou de métal.
Selon un mode de réalisation, le substrat support présente, vis-à-vis du matériau du film bidimensionnel, une différence de coefficient de dilatation thermique plus faible qu'entre le film métallique et ledit film bidimensionnel.
Selon une forme d'exécution de l'invention, le transfert du film métallique comprend :
- la fourniture d'un substrat donneur métallique monocristallin,
- l'assemblage du substrat donneur et du substrat support,
- l'amincissement du substrat donneur de sorte à transférer le film métallique sur le substrat support.
Ledit substrat donneur métallique monocristallin est avantageusement obtenu par tirage d'un lingot.
Selon un mode de réalisation, le procédé comprend en outre une étape de formation d'une zone de fragilisation dans le substrat donneur, de sorte à délimiter le film métallique monocristallin à transférer, et l'amincissement du substrat donneur comprend un détachement du substrat donneur le long de la zone de fragilisation.
Selon un mode de réalisation, la zone de fragilisation est formée par implantation d'espèces atomiques dans le substrat donneur.
Selon une forme d'exécution, l'assemblage du substrat donneur et du substrat support est mis en œuvre par collage.
De manière alternative, lequel l'assemblage du substrat donneur et du substrat support est mis en œuvre par dépôt du substrat support sur le substrat donneur.
Selon une forme d'exécution particulière, le film métallique monocristallin se présente sous la forme d'une pluralité de pavés transférés chacun sur le substrat support.
Chaque pavé a avantageusement la même superficie que le substrat donneur, ladite superficie étant inférieure à la superficie du substrat support.
Selon un mode de réalisation, le substrat de croissance comprend une interface démontable.
Ladite interface peut être configurée pour être démontée par une technique de décollement par laser (« laser lift-off »), par une attaque chimique, ou par une sollicitation mécanique.
Par ailleurs, le procédé peut comprendre, après la croissance du film bidimensionnel, une étape de séparation dudit film bidimensionnel vis-à-vis du substrat de croissance. Selon un mode de réalisation, ladite séparation peut comprendre une délamination de l'interface entre le film métallique monocristallin et le substrat support.
De manière alternative, ladite séparation peut comprendre une implantation d'espèces atomiques dans le substrat support de sorte à former une zone de fragilisation, puis le détachement du substrat de croissance le long de ladite zone de fragilisation.
Selon une forme d'exécution particulière, le procédé comprend, après ladite séparation, le transfert d'un nouveau film métallique monocristallin sur le substrat support, de sorte à former un nouveau substrat de croissance, puis la croissance d'un nouveau film bidimensionnel d'un matériau du groupe IV présentant une structure cristalline hexagonale sur ledit nouveau substrat de croissance.
Selon un autre mode de réalisation, ladite séparation comprend une délamination de l'interface entre le film bidimensionnel et le film métallique monocristallin du substrat de croissance.
Selon une forme d'exécution particulière, le procédé comprend, après ladite séparation, la réutilisation du substrat de croissance pour faire croître un nouveau film bidimensionnel d'un matériau du groupe IV présentant une structure cristalline hexagonale sur ledit substrat.
Eventuellement, le procédé peut comprendre, après la croissance du film bidimensionnel, une gravure du film métallique de sorte à transférer le film bidimensionnel sur le substrat support.
Selon une application avantageuse de l'invention, le film bidimensionnel est un film de graphène.
Un autre objet de l'invention concerne une structure obtenue par le procédé qui vient d'être décrit. Ladite structure comprend successivement un substrat support, un film métallique monocristallin et un film bidimensionnel d'un matériau du groupe IV présentant une structure cristalline hexagonale sur le film métallique.
Selon un mode de réalisation, le film métallique se présente sous la forme d'une pluralité de pavés répartis sur la surface du substrat support.
De manière avantageuse, ledit film bidimensionnel est constitué d'une ou plusieurs couches monoatomiques.
Selon un mode de réalisation, le film bidimensionnel est un film de graphène.
DESCRIPTION DES FIGURES
D'autres caractéristiques et avantages de l'invention seront mieux compris à la lecture de la description détaillée qui va suivre, en référence aux dessins annexés sur lesquels :
- la figure 1 illustre un substrat pour la croissance d'un film de graphène selon un mode de réalisation de l'invention ; - la figure 2 illustre un substrat pour la croissance d'un film de graphène selon une variante de réalisation de l'invention ;
- les figures 3A à 3B illustrent les principales d'un procédé de fabrication du substrat de la figure 1 selon un mode de réalisation de l'invention ;
- les figures 4A à 4B illustrent les principales étapes d'un procédé de fabrication du substrat de la figure 2 selon une forme d'exécution de l'invention ;
- les figures 5A à 5B illustrent les principales étapes d'un procédé de fabrication du substrat de la figure 2 selon une variante d'exécution de l'invention ;
- la figure 6 illustre une structure comprenant un film de graphène formé par croissance épitaxiale sur le substrat de la figure 1 ;
- la figure 7 illustre une structure comprenant un film de graphène sur un substrat de croissance comprenant une interface démontable ;
- la figure 8 illustre une structure dans laquelle le film métallique du substrat de croissance a été gravé après la croissance du film de graphène.
Pour favoriser la lisibilité des figures, les différentes couches ne sont pas nécessairement représentées à l'échelle.
DESCRIPTION DETAILLEE DE MODES DE REALISATION DE L'INVENTION
Pour des raisons de concision, la description qui suit porte sur la croissance d'un film de graphène mais l'invention s'applique également aux autres éléments du groupe IV de la classification périodique des éléments qui permettent de former un film bidimensionnel de structure cristalline hexagonale, à savoir le silicium (le matériau du film étant dénommé « silicène »), le germanium (le matériau du film étant dénommé « germanène ») et l'étain (le matériau du film étant dénommé « stanène »).
La figure 1 illustre un substrat 100 pour la croissance d'un film de graphène selon un mode de réalisation de l'invention.
Ledit substrat comprend un film métallique 1 monocristallin adapté pour la croissance de graphène, sur un substrat support 2.
Ledit substrat est obtenu par transfert du film métallique sur le substrat support à partir d'un substrat donneur. Ce transfert peut être effectué par le procédé Smart Cut™ tel que décrit plus bas, mais d'autres procédés de transfert impliquant un assemblage du substrat donneur sur le substrat support puis un amincissement du substrat donneur jusqu'à l'obtention de l'épaisseur souhaitée pour le film métallique peuvent être mis en œuvre.
Le film métallique 1 comprend au moins l'un des métaux suivants : nickel, cuivre, platine, cobalt, chrome, fer, zinc, aluminium, iridium, ruthénium, argent. Eventuellement, le film peut être constitué d'un alliage desdits métaux, voire d'un alliage comprenant l'un au moins desdits métaux et au moins un autre métal. L'épaisseur du film monocristallin est avantageusement inférieure ou égale à 1 μηη, de préférence inférieure ou égale à 0,1 μηη.
Cette épaisseur est typiquement au moins 10 fois plus faible que l'épaisseur des feuillets métalliques utilisés conventionnellement pour la croissance du graphène. Ainsi, l'effet d'absorption des atomes mentionnés plus haut est donc considérablement réduit, surtout dans le cas du nickel pour lequel le phénomène d'absorption se produit dans toute l'épaisseur du film.
Cependant, une telle épaisseur est suffisante pour remplir la principale fonction du film métallique, qui est de constituer une couche germe pour la croissance du graphène. En effet, le caractère monocristallin du film métallique permet de former un film de graphène présentant une excellente qualité cristalline.
Enfin, du fait de sa faible épaisseur, le film métallique influe peu sur la dilatation thermique du substrat lors de la croissance du film de graphène, ladite dilatation thermique étant essentiellement due à la dilatation thermique du substrat support.
Le substrat support 2 a pour principale fonction de supporter mécaniquement le film métallique lors de la croissance du film de graphène.
Le matériau du substrat support 2 doit donc supporter les conditions (notamment température et environnement chimique) de la croissance du film de graphène, qui peuvent varier selon la technique de dépôt choisie. Ainsi, le dépôt chimique en phase vapeur (CVD) est mis en œuvre à une température plus élevée que l'épitaxie par jets moléculaires (MBE, acronyme du terme anglo-saxon « Molecular Beam Epitaxy »).
Selon un mode de réalisation avantageux mais non impératif, le matériau du substrat support 2 est choisi pour présenter, vis-à-vis du graphène, une différence de coefficient de dilatation thermique plus faible qu'entre le film métallique et le graphène. De préférence, la différence de coefficient de dilatation thermique entre le graphène et le matériau du substrat support est minimisée, étant cependant rappelé que la différence de coefficient de dilatation thermique entre le graphène et le matériau du substrat support est d'autant plus acceptable que la température de croissance du graphène est basse.
Le substrat support 2 est avantageusement monocristallin car cette configuration est plus favorable pour le polissage de la surface dudit substrat avant le transfert du film métallique (lorsque ce transfert implique un collage), mais cette propriété n'est pas impérative. Comme indiqué plus bas, le substrat support peut éventuellement être formé par dépôt.
Avantageusement, les matériaux préférés pour le substrat support sont notamment le quartz, le graphite, le silicium, le saphir, les céramiques, les nitrures, les carbures, l'alumine, et les métaux.
Eventuellement, le substrat support peut présenter, à l'interface avec le film métallique, une couche d'encapsulation (non représentée) destinée à favoriser l'adhésion entre le film métallique et le substrat support, et/ou à former une barrière de diffusion permettant d'éviter la pollution du graphène par des éléments du substrat support. Inversement, le matériau du substrat support peut présenter dans certaines cas des signes de décomposition ou de détérioration lorsqu'il est directement exposé à l'atmosphère de croissance du film de graphène, ou encore lorsqu'il est exposé aux conditions d'assemblage du film métallique. Une barrière de diffusion permet aussi dans ce cas de supprimer ou de limiter ces effets Ladite couche d'encapsulation peut par exemple être formée de l'un des matériaux suivants parmi les oxydes, les nitrures, les carbures.
Après l'obtention du film de graphène, il est possible de le détacher du substrat ayant servi à sa croissance.
Il est à noter que le film métallique n'est pas nécessairement continu sur la surface du substrat support. Au contraire, le film métallique 1 peut être formé d'un ensemble de pavés métalliques 10 monocristallins répartis sur la surface du substrat support 2, lesdits pavés 10 pouvant être contigus ou distants les uns des autres, comme cela est représenté sur la figure 2. Comme on le verra plus bas, ces pavés permettent d'exploiter des monocristaux métalliques de petites dimensions par rapport à la dimension du substrat support. Par dimension, on entend ici la superficie des surfaces en contact des pavés et du substrat support. Les pavés sont avantageusement rectangulaires, mais cette forme n'est pas limitative. A titre d'autre exemple, ces pavés peuvent aussi se présenter sous forme de bandes, de disques, d'hexagones, etc. L'homme du métier est en mesure de déterminer la forme des pavés et leur répartition sur la surface du substrat support en fonction de la géométrie des substrats donneurs à sa disposition et de la superficie du film de graphène à former.
Exemples de substrat de croissance selon des modes de réalisation de l'invention
Exemple n°1
Dans cet exemple, le film métallique monocristallin 1 est du cuivre et le substrat support 2 est un substrat de silicium recouvert successivement d'un film de 0,4 μηη de Si02 et d'un film de 0,1 μηη de cuivre destiné à assurer un collage métallique direct Cu/Cu entre le substrat support 2 et le film métallique 1. Exemple n°2
Dans cet exemple, le film métallique monocristallin 1 est du nickel et le substrat support 2 est un substrat de molybdène, chacun étant recouvert d'un film de 0,2 μηη de cuivre destiné à assurer un collage métallique direct Cu/Cu entre le substrat support 2 et le film métallique 1.
Exemple n°3
Dans cet exemple, le film métallique monocristallin 1 est du nickel et le substrat support 2 est une céramique en AIN polycristallin recouverte successivement d'un film de 0,3 μηη de Si3N4 et d'un film de 0,5 μηη de Si02.
Exemple n°4
Dans cet exemple, le film métallique monocristallin 1 est du cuivre et le substrat support 2 est en saphir recouvert d'un film de 0,3 μηη de Si02.
Exemple n°5
Dans cet exemple, le film métallique monocristallin 1 est du cuivre et le substrat support 2 est un film polycristallin de cuivre de 20 μηη d'épaisseur assemblé par collage métallique direct Cu/Cu sur un substrat donneur après formation d'une zone de fragilisation par implantation dans celui-ci.
Exemple n°5
Dans cet exemple, le film métallique monocristallin 1 est du cuivre et le substrat support 2 est un film de nickel déposé par dépôt électrolytique jusqu'à une épaisseur de 15 μηη directement sur un substrat donneur après formation d'une zone de fragilisation par implantation dans celui-ci.
Exemple n°6
Dans cet exemple, le film métallique monocristallin 1 est du cuivre et le substrat support 2 est un film d'alliage nickel-cuivre déposé par dépôt électrolytique jusqu'à une épaisseur de 15μηι directement sur un substrat donneur après formation d'une zone de fragilisation par implantation dans celui-ci.
Exemple n°7
Dans cet exemple, le film métallique monocristallin 1 est un alliage nickel-cuivre et le substrat support 2 est un film de nickel déposé par dépôt électrolytique jusqu'à une épaisseur de 15μηι directement sur un substrat donneur après formation d'une zone de fragilisation par implantation dans celui-ci.
Exemple n°8
Dans cet exemple, le film métallique monocristallin 1 se présente sous la forme d'une pluralité de pavés 10 monocristallins en nickel positionnés de façon contigue sur un support plan et le substrat support 2 est un film de nickel déposé directement sur une face fragilisée par implantation d'hydrogène de la pluralité de pavés, le dépôt dudit film de nickel étant effectué par dépôt électrolytique jusqu'à une épaisseur de 10μηη. On va maintenant décrire un procédé de fabrication d'un substrat tel que représenté sur la figure 1 , selon un mode de réalisation de l'invention.
En référence à la figure 3A, on fournit un substrat donneur 1 1 formé d'un monocristal métallique.
On forme par implantation d'espèces atomiques (schématisée par les flèches) une zone de fragilisation 12 dans le substrat donneur, ladite zone de fragilisation délimitant, à la surface du substrat donneur 1 1 , le film métallique monocristallin à transférer sur le substrat support. Lesdites espèces atomiques peuvent comprendre notamment de l'hydrogène. L'hélium est une autre espèce particulièrement intéressante de ce point de vue, en remplacement de l'hydrogène ou en combinaison avec l'hydrogène.
En référence à la figure 3B, on assemble le substrat donneur 1 1 sur un substrat support 2, le film métallique à transférer étant à l'interface de collage.
Selon un mode de réalisation, cet assemblage est réalisé par collage des substrats 2 et 1 1.
Selon un autre mode de réalisation, cet assemblage est réalisé par dépôt du substrat support 2 sur le substrat donneur 1 1 , par toute technique de dépôt appropriée en fonction de la nature du substrat support.
Ensuite, on détache le substrat donneur le long de la zone de fragilisation 12, ledit détachement pouvant être amorcé par exemple une sollicitation mécanique, chimique, et/ou thermique. Ce détachement a pour conséquence le transfert du film métallique monocristallin 1 sur le substrat support 2. On obtient ainsi la structure représentée sur la figure 1.
Eventuellement, on effectue un traitement de finition de la surface du film métallique monocristallin, afin de la rendre adaptée au dépôt ultérieur du film de graphène. Il peut s'agir par exemple d'une opération de polissage, de recuit et/ou de gravure.
Naturellement, l'homme du métier est en mesure de définir le mode opératoire selon le matériau du substrat donneur et l'épaisseur du film à transférer.
Ce procédé de transfert du film métallique comprend des variantes.
Une première variante porte sur le mode d'assemblage du substrat donneur et du substrat support. Ainsi, au lieu d'un assemblage par collage du substrat donneur sur le substrat support, l'assemblage peut consister en un dépôt du substrat support sur le substrat donneur, le film à transférer se trouvant du côté du substrat donneur sur lequel le dépôt est effectué. Eventuellement, une couche formant barrière de diffusion est formée entre le substrat donneur et le substrat support, pour éviter la diffusion d'espèces indésirables du substrat support vers la couche de graphène au cours de la croissance de celle-ci. Une seconde variante - éventuellement combinable avec la première - porte sur le mode d'amincissement du substrat donneur pour transférer le film métallique sur le substrat support. Ainsi, au lieu d'un amincissement par détachement du substrat donneur le long de la zone de fragilisation, il est possible de retirer de la matière (notamment par gravure ou par enlèvement mécanique comme le meulage ou le polissage) du substrat donneur par sa face opposée à l'interface avec le substrat support, jusqu'à obtenir l'épaisseur souhaitée pour le film métallique à transférer.
On va maintenant décrire un procédé de fabrication d'un substrat tel que représenté sur la figure 2.
Selon un mode de réalisation, les pavés sont assemblés successivement puis transférés collectivement sur le substrat support. A cet effet, on fournit un substrat donneur 1 1 formé d'un monocristal métallique, dont la superficie est inférieure à celle du substrat support 2 destiné à le recevoir.
Comme déjà expliqué en référence à la figure 3A, on forme dans le substrat donneur 1 1 une zone de fragilisation 12.
En référence à la figure 4A, on colle ensuite un premier substrat donneur 1 1 sur le substrat support 2.
En référence à la figure 4B, on colle un second substrat donneur 1 1 sur le substrat support 2, et on poursuit cette opération d'assemblage jusqu'au collage de l'ensemble des substrats donneurs nécessaires à l'obtention de l'ensemble des pavés sur le substrat support 2.
Ensuite, on détache l'ensemble des substrats donneurs 1 1 selon la zone de fragilisation respective 12 pour transférer l'ensemble des pavés 10 métalliques monocristallins sur le substrat support 2.
Le mode opératoire décrit plus haut pour le transfert d'un film métallique continu sur le substrat support est applicable, moyennant d'éventuelles adaptations à la portée de l'homme du métier, au transfert d'un ou plusieurs pavés métalliques sur le substrat support.
Selon une variante (non illustrée) de ce procédé, après le collage d'un premier substrat donneur sur le substrat support, on détache ledit substrat donneur le long de la zone de fragilisation pour transférer un premier pavé métallique monocristallin sur le substrat support, et l'on répète cette séquence avec un substrat donneur suivant, jusqu'au transfert de l'ensemble des pavés 10 sur le substrat support 2.
Le substrat donneur peut éventuellement être le même que celui dans lequel le pavé 10 a été prélevé, et être ainsi utilisé à plusieurs reprises pour transférer un pavé sur le même substrat support 2.
De manière alternative, le substrat donneur peut être différent de celui dans lequel le pavé 10 a été prélevé. A la fin de l'opération de transfert de l'ensemble des pavés 10 métalliques, l'ensemble des substrats donneurs 1 1 peuvent être réutilisés pour réaliser un nouveau cycle. Des opérations de recyclage peuvent s'avérer souhaitables voire nécessaires. Par exemple une opération de polissage permettra de repartir d'une rugosité de surface adéquate à un assemblage de bonne qualité.
Par ailleurs, bien que le nouveau substrat donneur 1 1 soit représenté distant du pavé 10 déjà transféré, il pourrait être positionné de manière contigue au pavé 10 déjà transféré.
On transfère ainsi successivement une pluralité de pavés 10 sur le substrat support 2, permettant l'obtention de la structure illustrée sur la figure 2.
Selon un autre mode de réalisation, les pavés 10 sont assemblés et transférés collectivement sur le substrat support 2.
A cet effet, comme illustré sur la figure 5A, on assemble une pluralité de substrats donneurs 1 1 sur un substrat intermédiaire 13, ledit substrat intermédiaire servant essentiellement de support mécanique ou d'outil de manipulation pour les substrats donneurs 1 1. Les substrats donneurs 1 1 sont représentés distants les uns des autres, mais ils pourraient également être juxtaposés de manière jointive.
Une zone de fragilisation 12 est formée dans chaque substrat donneur, avant ou après leur assemblage sur le substrat intermédiaire 13, de sorte à délimiter un pavé 10 à transférer le substrat support.
En référence à la figure 5B, le substrat intermédiaire 13 portant les substrats donneurs 1 1 est collé au substrat support 2, la surface libre des substrats donneurs 1 1 étant à l'interface de collage.
Ensuite, on détache l'ensemble des substrats donneurs 1 1 le long de leur zone de fragilisation 12 respective, de sorte à transférer l'ensemble des pavés 10 sur le substrat support 2. On obtient alors la structure illustrée sur la figure 2.
De préférence, l'étape de détachement est réalisée collectivement, pour l'ensemble des substrats donneurs.
Selon une variante, l'étape de détachement peut être réalisée successivement pour chaque substrat donneur.
Eventuellement, le substrat intermédiaire 13 portant le reliquat des substrats donneurs peut être recyclé en vue d'un nouveau transfert collectif de pavés. A cet effet, la surface libre des substrats donneurs est traitée pour retirer les défauts liés au détachement, une nouvelle zone de fragilisation est formée dans l'ensemble des substrats donneurs, et le substrat intermédiaire portant les substrats donneurs fragilisés est collé sur un nouveau substrat support.
De manière avantageuse, la préparation des pavés est organisée en amont du procédé de fabrication du substrat de croissance. A cet effet, par exemple, des lingots métalliques sont assemblés entre eux avant d'être découpés collectivement pour former les substrats donneurs, puis font l'objet d'une implantation collective avant d'être assemblés au substrat support.
Le substrat de croissance présentant un film métallique monocristallin continu ou discontinu (pavés) est ensuite utilisé pour la croissance d'un film de graphène.
Toute technique connue pour la croissance du graphène peut être employée.
A titre d'exemple non limitatif, on peut citer le dépôt chimique en phase vapeur (CVD), l'épitaxie par jets moléculaires (MBE). Les paramètres de ces procédés permettant la croissance d'une couche de graphène sont connus ou déterminables par l'homme du métier, et ne seront donc pas décrits en détail dans le présent texte.
La figure 6 présente un film de graphène 3 formé sur un substrat de croissance 100.
Le film de graphène est avantageusement constitué d'une ou plusieurs couches monoatomiques de graphène, lesdites couches pouvant être complètes (i.e. continues sur toute la surface du film métallique) ou non.
Selon les applications visées par le film de graphène et la qualité requise pour ledit film, il pourra être intéressant de former une unique couche atomique de graphène, ou un empilement de deux ou plusieurs couches monoatomiques de graphène, en veillant à ce que chaque couche monoatomique soit complète et en évitant d'amorcer la formation d'une nouvelle couche (incomplète) sur une couche monoatomique complète.
Ce contrôle de la qualité du film de graphène est rendu possible non seulement par les paramètres du procédé de dépôt du graphène mais aussi par l'excellente qualité cristalline et/ou la faible épaisseur du film métallique qui sert de germe à la croissance du graphène.
En effet, d'une part le contrôle précis du nombre de couches monoatomiques formées repose sur le fait que les atomes de carbone constituant la couche de graphène proviennent uniquement de l'atmosphère de dépôt et non du substrat de croissance lui- même.
Ainsi, dans le cas du cuivre, le film monocristallin utilisé dans l'invention est de meilleure qualité que les feuillets de cuivre utilisés dans l'état de la technique, qui sont polycristallins. Dans la mesure où la présence de joints de grains ou autres défauts cristallins est minimisée dans le film de cuivre selon l'invention, les sites d'absorption des atomes de carbone sont ainsi minimisés.
Dans le cas du nickel, la qualité supérieure du film monocristallin utilisé dans l'invention présente le même avantage que dans le cas du cuivre, auquel s'ajoute un volume minimal pour l'absorption d'atomes de carbone, dû à l'épaisseur considérablement réduite du film monocristallin par rapport aux feuillets habituellement utilisés.
Par conséquent, l'absorption d'atomes de carbone dans le film métallique monocristallin étant minimisée, le relargage de tels atomes pendant la croissance du film de graphène ou le refroidissement ultérieur de celle-ci est évité ou tout au moins considérablement réduit.
D'autre part, dans le cas où le substrat support 2 est choisi pour présenter une faible différence de coefficient de dilatation thermique vis-à-vis du film de graphène (le film métallique monocristallin étant suffisamment fin pour avoir une influence négligeable), les contraintes mécaniques appliquées au film de graphène lors de son refroidissement sont minimisées. On évite ou on réduit ainsi les phénomènes de relaxation ou d'endommagement du film de graphène. Cela contribue également à une meilleure qualité du film de graphène.
Enfin, par opposition aux substrats composites de l'état de la technique dans lequel un film de cuivre polycristallin est déposé sur un substrat support, le fait que le film métallique de l'invention soit monocristallin permet de contrôler l'orientation (par exemple 1 1 1 ) du film de graphène sur toute la surface du film métallique.
Après la formation du film de graphène, celui-ci peut être séparé du substrat de croissance, en vue d'être reporté ou non sur un autre support.
Cette séparation peut être effectuée de différentes manières.
Selon un mode de réalisation, le substrat de croissance comprend une interface démontable, c'est-à-dire une interface au niveau de laquelle l'application d'une sollicitation (ou un traitement) permet un détachement de deux parties du substrat. Il faut ici entendre le terme interface au sens large, notamment en ce qu'elle peut contenir une ou plusieurs couches d'épaisseur non nulle.
A cet égard, toute technique de séparation connue dans le domaine de la microélectronique peut être employée, l'homme du métier étant à même de sélectionner les matériaux adaptés en fonction de la technique choisie.
Parmi les techniques envisageables, on peut citer (éventuellement en combinaison) :
- l'application d'une sollicitation mécanique,
- une attaque chimique,
- une décomposition,
- une fusion,
- un décollement par laser (« laser lift-off » selon la terminologie anglo-saxonne). Ladite interface démontable peut être localisée entre le film métallique monocristallin et le substrat support, ou bien située à l'intérieur du substrat support.
La figure 7 illustre ainsi un mode de réalisation dans lequel l'interface démontable I se trouve au sein du substrat support 2.
Par exemple, ladite interface I peut consister en une interface de collage, une région en un matériau adapté pour confiner une fracture mécanique, telle qu'une couche poreuse (par exemple en silicium), une couche permettant une gravure sélective vis-à-vis d'une autre, une zone de fragilisation formée par implantation dans le substrat support, etc.
De manière alternative, la séparation du film de graphène vis-à-vis du substrat de croissance peut être basée sur toute technique de démontage connue dans le domaine du graphène.
Selon un mode de réalisation, le démontage du film de graphène comprend une délamination de l'interface entre le film métallique et le substrat support, puis éventuellement une gravure chimique du film métallique. Dans ce cas, le substrat support peut être réutilisé pour le transfert d'un nouveau film métallique, en vue de former un nouveau substrat pour la croissance de graphène.
Selon un autre mode de réalisation, le démontage du film de graphène comprend une délamination de l'interface entre le film de graphène et le film métallique. Une telle technique de délamination est décrite dans [Wang 201 1 ], dans le cas d'un substrat de croissance constitué d'un feuillet de cuivre. A l'issue d'une telle délamination, le substrat de croissance peut être réutilisé pour la croissance d'un nouveau film de graphène.
Il est également possible de transférer le film de graphène directement sur le substrat support, en gravant le film métallique monocristallin situé entre le film de graphène et le substrat support. On obtient ainsi la structure illustrée sur la figure 8. Un tel procédé est décrit notamment dans [Levendorf 2009], dans le cas où le substrat de croissance comprend un film de cuivre formé par évaporation sur un substrat de silicium recouvert d'un oxyde thermique.
REFERENCES
[Miller 2012] David L. Miller et al, Epitaxial (1 1 1 ) films of Cu, Ni and CuxNiy on a- AI203 (0001 ) for graphene growth by chemical vapor déposition, J. Appl. Phys. 1 12, 064317 (2012)
[Miller 2013] David L. Miller et al, Giant secondary grain growth in Cu films of sapphire, AIP Advances 3, 082105 (2013)
[Ismach 2010] Ariel Ismach et al, Direct chemical vapor déposition of graphene on dielectric surfaces, Nano Lett. 2010, 10, 1542-1548
[Rahimi 2014] Somayyeh Rahimi et al, Toward 300 mm wafer-scalable high- performance polycrystalline chemical vapor deposited graphene transistors, ACS Nano, Vol. 8, No. 10, 10471 -10479 (2014)
[Tao 2012] Li Tao et al, Uniform wafer-scale chemical vapor déposition of graphene on evaporated Cu(1 1 1 ) film with quality comparable to exfoliated monolayer, J. Phys. Chem. C 2012, 1 16, 24068-24074
[Gao 2010] Li Gao et al, Epitaxial graphene on Cu(1 1 1 ), Nano Lett. 2010, 10, 3512-
3516
US 8,501 ,531
[Wang 201 1] Yu Wang et al, Electrochemical delamination of CVD-grown graphene film: toward the recyclable use of copper catalyst, ACS Nano, Vol. 5, No. 12, 9927-9933, 201 1
[Levendorf 2009] Mark P. Levendorf et al, Transfer-free batch fabrication of single layer graphene transistors, Nano Lett., Vol. 9, No. 12, 2009

Claims

REVENDICATIONS
1 . Procédé de fabrication d'un film (3) bidimensionnel d'un matériau du groupe IV présentant une structure cristalline hexagonale, comprenant :
- la formation d'un substrat de croissance (100), comprenant le transfert d'un film métallique (1 ) monocristallin adapté pour la croissance dudit film bidimensionnel sur un substrat support (2), et
- la croissance par épitaxie du film (3) bidimensionnel sur le film métallique dudit substrat (100).
2. Procédé selon la revendication 1 , dans lequel le film métallique (1 ) comprend au moins un des métaux suivants : nickel, cuivre, platine, cobalt, chrome, fer, zinc, aluminium, iridium, ruthénium, argent.
3. Procédé selon l'une des revendications 1 ou 2, dans lequel le film métallique
(1 ) présente une épaisseur inférieure ou égale à 1 μηη, de préférence inférieure ou égale à 0,1 μηη.
4. Procédé selon l'une des revendications 1 à 3, dans lequel le substrat support (2) est un substrat de quartz, de graphite, de silicium, de saphir, de céramique, de nitrure, de carbure, d'alumine ou de métal.
5. Procédé selon l'une des revendications 1 à 4, dans lequel le substrat support
(2) présente, vis-à-vis du matériau du film bidimensionnel, une différence de coefficient de dilatation thermique plus faible qu'entre le film métallique et ledit film bidimensionnel.
6. Procédé selon l'une des revendications 1 à 5, dans lequel le transfert du film métallique (1 ) comprend :
- la fourniture d'un substrat donneur métallique (1 1 ) monocristallin,
- l'assemblage du substrat donneur (1 1 ) et du substrat support (2),
- l'amincissement du substrat donneur (1 1 ) de sorte à transférer le film métallique sur le substrat support (2).
7. Procédé selon la revendication 6, dans lequel le substrat donneur métallique (1 1 ) monocristallin est obtenu par tirage d'un lingot.
8. Procédé selon l'une des revendications 6 ou 7, comprenant en outre une étape de formation d'une zone de fragilisation (12) dans le substrat donneur (1 1 ), de sorte à délimiter le film métallique monocristallin (1 , 10) à transférer, et dans lequel l'amincissement du substrat donneur comprend un détachement du substrat donneur (1 1 ) le long de la zone de fragilisation (12).
9. Procédé selon la revendication 8, dans lequel la zone de fragilisation (12) est formée par implantation d'espèces atomiques dans le substrat donneur.
10. Procédé selon l'une des revendications 6 à 9, dans lequel l'assemblage du substrat donneur (1 1 ) et du substrat support (2) est mis en œuvre par collage.
1 1. Procédé selon l'une des revendications 6 à 9, dans lequel l'assemblage du substrat donneur (1 1 ) et du substrat support (2) est mis en œuvre par dépôt du substrat support (2) sur le substrat donneur (1 1 ).
12. Procédé selon l'une des revendications 1 à 1 1 , dans lequel le film métallique
(1 ) monocristallin se présente sous la forme d'une pluralité de pavés (10) transférés chacun sur le substrat support (2).
13. Procédé selon la revendication 12 en combinaison avec la revendication 10, dans lequel chaque pavé (10) a la même superficie que le substrat donneur (1 1 ), ladite superficie étant inférieure à la superficie du substrat support (2).
14. Procédé selon l'une des revendications 1 à 13, dans lequel le substrat de croissance (100) comprend une interface démontable.
15. Procédé selon la revendication 14, dans lequel ladite interface (I) est configurée pour être démontée par une technique de décollement par laser (« laser lift- off »).
16. Procédé selon la revendication 14, dans lequel ladite interface (I) est configurée pour être démontée par une attaque chimique.
17. Procédé selon la revendication 14, dans lequel ladite interface (I) est configurée pour être démontée par une sollicitation mécanique.
18. Procédé selon l'une des revendications 1 à 17, comprenant, après la croissance du film bidimensionnel (3), une étape de séparation dudit film bidimensionnel (3) vis-à-vis du substrat de croissance (100).
19. Procédé selon la revendication 18, dans lequel ladite séparation comprend une délamination de l'interface entre le film métallique (1 ) monocristallin et le substrat support (2).
20. Procédé selon la revendication 18, dans lequel ladite séparation comprend une implantation d'espèces atomiques dans le substrat support (2) de sorte à former une zone de fragilisation, puis le détachement du substrat de croissance le long de ladite zone de fragilisation.
21. Procédé selon l'une des revendications 18 à 20, comprenant, après ladite séparation, le transfert d'un nouveau film métallique (1 ) monocristallin sur le substrat support (2), de sorte à former un nouveau substrat (100) de croissance, puis la croissance d'un nouveau film (3) bidimensionnel d'un matériau du groupe IV présentant une structure cristalline hexagonale sur ledit nouveau substrat (100) de croissance.
22. Procédé selon la revendication 18, dans lequel ladite séparation comprend une délamination de l'interface entre le film bidimensionnel (3) et le film métallique (1 ) monocristallin du substrat de croissance.
23. Procédé selon la revendication 22, comprenant, après ladite séparation, la réutilisation du substrat de croissance (100) pour faire croître un nouveau film bidimensionnel d'un matériau du groupe IV présentant une structure cristalline hexagonale sur ledit substrat.
24. Procédé selon la revendication 23, comprenant en outre, après la croissance du film bidimensionnel, une gravure du film métallique (1 ) de sorte à transférer le film bidimensionnel sur le substrat support.
25. Procédé selon l'une des revendications 1 à 24, dans lequel le film bidimensionnel (3) est un film de graphène.
26. Structure comprenant successivement un substrat support (2), un film métallique (1 ) monocristallin et un film (3) bidimensionnel d'un matériau du groupe IV présentant une structure cristalline hexagonale sur le film métallique (1 ).
27. Structure selon la revendication 26, dans lequel le film métallique (1 ) se présente sous la forme d'une pluralité de pavés (10) répartis sur la surface du substrat support (2).
28. Structure selon l'une des revendications 26 ou 27, dans lequel le film (3) bidimensionnel est constitué d'une ou plusieurs couches monoatomiques.
29. Structure selon l'une des revendications 26 à 28, dans lequel le film bidimensionnel (3) est un film de graphène.
PCT/FR2018/050217 2017-02-02 2018-01-31 Procede de fabrication d'un film bidimensionnel de structure cristalline hexagonale WO2018142061A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US16/481,767 US11913134B2 (en) 2017-02-02 2018-01-31 Process for manufacturing a two-dimensional film of hexagonal crystalline structure using epitaxial growth on a transferred thin metal film
SG11201906821PA SG11201906821PA (en) 2017-02-02 2018-01-31 Process for manufacturing a two-dimensional film of hexagonal crystalline structure
EP18705964.7A EP3577257A1 (fr) 2017-02-02 2018-01-31 Procede de fabrication d'un film bidimensionnel de structure cristalline hexagonale
CN201880009436.3A CN110234800B (zh) 2017-02-02 2018-01-31 制造六方晶体结构的二维膜的方法
JP2019541704A JP7341059B2 (ja) 2017-02-02 2018-01-31 六方晶構造の二次元膜の製造方法
KR1020197025738A KR102523183B1 (ko) 2017-02-02 2018-01-31 육방정계 결정 구조의 2차원 막을 제조하기 위한 방법
US18/461,226 US20230416940A1 (en) 2017-02-02 2023-09-05 Process for manufacturing a two-dimensional film of hexagonal crystalline structure using epitaxial growth on a transferred thin metal film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1750868A FR3062398B1 (fr) 2017-02-02 2017-02-02 Procede de fabrication d'un substrat pour la croissance d'un film bidimensionnel de structure cristalline hexagonale
FR1750868 2017-02-02

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/481,767 A-371-Of-International US11913134B2 (en) 2017-02-02 2018-01-31 Process for manufacturing a two-dimensional film of hexagonal crystalline structure using epitaxial growth on a transferred thin metal film
US18/461,226 Division US20230416940A1 (en) 2017-02-02 2023-09-05 Process for manufacturing a two-dimensional film of hexagonal crystalline structure using epitaxial growth on a transferred thin metal film

Publications (1)

Publication Number Publication Date
WO2018142061A1 true WO2018142061A1 (fr) 2018-08-09

Family

ID=58632458

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2018/050217 WO2018142061A1 (fr) 2017-02-02 2018-01-31 Procede de fabrication d'un film bidimensionnel de structure cristalline hexagonale

Country Status (8)

Country Link
US (2) US11913134B2 (fr)
EP (1) EP3577257A1 (fr)
JP (1) JP7341059B2 (fr)
KR (1) KR102523183B1 (fr)
CN (1) CN110234800B (fr)
FR (1) FR3062398B1 (fr)
SG (1) SG11201906821PA (fr)
WO (1) WO2018142061A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110616454A (zh) * 2019-03-07 2019-12-27 北京大学 一种基于单晶二维材料/单晶铜的垂直异质外延单晶金属薄膜的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120199845A1 (en) * 2011-02-03 2012-08-09 S.O.I.Tec Silicon On Insulator Technologies Metallic carrier for layer transfer and methods for forming the same
US8501531B2 (en) 2011-04-07 2013-08-06 The United States Of America, As Represented By The Secretary Of The Navy Method of forming graphene on a surface
WO2014030040A1 (fr) * 2012-08-24 2014-02-27 Soitec Procédés de formation de structures et dispositifs semiconducteurs comprenant du graphène, et structures et dispositifs associés

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2857983B1 (fr) * 2003-07-24 2005-09-02 Soitec Silicon On Insulator Procede de fabrication d'une couche epitaxiee
KR20040088448A (ko) * 2004-09-21 2004-10-16 정세영 단결정 와이어 제조방법
CN102646698B (zh) * 2007-09-14 2015-09-16 株式会社半导体能源研究所 半导体装置及电子设备
KR101344493B1 (ko) * 2007-12-17 2013-12-24 삼성전자주식회사 단결정 그라펜 시트 및 그의 제조방법
JP5297219B2 (ja) * 2008-02-29 2013-09-25 信越化学工業株式会社 単結晶薄膜を有する基板の製造方法
US20120000415A1 (en) * 2010-06-18 2012-01-05 Soraa, Inc. Large Area Nitride Crystal and Method for Making It
US8148801B2 (en) * 2008-08-25 2012-04-03 Soraa, Inc. Nitride crystal with removable surface layer and methods of manufacture
US8236118B2 (en) * 2009-08-07 2012-08-07 Guardian Industries Corp. Debonding and transfer techniques for hetero-epitaxially grown graphene, and products including the same
CN102859032B (zh) 2010-02-26 2015-01-14 独立行政法人产业技术总合研究所 碳膜叠层体
WO2013038623A1 (fr) * 2011-09-16 2013-03-21 富士電機株式会社 Procédé de production de graphène, et graphène
FR2987166B1 (fr) * 2012-02-16 2017-05-12 Soitec Silicon On Insulator Procede de transfert d'une couche
CN103871684A (zh) * 2012-12-18 2014-06-18 Hcgt有限公司 应用石墨烯的结构及其制造方法
US9923063B2 (en) * 2013-02-18 2018-03-20 Sumitomo Electric Industries, Ltd. Group III nitride composite substrate and method for manufacturing the same, laminated group III nitride composite substrate, and group III nitride semiconductor device and method for manufacturing the same
WO2014189271A1 (fr) * 2013-05-21 2014-11-27 한양대학교 산학협력단 Graphene en monocouche moncristalline a grande surface et procede de fabrication associe
KR101701237B1 (ko) * 2013-05-21 2017-02-03 한양대학교 산학협력단 대면적의 단결정 단일막 그래핀 및 그 제조방법
CN103354273B (zh) * 2013-06-17 2016-02-24 华侨大学 一种嵌入式大面积柔性敏化太阳电池及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120199845A1 (en) * 2011-02-03 2012-08-09 S.O.I.Tec Silicon On Insulator Technologies Metallic carrier for layer transfer and methods for forming the same
US8501531B2 (en) 2011-04-07 2013-08-06 The United States Of America, As Represented By The Secretary Of The Navy Method of forming graphene on a surface
WO2014030040A1 (fr) * 2012-08-24 2014-02-27 Soitec Procédés de formation de structures et dispositifs semiconducteurs comprenant du graphène, et structures et dispositifs associés

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
ARIEL ISMACH ET AL.: "Direct chemical vapor déposition of graphene on dielectric surfaces", NANO LETT., vol. 10, 2010, pages 1542 - 1548, XP055220242, DOI: doi:10.1021/nl9037714
COSTA SARA D ET AL: "Temperature and face dependent copper-graphene interact", CARBON, ELSEVIER, OXFORD, GB, vol. 93, 4 June 2015 (2015-06-04), pages 793 - 799, XP029255437, ISSN: 0008-6223, DOI: 10.1016/J.CARBON.2015.06.002 *
DAVID L. MILLER ET AL.: "Epitaxial (111) films of Cu, Ni and CuxNiy on a-AI203 (0001) for graphene growth by chemical vapor déposition", J. APPL. PHYS., vol. 112, 2012, pages 064317
DAVID L. MILLER ET AL.: "Giant secondary grain growth in Cu films of sapphire", AIP ADVANCES, vol. 3, 2013, pages 082105
LI GAO ET AL.: "Epitaxial graphene on Cu(111", NANO LETT., vol. 10, 2010, pages 3512 - 3516
LI TAO ET AL.: "Uniform wafer-scale chemical vapor déposition of graphene on evaporated Cu(111) film with quality comparable to exfoliated monolayer", J. PHYS. CHEM. C, vol. 116, 2012, pages 24068 - 24074
LI TAO ET AL: "Uniform Wafer-Scale Chemical Vapor Deposition of Graphene on Evaporated Cu (111) Film with Quality Comparable to Exfoliated Monolayer", JOURNAL OF PHYSICAL CHEMISTRY C, vol. 116, no. 45, 6 November 2012 (2012-11-06), pages 24068 - 24074, XP055461767, ISSN: 1932-7447, DOI: 10.1021/jp3068848 *
MARK P. LEVENDORF ET AL.: "Transfer-free batch fabrication of single layer graphene transistors", NANO LETT., vol. 9, no. 12, 2009, XP055038831, DOI: doi:10.1021/nl902790r
SOMAYYEH RAHIMI ET AL.: "Toward 300 mm wafer-scalable high-performance polycrystalline chemical vapor deposited graphene transistors", ACS NANO, vol. 8, no. 10, 2014, pages 10471 - 10479
YU WANG ET AL.: "Electrochemical delamination of CVD-grown graphene film: toward the recyclable use of copper catalyst", ACS NANO, vol. 5, no. 12, 2011, pages 9927 - 9933, XP002716759, DOI: doi:10.1021/NN203700W

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110616454A (zh) * 2019-03-07 2019-12-27 北京大学 一种基于单晶二维材料/单晶铜的垂直异质外延单晶金属薄膜的方法

Also Published As

Publication number Publication date
US20190390366A1 (en) 2019-12-26
FR3062398B1 (fr) 2021-07-30
JP2020506150A (ja) 2020-02-27
SG11201906821PA (en) 2019-08-27
CN110234800A (zh) 2019-09-13
JP7341059B2 (ja) 2023-09-08
KR102523183B1 (ko) 2023-04-18
CN110234800B (zh) 2021-03-30
KR20190110613A (ko) 2019-09-30
FR3062398A1 (fr) 2018-08-03
EP3577257A1 (fr) 2019-12-11
US20230416940A1 (en) 2023-12-28
US11913134B2 (en) 2024-02-27

Similar Documents

Publication Publication Date Title
EP1324385B1 (fr) Procédé de report de couches minces semi-conductrices à partir d'une plaquette donneuse.
EP2342744B1 (fr) Procede de formation d'une couche monocristalline dans le domaine micro-electronique
EP1570509B1 (fr) Procede de realisation d' une structure complexe par assemblage de structures contraintes
EP2468931B1 (fr) Procédé de clivage d'un substrat et ensemble comprenant un substrat et une structure permettant ce clivage
FR2842650A1 (fr) Procede de fabrication de substrats notamment pour l'optique, l'electronique ou l'opto-electronique
FR2857983A1 (fr) Procede de fabrication d'une couche epitaxiee
JP2007537127A (ja) ダイヤモンド担持半導体デバイスおよび形成方法
WO2007020351A1 (fr) Procédé de report d'une couche mince sur un support
FR2830983A1 (fr) Procede de fabrication de couches minces contenant des microcomposants
EP4128328B1 (fr) Procede de fabrication d'une structure composite comprenant une couche mince en sic monocristallin sur un substrat support en sic
FR2926672A1 (fr) Procede de fabrication de couches de materiau epitaxie
FR2926674A1 (fr) Procede de fabrication d'une structure composite avec couche d'oxyde de collage stable
EP1810948B1 (fr) Procede d'elaboration d'un support pour la croissance de nanostructures allongées localisées
FR3103961A1 (fr) Procede de fabrication d’une structure composite comprenant une couche mince en sic monocristallin sur un substrat support en sic
US20230416940A1 (en) Process for manufacturing a two-dimensional film of hexagonal crystalline structure using epitaxial growth on a transferred thin metal film
KR20170097056A (ko) 복합 기판, 나노카본막의 제작 방법 및 나노카본막
EP4066275B1 (fr) Procede de fabrication d'une structure composite comprenant une couche mince en sic monocristallin sur un substrat support en sic
FR3073083B1 (fr) Procede de fabrication d'un film sur un feuillet flexible
FR3078822A1 (fr) Procede de preparation d’une couche mince de materiau ferroelectrique a base d’alcalin
FR2866982A1 (fr) Procede de fabrication de composants electroniques
FR2921749A1 (fr) Procede de fabrication d'une structure comprenant un substrat et une couche deposee sur l'une de ses faces.
FR3071662A1 (fr) Procede de preparation d'une structure ayant une couche en materiau semi-conducteur monocristallin transferable et structure obtenue selon un tel procede
WO2023111446A1 (fr) Procede de fabrication d'une structure semi-conductrice comprenant un substrat de carbure de silicium polycristallin et une couche active de carbure de silicium monocristallin
EP4226409A1 (fr) Procédé de fabrication d'un substrat pour la croissance épitaxiale d'une couche d'un alliage iii-n à base de gallium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18705964

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019541704

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197025738

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018705964

Country of ref document: EP

Effective date: 20190902