WO2018141238A1 - 一种波束恢复处理方法、网络侧设备及移动终端 - Google Patents

一种波束恢复处理方法、网络侧设备及移动终端 Download PDF

Info

Publication number
WO2018141238A1
WO2018141238A1 PCT/CN2018/074551 CN2018074551W WO2018141238A1 WO 2018141238 A1 WO2018141238 A1 WO 2018141238A1 CN 2018074551 W CN2018074551 W CN 2018074551W WO 2018141238 A1 WO2018141238 A1 WO 2018141238A1
Authority
WO
WIPO (PCT)
Prior art keywords
bpl
network side
side device
mobile terminal
reference signal
Prior art date
Application number
PCT/CN2018/074551
Other languages
English (en)
French (fr)
Inventor
杨宇
宋扬
孙晓东
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to EP18748612.1A priority Critical patent/EP3579441A4/en
Priority to US16/482,904 priority patent/US20200014451A1/en
Publication of WO2018141238A1 publication Critical patent/WO2018141238A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/004Transmission of channel access control information in the uplink, i.e. towards network

Definitions

  • the present disclosure relates to the field of communications, and in particular, to a beam recovery processing method, a network side device, and a mobile terminal.
  • the operating frequency band supported by the system is raised to above 6 GHz, up to about 100 GHz.
  • the high frequency band has a relatively rich idle frequency resource, which can provide greater throughput for data transmission.
  • 3GPP has completed the modeling of high-frequency channels.
  • the wavelength of high-frequency signals is short.
  • more antenna elements can be arranged on the same size panel, and beamforming technology is used to form more directivity.
  • the high-frequency beam of a large-scale antenna is narrow, and when blocked, the communication link is broken, affecting service transmission.
  • the RRC re-establishment is performed, the beam training is performed, the optimal beam is found, and the data transmission is resumed.
  • Such a process has a long delay.
  • the embodiments of the present disclosure provide a beam recovery processing method, a network side device, and a mobile terminal, to solve the problem that beam recovery has a long delay.
  • the embodiment of the present disclosure provides a beam recovery processing method, including: if a preset trigger condition is met, the network side device sends a first indication message to the mobile terminal, where the first indication message is used to indicate a new beam.
  • the link triggering condition is that the mobile terminal determines, according to the measurement result of the downlink reference signal, the startup beam recovery mechanism, or the network side device determines the startup beam recovery mechanism according to the uplink reference signal measurement result; switching to the new The BPL performs data transmission.
  • the embodiment of the present disclosure further provides a beam recovery processing method, including: a mobile terminal receiving a first indication message sent by a network side device, where the first indication message is when a network side device meets a preset trigger condition a message sent to the mobile terminal; the first indication message is used to indicate a new beam pair link BPL; the preset trigger condition is that the mobile terminal determines a startup beam recovery mechanism or a location according to a measurement result of a downlink reference signal The network side device determines a startup beam recovery mechanism according to the uplink reference signal measurement result, and switches the new BPL according to the first indication message to perform data transmission.
  • the embodiment of the present disclosure further provides a network side device, including: an indication message sending module, configured to send a first indication message to the mobile terminal if the preset trigger condition is met, where the first indication message is used Instructing the new beam pair to link the BPL; the preset triggering condition is that the mobile terminal determines the startup beam recovery mechanism according to the measurement result of the downlink reference signal, or the network side device determines the startup beam recovery mechanism according to the uplink reference signal measurement result;
  • a communication switching module is configured to switch to the new BPL for data transmission.
  • the embodiment of the present disclosure further provides a mobile terminal, including: an indication message receiving module, configured to receive a first indication message sent by a network side device, where the first indication message is that the network side device meets the preset a message sent to the mobile terminal when the condition is triggered; the first indication message is used to indicate a new beam pair link BPL; the preset trigger condition is that the mobile terminal determines to start beam recovery according to the measurement result of the downlink reference signal The mechanism or the network side device determines the startup beam recovery mechanism according to the uplink reference signal measurement result, and the second communication switching module is configured to switch the new BPL for data transmission according to the first indication message.
  • an indication message receiving module configured to receive a first indication message sent by a network side device, where the first indication message is that the network side device meets the preset a message sent to the mobile terminal when the condition is triggered; the first indication message is used to indicate a new beam pair link BPL; the preset trigger condition is that the mobile terminal determines to start beam recovery according to the measurement result of the downlink
  • an embodiment of the present disclosure further provides a network side device, including: a memory, a processor, and a computer program stored on the memory and executable on the processor, where the processor performs the The computer program implements the steps of the beam recovery processing method as described in the first aspect.
  • an embodiment of the present disclosure further provides a mobile terminal, including: a memory, a processor, and a computer program stored on the memory and operable on the processor, the processor executing the computer
  • the steps of the beam recovery processing method as described in the second aspect are implemented at the time of the program.
  • the embodiment of the present disclosure further provides a computer readable storage medium, where the computer readable storage medium stores a computer program, and when the computer program is executed by the processor, implements the first aspect or the The steps of the beam recovery processing method described in the second aspect.
  • the network side device sends a first indication message to the mobile terminal, where the first indication message is used to indicate a new beam pair link BPL; Determining, by the mobile terminal, the startup beam recovery mechanism according to the measurement result of the downlink reference signal, or determining, by the network side device, the startup beam recovery mechanism according to the uplink reference signal measurement result; switching to the new BPL for data transmission.
  • the network side device sends the first indication information to the mobile terminal, so that the mobile terminal and the network side are determined, because the uplink reference signal or the downlink reference signal is measured to determine the link state, and when the link transmission quality is deteriorated, and the beam recovery mechanism needs to be started.
  • the device switches to the new BPL for data transmission, monitors the link state through the upper layer with respect to the related technology, initiates RRC reconstruction, performs beam training, finds an optimal beam, and recovers data transmission.
  • the present disclosure reduces the delay of beam recovery. .
  • FIG. 1 is a flow chart of a beam recovery processing method provided in some embodiments of the present disclosure
  • FIG. 2 is a flow chart of a beam recovery processing method provided in some embodiments of the present disclosure
  • FIG. 3 is a flow chart of a beam recovery processing method provided in some embodiments of the present disclosure.
  • FIG. 4 is a flow chart of a beam recovery processing method provided in some embodiments of the present disclosure.
  • FIG. 5 is a flow chart of a beam recovery processing method provided in some embodiments of the present disclosure.
  • FIG. 6 is a schematic diagram of a BPL between a mobile terminal and a network side device in a beam recovery processing method according to an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram of a BPL between a mobile terminal and a network side device in a beam recovery processing method according to an embodiment of the present disclosure
  • FIG. 8 is a schematic diagram of a BPL between a mobile terminal and a network side device in a beam recovery processing method according to an embodiment of the present disclosure
  • FIG. 9 is a flowchart of a beam recovery processing method provided in some embodiments of the present disclosure.
  • FIG. 10 is a flowchart of a beam recovery processing method provided in some embodiments of the present disclosure.
  • FIG. 11 is a flowchart of a beam recovery processing method provided in some embodiments of the present disclosure.
  • FIG. 12 is a flowchart of a beam recovery processing method provided in some embodiments of the present disclosure.
  • FIG. 13 is a structural diagram of a network side device provided in some embodiments of the present disclosure.
  • FIG. 14 is a structural diagram of a mobile terminal provided in some embodiments of the present disclosure.
  • 15 is a structural diagram of a network side device provided in some embodiments of the present disclosure.
  • 16 is a structural diagram of a mobile terminal provided in some embodiments of the present disclosure.
  • 17 is a structural diagram of a mobile terminal provided in some embodiments of the present disclosure.
  • FIG. 1 is a flowchart of a beam recovery processing method according to an embodiment of the present disclosure. As shown in FIG. 1 , the following steps are included.
  • Step 101 If the preset trigger condition is met, the network side device sends a first indication message to the mobile terminal, where the first indication message is used to indicate a new beam pair link BPL; the preset trigger condition is that the mobile terminal is based on the mobile terminal
  • the measurement result of the downlink reference signal determines a startup beam recovery mechanism or the network side device determines a startup beam recovery mechanism according to the uplink reference signal measurement result.
  • the beam recovery processing method provided by the embodiment of the present disclosure is mainly applied to a wireless communication system for determining whether a radio link has deteriorated transmission quality and performing beam recovery processing.
  • the network side device may be a base station. It is to be understood that the form of the foregoing base station is not limited, and may be a macro base station (Macro Base Station) or a micro base station (Pico). Base Station), Node B (referred to as 3G mobile base station), Enhanced Base Station (ENB), Home Enhanced Base Station (Femto eNB or Home eNode B or Home eNB or HNEB), Relay Station, Access Point, RRU (Remote Radio Unit) , remote radio module), RRH (Remote Radio Head).
  • Base Station Node B (referred to as 3G mobile base station), Enhanced Base Station (ENB), Home Enhanced Base Station (Femto eNB or Home eNode B or Home eNB or HNEB), Relay Station, Access Point, RRU (Remote Radio Unit) , remote radio module), RRH (Remote Radio Head).
  • Node B referred to as 3G mobile base station
  • ENB Enhanced Base Station
  • whether the radio link is degraded or not is determined according to the measurement result of the uplink reference signal or the downlink reference signal, thereby determining whether to start the beam recovery mechanism.
  • the radio link transmission quality deteriorates, it is determined that the beam recovery mechanism is activated, and when the radio link is successful, it is determined that the beam recovery mechanism does not need to be activated.
  • the uplink reference signal may include: a De Modulation Reference Signal (DMRS) and/or a Sounding Reference Signal (SRS) of the uplink traffic channel.
  • DMRS De Modulation Reference Signal
  • SRS Sounding Reference Signal
  • the downlink reference signal may include: a De Modulation Reference Signal (DMRS) and/or a Channel State Information-Reference Signal (CSI-RS) of the downlink traffic channel.
  • DMRS De Modulation Reference Signal
  • CSI-RS Channel State Information-Reference Signal
  • the network side device may directly measure the uplink reference signal, thereby monitoring the beam quality, and determining whether to start the beam recovery mechanism.
  • the downlink reference signal may be measured by the mobile terminal to monitor the beam quality, and the monitoring result is sent to the network side device, indicating that the network side device starts the beam recovery mechanism.
  • the network side device determines the startup beam recovery mechanism or the mobile terminal determines the startup beam recovery mechanism, the network side device is triggered to send the first indication message to the mobile terminal, and the first indication message indicates the new BPL (Beam pair link).
  • the number of the new BPLs may be set according to actual needs, for example, may be one BPL, or may be a PBL group composed of multiple PBLs.
  • Step 102 Switch to the new BPL for data transmission.
  • the network side device after transmitting the first indication message, the network side device will switch the BPL, and at the same time, after receiving the first indication message, the mobile terminal will switch the BPL according to the BPL indicated by the first indication message, thereby Data transfer on the new BPL.
  • the network side device sends a first indication message to the mobile terminal, where the first indication message is used to indicate a new beam pair link BPL; Determining, by the mobile terminal, the startup beam recovery mechanism according to the measurement result of the downlink reference signal, or determining, by the network side device, the startup beam recovery mechanism according to the uplink reference signal measurement result; switching to the new BPL for data transmission.
  • the network side device sends the first indication information to the mobile terminal, so that the mobile terminal and the network side are determined, because the uplink reference signal or the downlink reference signal is measured to determine the link state, and when the link transmission quality is deteriorated, and the beam recovery mechanism needs to be started.
  • the device switches to the new BPL for data transmission, monitors the link state through the upper layer with respect to the related technology, initiates RRC reconstruction, performs beam training, finds an optimal beam, and recovers data transmission.
  • the present disclosure reduces the delay of beam recovery. .
  • monitoring of the link status may be performed by the mobile terminal or by the network side device.
  • the following will be described in detail in two different implementations:
  • FIG. 2 is a flowchart of a beam recovery processing method according to an embodiment of the present disclosure, such as As shown in FIG. 2, before the foregoing step 101, the method further includes:
  • Step 103 Measure a first measurement indicator of the uplink reference signal.
  • the specific parameters of the first measurement indicator may be set according to actual needs.
  • the first measurement indicator includes reference signal received power (RSRP), and the cell reference signal power is relative to the cell.
  • RSRP reference signal received power
  • the network side device may measure the uplink reference signal according to the foregoing first measurement indicator, and obtain a corresponding result.
  • Step 104 If the first measurement indicator of the uplink reference signal meets the first preset condition, determine that the preset trigger condition is met.
  • the content of the first preset condition may be set according to actual needs.
  • the first measurement indicator includes at least one of a reference signal received power RSRP, a cell reference signal power relative to a cell all signal power ratio RSRQ, a signal to noise ratio SNR, and a channel quality indicator CQI
  • the first preset condition includes: the number of times that the first measurement indicator is lower than the corresponding preset threshold value is greater than the first preset value in the preset time period; and when the first measurement indicator includes the transmission hybrid automatic retransmission
  • the first preset condition further includes: generating the NACK in the preset time period is greater than the first preset value.
  • the size of the foregoing threshold may be set according to actual needs, and the size of the threshold corresponding to the different parameters of the first measurement indicator may be different. It should be understood that, in other embodiments, the first preset condition may be further set to whether an average value of the accumulated values of the specific parameters of the first measurement indicator is lower than a corresponding threshold value in a preset time period, if The beam quality is considered to be poor, and it is determined that the beam recovery mechanism needs to be activated.
  • the first measurement indicator When the first measurement indicator is configured with multiple parameters, it may be that one parameter satisfies the corresponding first preset condition, so that the beam recovery mechanism needs to be started, or all the parameters satisfy the corresponding first preset condition. It can be determined that the beam recovery mechanism needs to be activated.
  • the counter is incremented by one, and whether the value of the counter is greater than the first preset value may be implemented, and no longer A narrative.
  • the size of the first preset value may be flexibly set to improve the accuracy and flexibility of the beam quality degradation.
  • the NACK indicator is used for the beam measurement indicator of the service channel, and the terminal receives the downlink traffic channel (PDSCH) and decodes the error, and generates a HARQ signaling NACK for feeding back to the network side device. Identifies this transmission error.
  • the counter can be incremented by one to determine whether the value of the counter is greater than the first preset value within a preset time period, thereby determining whether the beam recovery mechanism needs to be activated.
  • Step 101 Receive target data that is sent by the mobile terminal to the network side device according to the measurement result of the second measurement indicator of the downlink reference signal.
  • the specific parameters of the second measurement indicator may be set according to actual needs.
  • the second measurement indicator includes a reference signal received power RSRP, a ratio of a cell reference signal power to a cell-to-cell power, and a ratio RSRQ. At least one of a signal to noise ratio SNR, a channel quality indication CQI, and an acknowledgement information NACK for transmitting a hybrid automatic repeat request.
  • the mobile terminal may perform measurement on the downlink reference signal according to the foregoing second measurement indicator, obtain a corresponding result, and send corresponding target data according to the measured result, so that the network side device starts beam recovery according to the target data. mechanism.
  • Step 106 Determine, according to the target data, whether a preset trigger condition is met.
  • the manner in which the target data is reported may be set according to actual needs.
  • the content of the target data may be set according to actual needs.
  • the message may be directly notified to the network side device to start the beam recovery mechanism, or may be a message implicitly informing the network side device whether to start the beam recovery mechanism. This is described in detail below:
  • the mobile terminal may report the random access preamble preamble of the physical random access channel PRACH, that is, the target data may be a random access preamble preamble of the physical random access channel PRACH.
  • the target data may be a random access preamble preamble of the physical random access channel PRACH.
  • it can be designed as a new type, such as a new time-frequency transmission pattern. That is, according to a certain rule, the base station performs the rotating beam transmission in different spatial directions.
  • the mobile terminal sends a PRACH preamble to the base station, which may be a beam sweeping method, such as: transmitting the uplink beam in the order of the original BPL, and sequentially transmitting the uplink beam from the similar to the distant direction; or The uplink beams are sequentially transmitted in sequence; or the uplink beams are sequentially transmitted in a certain hopping sequence close to and away from the direction.
  • a beam sweeping method such as: transmitting the uplink beam in the order of the original BPL, and sequentially transmitting the uplink beam from the similar to the distant direction; or
  • the uplink beams are sequentially transmitted in sequence; or the uplink beams are sequentially transmitted in a certain hopping sequence close to and away from the direction.
  • the mobile terminal may send a request to the network side device, that is, the target data may be a request message sent by the mobile terminal to the network side device.
  • the request message carries a first signaling indicating that a beam recovery mechanism is initiated and/or a second signaling indicating a BPL used to initiate a beam recovery mechanism; or the preamble carrying Describe the first signaling and/or the second signaling.
  • the first signaling whether or not to start beam recovery is indicated by one data bit bit.
  • the second signaling indicates, by the preset number of data bit bits, the BPL used by the mobile terminal to monitor the obtained start beam recovery mechanism.
  • the BPL used to start the beam recovery mechanism may be one or multiple (ie, BPL group).
  • the BPL used by the mobile terminal to monitor the obtained start beam recovery mechanism may be the optimal BPL detected by the mobile terminal, or may be the recommended BPL of the mobile terminal from the optimal BPL, specifically The BPL reported by the mobile terminal may be unchanged from the optimal BPL currently used by the network side device, or may be changed to other BPLs, and is not further limited herein.
  • the sending manner of the request message may be set according to actual needs, for example, the request message is on the uplink control channel.
  • Bearer transmission either using wide beam transmission or simultaneous transmission using multiple narrow beams.
  • the mobile terminal needs to access the wireless network, that is, access the wireless network provided by the network side device, and establish a BPL.
  • the foregoing beam recovery processing method includes:
  • Step 401 Send a beam measurement reporting configuration to a mobile terminal that accesses the network side device by using a random access procedure.
  • Step 402 Receive a result reported by the mobile terminal to perform beam training based on the beam measurement reporting configuration.
  • Step 403 Determine an optimal BPL for data transmission according to the reported result.
  • Step 404 If the preset trigger condition is met, the network side device sends a first indication message to the mobile terminal, where the first indication message is used to indicate a new beam pair link BPL; the preset trigger condition is that the mobile terminal is based on the mobile terminal
  • the measurement result of the downlink reference signal determines a startup beam recovery mechanism or the network side device determines a startup beam recovery mechanism according to the uplink reference signal measurement result.
  • Step 405 switching to the new BPL for data transmission.
  • the optimal BPL is aligned with the direction of the transmit beam Tx beam and the receive beam Rx beam to obtain an optimal data transmission quality.
  • the optimal BPL can be found to be multiple, and the BPL is from the same or different TRP (Transmission and Reception Point). There is no restriction on whether multiple TRPs belong to the same base station.
  • TRP Transmission and Reception Point
  • the maintenance and use of the BPL by the TRP can be controlled or interacted by the base station.
  • the optimal BPL includes one or more target BPLs.
  • Each of the target BPLs may have one or two sets of BPLs, that is, each of the target BPLs includes a control channel BPL for control channel transmission and/or a traffic channel BPL for traffic channel transmission; wherein all of the target BPLs include At least one of the control channel BPL and at least one traffic channel BPL.
  • control channel BPL for control channel transmission is usually transmitted by wide beam, or may be jointly transmitted by using multiple narrow beams.
  • the traffic channel BPL is usually transmitted using a narrow beam, and a plurality of narrow beams can also be used for joint transmission. That is to say, in this embodiment, the manner in which the multiple target BPLs perform data transmission includes: the same information and uses the same time-frequency resource, frequency division multiplexing FDM, time division multiplexing TDM, and code division multiplexing CDM. At least one of the transmission methods.
  • the content of the indicated new beam pair link BPL may be set according to actual needs.
  • the indicating a new beam pair link BPL includes: indicating a new traffic channel BPL.
  • the indicating a new beam pair link BPL further comprises: indicating a new control channel BPL.
  • the beam recovery processing method includes:
  • Step 501 If the preset trigger condition is met, the network side device sends a second indication message to the mobile terminal, where the second indication message is used to initiate local beam training, where the local beam training is within the optimal control channel BPL. , for narrow beam training.
  • Step 502 Receive a beam measurement result fed back by the mobile terminal for the narrow beam training.
  • Step 503 Determine an optimal narrow beam according to the beam measurement result, and set the optimal narrow beam as the new traffic channel BPL.
  • Step 504 Send a first indication message to the mobile terminal, where the first indication message is used to indicate a new beam pair link BPL; the preset trigger condition is that the mobile terminal determines to start beam recovery according to the measurement result of the downlink reference signal.
  • the mechanism or the network side device determines the startup beam recovery mechanism according to the uplink reference signal measurement result.
  • Step 505 switching to the new BPL for data transmission.
  • beam training can be performed on the narrow beam in the optimal control channel BPL, thereby determining an optimal narrow beam, and indicating the optimal narrow beam as a new traffic channel BPL, thereby improving the traffic channel BPL.
  • the quality of the transmission can be performed on the narrow beam in the optimal control channel BPL, thereby determining an optimal narrow beam, and indicating the optimal narrow beam as a new traffic channel BPL, thereby improving the traffic channel BPL.
  • the optimal BPLs found may be multiple, and the multiple BPLs are from different TRPs, and the BPL has two sets, including the control channel BPL and the traffic channel BPL.
  • a wide BPL ie, control channel BPL
  • a narrow BPL ie, traffic channel BPL
  • the same information content can be transmitted on the wide BPL so that when one wide BPL is blocked, the other BPL can still be used normally.
  • the narrow BPL of the traffic channel is blocked, but the wide BPL of the control channel can still be connected.
  • the narrow BPL of the traffic channel and the wide BPL of the control channel are blocked.
  • the mobile terminal may carry the first PDCCH (physical downlink control channel), which carries the first PDCCH (physical downlink control channel).
  • Second signaling of BPL and/or PDSCH BPL That is, if the current wide BPL quality can still be transmitted, it can continue to be used. If the current wide BPL is uninterrupted but the quality is poor, or the current wide BPL is blocked, then the request message carries a message using another new BPL.
  • the network side device indicates a new PDCCH beam and/or a new PDSCH beam to the mobile terminal according to the request message fed back by the mobile terminal.
  • the new PDCCH beam may be the original wide BPL or the new wide BPL; the new PDSCH beam may be other narrow BPLs in the original wide BPL, or a narrow BPL in the new wide BPL.
  • the network side device may also instruct the mobile terminal to initiate local beam training.
  • the wide BPL indicated by the network side device a total of three narrow beams are included, and the three narrow beams are rotated in turn, that is, local beam training.
  • the mobile terminal receives the narrow beam that is optimally fed back, thereby determining a new narrow BPL within the wide BPL.
  • the final new BPL is determined by the indication of the network side device, which can be faster and more accurate.
  • FIG. 9 is a flowchart of a beam recovery processing method according to an embodiment of the present disclosure. As shown in FIG. 9, the beam recovery processing method includes the following steps.
  • Step 901 The mobile terminal receives a first indication message sent by the network side device, where the first indication message is a message that is sent to the mobile terminal when the network side device meets the preset trigger condition; the first indication message is used for Instructing the new beam pair to link the BPL; the preset triggering condition is that the mobile terminal determines the startup beam recovery mechanism according to the measurement result of the downlink reference signal or the network side device determines the startup beam recovery mechanism according to the uplink reference signal measurement result.
  • the first indication message is a message that is sent to the mobile terminal when the network side device meets the preset trigger condition
  • the first indication message is used for Instructing the new beam pair to link the BPL
  • the preset triggering condition is that the mobile terminal determines the startup beam recovery mechanism according to the measurement result of the downlink reference signal or the network side device determines the startup beam recovery mechanism according to the uplink reference signal measurement result.
  • the beam recovery processing method provided by the embodiment of the present disclosure is mainly applied to a wireless communication system for determining whether a radio link has deteriorated transmission quality and performing beam recovery processing.
  • the network side device may be a base station. It is to be understood that the form of the foregoing base station is not limited, and may be a macro base station (Macro Base Station) or a micro base station (Pico). Base Station), Node B (referred to as 3G mobile base station), Enhanced Base Station (ENB), Home Enhanced Base Station (Femto eNB or Home eNode B or Home eNB or HNEB), Relay Station, Access Point, RRU (Remote Radio Unit) , remote radio module), RRH (Remote Radio Head).
  • Base Station Node B (referred to as 3G mobile base station), Enhanced Base Station (ENB), Home Enhanced Base Station (Femto eNB or Home eNode B or Home eNB or HNEB), Relay Station, Access Point, RRU (Remote Radio Unit) , remote radio module), RRH (Remote Radio Head).
  • Node B referred to as 3G mobile base station
  • ENB Enhanced Base Station
  • whether the radio link is degraded or not is determined according to the measurement result of the uplink reference signal or the downlink reference signal, thereby determining whether to start the beam recovery mechanism.
  • the radio link transmission quality deteriorates, it is determined that the beam recovery mechanism is activated, and when the radio link is not deteriorated, it is determined that the beam recovery mechanism does not need to be activated.
  • the uplink reference signal may include: a De Modulation Reference Signal (DMRS) and/or a Sounding Reference Signal (SRS) of the uplink traffic channel.
  • DMRS De Modulation Reference Signal
  • SRS Sounding Reference Signal
  • the downlink reference signal may include: a De Modulation Reference Signal (DMRS) and/or a Channel State Information-Reference Signal (CSI-RS) of the downlink traffic channel.
  • DMRS De Modulation Reference Signal
  • CSI-RS Channel State Information-Reference Signal
  • the network side device may directly measure the uplink reference signal, thereby monitoring the beam quality, and determining whether to start the beam recovery mechanism.
  • the downlink reference signal may be measured by the mobile terminal to monitor the beam quality, and the monitoring result is sent to the network side device, indicating that the network side device starts the beam recovery mechanism.
  • the network side device determines the startup beam recovery mechanism or the mobile terminal determines the startup beam recovery mechanism, the network side device is triggered to send the first indication message to the mobile terminal, and the new BPL is indicated by the first indication message.
  • the number of the new BPLs may be set according to actual needs, for example, may be one BPL, or may be a PBL group composed of multiple PBLs.
  • Step 902 Switch the new BPL to perform data transmission according to the first indication message.
  • the network side device after transmitting the first indication message, the network side device will switch the BPL, and at the same time, after receiving the first indication message, the mobile terminal will switch the BPL according to the BPL indicated by the first indication message, thereby Data transfer on the new BPL.
  • the mobile terminal receives the first indication message sent by the network side device, where the first indication message is a message that is sent to the mobile terminal when the network side device meets the preset trigger condition;
  • An indication message is used to indicate that the new beam pair is linked to the BPL;
  • the preset trigger condition is that the mobile terminal determines the startup beam recovery mechanism according to the measurement result of the downlink reference signal, or the network side device determines to start according to the uplink reference signal measurement result. a beam recovery mechanism; switching the new BPL for data transmission according to the first indication message.
  • the network side device sends the first indication information to the mobile terminal, so that the mobile terminal and the network side are determined, because the uplink reference signal or the downlink reference signal is measured to determine the link state, and when the link transmission quality is deteriorated, and the beam recovery mechanism needs to be started.
  • the device switches to the new BPL for data transmission, monitors the link state through the upper layer with respect to the related technology, initiates RRC reconstruction, performs beam training, finds an optimal beam, and recovers data transmission.
  • the present disclosure reduces the delay of beam recovery. .
  • the monitoring of the link status may be performed by the mobile terminal or by the network side device.
  • the following mobile terminals perform link status monitoring for detailed description:
  • the method further includes:
  • Step 903 Measure a second measurement indicator of the downlink reference signal.
  • the specific parameters of the second measurement indicator may be set according to actual needs.
  • the second measurement indicator includes a reference signal received power RSRP, a ratio of a cell reference signal power to a cell-to-cell power, and a ratio RSRQ. At least one of a signal to noise ratio SNR, a channel quality indication CQI, and an acknowledgement information NACK for transmitting a hybrid automatic repeat request.
  • the mobile terminal may perform measurement on the downlink reference signal according to the foregoing second measurement indicator, obtain a corresponding result, and send corresponding target data according to the measured result, so that the network side device starts beam recovery according to the target data. mechanism.
  • Step 904 If the second measurement indicator of the downlink reference signal meets the second preset condition, send the target data to the network side device according to the measurement result of the second measurement indicator, where the target data is used to determine whether the network side device meets Preset trigger conditions.
  • the content of the second preset condition may be set according to actual needs.
  • the second measurement indicator includes reference signal received power RSRP, the ratio of the cell reference signal power to the total signal power of the cell.
  • the second preset condition includes: the number of times the second measurement indicator is lower than the corresponding preset threshold value in the preset time period Greater than the second preset value;
  • the second preset condition further includes: generating the NACK in the preset time period is greater than the second pre- Set the value.
  • the manner in which the above target data is reported can be set according to actual needs.
  • the content of the target data may be set according to actual needs.
  • the message may be directly notified to the network side device to start the beam recovery mechanism, or may be a message implicitly informing the network side device whether to start the beam recovery mechanism. This is described in detail below:
  • the mobile terminal may report the random access preamble preamble of the physical random access channel PRACH, that is, the target data may be a random access preamble preamble of the physical random access channel PRACH.
  • the target data may be a random access preamble preamble of the physical random access channel PRACH.
  • it can be designed as a new type, such as a new time-frequency transmission pattern. That is, according to a certain rule, the base station performs the rotating beam transmission in different spatial directions.
  • the mobile terminal sends a PRACH preamble to the base station, which may be a beam sweeping method, such as: transmitting the uplink beam in the order of the original BPL, and sequentially transmitting the uplink beam from the similar to the distant direction; or The uplink beams are sequentially transmitted in sequence; or the uplink beams are sequentially transmitted in a certain hopping sequence close to and away from the direction.
  • a beam sweeping method such as: transmitting the uplink beam in the order of the original BPL, and sequentially transmitting the uplink beam from the similar to the distant direction; or
  • the uplink beams are sequentially transmitted in sequence; or the uplink beams are sequentially transmitted in a certain hopping sequence close to and away from the direction.
  • the mobile terminal may send a request to the network side device, that is, the target data may be a request message sent by the mobile terminal to the network side device.
  • the request message carries a first signaling indicating that a beam recovery mechanism is initiated and/or a second signaling indicating a BPL used to initiate a beam recovery mechanism; or the preamble carrying Describe the first signaling and/or the second signaling.
  • the first signaling whether or not to start beam recovery is indicated by one data bit bit.
  • the second signaling indicates, by the preset number of data bit bits, the BPL used by the mobile terminal to monitor the obtained start beam recovery mechanism.
  • the BPL used to start the beam recovery mechanism may be one or multiple (ie, BPL group).
  • the BPL used by the mobile terminal to monitor the obtained start beam recovery mechanism may be the optimal BPL detected by the mobile terminal, or may be the recommended BPL of the mobile terminal from the optimal BPL, specifically The BPL reported by the mobile terminal may be unchanged from the optimal BPL currently used by the network side device, or may be changed to other BPLs, and is not further limited herein.
  • the sending manner of the request message may be set according to actual needs, for example, the request message is on the uplink control channel.
  • Bearer transmission either using wide beam transmission or simultaneous transmission using multiple narrow beams.
  • the mobile terminal needs to access the wireless network, that is, access the wireless network provided by the network side device, and establish a BPL.
  • the method further includes:
  • Step 905 Receive a beam measurement reporting configuration sent by the network side device.
  • Step 906 Send a beam training result to the network side device according to the beam measurement reporting configuration, where the result of performing the beam training is: the network side device determines an optimal BPL for data transmission.
  • the optimal BPL is aligned with the direction of the transmit beam Tx beam and the receive beam Rx beam to obtain an optimal data transmission quality.
  • the optimal BPL can be found to be multiple, and the BPL is from the same or different TRP (Transmission and Reception Point). There is no restriction on whether multiple TRPs belong to the same base station.
  • TRP Transmission and Reception Point
  • the maintenance and use of the BPL by the TRP can be controlled or interacted by the base station.
  • the optimal BPL includes one or more target BPLs.
  • Each of the target BPLs may have one or two sets of BPLs, that is, each of the target BPLs includes a control channel BPL for control channel transmission and/or a traffic channel BPL for traffic channel transmission; wherein all of the target BPLs include At least one of the control channel BPL and at least one of the traffic channels BPL.
  • control channel BPL for control channel transmission is usually transmitted by wide beam, or may be jointly transmitted by using multiple narrow beams.
  • the traffic channel BPL is usually transmitted using a narrow beam, and a plurality of narrow beams can also be used for joint transmission. That is to say, in this embodiment, the manner in which the multiple target BPLs perform data transmission includes: the same information and uses the same time-frequency resource, frequency division multiplexing FDM, time division multiplexing TDM, and code division multiplexing CDM. At least one of the transmission methods.
  • the content of the indicated new beam pair link BPL may be set according to actual needs.
  • the indicating a new beam pair link BPL includes: indicating a new traffic channel BPL.
  • the indicating a new beam pair link BPL further comprises: indicating a new control channel BPL.
  • the narrow beam can also be measured to determine the optimal BPL, thereby improving the quality of the traffic channel BPL transmission.
  • the method further includes the following steps.
  • Step 907 Receive a second indication message sent by the network side device, where the second indication message is used to start local beam training, and the local beam training is performed in an optimal control channel BPL for narrow beam training.
  • Step 908 The beam measurement result of the narrow beam training is fed back to the network side device, where the beam measurement result is used by: the network side device determines an optimal narrow beam, and sets the optimal narrow beam as a The new traffic channel BPL is described.
  • beam training can be performed on the narrow beam in the optimal control channel BPL, thereby determining an optimal narrow beam, and indicating the optimal narrow beam as a new traffic channel BPL, thereby improving the traffic channel BPL.
  • the quality of the transmission can be performed on the narrow beam in the optimal control channel BPL, thereby determining an optimal narrow beam, and indicating the optimal narrow beam as a new traffic channel BPL, thereby improving the traffic channel BPL.
  • the optimal BPLs found may be multiple, and the multiple BPLs are from different TRPs, and the BPL has two sets, including the control channel BPL and the traffic channel BPL.
  • a wide BPL ie, control channel BPL
  • a narrow BPL ie, traffic channel BPL
  • the same information content can be transmitted on the wide BPL so that when one wide BPL is blocked, the other BPL can still be used normally.
  • the narrow BPL of the traffic channel is blocked, but the wide BPL of the control channel can still be connected.
  • the narrow BPL of the traffic channel and the wide BPL of the control channel are blocked.
  • the mobile device may carry the optimal PDCCH (Physical Downlink Control Channel) instead of carrying the first signaling (such as the 1-bit indication start).
  • PDCCH Physical Downlink Control Channel
  • Second signaling of the BPL and/or PDSCH BPL Second signaling of the BPL and/or PDSCH BPL. That is, if the current wide BPL quality can still be transmitted, it can continue to be used. If the current wide BPL is uninterrupted but the quality is poor, or the current wide BPL is blocked, then the request message carries a message using another new BPL.
  • the network side device indicates a new PDCCH beam and/or a new PDSCH beam to the mobile terminal according to the request message fed back by the mobile terminal.
  • the new PDCCH beam may be the original wide BPL or the new wide BPL; the new PDSCH beam may be other narrow BPLs in the original wide BPL, or a narrow BPL in the new wide BPL.
  • the network side device may also instruct the mobile terminal to initiate local beam training.
  • the wide BPL indicated by the network side device a total of three narrow beams are included, and the three narrow beams are rotated in turn, that is, local beam training.
  • the mobile terminal receives the narrow beam that is optimally fed back, thereby determining a new narrow BPL within the wide BPL.
  • the final new BPL is determined by the indication of the network side device, which can be faster and more accurate.
  • FIG. 13 is a structural diagram of a network side device according to an implementation of the present disclosure, which can implement the details of the medium beam recovery processing method in the foregoing embodiment, and achieve the same effect.
  • the network side device 1300 includes an indication message sending module 1301 and a first communication switching module 1302, wherein: the indication message sending module 1301 is configured to send a first indication message to the mobile terminal if the preset trigger condition is met, The first indication message is used to indicate that a new beam pair is linked to the BPL; the preset trigger condition is that the mobile terminal determines the startup beam recovery mechanism according to the measurement result of the downlink reference signal or the network side device measures according to the uplink reference signal. As a result, a startup beam recovery mechanism is determined; the first communication switching module 1302 is configured to switch to the new BPL for data transmission.
  • the network side device further includes: a first measurement mode, configured to measure a first measurement indicator of the uplink reference signal; and a first determining module, configured to: if the uplink reference signal is first When the measurement indicator satisfies the first preset condition, it is determined that the preset trigger condition is met.
  • the first measurement indicator includes a reference signal received power RSRP, a ratio of a cell reference signal power to a cell all signal power, a RSRQ, a signal to noise ratio SNR, a channel quality indicator CQI, and a transmission hybrid automatic retransmission. At least one of the requested confirmation information NACK.
  • the first measurement indicator when the first measurement indicator includes at least one of a reference signal received power RSRP, a ratio of a cell reference signal power to a cell all signal power, a RSRQ, a signal to noise ratio SNR, and a channel quality indicator CQI.
  • the first preset condition includes: the number of times the first measurement index is lower than the corresponding preset threshold value in the preset time period is greater than the first preset value; and when the first measurement indicator includes transmission And the first preset condition further includes: generating the NACK in the preset time period is greater than the first preset value.
  • the network side device further includes: a target data receiving module, configured to receive target data sent by the mobile terminal to the network side device according to a measurement result of the second measurement indicator of the downlink reference signal a second determining module, configured to determine, according to the target data, whether a preset trigger condition is met.
  • a target data receiving module configured to receive target data sent by the mobile terminal to the network side device according to a measurement result of the second measurement indicator of the downlink reference signal
  • a second determining module configured to determine, according to the target data, whether a preset trigger condition is met.
  • the target data is a random access preamble preamble of the physical random access channel PRACH; or a request message sent by the mobile terminal to the network side device.
  • the request message carries a first signaling indicating that a beam recovery mechanism is activated and/or a second signaling indicating a BPL used by activating a beam recovery mechanism; or the preamble carries the First signaling and/or the second signaling.
  • the first signaling indicates whether to initiate beam recovery by using one data bit bit.
  • the second signaling indicates, by using a preset number of data bit bits, the BPL used by the mobile terminal to monitor the obtained start beam recovery mechanism.
  • the request message is carried on the uplink control channel, or transmitted using a wide beam, or simultaneously transmitted using multiple narrow beams.
  • the second measurement indicator includes a reference signal received power RSRP, a ratio of a cell reference signal power to a cell all signal power, a RSRQ, a signal to noise ratio SNR, a channel quality indicator CQI, and a transmission hybrid automatic retransmission. At least one of the requested confirmation information NACK.
  • the network side device further includes: a configuration sending module, configured to send a beam measurement reporting configuration to the mobile terminal that accesses the network side device by using a random access procedure; and report the result receiving module, Receiving, by the mobile terminal, a result of performing beam training based on the beam measurement reporting configuration; and a third determining module, configured to determine an optimal BPL for data transmission according to the reported result.
  • a configuration sending module configured to send a beam measurement reporting configuration to the mobile terminal that accesses the network side device by using a random access procedure
  • the result receiving module Receiving, by the mobile terminal, a result of performing beam training based on the beam measurement reporting configuration
  • a third determining module configured to determine an optimal BPL for data transmission according to the reported result.
  • the optimal BPL includes one or more target BPLs, each of the target BPLs including a control channel BPL for control channel transmission and/or a traffic channel BPL for traffic channel transmission, And all of the target BPLs include at least one of the control channel BPL and at least one of the traffic channels BPL.
  • the manner in which the multiple target BPLs perform data transmission includes: the same information and uses the same time-frequency resource, frequency division multiplexing FDM, time division multiplexing TDM, and code division multiplexing CDM. At least one of the transmission methods.
  • the indicating a new beam pair link BPL comprises indicating a new traffic channel BPL.
  • the indicating a new beam pair link BPL further comprises: indicating a new control channel BPL.
  • the network side device further includes a measurement result receiving module and a processing module, where the indication message sending module is further configured to send a second indication message to the mobile terminal, where the The second indication message is used to indicate that the local beam training is started, and the local beam training is performed in the optimal control channel BPL for narrow beam training.
  • the measurement result receiving module is configured to receive the mobile terminal to the narrow beam training station. a beam measurement result of the feedback; the processing module, configured to determine an optimal narrow beam according to the beam measurement result, and set the optimal narrow beam as the new traffic channel BPL.
  • the network side device sends a first indication message to the mobile terminal, where the first indication message is used to indicate a new beam pair link BPL; Determining, by the mobile terminal, the startup beam recovery mechanism according to the measurement result of the downlink reference signal, or determining, by the network side device, the startup beam recovery mechanism according to the uplink reference signal measurement result; switching to the new BPL for data transmission.
  • the network side device sends the first indication information to the mobile terminal, so that the mobile terminal and the network side are determined, because the uplink reference signal or the downlink reference signal is measured to determine the link state, and when the link transmission quality is deteriorated, and the beam recovery mechanism needs to be started.
  • the device switches to the new BPL for data transmission, monitors the link state through the upper layer with respect to the related technology, initiates RRC reconstruction, performs beam training, finds an optimal beam, and recovers data transmission.
  • the present disclosure reduces the delay of beam recovery. .
  • FIG. 14 is a structural diagram of a mobile terminal provided by an implementation of the present disclosure, which can implement the details of the medium beam recovery processing method in the third to some embodiments, and achieve the same effect.
  • the mobile terminal 1400 includes an indication message receiving module 1401 and a second communication switching module 1402, wherein: an indication message receiving module, configured to receive a first indication message sent by the network side device, where the first indication message is a message sent to the mobile terminal when the network side device meets the preset trigger condition; the first indication message is used to indicate a new beam pair link BPL; and the preset trigger condition is that the mobile terminal is configured according to the downlink reference signal
  • the measurement result determines that the startup beam recovery mechanism or the network side device determines the startup beam recovery mechanism according to the uplink reference signal measurement result;
  • a second communication switching module configured to switch the new BPL for data transmission according to the first indication message.
  • the mobile terminal further includes: a second measurement module, configured to measure a second measurement indicator of the downlink reference signal; and a target data sending module, configured to: if the second measurement of the downlink reference signal The indicator meets the second preset condition, and the target data is sent to the network side device according to the measurement result of the second measurement indicator, where the target data is used by the network side device to determine whether the preset trigger condition is met.
  • a second measurement module configured to measure a second measurement indicator of the downlink reference signal
  • a target data sending module configured to: if the second measurement of the downlink reference signal The indicator meets the second preset condition, and the target data is sent to the network side device according to the measurement result of the second measurement indicator, where the target data is used by the network side device to determine whether the preset trigger condition is met.
  • the target data is a random access preamble preamble of the physical random access channel PRACH; or a request message sent by the mobile terminal to the network side device.
  • the request message carries a first signaling indicating that a beam recovery mechanism is activated and/or a second signaling indicating a BPL used by activating a beam recovery mechanism; or the preamble carries the First signaling and/or the second signaling.
  • the first signaling indicates whether to initiate beam recovery by using one data bit bit.
  • the second signaling indicates, by using a preset number of data bit bits, the BPL used by the mobile terminal to monitor the obtained start beam recovery mechanism.
  • the request message is carried on the uplink control channel, or transmitted using a wide beam, or simultaneously transmitted using multiple narrow beams.
  • the second measurement indicator includes a reference signal received power RSRP, a ratio of a cell reference signal power to a cell all signal power, a RSRQ, a signal to noise ratio SNR, a channel quality indicator CQI, and a transmission hybrid automatic retransmission. At least one of the requested confirmation information NACK.
  • the second measurement indicator when the second measurement indicator includes at least one of a reference signal received power RSRP, a ratio of a cell reference signal power to a cell all signal power, a RSRQ, a signal to noise ratio SNR, and a channel quality indicator CQI.
  • the second preset condition includes: the number of times the second measurement index is lower than the corresponding preset threshold value is greater than the second preset value in the preset time period; and when the second measurement indicator includes transmission And the second preset condition further includes: generating the NACK in the preset time period is greater than the second preset value.
  • the mobile terminal further includes: a configuration receiving module, configured to receive a beam measurement reporting configuration sent by the network side device; and a training result sending module, configured to perform, according to the beam measurement reporting configuration
  • the network side device sends a result of performing beam training, and the result of performing beam training is: the network side device determines an optimal BPL for data transmission.
  • the optimal BPL includes one or more target BPLs, each of the target BPLs including a control channel BPL for control channel transmission and/or a traffic channel BPL for traffic channel transmission, And all of the target BPLs include at least one of the control channel BPL and at least one of the traffic channels BPL.
  • the manner in which the multiple target BPLs perform data transmission includes: the same information and uses the same time-frequency resource, frequency division multiplexing FDM, time division multiplexing TDM, and code division multiplexing CDM. At least one of the transmission methods.
  • the indicating a new beam pair link BPL comprises indicating a new traffic channel BPL.
  • the indicating a new beam pair link BPL further comprises: indicating a new control channel BPL.
  • the mobile terminal further includes a measurement result feedback module, where the indication message is further configured to receive a second indication message sent by the network side device, where the second indication message is used to indicate Local beam training is started, and the local beam training is performed within the optimal control channel BPL for narrow beam training;
  • the measurement result feedback module is configured to feed back the beam measurement result of the narrow beam training to a network side device, where the beam measurement result is used by: the network side device determines an optimal narrow beam, and the optimal The narrow beam is set to the new traffic channel BPL.
  • the mobile terminal receives the first indication message sent by the network side device, where the first indication message is a message that is sent to the mobile terminal when the network side device meets the preset trigger condition;
  • An indication message is used to indicate that the new beam pair is linked to the BPL;
  • the preset trigger condition is that the mobile terminal determines the startup beam recovery mechanism according to the measurement result of the downlink reference signal, or the network side device determines to start according to the uplink reference signal measurement result. a beam recovery mechanism; switching the new BPL for data transmission according to the first indication message.
  • the network side device sends the first indication information to the mobile terminal, so that the mobile terminal and the network side are determined, because the uplink reference signal or the downlink reference signal is measured to determine the link state, and when the link transmission quality is deteriorated, and the beam recovery mechanism needs to be started.
  • the device switches to the new BPL for data transmission, monitors the link state through the upper layer with respect to the related technology, initiates RRC reconstruction, performs beam training, finds an optimal beam, and recovers data transmission.
  • the present disclosure reduces the delay of beam recovery. .
  • FIG. 15 is a structural diagram of a network side device according to an embodiment of the present disclosure, which can implement the details of the medium beam recovery processing method in the first to some embodiments, and achieve the same effect.
  • the network side device 1500 includes: a processor 1501, a transceiver 1502, a memory 1503, a user interface 1504, and a bus interface.
  • the processor 1501 is configured to read a program in the memory 1503 and perform the following processes: If the preset trigger condition is met, the first indication message is sent to the mobile terminal, where the first indication message is used to indicate a new beam pair link BPL; the preset trigger condition is a measurement result of the mobile terminal according to the downlink reference signal. Determining a startup beam recovery mechanism or the network side device determines a startup beam recovery mechanism according to an uplink reference signal measurement result; switching to the new BPL for data transmission.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 1501 and various circuits of memory represented by memory 1503.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • Transceiver 1502 can be a plurality of components, including a transmitter and a receiver, providing means for communicating with various other devices on a transmission medium.
  • the user interface 1504 may also be an interface capable of externally connecting the required devices, including but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 1501 is responsible for managing the bus architecture and general processing, and the memory 1503 can store data used by the processor 1501 when performing operations.
  • the processor 1501 is further configured to: measure a first measurement indicator of the uplink reference signal; if the first measurement indicator of the uplink reference signal meets the first preset condition, determine that the preset trigger is met condition.
  • the first measurement indicator includes a reference signal received power RSRP, a ratio of a cell reference signal power to a cell all signal power, a RSRQ, a signal to noise ratio SNR, a channel quality indicator CQI, and a transmission hybrid automatic retransmission. At least one of the requested confirmation information NACK.
  • the first measurement indicator when the first measurement indicator includes at least one of a reference signal received power RSRP, a ratio of a cell reference signal power to a cell all signal power, a RSRQ, a signal to noise ratio SNR, and a channel quality indicator CQI.
  • the first preset condition includes: the number of times the first measurement index is lower than the corresponding preset threshold value in the preset time period is greater than the first preset value; and when the first measurement indicator includes transmission And the first preset condition further includes: generating the NACK in the preset time period is greater than the first preset value.
  • the processor 1501 is further configured to: receive, by the mobile terminal, target data that is sent to the network side device according to the measurement result of the second measurement indicator of the downlink reference signal; and determine, according to the target data, whether The preset trigger condition is met.
  • the target data is a random access preamble preamble of the physical random access channel PRACH; or a request message sent by the mobile terminal to the network side device.
  • the request message carries a first signaling indicating that a beam recovery mechanism is activated and/or a second signaling indicating a BPL used by activating a beam recovery mechanism; or the preamble carries the First signaling and/or the second signaling.
  • the first signaling indicates whether to initiate beam recovery by using one data bit bit.
  • the second signaling indicates, by using a preset number of data bit bits, the BPL used by the mobile terminal to monitor the obtained start beam recovery mechanism.
  • the request message is carried on the uplink control channel, or transmitted using a wide beam, or simultaneously transmitted using multiple narrow beams.
  • the second measurement indicator includes a reference signal received power RSRP, a ratio of a cell reference signal power to a cell all signal power, a RSRQ, a signal to noise ratio SNR, a channel quality indicator CQI, and a transmission hybrid automatic retransmission. At least one of the requested confirmation information NACK.
  • the processor 1501 is further configured to: send a beam measurement reporting configuration to the mobile terminal that accesses the network side device by using a random access procedure; and receive, by the mobile terminal, the beam measurement reporting configuration. The result reported by the beam training; determining the optimal BPL for data transmission based on the reported result.
  • the optimal BPL includes one or more target BPLs, each of the target BPLs including a control channel BPL for control channel transmission and/or a traffic channel BPL for traffic channel transmission, And all of the target BPLs include at least one of the control channel BPL and at least one of the traffic channels BPL.
  • the manner in which the multiple target BPLs perform data transmission includes: the same information and uses the same time-frequency resource, frequency division multiplexing FDM, time division multiplexing TDM, and code division multiplexing CDM. At least one of the transmission methods.
  • the indicating a new beam pair link BPL comprises indicating a new traffic channel BPL.
  • the indicating a new beam pair link BPL further comprises: indicating a new control channel BPL.
  • the processor 1501 is further configured to: send a second indication message to the mobile terminal, where the second indication message is used to indicate that local beam training is initiated, where the local beam training is optimal control Performing narrow beam training in the channel BPL; receiving beam measurement results fed back by the mobile terminal for the narrow beam training; determining an optimal narrow beam according to the beam measurement result, and setting the optimal narrow beam to The new traffic channel BPL.
  • the network side device sends a first indication message to the mobile terminal, where the first indication message is used to indicate a new beam pair link BPL;
  • the mobile terminal determines the startup beam recovery mechanism according to the measurement result of the downlink reference signal, or the network side device determines the startup beam recovery mechanism according to the uplink reference signal measurement result; and switches to the new BPL for data transmission.
  • the network side device sends the first indication information to the mobile terminal, so that the mobile terminal and the network side are determined, because the uplink reference signal or the downlink reference signal is measured to determine the link state, and when the link transmission quality is deteriorated, and the beam recovery mechanism needs to be started.
  • the device switches to the new BPL for data transmission, monitors the link state through the upper layer with respect to the related technology, initiates RRC reconstruction, performs beam training, finds an optimal beam, and recovers data transmission.
  • the present disclosure reduces the delay of beam recovery. .
  • FIG. 16 is a structural diagram of a mobile terminal according to an embodiment of the present disclosure, which can implement details of a medium beam recovery processing method in the third to some embodiments, and achieve the same effect.
  • the mobile terminal 1600 includes at least one processor 1601, a memory 1602, at least one network interface 1604, and a user interface 1603.
  • the various components in mobile terminal 1600 are coupled together by a bus system 1605.
  • the bus system 1605 is used to implement connection communication between these components.
  • the bus system 1605 includes a power bus, a control bus, and a status signal bus in addition to the data bus.
  • various buses are labeled as bus system 1605 in FIG.
  • the user interface 1603 may include a display, a keyboard, or a pointing device (eg, a mouse, a track ball, a touch pad, or a touch screen, etc.).
  • a pointing device eg, a mouse, a track ball, a touch pad, or a touch screen, etc.
  • the memory 1602 in the embodiments of the present disclosure may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (PROM), an erasable programmable read only memory (Erasable PROM, EPROM), or an electric Erase programmable read only memory (EEPROM) or flash memory.
  • the volatile memory can be a Random Access Memory (RAM) that acts as an external cache.
  • RAM Random Access Memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous DRAM).
  • SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • DDRSDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • SDRAM Synchronous Connection Dynamic Random Access Memory
  • DRRAM direct memory bus random access memory
  • the memory 1602 stores elements, executable modules or data structures, or a subset thereof, or their extended set: an operating system 16021 and an application 16022.
  • the operating system 16021 includes various system programs, such as a framework layer, a core library layer, a driver layer, and the like, for implementing various basic services and processing hardware-based tasks.
  • the application 16022 includes various applications, such as a media player (Media Player), a browser, and the like, for implementing various application services.
  • a program implementing the method of the embodiments of the present disclosure may be included in the application 16022.
  • the program or the instruction stored in the memory 1602 is specifically used to be a program or an instruction stored in the application program 16022.
  • the processor 1601 is configured to: receive the first indication message sent by the network side device, The first indication message is a message that is sent to the mobile terminal when the network side device meets the preset trigger condition; the first indication message is used to indicate a new beam pair link BPL; the preset trigger condition is The mobile terminal determines the startup beam recovery mechanism according to the measurement result of the downlink reference signal, or the network side device determines the startup beam recovery mechanism according to the uplink reference signal measurement result; and switches the new BPL according to the first indication message to perform data transmission.
  • the method disclosed in the above embodiments of the present disclosure may be applied to the processor 1601 or implemented by the processor 1601.
  • the processor 1601 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 1601 or an instruction in a form of software.
  • the processor 1601 may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), or the like. Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present disclosure may be implemented or carried out.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in connection with the embodiments of the present disclosure may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 1602, and the processor 1601 reads the information in the memory 1602 and completes the steps of the above method in combination with its hardware.
  • the embodiments described herein can be implemented in hardware, software, firmware, middleware, microcode, or a combination thereof.
  • the processing unit can be implemented in one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processing (DSP), Digital Signal Processing Equipment (DSP Device, DSPD), programmable Programmable Logic Device (PLD), Field-Programmable Gate Array (FPGA), general purpose processor, controller, microcontroller, microprocessor, other for performing the functions described herein In an electronic unit or a combination thereof.
  • ASICs Application Specific Integrated Circuits
  • DSP Digital Signal Processing
  • DSP Device Digital Signal Processing Equipment
  • PLD programmable Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • the techniques described herein can be implemented by modules (eg, procedures, functions, and so on) that perform the functions described herein.
  • the software code can be stored in memory and executed by the processor.
  • the memory can be implemented in the processor or external to the processor.
  • the processor 1601 is further configured to: measure a second measurement indicator of the downlink reference signal; if the second measurement indicator of the downlink reference signal meets the second preset condition, according to the second measurement indicator The measurement result is sent to the network side device, where the target data is used by the network side device to determine whether the preset trigger condition is met.
  • the target data is a random access preamble preamble of the physical random access channel PRACH; or a request message sent by the mobile terminal to the network side device.
  • the request message carries a first signaling indicating that a beam recovery mechanism is activated and/or a second signaling indicating a BPL used by activating a beam recovery mechanism; or the preamble carries the First signaling and/or the second signaling.
  • the first signaling indicates whether to initiate beam recovery by using one data bit bit.
  • the second signaling indicates, by using a preset number of data bit bits, the BPL used by the mobile terminal to monitor the obtained start beam recovery mechanism.
  • the request message is carried on the uplink control channel, or transmitted using a wide beam, or simultaneously transmitted using multiple narrow beams.
  • the second measurement indicator includes a reference signal received power RSRP, a ratio of a cell reference signal power to a cell all signal power, a RSRQ, a signal to noise ratio SNR, a channel quality indicator CQI, and a transmission hybrid automatic retransmission. At least one of the requested confirmation information NACK.
  • the second measurement indicator includes at least one of a reference signal received power RSRP, a ratio of a cell reference signal power to a cell all signal power, a RSRQ, a signal to noise ratio SNR, and a channel quality indicator CQI.
  • the second preset condition includes: the number of times that the second measurement indicator is lower than the corresponding preset threshold value in the preset time period is greater than the second preset value;
  • the second preset condition further includes: generating the NACK in the preset time period is greater than the second pre- Set the value.
  • the processor 1601 is further configured to: receive a beam measurement reporting configuration sent by the network side device, and send a beam training result to the network side device according to the beam measurement reporting configuration, where The result of performing beam training is used for: the network side device determines an optimal BPL for data transmission.
  • the optimal BPL includes one or more target BPLs, each of the target BPLs including a control channel BPL for control channel transmission and/or a traffic channel BPL for traffic channel transmission, And all of the target BPLs include at least one of the control channel BPL and at least one of the traffic channels BPL.
  • the manner in which the multiple target BPLs perform data transmission includes: the same information and uses the same time-frequency resource, frequency division multiplexing FDM, time division multiplexing TDM, and code division multiplexing CDM. At least one of the transmission methods.
  • the indicating a new beam pair link BPL comprises indicating a new traffic channel BPL.
  • the indicating a new beam pair link BPL further comprises: indicating a new control channel BPL.
  • the processor 1601 is further configured to: receive a second indication message sent by the network side device, where the second indication message is used to initiate local beam training, where the local beam training is optimal control
  • the narrow beam training is performed in the channel BPL; the beam measurement result of the narrow beam training is fed back to the network side device, and the beam measurement result is used by: the network side device determines an optimal narrow beam, and the optimal The narrow beam is set to the new traffic channel BPL.
  • the mobile terminal receives the first indication message sent by the network side device, where the first indication message is a message that is sent to the mobile terminal when the network side device meets the preset trigger condition; the first indication The message is used to indicate that the new beam pair is linked to the BPL; the preset trigger condition is that the mobile terminal determines the startup beam recovery mechanism according to the measurement result of the downlink reference signal, or the network side device determines the startup beam recovery according to the uplink reference signal measurement result. a mechanism: switching the new BPL for data transmission according to the first indication message.
  • the network side device sends the first indication information to the mobile terminal, so that the mobile terminal and the network side are determined, because the uplink reference signal or the downlink reference signal is measured to determine the link state, and when the link transmission quality is deteriorated, and the beam recovery mechanism needs to be started.
  • the device switches to the new BPL for data transmission, monitors the link state through the upper layer with respect to the related technology, initiates RRC reconstruction, performs beam training, finds an optimal beam, and recovers data transmission.
  • the present disclosure reduces the delay of beam recovery. .
  • FIG. 17 is a structural diagram of a mobile terminal according to an embodiment of the present disclosure, which can implement the details of the medium beam recovery processing method in the third to some embodiments, and achieve the same effect.
  • the mobile terminal 1700 includes a radio frequency (RF) circuit 1710, a memory 1720, an input unit 1730, a display unit 1740, a processor 1750, an audio circuit 1760, a communication module 1770, and a power supply 1780, and includes a camera. (not shown in the figure).
  • RF radio frequency
  • the input unit 1730 can be configured to receive numeric or character information input by the user, and generate signal input related to user settings and function control of the mobile terminal 1700.
  • the input unit 1730 may include a touch panel 1731.
  • the touch panel 1731 also referred to as a touch screen, can collect touch operations on or near the user (such as the operation of the user using any suitable object or accessory such as a finger or a stylus on the touch panel 1731), and according to the preset The programmed program drives the corresponding connection device.
  • the touch panel 1731 may include two parts of a touch detection device and a touch controller.
  • the touch detection device detects the touch orientation of the user, and detects a signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts the touch information into contact coordinates, and sends the touch information.
  • the processor 1750 is provided and can receive commands from the processor 1750 and execute them.
  • the touch panel 1731 can be implemented in various types such as resistive, capacitive, infrared, and surface acoustic waves.
  • the input unit 1730 may further include other input devices 1732, which may include, but are not limited to, physical keyboards, function keys (such as volume control buttons, switch buttons, etc.), trackballs, mice, joysticks, and the like. One or more of them.
  • the display unit 1740 can be used to display information input by the user or information provided to the user and various menu interfaces of the mobile terminal 1700.
  • the display unit 1740 can include a display panel 1741.
  • the display panel 1741 can be configured in the form of an LCD or an Organic Light-Emitting Diode (OLED).
  • the touch panel 1731 can cover the display panel 1741 to form a touch display screen, and when the touch display screen detects a touch operation on or near it, it is transmitted to the processor 1750 to determine the type of the touch event, and then the processor The 1750 provides a corresponding visual output on the touch display depending on the type of touch event.
  • the processor 1750 is a control center of the mobile terminal 1700, and connects various parts of the entire mobile phone by using various interfaces and lines, by running or executing software programs and/or modules stored in the first memory 1721, and calling the second storage.
  • the data in the memory 1722 performs various functions and processing data of the mobile terminal 1700 to perform overall monitoring of the mobile terminal 1700.
  • processor 1750 can include one or more processing units.
  • the processor 1750 is configured to: receive the first sent by the network side device An indication message, where the first indication message is a message that is sent to the mobile terminal when the network side device meets the preset trigger condition; the first indication message is used to indicate a new beam pair link BPL; the preset trigger condition Determining, by the mobile terminal, the startup beam recovery mechanism according to the measurement result of the downlink reference signal, or determining, by the network side device, the startup beam recovery mechanism according to the uplink reference signal measurement result; and switching the new BPL to perform data according to the first indication message. transmission.
  • the processor 1750 is further configured to: measure a second measurement indicator of the downlink reference signal; if the second measurement indicator of the downlink reference signal meets the second preset condition, according to the second measurement indicator The measurement result is sent to the network side device, where the target data is used by the network side device to determine whether the preset trigger condition is met.
  • the target data is a random access preamble preamble of the physical random access channel PRACH; or a request message sent by the mobile terminal to the network side device.
  • the request message carries a first signaling indicating that a beam recovery mechanism is activated and/or a second signaling indicating a BPL used by activating a beam recovery mechanism; or the preamble carries the First signaling and/or the second signaling.
  • the first signaling indicates whether to initiate beam recovery by using one data bit bit.
  • the second signaling indicates, by using a preset number of data bit bits, the BPL used by the mobile terminal to monitor the obtained start beam recovery mechanism.
  • the request message is carried on the uplink control channel, or transmitted using a wide beam, or simultaneously transmitted using multiple narrow beams.
  • the second measurement indicator includes a reference signal received power RSRP, a ratio of a cell reference signal power to a cell all signal power, a RSRQ, a signal to noise ratio SNR, a channel quality indicator CQI, and a transmission hybrid automatic retransmission. At least one of the requested confirmation information NACK.
  • the second measurement indicator includes at least one of a reference signal received power RSRP, a ratio of a cell reference signal power to a cell all signal power, a RSRQ, a signal to noise ratio SNR, and a channel quality indicator CQI.
  • the second preset condition includes: the number of times that the second measurement indicator is lower than the corresponding preset threshold value in the preset time period is greater than the second preset value;
  • the second preset condition further includes: generating the NACK in the preset time period is greater than the second pre- Set the value.
  • the processor 1750 is further configured to: receive a beam measurement reporting configuration sent by the network side device, and send a beam training result to the network side device according to the beam measurement reporting configuration, where The result of performing beam training is used for: the network side device determines an optimal BPL for data transmission.
  • the optimal BPL includes one or more target BPLs, each of the target BPLs including a control channel BPL for control channel transmission and/or a traffic channel BPL for traffic channel transmission, And all of the target BPLs include at least one of the control channel BPL and at least one of the traffic channels BPL.
  • the manner in which the multiple target BPLs perform data transmission includes: the same information and uses the same time-frequency resource, frequency division multiplexing FDM, time division multiplexing TDM, and code division multiplexing CDM. At least one of the transmission methods.
  • the indicating a new beam pair link BPL comprises indicating a new traffic channel BPL.
  • the indicating a new beam pair link BPL further comprises: indicating a new control channel BPL.
  • the processor 1750 is further configured to: receive a second indication message sent by the network side device, where the second indication message is used to initiate local beam training, where the local beam training is optimal control
  • the narrow beam training is performed in the channel BPL; the beam measurement result of the narrow beam training is fed back to the network side device, and the beam measurement result is used by: the network side device determines an optimal narrow beam, and the optimal The narrow beam is set to the new traffic channel BPL.
  • the mobile terminal receives the first indication message sent by the network side device, where the first indication message is a message that is sent to the mobile terminal when the network side device meets the preset trigger condition; the first indication The message is used to indicate that the new beam pair is linked to the BPL; the preset trigger condition is that the mobile terminal determines the startup beam recovery mechanism according to the measurement result of the downlink reference signal, or the network side device determines the startup beam recovery according to the uplink reference signal measurement result. a mechanism: switching the new BPL for data transmission according to the first indication message.
  • the network side device sends the first indication information to the mobile terminal, so that the mobile terminal and the network side are determined, because the uplink reference signal or the downlink reference signal is measured to determine the link state, and when the link transmission quality is deteriorated, and the beam recovery mechanism needs to be started.
  • the device switches to the new BPL for data transmission, monitors the link state through the upper layer with respect to the related technology, initiates RRC reconstruction, performs beam training, finds an optimal beam, and recovers data transmission.
  • the present disclosure reduces the delay of beam recovery. .
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present disclosure.
  • each functional unit in various embodiments of the present disclosure may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product. Based on such understanding, a portion of the technical solution of the present disclosure that contributes in essence or to the related art or a part of the technical solution may be embodied in the form of a software product stored in a storage medium, including several The instructions are for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present disclosure.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a mobile hard disk, a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供一种波束恢复处理方法、网络侧设备及移动终端,该方法包括:若满足预设触发条件,网络侧设备向移动终端发送第一指示消息,所述第一指示消息用于指示新的波束对链接BPL;所述预设触发条件为所述移动终端根据下行参考信号的测量结果确定启动波束恢复机制或所述网络侧设备根据上行参考信号测量结果确定启动波束恢复机制;切换至所述新的BPL进行数据传输。

Description

一种波束恢复处理方法、网络侧设备及移动终端
相关申请的交叉引用
本申请主张在2017年2月5日在中国提交的中国专利申请号No.201710064761.7的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信领域,尤其涉及一种波束恢复处理方法、网络侧设备及移动终端。
背景技术
在对4G以后的下一代通信系统研究中,将系统支持的工作频段提升至6GHz以上,最高约达100GHz。高频段具有较为丰富的空闲频率资源,可以为数据传输提供更大的吞吐量。目前3GPP已经完成了高频信道建模工作,高频信号的波长短,同低频段相比,能够在同样大小的面板上布置更多的天线阵元,利用波束赋形技术形成指向性更强、波瓣更窄的波束。因此,将大规模天线和高频通信相结合,也是未来的趋势之一。然而,大规模天线的高频波束很窄,当受到阻挡时会断掉通信链路,影响业务传输。在传统的方案中,由高层判断无线链路传输质量变差后,发起RRC重建,再进行波束训练,找到最优波束,恢复数据传输,这样的过程具有较长时延。
发明内容
本公开实施例提供一种波束恢复处理方法、网络侧设备及移动终端,以解决波束恢复具有较长时延的问题。
第一方面,本公开实施例提供了一种波束恢复处理方法,包括:若满足预设触发条件,网络侧设备向移动终端发送第一指示消息,所述第一指示消息用于指示新的波束对链接BPL;所述预设触发条件为所述移动终端根据下行参考信号的测量结果确定启动波束恢复机制或所述网络侧设备根据上行参考信号测量结果确定启动波束恢复机制;切换至所述新的BPL进行数据传输。
第二方面,本公开实施例还提供了一种波束恢复处理方法,包括:移动终端接收网络侧设备所发送的第一指示消息,所述第一指示消息为网络侧设备满足预设触发条件时向所述移动终端发送的消息;所述第一指示消息用于指示新的波束对链接BPL;所述预设触发条件为所述移动终端根据下行参考信号的测量结果确定启动波束恢复机制或所述网络侧设备根据上行参考信号测量结果确定启动波束恢复机制;根据所述第一指示消息切换所述新的BPL进行数据传输。
第三方面,本公开实施例还提供了一种网络侧设备,包括:指示消息发送模块,用于若满足预设触发条件,向移动终端发送第一指示消息,所述第一指示消息用于指示新的波束对链接BPL;所述预设触发条件为所述移动终端根据下行参考信号的测量结果确定启动波束恢复机制或所述网络侧设备根据上行参考信号测量结果确定启动波束恢复机制;第一通信切换模块,用于切换至所述新的BPL进行数据传输。
第四方面,本公开实施例还提供了一种移动终端,包括:指示消息接收模块,用于接收网络侧设备所发送的第一指示消息,所述第一指示消息为网络侧设备满足预设触发条件时向所述移动终端发送的消息;所述第一指示消息用于指示新的波束对链接BPL;所述预设触发条件为所述移动终端根据下行参考信号的测量结果确定启动波束恢复机制或所述网络侧设备根据上行参考信号测量结果确定启动波束恢复机制;第二通信切换模块,用于根据所述第一指示消息切换所述新的BPL进行数据传输。
第五方面,本公开实施例还提供了一种网络侧设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如第一方面所述的波束恢复处理方法的步骤。
第六方面,本公开实施例还提供了一种移动终端,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如第二方面所述的波束恢复处理方法的步骤。
第七方面,本公开实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求第一方面或者第二方面所述的波束恢复处理方法的步骤。
这样,本公开实施例中,若满足预设触发条件,网络侧设备向移动终端发送第一指示消息,所述第一指示消息用于指示新的波束对链接BPL;所述预设触发条件为所述移动终端根据下行参考信号的测量结果确定启动波束恢复机制或所述网络侧设备根据上行参考信号测量结果确定启动波束恢复机制;切换至所述新的BPL进行数据传输。由于对上行参考信号或下行参考信号进行测量确定链路状态,并当链路传输质量变差需要启动波束恢复机制时,网络侧设备向移动终端发送第一指示信息,从而将移动终端和网络侧设备切换至新的BPL上进行数据传输,相对于相关技术通过高层监测链路状态,并发起RRC重建,再进行波束训练,找到最优波束,恢复数据传输,本公开降低了波束恢复的时延。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本公开一些实施例中提供的波束恢复处理方法的流程图;
图2是本公开一些实施例中提供的波束恢复处理方法的流程图;
图3是本公开一些实施例中提供的波束恢复处理方法的流程图;
图4是本公开一些实施例中提供的波束恢复处理方法的流程图;
图5是本公开一些实施例中提供的波束恢复处理方法的流程图;
图6是本公开实施例提供的波束恢复处理方法中移动终端与网络侧设备之间BPL示意图;
图7是本公开实施例提供的波束恢复处理方法中移动终端与网络侧设备之间BPL示意图;
图8是本公开实施例提供的波束恢复处理方法中移动终端与网络侧设备之间BPL示意图;
图9是本公开一些实施例中提供的波束恢复处理方法的流程图;
图10是本公开一些实施例中提供的波束恢复处理方法的流程图;
图11是本公开一些实施例中提供的波束恢复处理方法的流程图;
图12是本公开一些实施例中提供的波束恢复处理方法的流程图;
图13是本公开一些实施例中提供的网络侧设备的结构图;
图14是本公开一些实施例中提供的移动终端的结构图;
图15是本公开一些实施例中提供的网络侧设备的结构图;
图16是本公开一些实施例中提供的移动终端的结构图;
图17是本公开一些实施例中提供的移动终端的结构图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
参见图1,图1是本公开实施例提供的波束恢复处理方法的流程图,如图1所示,包括以下步骤。
步骤101,若满足预设触发条件,网络侧设备向移动终端发送第一指示消息,所述第一指示消息用于指示新的波束对链接BPL;所述预设触发条件为所述移动终端根据下行参考信号的测量结果确定启动波束恢复机制或所述网络侧设备根据上行参考信号测量结果确定启动波束恢复机制。
本公开实施例提供的波束恢复处理方法主要应用在无线通信系统中,用于判断无线链路是否传输质量变差,并进行波束的恢复处理。
可以理解的是,上述网络侧设备(也可称为MF接入设备)可以是基站,当然可以理解的是,上述基站的形式不限,可以是宏基站(Macro Base Station)、微基站(Pico Base Station)、Node B(3G移动基站的称呼)、增强型基站(ENB)、家庭增强型基站(Femto eNB或Home eNode B或Home eNB或HNEB)、中继站、接入点、RRU(Remote Radio Unit,远端射频模块)、RRH(Remote Radio Head,射频拉远头)等。
具体的,本实施例中,可以根据上行参考信号或下行参考信号的测量结果,确定无线链路是否传输质量变差,从而确定是否启动波束恢复机制。当 无线链路传输质量变差时,确定启动波束恢复机制,当无线链路成功时,确定无需启动波束恢复机制。
上述上行参考信号可以包括:上行业务信道的解调参考信号DMRS(De Modulation Reference Signal)和/或信道探测参考信号SRS(Sounding Reference Signal)等。
上述下行参考信号可以包括:下行业务信道的解调参考信号DMRS(De Modulation Reference Signal)和/或信道状态信息参考信号CSI-RS(Channel State Information-Reference Signal)等。
在本实施例中,网络侧设备可以直接对上行参考信号进行测量,从而监控波束质量,确定是否启动波束恢复机制。此外还可以由移动终端对下行参考信号进行测量,从而监控波束质量,并将监测的结果发送至网络侧设备,指示网络侧设备启动波束恢复机制。
无论是网络侧设备确定启动波束恢复机制,还是移动终端确定启动波束恢复机制,均会触发网络侧设备向移动终端发送第一指示消息,通过该第一指示消息指示新的BPL(Beam pair link)。应理解,指示新的BPL的数量可以根据实际需要进行设置,例如可以为一个BPL,也可以为多个PBL组成的PBL组。
步骤102,切换至所述新的BPL进行数据传输。
该步骤中,网络侧设备在发送完第一指示消息后,将会切换BPL,与此同时移动终端在接收上述第一指示消息后,将会根据第一指示消息所指示的BPL切换BPL,从而在新的BPL上进行数据传输。
这样,本公开实施例中,若满足预设触发条件,网络侧设备向移动终端发送第一指示消息,所述第一指示消息用于指示新的波束对链接BPL;所述预设触发条件为所述移动终端根据下行参考信号的测量结果确定启动波束恢复机制或所述网络侧设备根据上行参考信号测量结果确定启动波束恢复机制;切换至所述新的BPL进行数据传输。由于对上行参考信号或下行参考信号进行测量确定链路状态,并当链路传输质量变差需要启动波束恢复机制时,网络侧设备向移动终端发送第一指示信息,从而将移动终端和网络侧设备切换至新的BPL上进行数据传输,相对于相关技术通过高层监测链路状态,并发 起RRC重建,再进行波束训练,找到最优波束,恢复数据传输,本公开降低了波束恢复的时延。
应当说明的是,对于链路状态的监测可以由移动终端进行,也可以由网络侧设备进行。以下将以两种不同的实施方式进行详细说明:
在一实施方式中,若由网络侧设备根据上行参考信号的测量结果,确定是否启动波束恢复机制,则可以参照图2,图2是本公开实施例提供的波束恢复处理方法的流程图,如图2所示,上述步骤101之前,所述方法还包括:
步骤103,测量上行参考信号的第一测量指标。
该步骤中,上述第一测量指标的具体参数可以根据实际需要进行设置,例如本实施例中,上述第一测量指标包括参考信号接收功率RSRP(Reference Signal Receiving Power)、小区参考信号功率相对小区所有信号功率的比值RSRQ(Reference Signal Receiving Quality)、信噪比SNR(SIGNAL-NOISE RATIO)、信道质量指示CQI(Channel Quality Indicator)和传输混合自动重传请求的确认信息NACK中的至少一项。
在本实施例中,网络侧设备可以根据上述第一测量指标对上行参考信号进行测量,获得相应的结果。
步骤104,若所述上行参考信号的第一测量指标满足第一预设条件,则确定满足预设触发条件。
该步骤中,上述第一预设条件的内容可以根据实际需要进行设置。本实施例中,当所述第一测量指标包括参考信号接收功率RSRP、小区参考信号功率相对小区所有信号功率的比值RSRQ、信噪比SNR和信道质量指示CQI中的至少一项时,所述第一预设条件包括:在预设时间段内所述第一测量指标低于对应的预设门限值的次数大于第一预设值;当所述第一测量指标包括传输混合自动重传请求的确认信息NACK时,所述第一预设条件还包括:在所述预设时间段内产生所述NACK的次数大于所述第一预设值。
具体的,上述门限值的大小可以根据实际需要进行设置,且第一测量指标不同的参数对应的门限值的大小可以不同。应理解,在其他实施例中,上述第一预设条件还可以设置为在预设时间段内所述第一测量指标的具体参数的累计值的平均值是否低于对应的门限值,若是,则认为波束质量变差,确 定需要启动波束恢复机制。
当第一测量指标设置有多个参数时,可以是一个参数满足对应的第一预设条件,即可以确定需要启动波束恢复机制;也可以是所有的参数满足对应的第一预设条件,才可以确定需要启动波束恢复机制。此外,还可以是每当第一测量指标的一个参数满足对应的第一预设条件时,计数器加1,判断计数器的值是否大于第一预设值等方式均可实现,在此不再一一赘述。
本实施例中,可以灵活设置上述第一预设值的大小,提高波束质量变差的准确性和灵活性。
上述NACK指标用于业务信道的波束测量指标,是指终端接收下行业务信道PDSCH(Physical Downlink Shared Channel,物理下行共享信道)并解码错误,产生用于反馈给网络侧设备的HARQ信令NACK,来标识本次传输错误。每当产生一个NACK,可以控制计数器加1,判断在预设的时间段内计数器的值是否大于第一预设值,即可确定是否需要启动波束恢复机制。
在另一实施方式中,若由移动终端根据下行参考信号的测量结果,确定是否启动波束恢复机制,则可以参照图3,图3是本公开实施例提供的波束恢复处理方法的流程图,如图3所示,上述步骤101包括:步骤105,接收移动终端根据下行参考信号的第二测量指标的测量结果,向所述网络侧设备发送的目标数据。
该步骤中,上述第二测量指标的具体参数可以根据实际需要进行设置,例如本实施例中,上述第二测量指标包括参考信号接收功率RSRP、小区参考信号功率相对小区所有信号功率的比值RSRQ、信噪比SNR、信道质量指示CQI和传输混合自动重传请求的确认信息NACK中的至少一项。
在本实施例中,移动终端可以根据上述第二测量指标对下行参考信号进行测量,获得相应的结果,并根据测量的结果发送相应的目标数据,从而由网络侧设备根据该目标数据启动波束恢复机制。
步骤106,根据所述目标数据确定是否满足预设触发条件。
该步骤中,上述目标数据上报的方式可以根据实际需要进行设置。此外上述目标数据的内容也可以根据实际需要进行设置,例如,可以是直接告知网络侧设备启动波束恢复机制的消息,也可以是隐含告知网络侧设备是否启 动波束恢复机制的消息。以下对此进行详细说明:
在一实施例中,移动终端可以通过物理随机接入信道PRACH的随机接入前导码preamble进行上报,即上述目标数据可以为物理随机接入信道PRACH的随机接入前导码preamble。为了与传统随机接入过程中的preamble相区别,可以设计为新的type,例如新的时频发送图样等。即根据某种规则向基站进行不同空间方向的轮流波束发射。
具体的,移动终端向基站发送PRACH preamble,可以是beam sweeping的方式如:以原BPL的方向为中心,与该方向由相近到远离的顺序依次发射上行波束;或者与该方向由远离到相近的顺序依次发射上行波束;或者与该方向的相近和远离方向的某个跳变顺序来依次发射上行波束。
在另一实施例中,移动终端可以向网络侧设备发送request,即上述目标数据可以为移动终端向网络侧设备发送的request消息。
在一些可选的实施例中,在所述request消息携带指示启动波束恢复机制的第一信令和/或指示启动波束恢复机制所使用的BPL的第二信令;或者,所述preamble携带所述第一信令和/或所述第二信令。例如,所述第一信令中通过1个数据位bit指示是否启动波束恢复。所述第二信令中通过预设数量的数据位bit指示所述移动终端监测获得的启动波束恢复机制所使用的BPL。
应当说明的是,启动波束恢复机制所使用的BPL可以是一个,也可以是多个(即BPL组)。本实施例中,指示所述移动终端监测获得的启动波束恢复机制所使用的BPL可以为移动终端检测到的最优的BPL,也可以是移动终端从最优的BPL中推荐的BPL,具体地,移动终端上报的BPL可以与网络侧设备当前使用的最优BPL保持不变,也可以更改为其他BPL,在此不做进一步的限定。
具体的,当采用request消息发送到网络侧设备,并由网络侧设备根据request消息确定是否启动波束恢复机制时,request消息的发送方式可以根据实际需要进行设置,例如上述request消息在上行控制信道上承载发送,或者使用宽波束发送,或者使用多个窄波束同时发送。
进一步,在进行波束质量监测前,移动终端均需要进行接入无线网络,即接入网络侧设备提供的无线网络,建立BPL。具体的,参照图4,上述波 束恢复处理方法包括:
步骤401,向通过随机接入过程接入到网络侧设备的移动终端发送波束测量上报配置。
步骤402,接收所述移动终端基于所述波束测量上报配置进行波束训练所上报的结果。
步骤403,根据上报的结果确定最优的BPL进行数据传输。
步骤404,若满足预设触发条件,网络侧设备向移动终端发送第一指示消息,所述第一指示消息用于指示新的波束对链接BPL;所述预设触发条件为所述移动终端根据下行参考信号的测量结果确定启动波束恢复机制或所述网络侧设备根据上行参考信号测量结果确定启动波束恢复机制。
步骤405,切换至所述新的BPL进行数据传输。
本实施例中,上述最优的BPL即为发射波束Tx beam和接收波束Rx beam的方向对齐,获得最优的数据传输质量。找到最优BPL可以是多个,BPL来自相同或者不同的TRP(Transmission and Reception Point发送接收点)。这里不限制多个TRP是否归属于同一个基站。TRP对于BPL的维护以及使用,可以通过基站来进行控制或交互。
也就是说,在本实施例中,所述最优的BPL包括一个或多个目标BPL。其中每一目标BPL的可以有一套或者两套BPL,即每一所述目标BPL包括针对控制信道传输的控制信道BPL和/或针对业务信道传输的业务信道BPL;其中所有的所述目标BPL包括至少一个所述控制信道BPL和至少一个业务信道BPL。
具体的,针对控制信道传输的控制信道BPL通常采用宽波束发送,也可以采用多个窄波束联合发送。业务信道BPL通常采用一个窄波束发送,对此还可以采用多个窄波束进行联合发送。也就是说在本实施例中,所述多个目标BPL进行数据传输的方式包括:相同的信息并且使用相同的时频资源、频分复用FDM、时分复用TDM和码分复用CDM的传输方式中的至少一项。
进一步的,对于指示的新的波束对链接BPL中的内容可以根据实际需要进行设置,例如,在一实施例中,所述指示新的波束对链接BPL包括:指示新的业务信道BPL。在另一实施例中,所述指示新的波束对链接BPL还包括: 指示新的控制信道BPL。
此外,在指示新的业务信道BPL前,还可以对窄波束进行测量,确定最优的BPL,从而提高业务信道BPL传输的质量。参照图5所示,上述波束恢复处理方法包括:
步骤501,若满足预设触发条件,网络侧设备向所述移动终端发送第二指示消息,所述第二指示消息用于指示启动局部波束训练,所述局部波束训练为最优控制信道BPL内,进行窄波束训练。
步骤502,接收所述移动终端对所述窄波束训练所反馈的波束测量结果。
步骤503,根据所述波束测量结果确定最优窄波束,并将所述最优窄波束设定为所述新的业务信道BPL。
步骤504,向移动终端发送第一指示消息,所述第一指示消息用于指示新的波束对链接BPL;所述预设触发条件为所述移动终端根据下行参考信号的测量结果确定启动波束恢复机制或所述网络侧设备根据上行参考信号测量结果确定启动波束恢复机制。
步骤505,切换至所述新的BPL进行数据传输。
本实施例中,可以对最优的控制信道BPL内的窄波束进行波束训练,从而确定出最优的窄波束,将最优的窄波束指示为新的业务信道BPL,从而提高了业务信道BPL传输的质量。
针对不同的业务信道BPL和控制信道BPL的传输情况以及波束恢复情况,以下将以不同的实例进行阐述。
在建立BPL后,找到的最优BPL可以为多个,且多个BPL来自不同的TRP,该BPL具有两套,包括控制信道BPL和业务信道BPL。
如图6所示,两个TRP和移动终端之间分别建立了宽BPL(即控制信道BPL)和窄BPL(即业务信道BPL)。在宽BPL上可以发送相同的信息内容,从而在一个宽BPL被阻挡时,另一个BPL仍然可以正常使用。
如图7所示,业务信道的窄BPL被阻挡,但控制信道的宽BPL仍然能够连接,如图8所示,业务信道的窄BPL和控制信道的宽BPL均被阻挡。此时,移动终端上报request消息或发送preamble时,除了携带指示启动波束恢复机制的第一信令(如1bit指示启动),还可以携带最优的PDCCH(Physical  Downlink Control Channel,物理下行控制信道)BPL和/或PDSCH BPL的第二信令。即,如果当前宽BPL质量仍然可以进行传输,可以继续使用。如果当前宽BPL虽然未中断但质量很差,或者当前宽BPL被阻挡了,那么此时request消息中要携带使用其他的新BPL的消息。
网络侧设备根据移动终端反馈的request消息,要向移动终端指示新的PDCCH波束和/或新的PDSCH波束。其中,新的PDCCH的波束可以是原来的宽BPL或者新的宽BPL;新的PDSCH波束可以是原来宽BPL中的其它窄BPL,或者新的宽BPL中的窄BPL。
此外,网络侧设备还可以向移动终端指示启动局部波束训练,例如在网络侧设备指示的宽BPL内,共包含3个窄波束,则对着3个窄波束进行轮流发射,即局部波束训练。移动终端接收后反馈最优的窄波束,从而确定在宽BPL内的新的窄BPL。本实施例中,通过网络侧设备的指示,从而确定最终的新BPL,能够更加快速和准确。
参照图9,图9是本公开实施例提供的波束恢复处理方法的流程图,如图9所示,该波束恢复处理方法,包括以下步骤。
步骤901,移动终端接收网络侧设备所发送的第一指示消息,所述第一指示消息为网络侧设备满足预设触发条件时向所述移动终端发送的消息;所述第一指示消息用于指示新的波束对链接BPL;所述预设触发条件为所述移动终端根据下行参考信号的测量结果确定启动波束恢复机制或所述网络侧设备根据上行参考信号测量结果确定启动波束恢复机制。
本公开实施例提供的波束恢复处理方法主要应用在无线通信系统中,用于判断无线链路是否传输质量变差,并进行波束的恢复处理。
可以理解的是,上述网络侧设备(也可称为MF接入设备)可以是基站,当然可以理解的是,上述基站的形式不限,可以是宏基站(Macro Base Station)、微基站(Pico Base Station)、Node B(3G移动基站的称呼)、增强型基站(ENB)、家庭增强型基站(Femto eNB或Home eNode B或Home eNB或HNEB)、中继站、接入点、RRU(Remote Radio Unit,远端射频模块)、RRH(Remote Radio Head,射频拉远头)等。
具体的,本实施例中,可以根据上行参考信号或下行参考信号的测量结 果,确定无线链路是否传输质量变差,从而确定是否启动波束恢复机制。当无线链路传输质量变差时,确定启动波束恢复机制,当无线链路未变差时,确定无需启动波束恢复机制。
上述上行参考信号可以包括:上行业务信道的解调参考信号DMRS(De Modulation Reference Signal)和/或信道探测参考信号SRS(Sounding Reference Signal)等。
上述下行参考信号可以包括:下行业务信道的解调参考信号DMRS(De Modulation Reference Signal)和/或信道状态信息参考信号CSI-RS(Channel State Information-Reference Signal)等。
在本实施例中,网络侧设备可以直接对上行参考信号进行测量,从而监控波束质量,确定是否启动波束恢复机制。此外还可以由移动终端对下行参考信号进行测量,从而监控波束质量,并将监测的结果发送至网络侧设备,指示网络侧设备启动波束恢复机制。
无论是网络侧设备确定启动波束恢复机制,还是移动终端确定启动波束恢复机制,均会触发网络侧设备向移动终端发送第一指示消息,通过该第一指示消息指示新的BPL。应理解,指示新的BPL的数量可以根据实际需要进行设置,例如可以为一个BPL,也可以为多个PBL组成的PBL组。
步骤902,根据所述第一指示消息切换所述新的BPL进行数据传输。
该步骤中,网络侧设备在发送完第一指示消息后,将会切换BPL,与此同时移动终端在接收上述第一指示消息后,将会根据第一指示消息所指示的BPL切换BPL,从而在新的BPL上进行数据传输。
这样,本公开实施例中,移动终端接收网络侧设备所发送的第一指示消息,所述第一指示消息为网络侧设备满足预设触发条件时向所述移动终端发送的消息;所述第一指示消息用于指示新的波束对链接BPL;所述预设触发条件为所述移动终端根据下行参考信号的测量结果确定启动波束恢复机制或所述网络侧设备根据上行参考信号测量结果确定启动波束恢复机制;根据所述第一指示消息切换所述新的BPL进行数据传输。由于对上行参考信号或下行参考信号进行测量确定链路状态,并当链路传输质量变差需要启动波束恢复机制时,网络侧设备向移动终端发送第一指示信息,从而将移动终端和网 络侧设备切换至新的BPL上进行数据传输,相对于相关技术通过高层监测链路状态,并发起RRC重建,再进行波束训练,找到最优波束,恢复数据传输,本公开降低了波束恢复的时延。
在一些可选的实施例中,应当说明的是,对于链路状态的监测可以由移动终端进行,也可以由网络侧设备进行。以下移动终端进行链路状态的监测进行详细说明:
在一些可选的实施例中,参照图10,在上述步骤901之前,所述方法还包括:
步骤903,测量下行参考信号的第二测量指标。
该步骤中,上述第二测量指标的具体参数可以根据实际需要进行设置,例如本实施例中,上述第二测量指标包括参考信号接收功率RSRP、小区参考信号功率相对小区所有信号功率的比值RSRQ、信噪比SNR、信道质量指示CQI和传输混合自动重传请求的确认信息NACK中的至少一项。
在本实施例中,移动终端可以根据上述第二测量指标对下行参考信号进行测量,获得相应的结果,并根据测量的结果发送相应的目标数据,从而由网络侧设备根据该目标数据启动波束恢复机制。
步骤904,若所述下行参考信号的第二测量指标满足第二预设条件,根据第二测量指标的测量结果向网络侧设备发送目标数据,所述目标数据用于:网络侧设备确定是否满足预设触发条件。
该步骤中,上述第二预设条件的内容可以根据实际需要进行设置,例如本实施例中,当所述第二测量指标包括参考信号接收功率RSRP、小区参考信号功率相对小区所有信号功率的比值RSRQ、信噪比SNR和信道质量指示CQI中的至少一项时,所述第二预设条件包括:在预设时间段内所述第二测量指标低于对应的预设门限值的次数大于第二预设值;
当所述第二测量指标包括传输混合自动重传请求的确认信息NACK时,所述第二预设条件还包括:在所述预设时间段内产生所述NACK的次数大于所述第二预设值。
上述目标数据上报的方式可以根据实际需要进行设置。此外上述目标数据的内容也可以根据实际需要进行设置,例如,可以是直接告知网络侧设备 启动波束恢复机制的消息,也可以是隐含告知网络侧设备是否启动波束恢复机制的消息。以下对此进行详细说明:
在一实施例中,移动终端可以通过物理随机接入信道PRACH的随机接入前导码preamble进行上报,即上述目标数据可以为物理随机接入信道PRACH的随机接入前导码preamble。为了与传统随机接入过程中的preamble相区别,可以设计为新的type,例如新的时频发送图样等。即根据某种规则向基站进行不同空间方向的轮流波束发射。
具体的,移动终端向基站发送PRACH preamble,可以是beam sweeping的方式如:以原BPL的方向为中心,与该方向由相近到远离的顺序依次发射上行波束;或者与该方向由远离到相近的顺序依次发射上行波束;或者与该方向的相近和远离方向的某个跳变顺序来依次发射上行波束。
在另一实施例中,移动终端可以向网络侧设备发送request,即上述目标数据可以为移动终端向网络侧设备发送的request消息。
在一些可选的实施例中,在所述request消息携带指示启动波束恢复机制的第一信令和/或指示启动波束恢复机制所使用的BPL的第二信令;或者,所述preamble携带所述第一信令和/或所述第二信令。例如,所述第一信令中通过1个数据位bit指示是否启动波束恢复。所述第二信令中通过预设数量的数据位bit指示所述移动终端监测获得的启动波束恢复机制所使用的BPL。
应当说明的是,启动波束恢复机制所使用的BPL可以是一个,也可以是多个(即BPL组)。本实施例中,指示所述移动终端监测获得的启动波束恢复机制所使用的BPL可以为移动终端检测到的最优的BPL,也可以是移动终端从最优的BPL中推荐的BPL,具体地,移动终端上报的BPL可以与网络侧设备当前使用的最优BPL保持不变,也可以更改为其他BPL,在此不做进一步的限定。
具体的,当采用request消息发送到网络侧设备,并由网络侧设备根据request消息确定是否启动波束恢复机制时,request消息的发送方式可以根据实际需要进行设置,例如上述request消息在上行控制信道上承载发送,或者使用宽波束发送,或者使用多个窄波束同时发送。
进一步,在进行波束质量监测前,移动终端均需要进行接入无线网络, 即接入网络侧设备提供的无线网络,建立BPL。具体的,参照图11,在上述步骤901之前,所述方法还包括:
步骤905,接收所述网络侧设备发送的波束测量上报配置。
步骤906,根据所述波束测量上报配置向所述网络侧设备发送进行波束训练的结果,所述进行波束训练的结果用于:所述网络侧设备确定最优的BPL进行数据传输。
本实施例中,上述最优的BPL即为发射波束Tx beam和接收波束Rx beam的方向对齐,获得最优的数据传输质量。找到最优BPL可以是多个,BPL来自相同或者不同的TRP(Transmission and Reception Point发送接收点)。这里不限制多个TRP是否归属于同一个基站。TRP对于BPL的维护以及使用,可以通过基站来进行控制或交互。
也就是说,在本实施例中,所述最优的BPL包括一个或多个目标BPL。其中每一目标BPL的可以有一套或者两套BPL,即每一所述目标BPL包括针对控制信道传输的控制信道BPL和/或针对业务信道传输的业务信道BPL;其中所有的所述目标BPL包括至少一个所述控制信道BPL和至少一个所述业务信道BPL。
具体的,针对控制信道传输的控制信道BPL通常采用宽波束发送,也可以采用多个窄波束联合发送。业务信道BPL通常采用一个窄波束发送,对此还可以采用多个窄波束进行联合发送。也就是说在本实施例中,所述多个目标BPL进行数据传输的方式包括:相同的信息并且使用相同的时频资源、频分复用FDM、时分复用TDM和码分复用CDM的传输方式中的至少一项。
进一步的,对于指示的新的波束对链接BPL中的内容可以根据实际需要进行设置,例如,在一实施例中,所述指示新的波束对链接BPL包括:指示新的业务信道BPL。在另一实施例中,所述指示新的波束对链接BPL还包括:指示新的控制信道BPL。
此外,在指示新的业务信道BPL前,还可以对窄波束进行测量,确定最优的BPL,从而提高业务信道BPL传输的质量。参照图12所示,在上述步骤901之前,所述方法还包括以下步骤。
步骤907,接收网络侧设备发送的第二指示消息,所述第二指示消息用 于指示启动局部波束训练,所述局部波束训练为最优控制信道BPL内,进行窄波束训练;
步骤908,将所述窄波束训练的波束测量结果反馈至网络侧设备,所述波束测量结果用于:所述网络侧设备确定最优窄波束,并将所述最优窄波束设定为所述新的业务信道BPL。
本实施例中,可以对最优的控制信道BPL内的窄波束进行波束训练,从而确定出最优的窄波束,将最优的窄波束指示为新的业务信道BPL,从而提高了业务信道BPL传输的质量。
针对不同的业务信道BPL和控制信道BPL的传输情况以及波束恢复情况,以下将以不同的实例进行阐述。
在建立BPL后,找到的最优BPL可以为多个,且多个BPL来自不同的TRP,该BPL具有两套,包括控制信道BPL和业务信道BPL。
如图6所示,两个TRP和移动终端之间分别建立了宽BPL(即控制信道BPL)和窄BPL(即业务信道BPL)。在宽BPL上可以发送相同的信息内容,从而在一个宽BPL被阻挡时,另一个BPL仍然可以正常使用。
如图7所示,业务信道的窄BPL被阻挡,但控制信道的宽BPL仍然能够连接,如图8所示,业务信道的窄BPL和控制信道的宽BPL均被阻挡。此时,移动终端上报request消息或者发送所述preamble时,除了携带指示启动波束恢复机制的第一信令(如1bit指示启动),还可以携带最优的PDCCH(Physical Downlink Control Channel,物理下行控制信道)BPL和/或PDSCH BPL的第二信令。即,如果当前宽BPL质量仍然可以进行传输,可以继续使用。如果当前宽BPL虽然未中断但质量很差,或者当前宽BPL被阻挡了,那么此时request消息中要携带使用其他的新BPL的消息。
网络侧设备根据移动终端反馈的request消息,要向移动终端指示新的PDCCH波束和/或新的PDSCH波束。其中,新的PDCCH的波束可以是原来的宽BPL或者新的宽BPL;新的PDSCH波束可以是原来宽BPL中的其它窄BPL,或者新的宽BPL中的窄BPL。
此外,网络侧设备还可以向移动终端指示启动局部波束训练,例如在网络侧设备指示的宽BPL内,共包含3个窄波束,则对着3个窄波束进行轮流 发射,即局部波束训练。移动终端接收后反馈最优的窄波束,从而确定在宽BPL内的新的窄BPL。本实施例中,通过网络侧设备的指示,从而确定最终的新BPL,能够更加快速和准确。
参见图13,图13是本公开实施提供的网络侧设备的结构图,能够实现上述实施例中中波束恢复处理方法的细节,并达到相同的效果。如图13所示,网络侧设备1300包括指示消息发送模块1301和第一通信切换模块1302,其中:指示消息发送模块1301,用于若满足预设触发条件,向移动终端发送第一指示消息,所述第一指示消息用于指示新的波束对链接BPL;所述预设触发条件为所述移动终端根据下行参考信号的测量结果确定启动波束恢复机制或所述网络侧设备根据上行参考信号测量结果确定启动波束恢复机制;第一通信切换模块1302,用于切换至所述新的BPL进行数据传输。
在一些可选的实施例中,所述网络侧设备还包括:第一测量模,用于测量上行参考信号的第一测量指标;第一确定模块,用于若所述上行参考信号的第一测量指标满足第一预设条件,则确定满足预设触发条件。
在一些可选的实施例中,所述第一测量指标包括参考信号接收功率RSRP、小区参考信号功率相对小区所有信号功率的比值RSRQ、信噪比SNR、信道质量指示CQI和传输混合自动重传请求的确认信息NACK中的至少一项。
在一些可选的实施例中,当所述第一测量指标包括参考信号接收功率RSRP、小区参考信号功率相对小区所有信号功率的比值RSRQ、信噪比SNR和信道质量指示CQI中的至少一项时,所述第一预设条件包括:在预设时间段内所述第一测量指标低于对应的预设门限值的次数大于第一预设值;当所述第一测量指标包括传输混合自动重传请求的确认信息NACK时,所述第一预设条件还包括:在所述预设时间段内产生所述NACK的次数大于所述第一预设值。
在一些可选的实施例中,所述网络侧设备还包括:目标数据接收模块,用于接收移动终端根据下行参考信号的第二测量指标的测量结果,向所述网络侧设备发送的目标数据;第二确定模块,用于根据所述目标数据确定是否满足预设触发条件。
在一些可选的实施例中,所述目标数据为物理随机接入信道PRACH的 随机接入前导码preamble;或者,为移动终端向网络侧设备发送的request消息。
在一些可选的实施例中,所述request消息携带指示启动波束恢复机制的第一信令和/或指示启动波束恢复机制所使用的BPL的第二信令;或者,所述preamble携带所述第一信令和/或所述第二信令。
在一些可选的实施例中,所述第一信令中通过1个数据位bit指示是否启动波束恢复。
在一些可选的实施例中,所述第二信令中通过预设数量的数据位bit指示所述移动终端监测获得的启动波束恢复机制所使用的BPL。
在一些可选的实施例中,所述request消息在上行控制信道上承载发送,或者使用宽波束发送,或者使用多个窄波束同时发送。
在一些可选的实施例中,所述第二测量指标包括参考信号接收功率RSRP、小区参考信号功率相对小区所有信号功率的比值RSRQ、信噪比SNR、信道质量指示CQI和传输混合自动重传请求的确认信息NACK中的至少一项。
在一些可选的实施例中,所述网络侧设备还包括:配置发送模块,用于向通过随机接入过程接入到网络侧设备的移动终端发送波束测量上报配置;上报结果接收模块,用于接收所述移动终端基于所述波束测量上报配置进行波束训练所上报的结果;第三确定模块,用于根据上报的结果确定最优的BPL进行数据传输。
在一些可选的实施例中,所述最优的BPL包括一个或多个目标BPL,每一所述目标BPL包括针对控制信道传输的控制信道BPL和/或针对业务信道传输的业务信道BPL,且所有的所述目标BPL包括至少一个所述控制信道BPL和至少一个所述业务信道BPL。
在一些可选的实施例中,所述多个目标BPL进行数据传输的方式包括:相同的信息并且使用相同的时频资源、频分复用FDM、时分复用TDM和码分复用CDM的传输方式中的至少一项。
在一些可选的实施例中,所述指示新的波束对链接BPL包括:指示新的业务信道BPL。
在一些可选的实施例中,所述指示新的波束对链接BPL还包括:指示新 的控制信道BPL。
在一些可选的实施例中,所述网络侧设备还包括测量结果接收模块和处理模块,其中,所述指示消息发送模块,还用于向所述移动终端发送第二指示消息,所述第二指示消息用于指示启动局部波束训练,所述局部波束训练为最优控制信道BPL内,进行窄波束训练;所述测量结果接收模块,用于接收所述移动终端对所述窄波束训练所反馈的波束测量结果;所述处理模块,用于根据所述波束测量结果确定最优窄波束,并将所述最优窄波束设定为所述新的业务信道BPL。
这样,本公开实施例中,若满足预设触发条件,网络侧设备向移动终端发送第一指示消息,所述第一指示消息用于指示新的波束对链接BPL;所述预设触发条件为所述移动终端根据下行参考信号的测量结果确定启动波束恢复机制或所述网络侧设备根据上行参考信号测量结果确定启动波束恢复机制;切换至所述新的BPL进行数据传输。由于对上行参考信号或下行参考信号进行测量确定链路状态,并当链路传输质量变差需要启动波束恢复机制时,网络侧设备向移动终端发送第一指示信息,从而将移动终端和网络侧设备切换至新的BPL上进行数据传输,相对于相关技术通过高层监测链路状态,并发起RRC重建,再进行波束训练,找到最优波束,恢复数据传输,本公开降低了波束恢复的时延。
参见图14,图14是本公开实施提供的移动终端的结构图,能够实现第三至一些实施例中中波束恢复处理方法的细节,并达到相同的效果。如图14所示,移动终端1400包括指示消息接收模块1401和第二通信切换模块1402,其中:指示消息接收模块,用于接收网络侧设备所发送的第一指示消息,所述第一指示消息为网络侧设备满足预设触发条件时向所述移动终端发送的消息;所述第一指示消息用于指示新的波束对链接BPL;所述预设触发条件为所述移动终端根据下行参考信号的测量结果确定启动波束恢复机制或所述网络侧设备根据上行参考信号测量结果确定启动波束恢复机制;
第二通信切换模块,用于根据所述第一指示消息切换所述新的BPL进行数据传输。
在一些可选的实施例中,所述移动终端还包括:第二测量模块,用于测 量下行参考信号的第二测量指标;目标数据发送模块,用于若所述下行参考信号的第二测量指标满足第二预设条件,根据第二测量指标的测量结果向网络侧设备发送目标数据,所述目标数据用于:网络侧设备确定是否满足预设触发条件。
在一些可选的实施例中,所述目标数据为物理随机接入信道PRACH的随机接入前导码preamble;或者,为移动终端向网络侧设备发送的request消息。
在一些可选的实施例中,所述request消息携带指示启动波束恢复机制的第一信令和/或指示启动波束恢复机制所使用的BPL的第二信令;或者,所述preamble携带所述第一信令和/或所述第二信令。
在一些可选的实施例中,所述第一信令中通过1个数据位bit指示是否启动波束恢复。
在一些可选的实施例中,所述第二信令中通过预设数量的数据位bit指示所述移动终端监测获得的启动波束恢复机制所使用的BPL。
在一些可选的实施例中,所述request消息在上行控制信道上承载发送,或者使用宽波束发送,或者使用多个窄波束同时发送。
在一些可选的实施例中,所述第二测量指标包括参考信号接收功率RSRP、小区参考信号功率相对小区所有信号功率的比值RSRQ、信噪比SNR、信道质量指示CQI和传输混合自动重传请求的确认信息NACK中的至少一项。
在一些可选的实施例中,当所述第二测量指标包括参考信号接收功率RSRP、小区参考信号功率相对小区所有信号功率的比值RSRQ、信噪比SNR和信道质量指示CQI中的至少一项时,所述第二预设条件包括:在预设时间段内所述第二测量指标低于对应的预设门限值的次数大于第二预设值;当所述第二测量指标包括传输混合自动重传请求的确认信息NACK时,所述第二预设条件还包括:在所述预设时间段内产生所述NACK的次数大于所述第二预设值。
在一些可选的实施例中,所述移动终端还包括:配置接收模块,用于接收所述网络侧设备发送的波束测量上报配置;训练结果发送模块,用于根据所述波束测量上报配置向所述网络侧设备发送进行波束训练的结果,所述进 行波束训练的结果用于:所述网络侧设备确定最优的BPL进行数据传输。
在一些可选的实施例中,所述最优的BPL包括一个或多个目标BPL,每一所述目标BPL包括针对控制信道传输的控制信道BPL和/或针对业务信道传输的业务信道BPL,且所有的所述目标BPL包括至少一个所述控制信道BPL和至少一个所述业务信道BPL。
在一些可选的实施例中,所述多个目标BPL进行数据传输的方式包括:相同的信息并且使用相同的时频资源、频分复用FDM、时分复用TDM和码分复用CDM的传输方式中的至少一项。
在一些可选的实施例中,所述指示新的波束对链接BPL包括:指示新的业务信道BPL。
在一些可选的实施例中,所述指示新的波束对链接BPL还包括:指示新的控制信道BPL。
在一些可选的实施例中,所述移动终端还包括测量结果反馈模块,其中,所述指示消息,还用于接收网络侧设备发送的第二指示消息,所述第二指示消息用于指示启动局部波束训练,所述局部波束训练为最优控制信道BPL内,进行窄波束训练;
所述测量结果反馈模块,用于将所述窄波束训练的波束测量结果反馈至网络侧设备,所述波束测量结果用于:所述网络侧设备确定最优窄波束,并将所述最优窄波束设定为所述新的业务信道BPL。
这样,本公开实施例中,移动终端接收网络侧设备所发送的第一指示消息,所述第一指示消息为网络侧设备满足预设触发条件时向所述移动终端发送的消息;所述第一指示消息用于指示新的波束对链接BPL;所述预设触发条件为所述移动终端根据下行参考信号的测量结果确定启动波束恢复机制或所述网络侧设备根据上行参考信号测量结果确定启动波束恢复机制;根据所述第一指示消息切换所述新的BPL进行数据传输。由于对上行参考信号或下行参考信号进行测量确定链路状态,并当链路传输质量变差需要启动波束恢复机制时,网络侧设备向移动终端发送第一指示信息,从而将移动终端和网络侧设备切换至新的BPL上进行数据传输,相对于相关技术通过高层监测链路状态,并发起RRC重建,再进行波束训练,找到最优波束,恢复数据传输, 本公开降低了波束恢复的时延。
参阅图15,图15是本公开实施例提供的网络侧设备的结构图,能够实现第一至一些实施例中中波束恢复处理方法的细节,并达到相同的效果。如图15所示,网络侧设备1500包括:处理器1501、收发机1502、存储器1503、用户接口1504和总线接口,其中:处理器1501,用于读取存储器1503中的程序,执行下列过程:若满足预设触发条件,向移动终端发送第一指示消息,所述第一指示消息用于指示新的波束对链接BPL;所述预设触发条件为所述移动终端根据下行参考信号的测量结果确定启动波束恢复机制或所述网络侧设备根据上行参考信号测量结果确定启动波束恢复机制;切换至所述新的BPL进行数据传输。
在图15中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1501代表的一个或多个处理器和存储器1503代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1502可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口1504还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器1501负责管理总线架构和通常的处理,存储器1503可以存储处理器1501在执行操作时所使用的数据。
在一些可选的实施例中,处理器1501还用于:测量上行参考信号的第一测量指标;若所述上行参考信号的第一测量指标满足第一预设条件,则确定满足预设触发条件。
在一些可选的实施例中,所述第一测量指标包括参考信号接收功率RSRP、小区参考信号功率相对小区所有信号功率的比值RSRQ、信噪比SNR、信道质量指示CQI和传输混合自动重传请求的确认信息NACK中的至少一项。
在一些可选的实施例中,当所述第一测量指标包括参考信号接收功率RSRP、小区参考信号功率相对小区所有信号功率的比值RSRQ、信噪比SNR和信道质量指示CQI中的至少一项时,所述第一预设条件包括:在预设时间 段内所述第一测量指标低于对应的预设门限值的次数大于第一预设值;当所述第一测量指标包括传输混合自动重传请求的确认信息NACK时,所述第一预设条件还包括:在所述预设时间段内产生所述NACK的次数大于所述第一预设值。
在一些可选的实施例中,处理器1501还用于:接收移动终端根据下行参考信号的第二测量指标的测量结果,向所述网络侧设备发送的目标数据;根据所述目标数据确定是否满足预设触发条件。
在一些可选的实施例中,所述目标数据为物理随机接入信道PRACH的随机接入前导码preamble;或者,为移动终端向网络侧设备发送的request消息。
在一些可选的实施例中,所述request消息携带指示启动波束恢复机制的第一信令和/或指示启动波束恢复机制所使用的BPL的第二信令;或者,所述preamble携带所述第一信令和/或所述第二信令。
在一些可选的实施例中,所述第一信令中通过1个数据位bit指示是否启动波束恢复。
在一些可选的实施例中,所述第二信令中通过预设数量的数据位bit指示所述移动终端监测获得的启动波束恢复机制所使用的BPL。
在一些可选的实施例中,所述request消息在上行控制信道上承载发送,或者使用宽波束发送,或者使用多个窄波束同时发送。
在一些可选的实施例中,所述第二测量指标包括参考信号接收功率RSRP、小区参考信号功率相对小区所有信号功率的比值RSRQ、信噪比SNR、信道质量指示CQI和传输混合自动重传请求的确认信息NACK中的至少一项。
在一些可选的实施例中,处理器1501还用于:向通过随机接入过程接入到网络侧设备的移动终端发送波束测量上报配置;接收所述移动终端基于所述波束测量上报配置进行波束训练所上报的结果;根据上报的结果确定最优的BPL进行数据传输。
在一些可选的实施例中,所述最优的BPL包括一个或多个目标BPL,每一所述目标BPL包括针对控制信道传输的控制信道BPL和/或针对业务信道传输的业务信道BPL,且所有的所述目标BPL包括至少一个所述控制信道 BPL和至少一个所述业务信道BPL。
在一些可选的实施例中,所述多个目标BPL进行数据传输的方式包括:相同的信息并且使用相同的时频资源、频分复用FDM、时分复用TDM和码分复用CDM的传输方式中的至少一项。
在一些可选的实施例中,所述指示新的波束对链接BPL包括:指示新的业务信道BPL。
在一些可选的实施例中,所述指示新的波束对链接BPL还包括:指示新的控制信道BPL。
在一些可选的实施例中,处理器1501还用于:向所述移动终端发送第二指示消息,所述第二指示消息用于指示启动局部波束训练,所述局部波束训练为最优控制信道BPL内,进行窄波束训练;接收所述移动终端对所述窄波束训练所反馈的波束测量结果;根据所述波束测量结果确定最优窄波束,并将所述最优窄波束设定为所述新的业务信道BPL。
本公开实施例中,若满足预设触发条件,网络侧设备向移动终端发送第一指示消息,所述第一指示消息用于指示新的波束对链接BPL;所述预设触发条件为所述移动终端根据下行参考信号的测量结果确定启动波束恢复机制或所述网络侧设备根据上行参考信号测量结果确定启动波束恢复机制;切换至所述新的BPL进行数据传输。由于对上行参考信号或下行参考信号进行测量确定链路状态,并当链路传输质量变差需要启动波束恢复机制时,网络侧设备向移动终端发送第一指示信息,从而将移动终端和网络侧设备切换至新的BPL上进行数据传输,相对于相关技术通过高层监测链路状态,并发起RRC重建,再进行波束训练,找到最优波束,恢复数据传输,本公开降低了波束恢复的时延。
在一些可选的实施例中,参见图16,图16是本公开实施例提供的移动终端的结构图,能够实现第三至一些实施例中中波束恢复处理方法的细节,并达到相同的效果。如图16所示,移动终端1600包括:至少一个处理器1601、存储器1602、至少一个网络接口1604和用户接口1603。移动终端1600中的各个组件通过总线系统1605耦合在一起。可理解,总线系统1605用于实现这些组件之间的连接通信。总线系统1605除包括数据总线之外,还包括电源 总线、控制总线和状态信号总线。但是为了清楚说明起见,在图16中将各种总线都标为总线系统1605。
其中,用户接口1603可以包括显示器、键盘或者点击设备(例如,鼠标,轨迹球(track ball)、触感板或者触摸屏等。
可以理解,本公开实施例中的存储器1602可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本文描述的系统和方法的存储器1602旨在包括但不限于这些和任意其它适合类型的存储器。
在一些实施方式中,存储器1602存储了如下的元素,可执行模块或者数据结构,或者他们的子集,或者他们的扩展集:操作系统16021和应用程序16022。
其中,操作系统16021,包含各种系统程序,例如框架层、核心库层、驱动层等,用于实现各种基础业务以及处理基于硬件的任务。应用程序16022,包含各种应用程序,例如媒体播放器(Media Player)、浏览器(Browser)等,用于实现各种应用业务。实现本公开实施例方法的程序可以包含在应用程序16022中。
在本公开实施例中,通过调用存储器1602存储的程序或指令,具体的,可以是应用程序16022中存储的程序或指令,处理器1601用于:接收网络侧 设备所发送的第一指示消息,所述第一指示消息为网络侧设备满足预设触发条件时向所述移动终端发送的消息;所述第一指示消息用于指示新的波束对链接BPL;所述预设触发条件为所述移动终端根据下行参考信号的测量结果确定启动波束恢复机制或所述网络侧设备根据上行参考信号测量结果确定启动波束恢复机制;根据所述第一指示消息切换所述新的BPL进行数据传输。
上述本公开实施例揭示的方法可以应用于处理器1601中,或者由处理器1601实现。处理器1601可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器1601中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器1601可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable GateArray,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本公开实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本公开实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1602,处理器1601读取存储器1602中的信息,结合其硬件完成上述方法的步骤。
可以理解的是,本文描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,处理单元可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本申请所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本文所述功能的模块(例如过程、函数等)来实现本文所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
在一些可选的实施例中,处理器1601还用于:测量下行参考信号的第二测量指标;若所述下行参考信号的第二测量指标满足第二预设条件,根据第二测量指标的测量结果向网络侧设备发送目标数据,所述目标数据用于:网络侧设备确定是否满足预设触发条件。
在一些可选的实施例中,所述目标数据为物理随机接入信道PRACH的随机接入前导码preamble;或者,为移动终端向网络侧设备发送的request消息。
在一些可选的实施例中,所述request消息携带指示启动波束恢复机制的第一信令和/或指示启动波束恢复机制所使用的BPL的第二信令;或者,所述preamble携带所述第一信令和/或所述第二信令。
在一些可选的实施例中,所述第一信令中通过1个数据位bit指示是否启动波束恢复。
在一些可选的实施例中,所述第二信令中通过预设数量的数据位bit指示所述移动终端监测获得的启动波束恢复机制所使用的BPL。
在一些可选的实施例中,所述request消息在上行控制信道上承载发送,或者使用宽波束发送,或者使用多个窄波束同时发送。
在一些可选的实施例中,所述第二测量指标包括参考信号接收功率RSRP、小区参考信号功率相对小区所有信号功率的比值RSRQ、信噪比SNR、信道质量指示CQI和传输混合自动重传请求的确认信息NACK中的至少一项。
在一些可选的实施例中,当所述第二测量指标包括参考信号接收功率RSRP、小区参考信号功率相对小区所有信号功率的比值RSRQ、信噪比SNR和信道质量指示CQI中的至少一项时,所述第二预设条件包括:在预设时间段内所述第二测量指标低于对应的预设门限值的次数大于第二预设值;
当所述第二测量指标包括传输混合自动重传请求的确认信息NACK时,所述第二预设条件还包括:在所述预设时间段内产生所述NACK的次数大于所述第二预设值。
在一些可选的实施例中,处理器1601还用于:接收所述网络侧设备发送的波束测量上报配置;根据所述波束测量上报配置向所述网络侧设备发送进行波束训练的结果,所述进行波束训练的结果用于:所述网络侧设备确定最 优的BPL进行数据传输。
在一些可选的实施例中,所述最优的BPL包括一个或多个目标BPL,每一所述目标BPL包括针对控制信道传输的控制信道BPL和/或针对业务信道传输的业务信道BPL,且所有的所述目标BPL包括至少一个所述控制信道BPL和至少一个所述业务信道BPL。
在一些可选的实施例中,所述多个目标BPL进行数据传输的方式包括:相同的信息并且使用相同的时频资源、频分复用FDM、时分复用TDM和码分复用CDM的传输方式中的至少一项。
在一些可选的实施例中,所述指示新的波束对链接BPL包括:指示新的业务信道BPL。
在一些可选的实施例中,所述指示新的波束对链接BPL还包括:指示新的控制信道BPL。
在一些可选的实施例中,处理器1601还用于:接收网络侧设备发送的第二指示消息,所述第二指示消息用于指示启动局部波束训练,所述局部波束训练为最优控制信道BPL内,进行窄波束训练;将所述窄波束训练的波束测量结果反馈至网络侧设备,所述波束测量结果用于:所述网络侧设备确定最优窄波束,并将所述最优窄波束设定为所述新的业务信道BPL。
本公开实施例中,移动终端接收网络侧设备所发送的第一指示消息,所述第一指示消息为网络侧设备满足预设触发条件时向所述移动终端发送的消息;所述第一指示消息用于指示新的波束对链接BPL;所述预设触发条件为所述移动终端根据下行参考信号的测量结果确定启动波束恢复机制或所述网络侧设备根据上行参考信号测量结果确定启动波束恢复机制;根据所述第一指示消息切换所述新的BPL进行数据传输。由于对上行参考信号或下行参考信号进行测量确定链路状态,并当链路传输质量变差需要启动波束恢复机制时,网络侧设备向移动终端发送第一指示信息,从而将移动终端和网络侧设备切换至新的BPL上进行数据传输,相对于相关技术通过高层监测链路状态,并发起RRC重建,再进行波束训练,找到最优波束,恢复数据传输,本公开降低了波束恢复的时延。
请参阅图17,图17是本公开实施例提供的移动终端的结构图,能够实 现第三至一些实施例中中波束恢复处理方法的细节,并达到相同的效果。如图17所示,移动终端1700包括射频(Radio Frequency,RF)电路1710、存储器1720、输入单元1730、显示单元1740、处理器1750、音频电路1760、通信模块1770、和电源1780,还包括摄像头(图中未示出)。
其中,输入单元1730可用于接收用户输入的数字或字符信息,以及产生与移动终端1700的用户设置以及功能控制有关的信号输入。具体地,本公开实施例中,该输入单元1730可以包括触控面板1731。触控面板1731,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板1731上的操作),并根据预先设定的程式驱动相应的连接装置。在一些可选的实施例中,触控面板1731可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给该处理器1750,并能接收处理器1750发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板1731。除了触控面板1731,输入单元1730还可以包括其他输入设备1732,其他输入设备1732可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆等中的一种或多种。
其中,显示单元1740可用于显示由用户输入的信息或提供给用户的信息以及移动终端1700的各种菜单界面。显示单元1740可包括显示面板1741,在一些可选的实施例中,可以采用LCD或有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板1741。
应注意,触控面板1731可以覆盖显示面板1741,形成触摸显示屏,当该触摸显示屏检测到在其上或附近的触摸操作后,传送给处理器1750以确定触摸事件的类型,随后处理器1750根据触摸事件的类型在触摸显示屏上提供相应的视觉输出。
其中处理器1750是移动终端1700的控制中心,利用各种接口和线路连接整个手机的各个部分,通过运行或执行存储在第一存储器1721内的软件程序和/或模块,以及调用存储在第二存储器1722内的数据,执行移动终端1700 的各种功能和处理数据,从而对移动终端1700进行整体监控。在一些可选的实施例中,处理器1750可包括一个或多个处理单元。
在本公开实施例中,通过调用存储该第一存储器1721内的软件程序和/或模块和/或该第二存储器1722内的数据,处理器1750用于:接收网络侧设备所发送的第一指示消息,所述第一指示消息为网络侧设备满足预设触发条件时向所述移动终端发送的消息;所述第一指示消息用于指示新的波束对链接BPL;所述预设触发条件为所述移动终端根据下行参考信号的测量结果确定启动波束恢复机制或所述网络侧设备根据上行参考信号测量结果确定启动波束恢复机制;根据所述第一指示消息切换所述新的BPL进行数据传输。
在一些可选的实施例中,处理器1750还用于:测量下行参考信号的第二测量指标;若所述下行参考信号的第二测量指标满足第二预设条件,根据第二测量指标的测量结果向网络侧设备发送目标数据,所述目标数据用于:网络侧设备确定是否满足预设触发条件。
在一些可选的实施例中,所述目标数据为物理随机接入信道PRACH的随机接入前导码preamble;或者,为移动终端向网络侧设备发送的request消息。
在一些可选的实施例中,所述request消息携带指示启动波束恢复机制的第一信令和/或指示启动波束恢复机制所使用的BPL的第二信令;或者,所述preamble携带所述第一信令和/或所述第二信令。
在一些可选的实施例中,所述第一信令中通过1个数据位bit指示是否启动波束恢复。
在一些可选的实施例中,所述第二信令中通过预设数量的数据位bit指示所述移动终端监测获得的启动波束恢复机制所使用的BPL。
在一些可选的实施例中,所述request消息在上行控制信道上承载发送,或者使用宽波束发送,或者使用多个窄波束同时发送。
在一些可选的实施例中,所述第二测量指标包括参考信号接收功率RSRP、小区参考信号功率相对小区所有信号功率的比值RSRQ、信噪比SNR、信道质量指示CQI和传输混合自动重传请求的确认信息NACK中的至少一项。
在一些可选的实施例中,当所述第二测量指标包括参考信号接收功率 RSRP、小区参考信号功率相对小区所有信号功率的比值RSRQ、信噪比SNR和信道质量指示CQI中的至少一项时,所述第二预设条件包括:在预设时间段内所述第二测量指标低于对应的预设门限值的次数大于第二预设值;
当所述第二测量指标包括传输混合自动重传请求的确认信息NACK时,所述第二预设条件还包括:在所述预设时间段内产生所述NACK的次数大于所述第二预设值。
在一些可选的实施例中,处理器1750还用于:接收所述网络侧设备发送的波束测量上报配置;根据所述波束测量上报配置向所述网络侧设备发送进行波束训练的结果,所述进行波束训练的结果用于:所述网络侧设备确定最优的BPL进行数据传输。
在一些可选的实施例中,所述最优的BPL包括一个或多个目标BPL,每一所述目标BPL包括针对控制信道传输的控制信道BPL和/或针对业务信道传输的业务信道BPL,且所有的所述目标BPL包括至少一个所述控制信道BPL和至少一个所述业务信道BPL。
在一些可选的实施例中,所述多个目标BPL进行数据传输的方式包括:相同的信息并且使用相同的时频资源、频分复用FDM、时分复用TDM和码分复用CDM的传输方式中的至少一项。
在一些可选的实施例中,所述指示新的波束对链接BPL包括:指示新的业务信道BPL。
在一些可选的实施例中,所述指示新的波束对链接BPL还包括:指示新的控制信道BPL。
在一些可选的实施例中,处理器1750还用于:接收网络侧设备发送的第二指示消息,所述第二指示消息用于指示启动局部波束训练,所述局部波束训练为最优控制信道BPL内,进行窄波束训练;将所述窄波束训练的波束测量结果反馈至网络侧设备,所述波束测量结果用于:所述网络侧设备确定最优窄波束,并将所述最优窄波束设定为所述新的业务信道BPL。
本公开实施例中,移动终端接收网络侧设备所发送的第一指示消息,所述第一指示消息为网络侧设备满足预设触发条件时向所述移动终端发送的消息;所述第一指示消息用于指示新的波束对链接BPL;所述预设触发条件为 所述移动终端根据下行参考信号的测量结果确定启动波束恢复机制或所述网络侧设备根据上行参考信号测量结果确定启动波束恢复机制;根据所述第一指示消息切换所述新的BPL进行数据传输。由于对上行参考信号或下行参考信号进行测量确定链路状态,并当链路传输质量变差需要启动波束恢复机制时,网络侧设备向移动终端发送第一指示信息,从而将移动终端和网络侧设备切换至新的BPL上进行数据传输,相对于相关技术通过高层监测链路状态,并发起RRC重建,再进行波束训练,找到最优波束,恢复数据传输,本公开降低了波束恢复的时延。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本公开实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单 元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。

Claims (53)

  1. 一种波束恢复处理方法,包括:
    若满足预设触发条件,网络侧设备向移动终端发送第一指示消息,所述第一指示消息用于指示新的波束对链接BPL;所述预设触发条件为所述移动终端根据下行参考信号的测量结果确定启动波束恢复机制或所述网络侧设备根据上行参考信号测量结果确定启动波束恢复机制;
    切换至所述新的BPL进行数据传输。
  2. 根据权利要求1所述的方法,其中,所述网络侧设备向移动终端发送第一指示消息的步骤之前,所述方法还包括:
    接收移动终端根据下行参考信号的第二测量指标的测量结果,向所述网络侧设备发送的目标数据;
    根据所述目标数据确定是否满足预设触发条件;
    其中,所述目标数据为物理随机接入信道PRACH的随机接入前导码preamble;或者,为移动终端向网络侧设备发送的request消息。
  3. 根据权利要求2所述的方法,其中,所述request消息携带指示启动波束恢复机制的第一信令和/或指示启动波束恢复机制所使用的BPL的第二信令;或者,
    所述preamble携带所述第一信令和/或所述第二信令。
  4. 根据权利要求3所述的方法,其中,所述第一信令中通过1个数据位bit指示是否启动波束恢复。
  5. 根据权利要求3所述的方法,其中,所述第二信令中通过预设数量的数据位bit指示所述移动终端监测获得的启动波束恢复机制所使用的BPL。
  6. 根据权利要求3所述的方法,其中,所述request消息在上行控制信道上承载发送,或者使用宽波束发送,或者使用多个窄波束同时发送。
  7. 根据权利要求2所述的方法,其中,所述第二测量指标包括参考信号接收功率RSRP、小区参考信号功率相对小区所有信号功率的比值RSRQ、信噪比SNR、信道质量指示CQI和传输混合自动重传请求的确认信息NACK中的至少一项。
  8. 根据权利要求1所述的方法,其中,所述若满足预设触发条件,网络侧设备向移动终端发送第一指示消息的步骤之前,所述方法还包括:
    向通过随机接入过程接入到网络侧设备的移动终端发送波束测量上报配置;
    接收所述移动终端基于所述波束测量上报配置进行波束训练所上报的结果;
    根据上报的结果确定最优的BPL进行数据传输。
  9. 根据权利要求8所述的方法,其中,所述最优的BPL包括一个或多个目标BPL,每一所述目标BPL包括针对控制信道传输的控制信道BPL和/或针对业务信道传输的业务信道BPL,且所有的所述目标BPL包括至少一个所述控制信道BPL和至少一个所述业务信道BPL。
  10. 根据权利要求9所述的方法,其中,所述多个目标BPL进行数据传输的方式包括:
    相同的信息并且使用相同的时频资源、频分复用FDM、时分复用TDM和码分复用CDM的传输方式中的至少一项。
  11. 根据权利要求9所述的方法,其中,所述指示新的波束对链接BPL包括:指示新的业务信道BPL或者指示新的控制信道BPL。
  12. 根据权利要求11所述的方法,其中,所述网络侧设备向移动终端发送第一指示消息的步骤之前,所述方法还包括:
    向所述移动终端发送第二指示消息,所述第二指示消息用于指示启动局部波束训练,所述局部波束训练为最优控制信道BPL内,进行窄波束训练;
    接收所述移动终端对所述窄波束训练所反馈的波束测量结果;
    根据所述波束测量结果确定最优窄波束,并将所述最优窄波束设定为所述新的业务信道BPL。
  13. 一种波束恢复处理方法,包括:
    移动终端接收网络侧设备所发送的第一指示消息,所述第一指示消息为网络侧设备满足预设触发条件时向所述移动终端发送的消息;所述第一指示消息用于指示新的波束对链接BPL;所述预设触发条件为所述移动终端根据下行参考信号的测量结果确定启动波束恢复机制或所述网络侧设备根据上行 参考信号测量结果确定启动波束恢复机制;
    根据所述第一指示消息切换所述新的BPL进行数据传输。
  14. 根据权利要求13所述的方法,其中,所述移动终端接收网络侧设备所发送的第一指示消息的步骤之前,所述方法还包括:
    测量下行参考信号的第二测量指标;
    若所述下行参考信号的第二测量指标满足第二预设条件,根据第二测量指标的测量结果向网络侧设备发送目标数据,所述目标数据用于:网络侧设备确定是否满足预设触发条件
    其中,所述目标数据为物理随机接入信道PRACH的随机接入前导码preamble;或者,为移动终端向网络侧设备发送的request消息。
  15. 根据权利要求14所述的方法,其中,所述request消息携带指示启动波束恢复机制的第一信令和/或指示启动波束恢复机制所使用的BPL的第二信令;或者,
    所述preamble携带所述第一信令和/或所述第二信令。
  16. 根据权利要求15所述的方法,其中,所述第一信令中通过1个数据位bit指示是否启动波束恢复。
  17. 根据权利要求15所述的方法,其中,所述第二信令中通过预设数量的数据位bit指示所述移动终端监测获得的启动波束恢复机制所使用的BPL。
  18. 根据权利要求15所述的方法,其中,所述request消息在上行控制信道上承载发送,或者使用宽波束发送,或者使用多个窄波束同时发送。
  19. 根据权利要求14所述的方法,其中,所述第二测量指标包括参考信号接收功率RSRP、小区参考信号功率相对小区所有信号功率的比值RSRQ、信噪比SNR、信道质量指示CQI和传输混合自动重传请求的确认信息NACK中的至少一项。
  20. 根据权利要求14所述的方法,其中,当所述第二测量指标包括参考信号接收功率RSRP、小区参考信号功率相对小区所有信号功率的比值RSRQ、信噪比SNR和信道质量指示CQI中的至少一项时,所述第二预设条件包括:在预设时间段内所述第二测量指标低于对应的预设门限值的次数大于第二预设值;
    当所述第二测量指标包括传输混合自动重传请求的确认信息NACK时,所述第二预设条件还包括:在所述预设时间段内产生所述NACK的次数大于所述第二预设值。
  21. 根据权利要求13所述的方法,其中,所述移动终端接收网络侧设备所发送的第一指示消息的步骤之前,所述方法还包括:
    接收所述网络侧设备发送的波束测量上报配置;
    根据所述波束测量上报配置向所述网络侧设备发送进行波束训练的结果,所述进行波束训练的结果用于:所述网络侧设备确定最优的BPL进行数据传输。
  22. 根据权利要求21所述的方法,其中,所述最优的BPL包括一个或多个目标BPL,每一所述目标BPL包括针对控制信道传输的控制信道BPL和/或针对业务信道传输的业务信道BPL,且所有的所述目标BPL包括至少一个所述控制信道BPL和至少一个所述业务信道BPL。
  23. 根据权利要求22所述的方法,其中,所述多个目标BPL进行数据传输的方式包括:
    相同的信息并且使用相同的时频资源、频分复用FDM、时分复用TDM和码分复用CDM的传输方式中的至少一项。
  24. 根据权利要求22所述的方法,其中,所述指示新的波束对链接BPL包括:指示新的业务信道BPL或者指示新的控制信道BPL。
  25. 根据权利要求24所述的方法,其中,所述接收所述网络侧设备所发送的第一指示消息的步骤之前,所述方法还包括:
    接收网络侧设备发送的第二指示消息,所述第二指示消息用于指示启动局部波束训练,所述局部波束训练为最优控制信道BPL内,进行窄波束训练;
    将所述窄波束训练的波束测量结果反馈至网络侧设备,所述波束测量结果用于:所述网络侧设备确定最优窄波束,并将所述最优窄波束设定为所述新的业务信道BPL。
  26. 一种网络侧设备,包括:
    指示消息发送模块,用于若满足预设触发条件,向移动终端发送第一指示消息,所述第一指示消息用于指示新的波束对链接BPL;所述预设触发条 件为所述移动终端根据下行参考信号的测量结果确定启动波束恢复机制或所述网络侧设备根据上行参考信号测量结果确定启动波束恢复机制;
    第一通信切换模块,用于切换至所述新的BPL进行数据传输。
  27. 根据权利要求26所述的网络侧设备,其中,所述网络侧设备还包括:
    目标数据接收模块,用于接收移动终端根据下行参考信号的第二测量指标的测量结果,向所述网络侧设备发送的目标数据;
    第二确定模块,用于根据所述目标数据确定是否满足预设触发条件;
    其中,所述目标数据为物理随机接入信道PRACH的随机接入前导码preamble;或者,为移动终端向网络侧设备发送的request消息。
  28. 根据权利要求27所述的网络侧设备,其中,所述request消息携带指示启动波束恢复机制的第一信令和/或指示启动波束恢复机制所使用的BPL的第二信令;或者,
    所述preamble携带所述第一信令和/或所述第二信令。
  29. 根据权利要求28所述的网络侧设备,其中,所述第一信令中通过1个数据位bit指示是否启动波束恢复。
  30. 根据权利要求28所述的网络侧设备,其中,所述第二信令中通过预设数量的数据位bit指示所述移动终端监测获得的启动波束恢复机制所使用的BPL。
  31. 根据权利要求28所述的网络侧设备,其中,所述request消息在上行控制信道上承载发送,或者使用宽波束发送,或者使用多个窄波束同时发送。
  32. 根据权利要求27所述的网络侧设备,其中,所述第二测量指标包括参考信号接收功率RSRP、小区参考信号功率相对小区所有信号功率的比值RSRQ、信噪比SNR、信道质量指示CQI和传输混合自动重传请求的确认信息NACK中的至少一项。
  33. 根据权利要求26所述的网络侧设备,其中,所述网络侧设备还包括:
    配置发送模块,用于向通过随机接入过程接入到网络侧设备的移动终端发送波束测量上报配置;
    上报结果接收模块,用于接收所述移动终端基于所述波束测量上报配置 进行波束训练所上报的结果;
    第三确定模块,用于根据上报的结果确定最优的BPL进行数据传输。
  34. 根据权利要求33所述的网络侧设备,其中,所述最优的BPL包括一个或多个目标BPL,每一所述目标BPL包括针对控制信道传输的控制信道BPL和/或针对业务信道传输的业务信道BPL,且所有的所述目标BPL包括至少一个所述控制信道BPL和至少一个所述业务信道BPL。
  35. 根据权利要求34所述的网络侧设备,其中,所述多个目标BPL进行数据传输的方式包括:
    相同的信息并且使用相同的时频资源、频分复用FDM、时分复用TDM和码分复用CDM的传输方式中的至少一项。
  36. 根据权利要求34所述的网络侧设备,其中,所述指示新的波束对链接BPL包括:指示新的业务信道BPL或者指示新的控制信道BPL。
  37. 根据权利要求36所述的网络侧设备,其中,所述网络侧设备还包括测量结果接收模块和处理模块,其中,
    所述指示消息发送模块,还用于向所述移动终端发送第二指示消息,所述第二指示消息用于指示启动局部波束训练,所述局部波束训练为最优控制信道BPL内,进行窄波束训练;
    所述测量结果接收模块,用于接收所述移动终端对所述窄波束训练所反馈的波束测量结果;
    所述处理模块,用于根据所述波束测量结果确定最优窄波束,并将所述最优窄波束设定为所述新的业务信道BPL。
  38. 一种移动终端,包括:
    指示消息接收模块,用于接收网络侧设备所发送的第一指示消息,所述第一指示消息为网络侧设备满足预设触发条件时向所述移动终端发送的消息;所述第一指示消息用于指示新的波束对链接BPL;所述预设触发条件为所述移动终端根据下行参考信号的测量结果确定启动波束恢复机制或所述网络侧设备根据上行参考信号测量结果确定启动波束恢复机制;
    第二通信切换模块,用于根据所述第一指示消息切换所述新的BPL进行数据传输。
  39. 根据权利要求38所述的移动终端,其中,所述移动终端还包括:
    第二测量模块,用于测量下行参考信号的第二测量指标;
    目标数据发送模块,用于若所述下行参考信号的第二测量指标满足第二预设条件,根据第二测量指标的测量结果向网络侧设备发送目标数据,所述目标数据用于:网络侧设备确定是否满足预设触发条件;
    其中,所述目标数据为物理随机接入信道PRACH的随机接入前导码preamble;或者,为移动终端向网络侧设备发送的request消息。
  40. 根据权利要求39所述的移动终端,其中,所述request消息携带指示启动波束恢复机制的第一信令和/或指示启动波束恢复机制所使用的BPL的第二信令;或者,
    所述preamble携带所述第一信令和/或所述第二信令。
  41. 根据权利要求40所述的移动终端,其中,所述第一信令中通过1个数据位bit指示是否启动波束恢复。
  42. 根据权利要求40所述的移动终端,其中,所述第二信令中通过预设数量的数据位bit指示所述移动终端监测获得的启动波束恢复机制所使用的BPL。
  43. 根据权利要求40所述的移动终端,其中,所述request消息在上行控制信道上承载发送,或者使用宽波束发送,或者使用多个窄波束同时发送。
  44. 根据权利要求39所述的移动终端,其中,所述第二测量指标包括参考信号接收功率RSRP、小区参考信号功率相对小区所有信号功率的比值RSRQ、信噪比SNR、信道质量指示CQI和传输混合自动重传请求的确认信息NACK中的至少一项。
  45. 根据权利要求39所述的移动终端,其中,当所述第二测量指标包括参考信号接收功率RSRP、小区参考信号功率相对小区所有信号功率的比值RSRQ、信噪比SNR和信道质量指示CQI中的至少一项时,所述第二预设条件包括:在预设时间段内所述第二测量指标低于对应的预设门限值的次数大于第二预设值;
    当所述第二测量指标包括传输混合自动重传请求的确认信息NACK时,所述第二预设条件还包括:在所述预设时间段内产生所述NACK的次数大于 所述第二预设值。
  46. 根据权利要求38所述的移动终端,其中,所述移动终端还包括:
    配置接收模块,用于接收所述网络侧设备发送的波束测量上报配置;
    训练结果发送模块,用于根据所述波束测量上报配置向所述网络侧设备发送进行波束训练的结果,所述进行波束训练的结果用于:所述网络侧设备确定最优的BPL进行数据传输。
  47. 根据权利要求46所述的移动终端,其中,所述最优的BPL包括一个或多个目标BPL,每一所述目标BPL包括针对控制信道传输的控制信道BPL和/或针对业务信道传输的业务信道BPL,且所有的所述目标BPL包括至少一个所述控制信道BPL和至少一个所述业务信道BPL。
  48. 根据权利要求47所述的移动终端,其中,所述多个目标BPL进行数据传输的方式包括:
    相同的信息并且使用相同的时频资源、频分复用FDM、时分复用TDM和码分复用CDM的传输方式中的至少一项。
  49. 根据权利要求47所述的移动终端,其中,所述指示新的波束对链接BPL包括:指示新的业务信道BPL或者指示新的控制信道BPL。
  50. 根据权利要求49所述的移动终端,其中,所述移动终端还包括测量结果反馈模块,其中,
    所述指示消息,还用于接收网络侧设备发送的第二指示消息,所述第二指示消息用于指示启动局部波束训练,所述局部波束训练为最优控制信道BPL内,进行窄波束训练;
    所述测量结果反馈模块,用于将所述窄波束训练的波束测量结果反馈至网络侧设备,所述波束测量结果用于:所述网络侧设备确定最优窄波束,并将所述最优窄波束设定为所述新的业务信道BPL。
  51. 一种网络侧设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如权利要求1至12中任一项所述的波束恢复处理方法的步骤。
  52. 一种移动终端,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现 如权利要求13至25中任一项所述的波束恢复处理方法的步骤。
  53. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至25中任一项所述的波束恢复处理方法的步骤。
PCT/CN2018/074551 2017-02-05 2018-01-30 一种波束恢复处理方法、网络侧设备及移动终端 WO2018141238A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18748612.1A EP3579441A4 (en) 2017-02-05 2018-01-30 BEAM RECOVERY PROCESSING METHOD, NETWORK SIDE DEVICE AND MOBILE TERMINAL
US16/482,904 US20200014451A1 (en) 2017-02-05 2018-01-30 Method for beam recovery processing, network-side device and mobile terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710064761.7A CN108401295B (zh) 2017-02-05 2017-02-05 一种波束恢复处理方法、网络侧设备及移动终端
CN201710064761.7 2017-02-05

Publications (1)

Publication Number Publication Date
WO2018141238A1 true WO2018141238A1 (zh) 2018-08-09

Family

ID=63039258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/074551 WO2018141238A1 (zh) 2017-02-05 2018-01-30 一种波束恢复处理方法、网络侧设备及移动终端

Country Status (4)

Country Link
US (1) US20200014451A1 (zh)
EP (1) EP3579441A4 (zh)
CN (1) CN108401295B (zh)
WO (1) WO2018141238A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110536431A (zh) * 2018-09-21 2019-12-03 中兴通讯股份有限公司 一种波束恢复方法、装置、终端及存储介质
WO2020073796A1 (en) * 2018-10-08 2020-04-16 Qualcomm Incorporated Radio link and beam failure management
WO2020163086A1 (en) * 2019-02-07 2020-08-13 Qualcomm Incorporated Beam management using channel state information prediction

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10778313B2 (en) 2018-08-17 2020-09-15 Qualcomm Incorporated Techniques for beam failure recovery in wireless communications
CN109104264B (zh) * 2018-09-10 2021-03-02 中国联合网络通信集团有限公司 一种数据传输方法和基站
CN112567843B (zh) * 2018-09-14 2023-04-28 Oppo广东移动通信有限公司 一种链路恢复过程的处理方法及装置、终端
CN110944352B (zh) * 2018-09-25 2022-11-01 维沃移动通信有限公司 一种旁链路的链路失败检测方法及终端
CN111225388B (zh) * 2018-11-23 2022-03-29 大唐移动通信设备有限公司 一种载波聚合小区集优化方法及装置
KR20210098447A (ko) 2018-11-30 2021-08-10 이데미쓰 고산 가부시키가이샤 화합물, 유기 전기발광 소자용 재료, 유기 전기발광 소자, 및 전자 기기
CN114666905A (zh) 2018-12-28 2022-06-24 维沃移动通信有限公司 上行信号发送方法及装置
US11133979B2 (en) * 2019-08-13 2021-09-28 Telefonaktiebolaget Lm Ericsson (Publ) Completion of SCell beam failure recovery
CN112929893A (zh) * 2019-12-06 2021-06-08 大唐移动通信设备有限公司 一种接收波束切换方法及装置
CN110933725A (zh) * 2019-12-11 2020-03-27 展讯通信(上海)有限公司 用于辅链路的波束失败恢复方法及装置、存储介质、终端
EP4162615A1 (en) * 2020-06-09 2023-04-12 Telefonaktiebolaget LM Ericsson (publ) Fast beam switching for wireless communication
CN113949421B (zh) * 2020-07-17 2023-02-24 维沃移动通信有限公司 确定波束信息的方法、装置及电子设备
CN116250324A (zh) * 2020-09-30 2023-06-09 华为技术有限公司 一种通信方法、装置及计算机可读存储介质
CN114982266A (zh) * 2020-11-20 2022-08-30 北京小米移动软件有限公司 波束指示方法、装置及通信设备
WO2023197226A1 (zh) * 2022-04-13 2023-10-19 北京小米移动软件有限公司 波束选择方法和装置
CN117545087A (zh) * 2022-07-29 2024-02-09 维沃移动通信有限公司 下行参考信号发送方法、装置、终端及网络侧设备
CN117528675A (zh) * 2022-07-29 2024-02-06 维沃移动通信有限公司 波束失败恢复或链路失败恢复方法及终端

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103765794A (zh) * 2011-09-01 2014-04-30 三星电子株式会社 无线通信系统中选择最佳波束的装置和方法
CN103875191A (zh) * 2011-08-12 2014-06-18 三星电子株式会社 在无线通信系统中自适应性波束成形的装置和方法
US20150257073A1 (en) * 2014-03-10 2015-09-10 Samsung Electronics Co., Ltd. Apparatus and method for determining beam in wireless communication system
WO2016086144A1 (en) * 2014-11-26 2016-06-02 Interdigital Patent Holdings, Inc. Initial access in high frequency wireless systems
WO2017123079A1 (en) * 2016-01-14 2017-07-20 Samsung Electronics Co., Ltd. Method and apparatus for generating beam measurement information in a wireless communication system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103580817B (zh) * 2012-07-30 2016-12-21 中国移动通信集团公司 一种数据传输方法、装置、系统和相关设备
KR101524587B1 (ko) * 2014-01-16 2015-06-04 중앙대학교 산학협력단 셀 탐색 시스템
WO2016127403A1 (en) * 2015-02-13 2016-08-18 Mediatek Singapore Pte. Ltd. Handling of intermittent disconnection in a millimeter wave (mmw) system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103875191A (zh) * 2011-08-12 2014-06-18 三星电子株式会社 在无线通信系统中自适应性波束成形的装置和方法
CN103765794A (zh) * 2011-09-01 2014-04-30 三星电子株式会社 无线通信系统中选择最佳波束的装置和方法
US20150257073A1 (en) * 2014-03-10 2015-09-10 Samsung Electronics Co., Ltd. Apparatus and method for determining beam in wireless communication system
WO2016086144A1 (en) * 2014-11-26 2016-06-02 Interdigital Patent Holdings, Inc. Initial access in high frequency wireless systems
WO2017123079A1 (en) * 2016-01-14 2017-07-20 Samsung Electronics Co., Ltd. Method and apparatus for generating beam measurement information in a wireless communication system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3579441A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110536431A (zh) * 2018-09-21 2019-12-03 中兴通讯股份有限公司 一种波束恢复方法、装置、终端及存储介质
CN110536431B (zh) * 2018-09-21 2023-04-14 中兴通讯股份有限公司 一种波束恢复方法、装置、终端及存储介质
WO2020073796A1 (en) * 2018-10-08 2020-04-16 Qualcomm Incorporated Radio link and beam failure management
WO2020163086A1 (en) * 2019-02-07 2020-08-13 Qualcomm Incorporated Beam management using channel state information prediction
US11405088B2 (en) 2019-02-07 2022-08-02 Qualcomm Incorporated Beam management using channel state information prediction

Also Published As

Publication number Publication date
CN108401295A (zh) 2018-08-14
EP3579441A1 (en) 2019-12-11
EP3579441A4 (en) 2020-01-01
US20200014451A1 (en) 2020-01-09
CN108401295B (zh) 2020-06-30

Similar Documents

Publication Publication Date Title
WO2018141238A1 (zh) 一种波束恢复处理方法、网络侧设备及移动终端
KR102097903B1 (ko) 무선 통신 시스템에서 서빙 빔이 무효가 될 때에 통신을 관리하는 방법 및 장치
WO2018121342A1 (zh) 一种波束测量上报的方法、网络侧设备及移动终端
CN110324069B (zh) 波束失败处理方法、终端、网络设备及可读存储介质
WO2019029609A1 (zh) 波束切换方法、移动终端及计算机可读存储介质
WO2018171669A1 (zh) 一种波束的测量上报方法、终端侧设备及网络侧设备
WO2018113593A1 (zh) 一种波束管理信息的配置、处理方法、终端及基站
WO2018137485A1 (zh) 上行数据的发送方法和接收方法、用户终端和网络侧设备
CN111343643B (zh) 一种接入切换方法、网络侧设备及移动终端
US11632165B2 (en) Beam failure detection method, information configuration method, terminal and network device
CN113875164A (zh) 管理无线网络内的用户设备的多个天线面板
WO2018082435A1 (zh) 终端设备移动性的处理方法、终端设备和基站
KR20200125659A (ko) 측정 방법, 구성 측정 방법, 단말 및 네트워크 기기
JP7222066B2 (ja) ビーム障害回復のための方法、端末機器及びネットワーク側機器
WO2018228360A1 (zh) 通信方法、移动终端、基站及计算机可读存储介质
WO2019029562A1 (zh) 波束失败恢复方法和用户终端
CN109391992B (zh) 一种信号测量方法、第一移动终端及网络侧设备
WO2019034052A1 (zh) 多波束的测量上报方法、移动终端及网络侧设备
CN112929921A (zh) 波束失败恢复方法、终端及网络侧设备
CN111492592B (zh) 用户装置以及基站装置
KR20210082502A (ko) 신호 품질 파라미터 측정 방법 및 장치
WO2018095257A1 (zh) 一种恢复数据传输的方法、终端和网络侧节点
CN113114447B (zh) 传输控制信号的方法、用户终端及网络侧设备
JP2022501957A (ja) マルチtrpシステムの干渉を管理するための方法及びシステム
WO2024022319A1 (zh) 波束失败或链路失败的检测方法及终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18748612

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018748612

Country of ref document: EP

Effective date: 20190905