WO2022104735A1 - 波束指示方法、装置及通信设备 - Google Patents

波束指示方法、装置及通信设备 Download PDF

Info

Publication number
WO2022104735A1
WO2022104735A1 PCT/CN2020/130583 CN2020130583W WO2022104735A1 WO 2022104735 A1 WO2022104735 A1 WO 2022104735A1 CN 2020130583 W CN2020130583 W CN 2020130583W WO 2022104735 A1 WO2022104735 A1 WO 2022104735A1
Authority
WO
WIPO (PCT)
Prior art keywords
dci signaling
index
information
tci state
target
Prior art date
Application number
PCT/CN2020/130583
Other languages
English (en)
French (fr)
Inventor
李明菊
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to JP2023530724A priority Critical patent/JP2023550136A/ja
Priority to EP20962026.9A priority patent/EP4250797A4/en
Priority to PCT/CN2020/130583 priority patent/WO2022104735A1/zh
Priority to BR112023009616A priority patent/BR112023009616A2/pt
Priority to KR1020237019894A priority patent/KR20230104715A/ko
Priority to CN202080003399.2A priority patent/CN114982266A/zh
Priority to US18/253,507 priority patent/US20240015719A1/en
Publication of WO2022104735A1 publication Critical patent/WO2022104735A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/231Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the layers above the physical layer, e.g. RRC or MAC-CE signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/189Transmission or retransmission of more than one copy of a message
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams

Definitions

  • the present disclosure relates to the field of wireless communication technologies, and in particular, to a beam indication method, apparatus, and communication device.
  • the beams used for each channel are independently indicated, such as physical downlink control channel (PDCCH, physical downlink control channel), physical downlink shared channel (PDSCH, physical downlink shared channel), physical uplink control channel ( PUCCH, physical uplink control channel) and physical uplink shared channel (PUSCH, physical uplink shared channel) need to indicate their respective beams.
  • the beam indication occupies a relatively large signaling overhead.
  • the present disclosure provides a beam indication method, apparatus and communication device.
  • a beam indication method proposed by an embodiment of the present disclosure, applied to user equipment UE includes:
  • first indication information is used to indicate the target universal beam
  • At least two communication transmissions are performed with the network device using the target universal beam, wherein the communication transmissions include transmission of channels and/or reference signals.
  • the first indication information includes a target general transmission configuration indication TCI state index or an index combination.
  • the target general TCI state index corresponds to a sending and receiving point TRP index or a control resource set pool index.
  • the target general TCI state index corresponds to one or more reference signals, and each of the reference signals is used to indicate at least one of an uplink target general beam and a downlink target general beam.
  • the obtaining the first indication information includes:
  • the first indication information is determined according to the one or more TCI state indexes activated by the second indication information.
  • the number of TCI state indexes activated by the second indication information for a TRP index or a control resource set pool index is one, and the one or more TCI state indexes activated according to the second indication information , determining the first indication information, including:
  • a TCI state index activated by the second indication information is determined as the first indication information.
  • the number of TCI state indexes activated by the second indication information for a TRP index or a control resource set pool index is multiple, and the one or more TCI states activated according to the second indication information index to determine the first indication information, including:
  • the first indication information includes a target general TCI state index or an index combination among multiple TCI state indexes activated by the second indication information.
  • the method further includes:
  • the first HARQ feedback information is used to indicate whether the first DCI signaling is successfully received by the network device
  • the HARQ feedback resource used for sending the first HARQ feedback information is configured by the first DCI signaling, or is set by default.
  • performing at least two communication transmissions with the network device using the target universal beam includes:
  • the second DCI signaling carries resource configuration information for configuring reference signal, random access channel PRACH, physical uplink shared channel PUSCH, physical uplink control channel PUCCH and/or physical downlink shared channel PDSCH transmission resources.
  • the first DCI signaling further carries resource configuration information for configuring transmission resources for at least one of the reference signal, PRACH, PUSCH, PUCCH and PDSCH.
  • the method further includes:
  • the second HARQ feedback information includes:
  • first feedback information used to feed back whether the first DCI signaling is successfully received
  • the second feedback information is used to feed back whether the PDSCH or downlink reference signal configured by the first DCI signaling is successfully received.
  • the HARQ feedback resource used for sending the first feedback information and/or the second feedback information is configured by the first DCI signaling, or is set by default.
  • the HARQ feedback resources used for sending the first feedback information and/or the second feedback information are the same HARQ feedback resources or different HARQ feedback resources.
  • the first feedback information and/or the second feedback information correspond to the same or different bits in the same HARQ feedback resource.
  • the sending beam for sending the first HARQ feedback information is the sending beam corresponding to the target general beam corresponding to the target general TCI state index or index combination in the first DCI signaling, or the receiving beam.
  • the sending beam for sending the second HARQ feedback information is the sending beam corresponding to the target general beam corresponding to the target general TCI state index or index combination in the first DCI signaling, or the receiving beam.
  • the method further includes:
  • the configured transmission resources are used to communicate and transmit with the network device.
  • the communication transmission adopts the same beam as the first DCI signaling;
  • the communication transmission adopts the target common TCI state index or index combination corresponding to the target common TCI state index or index combination in the first DCI signaling. beam.
  • the threshold is notified by the network device
  • the method also includes:
  • the reference time includes the decoding time of the first DCI signaling and its corresponding HARQ feedback time, and the beam switching time; or, the reference time includes the HARQ feedback time corresponding to the first DCI signaling, and Beam switching time.
  • the threshold is set in the UE by default.
  • the UE uses one or more receive beams to receive one or more transmissions of the first DCI signaling.
  • the first DCI signaling is DCI signaling for downlink resource scheduling, or DCI signaling for uplink resource scheduling, or DCI signaling for uplink and downlink resource scheduling, or only DCI signaling for uplink and downlink target general beam indication.
  • the target general TCI state index includes at least one of a downlink target general TCI state index, an uplink target general TCI state index, and an uplink and downlink target general TCI state index.
  • the method further includes:
  • the first indication information further includes indication information of the at least two communication transmissions.
  • the channel includes at least one or a combination of the following:
  • Random access channel PRACH Random access channel PRACH.
  • the reference signal includes at least one or a combination of the following:
  • a beam indication method proposed by an embodiment of the present disclosure is applied to a network device, and the method includes:
  • the first indication information is used to indicate the target universal beam, so that the UE uses the target universal beam to perform at least two kinds of communication transmission with the network device, wherein the communication Transmission includes transmission of channels and/or reference signals.
  • the first indication information includes a target general transmission configuration indication TCI state index or an index combination.
  • the target general TCI state index corresponds to a sending and receiving point TRP index or a control resource set pool index.
  • the target general TCI state index corresponds to one or more reference signals, and each of the reference signals is used to indicate at least one of an uplink target general beam and a downlink target general beam.
  • the sending the first indication information to the user equipment UE includes:
  • the one or more TCI state indexes activated by the second indication information are used to determine the first indication information.
  • the number of TCI state indexes activated by the second indication information for a TRP index or a control resource set pool index is one;
  • the first indication information represents a TCI state index activated by the second indication information.
  • the sending the first indication information to the user equipment UE further includes:
  • the first indication information includes a target general TCI state index or an index combination among multiple TCI state indexes activated by the second indication information.
  • the method further includes:
  • the first HARQ feedback information is used to indicate whether the first DCI signaling is successfully received by the network device
  • the HARQ feedback resource used for sending the first HARQ feedback information is configured by the first DCI signaling, or is set by default.
  • the method includes:
  • the second DCI signaling carries resource configuration information for configuring reference signal, random access channel PRACH, physical uplink shared channel PUSCH, physical uplink control channel PUCCH and/or physical downlink shared channel PDSCH transmission resources.
  • the first DCI signaling further carries resource configuration information for configuring transmission resources for at least one of the reference signal, PRACH, PUSCH, PUCCH and PDSCH.
  • the method further includes:
  • the second HARQ feedback information includes:
  • first feedback information used to feed back whether the first DCI signaling is successfully received
  • the second feedback information is used to feed back whether the PDSCH or downlink reference signal configured by the first DCI signaling is successfully received.
  • the HARQ feedback resource used for sending the first feedback information and/or the second feedback information is configured by the first DCI signaling, or is set by default.
  • the HARQ feedback resources used for sending the first feedback information and/or the second feedback information are the same HARQ feedback resources or different HARQ feedback resources.
  • the first feedback information and/or the second feedback information correspond to the same or different bits in the same HARQ feedback resource.
  • the sending beam for sending the first HARQ feedback information is the sending beam corresponding to the target general beam corresponding to the target general TCI state index or index combination in the first DCI signaling, or the receiving beam.
  • the sending beam for sending the second HARQ feedback information is the sending beam corresponding to the target general beam corresponding to the target general TCI state index or index combination in the first DCI signaling, or the receiving beam.
  • the method further includes:
  • indicating that the time interval between the communication transmission and the first DCI signaling is less than a threshold indicating that the UE uses the same beam as the first DCI signaling to perform the communication transmission; indicating that the The time interval between the communication transmission and the first DCI signaling is greater than or equal to the threshold, indicating that the UE is instructed to adopt the target corresponding to the target general TCI state index or index combination in the first DCI signaling A common beam conducts the communication transmission.
  • the method further includes:
  • the reference time includes the time used by the UE to decode the first DCI signaling and its corresponding HARQ feedback time, and the time used for beam switching; or, the reference time includes the time used by the UE to perform the first DCI signaling. Let the corresponding HARQ feedback time and beam switching time be used.
  • the first DCI signaling is sent one or more times, and the UE is instructed to use one or more receiving beams for reception.
  • the first DCI signaling is DCI signaling for downlink resource scheduling, or DCI signaling for uplink resource scheduling, or DCI signaling for uplink and downlink resource scheduling, or only DCI signaling for uplink and downlink target general beam indication.
  • the target general TCI state index includes at least one of a downlink target general TCI state index, an uplink target general TCI state index, and an uplink and downlink target general TCI state index.
  • the method further includes:
  • the first indication information further includes indication information of the at least two communication transmissions.
  • the channel includes at least one or a combination of the following:
  • Random access channel PRACH Random access channel PRACH.
  • the reference signal includes at least one or a combination of the following:
  • Another aspect of the present disclosure provides a beam indication apparatus, which is applied to a user equipment UE, and the apparatus includes:
  • an obtaining module configured to obtain first indication information, wherein the first indication information is used to indicate the target universal beam
  • the execution module is configured to use the target universal beam to perform at least two communication transmissions with the network device, wherein the communication transmissions include transmission of channels and/or reference signals.
  • Another aspect of the present disclosure provides a beam indication apparatus, which is applied to a network device, and the apparatus includes:
  • an indication module configured to send first indication information to a user equipment UE, where the first indication information is used to indicate a target universal beam, so that the UE uses the target universal beam to perform at least two communication transmissions with the network device , wherein the communication transmission includes transmission of channels and/or reference signals.
  • a communication device comprising: a transceiver; a memory; a processor, respectively connected to the transceiver and the memory, and configured to execute computer-executable instructions on the memory by executing computer-executable instructions on the memory. , controls the transceiver to transmit and receive wireless signals, and can implement the beam indication method described in one aspect or another.
  • Another embodiment of the present disclosure provides a computer storage medium, wherein the computer storage medium stores computer-executable instructions; after the computer-executable instructions are executed by a processor, the computer-executable instructions can implement the method described in one aspect or another aspect.
  • the first indication information for indicating the target universal beam is sent to the UE through the network device, so that the UE, after receiving the first indication information sent by the network device, communicates with the network
  • the device uses the target universal beam for communication and transmission on at least two channels, or at least two reference signals, or at least one reference signal and at least one channel. Since the first indication information of the target general beam is only sent once, the target general beam can be used for various communication transmissions including reference signal transmission and channel transmission, thereby avoiding the need for each channel transmission or reference signal transmission The beams are indicated separately, which saves signaling overhead.
  • FIG. 1 is a schematic flowchart of a beam indication method provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic flowchart of another beam indication method provided by an embodiment of the present disclosure
  • FIG. 3 is a schematic flowchart of another beam indication method provided by an embodiment of the present disclosure.
  • FIG. 4 is a schematic flowchart of another beam indication method provided by an embodiment of the present disclosure.
  • FIG. 5 is a schematic flowchart of another beam indication method provided by an embodiment of the present disclosure.
  • FIG. 6 is a schematic flowchart of a beam indication method provided by an embodiment of the present disclosure.
  • FIG. 7 is a schematic flowchart of another beam indication method provided by an embodiment of the present disclosure.
  • FIG. 8 is a schematic flowchart of another beam indication method provided by an embodiment of the present disclosure.
  • FIG. 9 is a schematic flowchart of another beam indication method provided by an embodiment of the present disclosure.
  • FIG. 10 is a schematic flowchart of another beam indication method provided by an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of a beam pointing device 110 according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of a beam pointing device 120 according to an embodiment of the present disclosure.
  • FIG. 13 is a block diagram of a communication device of a beam indication method according to an embodiment of the present disclosure.
  • first, second, third, etc. may be used in embodiments of the present disclosure to describe various pieces of information, such information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • the first information may also be referred to as the second information, and similarly, the second information may also be referred to as the first information.
  • the words "if” and “if” as used herein can be interpreted as "at the time of” or "when” or "in response to determining.”
  • the target universal beam can be used for various communication transmissions including reference signal transmission and channel transmission, thereby avoiding the need to separately indicate the beam for each channel transmission or reference signal transmission, and saving signaling overhead.
  • FIG. 1 is a schematic flowchart of a beam indication method provided by an embodiment of the present disclosure, which is applied to user equipment.
  • Step 101 Obtain first indication information, where the first indication information is used to indicate the target universal beam.
  • the beam indication method in the embodiment of the present disclosure can be applied to any user equipment.
  • User equipments may be dispersed throughout the mobile communication system, and each user equipment may be stationary or mobile.
  • User equipment may also be referred to by those skilled in the art as mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, terminal device, wireless device, wireless communication device, remote device, mobile subscriber station, receiver.
  • the user equipment may be a cellular telephone, a Personal Digital Assistant (PDA), a wireless modem, a wireless communication device, a handheld device, a tablet computer, a laptop computer, a cordless telephone, a Wireless Local Loop (WLL) Stations, etc., can communicate with network devices in a mobile communication system.
  • PDA Personal Digital Assistant
  • WLL Wireless Local Loop
  • the first indication information may be carried in control signaling, such as Radio Resource Control (RRC, Radio Resource Control) signaling, or a Medium Access Control (MAC, Medium Access Control) unit (CE, Control Element), or It is downlink control information (DCI, Downlink Control Information) signaling, and may also be a combination of at least two signaling in the above signaling.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • CE Medium Access Control
  • DCI Downlink Control Information
  • the first indication information bearing mode of the target universal beam is not limited.
  • Step 102 using the target universal beam to perform at least two communication transmissions with the network device, wherein the communication transmissions include transmission of channels and/or reference signals.
  • the network equipment is deployed in the wireless access network to provide the wireless access function for the user equipment.
  • the network device may be a base station (Base Station, BS).
  • the network device may wirelessly communicate with the user device via one or more antennas.
  • a network device can provide communication coverage for its geographic area.
  • the base stations may include different types such as macro base stations, micro base stations, relay stations, and access points.
  • a base station may be referred to by those skilled in the art as a base station transceiver, wireless base station, access point, wireless transceiver, Basic Service Set (BSS), Extended Service Set (ESS) ), Node B (NodeB), evolved Node B (evolved NodeB, eNB or eNodeB) or some other appropriate term.
  • a base station is called a gNB.
  • the foregoing apparatuses for providing wireless communication functions for user equipment are collectively referred to as network equipment.
  • the channel includes a combination of at least one or more of the following:
  • PUSCH Physical Uplink Shared Channel
  • PBCH Physical Broadcast Channel
  • Random Access Channel Physical Random Access Channel
  • the reference signal includes a combination of at least one or more of the following:
  • CSI-RS Channel state information-reference signal
  • Demodulation Reference Signal (Demodulation Reference Signal, DMRS);
  • PRS Positioning Reference Signal
  • TRS Tracking Reference Signal
  • Sounding Reference Signal Sounding Reference Signal (Sounding Reference Signal, SRS).
  • the above reference signals can be used in different scenarios, for example, beam measurement, channel state information measurement, path loss estimation, antenna switching, positioning measurement, channel estimation or synchronization tracking during demodulation, etc., which are not listed one by one in this embodiment. .
  • the channels and reference signals listed above are only examples, and do not limit the present disclosure.
  • the target universal beam is applied to the communication transmission between the user equipment and the network equipment.
  • at least two communication transmissions may include channels and/or reference signals that belong to uplink transmission; may also include channels and/or reference signals that belong to downlink transmission; or may include channels and/or reference signals that are part of uplink transmission /or reference signal, and another part is the channel and/or reference signal for downlink transmission.
  • the target universal beam can be used for communication transmission of at least two channels.
  • the target general beam can be used for PDSCH channels and PDCCH channels, where PDSCH channels include all PDSCH channels or only a part of PDSCH channels, such as UE dedicated PDSCH channels, such as UE dedicated PDSCH channels; PDCCH includes all PDCCH channels or only a part of PDCCH channels , such as the UE dedicated PDCCH channel.
  • the target universal beam can be used for the PUSCH channel and the PUCCH channel, wherein the PUSCH channel includes all the PUSCH channels or only a part of the PUSCH channels, such as the user equipment dedicated PUSCH channel UE dedicated The PUSCH channel, the PUCCH includes all the PUCCH channels or only includes A part of PUCCH channels, such as UE dedicated PUCCH channels, such as user equipment dedicated PUCCH channels.
  • the target universal beam can be used for the PUSCH channel and the PDSCH channel, where the PUSCH channel includes all PUSCH channels or only a part of the PUSCH channels, such as the UE dedicated PUSCH channel, and the PDSCH includes all the PDSCH channels or only a part of the PDSCH channels, such as the UE dedicated channel.
  • PDSCH channel includes all the PDSCH channels or only a part of the PDSCH channels, such as the UE dedicated channel.
  • the target common beam in the case where the target common beam is used for the PDSCH channel and the PDCCH channel, the target common beam can be called a downlink target common beam (DL common beam); in the case where the target common beam is used for the PUSCH channel and the PUCCH channel, The target common beam may be called an uplink target common beam (Ulcommon beam); when the target common beam is used for the PUSCH channel and the PDSCH channel, the target common beam is called the common beam, that is, it is used for both uplink and downlink.
  • DL common beam downlink target common beam
  • Ulcommon beam uplink target common beam
  • the target common beam when the target common beam is used for the PUSCH channel and the PDSCH channel, the target common beam is called the common beam, that is, it is used for both uplink and downlink.
  • the target universal beam can be used for communication transmission of at least two reference signals.
  • the at least two reference signals here may both belong to the downlink reference signal, may also belong to the uplink reference signal, or may be a mixture of the downlink reference signal and the uplink reference signal, which is not limited in this embodiment.
  • the downlink reference signal may include at least one of SSB, CSI-RS, PRS, TRS, and DMRS; or, for another example, the uplink reference signal may include at least one of SRS and DMRS.
  • CSI-RS For some reference signals, such as CSI-RS, it may also include all CSI-RS; or not include all CSI-RS, but include CSI-RS for at least one purpose, such as channel state information measurement, beam At least one of measurement, path loss estimation, and CSI-RS for positioning measurement.
  • SRS Another example is SRS, which can also include all SRSs; or not include all SRSs, but include SRSs for at least one purpose, such as code book-based channel state information measurement, non-code book-based channel state information. At least one of SRS for measurement, beam measurement, antenna switching, and positioning measurement.
  • the target universal beam can be used for communication transmission of at least one reference signal and at least one channel.
  • the target general beam can be used for communication and transmission of the PDSCH channel and the downlink reference signal, and the downlink reference signal can include at least one of SSB, CSI-RS, PRS, TRS, and DMRS; or, for another example, the target general beam can be used with
  • the uplink reference signal may include at least one of the SRS and the DMRS.
  • PDSCH here may include all PDSCH, or only part of PDSCH, such as UE dedicated PDSCH; here PUSCH may include all PUSCH, or only part of PUSCH, such as UE dedicated PUSCH; here reference signal, such as CSI- RS or SRS may include CSI-RS or SRS for all purposes or at least one purpose.
  • downlink channel uplink channel
  • downlink reference signal uplink reference signal
  • uplink reference signal uplink reference signal
  • the first indication information further includes indication information of at least two kinds of communication transmissions, that is, the indication information indicates that the user equipment adopts the target universal beam to perform communication between the network device and the user equipment.
  • the determined at least two types of communication transmission for example, the indication information indicates that the communication transmission between the user equipment and the network device using the target universal beam is PDSCH channel and PDCCH channel transmission, wherein, about the at least two types of communication
  • the implementation manner of transmission has been described in the above implementation manner, and will not be repeated here.
  • the target universal beam may be a single beam or multiple beams, which is not limited in this embodiment.
  • the target general beam When the target general beam is multi-beam, it is necessary to determine the target general beam corresponding to each TRP (Transmission and Reception Point) according to the first indication information sent by the network device, or determine the index number of each control resource pool (Core Set Pool Index) corresponds to the target universal beam, so the target TCI state index in the first indication information should correspond to the TRP index or the control resource set pool index.
  • TRP Transmission and Reception Point
  • index number of each control resource pool Core Set Pool Index
  • the first indication information is sent to the UE through the network device, so that after the UE receives the first indication information sent by the network device, the UE communicates with the network device on at least two channels, or at least two reference signals, or at least one
  • the target universal beam is used for communication and transmission on the reference signal and at least one channel. Since the first indication information of the target general beam is only sent once, the target general beam can be used for various communication transmissions including reference signal transmission and channel transmission, thereby avoiding the need for each channel transmission or reference signal transmission The beams are indicated separately, which saves signaling overhead.
  • FIG. 2 is a schematic flowchart of another beam indication method provided by an embodiment of the present disclosure, which is applied to user equipment.
  • the indication method of the target universal beam is described. As shown in FIG. 2 , the method includes:
  • Step 201 Receive a target general transmission configuration indicator (TCI, Transmission Configuration Indicator) state index or index combination sent by the network device.
  • TCI Transmission Configuration Indicator
  • the first indication information received by the user equipment includes the TCI state index or index combination sent by the network device including the target general transmission configuration indication.
  • the target general TCI state index combination can be determined by the combination identifier, for example, 01 and 02 respectively indicate different index combinations; or different code points can be used to indicate different index combinations, such as a 3-bit code Points 000 and 001 respectively indicate different index combinations.
  • One or more TCI state indexes are included in different index combinations.
  • the target general TCI state index may be one or more. Wherein, each target general TCI state index corresponds to one or more reference signals RS, and each reference signal is used to indicate at least one of an uplink target general beam and a downlink target general beam.
  • the target general TCI state index includes at least one of a downlink target general TCI state index, an uplink target general TCI state index, and an uplink and downlink target general TCI state index.
  • the reference signal corresponding to the downlink target general TCI state index such as RS
  • the reference signal corresponding to the uplink target general TCI state index is not used for Indicates the target common beam of the downlink channel or downlink reference signal.
  • the reference signal corresponding to the uplink and downlink target general TC state index can indicate the target general beam of uplink transmission or downlink transmission at the same time, which is indicated by one reference signal RS or two reference signals RS respectively.
  • the network device configures the UE through the Radio Resource Control (RRC, Radio Resource Control) signaling the corresponding relationship between the target general TCI state index and the Reference Signal (RS, Reference Signal).
  • RRC Radio Resource Control
  • RS Reference Signal
  • the network device After reaching the target TCI state index, according to the target TCI state index, query the correspondence between the above-mentioned TCI state index and the RS, and then the reference signal RS corresponding to the target TCI state index can be obtained.
  • the UE according to the reference signal
  • the RS determines the corresponding beam.
  • the corresponding relationship between the TCI state index and the RS may be in a TCI table or other forms, and the corresponding relationship is in the form of a TCI table as an example for description.
  • the TCI table may include information such as a TCI state index (ie, TCI State ID), a reference signal index (RS ID, Reference Signal ID)).
  • the target general TCI state index combination when the target general TCI state index combination is obtained, then according to the identification of the index combination or the mapping relationship between the codepoint and the index combination displayed by the bits, determine the plurality of target general TCI state indexes included, and then , and determine the corresponding target universal beam according to the pre-configured correspondence between the TCI state index and the RS index.
  • the TCI status index sent by the network device may indicate one of the uplink target general beam and the downlink target general beam. That is, the uplink target general TCI status index is used to indicate the uplink target general beam, and the downlink target general beam is used.
  • the target general TCI state index indicates the downlink target general beam.
  • the target general TCI state index sent by the network device may be used to indicate the uplink target general beam and the downlink target general beam.
  • the target general TCI state index sent by the network device indicates a corresponding RS for each TRP, that is, the RS indicates both the uplink target general beam and the downlink target general beam.
  • the target general TCI state index sent by the network device indicates a corresponding RS for each TRP, and this RS may indicate an uplink target general beam or a downlink target general beam.
  • the target general TCI state sent by the network device indicates two corresponding RSs for each TRP, one of the two RSs is used to indicate the uplink target general beam, and the other RS is used to indicate the downlink target general beam. beam.
  • the target general TCI state index corresponds to a sending and receiving point TRP index or a control resource set pool index. That is to say, the target general TCI state index and one TRP are common for multiple communication transmissions, and different TRPs use different target general TCI state indexes; the target general TCI state index and a control resource set pool index are used for various The communication transmission is common, and different control resource set pool indexes use different target common TCI state indexes.
  • the determined general beam is the beam corresponding to the TRP; in another embodiment, when there are multiple TRPs, different TRPs have corresponding targets
  • the general TCI state index, and the target general TCI state index has a corresponding RS, and according to the target general beam corresponding to the RS, the target general beam corresponding to the corresponding TPR can be determined.
  • Step 202 Determine the target universal beam according to the TCI state index or index combination.
  • the index combination includes multiple TCI state indexes, and each TCI state index corresponds to a different TRP.
  • the network device can configure the target generic for the UE in advance through high-level signaling, such as Radio Resource Control (RRC, Radio Resource Control) signaling, or a Media Access Control (MAC, Medium Access Control) control element (CE, Control Element). Correspondence between TCI state index and RS. According to the pre-configured correspondence, the UE may determine the corresponding target general beam according to the target general TCI state index dynamically indicated by the network device.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • CE Control Element
  • Step 203 using the target universal beam to perform at least two communication transmissions with the network device, wherein the communication transmissions include transmission of channels and/or reference signals.
  • step 203 may be implemented in any of the various embodiments of the present disclosure, which is not limited in the embodiment of the present disclosure, and will not be described again.
  • the network device sends the first indication information of the target universal beam to the UE, so that after the UE receives the first indication information of the target universal beam sent by the network device, it communicates with the network device on at least two channels, or at least Two reference signals, or at least one reference signal and at least one channel are used for communication and transmission using the target universal beam. Since the first indication information of the target general beam is only sent once, the target general beam can be used for various communication transmissions including reference signal transmission and channel transmission, thereby avoiding the need for each channel transmission or reference signal transmission The beams are indicated separately, which saves signaling overhead.
  • FIG. 3 is a schematic flowchart of another beam indication method provided by an embodiment of the present disclosure, and the method is executed by a UE.
  • the present disclosure provides a possible way of carrying the first indication information of the target universal beam. As shown in FIG. 3 , the method includes:
  • Step 301 receiving the control unit MAC CE signaling of the media access control layer sent by the network device, wherein the MAC CE carries the second indication information for activating one or more TCI state indexes, and one TCI state index corresponds to one TRP index or a control resource set pool index.
  • the MACCE signaling includes an indication bit, and the indication bit records the second indication information for activating one or more TCI state indexes, that is to say, the second indication information indicates one or more TCI states to be activated index.
  • the MAC CE has a corresponding indication bit for each TCI state index, so that the UE determines the corresponding TCI state index according to the second indication information in the indication bit, and a TCI state index corresponds to a TRP index or a TRP index. Controls the resource set pool index.
  • the beam includes an uplink beam, a downlink beam, and an uplink and downlink common beam, and there may be one or more beams activated for each TRP, wherein the activated beam may include at least one uplink beam, and/or, at least One downlink beam or at least one uplink and downlink common beam, in this embodiment, the number of activated beams is not limited.
  • Step 302 Determine the first indication information according to one or more TCI state indexes activated by the second indication information.
  • the first indication information is used to indicate the target universal beam.
  • one TCI state index corresponds to one TRP index or one control resource set pool index.
  • the number of TCI state indexes activated by the second indication information for one TRP index or one control resource set pool index is one, so that one TCI state index activated by the second indication information is determined as the first indication information.
  • the TCI state index corresponding to the TRP is the activated TCI state index.
  • the activated TCI status index corresponds to the downlink target general TCI status index
  • the reference signal corresponding to the activated TCI status index indicates the downlink target general beam
  • the downlink target general beam of the TRP is the reference corresponding to the TCI status index Downlink beam indicated by the signal.
  • the activated TCI status index corresponds to the uplink target general TCI status index
  • the reference signal corresponding to the activated TCI status index indicates the uplink target general beam
  • the uplink target general beam of the TRP is the corresponding TCI status index.
  • the activated TCI state index corresponds to the target general TCI state index
  • the reference signal corresponding to the activated TCI state index indicates the uplink target general beam and the downlink target general beam.
  • the uplink target general beam and the downlink target general beam of the TRP are the uplink beam and the downlink beam indicated by the reference signal corresponding to the TCI state index.
  • the number of TCI state indexes activated by the second indication information for one TRP index or one control resource set pool index is multiple, it is necessary to determine one of the multiple TCI state indexes and the corresponding TRP index or The target TCI state index or index combination corresponding to the control resource set pool index is used as the first indication information.
  • receive the first downlink control information DCI signaling sent by the network device where the first DCI signaling carries first indication information, where the first indication information includes a plurality of activated second indication information
  • the index combination includes multiple general TCI state indexes, and different TCI state indexes correspond to different TRPs or different control resource set pool indexes.
  • Step 303 using the target universal beam to perform at least two communication transmissions with the network device, wherein the communication transmissions include transmission of channels and/or reference signals.
  • step 303 may be implemented in any of the various embodiments of the present disclosure, which is not limited in the embodiment of the present disclosure, and will not be described again.
  • the network device sends the first indication information of the target universal beam to the UE, so that after the UE receives the first indication information of the target universal beam sent by the network device, it communicates with the network device on at least two channels, or at least Two reference signals, or at least one reference signal and at least one channel are used for communication and transmission using the target universal beam. Since the first indication information of the target general beam is only sent once, the target general beam can be used for various communication transmissions including reference signal transmission and channel transmission, thereby avoiding the need for each channel transmission or reference signal transmission The beams are indicated separately, which saves signaling overhead.
  • FIG. 4 is a schematic flowchart of another beam indication method provided by an embodiment of the present disclosure, where the method is executed by a UE.
  • the present disclosure provides a possible way of carrying the first indication information of the target universal beam. As shown in FIG. 4 , the method includes:
  • Step 401 Receive first downlink control information DCI signaling sent by a network device.
  • the first DCI signaling includes first indication information of the target universal beam. That is to say, the target general TCI state index or index combination and the resource configuration information are in different DCI signaling, and the first DCI signaling includes the target general TCI state index or index combination, that is, the first indication information.
  • the first DCI signaling may be based on a single TRP or based on multiple TRPs, which is not limited in this embodiment.
  • the UE uses one or more receiving beams to receive one or more transmissions of the first DCI signaling, that is, the network device uses one or more TRPs to perform one or more transmissions of the first DCI signaling.
  • the first DCI signaling is sent for the second time, and at the same time, each TRP corresponds to a different beam, which avoids occlusion in the signal transmission process, improves the communication quality, and ensures that the first DCI signaling is received.
  • Step 402 Send the HARQ feedback information of the first hybrid automatic repeat request to the network device.
  • the first HARQ feedback information is used to indicate whether the first DCI signaling of the network device is successfully received.
  • the HARQ feedback resource used for sending the first HARQ feedback information is configured by the first DCI signaling, or is set by default.
  • the number of times the network device sends the first DCI signaling may be one time, and correspondingly, there may be one or more candidate PUCCH/PUSCH resources for the UE to send the first HARQ feedback information.
  • the number of times the network device sends the first DCI signaling may be multiple times, and correspondingly, the number of candidate PUCCH/PUSCH resources for the UE to send the first HARQ feedback information may be one or more.
  • the UE sends the first HARQ feedback information once every time it receives the first DCI signaling.
  • the network device repeatedly sends the first DCI signaling at N sending times, correspondingly, the UE is configured with L candidate PUCCH/PUSCH resources for sending the first HARQ feedback information, where L is less than or equal to Some of the N and L candidate PUCCH/PUSCH resources are before the end of the N transmission times, and some are after the end of the N transmission times.
  • the UE may select a candidate PUCCH/PUSCH resource, and transmit the first HARQ feedback information before N transmission times.
  • the UE may select another candidate PUCCH/PUSCH resource, and transmit the first HARQ feedback information after the end of the N transmission times.
  • the network device repeatedly sends the first DCI signaling at N sending times, correspondingly, the UE is configured with 1 candidate PUCCH/PUSCH resource for sending the first HARQ feedback information, and the UE can send the first HARQ feedback information at N times. After the time expires, the first HARQ feedback information is sent.
  • the target universal beam is used to perform at least two communication transmissions with the network device, wherein the communication transmission includes transmission of channels and/or reference signals.
  • the sending beam for sending the first HARQ feedback information is the sending beam corresponding to the target general beam corresponding to the target general TCI state index or index combination in the first DCI signaling.
  • the transmit beam that transmits the first HARQ feedback information is a transmit beam corresponding to the receive beam that receives the first DCI signaling.
  • Step 403 using the target universal beam, receive the second DCI signaling sent by the network device on the physical downlink control channel PDCCH.
  • the DCI signaling carrying the transmission resource configuration information is referred to as the second DCI signaling.
  • the second DCI signaling carries resource configuration information for configuring reference signal, physical random access channel PRACH, physical uplink shared channel PUSCH, physical uplink control channel PUCCH and/or physical downlink shared channel PDSCH transmission resources.
  • the configured reference signal may specifically include at least one of the following reference signals:
  • the above reference signals can be used in different scenarios, for example, beam measurement, channel state information measurement, path loss estimation, antenna switching, positioning measurement, channel estimation or synchronization tracking during demodulation, etc., which are not listed one by one in this embodiment. In specific implementation, it is not limited to the several reference signal types listed above, and the aforementioned reference signal types do not limit the scope of the present disclosure.
  • the second DCI signaling may be the first DCI signaling after the first DCI signaling is sent.
  • the transmission time interval between the first DCI signaling and the second DCI signaling is sufficient for the user equipment and the network equipment to complete the HARQ feedback, that is, the time interval is sufficient for the user equipment to decode the received first DCI signaling and report to the network equipment. Feedback HARQ.
  • the network device sends the first indication information of the target universal beam to the UE, so that after the UE receives the first indication information of the target universal beam sent by the network device, it communicates with the network device on at least two channels, or at least Two reference signals, or at least one reference signal and at least one channel are used for communication and transmission using the target universal beam. Since the first indication information of the target general beam is only sent once, the target general beam can be used for various communication transmissions including reference signal transmission and channel transmission, thereby avoiding the need for each channel transmission or reference signal transmission The beams are indicated separately, which saves signaling overhead.
  • FIG. 5 is a schematic flowchart of another beam indication method provided by an embodiment of the present disclosure, where the method is executed by a UE.
  • the present disclosure provides a possible way of carrying the first indication information of the target universal beam. As shown in FIG. 5 , the method includes:
  • Step 501 Receive the first DCI signaling sent by the network device.
  • the first DCI signaling includes first indication information, and carries resource configuration information for configuring transmission resources for at least one of the reference signal, PRACH, PUSCH, PUCCH, and PDSCH.
  • the first DCI signaling carries resource configuration information of transmission resources used for downlink transmission
  • the first DCI signaling is the DCI signaling used for downlink resource scheduling, which may be preset.
  • DCI signaling for example, DCI format 1_0, 1_1 or 1_2, or using redefined DCI signaling, which are not listed one by one in this embodiment, nor are they limited.
  • the first DCI signaling carries resource configuration information of transmission resources used for uplink transmission
  • the first DCI signaling is the DCI signaling used for uplink resource scheduling, which can be pre-configured.
  • the set DCI signaling for example, the DCI format 0_0, 0_1 or 0_2, or the redefined DCI signaling is adopted, which is not listed one by one in this embodiment, nor is it limited.
  • the first DCI signaling carries resource configuration information of transmission resources used for uplink and downlink transmission, and the first DCI signaling is DCI signaling used for uplink and downlink resource scheduling.
  • the first DCI signaling may be DCI signaling for resource configuration for a single TRP or DCI signaling for resource configuration for multiple TRPs, which is not limited in this embodiment.
  • Step 502 Send the second HARQ feedback information to the network device.
  • the second HARQ feedback information is sent to the network device.
  • the second HARQ feedback information sent by the UE to the network device may use the same beam as sending the first DCI signaling, or may use the target universal beam indicated by the first indication information included in the first DCI signaling. This example is not limited.
  • the network device schedules two HARQ feedback resources through the first DCI signaling, or the UE is pre-configured with two HARQ feedback resources, then the second HARQ feedback information includes: the first feedback information for Feedback whether the first DCI signaling is successfully received, and the second feedback information is used to feed back whether the PDSCH or downlink reference signal configured by the first DCI signaling is successfully received.
  • the network device schedules one HARQ feedback resource through the first DCI signaling, or the UE is pre-configured with one HARQ feedback resource, then the second HARQ feedback information includes: the first feedback information and the first HARQ feedback resource. Two feedback information, the two share the HARQ feedback resource.
  • the HARQ feedback resource used for sending the first feedback information and/or the second feedback information is configured by the first DCI signaling, or is set by default.
  • the HARQ feedback resources used for sending the first feedback information and/or the second feedback information are the same HARQ feedback resources or different HARQ feedback resources.
  • the first feedback information and/or the second feedback information correspond to the same HARQ feedback resources the same or different bits.
  • the number of times the network device sends the first DCI signaling may be one time, and correspondingly, the number of candidate PUCCH/PUSCH resources for the UE to send the second HARQ feedback information may be one or more.
  • the number of times the network device sends the first DCI signaling may be multiple times, and correspondingly, the number of candidate PUCCH/PUSCH resources for the UE to send the second HARQ feedback information may be one or more.
  • the UE sends the second HARQ feedback information once.
  • the network device repeatedly sends the first DCI signaling at N sending times, correspondingly, the UE is configured with L candidate PUCCH/PUSCH resources for sending the first HARQ feedback information, where L is less than or equal to Some of the N and L candidate PUCCH/PUSCH resources are before the end of the N transmission times, and some are after the end of the N transmission times.
  • the UE may select a candidate PUCCH/PUSCH resource, and transmit the second HARQ feedback information before N transmission times.
  • the UE may select a candidate PUCCH/PUSCH resource, and transmit the second HARQ feedback information after the end of the N transmission times.
  • the network device repeatedly sends the first DCI signaling at N sending times, correspondingly, the UE is configured with 1 candidate PUCCH/PUSCH resource for sending the first HARQ feedback information, and the UE can send the first HARQ feedback information at N times. After the time expires, the second HARQ feedback information is sent.
  • the sending beam for sending the second HARQ feedback information is the sending beam corresponding to the target general beam corresponding to the target general TCI state index or index combination in the first DCI signaling.
  • the transmit beam for transmitting the second HARQ feedback information is a transmit beam corresponding to the receive beam for receiving the first DCI signaling.
  • Step 503 According to the resource configuration information carried in the first DCI signaling, use the configured transmission resources to communicate and transmit with the network device.
  • the network device determines whether the UE has correctly received the first DCI according to whether the UE uses the configured transmission resources to communicate with the network device without separately sending the HARQ feedback for whether the first DCI signaling is successfully received. Signaling, that is, whether the network device is configured.
  • the communication transmission adopts the same beam as the first DCI signaling.
  • the communication transmission adopts the target general TCI in the first DCI signaling The target general beam corresponding to the state index.
  • the threshold in step 503 is set in the UE by default. As a possible implementation manner, it may be notified by a network device; as another possible implementation manner, it may be determined according to historical transmission time. It is not limited in this embodiment.
  • the threshold is notified by the network device.
  • the user equipment sends a reference time to the network device, and the reference time is used by the network device to determine the threshold.
  • the reference time includes the first DCI signaling decoding time and its corresponding HARQ feedback time, and the beam switching time; or, the reference time includes the HARQ feedback time corresponding to the first DCI signaling, and the beam switching time. Therefore, the user equipment determines within the reference time that the decoding of the first DCI signaling, the HARQ feedback and the beam switching can be completed, or the HARQ feedback and the beam switching can be completed.
  • the threshold determined by the network device is greater than or equal to the reference time.
  • the communication transmission including the user equipment sending uplink transmission and/or receiving downlink transmission to the network device, is used as an example for specific description.
  • the network device determines whether the UE has correctly received the first DCI signaling according to whether the UE uses the configured transmission resources to send uplink transmission to the network device A DCI signaling; or, the network device sends downlink transmission to the user equipment using the configured transmission resources, and determines whether the UE has correctly received and decoded the first DCI signaling according to whether the UE has correctly received and decoded the HARQ feedback information fed back by the downlink transmission.
  • the same beam as the first DCI signaling is used for uplink transmission and/or downlink transmission.
  • the time interval between uplink transmission and/or downlink transmission and the first DCI signaling is greater than or equal to the threshold, the uplink transmission and/or downlink transmission use the target general TCI state index or index combination corresponding to the first DCI signaling The same beam as the target common beam.
  • the threshold is at least one of the duration required by the UE to decode the first DCI signaling, and the duration required by the UE to feed back to the network device whether the first DCI signaling is correctly received and the duration of beam switching.
  • the time threshold may be determined through negotiation between the UE and the network device.
  • the UE After the network device determines that the UE has correctly received the first DCI signaling, the UE performs subsequent communication and transmission with the network device, and can apply the target universal beam when performing at least two communication transmissions with the network device, thereby using the target universal beam.
  • the beam communicates with network equipment for uplink transmission and/or downlink transmission.
  • Step 504 using the target universal beam to perform at least two communication transmissions with the network device.
  • step 503 may be implemented in any of the various embodiments of the present disclosure, which is not limited in the embodiment of the present disclosure, and will not be described again.
  • the network device sends the first indication information of the target universal beam to the UE, so that after the UE receives the first indication information of the target universal beam sent by the network device, it communicates with the network device on at least two channels, or at least Two reference signals, or at least one reference signal and at least one channel are used for communication and transmission using the target universal beam. Since the first indication information of the target general beam is only sent once, the target general beam can be used for various communication transmissions including reference signal transmission and channel transmission, thereby avoiding the need for each channel transmission or reference signal transmission The beams are indicated separately, which saves signaling overhead.
  • the user equipment may also receive third indication information sent by the network device, and the third indication information is used to indicate The UE uses the target general beam or uses the dedicated beam for at least two communication transmissions.
  • the third indication information received by the user equipment may be received before the user equipment receives the first indication information, so the user equipment determines to use the target universal beam or use the target universal beam according to the third indication information
  • the dedicated beam performs at least two communication transmissions. In an example, it is determined that the dedicated beam is used to perform at least two communication transmissions, and at least two communication transmissions are performed according to the indicated dedicated beam, wherein the dedicated beam for indicating each communication transmission is used. The signaling of the beam is different signaling. In another example, if it is determined to use the target universal beam for at least two communication transmissions, the target universal beam to be used for communication transmission is further determined according to the obtained first indication information. For details, refer to any one of the above embodiments. The implementation manner of , is not repeated in this embodiment.
  • the third indication information received by the user equipment may be received after the user equipment receives the first indication information, and further, the network device determines the need according to the received third indication information
  • the target general beam is switched to a dedicated beam, and the dedicated beam needs to separately send signaling for each channel and/or each reference signal for independent indication.
  • the network device needs to switch a certain channel or reference signal to a dedicated beam, so that only the indication information of the dedicated beam corresponding to the channel or reference signal can be sent, while the other do not receive the indication of the dedicated beam
  • the information channel or reference signal will continue to use the target general beam.
  • the network device may switch each channel and/or each reference signal currently using the target general beam to a dedicated beam, and send the indication information of the dedicated beam for each channel and/or reference signal respectively .
  • FIG. 6 is a schematic flowchart of a beam indication method provided by an embodiment of the present disclosure, which is applied to a network device.
  • Step 601 Send first indication information to the user equipment UE, where the first indication information is used to indicate the target universal beam, so that the UE uses the target universal beam to perform at least two communication transmissions with the network device, wherein the communication transmissions include channels and/or reference transmission of signals.
  • the beam indication method in this embodiment can be applied to any network device.
  • Network equipment is deployed in a wireless access network to provide wireless access functions for user equipment.
  • the network equipment may be a base station BS.
  • the network device may wirelessly communicate with the user device via one or more antennas.
  • a network device can provide communication coverage for its geographic area.
  • the base stations may include different types such as macro base stations, micro base stations, relay stations, and access points.
  • a base station may be referred to by those skilled in the art as a base station transceiver, wireless base station, access point, wireless transceiver, Basic Service Set BSS, Extended Service Set ESS, Node B (NodeB), Evolved Node B (evolved NodeB, eNB or eNodeB) or some other appropriate term.
  • a base station is called a gNB.
  • the above-mentioned apparatuses for providing wireless communication functions for user equipment are collectively referred to as network equipment.
  • the user equipments may be scattered throughout the mobile communication system, and each user equipment may be stationary or mobile.
  • User equipment may also be referred to by those skilled in the art as mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, terminal device, wireless device, wireless communication device, remote device, mobile subscriber station, receiver.
  • the user equipment may be a cellular phone, a personal digital assistant PDA, a wireless modem, a wireless communication device, a handheld device, a tablet computer, a laptop computer, a cordless phone, a wireless local loop WLL station, etc., capable of communicating with network equipment in a mobile communication system. to communicate.
  • the first indication information may be carried in control signaling, such as radio resource control RRC signaling, or the control unit MAC CE of the medium access control layer, or downlink control information DCI signaling, or the above signaling
  • control signaling such as radio resource control RRC signaling, or the control unit MAC CE of the medium access control layer, or downlink control information DCI signaling, or the above signaling
  • the channel includes a combination of at least one or more of the following:
  • Random access channel PRACH Random access channel PRACH.
  • the reference signal includes a combination of at least one or more of the following:
  • the above reference signals can be used in different scenarios, for example, beam measurement, channel state information measurement, path loss estimation, antenna switching, positioning measurement, channel estimation or synchronization tracking during demodulation, etc., which are not listed one by one in this embodiment. .
  • the channels and reference signals listed above are only examples, and do not limit the present disclosure.
  • the target universal beam is applied to the communication transmission between the user equipment and the network equipment.
  • at least two communication transmissions may include channels and/or reference signals that belong to uplink transmission; may also include channels and/or reference signals that belong to downlink transmission; or may include channels and/or reference signals that are part of uplink transmission /or reference signal, and another part is the channel and/or reference signal for downlink transmission.
  • the target universal beam can be used for communication transmission of at least two channels.
  • the target general beam can be used for PDSCH channels and PDCCH channels, where PDSCH channels include all PDSCH channels or only a part of PDSCH channels, such as UE dedicated PDSCH channels; PDCCH includes all PDCCH channels or only a part of PDCCH channels, such as UE dedicated PDCCH channels channel.
  • the target universal beam can be used for the PUSCH channel and the PUCCH channel, where the PUSCH channel includes all the PUSCH channels or only a part of the PUSCH channels, such as the UE dedicated PUSCH channel, and the PUCCH includes all the PUCCH channels or only a part of the PUCCH channels, such as UE dedicated PUCCH channel.
  • the target universal beam can be used for the PUSCH channel and the PDSCH channel, where the PUSCH channel includes all PUSCH channels or only a part of the PUSCH channels, such as the UE dedicated PUSCH channel, and the PDSCH includes all the PDSCH channels or only a part of the PDSCH channels, such as the UE dedicated channel. PDSCH channel.
  • the target common beam in the case where the target common beam is used for the PDSCH channel and the PDCCH channel, the target common beam can be called a downlink target common beam (DL common beam); in the case where the target common beam is used for the PUSCH channel and the PUCCH channel, The target common beam may be called an uplink target common beam (UL common beam); in the case that the target common beam is used for the PUSCH channel and the PDSCH channel, the target common beam is called the common beam, that is, it is used for both uplink and downlink.
  • DL common beam downlink target common beam
  • UL common beam uplink target common beam
  • the target common beam in the case that the target common beam is used for the PUSCH channel and the PDSCH channel, the target common beam is called the common beam, that is, it is used for both uplink and downlink.
  • the target universal beam can be used for communication transmission of at least two reference signals.
  • the at least two reference signals here may both belong to the downlink reference signal, may also belong to the same uplink reference signal, or may be a mixture of the downlink reference signal and the uplink reference signal, which is not limited in this embodiment.
  • the downlink reference signal may include at least one of SSB, CSI-RS, PRS, TRS, and DMRS; or, for another example, the uplink reference signal may include at least one of SRS and DMRS.
  • CSI-RS For some reference signals, such as CSI-RS, it may also include all CSI-RS; or not include all CSI-RS, but include CSI-RS for at least one purpose, such as channel state information measurement, beam At least one of measurement, path loss estimation, and CSI-RS for positioning measurement.
  • SRS Another example is SRS, which can also include all SRSs; or not include all SRSs, but include SRSs for at least one purpose, such as codebook-based channel state information measurement, non-codebook-based channel state information measurement, At least one of beam measurement, antenna switching, and SRS for positioning measurement.
  • the target universal beam can be used for communication transmission of at least one reference signal and at least one channel.
  • the target general beam can be used for the communication and transmission of the PDSCH channel and the downlink reference signal, and the downlink reference signal can include at least one of SSB, CSI-RS, PRS, TRS and DMRS; or, for another example, the target general beam can be For communication and transmission of PUSCH and uplink reference signals, the uplink reference signals may include at least one of SRS and DMRS.
  • PDSCH here may include all PDSCH, or only part of PDSCH, such as UE dedicated PDSCH; here PUSCH may include all PUSCH, or only part of PUSCH, such as UE dedicated PUSCH; here reference signal, such as CSI- RS or SRS may include CSI-RS or SRS for all purposes or at least one purpose.
  • downlink channel uplink channel
  • downlink reference signal uplink reference signal
  • uplink reference signal uplink reference signal
  • the first indication information further includes indication information of at least two kinds of communication transmissions, that is, the indication information indicates that the user equipment adopts the target universal beam to perform communication between the network device and the user equipment.
  • the determined at least two types of communication transmission for example, the indication information indicates that the communication transmission between the user equipment and the network device using the target universal beam is PDSCH channel and PDCCH channel transmission, wherein, about the at least two types of communication
  • the implementation manner of transmission has been described in the above implementation manner, and will not be repeated here.
  • the target universal beam may be a single beam or multiple beams, which is not limited in this embodiment.
  • the target general beam When the target general beam is multi-beam, it is necessary to determine the target general beam corresponding to each TRP or the target general beam corresponding to each control resource pool index according to the first indication information sent by the network device, so that the first indication
  • the target TCI state index in the message should correspond to the TRP or control resource set pool index.
  • the first indication information is sent to the UE through the network device, so that after the UE receives the first indication information sent by the network device, the UE communicates with the network device on at least two channels, or at least two reference signals, or at least one
  • the target universal beam is used for communication and transmission on the reference signal and at least one channel. Since the first indication information of the target general beam is only sent once, the target general beam can be used for various communication transmissions including reference signal transmission and channel transmission, thereby avoiding the need for each channel transmission or reference signal transmission The beams are indicated separately, which saves signaling overhead.
  • FIG. 7 is a schematic flowchart of another beam indication method provided by an embodiment of the present disclosure, which is applied to user equipment.
  • the indication method of the target universal beam is described. As shown in FIG. 7 , the method includes:
  • Step 701 Send the target general TCI state index or index combination to the user equipment UE, so that the UE determines the target general beam according to the TCI state index or index combination, and uses the target general beam to perform at least two communication transmissions with the network equipment.
  • the first indication information received by the user equipment includes the TCI state index or index combination sent by the network device including the target general transmission configuration indication.
  • the target general TCI state index combination can be determined by the combination identifier, for example, 01 and 02 respectively indicate different index combinations; or different code points can be used to indicate different index combinations, such as a 3-bit code Points 000 and 001 respectively indicate different index combinations.
  • One or more TCI state indexes are included in different index combinations.
  • the target general transmission configuration indication TCI state index may be one or more.
  • the target general TCI state index corresponds to one or more reference signals RS, and each reference signal is used to indicate at least one of an uplink target general beam and a downlink target general beam.
  • the target general TCI state index includes at least one of a downlink target general TCI state index, an uplink target general TCI state index, and an uplink and downlink target general TCI state index.
  • the reference signal corresponding to the downlink target general TCI state index such as RS
  • the reference signal corresponding to the uplink target general TCI state index is not used for Indicates the target common beam of the downlink channel or downlink reference signal.
  • the reference signal corresponding to the uplink and downlink target general TC state index may simultaneously indicate the target general beam for uplink transmission or downlink transmission, and are respectively indicated by one reference signal RS or two reference signals RS.
  • the network device configures the UE through the radio resource control RRC signaling with the corresponding relationship between the target general TCI state index and the reference signal RS, wherein the UE obtains the target TCI state index according to the target TCI state index State index, by querying the correspondence between the TCI state index and the RS, the reference signal RS corresponding to the target TCI state index can be obtained.
  • the UE determines the corresponding beam according to the reference signal RS.
  • the corresponding relationship between the TCI state index and the RS may be in a TCI table or other forms, and the corresponding relationship is in the form of a TCI table as an example for description.
  • the TCI table may include information such as a TCI state index (that is, a TCI State ID), a reference signal index RS ID, and the like.
  • the target general TCI state index included is determined according to the identification of the index combination or the mapping relationship between the codepoint and the index combination displayed by the bits, and then, according to The corresponding relationship between the pre-configured TCI state index and the RS determines the corresponding target general beam.
  • the TCI status index sent by the network device may indicate one of the uplink target general beam and the downlink target general beam. That is, the uplink target general TCI status index is used to indicate the uplink target general beam, and the downlink target general beam is used.
  • the target general TCI state index indicates the downlink target general beam.
  • the target general TCI state index sent by the network device may be used to indicate the uplink target general beam and the downlink target general beam.
  • the target general TCI state index sent by the network device indicates a corresponding RS for each TRP, that is, the RS indicates both the uplink target general beam and the downlink target general beam.
  • the target general TCI state index sent by the network device indicates a corresponding RS for each TRP, and this RS may indicate an uplink target general beam or a downlink target general beam.
  • the target general TCI state sent by the network device indicates two corresponding RSs for each TRP, one of the two RSs is used to indicate the uplink target general beam, and the other RS is used to indicate the downlink target general beam. beam.
  • the target general TCI state index corresponds to a sending and receiving point TRP index or a control resource set pool index. That is to say, the target general TCI state index and one TRP are common for multiple communication transmissions, and different TRPs use different target general TCI state indexes; the target general TCI state index and a control resource set pool index are used for various The communication transmission is common, and different control resource set pool indexes use different target common TCI state indexes.
  • the determined general beam is the beam corresponding to the TRP; in another embodiment, when there are multiple TRPs, different TRPs have corresponding targets
  • the general TCI state index, and the target general TCI state index has a corresponding RS, so that the target general beam corresponding to the corresponding TPR can be determined.
  • the UE determines the target general beam according to the target general TCI state index or the index combination, and uses the target general beam to perform at least two communication transmissions with the network device.
  • the network device may configure the corresponding relationship between the target general TCI state index and the RS for the UE through high-level signaling, such as radio resource control RRC signaling, or the control unit MAC CE of the medium access control layer.
  • the UE can determine the corresponding general beam according to the target general TCI state index dynamically indicated by the network device.
  • the user equipment uses the determined target universal beam to perform at least two kinds of communication transmissions, wherein the communication transmissions include transmission of channels and/or reference signals, which can be respectively adopted in the various embodiments of the present disclosure.
  • the communication transmissions include transmission of channels and/or reference signals, which can be respectively adopted in the various embodiments of the present disclosure.
  • the embodiments of the present disclosure do not limit this, and will not be repeated here.
  • the network device sends the first indication information of the target universal beam to the UE, so that after the UE receives the first indication information of the target universal beam sent by the network device, it communicates with the network device on at least two channels, or at least Two reference signals, or at least one reference signal and at least one channel are used for communication and transmission using the target universal beam. Since the first indication information of the target general beam is only sent once, the target general beam can be used for various communication transmissions including reference signal transmission and channel transmission, thereby avoiding the need for each channel transmission or reference signal transmission The beams are indicated separately, which saves signaling overhead.
  • FIG. 8 is a schematic flowchart of another beam indication method provided by an embodiment of the present disclosure, which is applied to a network device.
  • the present disclosure provides a possible way of carrying the first indication information of the target universal beam. As shown in FIG. 8 , the method includes:
  • Step 801 Send the control element MAC CE signaling of the medium access control layer to the UE.
  • the MAC CE carries second indication information for activating one or more TCI state indexes, and one TCI state index corresponds to one TRP index or one control resource set pool index.
  • the MAC CE signaling includes an indication bit, which records the second indication information for activating one or more TCI state indexes, that is to say, the second indication information indicates one or more TCIs to be activated state index.
  • the MAC CE has a corresponding indication bit for each TCI state index, so that the UE determines the corresponding TCI state index according to the second indication information in the indication bit, and a TCI state index corresponds to a TRP index or a TRP index. Controls the resource set pool index.
  • the beam includes an uplink beam, a downlink beam and an uplink and downlink common beam, and there may be one or more beams activated for each TRP, wherein the activated beam may include at least one uplink beam, and/or, at least One downlink beam or at least one uplink and downlink common beam, in this embodiment, the number of activated beams is not limited.
  • the UE is caused to determine the first indication information according to one or more TCI state indexes activated by the second indication information.
  • one TCI state index corresponds to one TRP index or one control resource set pool index.
  • the number of TCI state indexes activated by the second indication information for one TRP index or one control resource set pool index is one, so that one TCI state index activated by the second indication information is determined as the first indication information.
  • the TCI state index corresponding to the TRP is the activated TCI state index.
  • the activated TCI status index corresponds to the downlink target general TCI status index
  • the reference signal corresponding to the activated TCI status index indicates the downlink target general beam
  • the downlink target general beam of the TRP is the reference corresponding to the TCI status index Downlink beam indicated by the signal.
  • the activated TCI status index corresponds to the uplink target general TCI status index
  • the reference signal corresponding to the activated TCI status index indicates the uplink target general beam
  • the uplink target general beam of the TRP is the corresponding TCI status index.
  • the activated TCI state index corresponds to the target general TCI state index
  • the reference signal corresponding to the activated TCI state index indicates the uplink target general beam and the downlink target general beam. Then, the uplink target general beam and the downlink target general beam of the TRP are the uplink beam and the downlink beam indicated by the reference signal corresponding to the TCI state index.
  • the number of TCI state indexes activated by the second indication information for one TRP index or one control resource set pool index is multiple, it is necessary to determine one of the multiple TCI state indexes and the corresponding TRP index or The target TCI state index or index combination corresponding to the control resource set pool index is used as the first indication information, and as an implementation manner, the first downlink control information DCI signaling sent by the network device is received, and the first DCI signaling carries There is first indication information, wherein the first indication information includes a target general TCI state index or a combination of indexes among multiple TCI state indexes activated by the second indication information.
  • the index combination includes multiple general TCI state indexes, and different TCI state indexes correspond to different TRPs or different control resource set pool indexes.
  • the user equipment uses the determined target universal beam to perform at least two communication transmissions, wherein the communication transmissions include transmission of channels and/or reference signals, which may be respectively adopted in the various embodiments of the present disclosure.
  • the communication transmissions include transmission of channels and/or reference signals, which may be respectively adopted in the various embodiments of the present disclosure.
  • the embodiments of the present disclosure do not limit this, and will not be described again.
  • the first indication information of the target universal beam is sent to the UE through the network device, so that after the UE receives the first indication information of the target universal beam sent by the network device, it communicates with the network device on at least two channels, or at least Two reference signals, or at least one reference signal and at least one channel are used for communication and transmission using the target universal beam. Since the first indication information of the target general beam is only sent once, the target general beam can be used for various communication transmissions including reference signal transmission and channel transmission, thereby avoiding the need for each channel transmission or reference signal transmission The beams are indicated separately, which saves signaling overhead.
  • FIG. 9 is a schematic flowchart of another beam indication method provided by an embodiment of the present disclosure, where the method is executed by a network device.
  • the present disclosure provides a possible way of carrying the first indication information of the target universal beam. As shown in FIG. 9 , the method includes:
  • Step 901 Send first downlink control information DCI signaling to the UE.
  • the first DCI signaling includes first indication information of the target universal beam. That is to say, the target general TCI state index or index combination and the resource configuration information are in different DCI signaling, and the first DCI signaling includes the target general TCI state index or index combination, that is, the first indication information.
  • the first DCI signaling may be based on a single TRP or based on multiple TRPs, which is not limited in this embodiment.
  • the UE uses one or more receiving beams to receive one or more transmissions of the first DCI signaling, that is, the network device uses one or more TRPs to perform one or more transmissions of the first DCI signaling.
  • the first DCI signaling is sent for the second time, and at the same time, each TRP corresponds to a different beam, which avoids occlusion in the signal transmission process, improves the communication quality, and ensures that the first DCI signaling is received.
  • Step 902 Receive the HARQ feedback information of the first hybrid automatic repeat request sent by the UE.
  • the first HARQ feedback information is used to indicate whether the first DCI signaling of the network device is successfully received.
  • the HARQ feedback resource used by the UE to send the first HARQ feedback information is configured by the first DCI signaling, or is set by default.
  • the number of times the network device sends the first DCI signaling may be one time, and correspondingly, there may be one or more candidate PUCCH/PUSCH resources for the UE to send the first HARQ feedback information.
  • the number of times the network device sends the first DCI signaling may be multiple times, and correspondingly, the number of candidate PUCCH/PUSCH resources for the UE to send the first HARQ feedback information may be one or more.
  • the UE sends the first HARQ feedback information once every time it receives the first DCI signaling.
  • the network device repeatedly sends the first DCI signaling at N sending times, correspondingly, the UE is configured with L candidate PUCCH/PUSCH resources for sending the first HARQ feedback information, where L is less than or equal to Some of the N and L candidate PUCCH/PUSCH resources are before the end of the N transmission times, and some are after the end of the N transmission times.
  • the UE may select a candidate PUCCH/PUSCH resource, and transmit the first HARQ feedback information before N transmission times.
  • the UE may select another candidate PUCCH/PUSCH resource, and transmit the first HARQ feedback information after the end of the N transmission times.
  • the network device repeatedly sends the first DCI signaling at N sending times, correspondingly, the UE is configured with 1 candidate PUCCH/PUSCH resource for sending the first HARQ feedback information, and the UE can send the first HARQ feedback information at N times. After the time expires, the first HARQ feedback information is sent.
  • the target universal beam is used to perform at least two communication transmissions with the network device, wherein the communication transmission includes transmission of channels and/or reference signals.
  • the sending beam for sending the first HARQ feedback information is the sending beam corresponding to the target general beam corresponding to the target general TCI state index or index combination in the first DCI signaling.
  • the transmit beam that transmits the first HARQ feedback information is a transmit beam corresponding to the receive beam that receives the first DCI signaling.
  • Step 903 Send the second DCI signaling to the UE on the PDCCH, so that the UE uses the target general beam to receive the second DCI signaling.
  • the DCI signaling carrying the transmission resource configuration information is referred to as the second DCI signaling.
  • the second DCI signaling carries resource configuration information for configuring reference signal, physical random access channel PRACH, physical uplink shared channel PUSCH, physical uplink control channel PUCCH and/or physical downlink shared channel PDSCH transmission resources.
  • the configured reference signal may specifically include at least one of the following reference signals:
  • the above reference signals can be used in different scenarios, for example, beam measurement, channel state information measurement, path loss estimation, antenna switching, positioning measurement, channel estimation or synchronization tracking during demodulation, etc., which are not listed one by one in this embodiment.
  • beam measurement channel state information measurement
  • path loss estimation path loss estimation
  • antenna switching positioning measurement
  • channel estimation or synchronization tracking during demodulation etc.
  • the second DCI signaling may be the first DCI signaling after the first DCI signaling is sent.
  • the transmission time interval between the first DCI signaling and the second DCI signaling is sufficient for the user equipment and the network equipment to complete the HARQ feedback, that is, the time interval is sufficient for the user equipment to decode the received first DCI signaling and report to the network equipment. Feedback HARQ.
  • the network device sends the first indication information of the target universal beam to the UE, so that after the UE receives the first indication information of the target universal beam sent by the network device, it communicates with the network device on at least two channels, or at least Two reference signals, or at least one reference signal and at least one channel are used for communication and transmission using the target universal beam. Since the first indication information of the target general beam is only sent once, the target general beam can be used for various communication transmissions including reference signal transmission and channel transmission, thereby avoiding the need for each channel transmission or reference signal transmission The beams are indicated separately, which saves signaling overhead.
  • FIG. 10 is a schematic flowchart of another beam indication method provided by an embodiment of the present disclosure, where the method is executed by a network device.
  • the present disclosure provides a possible way of carrying the first indication information of the target universal beam. As shown in FIG. 10 , the method includes:
  • Step 1001 Send first downlink control information DCI signaling to a UE.
  • the first DCI signaling includes first indication information, and carries resource configuration information for configuring transmission resources for at least one of the reference signal, PRACH, PUSCH, PUCCH, and PDSCH.
  • the first DCI signaling carries resource configuration information of transmission resources used for downlink transmission
  • the first DCI signaling is the DCI signaling used for downlink resource scheduling, which may be preset.
  • DCI signaling for example, DCI format 1_0, 1_1 or 1_2, or using redefined DCI signaling, which are not listed one by one in this embodiment, nor are they limited.
  • the first DCI signaling carries resource configuration information of transmission resources used for uplink transmission
  • the first DCI signaling is the DCI signaling used for uplink resource scheduling, which can be pre-configured.
  • the set DCI signaling for example, DCI format 0_0, 0_1 or 0_2, or adopting the redefined DCI signaling, are not listed one by one in this embodiment, nor are they limited.
  • the first DCI signaling carries resource configuration information of transmission resources used for uplink and downlink transmission, and the first DCI signaling is DCI signaling used for uplink and downlink resource scheduling.
  • the first DCI signaling may be DCI signaling for resource configuration for a single TRP or DCI signaling for resource configuration for multiple TRPs, which is not limited in this embodiment.
  • Step 1002 Receive second HARQ feedback information sent by the UE.
  • the second HARQ feedback information is sent to the network device.
  • the second HARQ feedback information sent by the UE to the network device may use the same beam as sending the first DCI signaling, or may use the target universal beam indicated by the first indication information included in the first DCI signaling. This example is not limited.
  • the network device schedules two HARQ feedback resources through the first DCI signaling, or the UE is pre-configured with two HARQ feedback resources, then the second HARQ feedback information includes: the first feedback information for Feedback whether the first DCI signaling is successfully received, and the second feedback information is used to feed back whether the PDSCH or downlink reference signal configured by the first DCI signaling is successfully received.
  • the network device schedules one HARQ feedback resource through the first DCI signaling, or the UE is pre-configured with one HARQ feedback resource, then the second HARQ feedback information includes: the first feedback information and the first HARQ feedback resource. Two feedback information, the two share the HARQ feedback resource.
  • the HARQ feedback resource used for sending the first feedback information and/or the second feedback information is configured by the first DCI signaling, or is set by default.
  • the HARQ feedback resources used for sending the first feedback information and/or the second feedback information are the same HARQ feedback resources or different HARQ feedback resources.
  • the first feedback information and/or the second feedback information correspond to the same HARQ feedback resources the same or different bits.
  • the number of times the network device sends the first DCI signaling may be one time, and correspondingly, the number of candidate PUCCH/PUSCH resources for the UE to send the second HARQ feedback information may be one or more.
  • the number of times the network device sends the first DCI signaling may be multiple times, and correspondingly, the number of candidate PUCCH/PUSCH resources for the UE to send the second HARQ feedback information may be one or more.
  • the UE sends the second HARQ feedback information once.
  • the network device repeatedly sends the first DCI signaling at N sending times, correspondingly, the UE is configured with L candidate PUCCH/PUSCH resources for sending the first HARQ feedback information, where L is less than or equal to Some of the N and L candidate PUCCH/PUSCH resources are before the end of the N transmission times, and some are after the end of the N transmission times.
  • the UE may select a candidate PUCCH/PUSCH resource, and transmit the second HARQ feedback information before N transmission times.
  • the UE may select a candidate PUCCH/PUSCH resource, and transmit the second HARQ feedback information after the end of the N transmission times.
  • the network device repeatedly sends the first DCI signaling at N sending times, correspondingly, the UE is configured with 1 candidate PUCCH/PUSCH resource for sending the first HARQ feedback information, and the UE can send the first HARQ feedback information at N times. After the time expires, the second HARQ feedback information is sent.
  • the sending beam for sending the second HARQ feedback information is the sending beam corresponding to the target general beam corresponding to the target general TCI state index or index combination in the first DCI signaling.
  • the transmit beam for transmitting the second HARQ feedback information is a transmit beam corresponding to the receive beam for receiving the first DCI signaling.
  • Step 1003 Communicate and transmit with the UE according to the resource configuration information carried in the first DCI signaling.
  • the network device determines whether the UE has correctly received the first DCI according to whether the UE uses the configured transmission resources to communicate with the network device without separately sending the HARQ feedback for whether the first DCI signaling is successfully received. Signaling, that is, whether the network device is configured.
  • the communication transmission adopts the same beam as the first DCI signaling.
  • the communication transmission adopts the target general TCI in the first DCI signaling The target general beam corresponding to the state index.
  • the threshold in step 1003 is set in the UE by default.
  • the threshold value may be determined by the network device; as another possible implementation manner, the threshold value may be determined by the network device according to historical transmission time. It is not limited in this embodiment.
  • the network device sends the threshold indication information to the UE according to the reference time sent by the UE.
  • the reference time includes the first DCI signaling decoding time and its corresponding HARQ feedback time, and the beam switching time; or, the reference time includes the HARQ feedback time corresponding to the first DCI signaling, and the beam switching time. Therefore, the user equipment determines within the reference time that the decoding of the first DCI signaling, the HARQ feedback and the beam switching can be completed, or the HARQ feedback and the beam switching can be completed.
  • the threshold determined by the network device is greater than or equal to the reference time.
  • the communication transmission including the user equipment sending uplink transmission and/or receiving downlink transmission to the network device, is used as an example for specific description.
  • the network device determines whether the UE has correctly received the first DCI signaling according to whether the UE uses the configured transmission resources to send uplink transmission to the network device A DCI signaling; or, the network device sends downlink transmission to the user equipment using the configured transmission resources, and determines whether the UE has correctly received and decoded the first DCI signaling according to whether the UE has correctly received and decoded the HARQ feedback information fed back by the downlink transmission.
  • the same beam as the first DCI signaling is used for uplink transmission and/or downlink transmission.
  • the time interval between uplink transmission and/or downlink transmission and the first DCI signaling is greater than or equal to the threshold, the uplink transmission and/or downlink transmission use the target general TCI state index or index combination corresponding to the first DCI signaling The same beam as the target common beam.
  • the threshold is at least one of the duration required by the UE to decode the first DCI signaling, and the duration required by the UE to feed back to the network device whether the first DCI signaling is correctly received and the duration of beam switching.
  • the time threshold may be determined through negotiation between the UE and the network device.
  • the UE After the network device determines that the UE has correctly received the first DCI signaling, the UE performs subsequent communication and transmission with the network device, and can apply the target universal beam when performing at least two communication transmissions with the network device.
  • start timing from the moment when the first DCI signaling is received, and determine that at least two communication transmissions are performed after the timing reaches the aforementioned threshold, that is, the target universal beam is used to carry out at least two communication transmissions with the network device.
  • Channels and/or The transmission of the reference signal saves the signaling overhead.
  • the user equipment uses the target universal beam to perform at least two communication transmissions with the network equipment, wherein the communication transmissions include transmission of channels and/or reference signals, which are not limited in the embodiments of the present disclosure, nor No longer.
  • the network device sends the first indication information of the target universal beam to the UE, so that after the UE receives the first indication information of the target universal beam sent by the network device, it communicates with the network device on at least two channels, or at least Two reference signals, or at least one reference signal and at least one channel are used for communication and transmission using the target universal beam. Since the first indication information of the target general beam is only sent once, the target general beam can be used for various communication transmissions including reference signal transmission and channel transmission, thereby avoiding the need for each channel transmission or reference signal transmission The beams are indicated separately, which saves signaling overhead.
  • the present disclosure provides a possible beam indication and switching manner.
  • the third indication information is sent to the UE, and the third indication information is used to instruct the UE to use the target universal beam or Dedicated beams are used for at least two communication transmissions.
  • the third indication information received by the user equipment may be received before the user equipment receives the first indication information, so the user equipment determines to use the target universal beam or use the target universal beam according to the third indication information
  • the dedicated beam performs at least two communication transmissions. In an example, it is determined that the dedicated beam is used for at least two communication transmissions, and at least two communication transmissions are performed according to the indicated dedicated beam, wherein the dedicated beam for indicating each communication transmission The signaling of the beam is different signaling. In another example, if it is determined to use the target universal beam for at least two communication transmissions, then further according to the acquired first indication information, the target universal beam to be used for communication transmission is determined. For details, refer to any one of the above embodiments. The implementation manner of , is not repeated in this embodiment.
  • the third indication information received by the user equipment may be received after the user equipment receives the first indication information, and further, the network device determines the need according to the received third indication information
  • the target general beam is switched to a dedicated beam, and the dedicated beam needs to separately send signaling for each channel and/or each reference signal for independent indication.
  • the network device needs to switch a certain channel or reference signal to a dedicated beam, so that only the indication information of the dedicated beam corresponding to the channel or reference signal can be sent, while the other do not receive the indication of the dedicated beam
  • the information channel or reference signal will continue to use the target general beam.
  • the network device may switch each channel and/or each reference signal currently using the target general beam to a dedicated beam, and send the indication information of the dedicated beam for each channel and/or reference signal respectively .
  • the present disclosure also provides a beam indicating device. Since the beam indicating device provided in the embodiments of the present disclosure corresponds to the methods provided in the above-mentioned embodiments, the beam indicating device The implementation of the method is also applicable to the beam indicating device provided in this embodiment, which is not described in detail in this embodiment.
  • FIG. 11 is a schematic structural diagram of a beam pointing device 110 according to an embodiment of the present disclosure.
  • the apparatus is applied to user equipment.
  • the beam pointing device 110 includes: an acquisition module 1101 and an execution module 1102, wherein:
  • the obtaining module 1101 is configured to obtain first indication information, wherein the first indication information is used to indicate the target universal beam;
  • the execution module 1102 is configured to use the target universal beam to perform at least two communication transmissions with the network device, wherein the communication transmissions include transmission of channels and/or reference signals.
  • the first indication information includes a target general transmission configuration indication TCI state index or an index combination.
  • the target general TCI state index corresponds to a sending and receiving point TRP index or a control resource set pool index.
  • the target general TCI state index corresponds to one or more reference signals, and each of the reference signals is used to indicate at least one of an uplink target general beam and a downlink target general beam .
  • the obtaining module 1101 includes:
  • a receiving unit configured to receive the control unit MAC CE signaling of the medium access control layer sent by the network device, wherein the MAC CE carries second indication information for activating one or more TCI state indexes,
  • the one TCI state index corresponds to a TRP index or a control resource set pool index.
  • the determining unit is configured to determine the first indication information according to the one or more TCI state indexes activated by the second indication information.
  • the number of TCI state indexes activated by the second indication information for one TRP index or one control resource set pool index is one, and the above determining unit is configured as:
  • a TCI state index activated by the second indication information is determined as the first indication information.
  • the number of TCI state indexes activated by the second indication information for one TRP index or one control resource set pool index is multiple, and the above determining unit is further configured as:
  • the apparatus further includes:
  • a sending module configured to send the first hybrid automatic repeat request HARQ feedback information to the network device
  • the first HARQ feedback information is used to indicate whether the first DCI signaling is successfully received by the network device
  • the HARQ feedback resource used for sending the first HARQ feedback information is configured by the first DCI signaling, or is set by default.
  • the above-mentioned execution module 1102 is configured to:
  • the second DCI signaling carries resource configuration information for configuring reference signal, random access channel PRACH, physical uplink shared channel PUSCH, physical uplink control channel PUCCH and/or physical downlink shared channel PDSCH transmission resources.
  • the first DCI signaling further carries resource configuration information for configuring transmission resources for at least one of the reference signal, PRACH, PUSCH, PUCCH, and PDSCH.
  • the above-mentioned sending module is further configured to:
  • the second HARQ feedback information includes:
  • first feedback information used to feed back whether the first DCI signaling is successfully received
  • the second feedback information is used to feed back whether the PDSCH and/or the downlink reference signal configured by the first DCI signaling is successfully received.
  • the HARQ feedback resource used for sending the first feedback information and/or the second feedback information is configured by the first DCI signaling, or is set by default .
  • the HARQ feedback resources used for sending the first feedback information and/or the second feedback information are the same HARQ feedback resources or different HARQ feedback resources.
  • the first feedback information and/or the second feedback information correspond to the same or different bits in the same HARQ feedback resource.
  • the sending beam for sending the first HARQ feedback information is the target general beam corresponding to the target general TCI state index or index combination in the first DCI signaling.
  • the transmit beam or, is the transmit beam corresponding to the receive beam that receives the first DCI signaling.
  • the sending beam for sending the second HARQ feedback information is the target general beam corresponding to the target general TCI state index or index combination in the first DCI signaling.
  • the transmit beam or, is the transmit beam corresponding to the receive beam that receives the first DCI signaling.
  • the device further includes:
  • a communication module configured to use the configured transmission resource to communicate with the network device according to the resource configuration information carried by the first DCI signaling.
  • the communication transmission adopts the same method as the first DCI signaling. the same beam; when the time interval between the communication transmission and the first DCI signaling is greater than or equal to the threshold, the communication transmission adopts the target general TCI in the first DCI signaling The target general beam corresponding to the state index or index combination.
  • the threshold is notified by the network device
  • the above sending module is further configured to send a reference time to the network device, where the reference time is used for the network device to determine the threshold;
  • the reference time includes the decoding time of the first DCI signaling and its corresponding HARQ feedback time, and the beam switching time; or, the reference time includes the HARQ feedback time corresponding to the first DCI signaling, and Beam switching time.
  • the threshold is set in the UE by default.
  • the UE uses one or more receive beams to receive one or more transmissions of the first DCI signaling.
  • the first DCI signaling is DCI signaling used for downlink resource scheduling, or DCI signaling used for uplink resource scheduling, or is used for uplink and downlink resource scheduling.
  • the DCI signaling for resource scheduling may be the DCI signaling only used for uplink and downlink target general beam indication.
  • the target general TCI state index includes at least one of a downlink target general TCI state index, an uplink target general TCI state index, and an uplink and downlink target general TCI state index.
  • the above-mentioned obtaining module 1101 is further configured to:
  • the first indication information further includes indication information of the at least two communication transmissions.
  • the channel includes at least one or a combination of the following:
  • Random access channel PRACH Random access channel PRACH.
  • the reference signal includes at least one or a combination of the following:
  • the first indication information of the target universal beam is sent to the UE through the network device, so that after the UE receives the first indication information of the target universal beam sent by the network device, it communicates with the network device on at least two channels, or at least Two reference signals, or at least one reference signal and at least one channel are used for communication and transmission using the target universal beam. Since the first indication information of the target general beam is only sent once, the target general beam can be used for various communication transmissions including reference signal transmission and channel transmission, thereby avoiding the need for each channel transmission or reference signal transmission The beams are indicated separately, which saves signaling overhead.
  • the present disclosure also provides a beam indicating device. Since the beam indicating device provided in the embodiments of the present disclosure corresponds to the beam indicating methods provided in the above-mentioned embodiments, the The implementation of the beam indication method is also applicable to the beam indication apparatus provided in this embodiment, which will not be described in detail in this embodiment.
  • FIG. 12 is a schematic structural diagram of a beam pointing device 120 according to an embodiment of the present disclosure.
  • the apparatus is applied to network equipment.
  • the beam indicating device 120 includes: an indicating module 1201 .
  • the indication module 1201 is configured to send first indication information to a user equipment UE, where the first indication information is used to indicate a target universal beam, so that the UE uses the target universal beam to perform at least two kinds of communications with the network device transmission, wherein the communication transmission includes transmission of a channel and/or a reference signal.
  • the first indication information includes a target general transmission configuration indication TCI state index or an index combination.
  • the target general TCI state index corresponds to a TRP index of a sending and receiving point or a control resource set pool index.
  • the target general TCI state index corresponds to one or more reference signals, and each of the reference signals is used to indicate an uplink target general beam and a downlink target general beam. at least one.
  • the above indication module 1201 is configured to:
  • the number of TCI state indexes activated by the second indication information for one TRP index or one control resource set pool index is one; wherein, the first indication information represents A TCI state index in which the second indication information is activated.
  • the number of TCI indexes activated by the second indication information for one TRP index or one control resource set pool index is multiple; the above indication module 1201 is configured as:
  • first downlink control information DCI signaling to the UE, where the first DCI signaling carries the first indication information; wherein the first indication information includes multiple activations of the second indication information
  • a target generic TCI state index or index combination in the TCI state index A target generic TCI state index or index combination in the TCI state index.
  • the apparatus further includes:
  • a receiving module configured to receive the first HARQ feedback information sent by the UE
  • the first HARQ feedback information is used to indicate whether the first DCI signaling is successfully received by the network device
  • the HARQ feedback resource used for sending the first HARQ feedback information is configured by the first DCI signaling, or is set by default.
  • the apparatus further includes:
  • a sending module configured to send second DCI signaling to the UE on the PDCCH, so that the UE uses the target universal beam to receive the second DCI signaling;
  • the second DCI signaling carries resource configuration information for configuring reference signal, random access channel PRACH, physical uplink shared channel PUSCH, physical uplink control channel PUCCH and/or physical downlink shared channel PDSCH transmission resources.
  • the first DCI signaling further carries resource configuration information for configuring transmission resources for at least one of the reference signal, PRACH, PUSCH, PUCCH, and PDSCH.
  • the above receiving module is further configured as:
  • the second HARQ feedback information includes:
  • first feedback information used to feed back whether the first DCI signaling is successfully received
  • the second feedback information is used to feed back whether the PDSCH and/or the downlink reference signal configured by the first DCI signaling is successfully received.
  • the HARQ feedback resource used for sending the first feedback information and/or the second feedback information is configured by the first DCI signaling, or is by default set up.
  • the HARQ feedback resources used for sending the first feedback information and/or the second feedback information are the same HARQ feedback resources or different HARQ feedback resources.
  • the first feedback information and/or the second feedback information correspond to the same or different bits in the same HARQ feedback resource.
  • the sending beam for sending the first HARQ feedback information is the target general beam corresponding to the target general TCI state index or index combination in the first DCI signaling
  • the corresponding transmit beam or, is the transmit beam corresponding to the receive beam that receives the first DCI signaling.
  • the sending beam for sending the second HARQ feedback information is the target general beam corresponding to the target general TCI state index or index combination in the first DCI signaling
  • the corresponding transmit beam or, is the transmit beam corresponding to the receive beam that receives the first DCI signaling.
  • the apparatus further includes:
  • a communication module configured to communicate and transmit with the UE according to the resource configuration information carried by the first DCI signaling.
  • indicating that the time interval between the communication transmission and the first DCI signaling is less than a threshold indicating that the UE uses the same method as the first DCI signaling.
  • the communication transmission is performed with the beam of the first DCI signal; indicating that the time interval between the communication transmission and the first DCI signaling is greater than or equal to the threshold, indicating that the UE is instructed to use the target in the first DCI signaling.
  • the target general beam corresponding to the general TCI state index or index combination performs the communication transmission.
  • the above-mentioned sending module is further configured to:
  • the reference time includes the time used by the UE to decode the first DCI signaling and its corresponding HARQ feedback time, and the time used for beam switching; or, the reference time includes the time used by the UE to perform the first DCI signaling. Let the corresponding HARQ feedback time and beam switching time be used.
  • the first DCI signaling is sent one or more times, and the UE is instructed to use one or more receiving beams to receive the first DCI signaling.
  • the first DCI signaling is DCI signaling used for downlink resource scheduling, or DCI signaling used for uplink resource scheduling, or is used for uplink and downlink resource scheduling.
  • the target general TCI state index includes at least one of a downlink target general TCI state index, an uplink target general TCI state index, and an uplink and downlink target general TCI state index.
  • the above-mentioned sending module is further configured to send third indication information to the UE, where the third indication information is used to instruct the UE to use the target universal beam Or use dedicated beams for the at least two communication transmissions.
  • the first indication information further includes indication information of the at least two communication transmissions.
  • the channel includes at least one or a combination of the following:
  • Random access channel PRACH Random access channel PRACH.
  • the reference signal includes at least one or a combination of the following:
  • the first indication information of the target universal beam is sent to the UE through the network device, so that after the UE receives the first indication information of the target universal beam sent by the network device, it communicates with the network device on at least two channels, or at least Two reference signals, or at least one reference signal and at least one channel are used for communication and transmission using the target universal beam. Since the first indication information of the target general beam is only sent once, the target general beam can be used for various communication transmissions including reference signal transmission and channel transmission, thereby avoiding the need for each channel transmission or reference signal transmission The beams are indicated separately, which saves signaling overhead.
  • the present disclosure also proposes a communication device.
  • the communication device includes a processor, a transceiver, a memory, and an executable program stored in the memory and capable of being executed by the processor, wherein the processor executes the foregoing method when the executable program is executed.
  • the communication device may be the aforementioned network device or terminal.
  • the processor may include various types of storage media, which are non-transitory computer storage media that can continue to memorize and store information on the communication device after the power is turned off.
  • the communication device includes a network device or a terminal.
  • the processor may be connected to the memory through a bus or the like, for reading executable programs stored in the memory, for example, as shown in FIG. 1 to FIG. 5 , or at least one of FIGS. 6 to 10 .
  • the present disclosure also proposes a computer storage medium.
  • the computer storage medium provided by the embodiment of the present disclosure stores an executable program; after the executable program is executed by the processor, the foregoing method can be implemented, for example, as shown in FIG. 1 to FIG. one.
  • FIG. 13 is a block diagram of a communication device of a beam indication method according to an embodiment of the present disclosure.
  • Communication devices are intended to represent various forms of digital computers, such as laptop computers, desktop computers, workstations, personal digital assistants, servers, blade servers, mainframe computers, and other suitable computers.
  • Communication devices may also represent various forms of mobile devices, such as personal digital processors, cellular phones, smart phones, wearable devices, and other similar computing devices.
  • the components shown herein, their connections and relationships, and their functions are by way of example only, and are not intended to limit implementations of the disclosure described and/or claimed herein.
  • the communication device includes: one or more processors 1300, a memory 1400, and interfaces for connecting various components, including a high-speed interface and a low-speed interface.
  • the various components are interconnected using different buses and may be mounted on a common motherboard or otherwise as desired.
  • the processor may process instructions executed within the communication device, including instructions stored in or on memory to display graphical information of the GUI on an external input/output device, such as a display device coupled to the interface.
  • multiple processors and/or multiple buses may be used with multiple memories and multiple memories, if desired.
  • multiple communication devices may be connected, with each device providing some of the necessary operations (eg, as a server array, a group of blade servers, or a multi-processor system).
  • a processor 1300 is used as an example.
  • the memory 1400 is the non-transitory computer-readable storage medium provided by the present disclosure.
  • the memory stores instructions executable by at least one processor, so that the at least one processor executes the beam indication method provided by the present disclosure.
  • the non-transitory computer-readable storage medium of the present disclosure stores computer instructions for causing a computer to execute the beam pointing method provided by the present disclosure.
  • the memory 1400 can be used to store non-transitory software programs, non-transitory computer-executable programs, and modules, such as program instructions/modules corresponding to the beam pointing method in the embodiments of the present disclosure (for example, appendix).
  • the processor 1300 executes various functional applications and data processing of the server by running the non-transitory software programs, instructions and modules stored in the memory 1400, ie, implements the beam transmission method in the above method embodiments.
  • the memory 1400 may include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application program required for at least one function; the storage data area may store data created according to the use of the positioning communication device, and the like. Additionally, memory 1400 may include high-speed random access memory, and may also include non-transitory memory, such as at least one magnetic disk storage device, flash memory device, or other non-transitory solid-state storage device. Optionally, the memory 1400 may optionally include memory located remotely from the processor 1300, and these remote memories may be connected to the positioning communication device through a network. Examples of such networks include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • the communication device may further include: an input device 1500 and an output device 1600 .
  • the processor 1300, the memory 1400, the input device 1500, and the output device 1600 may be connected by a bus or in other ways, and the connection by a bus is taken as an example in FIG. 13 .
  • the input device 1500 can receive input numerical or character information, and generate key signal input related to user settings and functional control of the positioning communication device, such as a touch screen, keypad, mouse, trackpad, touchpad, pointing stick, one or more Input devices such as mouse buttons, trackballs, joysticks, etc.
  • the output device 1600 may include a display device, auxiliary lighting devices (eg, LEDs), haptic feedback devices (eg, vibration motors), and the like.
  • the display device may include, but is not limited to, a liquid crystal display (LCD), a light emitting diode (LED) display, and a plasma display. In some implementations, the display device may be a touch screen.
  • Various implementations of the systems and techniques described herein can be implemented in digital electronic circuitry, integrated circuit systems, application specific ASICs (application specific integrated circuits), computer hardware, firmware, software, and/or combinations thereof. These various embodiments may include being implemented in one or more computer programs executable and/or interpretable on a programmable system including at least one programmable processor that The processor, which may be a special purpose or general-purpose programmable processor, may receive data and instructions from a storage system, at least one input device, and at least one output device, and transmit data and instructions to the storage system, the at least one input device, and the at least one output device an output device.
  • the processor which may be a special purpose or general-purpose programmable processor, may receive data and instructions from a storage system, at least one input device, and at least one output device, and transmit data and instructions to the storage system, the at least one input device, and the at least one output device an output device.
  • machine-readable medium and “computer-readable medium” refer to any computer program product, apparatus, and/or apparatus for providing machine instructions and/or data to a programmable processor ( For example, magnetic disks, optical disks, memories, programmable logic devices (PLDs), including machine-readable media that receive machine instructions as machine-readable signals.
  • machine-readable signal refers to any signal used to provide machine instructions and/or data to a programmable processor.
  • the systems and techniques described herein may be implemented on a computer having a display device (eg, a CRT (cathode ray tube) or LCD (liquid crystal display) monitor) for displaying information to the user ); and a keyboard and pointing device (eg, a mouse or trackball) through which a user can provide input to the computer.
  • a display device eg, a CRT (cathode ray tube) or LCD (liquid crystal display) monitor
  • a keyboard and pointing device eg, a mouse or trackball
  • Other kinds of devices can also be used to provide interaction with the user; for example, the feedback provided to the user can be any form of sensory feedback (eg, visual feedback, auditory feedback, or tactile feedback); and can be in any form (including acoustic input, voice input, or tactile input) to receive input from the user.
  • the systems and techniques described herein may be implemented on a computing system that includes back-end components (eg, as a data server), or a computing system that includes middleware components (eg, an application server), or a computing system that includes front-end components (eg, a user computer having a graphical user interface or web browser through which a user may interact with implementations of the systems and techniques described herein), or including such backend components, middleware components, Or any combination of front-end components in a computing system.
  • the components of the system may be interconnected by any form or medium of digital data communication (eg, a communication network). Examples of communication networks include: Local Area Networks (LANs), Wide Area Networks (WANs), and the Internet.
  • a computer system can include clients and servers.
  • Clients and servers are generally remote from each other and usually interact through a communication network.
  • the relationship of client and server arises by computer programs running on the respective computers and having a client-server relationship to each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提出一种波束指示方法、装置及通信设备,属于无线通信技术领域。其中,该方法包括:通过网络设备向UE发送用于指示目标通用波束的第一指示信息,从而UE在接收到网络设备发送的第一指示信息之后,与网络设备在至少两信道,或者至少两参考信号,又或者至少一参考信号和至少一信道上应用该目标通用波束进行通信传输。由于仅发送一次该目标通用波束的第一指示信息,便可以将该目标通用波束用于包括参考信号传输和信道传输在内的多种通信传输,从而避免了针对每一个信道传输或者参考信号传输分别进行波束的指示,节省了信令开销。

Description

波束指示方法、装置及通信设备 技术领域
本公开涉及无线通信技术领域,尤其涉及一种波束指示方法、装置及通信设备。
背景技术
在无线通信系统中,对于各信道采用的波束都是独立指示的,例如物理下行控制信道(PDCCH,physical downlink control channel)、物理下行共享信道(PDSCH,physical downlink shared channel)、物理上行控制信道(PUCCH,physical uplink control channel)和物理上行共享信道(PUSCH,physical uplink shared channel)等需要分别指示其各自的波束。这种波束指示方式,使得波束指示占用了较大的信令开销。
发明内容
本公开提出了一种波束指示方法、装置及通信设备。
本公开一方面实施例提出的一种波束指示方法,应用于用户设备UE,包括:
获取第一指示信息,其中,所述第一指示信息用于指示目标通用波束;
采用所述目标通用波束与网络设备进行至少两种通信传输,其中,所述通信传输包括信道和/或参考信号的传输。
可选地,所述第一指示信息包括目标通用传输配置指示TCI状态索引或索引组合。
可选地,所述目标通用TCI状态索引对应一个发送接收点TRP索引或一个控制资源集池索引。
可选地,所述目标通用TCI状态索引对应一个或多个参考信号,各所述参考信号用于指示上行目标通用波束和下行目标通用波束中的至少一项。
可选地,所述获取第一指示信息,包括:
接收所述网络设备发送的媒体接入控制层的控制单元MAC CE信令,其中,所述MAC CE中携带有用于激活一个或多个TCI状态索引的第二指示信息,所述一个TCI状态索引对应一个TRP索引或一个控制资源集池索引;
根据所述第二指示信息激活的所述一个或多个TCI状态索引,确定所述第一指示信息。
可选地,所述第二指示信息针对一个TRP索引或一个控制资源集池索引激活的TCI状态索引数量为一个,所述根据所述第二指示信息激活的所述一个或多个TCI状态索引,确定所述第一指示信息,包括:
将所述第二指示信息激活的一个TCI状态索引,确定为所述第一指示信息。
可选地,所述第二指示信息针对一个TRP索引或一个控制资源集池索引激活的TCI状态索引数量为多个,所述根据所述第二指示信息激活的所述一个或多个TCI状态索引,确定所述第一指示信息,包括:
接收所述网络设备发送的第一下行链路控制信息DCI信令,所述第一DCI信令携带有所述第一指示信息;
其中,所述第一指示信息包括所述第二指示信息激活的多个TCI状态索引中的一个目标通用TCI状态索引或索引组合。
可选地,所述方法,还包括:
向所述网络设备发送第一混合自动重传请求HARQ反馈信息;
其中,所述第一HARQ反馈信息,用于指示网络设备所述第一DCI信令是否接收成功;
用于发送所述第一HARQ反馈信息的HARQ反馈资源,是所述第一DCI信令配置的,或者默认设置的。
可选地,所述采用所述目标通用波束与网络设备进行至少两种通信传输,包括:
采用所述目标通用波束,在PDCCH上接收所述网络设备发送的第二DCI信令;
其中,所述第二DCI信令中携带有用于配置参考信号、随机接入信道PRACH、物理上行共享信道PUSCH、物理上行控制信道PUCCH和/或物理下行共享信道PDSCH传输资源的资源配置信息。
可选地,所述第一DCI信令中还携带有用于对参考信号、PRACH、PUSCH、PUCCH和PDSCH中至少一个配置传输资源的资源配置信息。
可选地,所述方法,还包括:
向所述网络设备发送第二HARQ反馈信息;
其中,所述第二HARQ反馈信息,包括:
第一反馈信息,用于反馈所述第一DCI信令是否接收成功;
和/或,
第二反馈信息,用于反馈所述第一DCI信令配置的PDSCH或下行参考信号是否接收成功。
可选地,用于发送所述第一反馈信息和/或所述第二反馈信息的HARQ反馈资源,是所述第一DCI信令配置的,或者默认设置。
可选地,用于发送所述第一反馈信息和/或所述第二反馈信息的HARQ反馈资源,是相同的HARQ反馈资源或不同的HARQ反馈资源。
可选地,所述第一反馈信息和/或所述第二反馈信息对应同一个HARQ反馈资源中的相同或不同的比特位。
可选地,发送所述第一HARQ反馈信息的发送波束,是所述第一DCI信令中所述目标通用TCI状态索引或索引组合对应的目标通用波束对应的发送波束,或者,是接收所述第一DCI信令的接收波束对应的发送波束。
可选地,发送所述第二HARQ反馈信息的发送波束,是所述第一DCI信令中所述目标通用TCI状态索引或索引组合对应的目标通用波束对应的发送波束,或者,是接收所述第一DCI信令的接收波束对应的发送波束。
可选地,所述方法,还包括:
根据所述第一DCI信令携带的所述资源配置信息,采用配置的所述传输资源与所述网络设备进行通信传输。
可选地,在所述通信传输与所述第一DCI信令之间的时间间隔小于阈值的情况下,所述通信传输采用与所述第一DCI信令相同的波束;在所述通信传输与所述第一DCI信令之间的时间间隔大于或等于所述阈值的情况下,所述通信传输采用所述第一DCI信令中所述目标通用TCI状态索引或索引组合对应的目标通用波束。
可选地,所述阈值由所述网络设备通知;
所述方法还包括:
向所述网络设备发送参考时间,所述参考时间用于所述网络设备确定所述阈值;
其中,所述参考时间包括所述第一DCI信令解码用时及其对应的HARQ反馈用时,以及波束切换用时;或者,所述参考时间包括所述第一DCI信令对应的HARQ反馈用时,以及波束切换用时。
可选地,所述阈值默认设置于所述UE中。
可选地,所述UE采用一个或多个接收波束接收所述第一DCI信令的一次或多次传输。
可选地,所述第一DCI信令,为用于下行资源调度的DCI信令,或为用于上行资源调度的DCI信令,或为用于上下行资源调度的DCI信令或为仅用于上下行目标通用波束指示的DCI信令。
可选地,所述目标通用TCI状态索引包括下行目标通用TCI状态索引、上行目标通用TCI状态索引和上下行目标通用TCI状态索引中的至少一项。
可选地,所述方法,还包括:
接收网络设备发送的第三指示信息,所述第三指示信息用于指示所述UE采用所述目标通用波束或采用专用波束进行所述至少两种通信传输。
可选地,所述第一指示信息还包括所述至少两种通信传输的指示信息。
可选地,所述信道包括以下至少一种或多种的组合:
物理下行控制信道PDCCH;
物理下行共享信道PDSCH;
物理上行控制信道PUCCH;
物理上行共享信道PUSCH;
物理广播信道PBCH;
随机接入信道PRACH。
可选地,所述参考信号包括以下至少一种或多种的组合:
信道状态信息参考信号CSI-RS;
同步信号块SSB;
解调参考信号DMRS;
定位参考信号PRS;
追踪参考信号TRS;
探测参考信号SRS。
本公开另一方面实施例提出的一种波束指示方法,应用于网络设备,所述方法包括:
向用户设备UE发送第一指示信息,所述第一指示信息用于指示目标通用波束,使所述UE采用所述目标通用波束与所述网络设备进行至少两种通信传输,其中,所述通信传输包括信道和/或参考信号的传输。
可选地,所述第一指示信息包括目标通用传输配置指示TCI状态索引或索引组合。
可选地,所述目标通用TCI状态索引对应一个发送接收点TRP索引或一个控制资源集池索引。
可选地,所述目标通用TCI状态索引对应一个或多个参考信号,各所述参考信号用于指示上行目标通用波束和下行目标通用波束中的至少一项。
可选地,所述向用户设备UE发送第一指示信息,包括:
向UE发送媒体接入控制层的控制单元MAC CE信令,其中,所述MAC CE中携带有用于激活一个或多个TCI状态索引的第二指示信息,所述一个TCI状态索引对应一个TRP索引或一个控制资源集池索引;
其中,所述第二指示信息激活的所述一个或多个TCI状态索引,用于确定所述第一指示信息。
可选地,所述第二指示信息针对一个TRP索引或一个控制资源集池索引激活的TCI状态索引数量为一个;
其中,所述第一指示信息,表征所述第二指示信息激活的一个TCI状态索引。
可选地,所述第二指示信息针对一个TRP索引或一个控制资源集池索引激活的TCI索引数量为多个;所述向用户设备UE发送第一指示信息,还包括:
向UE发送第一下行链路控制信息DCI信令,所述第一DCI信令携带有所述第一指示信息;
其中,所述第一指示信息包括所述第二指示信息激活的多个TCI状态索引中的一个目标通用TCI状态索引或索引组合。
可选地,所述方法,还包括:
接收所述UE发送的第一混合自动重传请求HARQ反馈信息;
其中,所述第一HARQ反馈信息,用于指示网络设备所述第一DCI信令是否接收成功;
用于发送所述第一HARQ反馈信息的HARQ反馈资源,是所述第一DCI信令配置的,或者默认设置的。
可选地,所述方法,包括:
在PDCCH上向所述UE发送第二DCI信令,以使所述UE采用所述目标通用波束接收所述第二DCI信令;
其中,所述第二DCI信令中携带有用于配置参考信号、随机接入信道PRACH、物理上行共享信道PUSCH、物理上行控制信道PUCCH和/或物理下行共享信道PDSCH传输资源的资源配置信息。
可选地,所述第一DCI信令中还携带有用于对参考信号、PRACH、PUSCH、PUCCH和PDSCH中至少一个配置传输资源的资源配置信息。
可选地,所述方法,还包括:
接收所述UE发送的第二HARQ反馈信息;
其中,所述第二HARQ反馈信息,包括:
第一反馈信息,用于反馈所述第一DCI信令是否接收成功;
和/或,
第二反馈信息,用于反馈所述第一DCI信令配置的PDSCH或下行参考信号是否接收成功。
可选地,用于发送所述第一反馈信息和/或所述第二反馈信息的HARQ反馈资源,是所述第一DCI信令配置的,或者默认设置。
可选地,用于发送所述第一反馈信息和/或所述第二反馈信息的HARQ反馈资源,是相同的HARQ反馈资源或不同的HARQ反馈资源。
可选地,所述第一反馈信息和/或所述第二反馈信息对应同一个HARQ反馈资源中的相同或不同的比特位。
可选地,发送所述第一HARQ反馈信息的发送波束,是所述第一DCI信令中所述目标通用TCI状态索引或索引组合对应的目标通用波束对应的发送波束,或者,是接收所述第一DCI信令的接收波束对应的发送波束。
可选地,发送所述第二HARQ反馈信息的发送波束,是所述第一DCI信令中所述目标通用TCI状态索引或索引组合对应的目标通用波束对应的发送波束,或者,是接收所述第一DCI信令的接收波束对应的发送波束。
可选地,所述方法,还包括:
根据所述第一DCI信令携带的所述资源配置信息,与所述UE进行通信传输。
可选地,指示所述通信传输与所述第一DCI信令之间的时间间隔小于阈值,表征指示所述UE采用与所述第一DCI信令相同的波束进行所述通信传输;指示所述通信传输与所述第一DCI信令之间的时间间隔大于或等于所述阈值,表征指示所述UE采用所述第一DCI信令中所述目标通用TCI状态索引或索引组合对应的目标通用波束进行所述通信传输。
可选地,所述方法还包括:
根据所述UE发送的参考时间,向所述UE发送所述阈值指示;
其中,所述参考时间包括所述UE进行所述第一DCI信令解码用时及其对应的HARQ反馈用时,以及波束切换用时;或者,所述参考时间包括所述UE进行所述第一DCI信令对应的HARQ反馈用时,以及波束切换用时。
可选地,一次或多次发送所述第一DCI信令,并指示所述UE采用一个或多个接收波束进行接收。
可选地,所述第一DCI信令,为用于下行资源调度的DCI信令,或为用于上行资源调度的DCI信令,或为用于上下行资源调度的DCI信令或为仅用于上下行目标通用波束指示的DCI信令。
可选地,所述目标通用TCI状态索引包括下行目标通用TCI状态索引、上行目标通用TCI状态索引和上下行目标通用TCI状态索引中的至少一项。
可选地,所述方法,还包括:
向所述UE发送第三指示信息,所述第三指示信息用于指示所述UE采用所述目标通用波束或采用专用波束进行所述至少两种通信传输。
可选地,所述第一指示信息还包括所述至少两种通信传输的指示信息。
可选地,所述信道包括以下至少一种或多种的组合:
物理下行控制信道PDCCH;
物理下行共享信道PDSCH;
物理上行控制信道PUCCH;
物理上行共享信道PUSCH;
物理广播信道PBCH;
随机接入信道PRACH。
可选地,所述参考信号包括以下至少一种或多种的组合:
信道状态信息参考信号CSI-RS;
同步信号块SSB;
解调参考信号DMRS;
定位参考信号PRS;
追踪参考信号TRS;
探测参考信号SRS。
本公开另一方面实施例提出的一种波束指示装置,应用于用户设备UE,所述装置包括:
获取模块,被配置为获取第一指示信息,其中,所述第一指示信息用于指示目标通用波束;
执行模块,被配置为采用所述目标通用波束与网络设备进行至少两种通信传输,其中,所述通信传输包括信道和/或参考信号的传输。
本公开另一方面实施例提出的一种波束指示装置,应用于网络设备,所述装置包括:
指示模块,被配置为向用户设备UE发送第一指示信息,所述第一指示信息用于指示目标通用波束,使所述UE采用所述目标通用波束与所述网络设备进行至少两种通信传输,其中,所述通信传输包括信道和/或参考信号的传输。
本公开另一方面实施例提出一种通信设备,其中,包括:收发器;存储器;处理器,分别与所述收发器及所述存储器连接,配置为通过执行所述存储器上的计算机可执行指令,控制所述收发器的无线信号收发,并能够实现如一方面或另一方面所述的波束指示方法。
本公开另一方面实施例提出一种计算机存储介质,其中,所述计算机存储介质存储有计算机可执行指令;所述计算机可执行指令被处理器执行后,能够实现如一方面或另一方面所述的波束指示方法。
本公开实施例提供的波束指示方法、装置及通信设备,通过网络设备向UE发送用于指示目标通用波束的第一指示信息,从而UE在接收到网络设备发送的第一指示信息之后,与网络设备在至少两信道,或者至少两参考信号,又或者至少一参考信号和至少一信道上应用该目标通用波束进行通信传输。由于仅发送一次该目标通用波束的第一指示信息,便可以将该目标通用波束用于包括参考信号传输和信道传输在内的多种通信传输,从而避免了针对每一个信道传输或者参考信号传输分别进行波束的指示,节省了信令开销。
本公开附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
本公开上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为本公开实施例所提供的一种波束指示方法的流程示意图;
图2为本公开实施例提供的另一种波束指示方法的流程示意图;
图3为本公开实施例提供的另一种波束指示方法的流程示意图;
图4为本公开实施例提供的另一种波束指示方法的流程示意图;
图5为本公开实施例提供的另一种波束指示方法的流程示意图;
图6为本公开实施例所提供的一种波束指示方法的流程示意图;
图7为本公开实施例提供的另一种波束指示方法的流程示意图;
图8为本公开实施例提供的另一种波束指示方法的流程示意图;
图9为本公开实施例提供的另一种波束指示方法的流程示意图;
图10为本公开实施例提供的另一种波束指示方法的流程示意图;
图11为本公开实施例提供的一种波束指示装置110的结构示意图;
图12为本公开实施例提供的一种波束指示装置120的结构示意图;
图13为本公开实施例的波束指示方法的通信设备的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”及“若”可以被解释成为“在……时”或“当……时”或“响应于确定”。
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的要素。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
在相关技术中,PDCCH、PUCCH、PDSCH和PUSCH等信道上的波束,都是通过独立信令分别进行指示的,信令开销较大。为了解决信令开销较大的技术问题,本公开实施例中,采用了在信道和/或参考信号采用目标通用波束(common beam)的方式,网络设备仅需要发送一次目标通用波束的第一指示信息,便可以将该目标通用波束用于包括参考信号传输和信道传输在内的多种通信传输,从而避免了针对每一个信道传输或者参考信号传输分别进行波束的指示,节省了信令开销。
下面参考附图对本公开提供的波束指示方法、装置及通信设备进行详细描述。
图1为本公开实施例所提供的一种波束指示方法的流程示意图,应用于用户设备。
如图1所示,包括以下步骤:
步骤101,获取第一指示信息,其中,第一指示信息用于指示目标通用波束。
本公开实施例的波束指示方法可以应用在任意的用户设备中。用户设备可以散布于整个移动通信系统中,并且每个用户设备可以是静止的或者移动的。用户设备还可以被本领域技术人员称为移动站、用户站、移动单元、用户单元、无线单元、远程单元、移动设备、终端设备、无线设备、无线通信设备、远程设备、移动用户站、接入用户设备、移动用户设备、无线用户设备、远程用户设备、手持设备、用户代理、移动客户端、客户端或者一些其它适当的术语。用户设备可以是蜂窝电话、个人数字助理(Personal Digital Assistant,PDA)、无线调制解调器、无线通信设备、手持设备、平板电脑、膝上型计算机、无绳电话、无线本地环路(Wireless Local Loop,WLL)站等,能够与移动通信系统中的网络设备进行通信。
其中,第一指示信息可以携带于控制信令中,例如无线资源控制(RRC,Radio Resource Control)信令,或者是媒体接入控制(MAC,Medium Access Control)单元(CE,Control Element),或者是下行控制信息(DCI,Downlink Control Information)信令,还可以是上述信令中至少两信令的组合,本实施例中,对于目标通用波束的第一指示信息承载方式不作限定。
步骤102,采用目标通用波束与网络设备进行至少两种通信传输,其中,通信传输包括信道和/或参考信号的传输。
其中,网络设备部署在无线接入网中用为用户设备提供无线接入功能。网络设备可以是基站(Base Station,BS)。网络设备可以经由一个或多个天线与用户设备进行无线通信。网络设备可以为其所在地理区域提供通信覆盖。所述基站可以包括宏基站,微基站,中继站,接入点等不同类型。在一些实施例 中,基站可以被本领域技术人员称为基站收发机、无线基站、接入点、无线收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、节点B(NodeB)、演进的节点B(evolved NodeB,eNB或eNodeB)或者其它一些适当的术语。示例性地,在5G系统中,基站被称为gNB。为方便描述,本公开实施例中,上述为用户设备提供无线通信功能的装置统称为网络设备。
作为一种示例,信道包括以下至少一种或多种的组合:
物理下行控制信道PDCCH;
物理下行共享信道PDSCH;
物理上行控制信道PUCCH;
物理上行共享信道PUSCH;物理广播信道(Physical Broadcast Channel,PBCH);
随机接入信道(Physical Random Access Channel,PRACH)。
作为一种示例,参考信号包括以下至少一种或多种的组合:
信道状态信息参考信号(Channel state information-reference signal,CSI-RS);
同步信号块(Synchronization Signal and PBCH Block,SSB);
解调参考信号(Demodulation Reference Signal,DMRS);
定位参考信号(Positioning Reference Signal,PRS);
追踪参考信号(Tracking Refernece Signal,TRS);
探测参考信号(Sounding Reference Signal,SRS)。
其中,上述参考信号可以用于不同的场景,例如,波束测量、信道状态信息测量、路损估计、天线切换、定位测量、解调时信道估计或同步追踪等,本实施例中不一一列举。同时上述列举的信道和参考信号,仅为示例,并不构成对本公开的限制。
本实施例中,目标通用波束应用于用户设备和网络设备之间的通信传输。按照通信传输方向划分,至少两种通信传输可以包含均属于上行传输的信道和/或参考信号;还可以包含均属于下行传输的信道和/或参考信号;又或者包含部分是上行传输的信道和/或参考信号,另一部分是用于下行传输的信道和/或参考信号。下面分别对几种可能的实现方式分别进行说明:
作为第一种可能的实现方式,该目标通用波束可以用于进行至少两信道的通信传输。例如,目标通用波束可以用于PDSCH信道和PDCCH信道,其中PDSCH信道包括所有PDSCH信道或只包括一部分PDSCH信道,比如用户设备专用PDSCH行道UE dedicated PDSCH信道;PDCCH包括所有PDCCH信道或只包括一部分PDCCH信道,比如用户设备专用PDCCH信道UE dedicated PDCCH信道。或者,又例如,目标通用波束可以用于PUSCH信道和PUCCH信道,其中PUSCH信道包括所有PUSCH信道或只包括一部分PUSCH信道,比如用户设备专用PUSCH信道UE dedicated PUSCH信道,PUCCH包括所有PUCCH信道或只包括一部分PUCCH信道,比如用户设备专用PUCCH信道UE dedicated PUCCH信道。又例如,目标通用波束可以用于PUSCH信道和PDSCH信道,其中PUSCH信道包括所有PUSCH信道或只包括一部分PUSCH信道,比如UE dedicated PUSCH信道,PDSCH包括所有PDSCH信道或只包括一部分PDSCH信道,比如UE dedicated PDSCH信道。其中,在目标通用波束用于PDSCH信道和PDCCH信道的情况下,可以将该目标通用波束称为下行目标通用波束(DL common beam);在目标通用波束用于PUSCH信道和PUCCH信道的情况下,可以将该目标通用波束称为上行目标通用波束(Ulcommon beam);在目标通用波束用于PUSCH信道和PDSCH信道的情况下,该目标通用波束称为common beam,即同时用于上行和下行。
作为第二种可能的实现方式,该目标通用波束可以用于至少两参考信号的通信传输。这里的至少两参考信号,可以是同属于下行参考信号,也可以是同属于上行参考信号,还可以是下行参考信号和上行参考信号的混合,本实施例中对此不做限定。例如,下行参考信号可以包括SSB、CSI-RS、PRS、TRS和DMRS中的至少一个;或者,又例如,上行参考信号可以包括SRS和DMRS中的至少一个。对于有些参考信号,比如CSI-RS,也可以是包括所有的CSI-RS;或者不是包括所有的CSI-RS,而是包括至少一种用途的CSI-RS,比如用于信道状态信息测量、波束测量、路损估计、定位测量的CSI-RS中的至少一种。又比如SRS,也可以是包括所有的SRS;或者不是包括所有的SRS,而是包括至少一种用途 的SRS,比如用于code book based的信道状态信息测量、non-code book based的信道状态信息测量、波束测量、天线切换、定位测量的SRS中的至少一种。
作为第三种可能的实现方式,该目标通用波束可以用于至少一参考信号和至少一信道的通信传输。例如,目标通用波束可以用于PDSCH信道以及下行参考信号的通信传输,该下行参考信号可以包括SSB、CSI-RS、PRS、TRS和DMRS中的至少一个;或者,又例如,目标通用波束可以用于PUSCH和以及上行参考信号的通信传输,该上行参考信号可以包括SRS和DMRS中的至少一个。同样,这里的PDSCH可以包括所有的PDSCH,或只包括部分PDSCH,比如UE dedicated PDSCH;这里的PUSCH可以包括所有的PUSCH,或只包括部分PUSCH,比如UE dedicated PUSCH;这里的参考信号,比如CSI-RS或SRS,可以包含所有用途的或者至少一种用途的CSI-RS或SRS。
需要说明的是,前述下行信道、上行信道、下行参考信号和上行参考信号仅用于示意性说明,在具体实现时,并不限于前述列举的若干信道或参考信号种类,前述列举的参考信号种类不构成对本公开范围的限定。
在本公开实施例的一种可能的实现方式中,第一指示信息还包括至少两种通信传输的指示信息,也就是说该指示信息,指示了用户设备采用目标通用波束和网络设备之间进行通信传输时,确定的至少两种通信传输的种类,例如,指示信息指示了用户设备和网络设备之间采用目标通用波束进行的通信传输为PDSCH信道和PDCCH信道传输,其中,关于至少两种通信传输的实现方式,上述实现方式中已经说明,此处不再赘述。
本实施例中,目标通用波束可以是单一波束,还可以是多个波束,本实施例中对此不作限定。
在目标通用波束为多波束的情况下,需根据网络设备发送的第一指示信息,确定各TRP(Transmission and Reception Point,发送接收点)对应的目标通用波束,或者确定各控制资源集池索引号(Core Set Pool Index)对应的目标通用波束,从而该第一指示信息中的目标TCI状态索引应当与TRP索引或者控制资源集池索引相对应。
本公开实施例中,通过网络设备向UE发送第一指示信息,从而UE在接收到网络设备发送的第一指示信息之后,与网络设备在至少两信道,或者至少两参考信号,又或者至少一参考信号和至少一信道上应用该目标通用波束进行通信传输。由于仅发送一次该目标通用波束的第一指示信息,便可以将该目标通用波束用于包括参考信号传输和信道传输在内的多种通信传输,从而避免了针对每一个信道传输或者参考信号传输分别进行波束的指示,节省了信令开销。
图2为本公开实施例提供的另一种波束指示方法的流程示意图,应用于用户设备。
基于图2所提供的波束指示方法,说明了目标通用波束的指示方式,如图2所示该方法包括:
步骤201,接收网络设备发送的目标通用传输配置指示(TCI,Transmission Configuration Indicator)状态索引或索引组合。
其中,关于用户设备和网络设备的说明,可以参照上述任一实施例中的解释说明,本实施例中不再赘述。
本实施例中,用户设备接收到的第一指示信息,包含网络设备发送的包括目标通用传输配置指示TCI状态索引或索引组合。其中,目标通用TCI状态索引组合,可以通过组合标识来确定,例如,01,02分别指示不同的索引组合;或者可以通过不同的代码点code point指示不同的索引组合,比如3个比特位的code point 000和001分别指示不同的索引组合。不同的索引组合中包含一个或多个TCI状态索引。而目标通用TCI状态索引可以为一个或多个。其中,每个目标通用TCI状态索引对应一个或多个参考信号RS,各参考信号用于指示上行目标通用波束和下行目标通用波束中的至少一项。
本实施例中,目标通用TCI状态索引包括下行目标通用TCI状态索引、上行目标通用TCI状态索引和上下行目标通用TCI状态索引中的至少一项。
需要理解的是,下行目标通用TCI状态索引对应的参考信号,例如,RS,不用于指示上行信道或上行参考信号的目标通用波束;上行目标通用TCI状态索引对应的参考信号,例如RS,不用于指示下行信道或下行参考信号的目标通用波束。上下行目标通用TC状态索引对应的参考信号,例如,RS,可 以同时指示上行传输或下行传输的目标通用波束,通过一个参考信号RS或两个参考信号RS来分别指示。
作为一种实现方式,网络设备通过无线资源控制(RRC,Radio Resource Control)信令为UE配置目标通用TCI状态索引,和参考信号(RS,Reference Signal)之间的对应关系,其中,UE在获取到目标TCI状态索引后,根据该目标TCI状态索引,查询上述TCI状态索引和RS之间的对应关系,就可以获取到该目标TCI状态索引对应的参考信号RS,相应的,UE根据该参考信号RS确定对应的波束(beam)。可选地,该TCI状态索引和RS对应关系可以是TCI表格或其他形式,以该对应关系为TCI表格的形式为例进行说明。该TCI表格中可以包括TCI状态索引(即TCI State ID)、参考信号索引(RS ID,Reference Signal ID))等信息。
需要说明的是,当获取到的是目标通用TCI状态索引组合,则根据索引组合的标识或比特位显示的codepoint与索引组合之间的映射关系,确定包含的多个目标通用TCI状态索引,进而,根据预先配置的TCI状态索引和RS索引之间的对应关系,确定对应的目标通用波束。
作为一种可能的实现方式,网络设备发送的TCI状态索引,可以指示上行目标通用波束和下行目标通用波束中的一个,也就是说,采用上行目标通用TCI状态索引指示上行目标通用波束,采用下行目标通用TCI状态索引指示下行的目标通用波束。
作为另一种可能的实现方式,网络设备发送的目标通用TCI状态索引,可以用于指示上行目标通用波束和下行目标通用波束。其中,作为一种实现方式,网络设备发送的目标通用TCI状态索引针对每个TRP指示对应的一个RS,即这个RS同时指示了上行目标通用波束和下行目标通用波束。作为另一种实现方式,网络设备发送的目标通用TCI状态索引针对每个TRP指示对应的一个RS,这个RS可以指示上行目标通用波束或指示下行目标通用波束。作为再一种实现方式,网络设备发送的目标通用TCI状态针对每个TRP指示对应的两个RS,两个RS中的一个RS用于指示上行目标通用波束,另一个RS用于指示下行目标通用波束。
需要说明的是,目标通用TCI状态索引对应一个发送接收点TRP索引或一个控制资源集池索引。也就是说,目标通用TCI状态索引和一个TRP进行多种通信传输时是通用的,而不同的TRP使用不同的目标通用TCI状态索引;目标通用TCI状态索引和一个控制资源集池索引进行多种通信传输时是通用的,而不同的控制资源集池索引使用不同的目标通用TCI状态索引。
需要理解的是,在一个实施例中,当TRP为一个时,确定的通用波束即为对应该TRP的波束;在另一个实施例中,当TRP为多个时,不同的TRP具有对应的目标通用TCI状态索引,而目标通用TCI状态索引具有对应的RS,根据RS对应的目标通用波束,从而可以确定相应TPR对应的目标通用波束。
步骤202,根据TCI状态索引或索引组合,确定目标通用波束。
其中,索引组合中包含多个TCI状态索引,每个TCI状态索引对应不同的TRP。
网络设备可以预先通过高层信令,例如无线资源控制(RRC,Radio Resource Control)信令,或者是媒体接入控制层(MAC,Medium Access Control)控制单元(CE,Control Element)为UE配置目标通用TCI状态索引和RS的对应关系。UE根据预先配置的这种对应关系,可以根据网络设备动态指示的目标通用TCI状态索引确定对应的目标通用波束。
步骤203,采用目标通用波束与网络设备进行至少两种通信传输,其中,通信传输包括信道和/或参考信号的传输。
在本公开的实施例中,步骤203可以分别采用本公开的各实施例中的任一种方式实现,本公开实施例并不对此作出限定,也不再赘述。
本公开实施例中,通过网络设备向UE发送目标通用波束的第一指示信息,从而UE在接收到网络设备发送的目标通用波束的第一指示信息之后,与网络设备在至少两信道,或者至少两参考信号,又或者至少一参考信号和至少一信道上应用该目标通用波束进行通信传输。由于仅发送一次该目标通用波束的第一指示信息,便可以将该目标通用波束用于包括参考信号传输和信道传输在内的多种通信传输,从而避免了针对每一个信道传输或者参考信号传输分别进行波束的指示,节省了信令开销。
图3为本公开实施例提供的另一种波束指示方法的流程示意图,本方法由UE执行。
本公开中提供了一种可能的目标通用波束第一指示信息的承载方式,如图3所示,该方法包括:
步骤301,接收网络设备发送的媒体接入控制层的控制单元MAC CE信令,其中,MAC CE中携带有用于激活一个或多个TCI状态索引的第二指示信息,一个TCI状态索引对应一个TRP索引或一个控制资源集池索引。
其中,关于用户设备和网络设备的说明,可以参照上述任一实施例中的解释说明,本实施例中不再赘述。
MACCE信令中包含指示位,该指示位中记录了用于激活一个或多个TCI状态索引的第二指示信息,也就是说该第二指示信息,指示了要激活的一个或多个TCI状态索引。
可选地,MAC CE中针对每一个TCI状态索引具有对应的指示位,从而UE根据该指示位中的第二指示信息,确定对应的TCI状态索引,而一个TCI状态索引对应一个TRP索引或一个控制资源集池索引。
需要说明的是,波束包含上行波束、下行波束和上下行通用波束,针对每一个TRP激活的波束可以为一个或多个,其中,激活的波束中可以包含至少一个上行波束,和/或,至少一个下行波束或至少一个上下行通用波束,本实施例中,对于激活波束的数量不作限定。
步骤302,根据第二指示信息激活的一个或多个TCI状态索引,确定第一指示信息。
其中,第一指示信息用于指示目标通用波束。
本实施例中,一个TCI状态索引对应一个TRP索引或一个控制资源集池索引。
在一种可能的场景下,第二指示信息针对一个TRP索引或一个控制资源集池索引激活的TCI状态索引数量为一个,从而将第二指示信息激活的一个TCI状态索引,确定为第一指示信息。例如:对于一个TRP激活了一个TCI状态索引,则该TRP对应的TCI状态索引即为激活的该TCI状态索引。如,激活的TCI状态索引对应下行目标通用TCI状态索引,则该激活的TCI状态索引对应的参考信号指示下行目标通用波束,则该TRP的下行目标通用波束,即为该TCI状态索引对应的参考信号指示的下行波束。又例如:激活的TCI状态索引对应上行目标通用TCI状态索引,则该激活的TCI状态索引对应的参考信号指示上行目标通用波束,则该TRP的上行目标通用波束,即为该TCI状态索引对应的参考信号指示的上行波束。又例如:激活的TCI状态索引对应目标通用TCI状态索引,则该激活的TCI状态索引对应的参考信号指示上行目标通用波束和下行目标通用波束。则该TRP的上行目标通用波束和下行目标通用波束,为该TCI状态索引对应的参考信号指示的上行波束和下行波束。
在另一种可能的场景下,第二指示信息针对一个TRP索引或一个控制资源集池索引激活的TCI状态索引数量为多个,则需要从多个TCI状态索引中确定一个和相应TRP索引或控制资源集池索引对应的目标TCI状态索引或索引组合,作为第一指示信息。作为一种实现方式,接收网络设备发送的第一下行链路控制信息DCI信令,第一DCI信令携带有第一指示信息,其中,第一指示信息包括第二指示信息激活的多个TCI状态索引中的一个目标通用TCI状态索引或索引组合。
需要说明的是,索引组合中包含多个通用TCI状态索引,不同的TCI状态索引对应不同的TRP或不同的控制资源集池索引。
步骤303,采用目标通用波束与网络设备进行至少两种通信传输,其中,通信传输包括信道和/或参考信号的传输。
在本公开的实施例中,步骤303可以分别采用本公开的各实施例中的任一种方式实现,本公开实施例并不对此作出限定,也不再赘述。
本公开实施例中,通过网络设备向UE发送目标通用波束的第一指示信息,从而UE在接收到网络设备发送的目标通用波束的第一指示信息之后,与网络设备在至少两信道,或者至少两参考信号,又或者至少一参考信号和至少一信道上应用该目标通用波束进行通信传输。由于仅发送一次该目标通用波束的第一指示信息,便可以将该目标通用波束用于包括参考信号传输和信道传输在内的多种通信传输,从而避免了针对每一个信道传输或者参考信号传输分别进行波束的指示,节省了信令开销。
图4为本公开实施例提供的另一种波束指示方法的流程示意图,该方法由UE执行。
本公开中提供了一种可能的目标通用波束第一指示信息的承载方式,如图4所示,该方法包括:
步骤401,接收网络设备发送的第一下行链路控制信息DCI信令。
其中,关于用户设备和网络设备的说明,可以参照上述任一实施例中的解释说明,本实施例中不再赘述。
其中,第一DCI信令中包含目标通用波束的第一指示信息。也就是说目标通用TCI状态索引或索引组合,和资源配置信息在不同的DCI信令中,而第一DCI信令中包含的是目标通用TCI状态索引或索引组合,即第一指示信息。
第一DCI信令可以是基于单TRP的也可以是基于多TRP的,本实施例中对此不作限定。
在本公开实施例的一种可能的实现方式中,UE采用一个或多个接收波束接收第一DCI信令的一次或多次传输,也就是说网络设备使用一个或多个TRP进行一次或多次发送第一DCI信令,同时每个TRP对应不同的波束,避免了信号传输过程中的遮挡,提高了通信质量,以确保接收到该第一DCI信令。
步骤402,向网络设备发送第一混合自动重传请求HARQ反馈信息。
其中,第一HARQ反馈信息,用于指示网络设备第一DCI信令是否接收成功。
其中,用于发送第一HARQ反馈信息的HARQ反馈资源,是第一DCI信令配置的,或者默认设置的。
在一种可能的场景下,网络设备发送第一DCI信令的次数可以为一次,对应地,用于UE发送第一HARQ反馈信息的候选PUCCH/PUSCH资源可以是一个或多个。
在另一种可能的场景下,网络设备发送的第一DCI信令的次数可以为多次,对应地,UE发送第一HARQ反馈信息的候选PUCCH/PUSCH资源可以是一个或多个。
可选地,UE每接收一次第一DCI信令,则发送一次第一HARQ反馈信息。
或者可选地,网络设备在N个发送时间分别重复发送第一DCI信令,对应地,UE配置有L个候选PUCCH/PUSCH资源用于第一HARQ反馈信息的发送,其中,L小于或等于N,L个候选PUCCH/PUSCH资源有的在N个发送时间结束之前,有的在N个发送时间结束之后。在N个发送时间之前UE正确接收第一DCI信令的情况下,则UE可以选择一个候选PUCCH/PUSCH资源,在N个发送时间之前发送第一HARQ反馈信息。在N个发送时间结束时或之后,UE正确接收第一DCI信令的情况下,则UE可以选择另一个候选PUCCH/PUSCH资源,在N个发送时间结束之后发送第一HARQ反馈信息。
或者可选地,网络设备在N个发送时间分别重复发送第一DCI信令,对应地,UE配置有1个候选PUCCH/PUSCH资源用于第一HARQ反馈信息的发送,UE可以在N个发送时间结束之后发送第一HARQ反馈信息。
进而,在UE与网络设备进行后续的通信时,采用目标通用波束与网络设备进行至少两种通信传输,其中,通信传输包括信道和/或参考信号的传输。
本实施例的一个示例中,发送第一HARQ反馈信息的发送波束,是第一DCI信令中目标通用TCI状态索引或索引组合对应的目标通用波束对应的发送波束。
本实施例的另一个示例中,发送第一HARQ反馈信息的发送波束,是接收第一DCI信令的接收波束对应的发送波束。
步骤403,采用目标通用波束,在物理下行控制信道PDCCH上接收网络设备发送的第二DCI信令。
本实施例中,为了便于说明,将携带传输资源配置信息的DCI信令,称为第二DCI信令。
其中,第二DCI信令中携带有用于配置参考信号、物理随机接入信道PRACH、物理上行共享信道PUSCH、物理上行控制信道PUCCH和/或物理下行共享信道PDSCH传输资源的资源配置信息。
其中,配置的参考信号具体可以包括以下的参考信号中的至少一种:
包含信道状态信息参考信号CSI-RS;
同步信号块SSB;
解调参考信号DMRS;
定位参考信号PRS;
追踪参考信号TRS;
探测参考信号SRS。
上述参考信号可以用于不同的场景,例如,波束测量、信道状态信息测量、路损估计、天线切换、定位测量、解调时信道估计或同步追踪等,本实施例中不一一列举。在具体实现时,并不限于前述列举的若干参考信号种类,前述列举的参考信号种类不构成对本公开范围的限定。
需要理解的是,第二DCI信令可以是第一DCI信令发送之后的第一个DCI信令。且第一DCI信令和第二DCI信令之间的发送时间间隔,足够用户设备和网络设备完成HARQ反馈,即时间间隔足以使得用户设备解码接收到的第一DCI信令,以及向网络设备反馈HARQ。
本公开实施例中,通过网络设备向UE发送目标通用波束的第一指示信息,从而UE在接收到网络设备发送的目标通用波束的第一指示信息之后,与网络设备在至少两信道,或者至少两参考信号,又或者至少一参考信号和至少一信道上应用该目标通用波束进行通信传输。由于仅发送一次该目标通用波束的第一指示信息,便可以将该目标通用波束用于包括参考信号传输和信道传输在内的多种通信传输,从而避免了针对每一个信道传输或者参考信号传输分别进行波束的指示,节省了信令开销。
图5为本公开实施例提供的另一种波束指示方法的流程示意图,该方法由UE执行。
本公开中提供了一种可能的目标通用波束第一指示信息的承载方式,如图5所示,该方法包括:
步骤501,接收网络设备发送的第一DCI信令。
其中,关于用户设备和网络设备的说明,可以参照上述任一实施例中的解释说明,本实施例中不再赘述。
其中,第一DCI信令中包含第一指示信息,以及携带有用于对参考信号、PRACH、PUSCH、PUCCH和PDSCH中至少一个配置传输资源的资源配置信息。
作为一种可能的实现方式,第一DCI信令携带有用于进行下行传输的传输资源的资源配置信息,则该第一DCI信令为用于进行下行资源调度的DCI信令,可以采用预设的DCI信令,例如,DCI format 1_0,1_1或1_2,或者是采用重新定义的DCI信令,本实施例中不一一列举,也不作限定。
作为另一种可能的实现方式,第一DCI信令携带有用于进行上行传输的传输资源的资源配置信息,则该第一DCI信令为用于进行上行资源调度的DCI信令,可以采用预设的DCI信令,例如,DCI format 0_0,0_1或0_2,或者是采用重新定义的DCI信令,本实施例中不一一列举,也不作限定。
作为第三种可能的实现方式,第一DCI信令携带有用于进行上行和下行传输的传输资源的资源配置信息,则该第一DCI信令为用于进行上下行资源调度的DCI信令。
第一DCI信令可以是针对单TRP进行资源配置的也可以是针对多TRP进行资源配置的DCI信令,本实施例中对此不作限定。
步骤502,向网络设备发送第二HARQ反馈信息。
在本实施例中,在配置有HARQ反馈资源的情况下,向网络设备发送第二HARQ反馈信息。
其中,UE向网络设备发送的第二HARQ反馈信息可以采用与发送第一DCI信令相同的波束,或者,可以采用第一DCI信令包含的第一指示信息所指示的目标通用波束,本实施例中对此不作限定。
作为一种可能的实现方式,网络设备通过第一DCI信令调度两个HARQ反馈资源,或者UE预先配置有两个HARQ反馈资源,则第二HARQ反馈信息,包括:第一反馈信息,用于反馈第一DCI信令是否接收成功,以及,第二反馈信息,用于反馈第一DCI信令配置的PDSCH或下行参考信号是否接收成功。
作为另一种可能的实现方式,网络设备通过第一DCI信令调度了一个HARQ反馈资源,或者,UE预先配置有一个HARQ反馈资源,则第二HARQ反馈信息,包括:第一反馈信息和第二反馈信息,两者共用该HARQ反馈资源。
在本实施例的一种实现方式中,用于发送第一反馈信息和/或第二反馈信息的HARQ反馈资源,是第一DCI信令配置的,或者默认设置。
在本实施例的一种实现方式中,用于发送第一反馈信息和/或第二反馈信息的HARQ反馈资源,是相同的HARQ反馈资源或不同的HARQ反馈资源。
在一个示例中,用于发送第一反馈信息和/或第二反馈信息的HARQ反馈资源,是相同的HARQ反馈资源时,第一反馈信息和/或第二反馈信息对应同一个HARQ反馈资源中的相同或不同的比特位。
在一种可能的场景下,网络设备发送第一DCI信令的次数可以为一次,对应地,UE发送第二HARQ反馈信息的候选PUCCH/PUSCH资源可以是一个或多个。
在另一种可能的场景下,网络设备发送的第一DCI信令的次数可以为多次,对应地,UE发送第二HARQ反馈信息的候选PUCCH/PUSCH资源可以是一个或多个。可选地,UE每接收一次第一DCI信令,则发送一次第二HARQ反馈信息。或者可选地,网络设备在N个发送时间分别重复发送第一DCI信令,对应地,UE配置有L个候选PUCCH/PUSCH资源用于第一HARQ反馈信息的发送,其中,L小于或等于N,L个候选PUCCH/PUSCH资源有的在N个发送时间结束之前,有的在N个发送时间结束之后。在N个发送时间之前UE正确接收第一DCI信令的情况下,则UE可以选择一个候选PUCCH/PUSCH资源,在N个发送时间之前发送第二HARQ反馈信息。在N个发送时间结束时或之后,UE正确接收第一DCI信令的情况下,则UE可以选择一个候选PUCCH/PUSCH资源,在N个发送时间结束之后发送第二HARQ反馈信息。或者可选地,网络设备在N个发送时间分别重复发送第一DCI信令,对应地,UE配置有1个候选PUCCH/PUSCH资源用于第一HARQ反馈信息的发送,UE可以在N个发送时间结束之后发送第二HARQ反馈信息。
本实施例的一个示例中,发送第二HARQ反馈信息的发送波束,是第一DCI信令中目标通用TCI状态索引或索引组合对应的目标通用波束对应的发送波束。
本实施例的另一个示例中,发送第二HARQ反馈信息的发送波束,是接收第一DCI信令的接收波束对应的发送波束。
步骤503,根据第一DCI信令携带的资源配置信息,采用配置的传输资源与网络设备进行通信传输。
本实施例中,在不针对第一DCI信令是否接收成功单独发送HARQ反馈的情况下,网络设备根据UE是否采用配置的传输资源与网络设备进行通信传输,确定UE是否已正确接收第一DCI信令,也即网络设备是否配置完毕。
在本实施例的一种实现方式中,用户设备在进行通信传输与接收第一DCI信令之间的时间间隔小于阈值的情况下,通信传输采用与第一DCI信令相同的波束。
在本实施例的另一种实现方式中,用户设备在进行通信传输与接收第一DCI信令之间的时间间隔大于或等于阈值的情况下,通信传输采用第一DCI信令中目标通用TCI状态索引对应的目标通用波束。
在本公开实施例中,步骤503中的阈值默认设置于UE中。作为一种可能的实现方式,可以是由网络设备通知的;作为另一种可能的实现方式,可以是根据历史传输时间确定的。本实施例中不进行限定。
在一种示例中,阈值由网络设备通知。
作为一种可能的实现方式,用户设备向网络设备发送参考时间,参考时间用于网络设备确定阈值。其中,参考时间包括第一DCI信令解码用时及其对应的HARQ反馈用时,以及波束切换用时;或者,参考时间包括第一DCI信令对应的HARQ反馈用时,以及波束切换用时。从而用户设备在参考时间内确定可以完成包括第一DCI信令解码,HARQ反馈和波束切换;或完成包括HARQ反馈和波束切换。
作为一种可能的实现方式,网络设备确定的阈值大于等于参考时间。
本实施例中,以通信传输,包含用户设备向网络设备发送上行传输和/或接收下行传输为例进行具体说明。
本实施例中,在未单独配置针对第一DCI信令是否接收成功的HARQ反馈资源的情况下,网络设备根据UE是否采用配置的传输资源向网络设备发送上行传输,确定UE是否已正确接收第一DCI信令;或者,网络设备采用配置的传输资源向用户设备发送下行传输,根据UE是否正确接收解码下行传输而反馈的HARQ反馈信息,确定UE是否已正确接收解码第一DCI信令。
需要说明的是,在上行传输和/或下行传输与第一DCI信令之间的时间间隔小于阈值的情况下,上行传输和/或下行传输采用与第一DCI信令相同的波束。在上行传输和/或下行传输与第一DCI信令之间 的时间间隔大于或等于阈值的情况下,上行传输和/或下行传输采用第一DCI信令中目标通用TCI状态索引或索引组合对应的目标通用波束相同的波束。其中,该阈值,是UE解码第一DCI信令所需时长,以及UE向网络设备反馈是否正确接收第一DCI信令所需的时长和波束切换的时长中的至少一项。该时间阈值,可以是UE和网络设备两者协商确定的。
在网络设备确定UE已正确接收到第一DCI信令之后,UE与网络设备进行后续的通信传输,便可以在与网络设备进行至少两种通信传输时应用该目标通用波束,从而采用该目标通用波束与网络设备进行上行传输和/或下行传输。
步骤504,采用目标通用波束与网络设备进行至少两种通信传输。
从接收到第一DCI信令的时刻开始计时,确定计时达到前述阈值之后才进行至少两种通信传输,即采用目标通用波束,与网络设备进行至少两种通信传输中的信道和/或参考信号的传输,节省了信令的开销。
在本公开的实施例中,步骤503可以分别采用本公开的各实施例中的任一种方式实现,本公开实施例并不对此作出限定,也不再赘述。
本公开实施例中,通过网络设备向UE发送目标通用波束的第一指示信息,从而UE在接收到网络设备发送的目标通用波束的第一指示信息之后,与网络设备在至少两信道,或者至少两参考信号,又或者至少一参考信号和至少一信道上应用该目标通用波束进行通信传输。由于仅发送一次该目标通用波束的第一指示信息,便可以将该目标通用波束用于包括参考信号传输和信道传输在内的多种通信传输,从而避免了针对每一个信道传输或者参考信号传输分别进行波束的指示,节省了信令开销。
本公开中提供了一种可能的波束指示和切换的方式,本实施例中,作为一种可能的实现方式,用户设备还可以接收网络设备发送的第三指示信息,第三指示信息用于指示UE采用目标通用波束或采用专用波束进行至少两种通信传输。
在一种实现方式中,用户设备接收到的第三指示信息,可以是在用户设备接收到第一指示信息之前接收到的,从而,用户设备根据第三指示信息,确定采用目标通用波束或采用专用波束进行至少两种通信传输,在一种示例中,确定采用专用波束进行至少两种通信传输,则根据指示的专用波束进行至少两种通信传输,其中,用于指示每种通信传输的专用波束的信令是不同信令。在另一种示例中,确定采用目标通用波束进行至少两种通信传输,则进一步根据获取到的第一指示信息,确定进行通信传输需要采用的目标通用波束,具体可参照上述任一个实施例中的实现方式,本实施例中不再赘述。
在另一种实现方式中,用户设备接收到的第三指示信息,可以是在用户设备接收到第一指示信息之后接收到的,进一步地,网络设备根据接收到的第三指示信息,确定需要将目标通用波束切换至专用波束,该专用波束需要针对各信道和/或各参考信号分别发送信令进行独立指示。在一种可能的应用场景下,网络设备需要将某一个信道或参考信号切换至专用波束,从而可以仅发送该信道或参考信号对应的专用波束的指示信息,而其它未接收到专用波束的指示信息的信道或参考信号将继续采用目标通用波束。在另一种可能的应用场景下,网络设备可以将当前采用目标通用波束的各信道和/或各参考信号均切换至专用波束,分别发送针对各信道和/或参考信号的专用波束的指示信息。
图6为本公开实施例所提供的一种波束指示方法的流程示意图,应用于网络设备。
如图6所示,包括以下步骤:
步骤601,向用户设备UE发送第一指示信息,第一指示信息用于指示目标通用波束,使UE采用目标通用波束与网络设备进行至少两种通信传输,其中,通信传输包括信道和/或参考信号的传输。
本实施例的波束指示方法可以应用在任意的网络设备中。网络设备部署在无线接入网中用为用户设备提供无线接入功能。网络设备可以是基站BS。网络设备可以经由一个或多个天线与用户设备进行无线通信。网络设备可以为其所在地理区域提供通信覆盖。所述基站可以包括宏基站,微基站,中继站,接入点等不同类型。在一些实施例中,基站可以被本领域技术人员称为基站收发机、无线基站、接入点、无线收发机、基本服务集BSS、扩展服务集ESS、节点B(NodeB)、演进的节点B(evolved NodeB,eNB或eNodeB)或者其它一些适当的术语。示例性地,在5G系统中,基站被称为gNB。为方便描述,本公 开实施例中,上述为用户设备提供无线通信功能的装置统称为网络设备。
而用户设备可以散布于整个移动通信系统中,并且每个用户设备可以是静止的或者移动的。用户设备还可以被本领域技术人员称为移动站、用户站、移动单元、用户单元、无线单元、远程单元、移动设备、终端设备、无线设备、无线通信设备、远程设备、移动用户站、接入用户设备、移动用户设备、无线用户设备、远程用户设备、手持设备、用户代理、移动客户端、客户端或者一些其它适当的术语。用户设备可以是蜂窝电话、个人数字助理PDA、无线调制解调器、无线通信设备、手持设备、平板电脑、膝上型计算机、无绳电话、无线本地环路WLL站等,能够与移动通信系统中的网络设备进行通信。
其中,第一指示信息可以携带于控制信令中,例如无线资源控制RRC信令,或者是媒体接入控制层的控制单元MAC CE,或者是下行控制信息DCI信令,还可以是上述信令中至少两信令的组合,本实施例中,对于目标通用波束的第一指示信息承载方式不作限定。
作为一种示例,信道包括以下至少一种或多种的组合:
物理下行控制信道PDCCH;
物理下行共享信道PDSCH;
物理上行控制信道PUCCH;
物理上行共享信道PUSCH;
物理广播信道PBCH;
随机接入信道PRACH。
作为一种示例,参考信号包括以下至少一种或多种的组合:
信道状态信息参考信号CSI-RS;
同步信号块SSB;
解调参考信号DMRS;
定位参考信号PRS;
追踪参考信号TRS;
探测参考信号SRS。
其中,上述参考信号可以用于不同的场景,例如,波束测量、信道状态信息测量、路损估计、天线切换、定位测量、解调时信道估计或同步追踪等,本实施例中不一一列举。同时上述列举的信道和参考信号,仅为示例,并不构成对本公开的限制。
本实施例中,目标通用波束应用于用户设备和网络设备之间的通信传输。按照通信传输方向划分,至少两种通信传输可以包含均属于上行传输的信道和/或参考信号;还可以包含均属于下行传输的信道和/或参考信号;又或者包含部分是上行传输的信道和/或参考信号,另一部分是用于下行传输的信道和/或参考信号。下面分别对几种可能的实现方式分别进行说明:
作为第一种可能的实现方式,该目标通用波束可以用于进行至少两信道的通信传输。例如,目标通用波束可以用于PDSCH信道和PDCCH信道,其中PDSCH信道包括所有PDSCH信道或只包括一部分PDSCH信道,比如UE dedicated PDSCH信道;PDCCH包括所有PDCCH信道或只包括一部分PDCCH信道,比如UE dedicated PDCCH信道。或者,又例如,目标通用波束可以用于PUSCH信道和PUCCH信道,其中PUSCH信道包括所有PUSCH信道或只包括一部分PUSCH信道,比如UE dedicated PUSCH信道,PUCCH包括所有PUCCH信道或只包括一部分PUCCH信道,比如UE dedicated PUCCH信道。又例如,目标通用波束可以用于PUSCH信道和PDSCH信道,其中PUSCH信道包括所有PUSCH信道或只包括一部分PUSCH信道,比如UE dedicated PUSCH信道,PDSCH包括所有PDSCH信道或只包括一部分PDSCH信道,比如UE dedicated PDSCH信道。其中,在目标通用波束用于PDSCH信道和PDCCH信道的情况下,可以将该目标通用波束称为下行目标通用波束(DL common beam);在目标通用波束用于PUSCH信道和PUCCH信道的情况下,可以将该目标通用波束称为上行目标通用波束(UL common beam);在目标通用波束用于PUSCH信道和PDSCH信道的情况下,该目标通用波束称为common beam,即同时用于上行和下行。
作为第二种可能的实现方式,该目标通用波束可以用于至少两参考信号的通信传输。这里的至少两 参考信号,可以是同属于下行参考信号,也可以是同属于上行参考信号,还可以是下行参考信号和上行参考信号的混合,本实施例中对此不做限定。例如,下行参考信号可以包括SSB、CSI-RS、PRS、TRS和DMRS中的至少一个;或者,又例如,上行参考信号可以包括SRS和DMRS中的至少一个。对于有些参考信号,比如CSI-RS,也可以是包括所有的CSI-RS;或者不是包括所有的CSI-RS,而是包括至少一种用途的CSI-RS,比如用于信道状态信息测量、波束测量、路损估计、定位测量的CSI-RS中的至少一种。又比如SRS,也可以是包括所有的SRS;或者不是包括所有的SRS,而是包括至少一种用途的SRS,比如用于codebook based的信道状态信息测量、non-codebook based的信道状态信息测量、波束测量、天线切换、定位测量的SRS中的至少一种。
作为第三种可能的实现方式,该目标通用波束可以用于至少一参考信号和至少一信道的通信传输。例如,目标通用波束可以用于PDSCH信道和以及下行参考信号的通信传输,该下行参考信号可以包括SSB、CSI-RS、PRS、TRS和DMRS中的至少一个;或者,又例如,目标通用波束可以用于PUSCH和以及上行参考信号的通信传输,该上行参考信号可以包括SRS和DMRS中的至少一个。同样,这里的PDSCH可以包括所有的PDSCH,或只包括部分PDSCH,比如UE dedicated PDSCH;这里的PUSCH可以包括所有的PUSCH,或只包括部分PUSCH,比如UE dedicated PUSCH;这里的参考信号,比如CSI-RS或SRS,可以包含所有用途的或者至少一种用途的CSI-RS或SRS。
需要说明的是,前述下行信道、上行信道、下行参考信号和上行参考信号仅用于示意性说明,在具体实现时,并不限于前述列举的若干信道或参考信号种类,前述列举的参考信号种类不构成对本公开范围的限定。
在本公开实施例的一种可能的实现方式中,第一指示信息还包括至少两种通信传输的指示信息,也就是说该指示信息,指示了用户设备采用目标通用波束和网络设备之间进行通信传输时,确定的至少两种通信传输的种类,例如,指示信息指示了用户设备和网络设备之间采用目标通用波束进行的通信传输为PDSCH信道和PDCCH信道传输,其中,关于至少两种通信传输的实现方式,上述实现方式中已经说明,此处不再赘述。
本实施例中,目标通用波束可以是单一波束,还可以是多个波束,本实施例中对此不作限定。
在目标通用波束为多波束的情况下,需根据网络设备发送的第一指示信息,确定各TRP对应的目标通用波束,或者确定各控制资源集池索引对应的目标通用波束,从而该第一指示信息中的目标TCI状态索引应当与TRP或者控制资源集池索引相对应。
本公开实施例中,通过网络设备向UE发送第一指示信息,从而UE在接收到网络设备发送的第一指示信息之后,与网络设备在至少两信道,或者至少两参考信号,又或者至少一参考信号和至少一信道上应用该目标通用波束进行通信传输。由于仅发送一次该目标通用波束的第一指示信息,便可以将该目标通用波束用于包括参考信号传输和信道传输在内的多种通信传输,从而避免了针对每一个信道传输或者参考信号传输分别进行波束的指示,节省了信令开销。
图7为本公开实施例提供的另一种波束指示方法的流程示意图,应用于用户设备。
基于图7所提供的波束指示方法,说明了目标通用波束的指示方式,如图7所示该方法包括:
步骤701,向用户设备UE发送目标通用TCI状态索引或索引组合,以使UE根据TCI状态索引或索引组合确定目标通用波束,采用目标通用波束与网络设备进行至少两种通信传输。
其中,关于用户设备和网络设备的说明,可以参照上述任一实施例中的解释说明,本实施例中不再赘述。
本实施例中,用户设备接收到的第一指示信息,包含网络设备发送的包括目标通用传输配置指示TCI状态索引或索引组合。其中,目标通用TCI状态索引组合,可以通过组合标识来确定,例如,01,02分别指示不同的索引组合;或者可以通过不同的代码点code point指示不同的索引组合,比如3个比特位的code point 000和001分别指示不同的索引组合。不同的索引组合中包含一个或多个TCI状态索引。而目标通用传输配置指示TCI状态索引可以为一个或多个。其中,目标通用TCI状态索引对应一个或多个参考信号RS,各参考信号用于指示上行目标通用波束和下行目标通用波束中的至少一项。
本实施例中,目标通用TCI状态索引包括下行目标通用TCI状态索引、上行目标通用TCI状态索引和上下行目标通用TCI状态索引中的至少一项。
需要理解的是,下行目标通用TCI状态索引对应的参考信号,例如,RS,不用于指示上行信道或上行参考信号的目标通用波束;上行目标通用TCI状态索引对应的参考信号,例如RS,不用于指示下行信道或下行参考信号的目标通用波束。上下行目标通用TC状态索引对应的参考信号,例如,RS,可以同时指示上行传输或下行传输的目标通用波束,通过一个参考信号RS或两个参考信号RS来分别指示。
作为一种实现方式,网络设备通过无线资源控制RRC信令为UE配置目标通用TCI状态索引,和参考信号RS之间的对应关系,其中,UE在获取到目标TCI状态索引后,根据该目标TCI状态索引,查询上述TCI状态索引和RS之间的对应关系,就可以获取到该目标TCI状态索引对应的参考信号RS,相应的,UE根据该参考信号RS确定对应的波束(beam)。可选地,该TCI状态索引和RS对应关系可以是TCI表格或其他形式,以该对应关系为TCI表格的形式为例进行说明。该TCI表格中可以包括TCI状态索引(即TCI State ID)、参考信号索引RS ID等信息。
需要说明的是,当获取到的是目标通用TCI状态索引组合,则根据索引组合的标识或比特位显示的codepoint与索引组合之间的映射关系,确定包含的目标通用TCI状态索引,进而,根据预先配置的TCI状态索引和RS之间的对应关系,确定对应的目标通用波束。
作为一种可能的实现方式,网络设备发送的TCI状态索引,可以指示上行目标通用波束和下行目标通用波束中的一个,也就是说,采用上行目标通用TCI状态索引指示上行目标通用波束,采用下行目标通用TCI状态索引指示下行的目标通用波束。
作为另一种可能的实现方式,网络设备发送的目标通用TCI状态索引,可以用于指示上行目标通用波束和下行目标通用波束。其中,作为一种实现方式,网络设备发送的目标通用TCI状态索引针对每个TRP指示对应的一个RS,即这个RS同时指示了上行目标通用波束和下行目标通用波束。作为另一种实现方式,网络设备发送的目标通用TCI状态索引针对每个TRP指示对应的一个RS,这个RS可以指示上行目标通用波束或指示下行目标通用波束。作为再一种实现方式,网络设备发送的目标通用TCI状态针对每个TRP指示对应的两个RS,两个RS中的一个RS用于指示上行目标通用波束,另一个RS用于指示下行目标通用波束。
需要说明的是,目标通用TCI状态索引对应一个发送接收点TRP索引或一个控制资源集池索引。也就是说,目标通用TCI状态索引和一个TRP进行多种通信传输时是通用的,而不同的TRP使用不同的目标通用TCI状态索引;目标通用TCI状态索引和一个控制资源集池索引进行多种通信传输时是通用的,而不同的控制资源集池索引使用不同的目标通用TCI状态索引。
需要理解的是,在一个实施例中,当TRP为一个时,确定的通用波束即为对应该TRP的波束;在另一个实施例中,当TRP为多个时,不同的TRP具有对应的目标通用TCI状态索引,而目标通用TCI状态索引具有对应的RS,从而可以确定相应TPR对应的目标通用波束。
进一步,以使得UE根据目标通用TCI状态索引或索引组合确定目标通用波束,采用目标通用波束与网络设备进行至少两种通信传输。
本实施例中,网络设备可以预先通过高层信令,例如无线资源控制RRC信令,或者是媒体接入控制层的控制单元MAC CE为UE配置目标通用TCI状态索引和RS的对应关系。UE根据预先配置的这种对应关系,可以根据网络设备动态指示的目标通用TCI状态索引确定对应的通用波束。
其中,在本公开的实施例中,用户设备采用确定的目标通用波束,进行至少两种通信传输,其中,通信传输包括信道和/或参考信号的传输,可以分别采用本公开的各实施例中的任一种方式实现,本公开实施例并不对此作出限定,也不再赘述。
本公开实施例中,通过网络设备向UE发送目标通用波束的第一指示信息,从而UE在接收到网络设备发送的目标通用波束的第一指示信息之后,与网络设备在至少两信道,或者至少两参考信号,又或者至少一参考信号和至少一信道上应用该目标通用波束进行通信传输。由于仅发送一次该目标通用波束的第一指示信息,便可以将该目标通用波束用于包括参考信号传输和信道传输在内的多种通信传输,从 而避免了针对每一个信道传输或者参考信号传输分别进行波束的指示,节省了信令开销。
图8为本公开实施例提供的另一种波束指示方法的流程示意图,应用于网络设备。
本公开中提供了一种可能的目标通用波束第一指示信息的承载方式,如图8所示,该方法包括:
步骤801,向UE发送媒体接入控制层的控制单元MAC CE信令。
其中,关于用户设备和网络设备的说明,可以参照上述任一实施例中的解释说明,本实施例中不再赘述。
其中,MAC CE中携带有用于激活一个或多个TCI状态索引的第二指示信息,一个TCI状态索引对应一个TRP索引或一个控制资源集池索引。
MAC CE信令中包含指示位,该指示位中记录了用于激活一个或多个TCI状态索引的第二指示信息,也就是说该第二指示信息,指示了要激活的一个或多个TCI状态索引。
可选地,MAC CE中针对每一个TCI状态索引具有对应的指示位,从而UE根据该指示位中的第二指示信息,确定对应的TCI状态索引,而一个TCI状态索引对应一个TRP索引或一个控制资源集池索引。
需要说明的是,波束包含上行波束、下行波束和上下行通用波束,针对每一个TRP激活的波束可以为一个或多个,其中,激活的波束中可以包含至少一个上行波束,和/或,至少一个下行波束或至少一个上下行通用波束,本实施例中,对于激活波束的数量不作限定。
进一步,使得UE根据第二指示信息激活的一个或多个TCI状态索引,确定第一指示信息。
本实施例中,一个TCI状态索引对应一个TRP索引或一个控制资源集池索引。
在一种可能的场景下,第二指示信息针对一个TRP索引或一个控制资源集池索引激活的TCI状态索引数量为一个,从而将第二指示信息激活的一个TCI状态索引,确定为第一指示信息。例如:对于一个TRP激活了一个TCI状态索引,则该TRP对应的TCI状态索引即为激活的该TCI状态索引。如,激活的TCI状态索引对应下行目标通用TCI状态索引,则该激活的TCI状态索引对应的参考信号指示下行目标通用波束,则该TRP的下行目标通用波束,即为该TCI状态索引对应的参考信号指示的下行波束。又例如:激活的TCI状态索引对应上行目标通用TCI状态索引,则该激活的TCI状态索引对应的参考信号指示上行目标通用波束,则该TRP的上行目标通用波束,即为该TCI状态索引对应的参考信号指示的上行波束。又例如:激活的TCI状态索引对应目标通用TCI状态索引,则该激活的TCI状态索引对应的参考信号指示上行目标通用波束和下行目标通用波束。则该TRP的上行目标通用波束和下行目标通用波束,为该TCI状态索引对应的参考信号指示的上行波束和下行波束。
在另一种可能的场景下,第二指示信息针对一个TRP索引或一个控制资源集池索引激活的TCI状态索引数量为多个,则需要从多个TCI状态索引中确定一个和相应TRP索引或控制资源集池索引对应的目标TCI状态索引或索引组合,作为第一指示信息,作为一种实现方式,接收网络设备发送的第一下行链路控制信息DCI信令,第一DCI信令携带有第一指示信息,其中,第一指示信息包括第二指示信息激活的多个TCI状态索引中的一个目标通用TCI状态索引或索引组合。
需要说明的是,索引组合中包含多个通用TCI状态索引,不同的TCI状态索引对应不同的TRP或不同的控制资源集池索引。
其中,在本公开的实施例中,用户设备采用确定的目标通用波束,进行至少两种通信传输,其中,通信传输包括信道和/或参考信号的传输,可以分别采用本公开的各实施例中的任一种方式实现,本公开实施例并不对此作出限定,也不再赘述。
本公开实施例中,通过网络设备向UE发送目标通用波束的第一指示信息,从而UE在接收到网络设备发送的目标通用波束的第一指示信息之后,与网络设备在至少两信道,或者至少两参考信号,又或者至少一参考信号和至少一信道上应用该目标通用波束进行通信传输。由于仅发送一次该目标通用波束的第一指示信息,便可以将该目标通用波束用于包括参考信号传输和信道传输在内的多种通信传输,从而避免了针对每一个信道传输或者参考信号传输分别进行波束的指示,节省了信令开销。
图9为本公开实施例提供的另一种波束指示方法的流程示意图,该方法由网络设备执行。
本公开中提供了一种可能的目标通用波束第一指示信息的承载方式,如图9所示,该方法包括:
步骤901,向UE发送第一下行链路控制信息DCI信令。
其中,关于用户设备和网络设备的说明,可以参照上述任一实施例中的解释说明,本实施例中不再赘述。
其中,第一DCI信令中包含目标通用波束的第一指示信息。也就是说目标通用TCI状态索引或索引组合,和资源配置信息在不同的DCI信令中,而第一DCI信令中包含的是目标通用TCI状态索引或索引组合,即第一指示信息。
第一DCI信令可以是基于单TRP的也可以是基于多TRP的,本实施例中对此不作限定。
在本公开实施例的一种可能的实现方式中,UE采用一个或多个接收波束接收第一DCI信令的一次或多次传输,也就是说网络设备使用一个或多个TRP进行一次或多次发送第一DCI信令,同时每个TRP对应不同的波束,避免了信号传输过程中的遮挡,提高了通信质量,以确保接收到该第一DCI信令。
步骤902,接收UE发送的第一混合自动重传请求HARQ反馈信息。
其中,第一HARQ反馈信息,用于指示网络设备第一DCI信令是否接收成功。
其中,UE用于发送第一HARQ反馈信息的HARQ反馈资源,是第一DCI信令配置的,或者默认设置的。
在一种可能的场景下,网络设备发送第一DCI信令的次数可以为一次,对应地,用于UE发送第一HARQ反馈信息的候选PUCCH/PUSCH资源可以是一个或多个。
在另一种可能的场景下,网络设备发送的第一DCI信令的次数可以为多次,对应地,UE发送第一HARQ反馈信息的候选PUCCH/PUSCH资源可以是一个或多个。
可选地,UE每接收一次第一DCI信令,则发送一次第一HARQ反馈信息。
或者可选地,网络设备在N个发送时间分别重复发送第一DCI信令,对应地,UE配置有L个候选PUCCH/PUSCH资源用于第一HARQ反馈信息的发送,其中,L小于或等于N,L个候选PUCCH/PUSCH资源有的在N个发送时间结束之前,有的在N个发送时间结束之后。在N个发送时间之前UE正确接收第一DCI信令的情况下,则UE可以选择一个候选PUCCH/PUSCH资源,在N个发送时间之前发送第一HARQ反馈信息。在N个发送时间结束时或之后,UE正确接收第一DCI信令的情况下,则UE可以选择另一个候选PUCCH/PUSCH资源,在N个发送时间结束之后发送第一HARQ反馈信息。
或者可选地,网络设备在N个发送时间分别重复发送第一DCI信令,对应地,UE配置有1个候选PUCCH/PUSCH资源用于第一HARQ反馈信息的发送,UE可以在N个发送时间结束之后发送第一HARQ反馈信息。
进而,在UE与网络设备进行后续的通信时,采用目标通用波束与网络设备进行至少两种通信传输,其中,通信传输包括信道和/或参考信号的传输。
本实施例的一个示例中,发送第一HARQ反馈信息的发送波束,是第一DCI信令中目标通用TCI状态索引或索引组合对应的目标通用波束对应的发送波束。
本实施例的另一个示例中,发送第一HARQ反馈信息的发送波束,是接收第一DCI信令的接收波束对应的发送波束。
步骤903,在PDCCH上向UE发送第二DCI信令,以使UE采用目标通用波束接收第二DCI信令。
本实施例中,为了便于说明,将携带传输资源配置信息的DCI信令,称为第二DCI信令。
其中,第二DCI信令中携带有用于配置参考信号、物理随机接入信道PRACH、物理上行共享信道PUSCH、物理上行控制信道PUCCH和/或物理下行共享信道PDSCH传输资源的资源配置信息。
其中,配置的参考信号具体可以包括以下的参考信号中的至少一种:
包含信道状态信息参考信号CSI-RS;
同步信号块SSB;
解调参考信号DMRS;
定位参考信号PRS;
追踪参考信号TRS;
探测参考信号SRS。
上述参考信号可以用于不同的场景,例如,波束测量、信道状态信息测量、路损估计、天线切换、定位测量、解调时信道估计或同步追踪等,本实施例中不一一列举。在具体实现时,并不限于前述列举的若干参考信号种类,前述列举的参考信号种类不构成对本公开范围的限定。
需要理解的是,第二DCI信令可以是第一DCI信令发送之后的第一个DCI信令。且第一DCI信令和第二DCI信令之间的发送时间间隔,足够用户设备和网络设备完成HARQ反馈,即时间间隔足以使得用户设备解码接收到的第一DCI信令,以及向网络设备反馈HARQ。
本公开实施例中,通过网络设备向UE发送目标通用波束的第一指示信息,从而UE在接收到网络设备发送的目标通用波束的第一指示信息之后,与网络设备在至少两信道,或者至少两参考信号,又或者至少一参考信号和至少一信道上应用该目标通用波束进行通信传输。由于仅发送一次该目标通用波束的第一指示信息,便可以将该目标通用波束用于包括参考信号传输和信道传输在内的多种通信传输,从而避免了针对每一个信道传输或者参考信号传输分别进行波束的指示,节省了信令开销。
图10为本公开实施例提供的另一种波束指示方法的流程示意图,该方法由网络设备执行。
本公开中提供了一种可能的目标通用波束第一指示信息的承载方式,如图10所示,该方法包括:
步骤1001,向UE发送第一下行链路控制信息DCI信令。
其中,关于用户设备和网络设备的说明,可以参照上述任一实施例中的解释说明,本实施例中不再赘述。
本实施例中,第一DCI信令中包含第一指示信息,以及携带有用于对参考信号、PRACH、PUSCH、PUCCH和PDSCH中至少一个配置传输资源的资源配置信息。
作为一种可能的实现方式,第一DCI信令携带有用于进行下行传输的传输资源的资源配置信息,则该第一DCI信令为用于进行下行资源调度的DCI信令,可以采用预设的DCI信令,例如,DCI format 1_0,1_1或1_2,或者是采用重新定义的DCI信令,本实施例中不一一列举,也不作限定。
作为另一种可能的实现方式,第一DCI信令携带有用于进行上行传输的传输资源的资源配置信息,则该第一DCI信令为用于进行上行资源调度的DCI信令,可以采用预设的DCI信令,例如,DCI format 0_0,0_1或0_2,或者是采用重新定义的DCI信令,本实施例中不一一列举,也不作限定。
作为第三种可能的实现方式,第一DCI信令携带有用于进行上行和下行传输的传输资源的资源配置信息,则该第一DCI信令为用于进行上下行资源调度的DCI信令。
第一DCI信令可以是针对单TRP进行资源配置的也可以是针对多TRP进行资源配置的DCI信令,本实施例中对此不作限定。
步骤1002,接收UE发送的第二HARQ反馈信息。
在本实施例中,在配置有HARQ反馈资源的情况下,向网络设备发送第二HARQ反馈信息。
其中,UE向网络设备发送的第二HARQ反馈信息可以采用与发送第一DCI信令相同的波束,或者,可以采用第一DCI信令包含的第一指示信息所指示的目标通用波束,本实施例中对此不作限定。
作为一种可能的实现方式,网络设备通过第一DCI信令调度两个HARQ反馈资源,或者UE预先配置有两个HARQ反馈资源,则第二HARQ反馈信息,包括:第一反馈信息,用于反馈第一DCI信令是否接收成功,以及,第二反馈信息,用于反馈第一DCI信令配置的PDSCH或下行参考信号是否接收成功。
作为另一种可能的实现方式,网络设备通过第一DCI信令调度了一个HARQ反馈资源,或者,UE预先配置有一个HARQ反馈资源,则第二HARQ反馈信息,包括:第一反馈信息和第二反馈信息,两者共用该HARQ反馈资源。
在本实施例的一种实现方式中,用于发送第一反馈信息和/或第二反馈信息的HARQ反馈资源,是第一DCI信令配置的,或者默认设置。
在本实施例的一种实现方式中,用于发送第一反馈信息和/或第二反馈信息的HARQ反馈资源,是 相同的HARQ反馈资源或不同的HARQ反馈资源。
在一个示例中,用于发送第一反馈信息和/或第二反馈信息的HARQ反馈资源,是相同的HARQ反馈资源时,第一反馈信息和/或第二反馈信息对应同一个HARQ反馈资源中的相同或不同的比特位。
在一种可能的场景下,网络设备发送第一DCI信令的次数可以为一次,对应地,UE发送第二HARQ反馈信息的候选PUCCH/PUSCH资源可以是一个或多个。
在另一种可能的场景下,网络设备发送的第一DCI信令的次数可以为多次,对应地,UE发送第二HARQ反馈信息的候选PUCCH/PUSCH资源可以是一个或多个。可选地,UE每接收一次第一DCI信令,则发送一次第二HARQ反馈信息。或者可选地,网络设备在N个发送时间分别重复发送第一DCI信令,对应地,UE配置有L个候选PUCCH/PUSCH资源用于第一HARQ反馈信息的发送,其中,L小于或等于N,L个候选PUCCH/PUSCH资源有的在N个发送时间结束之前,有的在N个发送时间结束之后。在N个发送时间之前UE正确接收第一DCI信令的情况下,则UE可以选择一个候选PUCCH/PUSCH资源,在N个发送时间之前发送第二HARQ反馈信息。在N个发送时间结束时或之后,UE正确接收第一DCI信令的情况下,则UE可以选择一个候选PUCCH/PUSCH资源,在N个发送时间结束之后发送第二HARQ反馈信息。或者可选地,网络设备在N个发送时间分别重复发送第一DCI信令,对应地,UE配置有1个候选PUCCH/PUSCH资源用于第一HARQ反馈信息的发送,UE可以在N个发送时间结束之后发送第二HARQ反馈信息。
本实施例的一个示例中,发送第二HARQ反馈信息的发送波束,是第一DCI信令中目标通用TCI状态索引或索引组合对应的目标通用波束对应的发送波束。
本实施例的另一个示例中,发送第二HARQ反馈信息的发送波束,是接收第一DCI信令的接收波束对应的发送波束。
步骤1003,根据第一DCI信令携带的资源配置信息,与UE进行通信传输。
本实施例中,在不针对第一DCI信令是否接收成功单独发送HARQ反馈的情况下,网络设备根据UE是否采用配置的传输资源与网络设备进行通信传输,确定UE是否已正确接收第一DCI信令,也即网络设备是否配置完毕。
在本实施例的一种实现方式中,用户设备在进行通信传输与接收第一DCI信令之间的时间间隔小于阈值的情况下,通信传输采用与第一DCI信令相同的波束。
在本实施例的另一种实现方式中,用户设备在进行通信传输与接收第一DCI信令之间的时间间隔大于或等于阈值的情况下,通信传输采用第一DCI信令中目标通用TCI状态索引对应的目标通用波束。
在本公开实施例中,步骤1003中的阈值默认设置于UE中。作为一种可能的实现方式,阈值可以是由网络设备确定的;作为另一种可能的实现方式,阈值可以是网络设备根据历史传输时间确定的。本实施例中不进行限定。
作为一种可能的实现方式,网络设备根据UE发送的参考时间,向UE发送阈值指示信息。其中,参考时间包括第一DCI信令解码用时及其对应的HARQ反馈用时,以及波束切换用时;或者,参考时间包括第一DCI信令对应的HARQ反馈用时,以及波束切换用时。从而用户设备在参考时间内确定可以完成包括第一DCI信令解码,HARQ反馈和波束切换;或完成包括HARQ反馈和波束切换。
作为一种可能的实现方式,网络设备确定的阈值大于等于参考时间。
本实施例中,以通信传输,包含用户设备向网络设备发送上行传输和/或接收下行传输为例进行具体说明。
本实施例中,在未单独配置针对第一DCI信令是否接收成功的HARQ反馈资源的情况下,网络设备根据UE是否采用配置的传输资源向网络设备发送上行传输,确定UE是否已正确接收第一DCI信令;或者,网络设备采用配置的传输资源向用户设备发送下行传输,根据UE是否正确接收解码下行传输而反馈的HARQ反馈信息,确定UE是否已正确接收解码第一DCI信令。
需要说明的是,在上行传输和/或下行传输与第一DCI信令之间的时间间隔小于阈值的情况下,上行传输和/或下行传输采用与第一DCI信令相同的波束。在上行传输和/或下行传输与第一DCI信令之间的时间间隔大于或等于阈值的情况下,上行传输和/或下行传输采用第一DCI信令中目标通用TCI状态 索引或索引组合对应的目标通用波束相同的波束。其中,该阈值,是UE解码第一DCI信令所需时长,以及UE向网络设备反馈是否正确接收第一DCI信令所需的时长和波束切换的时长中的至少一项。该时间阈值,可以是UE和网络设备两者协商确定的。
在网络设备确定UE已正确接收到第一DCI信令之后,UE与网络设备进行后续的通信传输,便可以在与网络设备进行至少两种通信传输时应用该目标通用波束。
进一步,从接收到第一DCI信令的时刻开始计时,确定计时达到前述阈值之后才进行至少两种通信传输,即采用目标通用波束,与网络设备进行至少两种通信传输中的信道和/或参考信号的传输,节省了信令的开销。
在本公开的实施例中,关于用户设备采用目标通用波束与网络设备进行至少两种通信传输,其中,通信传输包括信道和/或参考信号的传输,本公开实施例并不对此作出限定,也不再赘述。
本公开实施例中,通过网络设备向UE发送目标通用波束的第一指示信息,从而UE在接收到网络设备发送的目标通用波束的第一指示信息之后,与网络设备在至少两信道,或者至少两参考信号,又或者至少一参考信号和至少一信道上应用该目标通用波束进行通信传输。由于仅发送一次该目标通用波束的第一指示信息,便可以将该目标通用波束用于包括参考信号传输和信道传输在内的多种通信传输,从而避免了针对每一个信道传输或者参考信号传输分别进行波束的指示,节省了信令开销。
本公开中提供了一种可能的波束指示和切换的方式,本实施例中,作为一种可能的实现方式,向UE发送第三指示信息,第三指示信息用于指示UE采用目标通用波束或采用专用波束进行至少两种通信传输。
在一种实现方式中,用户设备接收到的第三指示信息,可以是在用户设备接收到第一指示信息之前接收到的,从而,用户设备根据第三指示信息,确定采用目标通用波束或采用专用波束进行至少两种通信传输,在一种示例中,确定采用专用波束进行至少两种通信传输,则根据指示的专用波束进行至少两种通信传输,其中,用于指示每种通信传输的专用波束的信令是不同信令。在另一种示例中,确定采用目标通用波束进行至少两种通信传输,则进一步根据获取到的第一指示信息,确定进行通信传输需要采用的目标通用波束,具体可参照上述任一个实施例中的实现方式,本实施例中不再赘述。
在另一种实现方式中,用户设备接收到的第三指示信息,可以是在用户设备接收到第一指示信息之后接收到的,进一步地,网络设备根据接收到的第三指示信息,确定需要将目标通用波束切换至专用波束,该专用波束需要针对各信道和/或各参考信号分别发送信令进行独立指示。在一种可能的应用场景下,网络设备需要将某一个信道或参考信号切换至专用波束,从而可以仅发送该信道或参考信号对应的专用波束的指示信息,而其它未接收到专用波束的指示信息的信道或参考信号将继续采用目标通用波束。在另一种可能的应用场景下,网络设备可以将当前采用目标通用波束的各信道和/或各参考信号均切换至专用波束,分别发送针对各信道和/或参考信号的专用波束的指示信息。
与上述几种实施例提供的信息传输方法相对应,本公开还提供一种波束指示装置,由于本公开实施例提供的波束指示装置与上述几种实施例提供的方法相对应,因此在波束指示方法的实施方式也适用于本实施例提供的波束指示装置,在本实施例中不再详细描述。
图11为本公开实施例提供的一种波束指示装置110的结构示意图。所述装置应用于用户设备。
如图11所示,该波束指示装置110包括:获取模块1101和执行模块1102,其中:
获取模块1101,被配置为获取第一指示信息,其中,所述第一指示信息用于指示目标通用波束;
执行模块1102,被配置为采用所述目标通用波束与网络设备进行至少两种通信传输,其中,所述通信传输包括信道和/或参考信号的传输。
进一步,在本公开实施的一种可能的实现方式中,所述第一指示信息包括目标通用传输配置指示TCI状态索引或索引组合。
在本公开实施的一种可能的实现方式中,所述目标通用TCI状态索引对应一个发送接收点TRP索引或一个控制资源集池索引。
在本公开实施的一种可能的实现方式中,所述目标通用TCI状态索引对应一个或多个参考信号, 各所述参考信号用于指示上行目标通用波束和下行目标通用波束中的至少一项。
在本公开实施的一种可能的实现方式中,获取模块1101,包括:
接收单元,被配置为接收所述网络设备发送的媒体接入控制层的控制单元MAC CE信令,其中,所述MAC CE中携带有用于激活一个或多个TCI状态索引的第二指示信息,所述一个TCI状态索引对应一个TRP索引或一个控制资源集池索引。
确定单元,被配置为根据所述第二指示信息激活的所述一个或多个TCI状态索引,确定所述第一指示信息。
进一步,在本公开实施的一种可能的实现方式中,所述第二指示信息针对一个TRP索引或一个控制资源集池索引激活的TCI状态索引数量为一个,上述确定单元,被配置为:
将所述第二指示信息激活的一个TCI状态索引,确定为所述第一指示信息。
在本公开实施的一种可能的实现方式中,所述第二指示信息针对一个TRP索引或一个控制资源集池索引激活的TCI状态索引数量为多个,上述确定单元,还被配置为:
接收所述网络设备发送的第一下行链路控制信息DCI信令,所述第一DCI信令携带有所述第一指示信息;其中,所述第一指示信息包括所述第二指示信息激活的多个TCI状态索引中的一个目标通用TCI状态索引或索引组合。
在本公开实施的一种可能的实现方式中,所述装置,还包括:
发送模块,被配置为向所述网络设备发送第一混合自动重传请求HARQ反馈信息;
其中,所述第一HARQ反馈信息,用于指示网络设备所述第一DCI信令是否接收成功;
用于发送所述第一HARQ反馈信息的HARQ反馈资源,是所述第一DCI信令配置的,或者默认设置的。
在本公开实施的一种可能的实现方式中,上述执行模块1102,被配置为:
采用所述目标通用波束,在PDCCH上接收所述网络设备发送的第二DCI信令;
其中,所述第二DCI信令中携带有用于配置参考信号、随机接入信道PRACH、物理上行共享信道PUSCH、物理上行控制信道PUCCH和/或物理下行共享信道PDSCH传输资源的资源配置信息。
在本公开实施的一种可能的实现方式中,所述第一DCI信令中还携带有用于对参考信号、PRACH、PUSCH、PUCCH和PDSCH中至少一个配置传输资源的资源配置信息。
在本公开实施的一种可能的实现方式中,上述发送模块,还被配置为:
向所述网络设备发送第二HARQ反馈信息;
其中,所述第二HARQ反馈信息,包括:
第一反馈信息,用于反馈所述第一DCI信令是否接收成功;
和/或,
第二反馈信息,用于反馈所述第一DCI信令配置的PDSCH和/或下行参考信号是否接收成功。
在本公开实施的一种可能的实现方式中,用于发送所述第一反馈信息和/或所述第二反馈信息的HARQ反馈资源,是所述第一DCI信令配置的,或者默认设置。
在本公开实施的一种可能的实现方式中,用于发送所述第一反馈信息和/或所述第二反馈信息的HARQ反馈资源,是相同的HARQ反馈资源或不同的HARQ反馈资源。
在本公开实施的一种可能的实现方式中,所述第一反馈信息和/或所述第二反馈信息对应同一个HARQ反馈资源中的相同或不同的比特位。
在本公开实施的一种可能的实现方式中,发送所述第一HARQ反馈信息的发送波束,是所述第一DCI信令中所述目标通用TCI状态索引或索引组合对应的目标通用波束对应的发送波束,或者,是接收所述第一DCI信令的接收波束对应的发送波束。
在本公开实施的一种可能的实现方式中,发送所述第二HARQ反馈信息的发送波束,是所述第一DCI信令中所述目标通用TCI状态索引或索引组合对应的目标通用波束对应的发送波束,或者,是接收所述第一DCI信令的接收波束对应的发送波束。
在本公开实施的一种可能的实现方式中,该装置,还包括:
通信模块,被配置为根据所述第一DCI信令携带的所述资源配置信息,采用配置的所述传输资源与所述网络设备进行通信传输。
在本公开实施的一种可能的实现方式中,在所述通信传输与所述第一DCI信令之间的时间间隔小于阈值的情况下,所述通信传输采用与所述第一DCI信令相同的波束;在所述通信传输与所述第一DCI信令之间的时间间隔大于或等于所述阈值的情况下,所述通信传输采用所述第一DCI信令中所述目标通用TCI状态索引或索引组合对应的目标通用波束。
在本公开实施的一种可能的实现方式中,所述阈值由所述网络设备通知;
上述发送模块,还被配置为向所述网络设备发送参考时间,所述参考时间用于所述网络设备确定所述阈值;
其中,所述参考时间包括所述第一DCI信令解码用时及其对应的HARQ反馈用时,以及波束切换用时;或者,所述参考时间包括所述第一DCI信令对应的HARQ反馈用时,以及波束切换用时。
在本公开实施的一种可能的实现方式中,所述阈值默认设置于所述UE中。
在本公开实施的一种可能的实现方式中,所述UE采用一个或多个接收波束接收所述第一DCI信令的一次或多次传输。
在本公开实施的一种可能的实现方式中,所述第一DCI信令,为用于下行资源调度的DCI信令,或为用于上行资源调度的DCI信令,或为用于上下行资源调度的DCI信令或为仅用于上下行目标通用波束指示的DCI信令。
在本公开实施的一种可能的实现方式中,所述目标通用TCI状态索引包括下行目标通用TCI状态索引、上行目标通用TCI状态索引和上下行目标通用TCI状态索引中的至少一项。
在本公开实施的一种可能的实现方式中,上述获取模块1101,还被配置为:
接收网络设备发送的第三指示信息,所述第三指示信息用于指示所述UE采用所述目标通用波束或采用专用波束进行所述至少两种通信传输。
在本公开实施的一种可能的实现方式中,,所述第一指示信息还包括所述至少两种通信传输的指示信息。
在本公开实施的一种可能的实现方式中,所述信道包括以下至少一种或多种的组合:
物理下行控制信道PDCCH;
物理下行共享信道PDSCH;
物理上行控制信道PUCCH;
物理上行共享信道PUSCH;
物理广播信道PBCH;
随机接入信道PRACH。
在本公开实施的一种可能的实现方式中,所述参考信号包括以下至少一种或多种的组合:
信道状态信息参考信号CSI-RS;
同步信号块SSB;
解调参考信号DMRS;
定位参考信号PRS;
追踪参考信号TRS;
探测参考信号SRS。
本公开实施例中,通过网络设备向UE发送目标通用波束的第一指示信息,从而UE在接收到网络设备发送的目标通用波束的第一指示信息之后,与网络设备在至少两信道,或者至少两参考信号,又或者至少一参考信号和至少一信道上应用该目标通用波束进行通信传输。由于仅发送一次该目标通用波束的第一指示信息,便可以将该目标通用波束用于包括参考信号传输和信道传输在内的多种通信传输,从而避免了针对每一个信道传输或者参考信号传输分别进行波束的指示,节省了信令开销。
与上述几种实施例提供的信息传输方法相对应,本公开还提供一种波束指示装置,由于本公开实施 例提供的波束指示装置与上述几种实施例提供的波束指示方法相对应,因此在波束指示方法的实施方式也适用于本实施例提供的波束指示装置,在本实施例中不再详细描述。
图12为本公开实施例提供的一种波束指示装置120的结构示意图。所述装置应用于网络设备。
如图12所示,该波束指示装置120包括:指示模块1201。
指示模块1201,被配置为向用户设备UE发送第一指示信息,所述第一指示信息用于指示目标通用波束,使所述UE采用所述目标通用波束与所述网络设备进行至少两种通信传输,其中,所述通信传输包括信道和/或参考信号的传输。
进一步,在本公开实施例的一种可能的实现方式中,所述第一指示信息包括目标通用传输配置指示TCI状态索引或索引组合。
进一步,在本公开实施例的一种可能的实现方式中,所述目标通用TCI状态索引对应一个发送接收点TRP索引或一个控制资源集池索引。
进一步,在本公开实施例的一种可能的实现方式中,所述目标通用TCI状态索引对应一个或多个参考信号,各所述参考信号用于指示上行目标通用波束和下行目标通用波束中的至少一项。
进一步,在本公开实施例的一种可能的实现方式中,上述指示模块1201,被配置为:
向UE发送媒体接入控制层的控制单元MAC CE信令,其中,所述MAC CE中携带有用于激活一个或多个TCI状态索引的第二指示信息,所述一个TCI状态索引对应一个TRP索引或一个控制资源集池索引;其中,所述第二指示信息激活的所述一个或多个TCI状态索引,用于确定所述第一指示信息。
在本公开实施例的一种可能的实现方式中,所述第二指示信息针对一个TRP索引或一个控制资源集池索引激活的TCI状态索引数量为一个;其中,所述第一指示信息,表征所述第二指示信息激活的一个TCI状态索引。
在本公开实施例的一种可能的实现方式中,所述第二指示信息针对一个TRP索引或一个控制资源集池索引激活的TCI索引数量为多个;上述指示模块1201,被配置为:
向UE发送第一下行链路控制信息DCI信令,所述第一DCI信令携带有所述第一指示信息;其中,所述第一指示信息包括所述第二指示信息激活的多个TCI状态索引中的一个目标通用TCI状态索引或索引组合。
在本公开实施例的一种可能的实现方式中,该装置还包括::
接收模块,被配置为接收所述UE发送的第一混合自动重传请求HARQ反馈信息;
其中,所述第一HARQ反馈信息,用于指示网络设备所述第一DCI信令是否接收成功;
用于发送所述第一HARQ反馈信息的HARQ反馈资源,是所述第一DCI信令配置的,或者默认设置的。
在本公开实施例的一种可能的实现方式中,所述装置,还包括:
发送模块,被配置为在PDCCH上向所述UE发送第二DCI信令,以使所述UE采用所述目标通用波束接收所述第二DCI信令;
其中,所述第二DCI信令中携带有用于配置参考信号、随机接入信道PRACH、物理上行共享信道PUSCH、物理上行控制信道PUCCH和/或物理下行共享信道PDSCH传输资源的资源配置信息。
在本公开实施例的一种可能的实现方式中,所述第一DCI信令中还携带有用于对参考信号、PRACH、PUSCH、PUCCH和PDSCH中至少一个配置传输资源的资源配置信息。
在本公开实施例的一种可能的实现方式中,上述接收模块,还被配置为:
接收所述UE发送的第二HARQ反馈信息;
其中,所述第二HARQ反馈信息,包括:
第一反馈信息,用于反馈所述第一DCI信令是否接收成功;
和/或,
第二反馈信息,用于反馈所述第一DCI信令配置的PDSCH和/或下行参考信号是否接收成功。
在本公开实施例的一种可能的实现方式中,用于发送所述第一反馈信息和/或所述第二反馈信息的HARQ反馈资源,是所述第一DCI信令配置的,或者默认设置。
在本公开实施例的一种可能的实现方式中,用于发送所述第一反馈信息和/或所述第二反馈信息的HARQ反馈资源,是相同的HARQ反馈资源或不同的HARQ反馈资源。
在本公开实施例的一种可能的实现方式中,所述第一反馈信息和/或所述第二反馈信息对应同一个HARQ反馈资源中的相同或不同的比特位。
在本公开实施例的一种可能的实现方式中,发送所述第一HARQ反馈信息的发送波束,是所述第一DCI信令中所述目标通用TCI状态索引或索引组合对应的目标通用波束对应的发送波束,或者,是接收所述第一DCI信令的接收波束对应的发送波束。
在本公开实施例的一种可能的实现方式中,发送所述第二HARQ反馈信息的发送波束,是所述第一DCI信令中所述目标通用TCI状态索引或索引组合对应的目标通用波束对应的发送波束,或者,是接收所述第一DCI信令的接收波束对应的发送波束。
在本公开实施例的一种可能的实现方式中,所述装置,还包括:
通信模块,被配置为根据所述第一DCI信令携带的所述资源配置信息,与所述UE进行通信传输。
在本公开实施例的一种可能的实现方式中,指示所述通信传输与所述第一DCI信令之间的时间间隔小于阈值,表征指示所述UE采用与所述第一DCI信令相同的波束进行所述通信传输;指示所述通信传输与所述第一DCI信令之间的时间间隔大于或等于所述阈值,表征指示所述UE采用所述第一DCI信令中所述目标通用TCI状态索引或索引组合对应的目标通用波束进行所述通信传输。
在本公开实施例的一种可能的实现方式中,上述发送模块,还被配置为:
接收所述UE发送的参考时间,向所述UE发送所述阈值指示信息;
其中,所述参考时间包括所述UE进行所述第一DCI信令解码用时及其对应的HARQ反馈用时,以及波束切换用时;或者,所述参考时间包括所述UE进行所述第一DCI信令对应的HARQ反馈用时,以及波束切换用时。
在本公开实施例的一种可能的实现方式中,一次或多次发送所述第一DCI信令,并指示所述UE采用一个或多个接收波束接收所述第一DCI信令。
在本公开实施例的一种可能的实现方式中,所述第一DCI信令,为用于下行资源调度的DCI信令,或为用于上行资源调度的DCI信令,或为用于上下行资源调度的DCI信令或为仅用于上下行目标通用波束指示的DCI信令。
在本公开实施例的一种可能的实现方式中,所述目标通用TCI状态索引包括下行目标通用TCI状态索引、上行目标通用TCI状态索引和上下行目标通用TCI状态索引中的至少一项。
在本公开实施例的一种可能的实现方式中,上述发送模块,还被配置为向所述UE发送第三指示信息,所述第三指示信息用于指示所述UE采用所述目标通用波束或采用专用波束进行所述至少两种通信传输。
在本公开实施例的一种可能的实现方式中,所述第一指示信息还包括所述至少两种通信传输的指示信息。
在本公开实施例的一种可能的实现方式中,所述信道包括以下至少一种或多种的组合:
物理下行控制信道PDCCH;
物理下行共享信道PDSCH;
物理上行控制信道PUCCH;
物理上行共享信道PUSCH;
物理广播信道PBCH;
随机接入信道PRACH。
在本公开实施例的一种可能的实现方式中,所述参考信号包括以下至少一种或多种的组合:
信道状态信息参考信号CSI-RS;
同步信号块SSB;
解调参考信号DMRS;
定位参考信号PRS;
追踪参考信号TRS;
探测参考信号SRS。
本公开实施例中,通过网络设备向UE发送目标通用波束的第一指示信息,从而UE在接收到网络设备发送的目标通用波束的第一指示信息之后,与网络设备在至少两信道,或者至少两参考信号,又或者至少一参考信号和至少一信道上应用该目标通用波束进行通信传输。由于仅发送一次该目标通用波束的第一指示信息,便可以将该目标通用波束用于包括参考信号传输和信道传输在内的多种通信传输,从而避免了针对每一个信道传输或者参考信号传输分别进行波束的指示,节省了信令开销。
为了实现上述实施例,本公开还提出一种通信设备。
本公开实施例提供的通信设备,包括处理器、收发器、存储器及存储在存储器上并能够有处理器运行的可执行程序,其中,处理器运行可执行程序时执行前述方法。
该通信设备可为前述的网络设备或者终端。
其中,处理器可包括各种类型的存储介质,该存储介质为非临时性计算机存储介质,在通信设备掉电之后能够继续记忆存储其上的信息。这里,所述通信设备包括网络设备或终端。
所述处理器可以通过总线等与存储器连接,用于读取存储器上存储的可执行程序,例如,如图1至图5,或者图6至图10的至少其中之一。
为了实现上述实施例,本公开还提出一种计算机存储介质。
本公开实施例提供的计算机存储介质,存储有可执行程序;所述可执行程序被处理器执行后,能够实现前述方法,例如,如图1至图5,或者图6至图10的至少其中之一。
图13为本公开实施例的波束指示方法的通信设备的框图。通信设备旨在表示各种形式的数字计算机,诸如,膝上型计算机、台式计算机、工作台、个人数字助理、服务器、刀片式服务器、大型计算机、和其它适合的计算机。通信设备还可以表示各种形式的移动装置,诸如,个人数字处理、蜂窝电话、智能电话、可穿戴设备和其它类似的计算装置。本文所示的部件、它们的连接和关系、以及它们的功能仅仅作为示例,并且不意在限制本文中描述的和/或者要求的本公开的实现。
如图13所示,该通信设备包括:一个或多个处理器1300、存储器1400,以及用于连接各部件的接口,包括高速接口和低速接口。各个部件利用不同的总线互相连接,并且可以被安装在公共主板上或者根据需要以其它方式安装。处理器可以对在通信设备内执行的指令进行处理,包括存储在存储器中或者存储器上以在外部输入/输出装置(诸如,耦合至接口的显示设备)上显示GUI的图形信息的指令。在其它实施方式中,若需要,可以将多个处理器和/或多条总线与多个存储器和多个存储器一起使用。同样,可以连接多个通信设备,各个设备提供部分必要的操作(例如,作为服务器阵列、一组刀片式服务器、或者多处理器系统)。图13中以一个处理器1300为例。
存储器1400即为本公开所提供的非瞬时计算机可读存储介质。其中,所述存储器存储有可由至少一个处理器执行的指令,以使所述至少一个处理器执行本公开所提供的波束指示方法。本公开的非瞬时计算机可读存储介质存储计算机指令,该计算机指令用于使计算机执行本公开所提供的波束指示方法。
存储器1400作为一种非瞬时计算机可读存储介质,可用于存储非瞬时软件程序、非瞬时计算机可执行程序以及模块,如本公开实施例中的波束指示方法对应的程序指令/模块(例如,附图11所示的获取模块1101和执行模块1102,或者是附图12所示的指示模块1201)。处理器1300通过运行存储在存储器1400中的非瞬时软件程序、指令以及模块,从而执行服务器的各种功能应用以及数据处理,即实现上述方法实施例中的波束传输方法。
存储器1400可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储根据定位通信设备的使用所创建的数据等。此外,存储器1400可以包括高速随机存取存储器,还可以包括非瞬时存储器,例如至少一个磁盘存储器件、闪存器件、或其他非瞬时固态存储器件。可选地,存储器1400可选包括相对于处理器1300远程设置的存储器,这些远程存储器可以通过网络连接至定位通信设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
通信设备还可以包括:输入装置1500和输出装置1600。处理器1300、存储器1400、输入装置1500 和输出装置1600可以通过总线或者其他方式连接,图13中以通过总线连接为例。
输入装置1500可接收输入的数字或字符信息,以及产生与定位通信设备的用户设置以及功能控制有关的键信号输入,例如触摸屏、小键盘、鼠标、轨迹板、触摸板、指示杆、一个或者多个鼠标按钮、轨迹球、操纵杆等输入装置。输出装置1600可以包括显示设备、辅助照明装置(例如,LED)和触觉反馈装置(例如,振动电机)等。该显示设备可以包括但不限于,液晶显示器(LCD)、发光二极管(LED)显示器和等离子体显示器。在一些实施方式中,显示设备可以是触摸屏。
此处描述的系统和技术的各种实施方式可以在数字电子电路系统、集成电路系统、专用ASIC(专用集成电路)、计算机硬件、固件、软件、和/或它们的组合中实现。这些各种实施方式可以包括:实施在一个或者多个计算机程序中,该一个或者多个计算机程序可在包括至少一个可编程处理器的可编程系统上执行和/或解释,该可编程处理器可以是专用或者通用可编程处理器,可以从存储系统、至少一个输入装置、和至少一个输出装置接收数据和指令,并且将数据和指令传输至该存储系统、该至少一个输入装置、和该至少一个输出装置。
这些计算程序(也称作程序、软件、软件应用、或者代码)包括可编程处理器的机器指令,并且可以利用高级过程和/或面向对象的编程语言、和/或汇编/机器语言来实施这些计算程序。如本文使用的,术语“机器可读介质”和“计算机可读介质”指的是用于将机器指令和/或数据提供给可编程处理器的任何计算机程序产品、设备、和/或装置(例如,磁盘、光盘、存储器、可编程逻辑装置(PLD)),包括,接收作为机器可读信号的机器指令的机器可读介质。术语“机器可读信号”指的是用于将机器指令和/或数据提供给可编程处理器的任何信号。
为了提供与用户的交互,可以在计算机上实施此处描述的系统和技术,该计算机具有:用于向用户显示信息的显示装置(例如,CRT(阴极射线管)或者LCD(液晶显示器)监视器);以及键盘和指向装置(例如,鼠标或者轨迹球),用户可以通过该键盘和该指向装置来将输入提供给计算机。其它种类的装置还可以用于提供与用户的交互;例如,提供给用户的反馈可以是任何形式的传感反馈(例如,视觉反馈、听觉反馈、或者触觉反馈);并且可以用任何形式(包括声输入、语音输入或者、触觉输入)来接收来自用户的输入。
可以将此处描述的系统和技术实施在包括后台部件的计算系统(例如,作为数据服务器)、或者包括中间件部件的计算系统(例如,应用服务器)、或者包括前端部件的计算系统(例如,具有图形用户界面或者网络浏览器的用户计算机,用户可以通过该图形用户界面或者该网络浏览器来与此处描述的系统和技术的实施方式交互)、或者包括这种后台部件、中间件部件、或者前端部件的任何组合的计算系统中。可以通过任何形式或者介质的数字数据通信(例如,通信网络)来将系统的部件相互连接。通信网络的示例包括:局域网(LAN)、广域网(WAN)和互联网。
计算机系统可以包括客户端和服务器。客户端和服务器一般远离彼此并且通常通过通信网络进行交互。通过在相应的计算机上运行并且彼此具有客户端-服务器关系的计算机程序来产生客户端和服务器的关系。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (57)

  1. 一种波束指示方法,其特征在于,应用于用户设备UE,所述方法包括:
    获取第一指示信息,其中,所述第一指示信息用于指示目标通用波束;
    采用所述目标通用波束与网络设备进行至少两种通信传输,其中,所述通信传输包括信道和/或参考信号的传输。
  2. 根据权利要求1所述的波束指示方法,其特征在于,所述第一指示信息包括目标通用传输配置指示TCI状态索引或索引组合。
  3. 根据权利要求2所述的波束指示方法,其特征在于,所述目标通用TCI状态索引对应一个发送接收点TRP索引或一个控制资源集池索引。
  4. 根据权利要求2所述的波束指示方法,其特征在于,所述目标通用TCI状态索引对应一个或多个参考信号,各所述参考信号用于指示上行目标通用波束和下行目标通用波束中的至少一项。
  5. 根据权利要求1所述的波束指示方法,其特征在于,所述获取第一指示信息,包括:
    接收所述网络设备发送的媒体接入控制层的控制单元MAC CE信令,其中,所述MAC CE中携带有用于激活一个或多个TCI状态索引的第二指示信息,所述一个TCI状态索引对应一个TRP索引或一个控制资源集池索引;
    根据所述第二指示信息激活的所述一个或多个TCI状态索引,确定所述第一指示信息。
  6. 根据权利要求5所述的波束指示方法,其特征在于,所述第二指示信息针对一个TRP索引或一个控制资源集池索引激活的TCI状态索引数量为一个,所述根据所述第二指示信息激活的所述一个或多个TCI状态索引,确定所述第一指示信息,包括:
    将所述第二指示信息激活的一个TCI状态索引,确定为所述第一指示信息。
  7. 根据权利要求5所述的波束指示方法,其特征在于,所述第二指示信息针对一个TRP索引或一个控制资源集池索引激活的TCI状态索引数量为多个,所述根据所述第二指示信息激活的所述一个或多个TCI状态索引,确定所述第一指示信息,包括:
    接收所述网络设备发送的第一下行链路控制信息DCI信令,所述第一DCI信令携带有所述第一指示信息;
    其中,所述第一指示信息包括所述第二指示信息激活的多个TCI状态索引中的一个目标通用TCI状态索引或索引组合。
  8. 根据权利要求7所述的波束指示方法,其特征在于,所述方法,还包括:
    向所述网络设备发送第一混合自动重传请求HARQ反馈信息;
    其中,所述第一HARQ反馈信息,用于指示网络设备所述第一DCI信令是否接收成功;
    用于发送所述第一HARQ反馈信息的HARQ反馈资源,是所述第一DCI信令配置的,或者默认设置的。
  9. 根据权利要求8所述的波束指示方法,其特征在于,所述采用所述目标通用波束与网络设备进行至少两种通信传输,包括:
    采用所述目标通用波束,在PDCCH上接收所述网络设备发送的第二DCI信令;
    其中,所述第二DCI信令中携带有用于配置参考信号、随机接入信道PRACH、物理上行共享信道PUSCH、物理上行控制信道PUCCH和/或物理下行共享信道PDSCH传输资源的资源配置信息。
  10. 根据权利要求7所述的波束指示方法,其特征在于,所述第一DCI信令中还携带有用于对参考信号、PRACH、PUSCH、PUCCH和PDSCH中至少一个配置传输资源的资源配置信息。
  11. 根据权利要求10所述的波束指示方法,其特征在于,所述方法,还包括:
    向所述网络设备发送第二HARQ反馈信息;
    其中,所述第二HARQ反馈信息,包括:
    第一反馈信息,用于反馈所述第一DCI信令是否接收成功;
    和/或,
    第二反馈信息,用于反馈所述第一DCI信令配置的PDSCH和/或下行参考信号是否接收成功。
  12. 根据权利要求11所述的波束指示方法,其特征在于,
    用于发送所述第一反馈信息和/或所述第二反馈信息的HARQ反馈资源,是所述第一DCI信令配置的,或者默认设置。
  13. 根据权利要求12所述的波束指示方法,其特征在于,
    用于发送所述第一反馈信息和/或所述第二反馈信息的HARQ反馈资源,是相同的HARQ反馈资源或不同的HARQ反馈资源。
  14. 根据权利要求13所述的波束指示方法,其特征在于,
    所述第一反馈信息和/或所述第二反馈信息对应同一个HARQ反馈资源中的相同或不同的比特位。
  15. 根据权利要求8所述的波束指示方法,其特征在于,
    发送所述第一HARQ反馈信息的发送波束,是所述第一DCI信令中所述目标通用TCI状态索引或索引组合对应的目标通用波束对应的发送波束,或者,是接收所述第一DCI信令的接收波束对应的发送波束。
  16. 根据权利要求11所述的波束指示方法,其特征在于,
    发送所述第二HARQ反馈信息的发送波束,是所述第一DCI信令中所述目标通用TCI状态索引或索引组合对应的目标通用波束对应的发送波束,或者,是接收所述第一DCI信令的接收波束对应的发送波束。
  17. 根据权利要求10所述的波束指示方法,其特征在于,所述方法,还包括:
    根据所述第一DCI信令携带的所述资源配置信息,采用配置的所述传输资源与所述网络设备进行通信传输。
  18. 根据权利要求17所述的波束指示方法,其特征在于,
    在所述通信传输与所述第一DCI信令之间的时间间隔小于阈值的情况下,所述通信传输采用与所述第一DCI信令相同的波束;
    在所述通信传输与所述第一DCI信令之间的时间间隔大于或等于所述阈值的情况下,所述通信传输采用所述第一DCI信令中所述目标通用TCI状态索引或索引组合对应的目标通用波束。
  19. 根据权利要求18所述的波束指示方法,其特征在于,所述阈值由所述网络设备通知;
    所述方法还包括:
    向所述网络设备发送参考时间,所述参考时间用于所述网络设备确定所述阈值;
    其中,所述参考时间包括所述第一DCI信令解码用时及其对应的HARQ反馈用时,以及波束切换用时;或者,所述参考时间包括所述第一DCI信令对应的HARQ反馈用时,以及波束切换用时。
  20. 根据权利要求18所述的波束指示方法,其特征在于,所述阈值默认设置于所述UE中。
  21. 根据权利要求7所示的波束指示方法,其特征在于,所述UE采用一个或多个接收波束接收所述第一DCI信令的一次或多次传输。
  22. 根据权利要求7所示的波束指示方法,其特征在于,
    所述第一DCI信令,为用于下行资源调度的DCI信令,或为用于上行资源调度的DCI信令,或为用于上下行资源调度的DCI信令或为仅用于上下行目标通用波束指示的DCI信令。
  23. 根据权利要求2所述的波束指示方法,所述目标通用TCI状态索引包括下行目标通用TCI状态索引、上行目标通用TCI状态索引和上下行目标通用TCI状态索引中的至少一项。
  24. 根据权利要求1-23任一项所述的波束指示方法,其特征在于,所述方法,还包括:
    接收网络设备发送的第三指示信息,所述第三指示信息用于指示所述UE采用所述目标通用波束或采用专用波束进行所述至少两种通信传输。
  25. 根据权利要求1-24任一项所述的波束指示方法,其特征在于,所述第一指示信息还包括所述至少两种通信传输的指示信息。
  26. 根据权利要求1-25任一项所述的波束指示方法,其特征在于,所述信道包括以下至少一种或多种的组合:
    物理下行控制信道PDCCH;
    物理下行共享信道PDSCH;
    物理上行控制信道PUCCH;
    物理上行共享信道PUSCH;
    物理广播信道PBCH;
    随机接入信道PRACH。
  27. 根据权利要求1-26任一项所述的波束指示方法,其特征在于,所述参考信号包括以下至少一种或多种的组合:
    信道状态信息参考信号CSI-RS;
    同步信号块SSB;
    解调参考信号DMRS;
    定位参考信号PRS;
    追踪参考信号TRS;
    探测参考信号SRS。
  28. 一种波束指示方法,其特征在于,应用于网络设备,所述方法包括:
    向用户设备UE发送第一指示信息,所述第一指示信息用于指示目标通用波束,使所述UE采用所述目标通用波束与所述网络设备进行至少两种通信传输,其中,所述通信传输包括信道和/或参考信号的传输。
  29. 根据权利要求28所述的波束指示方法,其特征在于,所述第一指示信息包括目标通用传输配置指示TCI状态索引或索引组合。
  30. 根据权利要求29所述的波束指示方法,其特征在于,所述目标通用TCI状态索引对应一个发送接收点TRP索引或一个控制资源集池索引。
  31. 根据权利要求29所述的波束指示方法,其特征在于,所述目标通用TCI状态索引对应一个或多个参考信号,各所述参考信号用于指示上行目标通用波束和下行目标通用波束中的至少一项。
  32. 根据权利要求28所述的波束指示方法,其特征在于,所述向用户设备UE发送第一指示信息,包括:
    向UE发送媒体接入控制层的控制单元MAC CE信令,其中,所述MAC CE中携带有用于激活一个或多个TCI状态索引的第二指示信息,所述一个TCI状态索引对应一个TRP索引或一个控制资源集池索引;
    其中,所述第二指示信息激活的所述一个或多个TCI状态索引,用于确定所述第一指示信息。
  33. 根据权利要求32所述的波束指示方法,其特征在于,所述第二指示信息针对一个TRP索引或一个控制资源集池索引激活的TCI状态索引数量为一个;
    其中,所述第一指示信息,表征所述第二指示信息激活的一个TCI状态索引。
  34. 根据权利要求32所述的波束指示方法,其特征在于,所述第二指示信息针对一个TRP索引或一个控制资源集池索引激活的TCI索引数量为多个;所述向用户设备UE发送第一指示信息,还包括:
    向UE发送第一下行链路控制信息DCI信令,所述第一DCI信令携带有所述第一指示信息;
    其中,所述第一指示信息包括所述第二指示信息激活的多个TCI状态索引中的一个目标通用TCI状态索引或索引组合。
  35. 根据权利要求32所述的波束指示方法,其特征在于,所述方法,还包括:
    接收所述UE发送的第一混合自动重传请求HARQ反馈信息;
    其中,所述第一HARQ反馈信息,用于指示网络设备所述第一DCI信令是否接收成功;
    用于发送所述第一HARQ反馈信息的HARQ反馈资源,是所述第一DCI信令配置的,或者默认设置的。
  36. 根据权利要求35所述的波束指示方法,其特征在于,所述方法,包括:
    在PDCCH上向所述UE发送第二DCI信令,以使所述UE采用所述目标通用波束接收所述第二 DCI信令;
    其中,所述第二DCI信令中携带有用于配置参考信号、随机接入信道PRACH、物理上行共享信道PUSCH、物理上行控制信道PUCCH和/或物理下行共享信道PDSCH传输资源的资源配置信息。
  37. 根据权利要求35所述的波束指示方法,其特征在于,所述第一DCI信令中还携带有用于对参考信号、PRACH、PUSCH、PUCCH和PDSCH中至少一个配置传输资源的资源配置信息。
  38. 根据权利要求37所述的波束指示方法,其特征在于,所述方法,还包括:
    接收所述UE发送的第二HARQ反馈信息;
    其中,所述第二HARQ反馈信息,包括:
    第一反馈信息,用于反馈所述第一DCI信令是否接收成功;
    和/或,
    第二反馈信息,用于反馈所述第一DCI信令配置的PDSCH和/或下行参考信号是否接收成功。
  39. 根据权利要求38所述的波束指示方法,其特征在于,
    用于发送所述第一反馈信息和/或所述第二反馈信息的HARQ反馈资源,是所述第一DCI信令配置的,或者默认设置。
  40. 根据权利要求39所述的波束指示方法,其特征在于,
    用于发送所述第一反馈信息和/或所述第二反馈信息的HARQ反馈资源,是相同的HARQ反馈资源或不同的HARQ反馈资源。
  41. 根据权利要求40所述的波束指示方法,其特征在于,
    所述第一反馈信息和/或所述第二反馈信息对应同一个HARQ反馈资源中的相同或不同的比特位。
  42. 根据权利要求35所述的波束指示方法,其特征在于,
    发送所述第一HARQ反馈信息的发送波束,是所述第一DCI信令中所述目标通用TCI状态索引或索引组合对应的目标通用波束对应的发送波束,或者,是接收所述第一DCI信令的接收波束对应的发送波束。
  43. 根据权利要求38所述的波束指示方法,其特征在于,
    发送所述第二HARQ反馈信息的发送波束,是所述第一DCI信令中所述目标通用TCI状态索引或索引组合对应的目标通用波束对应的发送波束,或者,是接收所述第一DCI信令的接收波束对应的发送波束。
  44. 根据权利要求37所述的波束指示方法,其特征在于,所述方法,还包括:
    根据所述第一DCI信令携带的所述资源配置信息,与所述UE进行通信传输。
  45. 根据权利要求42所述的波束指示方法,其特征在于,
    指示所述通信传输与所述第一DCI信令之间的时间间隔小于阈值,表征指示所述UE采用与所述第一DCI信令相同的波束进行所述通信传输;
    指示所述通信传输与所述第一DCI信令之间的时间间隔大于或等于所述阈值,表征指示所述UE采用所述第一DCI信令中所述目标通用TCI状态索引或索引组合对应的目标通用波束进行所述通信传输。
  46. 根据权利要求45所述的波束指示方法,其特征在于,所述方法还包括:
    接收所述UE发送的参考时间,向所述UE发送所述阈值指示信息;
    其中,所述参考时间包括所述UE进行所述第一DCI信令解码用时及其对应的HARQ反馈用时,以及波束切换用时;或者,所述参考时间包括所述UE进行所述第一DCI信令对应的HARQ反馈用时,以及波束切换用时。
  47. 根据权利要求34所示的波束指示方法,其特征在于,一次或多次发送所述第一DCI信令,并指示所述UE采用一个或多个接收波束接收所述第一DCI信令。
  48. 根据权利要求34所示的波束指示方法,其特征在于,
    所述第一DCI信令,为用于下行资源调度的DCI信令,或为用于上行资源调度的DCI信令,或为用于上下行资源调度的DCI信令或为仅用于上下行目标通用波束指示的DCI信令。
  49. 根据权利要求29所述的波束指示方法,其特征在于,所述目标通用TCI状态索引包括下行目标通用TCI状态索引、上行目标通用TCI状态索引和上下行目标通用TCI状态索引中的至少一项。
  50. 根据权利要求28-49任一项所述的波束指示方法,其特征在于,所述方法,还包括:
    向所述UE发送第三指示信息,所述第三指示信息用于指示所述UE采用所述目标通用波束或采用专用波束进行所述至少两种通信传输。
  51. 根据权利要求28-50任一项所述的波束指示方法,其特征在于,所述第一指示信息还包括所述至少两种通信传输的指示信息。
  52. 根据权利要求28-51任一项所述的波束指示方法,其特征在于,所述信道包括以下至少一种或多种的组合:
    物理下行控制信道PDCCH;
    物理下行共享信道PDSCH;
    物理上行控制信道PUCCH;
    物理上行共享信道PUSCH;
    物理广播信道PBCH;
    随机接入信道PRACH。
  53. 根据权利要求28-52任一项所述的波束指示方法,其特征在于,所述参考信号包括以下至少一种或多种的组合:
    信道状态信息参考信号CSI-RS;
    同步信号块SSB;
    解调参考信号DMRS;
    定位参考信号PRS;
    追踪参考信号TRS;
    探测参考信号SRS。
  54. 一种波束指示装置,其特征在于,应用于用户设备UE,所述装置包括:
    获取模块,被配置为获取第一指示信息,其中,所述第一指示信息用于指示目标通用波束;
    执行模块,被配置为采用所述目标通用波束与网络设备进行至少两种通信传输,其中,所述通信传输包括信道和/或参考信号的传输。
  55. 一种波束指示装置,其特征在于,应用于网络设备,所述装置包括:
    指示模块,被配置为向用户设备UE发送第一指示信息,所述第一指示信息用于指示目标通用波束,使所述UE采用所述目标通用波束与所述网络设备进行至少两种通信传输,其中,所述通信传输包括信道和/或参考信号的传输。
  56. 一种通信设备,其中,包括:收发器;存储器;处理器,分别与所述收发器及所述存储器连接,配置为通过执行所述存储器上的计算机可执行指令,控制所述收发器的无线信号收发,并能够实现权利要求1至27或28至53任一项所述的方法。
  57. 一种计算机存储介质,其中,所述计算机存储介质存储有计算机可执行指令;所述计算机可执行指令被处理器执行后,能够实现权利要求1至27或28至53任一项所述的方法。
PCT/CN2020/130583 2020-11-20 2020-11-20 波束指示方法、装置及通信设备 WO2022104735A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2023530724A JP2023550136A (ja) 2020-11-20 2020-11-20 ビーム指示方法、装置及び通信機器
EP20962026.9A EP4250797A4 (en) 2020-11-20 2020-11-20 BEAM INDICATION METHOD AND APPARATUS, AND COMMUNICATION DEVICE
PCT/CN2020/130583 WO2022104735A1 (zh) 2020-11-20 2020-11-20 波束指示方法、装置及通信设备
BR112023009616A BR112023009616A2 (pt) 2020-11-20 2020-11-20 Método e aparelho de indicação de feixe, dispositivo de comunicação, e, meio de armazenamento de computador
KR1020237019894A KR20230104715A (ko) 2020-11-20 2020-11-20 빔 지시 방법, 장치 및 통신 기기
CN202080003399.2A CN114982266A (zh) 2020-11-20 2020-11-20 波束指示方法、装置及通信设备
US18/253,507 US20240015719A1 (en) 2020-11-20 2020-11-20 Beam indication method and apparatus, and communication device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/130583 WO2022104735A1 (zh) 2020-11-20 2020-11-20 波束指示方法、装置及通信设备

Publications (1)

Publication Number Publication Date
WO2022104735A1 true WO2022104735A1 (zh) 2022-05-27

Family

ID=81708266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/130583 WO2022104735A1 (zh) 2020-11-20 2020-11-20 波束指示方法、装置及通信设备

Country Status (7)

Country Link
US (1) US20240015719A1 (zh)
EP (1) EP4250797A4 (zh)
JP (1) JP2023550136A (zh)
KR (1) KR20230104715A (zh)
CN (1) CN114982266A (zh)
BR (1) BR112023009616A2 (zh)
WO (1) WO2022104735A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115550947B (zh) * 2022-11-25 2023-08-18 北京九天微星科技发展有限公司 一种上行探测参考信号传输方法及设备

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018081977A1 (zh) * 2016-11-03 2018-05-11 广东欧珀移动通信有限公司 上行传输方法、终端设备和网络设备
WO2018120099A1 (zh) * 2016-12-30 2018-07-05 广东欧珀移动通信有限公司 传输信息的方法、网络设备和终端设备
CN108401295A (zh) * 2017-02-05 2018-08-14 维沃移动通信有限公司 一种波束恢复处理方法、网络侧设备及移动终端
CN109089322A (zh) * 2017-06-14 2018-12-25 维沃移动通信有限公司 一种上行多波束传输方法、终端及网络设备
CN109392110A (zh) * 2017-08-08 2019-02-26 维沃移动通信有限公司 一种指示上行传输的方法及装置
CN110035518A (zh) * 2018-01-12 2019-07-19 华为技术有限公司 一种通信方法及装置
CN110073606A (zh) * 2016-12-13 2019-07-30 Oppo广东移动通信有限公司 传输信号的方法、终端设备和网络设备
US20190326976A1 (en) * 2017-01-05 2019-10-24 Huawei Technologies Co., Ltd. Communication Method, Network Device, and Terminal Device
CN111385824A (zh) * 2018-12-29 2020-07-07 成都华为技术有限公司 一种信息传输方法、网络设备、终端设备及存储介质
CN112788754A (zh) * 2019-11-07 2021-05-11 维沃移动通信有限公司 信息传输方法及设备

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018081977A1 (zh) * 2016-11-03 2018-05-11 广东欧珀移动通信有限公司 上行传输方法、终端设备和网络设备
CN110073606A (zh) * 2016-12-13 2019-07-30 Oppo广东移动通信有限公司 传输信号的方法、终端设备和网络设备
WO2018120099A1 (zh) * 2016-12-30 2018-07-05 广东欧珀移动通信有限公司 传输信息的方法、网络设备和终端设备
US20190326976A1 (en) * 2017-01-05 2019-10-24 Huawei Technologies Co., Ltd. Communication Method, Network Device, and Terminal Device
CN108401295A (zh) * 2017-02-05 2018-08-14 维沃移动通信有限公司 一种波束恢复处理方法、网络侧设备及移动终端
CN109089322A (zh) * 2017-06-14 2018-12-25 维沃移动通信有限公司 一种上行多波束传输方法、终端及网络设备
CN109392110A (zh) * 2017-08-08 2019-02-26 维沃移动通信有限公司 一种指示上行传输的方法及装置
CN110035518A (zh) * 2018-01-12 2019-07-19 华为技术有限公司 一种通信方法及装置
CN111385824A (zh) * 2018-12-29 2020-07-07 成都华为技术有限公司 一种信息传输方法、网络设备、终端设备及存储介质
CN112788754A (zh) * 2019-11-07 2021-05-11 维沃移动通信有限公司 信息传输方法及设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4250797A4 *

Also Published As

Publication number Publication date
US20240015719A1 (en) 2024-01-11
JP2023550136A (ja) 2023-11-30
BR112023009616A2 (pt) 2023-12-12
EP4250797A4 (en) 2024-01-10
EP4250797A1 (en) 2023-09-27
CN114982266A (zh) 2022-08-30
KR20230104715A (ko) 2023-07-10

Similar Documents

Publication Publication Date Title
US11337235B2 (en) Signal transmission method and communications apparatus
CN109391948B (zh) 一种波束指示的处理方法、移动终端及网络侧设备
CN110933749B (zh) 指示波束的方法和装置
EP3823188A1 (en) Search space parameter determination method and terminal device
WO2020135071A1 (zh) 一种信息传输方法、网络设备、终端设备及存储介质
EP4224733A1 (en) Beam processing method and apparatus, and related device
EP4017176A1 (en) Method for indicating antenna panel state, and device
WO2022104797A1 (zh) 一种传输方法及装置
WO2022068907A1 (zh) 波束信息指示、获取方法、装置、终端及网络侧设备
WO2022178779A1 (zh) 波束指示方法及装置
WO2022104735A1 (zh) 波束指示方法、装置及通信设备
CN115866107A (zh) 传输处理方法、装置、终端、网络侧设备及存储介质
US20230247467A1 (en) Method and apparatus for determining channel state information, method and apparatus for determining reporting setting, and related device
WO2023274369A1 (zh) 传输方法、装置、通信设备及存储介质
JP6880237B2 (ja) メッセージ復号方法、送信端末機器および受信端末機器
WO2022082653A1 (zh) 一种数据传输方法及装置
WO2021013138A1 (zh) 无线网络通信方法和通信装置
KR102599578B1 (ko) 신호 전송 방법 및 장치, 네트워크 기기 및 단말 기기
RU2815922C1 (ru) Способ и устройство для указания луча и устройство связи
WO2022109934A1 (zh) 一种信号传输方法及装置
CN113170468B (zh) 调度请求资源的确定方法、装置及通信设备
WO2023011481A1 (zh) 波束信息确定方法、装置、通信设备及存储介质
EP4040860A1 (en) Energy saving information transmission method, and terminal and network side device
CN116248238A (zh) 检测及配置参考信号的方法、装置、终端及网络侧设备
EP4197110A1 (en) Adaptive configuration for monitoring a downlink control channel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20962026

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18253507

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2023530724

Country of ref document: JP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023009616

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20237019894

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020962026

Country of ref document: EP

Effective date: 20230620

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112023009616

Country of ref document: BR

Free format text: APRESENTE NOVAS FOLHAS DE (REIVINDICACOES) ADAPTADAS AO ART. 39 DA INSTRUCAO NORMATIVA/INPI/NO 31/2013, UMA VEZ QUE O CONTEUDO ENVIADO NA PETICAO NO 870230060831 DE 12/07/2023 ENCONTRA-SE FORA DA NORMA NO QUE SE REFERE A NUMERACAO DAS PAGINAS. A EXIGENCIA DEVE SER RESPONDIDA EM ATE 60 (SESSENTA) DIAS DE SUA PUBLICACAO E DEVE SER REALIZADA POR MEIO DA PETICAO GRU CODIGO DE SERVICO 207.

ENP Entry into the national phase

Ref document number: 112023009616

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230518