WO2022082653A1 - 一种数据传输方法及装置 - Google Patents

一种数据传输方法及装置 Download PDF

Info

Publication number
WO2022082653A1
WO2022082653A1 PCT/CN2020/122974 CN2020122974W WO2022082653A1 WO 2022082653 A1 WO2022082653 A1 WO 2022082653A1 CN 2020122974 W CN2020122974 W CN 2020122974W WO 2022082653 A1 WO2022082653 A1 WO 2022082653A1
Authority
WO
WIPO (PCT)
Prior art keywords
trp
mapping scheme
base station
working mode
indication information
Prior art date
Application number
PCT/CN2020/122974
Other languages
English (en)
French (fr)
Inventor
刘洋
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to US18/032,968 priority Critical patent/US20230397015A1/en
Priority to PCT/CN2020/122974 priority patent/WO2022082653A1/zh
Priority to CN202080002902.2A priority patent/CN114731648A/zh
Priority to EP20958235.2A priority patent/EP4236523A4/en
Publication of WO2022082653A1 publication Critical patent/WO2022082653A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals

Definitions

  • the present invention relates to the field of mobile communication, in particular to a data transmission method and device.
  • the embodiment of the first aspect of the present invention proposes a data transmission method, which is applied to user equipment (UE, User Equipment), including: acquiring control signaling sent by a base station; wherein, the control signaling carries a transmission access point Indication information of a TRP working mode and/or a beam mapping scheme, where the TRP working mode is single-TRP-based transmission or multi-TRP-based transmission, and the beam mapping scheme includes multiple uplink coordinated transmission beams and times corresponding to multiple TRPs The mapping pattern between units and/or the information of the time unit; send data to the base station in the TRP working mode and/or beam mapping scheme.
  • UE User Equipment
  • the obtaining the control signaling sent by the base station includes: receiving the first group of downlink control information DCI sent by the base station on a physical downlink control channel (PDCCH, Physical Downlink Control Channel); wherein, the first group of downlink control information DCI;
  • a group of DCI carries the indication information of the TRP working mode.
  • the method further includes: receiving the first group of downlink control information corresponding to the UE sent by the base station on the PDCCH.
  • a specific DCI Decode the first specific DCI according to the decoding strategy corresponding to the TRP working mode in the first group of DCIs to obtain the indication information of the beam mapping scheme.
  • the method before the sending data to the base station in the TRP working mode and/or the beam mapping scheme, the method further includes: configuring a beam mapping scheme corresponding to the indication information according to high-level signaling sent by the base station; Alternatively, a beam mapping scheme corresponding to the indication information is predefined for the UE.
  • the acquiring the control signaling sent by the base station includes: receiving a second group of DCI sent by the base station on the PDCCH; wherein the second group of DCI carries indication information of the beam mapping scheme ; Determine the corresponding TRP working mode according to the indication information of the beam mapping scheme carried by the second group of DCIs.
  • the acquiring the control signaling sent by the base station includes: receiving a second specific message for the UE sent by the base station on the PDCCH; wherein the second specific message carries an indication of the beam mapping scheme information and/or indication information of the TRP working mode.
  • the second specific DCI carries the indication information of the TRP working mode, before the sending data to the base station in the TRP working mode and/or the beam mapping scheme, further includes: according to the base station The sent high-level signaling configures the beam mapping scheme corresponding to the indication information; or predefines the beam mapping scheme corresponding to the indication information for the UE.
  • the indication information of the beam mapping scheme carried in the control signaling represents a combination of a mapping pattern and a time unit selected by the base station, or indicates that the base station has not selected a beam mapping scheme.
  • the indication information of the beam mapping scheme carried in the control signaling represents one of the mapping pattern and the time unit; the TRP working mode and/or the beam mapping scheme to the base station Before sending the data, the method further includes: configuring the other one of the mapping pattern and the time unit according to the high-layer signaling sent by the base station.
  • the method before the sending the data to the base station in the TRP working mode and/or the beam mapping scheme, the method further includes: using a decoding strategy corresponding to the TRP working mode, to send the data sent by the base station to the UE for the UE.
  • Specific DCI decoding to obtain data scheduling information used by a physical uplink shared channel (PUSCH, physical uplink shared channel); wherein the PUSCH is used to send the data to the base station, and the data scheduling information includes a codebook-based Transmitted data transmission information or data transmission information based on non-codebook transmission.
  • PUSCH physical uplink shared channel
  • the embodiment of the second aspect of the present invention provides a data transmission method, which is applied to a base station and includes: sending control signaling to a user equipment UE; wherein, the control signaling carries a TRP working mode of a transmission access point and/or Indication information of a beam mapping scheme, the TRP working mode is transmission based on a single TRP or transmission based on multiple TRPs, and the beam mapping scheme includes a mapping pattern between multiple uplink cooperative transmission beams corresponding to multiple TRPs and time units and/or the information of the time unit; receive the data sent by the UE in the TRP working mode and/or the beam mapping scheme.
  • the sending the control signaling to the user equipment UE comprises: sending the first group downlink control information DCI to the UE on the physical downlink control channel PDCCH; wherein the first group DCI carries the The indication information of the TRP working mode.
  • the method further includes: sending a first specific DCI for the UE to the UE; wherein the first specific DCI is used for adopting the first specific DCI.
  • the decoding strategy corresponding to the TRP working mode in the group DCI is decoded, and carries the indication information of the beam mapping scheme.
  • the receiving the data sent by the UE in the TRP working mode and/or the beam mapping scheme further comprising: sending, to the UE, high-level signaling for configuring the beam mapping scheme corresponding to the indication information .
  • the sending the control signaling to the user equipment UE includes: sending a second group of DCI to the UE on the PDCCH; wherein, the second group of DCI carries indication information of the beam mapping scheme , the indication information of the beam mapping scheme has a corresponding relationship with the TRP working mode.
  • the sending the control signaling to the user equipment UE includes: sending a second specific DCI for the UE to the UE on the PDCCH; wherein the second specific DCI carries the beam The indication information of the mapping scheme and/or the indication information of the TRP working mode.
  • the second specific DCI carries the indication information of the TRP working mode, before the receiving the data sent by the UE in the TRP working mode and/or the beam mapping scheme, further comprising: sending the data to the TRP working mode and/or the beam mapping scheme.
  • the UE sends high-layer signaling for configuring the beam mapping scheme corresponding to the indication information.
  • the indication information of the beam mapping scheme carried in the control signaling represents a combination of a mapping pattern and a time unit selected by the base station, or indicates that the base station has not selected a beam mapping scheme.
  • the indication information of the beam mapping scheme carried in the control signaling represents one of the mapping pattern and the time unit; the receiving the UE uses the TRP working mode and/or the beam mapping scheme.
  • the method further includes: sending the high-layer signaling to the UE to configure the other one of the mapping pattern and the time unit.
  • the sending the control signaling to the user equipment UE further includes: performing scheduling according to channel state CSI measurements to determine at least one of the TRP working mode and the beam mapping scheme; and/or, beam managing to determine at least one of the TRP operating mode and the beam mapping scheme.
  • the embodiment of the third aspect of the present invention provides a data transmission apparatus, which is applied to a UE, and the apparatus includes:
  • the acquisition module is configured to acquire the control signaling sent by the base station; wherein, the control signaling carries the indication information of the TRP working mode and/or beam mapping scheme of the transmission access point, and the TRP working mode is based on a single TRP transmission or transmission based on multiple TRPs, the beam mapping scheme includes a mapping pattern and/or information of the time unit between multiple uplink cooperative transmission beams corresponding to multiple TRPs and time units; The mapping pattern between the uplink cooperative transmission beam and the time unit and/or the information of the time unit
  • a transmission module configured to send data to the base station in the TRP working mode and/or the beam mapping scheme.
  • the obtaining module includes: a first receiving unit configured to receive a first group of downlink control information DCI sent by the base station on a physical downlink control channel PDCCH; wherein the first group of DCI It carries the indication information of the TRP working mode.
  • the obtaining module further includes: a second receiving unit configured to receive the first specific DCI for the UE sent by the base station on the PDCCH; a decoding unit configured to The decoding strategy corresponding to the TRP working mode in the first group of DCIs decodes the first specific DCI to obtain the indication information of the beam mapping scheme.
  • the apparatus further includes a processing module configured to: configure a beam mapping scheme corresponding to the indication information according to high-level signaling sent by the base station; or, predefine the indication information for the UE Corresponding beam mapping scheme.
  • a processing module configured to: configure a beam mapping scheme corresponding to the indication information according to high-level signaling sent by the base station; or, predefine the indication information for the UE Corresponding beam mapping scheme.
  • the obtaining module includes: a third receiving unit configured to receive a second group of DCI sent by the base station on the PDCCH; wherein the second group of DCI carries the beam mapping scheme
  • the determination unit is configured to determine the corresponding TRP working mode according to the indication information of the beam mapping scheme carried by the second group of DCIs.
  • the acquiring module is configured as: a fourth receiving unit, configured to receive a second specific DCI for the UE sent by the base station on the PDCCH; wherein the second specific DCI carries the beam The indication information of the mapping scheme and/or the indication information of the TRP working mode.
  • the second specific DCI carries indication information of the TRP working mode
  • the apparatus further includes a processing module configured to: configure the indication information corresponding to the high-level signaling sent by the base station. or the beam mapping scheme corresponding to the indication information is predefined for the UE.
  • the indication information of the beam mapping scheme carried in the control signaling represents a combination of a mapping pattern and a time unit selected by the base station, or indicates that the base station has not selected a beam mapping scheme.
  • the indication information of the beam mapping scheme carried in the control signaling represents one of the mapping pattern and the time unit; the apparatus further includes: a configuration module, configured to send according to the base station high-layer signaling, configure the other of the mapping pattern and the time unit.
  • the apparatus further includes a decoding module configured to: use a decoding strategy corresponding to the TRP working mode to decode the specific DCI sent by the base station for the UE to obtain the physical uplink shared channel PUSCH using The data scheduling information; wherein, the data scheduling information includes data transmission information based on codebook transmission or data transmission information based on non-codebook transmission.
  • a decoding module configured to: use a decoding strategy corresponding to the TRP working mode to decode the specific DCI sent by the base station for the UE to obtain the physical uplink shared channel PUSCH using The data scheduling information; wherein, the data scheduling information includes data transmission information based on codebook transmission or data transmission information based on non-codebook transmission.
  • the embodiment of the fourth aspect of the present invention provides a data transmission apparatus, which is applied to a base station.
  • the apparatus includes: a sending module, configured to send control signaling to a user equipment UE; wherein, the control signaling carries transmission Indication information of the access point TRP working mode and/or beam mapping scheme, the TRP working mode is transmission based on a single TRP or transmission based on multiple TRPs, and the beam mapping scheme includes multiple uplink coordinated transmissions corresponding to multiple TRPs the mapping pattern between the beam and the time unit and/or the information of the time unit; the mapping pattern and/or the information of the time unit between multiple uplink cooperative transmission beams corresponding to multiple TRPs and the time unit; the receiving module, is configured to receive data sent by the UE in the TRP operating mode and/or beam mapping scheme.
  • the sending module includes: a first sending unit configured to send the first group downlink control information DCI to the UE on the physical downlink control channel PDCCH; wherein the first group DCI carries There is indication information of the TRP working mode.
  • the sending module further includes: a second sending unit configured to send a first specific DCI for the UE to the UE; wherein the first specific DCI is used for adopting the first specific DCI
  • the decoding strategy decoding corresponding to the TRP working mode in a group of DCIs carries the indication information of the beam mapping scheme.
  • the apparatus further includes: a first configuration module configured to send, to the UE, high-layer signaling for configuring a beam mapping scheme corresponding to the indication information.
  • a first configuration module configured to send, to the UE, high-layer signaling for configuring a beam mapping scheme corresponding to the indication information.
  • the sending module includes: a third sending unit configured to send a second group DCI to the UE on the PDCCH; wherein the second group DCI carries the beam mapping
  • the indication information of the scheme, the indication information of the beam mapping scheme has a corresponding relationship with the TRP working mode.
  • the sending module includes: a fourth sending unit configured to send a second specific DCI for the UE to the UE on the PDCCH; wherein the second specific DCI carries a The indication information of the beam mapping scheme and/or the indication information of the TRP working mode.
  • the second specific DCI carries indication information of the TRP working mode
  • the apparatus further includes: a first configuration module configured to send a beam for configuring the indication information corresponding to the UE to the UE High-level signaling of the mapping scheme.
  • the indication information of the beam mapping scheme carried in the control signaling represents a combination of a mapping pattern and a time unit selected by the base station, or indicates that the base station has not selected a beam mapping scheme.
  • the indication information of the beam mapping scheme carried in the control signaling represents one of the mapping pattern and the time unit; the apparatus further includes: a second configuration module configured to send the information to the The UE sends the higher layer signaling to configure the other of the mapping pattern and the time unit.
  • the apparatus further includes a scheduling module configured to: perform scheduling according to channel state CSI measurements to determine at least one of the TRP working mode and the beam mapping scheme; and/or beam management to determine at least one of the TRP working mode and the beam mapping scheme.
  • a scheduling module configured to: perform scheduling according to channel state CSI measurements to determine at least one of the TRP working mode and the beam mapping scheme; and/or beam management to determine at least one of the TRP working mode and the beam mapping scheme.
  • An embodiment of a fifth aspect of the present invention provides a communication device, including a processor, a transceiver, a memory, and a computer program stored on the memory, where the processor runs the computer program to implement the implementation of the first aspect
  • the data transfer method proposed in this example is not limited to a Wi-Fi connection, a Wi-Fi connection, a Wi-Fi connection, a Wi-Fi connection, a Wi-Fi connection, a Wi-Fi, a Wi-Fi, a Wi-Fi Protected Access (WPA) reader, or a processor, a transceiver, a memory, and a computer program stored on the memory, where the processor runs the computer program to implement the implementation of the first aspect
  • the data transfer method proposed in this example is not limited to a Wi-Fi connection, a Wi-Fi connection, a Wi-Fi connection, a Wi-Fi connection, a Wi-Fi connection, a Wi-Fi connection, a Wi-Fi connection, a Wi-Fi connection, a Wi-Fi connection, a
  • Embodiments of the sixth aspect of the present invention provide a communication device, including a processor, a transceiver, a memory, and a computer program stored on the memory, where the processor runs the computer program to implement the implementation of the second aspect
  • the data transfer method proposed in this example is a communication device, including a processor, a transceiver, a memory, and a computer program stored on the memory, where the processor runs the computer program to implement the implementation of the second aspect The data transfer method proposed in this example.
  • Embodiments of the seventh aspect of the present invention provide a processor-readable storage medium, where a computer program is stored in the processor-readable storage medium, and the computer program is used to cause the processor to execute the storage medium provided by the embodiment of the first aspect.
  • the base station sends control signaling to the UE, since the control signaling carries the indication information of the TRP working mode and/or the beam mapping scheme, the UE is scheduled by the base station.
  • the corresponding TRP working mode and/or beam mapping scheme is used to send data on the uplink channel.
  • the base station receives the data sent by the UE under the TRP working mode and/or beam mapping scheme, which can be applied to PUSCH and PUCCH, etc. It realizes the switching of single-TRP transmission or multi-TRP-based transmission on these channels, or the scheduling of beam mapping scheme, which improves the data transmission quality.
  • FIG. 1 is a schematic flowchart of a data transmission method according to an embodiment of the present invention.
  • FIG. 2 is a schematic flowchart of another data transmission method provided by an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of another data transmission method provided by an embodiment of the present invention.
  • FIG. 4 is a schematic flowchart of another data transmission method provided by an embodiment of the present invention.
  • FIG. 5 is a schematic flowchart of another data transmission method provided by an embodiment of the present invention.
  • FIG. 6 is a flowchart of a data transmission method provided by an embodiment of the present invention.
  • FIG. 7 is a schematic flowchart of another data transmission method provided by an embodiment of the present invention.
  • FIG. 8 is a schematic flowchart of another data transmission method provided by an embodiment of the present invention.
  • FIG. 9 is a schematic flowchart of another data transmission method provided by an embodiment of the present invention.
  • FIG. 10 is a schematic flowchart of another data transmission method provided by an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of a data transmission device proposed by the present invention.
  • FIG. 12 is a schematic structural diagram of a data transmission device proposed by the present invention.
  • FIG. 13 is a schematic structural diagram of a data transmission device proposed by the present invention.
  • FIG. 14 is a schematic structural diagram of a data transmission device proposed by the present invention.
  • FIG. 15 is a schematic structural diagram of a data transmission device proposed by the present invention.
  • 16 is a schematic structural diagram of a data transmission device proposed by the present invention.
  • FIG. 17 is a schematic structural diagram of another data transmission device proposed by the present invention.
  • FIG. 19 is a schematic structural diagram of another data transmission device proposed by the present invention.
  • 21 is a schematic structural diagram of another data transmission device proposed by the present invention.
  • FIG. 22 is a schematic structural diagram of another data transmission device proposed by the present invention.
  • FIG. 23 is a schematic structural diagram of a communication device proposed by the present invention.
  • PDSCH physical downlink shared channel
  • embodiments of the present invention provide a data transmission method and apparatus.
  • FIG. 1 is a schematic flowchart of a data transmission method according to an embodiment of the present invention, which is executed by a UE to flexibly implement a terminal-oriented base station-oriented transmission scheme on an uplink channel under the scheduling of a TRP working mode and/or a beam mapping scheme by a base station.
  • the uplink channel can typically be an uplink control channel PDCCH and/or an uplink shared channel PUSCH.
  • the uplink channel can typically be the uplink shared channel PUSCH.
  • the data transmission method includes the following steps:
  • Step 101 Acquire control signaling sent by the base station.
  • control signaling may be downlink control signaling (DCI, Downlink Control Information) transmitted on the PDCCH or other signaling, or may be the control signaling transmitted on the PDSCH, this embodiment
  • DCI Downlink Control Signaling
  • PDSCH Downlink Control Information
  • the control signaling carries the indication information of the TRP working mode and/or beam mapping scheme of the transmission access point.
  • the TRP working mode is transmission based on a single TRP or transmission based on multiple TRPs.
  • the UE After acquiring the control signaling, the UE determines, based on the indication information carried by the control signaling, the single-TRP-based transmission or the multi-TRP-based transmission designated by the base station scheduling.
  • a beam mapping scheme can also be specified, including at least one of a mapping pattern and a time unit between multiple uplink beams corresponding to multiple TRPs and time units and time units , so that the UE can flexibly switch between the multi-TRP-based transmission of the base station and the data transmission based on the single-TRP transmission under the scheduling of the base station.
  • mapping pattern between the corresponding beams and time units for multi-TRP-based transmission may be one of the following, but is not limited to the following possibilities:
  • the beams corresponding to the two TCIs (transmission configuration indication) (the TCI state is marked as TCI 1 and TCI 2 using the beam direction) are cyclically mapped to multiple configured time units in turn, for example, in the case of including 4 times In the case of units, TCI 1 and TCI2 are cyclically mapped to 4 time units, that is, the mapping order is TCI 1, TCI2, TCI1 and TCI2;
  • the beams TCI 1 and TCI 2 corresponding to two TCIs are continuously and cyclically mapped to multiple time units configured. For example, in the case of including 4 time units, TCI 1 and TCI2 are repeated several times each time each When the TCI reaches the number of repetitions, it switches to another TCI for mapping.
  • the mapping order is TCI 1, TCI1, TCI2 and TCI2, and for example, in the case of including 8 time units, the mapping order are TCI 1, TCI1, TCI2, TCI2, TCI 1, TCI1, TCI2 and TCI2;
  • the beams TCI 1 and TCI 2 corresponding to the two TCIs are respectively mapped to the first half time unit and the second half time unit of the multiple time units, for example, including 8 time units
  • the mapping order is TCI 1, TCI1, TCI1, TCI1, TCI 2, TCI2, TCI2, and TCI2;
  • Bit mapping indicating a specific mapping pattern between the beam and the time unit corresponding to each TRP through a bitmap (Bitmap).
  • the optional solution can be one of the following, but is not limited to the following possibilities:
  • Step 102 Send data to the base station in the TRP working mode and/or beam mapping scheme.
  • the UE sends an uplink transmission (PUSCH transmission) to the base station in the TRP working mode and/or the beam mapping scheme.
  • the uplink transmission may be signaling, data, and mixed signaling/data transmission.
  • the UE sends an uplink transmission (PUCCH transmission) to the base station in the TRP working mode and/or the beam mapping scheme.
  • the uplink transmission may be signaling, data, signaling & data mixed transmission.
  • the UE sends uplink transmission to the base station in the TRP working mode and/or beam mapping scheme specified by the base station scheduling. Since there is a certain correlation between the retransmission mechanism adopted by the UE, the TRP working mode and the beam mapping scheme, the optimal allocation of resources is realized through the scheduling of the TRP working mode and/or the beam mapping scheme by the base station, thereby improving the uplink performance.
  • the communication quality of the channel since there is a certain correlation between the retransmission mechanism adopted by the UE, the TRP working mode and the beam mapping scheme, the optimal allocation of resources is realized through the scheduling of the TRP working mode and/or the beam mapping scheme by the base station, thereby improving the uplink performance.
  • the communication quality of the channel is a certain correlation between the retransmission mechanism adopted by the UE, the TRP working mode and the beam mapping scheme.
  • the UE adopts the corresponding TRP working mode and/or the corresponding TRP working mode under the scheduling of the base station.
  • the beam mapping scheme sends the uplink transmission on the uplink channel, and accordingly, the base station receives the uplink transmission sent by the UE in the TRP working mode and/or the beam mapping scheme, so that it can be applied to channels such as PUSCH and PUCCH, and realizes the transmission in these channels.
  • the transmission quality is improved by performing switching of single-TRP transmission or multi-TRP-based transmission, or scheduling of beam mapping schemes.
  • FIG. 2 is a schematic flowchart of another data transmission method provided by the embodiment of the present invention, which is executed by the UE.
  • the base station only needs to schedule the TRP working mode of the UE, and informs the UE whether the TRP working mode specified by the base station scheduling is single TRP transmission or multi-TRP-based transmission.
  • the method may include the following steps:
  • Step 201 Receive a first group message sent by a base station.
  • the first group message carries the indication information of the TRP working mode.
  • the TRP working mode is based on single TRP transmission or multiple TRP based transmission.
  • the message may be downlink control signaling (DCI, Downlink Control Information) or other signaling transmitted on the PDCCH, or may be signaling transmitted on the PDSCH.
  • DCI Downlink Control Signaling
  • the specific form is not limited. That is, in some embodiments of the present disclosure, the first group message may be, for example, the first group DCI.
  • the first group message is a group that carries the indication information of the TRP working mode and is generated by the base station after determining a TRP working mode suitable for the UE from the single-TRP-based transmission and the multi-TRP-based transmission mode based on parameters. information.
  • the parameters may be any one or more of the following: beam management, CSI measurement amount obtained by performing channel quality measurement on uplink/downlink channel status, and scheduling TRP working mode.
  • the first group is sent by the base station to a group of UEs, including UEs implementing this embodiment.
  • the UE obtains the information bit position corresponding to the UE in the first group message and the RNTI used for descrambling according to the configuration information or the communication protocol or the condition parameter or the pre-stored parameter received in advance by the base station.
  • the first group message is a bitmap with a first number of bits, and each bit of the first group message corresponds to one or more UEs to indicate the RNTI for descrambling corresponding to one or more UEs.
  • the UE may determine the bits corresponding to the UE according to the configuration information sent by the high-level base station.
  • the UE may determine the bit corresponding to the UE according to a corresponding communication protocol. In still other embodiments, the UE may determine the bits corresponding to the UE according to the condition parameter, wherein the condition parameter may be any of the following: channel condition, load condition, and the like. In still other embodiments, the UE may determine bits corresponding to the UE according to pre-stored parameters; the pre-stored parameters may be any of the following: UE class (UEclass), UE identification (UEID), and the like.
  • UE class UE class
  • UEID UE identification
  • the UE After receiving the first group message, the UE performs descrambling according to the known RNTI, and reads the information bit position corresponding to itself, so as to obtain the TRP working mode corresponding to the UE.
  • step 202 the uplink transmission is sent in the TRP working mode on the uplink channel.
  • the UE sends an uplink transmission (PUSCH transmission) to the base station in the TRP working mode on the PUSCH.
  • the uplink transmission may be signaling, data, and mixed signaling/data transmission.
  • the UE sends an uplink transmission (PUCCH transmission) to the base station in the TRP working mode on the PUCCH.
  • the uplink transmission may be signaling, data, signaling & data mixed transmission.
  • the UE uses a decoding strategy corresponding to the TRP working mode to decode the specific message corresponding to the UE sent by the base station to the UE, so as to determine the configuration of the UE by the base station.
  • data scheduling information such as: data transmission information based on codebook transmission or data transmission information based on non-codebook transmission.
  • the UE transmits data on the uplink channel (such as PUSCH or PDSCH) using the single-TRP-based transmission or multi-TRP-based transmission working mode specified by the base station scheduling .
  • the specific message may be a specific DCI.
  • the UE can execute the beam mapping scheme.
  • the base station may configure the beam mapping scheme for the UE according to signaling sent by the base station to the UE, such as RRC signaling. Therefore, when the TRP working mode is multi-TRP-based transmission, the UE sends data in the multi-TRP-based transmission working mode on the uplink channel (eg, PUSCH or PDSCH) according to the configured beam mapping scheme.
  • the base station may determine the beam mapping scheme corresponding to the UE according to the communication protocol.
  • the base station may determine the beam mapping scheme corresponding to the UE according to the condition parameter, wherein the condition parameter may be any one of the following: channel condition, load condition, and so on.
  • the base station may determine the beam mapping scheme corresponding to the UE according to pre-stored parameters; the pre-stored parameters may be any of the following: UE class (UEclass), UE identifier (UEID), and so on.
  • the beam mapping scheme includes a mapping pattern and/or a time unit between corresponding beams and time units for multi-TRP-based transmission.
  • the mapping pattern between the corresponding beam and the time unit for multi-TRP-based transmission can be one of the following, but is not limited to the following possibilities:
  • the beams corresponding to the two TCIs (transmission configuration indication) (the TCI state is marked as TCI 1 and TCI 2 using the beam direction) are cyclically mapped to multiple configured time units in turn, for example, in the case of including 4 times In the case of units, TCI 1 and TCI2 are cyclically mapped to 4 time units, that is, the mapping order is TCI 1, TCI2, TCI1 and TCI2;
  • the beams TCI 1 and TCI 2 corresponding to two TCIs are continuously and cyclically mapped to multiple time units configured. For example, in the case of including 4 time units, TCI 1 and TCI2 are repeated several times each time each When the TCI reaches the number of repetitions, it switches to another TCI for mapping.
  • the mapping order is TCI 1, TCI1, TCI2 and TCI2, and for example, in the case of including 8 time units, the mapping order are TCI 1, TCI1, TCI2, TCI2, TCI 1, TCI1, TCI2 and TCI2;
  • the beams TCI 1 and TCI 2 corresponding to the two TCIs are respectively mapped to the first half time unit and the second half time unit of the multiple time units, for example, including 8 time units
  • the mapping order is TCI 1, TCI1, TCI1, TCI1, TCI 2, TCI2, TCI2, and TCI2;
  • Bit mapping indicating a specific mapping pattern between the beam and the time unit corresponding to each TRP through a bitmap (Bitmap).
  • the alternative solution can be one of the following, but not limited to the following possibilities:
  • the base station after the base station sends DCI to the UE on the PDCCH, since the DCI carries the indication information of the TRP working mode and/or beam mapping scheme, the UE adopts the corresponding TRP working mode and/or beam mapping scheme under the scheduling of the base station
  • the mapping scheme sends data on the PUSCH, and accordingly, the base station receives the data sent by the UE on the PUSCH with the TRP working mode and/or the beam mapping scheme, thereby implementing single-TRP transmission or multi-TRP-based transmission on the PUSCH.
  • the switching of transmissions, or the scheduling of beam mapping schemes improves the data transmission quality of the PUSCH.
  • FIG. 3 is a schematic flowchart of another data transmission method provided by an embodiment of the present invention, which is executed by a UE.
  • the base station schedules the TRP working mode and beam mapping scheme of the UE, and the UE learns whether the TRP working mode specified by the base station scheduling is single TRP transmission or multi-TRP-based transmission, and the beam mapping scheme, and according to This transmits data on the upstream channel.
  • the method may include the following steps.
  • Step 301 Receive a first group message sent by a base station.
  • the first group message carries the indication information of the TRP working mode.
  • the TRP working mode is based on single TRP transmission or multiple TRP based transmission.
  • the message may be downlink control signaling (DCI, Downlink Control Information) or other signaling transmitted on the PDCCH, or may be signaling transmitted on the PDSCH.
  • DCI Downlink Control Information
  • the first group message may be, for example, the first group DCI.
  • the first group message is a group that carries the indication information of the TRP working mode and is generated by the base station after determining a TRP working mode suitable for the UE from the single-TRP-based transmission and the multi-TRP-based transmission mode based on parameters. information.
  • the parameter may include any one of the following: beam management, or CSI measurement amount obtained by performing channel quality measurement on uplink/downlink channel status, scheduling TRP working mode, and the like.
  • the first group message is sent by the base station to a group of UEs, including UEs implementing this embodiment.
  • the UE has received the configuration information sent by the base station through high-layer signaling in advance, so as to know the corresponding information bit position of the UE in the first group DCI, and the RNTI used for descrambling.
  • the UE After receiving the first group DCI, the UE performs descrambling according to the known RNTI, and reads the information bit position corresponding to itself, so as to obtain the TRP working mode corresponding to the UE.
  • Step 302 Receive a first specific message for the UE sent by the base station.
  • the first specific message is sent for the UE and is used to dynamically configure the UE, wherein the first specific message carries data scheduling information, and the data scheduling information includes data transmission information based on codebook transmission or data transmission information based on non-codebook transmission.
  • the first specific message further includes indication information of the beam mapping scheme.
  • the first specific message may be DCI, that is, the first specific DCI.
  • the beam mapping scheme includes a mapping pattern and a time unit.
  • the mapping pattern between the corresponding beam and the time unit for multi-TRP-based transmission can be one of the following, but is not limited to the following possibilities:
  • the beams corresponding to the two TCIs are cyclically mapped to the configured multiple time units, for example, in the case of including 4 time units, TCI 1 and TCI2 are cyclically mapped to 4 time units, that is, the mapping order is TCI 1, TCI2, TCI1 and TCI2;
  • the beams TCI 1 and TCI 2 corresponding to two TCIs are continuously and cyclically mapped to multiple time units configured. For example, in the case of including 4 time units, TCI 1 and TCI2 are repeated several times each time each When the TCI reaches the number of repetitions, it switches to another TCI for mapping.
  • the mapping order is TCI 1, TCI1, TCI2 and TCI2, and for example, in the case of including 8 time units, the mapping order are TCI 1, TCI1, TCI2, TCI2, TCI 1, TCI1, TCI2 and TCI2;
  • the beams TCI 1 and TCI 2 corresponding to the two TCIs are respectively mapped to the first half time unit and the second half time unit of the multiple time units, for example, including 8 time units
  • the mapping order is TCI 1, TCI1, TCI1, TCI1, TCI 2, TCI2, TCI2, and TCI2;
  • Bit mapping indicating a specific mapping pattern between the beam and the time unit corresponding to each TRP through a bitmap (Bitmap).
  • the optional solution can be one of the following, but is not limited to the following possibilities:
  • Step 303 Decode the first specific message according to the decoding strategy corresponding to the TRP working mode in the first group message.
  • the UE After determining the TRP working mode corresponding to the UE, the UE can know the location of the specific information field to be read in the first specific message (such as the first specific DCI) sent by the base station through the downlink channel (such as PDCCH or PDSCH). Bit position, this is because the UE has pre-configured the decoding strategy for the first specific message of the UE in different TRP working modes, and the decoding strategy indicates the bit position of the specific information field that the UE needs to read. The decoding strategy decodes and reads the corresponding bit position.
  • the first specific message such as the first specific DCI
  • the decoding strategy indicates the bit position of the specific information field that the UE needs to read.
  • the decoding strategy decodes and reads the corresponding bit position.
  • the TRP working mode of the UE is multi-TRP-based transmission, decode the first specific message to obtain beam mapping scheme indication information and data scheduling information, such as data transmission information based on codebook transmission or data transmission information based on non-codebook transmission data transmission information, etc. If the TRP working mode of the UE is transmission based on a single TRP, the data scheduling information is obtained by decoding the first specific message.
  • the indication information of the beam mapping scheme may be an identifier occupying several bits, corresponding to a mapping pattern in the beam mapping scheme, or corresponding to a time unit, or corresponding to a combination of a mapping pattern and a time unit.
  • the base station sends one of the mapping pattern and the time unit in advance, so that the UE has preconfigured the mapping pattern or the time unit.
  • the base station also sends or predefines the UE a correspondence between the identifier and the other one of the mapping pattern and the time unit, so that the UE can determine the corresponding mapping pattern or time unit according to the identifier in the first specific message .
  • the base station configures the mapping pattern through RRC signaling, and configures the correspondence between the identifier and the time unit through the RRC signaling or other high-level signaling.
  • the UE After receiving the first specific message (eg, the first specific DCI), the UE determines the corresponding time unit through the identifier in the first specific message.
  • the corresponding relationship between specific identifiers and time units is shown in Table 1 below.
  • each element and each corresponding relationship in Table 1 exist independently; these elements and corresponding relationships are exemplarily listed in the same table, but do not represent all the elements in the table, Correspondence must exist according to the coexistence shown in Table 1.
  • the value of each element and each corresponding relationship are independent of any other element value or corresponding relationship in Table 1. Therefore, those skilled in the art can understand that the value of each element and each corresponding relationship in Table 1 are each an independent embodiment.
  • the base station configures the time unit through RRC signaling, and configures the corresponding relationship between the identifier and the mapping pattern through the RRC signaling or other high-level signaling.
  • the UE determines the corresponding mapping pattern by using the identifier in the first specific DCI.
  • the base station sends the correspondence between the identifier and the beam mapping scheme in advance through high-layer signaling, such as RRC signaling, or the UE predefines the relationship between the identifier and the beam mapping scheme.
  • the beam mapping scheme is a combination of a mapping pattern and a time unit, so that the UE can determine a corresponding combination of the mapping pattern and time according to the identifier in the first specific DCI.
  • each element and each corresponding relationship in Table 2 exist independently; these elements and corresponding relationships are exemplarily listed in the same table, but do not represent all the elements in the table, Correspondence must exist according to the coexistence shown in Table 2.
  • the value of each element and each corresponding relationship are independent of any other element value or corresponding relationship in Table 2. Therefore, those skilled in the art can understand that the value of each element and each corresponding relationship in Table 2 are each an independent embodiment.
  • the base station sends a beam mapping scheme in advance, or pre-defines a beam mapping scheme for the UE, including a possible mapping pattern and/or a possible mapping pattern between corresponding beams and time units for multi-TRP-based transmission A possible time unit. Based on the identifier carried in the first specific DCI, it is determined whether to adopt the mapping pattern and/or time unit.
  • the base station may send the beam mapping scheme through higher layer signaling.
  • Step 304 according to the decoded first specific message, send the uplink transmission in the TRP working mode on the uplink channel.
  • the specific message may be a specific DCI.
  • the uplink channel is PUSCH or PUCCH; preferably, it can be PUSCH.
  • data scheduling information can be obtained according to the decoded first specific DCI, and according to the data scheduling information, data is sent on the PUSCH with the transmission based on the single TRP;
  • data scheduling information can be obtained according to the decoded first specific DCI, and a beam mapping scheme is determined. send data.
  • the UE sends an uplink transmission (PUSCH transmission) to the base station on the PUSCH.
  • the uplink transmission may be signaling, data, and mixed signaling/data transmission.
  • the UE sends an uplink transmission (PUCCH transmission) on the PUCCH.
  • the uplink transmission may be signaling, data, signaling & data mixed transmission.
  • the base station after the base station sends DCI to the UE on the PDCCH, since the DCI carries the indication information of the TRP working mode and/or beam mapping scheme, the UE adopts the corresponding TRP working mode and/or beam mapping scheme under the scheduling of the base station
  • the mapping scheme sends data on the PUSCH, and accordingly, the base station receives the data sent by the UE on the PUSCH with the TRP working mode and/or the beam mapping scheme, thereby implementing single-TRP transmission or multi-TRP-based transmission on the PUSCH.
  • the switching of transmissions, or the scheduling of beam mapping schemes improves the data transmission quality of the PUSCH.
  • FIG. 4 is a schematic flowchart of another data transmission method provided by an embodiment of the present invention, which is executed by a UE.
  • the base station schedules the TRP working mode and beam mapping scheme of the UE, and the UE learns indirectly whether the TRP working mode specified by the base station scheduling is single-TRP transmission or multi-TRP-based transmission, and obtains the direct way. Beam mapping scheme, and transmit data on the uplink channel accordingly.
  • the method may include the following steps.
  • Step 401 Receive the second group message sent by the base station.
  • the second group message carries the indication information of the beam mapping scheme.
  • the first group message may be downlink control signaling (DCI, Downlink Control Information) or other signaling transmitted on the PDCCH, or may be signaling transmitted on the PDSCH.
  • DCI downlink control signaling
  • the specific form of the message is Not limited. That is, in some embodiments, the second group message may be, for example, the second group DCI.
  • the second group message is a group message that is generated by the base station and carries the indication information of the beam mapping scheme of the UE after determining a beam mapping scheme suitable for the UE from multiple candidate beam mapping schemes according to parameters.
  • the parameter may be at least one of the following: beam management, CSI measurement amount obtained by performing channel quality measurement on uplink/downlink channel status, and scheduling beam mapping scheme.
  • the second group message is sent by the base station to a group of UEs, including UEs implementing this embodiment.
  • the UE has received the configuration information sent by the base station in advance, so as to know the corresponding information bit position of the UE in the second group of DCIs and the RNTI used for descrambling.
  • the UE After receiving the second group DCI, the UE performs descrambling according to the known RNTI, and reads the information bit position corresponding to itself, so as to obtain the beam mapping scheme corresponding to the UE.
  • the UE obtains the information bit position corresponding to the UE in the first group message according to the configuration information or the communication protocol or the condition parameter or the pre-stored parameter sent by the base station in advance, and obtains the information used to solve the problem. scrambled RNTI.
  • the first group message is a bitmap with a first number of bits, and each bit of the first group message corresponds to one or more UEs to indicate the RNTI for descrambling corresponding to one or more UEs.
  • the UE may determine the bits corresponding to the UE according to the configuration information sent by the high-level base station. In other embodiments, the UE may determine the bit corresponding to the UE according to a corresponding communication protocol.
  • the UE may determine the bits corresponding to the UE according to the condition parameter, wherein the condition parameter may be any of the following: channel condition, load condition, and the like.
  • the UE may determine bits corresponding to the UE according to pre-stored parameters; the pre-stored parameters may be any of the following: UE class (UEclass), UE identification (UEID), and the like.
  • the beam mapping scheme includes a mapping pattern and a time unit.
  • the mapping pattern between the corresponding beam and the time unit for multi-TRP-based transmission can be one of the following, but is not limited to the following possibilities:
  • the beams corresponding to the two TCIs are cyclically mapped to the configured multiple time units, for example, in the case of including 4 time units, TCI 1 and TCI2 are cyclically mapped to 4 time units, that is, the mapping order is TCI 1, TCI2, TCI1 and TCI2;
  • the beams TCI 1 and TCI 2 corresponding to two TCIs are continuously and cyclically mapped to multiple time units configured. For example, in the case of including 4 time units, TCI 1 and TCI2 are repeated several times each time each When the TCI reaches the number of repetitions, it switches to another TCI for mapping.
  • the mapping order is TCI 1, TCI1, TCI2 and TCI2, and for example, in the case of including 8 time units, the mapping order are TCI 1, TCI1, TCI2, TCI2, TCI 1, TCI1, TCI2 and TCI2;
  • the beams TCI 1 and TCI 2 corresponding to the two TCIs are respectively mapped to the first half time unit and the second half time unit of the multiple time units, for example, including 8 time units
  • the mapping order is TCI 1, TCI1, TCI1, TCI1, TCI 2, TCI2, TCI2, and TCI2;
  • Bit mapping indicating a specific mapping pattern between the beam and the time unit corresponding to each TRP through a bitmap (Bitmap).
  • the optional solution can be one of the following, but is not limited to the following possibilities:
  • Step 402 Determine a corresponding TRP working mode according to the indication information of the beam mapping scheme carried in the second group message.
  • the indication information of the beam mapping scheme may be an identifier occupying several bits, and there is a correspondence between the identifier, the beam mapping scheme and the TRP. Based on the identifier, it can correspond to the mapping pattern and the TRP working mode in the beam mapping scheme, or the time unit and the TRP working mode, or the combination of the mapping pattern and the time unit and the TRP working mode.
  • the base station has pre-configured one of a mapping pattern and a time unit for the UE through high-layer signaling, such as RRC signaling, or pre-defined one of the mapping pattern and time unit for the UE. one of.
  • high-layer signaling such as RRC signaling
  • the base station sends the correspondence between the identifier and the other one of the mapping pattern and the time unit through the high-layer signaling, so that the UE can determine the corresponding mapping pattern according to the identifier in the second group of DCIs or time unit.
  • the base station configures the mapping pattern through RRC signaling, and configures the corresponding relationship between the identifier, the time unit and the TRP working mode through the RRC signaling or other high-level signaling.
  • the UE determines the corresponding time unit and TRP working mode through the identifier in the second group DCI.
  • the corresponding relationship between specific identifiers, time units and TRP working modes is shown in the following table 3.
  • TRP working mode 0 none Transmission based on single TRP 1 Nominal transmission timing Multi-TRP-Based Transmission 2 Actual transmission timing Multi-TRP-Based Transmission 3 Map by slot Multi-TRP-Based Transmission
  • each element and each corresponding relationship in Table 3 exist independently; these elements and corresponding relationships are exemplarily listed in the same table, but do not represent all elements in the table, Correspondence must exist according to the coexistence shown in Table 3.
  • the value of each element and each corresponding relationship are independent of any other element value or corresponding relationship in Table 3. Therefore, those skilled in the art can understand that the value of each element and each corresponding relationship in Table 3 are each an independent embodiment.
  • the base station configures the time unit through RRC signaling, and configures the corresponding relationship between the identifier, the mapping pattern and the TRP working mode through the RRC signaling or other high-level signaling.
  • the UE determines the corresponding mapping pattern and TRP working mode through the identifier in the second group DCI.
  • the base station sends the correspondence between the identifier and the beam mapping scheme in advance through high-layer signaling, such as RRC signaling, or the UE predefines the relationship between the identifier and the beam mapping scheme.
  • the beam mapping scheme is a combination of a mapping pattern and a time unit, so that the UE can determine the corresponding combination of the mapping pattern and time according to the identifier in the second group of DCIs.
  • each element and each corresponding relationship in Table 4 exist independently; these elements and corresponding relationships are exemplarily listed in the same table, but do not represent all elements in the table, Correspondence must exist according to the co-existence shown in Table 4.
  • the value of each element and each corresponding relationship are independent of any other element value or corresponding relationship in Table 4. Therefore, those skilled in the art can understand that the value of each element and each corresponding relationship in Table 4 are each an independent embodiment.
  • the base station sends the beam mapping scheme through high-layer signaling in advance, or pre-defines the beam mapping scheme for the UE, including a possible mapping between the corresponding beam and the time unit for multi-TRP-based transmission pattern and/or a possible time unit. Based on the identifier carried in the second group DCI, it is determined whether to adopt the mapping pattern and/or time unit.
  • Step 403 Decode the specific DCI for the UE sent by the base station according to the TRP working mode.
  • the UE has pre-configured decoding strategies in different TRP working modes.
  • the decoding strategy indicates the bit position of the specific information field that the UE needs to read.
  • the UE decodes based on the decoding strategy and reads the bit position corresponding to the specific DCI to Obtain data scheduling information, such as data transmission information based on codebook transmission or data transmission information based on non-codebook transmission.
  • the 2-bit indication field of single-TRP-based transmission is directly extended to 4 bits when two TRP beams are sent.
  • Step 404 according to the decoded specific message, send data on the PUSCH in the TRP working mode and beam mapping scheme.
  • the specific message may be a specific DCI.
  • data scheduling information can be obtained according to the decoded specific DCI, and according to the data scheduling information, data is sent on an uplink channel (such as PUSCH or PUCCH) with the single TRP-based transmission;
  • an uplink channel such as PUSCH or PUCCH
  • data scheduling information can be obtained according to the decoded specific message, according to the beam mapping scheme determined in the preceding steps, and according to the data scheduling information, on the uplink channel (such as PUSCH or PUCCH) to send data in this multi-TRP-based transmission.
  • the uplink channel such as PUSCH or PUCCH
  • the uplink channel is PUCCH.
  • the base station after the base station sends DCI to the UE on the PDCCH, since the DCI carries the indication information of the TRP working mode and/or beam mapping scheme, the UE adopts the corresponding TRP working mode and/or beam mapping scheme under the scheduling of the base station
  • the mapping scheme sends data on the PUSCH, and accordingly, the base station receives the data sent by the UE on the PUSCH with the TRP working mode and/or the beam mapping scheme, thereby implementing single-TRP transmission or multi-TRP-based transmission on the PUSCH.
  • the switching of transmissions, or the scheduling of beam mapping schemes improves the data transmission quality of the PUSCH.
  • FIG. 5 is a schematic flowchart of another data transmission method provided by an embodiment of the present invention, which is executed by a UE.
  • the base station schedules the TRP working mode and beam mapping scheme of the UE, and the UE learns whether the TRP working mode specified by the base station scheduling is single TRP transmission or multi-TRP-based transmission, and the beam mapping scheme, and according to This transmits data on the upstream channel.
  • the method may include the following steps.
  • Step 501 Receive a second specific message for the UE sent by the base station on the PDCCH.
  • the second specific message carries the indication information of the beam mapping scheme and/or the indication information of the TRP working mode.
  • the second specific message is the CSI measurement amount obtained by the base station based on beam management or channel quality measurement on the uplink/downlink channel state, and schedules the beam mapping scheme to determine a suitable beam mapping scheme from the candidate beam mapping schemes.
  • a specific message for the UE is generated and carries the indication information of the beam mapping scheme of the UE and/or the indication information of the TRP working mode.
  • the second specific message may be a specific DCI, that is, a second specific DCI.
  • the beam mapping scheme includes a mapping pattern and a time unit.
  • the mapping pattern between the corresponding beam and the time unit for multi-TRP-based transmission can be one of the following, but is not limited to the following possibilities:
  • the beams corresponding to the two TCIs are cyclically mapped to the configured multiple time units, for example, in the case of including 4 time units, TCI 1 and TCI2 are cyclically mapped to 4 time units, that is, the mapping order is TCI 1, TCI2, TCI1 and TCI2;
  • the beams TCI 1 and TCI 2 corresponding to two TCIs are continuously and cyclically mapped to multiple time units configured. For example, in the case of including 4 time units, TCI 1 and TCI2 are repeated several times each time each When the TCI reaches the number of repetitions, it switches to another TCI for mapping.
  • the mapping order is TCI 1, TCI1, TCI2 and TCI2, and for example, in the case of including 8 time units, the mapping order are TCI 1, TCI1, TCI2, TCI2, TCI 1, TCI1, TCI2 and TCI2;
  • the beams TCI 1 and TCI 2 corresponding to the two TCIs are respectively mapped to the first half time unit and the second half time unit of the multiple time units, for example, including 8 time units
  • the mapping order is TCI 1, TCI1, TCI1, TCI1, TCI 2, TCI2, TCI2, and TCI2;
  • Bit mapping indicating a specific mapping pattern between the beam and the time unit corresponding to each TRP through a bitmap (Bitmap).
  • the optional solution can be one of the following, but is not limited to the following possibilities:
  • the UE may use several predefined or preconfigured candidate decoding strategies to try to decode it until the decoding succeeds, so as to obtain the beam mapping scheme carried by the second specific message. the indication information and/or the indication information of the TRP working mode.
  • the indication information of the beam mapping scheme may be an identifier occupying several bits, corresponding to a mapping pattern in the beam mapping scheme, or corresponding to a time unit, or corresponding to a combination of a mapping pattern and a time unit.
  • the base station sends one of a mapping pattern and a time unit in advance through high-layer signaling, such as RRC signaling, so that the UE has pre-configured a mapping pattern or a time unit.
  • the base station also sends or predefines the correspondence between the identifier and the mapping pattern and the time unit for the UE through the higher layer signaling, so that the UE can determine the corresponding mapping pattern according to the identifier in the second specific DCI or time unit.
  • the base station configures the mapping pattern through RRC signaling, and configures the correspondence between the identifier and the time unit through the RRC signaling or other high-level signaling.
  • the UE After receiving the second specific DCI, the UE determines the corresponding time unit through the identifier in the second specific DCI.
  • Table 5 The corresponding relationship between specific identifiers and time units is shown in Table 5.
  • each element and each corresponding relationship in Table 5 exist independently; these elements and corresponding relationships are exemplarily listed in the same table, but do not represent all the elements in the table, Correspondence must exist according to the coexistence shown in Table 5.
  • the value of each element and each corresponding relationship are independent of any other element value or corresponding relationship in Table 5. Therefore, those skilled in the art can understand that the value of each element and each corresponding relationship in Table 5 are each an independent embodiment.
  • the base station configures the time unit through RRC signaling, and configures the corresponding relationship between the identifier and the mapping pattern through the RRC signaling or other high-level signaling.
  • the UE determines the corresponding mapping pattern through the identifier in the second specific DCI.
  • the base station sends the correspondence between the identifier and the beam mapping scheme in advance through high-layer signaling, such as RRC signaling, or the UE predefines the relationship between the identifier and the beam mapping scheme.
  • the beam mapping scheme is a combination of a mapping pattern and a time unit, so that the UE can determine the corresponding combination of the mapping pattern and time according to the identifier in the second specific DCI.
  • Table 6 shows the correspondence between identifiers and beam mapping schemes.
  • each element and each corresponding relationship in Table 6 exist independently; these elements and corresponding relationships are exemplarily listed in the same table, but do not represent all the elements in the table, Correspondence must exist according to the coexistence shown in Table 6.
  • the value of each element and each corresponding relationship are independent of any other element value or corresponding relationship in Table 6. Therefore, those skilled in the art can understand that the value of each element and each corresponding relationship in Table 6 are each an independent embodiment.
  • the base station sends the beam mapping scheme through high-layer signaling in advance, or pre-defines the beam mapping scheme for the UE, including a possible mapping between the corresponding beam and the time unit for multi-TRP-based transmission pattern and/or a possible time unit. Based on the identifier carried in the second specific DCI, it is determined whether to adopt the mapping pattern and/or time unit.
  • Step 502 Send data on the uplink channel using the TRP working mode and/or beam mapping scheme.
  • the uplink channel may be PUSCH or PUCCH; preferably, it may be PUSCH.
  • the second specific message may further carry data scheduling information, where the data scheduling information includes: data transmission information based on codebook transmission or data transmission information based on non-codebook transmission.
  • the base station after the base station sends DCI to the UE on the PDCCH, since the DCI carries the indication information of the TRP working mode and/or beam mapping scheme, the UE adopts the corresponding TRP working mode and/or beam mapping scheme under the scheduling of the base station
  • the mapping scheme sends data on the PUSCH, and accordingly, the base station receives the data sent by the UE on the PUSCH with the TRP working mode and/or the beam mapping scheme, thereby implementing single-TRP transmission or multi-TRP-based transmission on the PUSCH.
  • the switching of transmissions, or the scheduling of beam mapping schemes improves the data transmission quality of the PUSCH.
  • FIG. 6 is a flowchart of a data transmission method provided by an embodiment of the present invention, which is executed by a base station.
  • the method may include the following steps.
  • Step 601 Send downlink control information DCI to the user equipment UE on the physical downlink control channel PDCCH.
  • the DCI carries indication information of a TRP working mode and/or a beam mapping scheme
  • the TRP working mode is transmission based on a single TRP or transmission based on multiple TRPs
  • the beam mapping scheme includes multi-TRP-oriented corresponding The mapping pattern between the multiple uplink cooperative transmission beams and the time unit and/or the information of the time unit.
  • the base station performs scheduling according to the channel state CSI measurement to determine at least one of the TRP working mode and beam mapping scheme adopted on the PUSCH.
  • the base station may also determine at least one of a TRP operating mode and a beam mapping scheme to employ on the PUSCH based on beam management. Since there is a certain correlation between the retransmission mechanism adopted by the UE, the TRP working mode and the beam mapping scheme, the optimal allocation of resources is realized through the scheduling of the TRP working mode and/or the beam mapping scheme by the base station, thereby improving the communication performance. quality.
  • the beam mapping scheme includes a mapping pattern and a time unit.
  • the mapping pattern between the corresponding beam and the time unit for multi-TRP-based transmission can be one of the following, but is not limited to the following possibilities:
  • the beams corresponding to the two TCIs are cyclically mapped to the configured multiple time units, for example, in the case of including 4 time units, TCI 1 and TCI2 are cyclically mapped to 4 time units, that is, the mapping order is TCI 1, TCI2, TCI1 and TCI2;
  • the beams TCI 1 and TCI 2 corresponding to two TCIs are continuously and cyclically mapped to multiple time units configured. For example, in the case of including 4 time units, TCI 1 and TCI2 are repeated several times each time each When the TCI reaches the number of repetitions, it switches to another TCI for mapping.
  • the mapping order is TCI 1, TCI1, TCI2 and TCI2, and for example, in the case of including 8 time units, the mapping order are TCI 1, TCI1, TCI2, TCI2, TCI 1, TCI1, TCI2 and TCI2;
  • the beams TCI 1 and TCI 2 corresponding to the two TCIs are respectively mapped to the first half time unit and the second half time unit of the multiple time units, for example, including 8 time units
  • the mapping order is TCI 1, TCI1, TCI1, TCI1, TCI 2, TCI2, TCI2, and TCI2;
  • Bit mapping indicating a specific mapping pattern between the beam and the time unit corresponding to each TRP through a bitmap (Bitmap).
  • the optional solution can be one of the following, but is not limited to the following possibilities:
  • Step 602 Receive data sent by the UE on the PUSCH with the TRP working mode and/or beam mapping scheme.
  • the base station After scheduling the UE, the base station correspondingly receives data sent by the UE on the PUSCH based on the TRP working mode and/or the beam mapping scheme.
  • the base station after the base station sends DCI to the UE on the PDCCH, since the DCI carries the indication information of the TRP working mode and/or beam mapping scheme, the UE adopts the corresponding TRP working mode and/or beam mapping scheme under the scheduling of the base station
  • the mapping scheme sends data on the PUSCH, and accordingly, the base station receives the data sent by the UE on the PUSCH with the TRP working mode and/or the beam mapping scheme, thereby implementing single-TRP transmission or multi-TRP-based transmission on the PUSCH.
  • the switching of transmissions, or the scheduling of beam mapping schemes improves the data transmission quality of the PUSCH.
  • FIG. 7 is a schematic flowchart of another data transmission method according to an embodiment of the present invention, where the method is executed by a base station.
  • the method includes:
  • Step 701 Send the first group DCI to the UE on the PDCCH.
  • the first group of DCIs carries indication information of the TRP working mode.
  • the TRP working mode is based on single TRP transmission or multiple TRP based transmission.
  • the first group of DCI is the CSI measurement amount obtained by the base station based on beam management, or the channel quality measurement of the uplink/downlink channel state, and schedules the TRP working mode to change from single-TRP-based transmission and multi-TRP-based transmission mode. After a TRP working mode suitable for the UE is determined in , the generated group DCI carrying the indication information of the TRP working mode.
  • the first group is sent by the base station to a group of UEs, including UEs implementing this embodiment.
  • the UE has received the configuration information sent by the base station through high-layer signaling in advance, so as to know the corresponding information bit position of the UE in the first group DCI, and the RNTI used for descrambling.
  • the UE After receiving the first group DCI, the UE performs descrambling according to the known RNTI, and reads the information bit position corresponding to itself, so as to obtain the TRP working mode corresponding to the UE.
  • Step 702 Receive data sent by the UE in the TRP working mode on the PUSCH.
  • the base station After scheduling the UE, the base station correspondingly receives data sent by the UE on the PUSCH based on the TRP working mode.
  • the beam mapping scheme adopted by the UE may be pre-configured by the base station to the UE through high-layer signaling, such as RRC signaling.
  • the beam mapping scheme includes: Mapping patterns and time units.
  • the mapping pattern between the corresponding beam and the time unit for multi-TRP-based transmission can be one of the following, but is not limited to the following possibilities:
  • the beams corresponding to the two TCIs are cyclically mapped to the configured multiple time units, for example, in the case of including 4 time units, TCI 1 and TCI2 are cyclically mapped to 4 time units, that is, the mapping order is TCI 1, TCI2, TCI1 and TCI2;
  • the beams TCI 1 and TCI 2 corresponding to two TCIs are continuously and cyclically mapped to multiple time units configured. For example, in the case of including 4 time units, TCI 1 and TCI2 are repeated several times each time each When the TCI reaches the number of repetitions, it switches to another TCI for mapping.
  • the mapping order is TCI 1, TCI1, TCI2 and TCI2, and for example, in the case of including 8 time units, the mapping order are TCI 1, TCI1, TCI2, TCI2, TCI 1, TCI1, TCI2 and TCI2;
  • the beams TCI 1 and TCI 2 corresponding to the two TCIs are respectively mapped to the first half time unit and the second half time unit of the multiple time units, for example, including 8 time units
  • the mapping order is TCI 1, TCI1, TCI1, TCI1, TCI 2, TCI2, TCI2, and TCI2;
  • Bit mapping indicating a specific mapping pattern between the beam and the time unit corresponding to each TRP through a bitmap (Bitmap).
  • the optional solution can be one of the following, but is not limited to the following possibilities:
  • the base station after the base station sends DCI to the UE on the PDCCH, since the DCI carries the indication information of the TRP working mode and/or beam mapping scheme, the UE adopts the corresponding TRP working mode and/or beam mapping scheme under the scheduling of the base station
  • the mapping scheme sends data on the PUSCH, and accordingly, the base station receives the data sent by the UE on the PUSCH with the TRP working mode and/or the beam mapping scheme, thereby implementing single-TRP transmission or multi-TRP-based transmission on the PUSCH.
  • the switching of transmissions, or the scheduling of beam mapping schemes improves the data transmission quality of the PUSCH.
  • FIG. 8 is a schematic flowchart of another data transmission method provided by an embodiment of the present invention, which is executed by a base station.
  • the method may include the following steps.
  • Step 801 Send the first group DCI to the UE on the PDCCH.
  • the first group of DCIs carries indication information of the TRP working mode.
  • the TRP working mode is based on single TRP transmission or multiple TRP based transmission.
  • the first group of DCI is the CSI measurement amount obtained by the base station based on beam management, or the channel quality measurement of the uplink/downlink channel state, and schedules the TRP working mode to change from single-TRP-based transmission and multi-TRP-based transmission mode. After a TRP working mode suitable for the UE is determined in , the generated group DCI carrying the indication information of the TRP working mode.
  • the first group is sent by the base station to a group of UEs, including UEs implementing this embodiment.
  • the UE has received the configuration information sent by the base station through high-layer signaling in advance, so as to know the corresponding information bit position of the UE in the first group DCI, and the RNTI used for descrambling.
  • the UE After receiving the first group DCI, the UE performs descrambling according to the known RNTI, and reads the information bit position corresponding to itself, so as to obtain the TRP working mode corresponding to the UE.
  • Step 802 Send the first specific DCI for the UE to the UE.
  • the first specific DCI is used for decoding using the decoding strategy corresponding to the TRP working mode in the first group of DCIs, and carries the indication information of the beam mapping scheme.
  • the first specific DCI is sent by the base station for the UE, and is used to dynamically configure the UE, wherein the first specific DCI carries data scheduling information, and the data scheduling information includes data transmission information based on codebook transmission or data transmission based on non-codebook transmission.
  • the first specific DCI further includes indication information of the beam mapping scheme.
  • the beam mapping scheme includes a mapping pattern and a time unit.
  • the mapping pattern between the corresponding beam and the time unit for multi-TRP-based transmission can be one of the following, but is not limited to the following possibilities:
  • the beams corresponding to the two TCIs are cyclically mapped to the configured multiple time units, for example, in the case of including 4 time units, TCI 1 and TCI2 are cyclically mapped to 4 time units, that is, the mapping order is TCI 1, TCI2, TCI1 and TCI2;
  • the beams TCI 1 and TCI 2 corresponding to the two TCIs are continuously and cyclically mapped to multiple time units configured.
  • the TCI switches to another TCI for mapping.
  • the mapping order is TCI 1, TCI1, TCI2 and TCI2
  • the mapping order are TCI 1, TCI1, TCI2, TCI2, TCI 1, TCI1, TCI2 and TCI2;
  • the beams TCI 1 and TCI 2 corresponding to the two TCIs are respectively mapped to the first half time unit and the second half time unit of the multiple time units, for example, including 8 time units
  • the mapping order is TCI 1, TCI1, TCI1, TCI1, TCI 2, TCI2, TCI2, and TCI2;
  • Bit mapping indicating a specific mapping pattern between the beam and the time unit corresponding to each TRP through a bitmap (Bitmap).
  • the optional solution can be one of the following, but is not limited to the following possibilities:
  • the base station may configure the UE with the beam mapping scheme corresponding to the indication information in advance through higher layer signaling, such as RRC signaling.
  • the indication information of the beam mapping scheme may be an identifier occupying several bits, corresponding to a mapping pattern in the beam mapping scheme, or corresponding to a time unit, or corresponding to a combination of a mapping pattern and a time unit.
  • the base station sends one of a mapping pattern and a time unit in advance through high-layer signaling, such as RRC signaling, so that the UE has pre-configured a mapping pattern or a time unit.
  • the base station also sends or predefines the correspondence between the identifier and the mapping pattern and the time unit for the UE through the higher layer signaling, so that the UE can determine the corresponding mapping pattern according to the identifier in the first specific DCI or time unit.
  • the base station configures the mapping pattern through RRC signaling, and configures the correspondence between the identifier and the time unit through the RRC signaling or other high-level signaling.
  • the UE After receiving the first specific DIC, the UE determines the corresponding time unit through the identifier in the first specific DCI.
  • the base station configures the time unit through RRC signaling, and configures the corresponding relationship between the identifier and the mapping pattern through the RRC signaling or other high-level signaling.
  • the UE determines the corresponding mapping pattern by using the identifier in the first specific DCI.
  • the base station sends the correspondence between the identifier and the beam mapping scheme in advance through high-layer signaling, such as RRC signaling, or the UE predefines the relationship between the identifier and the beam mapping scheme.
  • the beam mapping scheme is a combination of a mapping pattern and a time unit, so that the UE can determine a corresponding combination of the mapping pattern and time according to the identifier in the first specific DCI.
  • the base station configures a beam mapping scheme for the UE in advance through high-layer signaling, or pre-defines a beam mapping scheme for the UE, including a possibility between the corresponding beam and the time unit for multi-TRP-based transmission the mapping pattern and/or a possible time unit. Based on the identifier carried in the first specific DCI, it is determined whether to adopt the mapping pattern and/or time unit.
  • Step 803 Receive data sent by the UE on the PUSCH with the TRP working mode and beam mapping scheme.
  • the base station after the base station sends DCI to the UE on the PDCCH, since the DCI carries the indication information of the TRP working mode and/or beam mapping scheme, the UE adopts the corresponding TRP working mode and/or beam mapping scheme under the scheduling of the base station
  • the mapping scheme sends data on the PUSCH, and accordingly, the base station receives the data sent by the UE on the PUSCH with the TRP working mode and/or the beam mapping scheme, thereby implementing single-TRP transmission or multi-TRP-based transmission on the PUSCH.
  • the switching of transmissions, or the scheduling of beam mapping schemes improves the data transmission quality of the PUSCH.
  • FIG. 9 is a schematic flowchart of another data transmission method provided by an embodiment of the present invention, which is executed by a base station.
  • the method includes:
  • Step 901 Send the second group DCI to the UE on the PDCCH.
  • the second group of DCIs carries indication information of the beam mapping scheme, and the indication information of the beam mapping scheme has a corresponding relationship with the TRP working mode.
  • the second group of DCI is the CSI measurement amount obtained by the base station based on beam management or channel quality measurement of uplink/downlink channel status, and schedules beam mapping schemes to determine one of the candidate beam mapping schemes.
  • the generated group DCI carries the indication information of the beam mapping scheme of the UE.
  • the second group of DCIs is sent by the base station to a group of UEs, including the UEs implementing this embodiment.
  • the UE has received the configuration information sent by the base station through high-layer signaling in advance, so as to know the information bit position corresponding to the UE in the second group DCI, and the RNTI used for descrambling.
  • the UE After receiving the second group DCI, the UE performs descrambling according to the known RNTI, and reads the information bit position corresponding to itself, so as to obtain the beam mapping scheme corresponding to the UE.
  • the beam mapping scheme includes a mapping pattern and a time unit.
  • the mapping pattern between the corresponding beam and the time unit for multi-TRP-based transmission can be one of the following, but is not limited to the following possibilities:
  • the beams corresponding to the two TCIs are cyclically mapped to the configured multiple time units, for example, in the case of including 4 time units, TCI 1 and TCI2 are cyclically mapped to 4 time units, that is, the mapping order is TCI 1, TCI2, TCI1 and TCI2;
  • the beams TCI 1 and TCI 2 corresponding to two TCIs are continuously and cyclically mapped to multiple time units configured. For example, in the case of including 4 time units, TCI 1 and TCI2 are repeated several times each time each When the TCI reaches the number of repetitions, it switches to another TCI for mapping.
  • the mapping order is TCI 1, TCI1, TCI2 and TCI2, and for example, in the case of including 8 time units, the mapping order are TCI 1, TCI1, TCI2, TCI2, TCI 1, TCI1, TCI2 and TCI2;
  • the beams TCI 1 and TCI 2 corresponding to the two TCIs are respectively mapped to the first half time unit and the second half time unit of the multiple time units, for example, including 8 time units
  • the mapping order is TCI 1, TCI1, TCI1, TCI1, TCI 2, TCI2, TCI2, and TCI2;
  • Bit mapping indicating a specific mapping pattern between the beam and the time unit corresponding to each TRP through a bitmap (Bitmap).
  • the optional solution can be one of the following, but is not limited to the following possibilities:
  • the indication information of the beam mapping scheme may be an identifier occupying several bits, corresponding to the mapping pattern in the beam mapping scheme, or corresponding to the time unit, or corresponding to the combination of the mapping pattern and the time unit.
  • the base station has at least the following possible implementation manners to configure the mapping scheme for the UE:
  • the base station has pre-configured one of a mapping pattern and a time unit for the UE through high-layer signaling, such as RRC signaling.
  • high-layer signaling such as RRC signaling.
  • the base station sends the correspondence between the identifier and the other one of the mapping pattern and the time unit through the high-layer signaling, so that the UE can determine the corresponding mapping pattern according to the identifier in the second group of DCIs or time unit.
  • the base station configures the mapping pattern through RRC signaling, and configures the corresponding relationship between the identifier, the time unit and the TRP working mode through the RRC signaling or other high-level signaling. So that after the UE receives the second group DCI, the UE determines the corresponding time unit and TRP working mode through the identifier in the second group DCI.
  • the base station configures the time unit through RRC signaling, and configures the corresponding relationship between the identifier, the mapping pattern and the TRP working mode through the RRC signaling or other high-level signaling. So that after the UE receives the second group DCI, the UE determines the corresponding mapping pattern and TRP working mode through the identifier in the second group DCI.
  • the base station sends the correspondence between the identifier and the beam mapping scheme in advance through high-layer signaling, such as RRC signaling.
  • the beam mapping scheme is a combination of a mapping pattern and a time unit, so that the UE can determine the corresponding combination of the mapping pattern and time according to the identifier in the second group of DCIs.
  • the base station sends a beam mapping scheme in advance through high-layer signaling, including a possible mapping pattern and/or a possible time unit between the corresponding beams and time units for multi-TRP-based transmission . Based on the identifier carried in the second group DCI, it is determined whether to adopt the mapping pattern and/or time unit.
  • Step 902 Receive data sent by the UE on the PUSCH with the TRP working mode and beam mapping scheme.
  • the base station after the base station sends DCI to the UE on the PDCCH, since the DCI carries the indication information of the TRP working mode and/or beam mapping scheme, the UE adopts the corresponding TRP working mode and/or beam mapping scheme under the scheduling of the base station
  • the mapping scheme sends data on the PUSCH, and accordingly, the base station receives the data sent by the UE on the PUSCH with the TRP working mode and/or the beam mapping scheme, thereby implementing single-TRP transmission or multi-TRP-based transmission on the PUSCH.
  • the switching of transmissions, or the scheduling of beam mapping schemes improves the data transmission quality of the PUSCH.
  • FIG. 10 is a schematic flowchart of another data transmission method provided by an embodiment of the present invention, which is executed by a base station.
  • the method may include the following steps.
  • Step 1001 Send a second specific DCI for the UE to the UE on the PDCCH.
  • the second specific DCI carries the indication information of the beam mapping scheme and/or the indication information of the TRP working mode.
  • the second specific DCI is the CSI measurement amount obtained by the base station based on beam management or channel quality measurement of uplink/downlink channel status, and schedules beam mapping schemes to determine a suitable beam mapping scheme from among multiple candidate beam mapping schemes.
  • a specific DCI for the UE is generated and carries the indication information of the beam mapping scheme of the UE and/or the indication information of the TRP working mode.
  • the beam mapping scheme includes a mapping pattern and a time unit.
  • the mapping pattern between the corresponding beam and the time unit for multi-TRP-based transmission can be one of the following, but is not limited to the following possibilities:
  • the beams corresponding to the two TCIs are cyclically mapped to the configured multiple time units, for example, in the case of including 4 time units, TCI 1 and TCI2 are cyclically mapped to 4 time units, that is, the mapping order is TCI 1, TCI2, TCI1 and TCI2;
  • the beams TCI 1 and TCI 2 corresponding to two TCIs are continuously and cyclically mapped to multiple time units configured. For example, in the case of including 4 time units, TCI 1 and TCI2 are repeated several times each time each When the TCI reaches the number of repetitions, it switches to another TCI for mapping.
  • the mapping order is TCI 1, TCI1, TCI2 and TCI2, and for example, in the case of including 8 time units, the mapping order are TCI 1, TCI1, TCI2, TCI2, TCI 1, TCI1, TCI2 and TCI2;
  • the beams TCI 1 and TCI 2 corresponding to the two TCIs are respectively mapped to the first half time unit and the second half time unit of the multiple time units, for example, including 8 time units
  • the mapping order is TCI 1, TCI1, TCI1, TCI1, TCI 2, TCI2, TCI2, and TCI2;
  • Bit mapping indicating a specific mapping pattern between the beam and the time unit corresponding to each TRP through a bitmap (Bitmap).
  • the optional solution can be one of the following, but is not limited to the following possibilities:
  • the indication information of the beam mapping scheme may be an identifier occupying several bits, corresponding to a mapping pattern in the beam mapping scheme, or corresponding to a time unit, or corresponding to a combination of a mapping pattern and a time unit.
  • the specific base station has at least the following possible implementation manners to configure the mapping scheme for the UE:
  • the base station sends one of a mapping pattern and a time unit in advance through high-layer signaling, such as RRC signaling, so that the UE has pre-configured a mapping pattern or a time unit.
  • the base station also sends or predefines the correspondence between the identifier and the mapping pattern and the time unit for the UE through the higher layer signaling, so that the UE can determine the corresponding mapping pattern according to the identifier in the second specific DCI or time unit.
  • the base station configures the mapping pattern through RRC signaling, and configures the correspondence between the identifier and the time unit through the RRC signaling or other high-level signaling.
  • the UE After receiving the second specific DCI, the UE determines the corresponding time unit through the identifier in the second specific DCI.
  • the base station configures the time unit through RRC signaling, and configures the corresponding relationship between the identifier and the mapping pattern through the RRC signaling or other high-level signaling.
  • the UE determines the corresponding mapping pattern through the identifier in the second specific DCI.
  • the base station sends the correspondence between the identifier and the beam mapping scheme in advance through high-layer signaling, such as RRC signaling, or the UE predefines the relationship between the identifier and the beam mapping scheme.
  • the beam mapping scheme is a combination of a mapping pattern and a time unit, so that the UE can determine the corresponding combination of the mapping pattern and time according to the identifier in the second specific DCI.
  • the base station has not selected a beam mapping scheme, that is, has not selected a combination of mapping pattern and time.
  • the base station sends the beam mapping scheme through high-layer signaling in advance, or pre-defines the beam mapping scheme for the UE, including a possible mapping between the corresponding beam and the time unit for multi-TRP-based transmission pattern and/or a possible time unit. Based on the identifier carried in the second specific DCI, it is determined whether to adopt the mapping pattern and/or time unit.
  • Step 1002 Receive data sent by the UE on the PUSCH with the TRP working mode and beam mapping scheme.
  • the base station after the base station sends DCI to the UE on the PDCCH, since the DCI carries the indication information of the TRP working mode and/or beam mapping scheme, the UE adopts the corresponding TRP working mode and/or beam mapping scheme under the scheduling of the base station
  • the mapping scheme sends data on the PUSCH, and accordingly, the base station receives the data sent by the UE on the PUSCH with the TRP working mode and/or the beam mapping scheme, thereby implementing single-TRP transmission or multi-TRP-based transmission on the PUSCH.
  • the switching of transmissions, or the scheduling of beam mapping schemes improves the data transmission quality of the PUSCH.
  • the present invention also provides a data transmission device.
  • the implementation manner of 1 is also applicable to the data transmission apparatus provided in this embodiment, which will not be described in detail in this embodiment.
  • 11 to 16 are schematic structural diagrams of a data transmission device according to the present invention.
  • FIG. 11 is a schematic structural diagram of a data transmission apparatus according to an embodiment of the present invention.
  • the apparatus is applied to user equipment UE.
  • the data transmission device 110 includes: an acquisition module 1101 and a transmission module 1102, wherein:
  • the obtaining module 1101 is configured to obtain the control signaling sent by the base station; wherein, the control signaling carries the indication information of the TRP working mode and/or beam mapping scheme of the transmission access point, and the TRP working mode is based on a single For TRP transmission or multi-TRP-based transmission, the beam mapping scheme includes a mapping pattern between multiple uplink cooperative transmission beams corresponding to multiple TRPs and time units and/or information on the time units; the mapping pattern between the uplink cooperative transmission beams and the time unit and/or the information of the time unit;
  • the transmission module 1102 is configured to send uplink transmission to the base station in the TRP working mode and/or the beam mapping scheme.
  • the obtaining module 1101 includes: a first receiving unit 11011, configured to receive the first group message sent by the base station on the downlink channel ; wherein, the first group message carries the indication information of the TRP working mode.
  • the message may be downlink control signaling (DCI, Downlink Control Information) or other signaling transmitted on the PDCCH, or may be signaling transmitted on the PDSCH.
  • DCI Downlink Control Signaling
  • the specific form is not limited. That is, in some embodiments of the present disclosure, the first group message may be, for example, the first group DCI.
  • the downlink channel may be a physical downlink control channel PDCCH or a physical downlink shared channel PDSCH.
  • the downlink channel may be PDCCH.
  • the obtaining module 1101 further includes: a second receiving unit 11012, configured to receive the first message for the UE sent by the base station on the downlink channel (eg PDCCH or PDSCH) a specific message (for example, a first specific DCI); the decoding unit 11013 is configured to, according to the decoding strategy corresponding to the TRP working mode in the first group message (for example, the first group DCI), A specific message (eg, the first specific DCI decoding) to obtain the indication information of the beam mapping scheme.
  • a second receiving unit 11012 configured to receive the first message for the UE sent by the base station on the downlink channel (eg PDCCH or PDSCH) a specific message (for example, a first specific DCI); the decoding unit 11013 is configured to, according to the decoding strategy corresponding to the TRP working mode in the first group message (for example, the first group DCI), A specific message (eg, the first specific DCI decoding) to obtain the indication information of the beam mapping scheme.
  • the apparatus further includes a processing module 1103, which is configured to: configure a beam mapping scheme corresponding to the indication information according to high-level signaling sent by the base station; or, for the UE
  • the beam mapping scheme corresponding to the indication information is predefined.
  • the obtaining module 1101 includes: a third receiving unit 11014 configured to receive the second group sent by the base station on a downlink channel (eg PDCCH or PDSCH) group message (for example, the second group DCI); wherein, the second group message carries the indication information of the beam mapping scheme; the determining unit 11015 is configured to The indication information of the beam mapping scheme determines the corresponding TRP working mode.
  • a third receiving unit 11014 configured to receive the second group sent by the base station on a downlink channel (eg PDCCH or PDSCH) group message (for example, the second group DCI); wherein, the second group message carries the indication information of the beam mapping scheme; the determining unit 11015 is configured to The indication information of the beam mapping scheme determines the corresponding TRP working mode.
  • the obtaining module 1101 is configured as: a fourth receiving unit 11016, configured to receive a message sent by the base station on a downlink channel (eg, PDCCH or PDSCH) for the UE
  • the second specific message (for example, the second specific DCI) of the second specific message; wherein, the second specific message carries the indication information of the beam mapping scheme and/or the indication information of the TRP working mode.
  • the second specific message carries the indication information of the TRP working mode
  • the processing module 1103 is configured to: configure the indication information according to the high-level signaling sent by the base station the corresponding beam mapping scheme; or, pre-define the beam mapping scheme corresponding to the indication information for the UE.
  • the indication information of the beam mapping scheme carried in the control signaling represents a combination of a mapping pattern and a time unit selected by the base station, or indicates that the base station does not select a beam mapping scheme.
  • the indication information of the beam mapping scheme carried in the control signaling represents the mapping pattern and one of the time units; the apparatus further includes: a configuration module 1104 configured to configure the other one of the mapping pattern and the time unit according to high-layer signaling sent by the base station.
  • the apparatus further includes a decoding module 1105, which is configured to: adopt a decoding strategy corresponding to the TRP working mode to The DCI is decoded to obtain data scheduling information used by the physical uplink shared channel PUSCH; wherein the PUSCH is used to send the data to the base station, and the data scheduling information includes data transmission information based on codebook transmission or Data transmission information for codebook transmission.
  • a decoding module 1105 which is configured to: adopt a decoding strategy corresponding to the TRP working mode to The DCI is decoded to obtain data scheduling information used by the physical uplink shared channel PUSCH; wherein the PUSCH is used to send the data to the base station, and the data scheduling information includes data transmission information based on codebook transmission or Data transmission information for codebook transmission.
  • the base station after the base station sends DCI to the UE on the PDCCH, since the DCI carries the indication information of the TRP working mode and/or beam mapping scheme, the UE adopts the corresponding TRP working mode and/or beam mapping scheme under the scheduling of the base station
  • the mapping scheme sends data on the PUSCH, and accordingly, the base station receives the data sent by the UE on the PUSCH with the TRP working mode and/or the beam mapping scheme, thereby implementing single-TRP transmission or multi-TRP-based transmission on the PUSCH.
  • the switching of transmissions, or the scheduling of beam mapping schemes improves the data transmission quality of the PUSCH.
  • the present invention further provides a data transmission device. Since the data transmission device provided by the embodiments of the present invention corresponds to the data transmission methods provided by the above-mentioned embodiments, The implementation manner of the data transmission method is also applicable to the data transmission apparatus provided in this embodiment, which will not be described in detail in this embodiment. 17-22 are schematic structural diagrams of a data transmission device proposed according to the present invention.
  • FIG. 17 is a schematic structural diagram of a data transmission apparatus according to an embodiment of the present invention. The apparatus is applied to a base station.
  • the data transmission apparatus 170 includes: a sending module 1701 and a receiving module 1702, wherein:
  • the sending module 1701 is configured to send control signaling to the user equipment UE; wherein, the control signaling carries the indication information of the TRP working mode and/or beam mapping scheme of the transmission access point, and the TRP working mode is based on Transmission of a single TRP or transmission based on multiple TRPs, the beam mapping scheme includes a mapping pattern and/or information of the time unit between multiple uplink cooperative transmission beams corresponding to multiple TRPs and the time unit; a mapping pattern between multiple uplink cooperative transmission beams and time units and/or information on the time units;
  • a receiving module 1702 configured to receive data sent by the UE in the TRP working mode and/or the beam mapping scheme.
  • the sending module 1701 includes: a first sending unit 17011, configured to send the first group downlink control information to the UE on the physical downlink control channel PDCCH DCI; wherein, the first group of DCIs carry the indication information of the TRP working mode.
  • the sending module 1701 further includes: a second sending unit 17012, configured to send a first specific DCI for the UE to the UE; wherein the first specific DCI, It is used for decoding using the decoding strategy corresponding to the TRP working mode in the first group of DCIs, and carries the indication information of the beam mapping scheme.
  • a second sending unit 17012 configured to send a first specific DCI for the UE to the UE; wherein the first specific DCI, It is used for decoding using the decoding strategy corresponding to the TRP working mode in the first group of DCIs, and carries the indication information of the beam mapping scheme.
  • the apparatus further includes: a first configuration module 1703, configured to send, to the UE, high-layer signaling for configuring a beam mapping scheme corresponding to the indication information.
  • the sending module 1701 includes: a third sending unit 17013 configured to send the second group DCI to the UE on the PDCCH; wherein, the The second group of DCIs carry the indication information of the beam mapping scheme, and the indication information of the beam mapping scheme has a corresponding relationship with the TRP working mode.
  • the sending module 1701 includes: a fourth sending unit 17014, configured to send a second specific DCI for the UE to the UE on the PDCCH ; wherein, the second specific DCI carries the indication information of the beam mapping scheme and/or the indication information of the TRP working mode.
  • the second specific DCI carries the indication information of the TRP working mode
  • the first configuration module 1703 is configured to send to the UE for configuring the beam corresponding to the indication information High-level signaling of the mapping scheme.
  • the indication information of the beam mapping scheme carried in the control signaling represents a combination of a mapping pattern and a time unit selected by the base station, or indicates that the base station does not select a beam mapping scheme.
  • the indication information of the beam mapping scheme carried in the control signaling represents one of the mapping pattern and the time unit; the apparatus further includes: the first The second configuration module 1704 is configured to send the higher layer signaling to the UE to configure the other one of the mapping pattern and the time unit.
  • the apparatus further includes a scheduling module 1705, configured to: perform scheduling according to channel state CSI measurements to determine the TRP working mode and the beam mapping scheme At least one of; and/or beam management to determine at least one of the TRP working mode and the beam mapping scheme.
  • a scheduling module 1705 configured to: perform scheduling according to channel state CSI measurements to determine the TRP working mode and the beam mapping scheme At least one of; and/or beam management to determine at least one of the TRP working mode and the beam mapping scheme.
  • the base station after the base station sends DCI to the UE on the PDCCH, since the DCI carries the indication information of the TRP working mode and/or beam mapping scheme, the UE adopts the corresponding TRP working mode and/or beam mapping scheme under the scheduling of the base station
  • the mapping scheme sends data on the PUSCH, and accordingly, the base station receives the data sent by the UE on the PUSCH with the TRP working mode and/or the beam mapping scheme, thereby implementing single-TRP transmission or multi-TRP-based transmission on the PUSCH.
  • the switching of transmissions, or the scheduling of beam mapping schemes improves the data transmission quality of the PUSCH.
  • the present invention also provides a communication device and a readable storage medium.
  • FIG. 23 it is a block diagram of a data transmission device of a physical uplink shared channel according to an embodiment of the present invention.
  • Communication devices are intended to represent various forms of digital computers, such as laptop computers, desktop computers, workstations, personal digital assistants, servers, blade servers, mainframe computers, and other suitable computers.
  • Communication devices may also represent various forms of mobile devices, such as personal digital processors, cellular phones, smart phones, wearable devices, and other similar computing devices.
  • the components shown herein, their connections and relationships, and their functions are by way of example only, and are not intended to limit implementations of the inventions described and/or claimed herein.
  • the communication device includes: one or more processors 1100, a memory 1200, and interfaces for connecting various components, including a high-speed interface and a low-speed interface.
  • the various components are interconnected using different buses and may be mounted on a common motherboard or otherwise as desired.
  • the processor may process instructions executed within the communication device, including instructions stored in or on memory to display graphical information of the GUI on an external input/output device, such as a display device coupled to the interface.
  • multiple processors and/or multiple buses may be used with multiple memories and multiple memories, if desired.
  • multiple communication devices may be connected, with each device providing some of the necessary operations (eg, as a server array, a group of blade servers, or a multi-processor system).
  • a processor 1100 is used as an example.
  • the memory 1200 is the non-transitory computer-readable storage medium provided by the present invention.
  • the memory stores instructions executable by at least one processor, so that the at least one processor executes the data transmission method provided by the present invention.
  • the non-transitory computer-readable storage medium of the present invention stores computer instructions, and the computer instructions are used to cause the computer to execute the data transmission method provided by the present invention.
  • the memory 1200 can be used to store non-transitory software programs, non-transitory computer-executable programs, and modules, such as program instructions/modules corresponding to the data transmission method in the embodiments of the present invention (for example, appendix
  • the processor 1100 executes various functional applications and data processing of the server by running the non-transitory software programs, instructions and modules stored in the memory 1200, ie, implements the data transmission method in the above method embodiments.
  • the memory 1200 may include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application program required for at least one function; the storage data area may store data created according to the use of the positioning communication device, and the like. Additionally, memory 1200 may include high-speed random access memory, and may also include non-transitory memory, such as at least one magnetic disk storage device, flash memory device, or other non-transitory solid-state storage device. Optionally, the memory 1200 may optionally include memory located remotely from the processor 1100, and these remote memories may be connected to the positioning communication device through a network. Examples of such networks include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • the communication device for data transmission of the physical uplink shared channel may further include: an input device 1300 and an output device 1400 .
  • the processor 1100, the memory 1200, the input device 1300, and the output device 1400 may be connected by a bus or in other ways, and the connection by a bus is taken as an example in FIG. 22 .
  • the input device 1300 can receive input numerical or character information and generate key signal input related to user settings and functional control of the positioning communication device, such as a touch screen, keypad, mouse, trackpad, touchpad, pointing stick, one or more Input devices such as mouse buttons, trackballs, joysticks, etc.
  • the output device 1400 may include a display device, auxiliary lighting devices (eg, LEDs), haptic feedback devices (eg, vibration motors), and the like.
  • the display device may include, but is not limited to, a liquid crystal display (LCD), a light emitting diode (LED) display, and a plasma display. In some implementations, the display device may be a touch screen.
  • Various implementations of the systems and techniques described herein can be implemented in digital electronic circuitry, integrated circuit systems, application specific ASICs (application specific integrated circuits), computer hardware, firmware, software, and/or combinations thereof. These various embodiments may include being implemented in one or more computer programs executable and/or interpretable on a programmable system including at least one programmable processor that The processor, which may be a special purpose or general-purpose programmable processor, may receive data and instructions from a storage system, at least one input device, and at least one output device, and transmit data and instructions to the storage system, the at least one input device, and the at least one output device an output device.
  • the processor which may be a special purpose or general-purpose programmable processor, may receive data and instructions from a storage system, at least one input device, and at least one output device, and transmit data and instructions to the storage system, the at least one input device, and the at least one output device an output device.
  • machine-readable medium and “computer-readable medium” refer to any computer program product, apparatus, and/or apparatus for providing machine instructions and/or data to a programmable processor ( For example, magnetic disks, optical disks, memories, programmable logic devices (PLDs)), including machine-readable media that receive machine instructions as machine-readable signals.
  • machine-readable signal refers to any signal used to provide machine instructions and/or data to a programmable processor.
  • the systems and techniques described herein may be implemented on a computer having a display device (eg, a CRT (cathode ray tube) or LCD (liquid crystal display) monitor) for displaying information to the user ); and a keyboard and pointing device (eg, a mouse or trackball) through which a user can provide input to the computer.
  • a display device eg, a CRT (cathode ray tube) or LCD (liquid crystal display) monitor
  • a keyboard and pointing device eg, a mouse or trackball
  • Other kinds of devices can also be used to provide interaction with the user; for example, the feedback provided to the user can be any form of sensory feedback (eg, visual feedback, auditory feedback, or tactile feedback); and can be in any form (including acoustic input, voice input, or tactile input) to receive input from the user.
  • the systems and techniques described herein may be implemented on a computing system that includes back-end components (eg, as a data server), or a computing system that includes middleware components (eg, an application server), or a computing system that includes front-end components (eg, a user's computer having a graphical user interface or web browser through which a user may interact with implementations of the systems and techniques described herein), or including such backend components, middleware components, Or any combination of front-end components in a computing system.
  • the components of the system may be interconnected by any form or medium of digital data communication (eg, a communication network). Examples of communication networks include: Local Area Networks (LANs), Wide Area Networks (WANs), and the Internet.
  • a computer system can include clients and servers.
  • Clients and servers are generally remote from each other and usually interact through a communication network.
  • the relationship of client and server arises by computer programs running on the respective computers and having a client-server relationship to each other.
  • the UE adopts the corresponding TRP work under the base station scheduling.
  • the mode and/or beam mapping scheme sends data on the PUSCH, and accordingly, the base station receives the data sent by the UE in the TRP working mode and/or beam mapping scheme on the PUSCH, thereby realizing single TRP transmission on the PUSCH Or the switching of transmission based on multiple TRPs, or the scheduling of the beam mapping scheme, improves the data transmission quality of the PUSCH.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提出了一种数据传输方法、装置和通信设备,涉及无线通信技术领域。该方案为:获取基站发送的控制信令;其中,控制信令,携带有传输接入点TRP工作模式和/或波束映射方案的指示信息,TRP工作模式是基于单TRP的传输或基于多TRP的传输,波束映射方案包括面向多TRP对应的多个上行协作发送波束与时间单位之间的映射图样和/或时间单位的信息;以TRP工作模式和/或波束映射方案向基站发送数据。

Description

一种数据传输方法及装置 技术领域
本发明涉及移动通信领域,特别是指一种数据传输方法及装置。
背景技术
在进行高频段的移动通信时,随着波长的减小,人体或车辆等障碍物所产生的阻挡效应将更为显著。因此,随着移动通信所采用的电磁波的频段不断升高,从保证网络覆盖的目的出发,需要将原有的采用单传输接入点(TRP,Transmission Receive Point)的方式,调整为基于多TRP的传输方式进行移动通信,利用多个TRP之间的协作,从多个TRP对应的多角度波束进行通信,从而降低阻挡效应带来的不利影响。
发明内容
本发明第一方面实施例提出了一种数据传输方法,应用于用户设备(UE,User Equipment),包括:获取基站发送的控制信令;其中,所述控制信令,携带有传输接入点TRP工作模式和/或波束映射方案的指示信息,所述TRP工作模式是基于单TRP的传输或基于多TRP的传输,所述波束映射方案包括面向多TRP对应的多个上行协作发送波束与时间单位之间的映射图样和/或所述时间单位的信息;以所述TRP工作模式和/或波束映射方案向所述基站发送数据。
可选地,所述获取基站发送的控制信令,包括:接收所述基站在物理下行控制信道(PDCCH,Physical Downlink Control Channel)上发送的第一群组下行控制信息DCI;其中,所述第一群组DCI携带有所述TRP工作模式的指示信息。
可选地,所述接收所述基站在物理下行控制信道PDCCH上发送的第一群组下行控制信息DCI之后,还包括:接收所述基站在所述PDCCH上发送的对应所述UE的第一特定DCI;根据所述第一群组DCI中所述TRP工作模式对应的解码策略,对所述第一特定DCI解码,以得到所述波束映射方案的指示信息。
可选地,所述以所述TRP工作模式和/或波束映射方案向所述基站发送数据之前,还包括:根据所述基站发送的高层信令,配置所述指示信息对应的波束映射方案;或者,对所述UE预定义所述指示信息对应的波束映射方案。
可选地,所述获取基站发送的控制信令,包括:接收所述基站在PDCCH上发送的第二群 组DCI;其中,所述第二群组DCI携带有所述波束映射方案的指示信息;根据所述第二群组DCI携带的所述波束映射方案的指示信息,确定对应的所述TRP工作模式。
可选地,所述获取基站发送的控制信令,包括:接收基站在PDCCH上发送的针对所述UE的第二特定消息;其中,所述第二特定消息携带有所述波束映射方案的指示信息和/或所述TRP工作模式的指示信息。
可选地,所述第二特定DCI携带有所述TRP工作模式的指示信息,所述以所述TRP工作模式和/或波束映射方案向所述基站发送数据之前,还包括:根据所述基站发送的高层信令,配置所述指示信息对应的波束映射方案;或者,对所述UE预定义所述指示信息对应的波束映射方案。
可选地,所述控制信令携带的波束映射方案的指示信息,表征所述基站选定的映射图样与时间单位的组合,或者,表征所述基站未选定波束映射方案。
可选地,所述控制信令携带的波束映射方案的指示信息,表征所述映射图样和所述时间单位中的一个;所述以所述TRP工作模式和/或波束映射方案向所述基站发送数据之前,还包括:根据所述基站发送的高层信令,配置所述映射图样和所述时间单位中的另一个。
可选地,所述以所述TRP工作模式和/或波束映射方案向所述基站发送数据之前还包括:采用所述TRP工作模式对应的解码策略,对所述基站发送的针对所述UE的特定DCI解码,以得到物理上行共享信道(PUSCH,physical uplink shared channel)采用的数据调度信息;其中,所述PUSCH,用于向所述基站发送所述数据,所述数据调度信息包括基于码本传输的数据发送信息或基于非码本传输的数据发送信息。
本发明第二方面实施例提出了一种数据传输方法,应用于基站,包括:向用户设备UE发送控制信令;其中,所述控制信令,携带有传输接入点TRP工作模式和/或波束映射方案的指示信息,所述TRP工作模式是基于单TRP的传输或基于多TRP的传输,所述波束映射方案包括面向多TRP对应的多个上行协作发送波束与时间单位之间的映射图样和/或所述时间单位的信息;接收所述UE以所述TRP工作模式和/或波束映射方案发送的数据。
可选地,所述向用户设备UE发送控制信令,包括:在物理下行控制信道PDCCH上向所述UE发送第一群组下行控制信息DCI;其中,所述第一群组DCI携带有所述TRP工作模式的指示信息。
可选地,所述向用户设备UE发送控制信令之后,还包括:向所述UE发送针对所述UE的第一特定DCI;其中,所述第一特定DCI,用于采用所述第一群组DCI中所述TRP工作模式对应的解码策略解码,携带有所述波束映射方案的指示信息。
可选地,所述接收所述UE以所述TRP工作模式和/或波束映射方案发送的数据之前,还 包括:向所述UE发送用于配置所述指示信息对应波束映射方案的高层信令。
可选地,所述向用户设备UE发送控制信令,包括:在PDCCH上向所述UE发送第二群组DCI;其中,所述第二群组DCI携带有所述波束映射方案的指示信息,所述波束映射方案的指示信息与TRP工作模式存在对应关系。
可选地,所述向用户设备UE发送控制信令,包括:在所述PDCCH上向所述UE发送针对所述UE的第二特定DCI;其中,所述第二特定DCI携带有所述波束映射方案的指示信息和/或所述TRP工作模式的指示信息。
可选地,所述第二特定DCI携带有所述TRP工作模式的指示信息,所述接收所述UE以所述TRP工作模式和/或波束映射方案发送的数据之前,还包括:向所述UE发送用于配置所述指示信息对应波束映射方案的高层信令。
可选地,所述控制信令携带的波束映射方案的指示信息,表征所述基站选定的映射图样与时间单位的组合,或者,表征所述基站未选定波束映射方案。
可选地,所述控制信令携带的波束映射方案的指示信息,表征所述映射图样和所述时间单位中的一个;所述接收所述UE以所述TRP工作模式和/或波束映射方案发送的数据之前,还包括:向UE发送所述高层信令,以配置所述映射图样和所述时间单位中的另一个。
可选地,所述向用户设备UE发送控制信令之前还包括:根据信道状态CSI测量量进行调度,以确定所述TRP工作模式和所述波束映射方案中的至少一个;和/或,波束管理以确定所述TRP工作模式和所述波束映射方案中的至少一个。
本发明第三方面实施例提出了一种数据传输装置,应用于UE,所述装置包括:
获取模块,被配置为获取基站发送的控制信令;其中,所述控制信令,携带有传输接入点TRP工作模式和/或波束映射方案的指示信息,所述TRP工作模式是基于单TRP的传输或基于多TRP的传输,所述波束映射方案包括面向多TRP对应的多个上行协作发送波束与时间单位之间的映射图样和/或所述时间单位的信息;多TRP对应的多个上行协作发送波束与时间单位之间的映射图样和/或所述时间单位的信息
传输模块,被配置为以所述TRP工作模式和/或波束映射方案向所述基站发送数据。
可选地,所述获取模块,包括:第一接收单元,被配置为接收所述基站在物理下行控制信道PDCCH上发送的第一群组下行控制信息DCI;其中,所述第一群组DCI携带有所述TRP工作模式的指示信息。
可选地,所述获取模块,还包括:第二接收单元,被配置为接收所述基站在所述PDCCH上发送的针对所述UE的第一特定DCI;解码单元,被配置为根据所述第一群组DCI中所述TRP工作模式对应的解码策略,对所述第一特定DCI解码,以得到所述波束映射方案的指示 信息。
可选地,所述装置,还包括处理模块,被配置为:根据所述基站发送的高层信令,配置所述指示信息对应的波束映射方案;或者,对所述UE预定义所述指示信息对应的波束映射方案。
可选地,所述获取模块,包括:第三接收单元,被配置为接收所述基站在PDCCH上发送的第二群组DCI;其中,所述第二群组DCI携带有所述波束映射方案的指示信息;确定单元,被配置为根据所述第二群组DCI携带的所述波束映射方案的指示信息,确定对应的所述TRP工作模式。
可选地,所述获取模块,被配置为:第四接收单元,用于接收基站在PDCCH上发送的针对所述UE的第二特定DCI;其中,所述第二特定DCI携带有所述波束映射方案的指示信息和/或所述TRP工作模式的指示信息。
可选地,所述第二特定DCI携带有所述TRP工作模式的指示信息,所述装置,还包括处理模块,被配置为:根据所述基站发送的高层信令,配置所述指示信息对应的波束映射方案;或者,对所述UE预定义所述指示信息对应的波束映射方案。
可选地,所述控制信令携带的波束映射方案的指示信息,表征所述基站选定的映射图样与时间单位的组合,或者,表征所述基站未选定波束映射方案。
可选地,所述控制信令携带的波束映射方案的指示信息,表征所述映射图样和所述时间单位中的一个;所述装置,还包括:配置模块,被配置为根据所述基站发送的高层信令,配置所述映射图样和所述时间单位中的另一个。
可选地,所述装置还包括解码模块,被配置为:采用所述TRP工作模式对应的解码策略,对所述基站发送的针对所述UE的特定DCI解码,以得到物理上行共享信道PUSCH采用的数据调度信息;其中,所述数据调度信息包括基于码本传输的数据发送信息或基于非码本传输的数据发送信息。
本发明第四方面实施例提出了一种数据传输装置,应用于基站,所述装置包括:发送模块,被配置为向用户设备UE发送控制信令;其中,所述控制信令,携带有传输接入点TRP工作模式和/或波束映射方案的指示信息,所述TRP工作模式是基于单TRP的传输或基于多TRP的传输,所述波束映射方案包括面向多TRP对应的多个上行协作发送波束与时间单位之间的映射图样和/或所述时间单位的信息;多TRP对应的多个上行协作发送波束与时间单位之间的映射图样和/或所述时间单位的信息;接收模块,被配置为接收所述UE以所述TRP工作模式和/或波束映射方案发送的数据。
可选地,所述发送模块,包括:第一发送单元,被配置为在物理下行控制信道PDCCH上 向所述UE发送第一群组下行控制信息DCI;其中,所述第一群组DCI携带有所述TRP工作模式的指示信息。
可选地,所述发送模块,还包括:第二发送单元,被配置为向所述UE发送针对所述UE的第一特定DCI;其中,所述第一特定DCI,用于采用所述第一群组DCI中所述TRP工作模式对应的解码策略解码,携带有所述波束映射方案的指示信息。
可选地,所述装置,还包括:第一配置模块,被配置为向所述UE发送用于配置所述指示信息对应波束映射方案的高层信令。
可选地,所述发送模块,包括:第三发送单元,被配置为在所述PDCCH上向所述UE发送第二群组DCI;其中,所述第二群组DCI携带有所述波束映射方案的指示信息,所述波束映射方案的指示信息与TRP工作模式存在对应关系。
可选地,所述发送模块,包括:第四发送单元,被配置为在所述PDCCH上向所述UE发送针对所述UE的第二特定DCI;其中,所述第二特定DCI携带有所述波束映射方案的指示信息和/或所述TRP工作模式的指示信息。
可选地,所述第二特定DCI携带有所述TRP工作模式的指示信息,所述装置,还包括:第一配置模块,被配置为向所述UE发送用于配置所述指示信息对应波束映射方案的高层信令。
可选地,所述控制信令携带的波束映射方案的指示信息,表征所述基站选定的映射图样与时间单位的组合,或者,表征所述基站未选定波束映射方案。
可选地,所述控制信令携带的波束映射方案的指示信息,表征所述映射图样和所述时间单位中的一个;所述装置,还包括:第二配置模块,被配置为向所述UE发送所述高层信令,以配置所述映射图样和所述时间单位中的另一个。
可选地,所述装置,还包括调度模块,被配置为:根据信道状态CSI测量量进行调度,以确定所述TRP工作模式和所述波束映射方案中的至少一个;和/或,波束管理以确定所述TRP工作模式和所述波束映射方案中的至少一个。
本发明第五方面实施例提出了一种通信设备,包括处理器、收发器、存储器以及存储在所述存储器上的计算机程序,所述处理器运行所述计算机程序,以实现如第一方面实施例提出的数据传输方法。
本发明第六方面实施例提出了一种通信设备,包括处理器、收发器、存储器以及存储在所述存储器上的计算机程序,所述处理器运行所述计算机程序,以实现如第二方面实施例提出的数据传输方法。
本发明第七方面实施例提出了一种处理器可读存储介质,所述处理器可读存储介质存储 有计算机程序,所述计算机程序用于使所述处理器执行第一方面实施例提出的数据传输方法,或者,第二方面实施例提出的数据传输方法。
本发明实施例提供的一种数据传输方法及装置,通过基站向UE发送控制信令之后,由于该控制信令携带有TRP工作模式和/或波束映射方案的指示信息,从而UE在基站调度下采用对应的TRP工作模式和/或波束映射方案在上行信道上发送数据,相应地,基站接收该UE以所述TRP工作模式和/或波束映射方案发送的数据,从而可以应用于PUSCH和PUCCH等信道,实现了在这些信道上进行单TRP的传输或基于多TRP的传输的切换,或者,波束映射方案的调度,提高了数据传输质量。
本发明附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为本发明实施例提供的一种数据传输方法的流程示意图;
图2为本发明实施例提供的另一种数据传输方法的流程示意图;
图3为本发明实施例提供的另一种数据传输方法的流程示意图;
图4为本发明实施例提供的另一种数据传输方法的流程示意图;
图5为本发明实施例提供的另一种数据传输方法的流程示意图;
图6为本发明实施例提供的一种数据传输方法的流程图;
图7为本发明实施例提供的另一种数据传输方法的流程示意图;
图8为本发明实施例提供的另一种数据传输方法的流程示意图;
图9为本发明实施例提供的另一种数据传输方法的流程示意图;
图10为本发明实施例提供的另一种数据传输方法的流程示意图;
图11为本发明提出的一种数据传输装置的结构示意图;
图12为本发明提出的一种数据传输装置的结构示意图;
图13为本发明提出的一种数据传输装置的结构示意图;
图14为本发明提出的一种数据传输装置的结构示意图;
图15为本发明提出的一种数据传输装置的结构示意图;
图16为本发明提出的一种数据传输装置的结构示意图;
图17为本发明提出的另一种数据传输装置的结构示意图;
图18为本发明提出的另一种数据传输装置的结构示意图;
图19为本发明提出的另一种数据传输装置的结构示意图;
图20为本发明提出的另一种数据传输装置的结构示意图;
图21为本发明提出的另一种数据传输装置的结构示意图;
图22为本发明提出的另一种数据传输装置的结构示意图;
图23为本发明提出的一种通信设备的结构示意图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
相关技术中,在基于多TRP的传输或者面板之间协作方面,仅在物理下行共享信道(PDSCH,physical downlink shared channel)进行了应用,应用范围受限。
针对这一问题,本发明实施例提供了数据传输方法及装置。
图1为本发明实施例提供的一种数据传输方法的流程示意图,由UE执行,以在基站对TRP工作模式和/或对波束映射方案的调度下,在上行信道上灵活实现终端面向基站的基于多TRP的传输或基于单TRP的传输的数据传输。其中,上行信道典型的可以为上行控制信道PDCCH和/或上行共享信道PUSCH。其中,上行信道典型的可以为上行共享信道PUSCH。如图1所示,该数据传输方法包括以下步骤:
步骤101,获取基站发送的控制信令。
在本公开的一些实施例中,控制信令可以是PDCCH上传输的下行控制信令(DCI,Downlink Control Information)或是其他信令,或者,可以是PDSCH上传输的控制信令,本实施例中对于控制信令的具体形式不作限定。
控制信令携带有传输接入点TRP工作模式和/或波束映射方案的指示信息,TRP工作模式是基于单TRP的传输或基于多TRP的传输,所述波束映射方案包括面向多TRP对应的多个协作发送上行波束与时间单位之间的映射图样和/或所述时间单位的信息。
UE获取到该控制信令后,基于该控制信令携带的指示信息,确定基站调度指定的基于单TRP的传输或基于多TRP的传输。在基站调度指定TRP工作模式为基于多TRP的传输的情况下,还可以具体指定波束映射方案,包括面向多TRP对应的多个上行波束与时间单位之间的映射图样和时间单位中的至少一个,以便UE在基站调度下在基站的基于多TRP的传输和基于单TRP的传输的数据传输之间进行灵活切换。
可选地,基于多TRP的传输对应波束与时间单位之间的映射图样可以为下列中的一种,但不限于以下列举几种的可能:
1)周期映射,两个TCI(transmission configuration indication)对应的波束(采用波束方向的表示TCI state标注为TCI 1和TCI 2)依次循环映射到配置的多个时间单位上,例如在包含4个时间单位的情况下,TCI 1和TCI2循环映射到4个时间单位,即映射顺序为TCI 1、TCI2、TCI1和TCI2;
2)连续映射,两个TCI对应的波束TCI 1和TCI 2连续循环映射到配置的多个时间单位上,例如在包含4个时间单位的情况下,TCI 1和TCI2分别重复若干次每当一个TCI达到重复次数时切换为另一个TCI进行映射,例如在包含4个时间单位的情况下,映射顺序为TCI 1、TCI1、TCI2和TCI2,又例如在包含8个时间单位的情况下,映射顺序为TCI 1、TCI1、TCI2、TCI2、TCI 1、TCI1、TCI2和TCI2;
3)对半映射(half-half),两个TCI对应的波束TCI 1和TCI 2,分别映射到多个时间单位中的处于前半部分时间单位,以及后半部分时间单位,例如包含8个时间单位的情况下,映射顺序为TCI 1、TCI1、TCI1、TCI1、TCI 2、TCI2、TCI2和TCI2;
4)比特映射,通过比特图(Bitmap)指示具体的每一个TRP对应波束与时间单位之间的映射图样。
可选地,对于前述提及的时间单位,可选方案可以为下列中的一种,但不限于以下列举几种的可能:
1)名义传输时机(nominal repetition);
2)实际传输时机(actual repetition);
3)按时隙映射(slot-level)。
需要说明的是,前文在提及基于多TRP的传输时,通常以两个TRP进行举例,这是由于目前在基于多TRP的传输协作的相关技术中,限定为最多两个TRP,本实施例可以适用于基于更多TRP的传输的情况,对此并不限定。
步骤102,以该TRP工作模式和/或波束映射方案向基站发送数据。
可选地,UE在PUSCH上,以该TRP工作模式和/或波束映射方案向基站发送上行传输(PUSCHtransmission)。在本公开实施例中,上行传输可以为信令、数据、信令/数据混合传输。
可选地,UE在PUCCH上,以该TRP工作模式和/或波束映射方案向基站发送上行传输(PUCCHtransmission)。在本公开实施例中,上行传输可以为信令、数据、信令&数据混合传输。
UE以该基站调度指定的该TRP工作模式和/或波束映射方案向基站发送上行传输。由于UE采用的重传机制与TRP工作模式,以及波束映射方案之间存在一定的关联性,通过基站对TRP工作模式和/或波束映射方案的调度,实现了资源的优化配置,从而提高了上行信道的通信质量。
本实施例中,通过基站向UE发送控制信令之后,由于该控制信令携带有TRP工作模式和/或波束映射方案的指示信息,从而UE在基站调度下采用对应的TRP工作模式和/或波束映射方案在上行信道上发送上行传输,相应地,基站接收该UE以所述TRP工作模式和/或波束映射方案发送的上行传输,从而可以应用于PUSCH和PUCCH等信道,实现了在这些信道上进行单TRP的传输或基于多TRP的传输的切换,或者,波束映射方案的调度,提高了传输质量。
本实施例提供了另一种数据传输方法,图2为本发明实施例提供的另一种数据传输方法的流程示意图,由UE执行。本实施提供的方法,基站仅需要对UE的TRP工作模式进行调度,向UE通知基站调度所指定的TRP工作模式是单TRP的传输或者是基于多TRP的传输。
如图2所示,该方法可以包括以下步骤:
步骤201,接收基站发送的第一群组消息。
其中,第一群组消息携带有TRP工作模式的指示信息。TRP工作模式是基于单TRP的传输或者是基于多TRP的传输。
在本公开的一些实施例中,消息可以是PDCCH上传输的下行控制信令(DCI,Downlink Control Information)或是其他信令,或者,可以是PDSCH上传输的信令,本实施例中对于消息的具体形式不作限定。即:在本公开的一些实施例中,第一群组消息示例性的可以为第一群组DCI。
第一群组消息是由基站在基于参数,从基于单TRP的传输和基于多TRP的传输模式中确定一种适合UE的TRP工作模式之后,生成的携带有TRP工作模式的指示信息的群组消息。在一些实施例中,参数可以为以下的任意一种或多种:波束管理,对上行/下行信道状态进行信道质量测量得到的CSI测量量,调度TRP工作模式。
第一群组是基站发送至一组UE,其中包含执行本实施例的UE。UE根据预先接收到基站发送的配置信息或通信协议或条件参数或预存储的参数,从而获知该UE在第一群组消息中对应的信息比特位置,以及获知用于解扰的RNTI。在一些实施例中:所述第一群组消息为具有第一数量的比特位的比特位图(bitmap),该第一群组消息的每一个比特位对应一个或多个UE,以指示该一个或多个UE所对应的用于解扰的RNTI。在一些实施例中,UE可以根 据高层基站发送的配置信息,确定该UE对应的比特位。在另一些实施例中,UE可以根据相应的通信协议,确定该UE对应的比特位。在又一些实施例中,UE可以根据条件参数,确定该UE对应的比特位;其中条件参数可以为以下的任一种:信道条件、负载条件,等。在又一些实施例中,UE可以根据预存储的参数,确定该UE对应的比特位;其中预存储的参数可以为以下的任意一种:UE等级(UEclass)、UE标识(UEID),等。
UE在接收到第一群组消息之后,根据已获知的RNTI进行解扰,并读取自身对应的信息比特位置,以得到该UE对应的TRP工作模式。
步骤202,在上行信道以该TRP工作模式发送上行传输。
可选地,UE在PUSCH上,以该TRP工作模式向基站发送上行传输(PUSCHtransmission)。在本公开实施例中,上行传输可以为信令、数据、信令/数据混合传输。
可选地,UE在PUCCH上,以该TRP工作模式向基站发送上行传输(PUCCHtransmission)。在本公开实施例中,上行传输可以为信令、数据、信令&数据混合传输。
可选地,UE获取到第一群组消息携带的TRP工作模式之后,采用该TRP工作模式对应的解码策略,对基站向UE发送的对应于UE的特定消息进行解码,以确定基站对UE配置的数据调度信息,例如:基于码本传输的数据发送信息或者基于非码本传输的数据发送信息。根据基于码本传输的数据发送信息或者基于非码本传输的数据发送信息,UE采用基站调度指定的基于单TRP的传输或基于多TRP的传输工作模式在上行信道(例如PUSCH或PDSCH)发送数据。
在本公开的一些实施例中,该特定消息可以为特定的DCI。
在TRP工作模式为基于多TRP的传输的情况下,由于UE已预先由基站配置了波束映射方案,或者,UE已预定义了波束映射方案,从而UE可以执行该波束映射方案。
例如:基站可以根据基站向UE发送的信令,如RRC信令,对UE配置该波束映射方案。从而在TRP工作模式为基于多TRP的传输的情况下,UE根据配置的波束映射方案,在上行信道(例如PUSCH或PDSCH)以基于多TRP传输的工作模式发送数据。又例如:基站可以根据通信协议确定UE所对应的波束映射方案。还例如:基站可以根据条件参数确定UE所对应的波束映射方案;其中条件参数可以为以下的任意一种:信道条件、负载条件,等。再例如:基站可以根据预存储的参数确定UE所对应的波束映射方案;其中预存储的参数可以为以下的任意一种:UE等级(UEclass)、UE标识(UEID),等。
可选地,波束映射方案包括基于多TRP的传输对应波束与时间单位之间的映射图样和/或时间单位。其中,基于多TRP的传输对应波束与时间单位之间的映射图样可以为下列中的一种,但不限于以下列举几种的可能:
1)周期映射,两个TCI(transmission configuration indication)对应的波束(采用波束方向的表示TCI state标注为TCI 1和TCI 2)依次循环映射到配置的多个时间单位上,例如在包含4个时间单位的情况下,TCI 1和TCI2循环映射到4个时间单位,即映射顺序为TCI 1、TCI2、TCI1和TCI2;
2)连续映射,两个TCI对应的波束TCI 1和TCI 2连续循环映射到配置的多个时间单位上,例如在包含4个时间单位的情况下,TCI 1和TCI2分别重复若干次每当一个TCI达到重复次数时切换为另一个TCI进行映射,例如在包含4个时间单位的情况下,映射顺序为TCI 1、TCI1、TCI2和TCI2,又例如在包含8个时间单位的情况下,映射顺序为TCI 1、TCI1、TCI2、TCI2、TCI 1、TCI1、TCI2和TCI2;
3)对半映射(half-half),两个TCI对应的波束TCI 1和TCI 2,分别映射到多个时间单位中的处于前半部分时间单位,以及后半部分时间单位,例如包含8个时间单位的情况下,映射顺序为TCI 1、TCI1、TCI1、TCI1、TCI 2、TCI2、TCI2和TCI2;
4)比特映射,通过比特图(Bitmap)指示具体的每一个TRP对应波束与时间单位之间的映射图样。
对于前述提及的时间单位,可选方案可以为下列中的一种,但不限于以下列举几种的可能:
1)名义传输时机(nominal repetition);
2)实际传输时机(actual repetition);
3)按时隙映射(slot-level)。
需要说明的是,前文在提及基于多TRP的传输时,通常以两个TRP进行举例,这是由于目前在基于多TRP的传输协作的相关技术中,限定为最多两个TRP,本实施例可以适用于基于更多TRP的传输的情况,对此并不限定。
本实施例中,通过基站在PDCCH上向UE发送DCI之后,由于该DCI携带有TRP工作模式和/或波束映射方案的指示信息,从而UE在基站调度下采用对应的TRP工作模式和/或波束映射方案在PUSCH上发送数据,相应地,基站接收该UE在PUSCH上以所述TRP工作模式和/或波束映射方案发送的数据,从而实现了在PUSCH上进行单TRP的传输或基于多TRP的传输的切换,或者,波束映射方案的调度,提高了PUSCH的数据传输质量。
图3为本发明实施例提供的另一种数据传输方法的流程示意图,由UE执行。本实施提供的方法,基站对UE的TRP工作模式和波束映射方案进行调度,UE获知基站调度所指定的TRP工作模式是单TRP的传输或者是基于多TRP的传输,以及波束映射方案,并据此在上行 信道上进行数据发送。
如图3所示,该方法可以包括以下步骤。
步骤301,接收基站发送的第一群组消息。
其中,第一群组消息携带有TRP工作模式的指示信息。TRP工作模式是基于单TRP的传输或者是基于多TRP的传输。
在本公开的一些实施例中,消息可以是PDCCH上传输的下行控制信令(DCI,Downlink Control Information)或是其他信令,或者,可以是PDSCH上传输的信令,本实施例中对于消息的具体形式不作限定。即:在本公开的一些实施例中,第一群组消息示例性的可以为第一群组DCI。第一群组消息是由基站在基于参数,从基于单TRP的传输和基于多TRP的传输模式中确定一种适合UE的TRP工作模式之后,生成的携带有TRP工作模式的指示信息的群组消息。在一些实施例中,该参数可以包括以下任一种:波束管理,或者是对上行/下行信道状态进行信道质量测量得到的CSI测量量,调度TRP工作模式,等。
第一群组消息由基站发送至一组UE,其中包含执行本实施例的UE。UE预先接收到基站通过高层信令发送的配置信息,从而已获知该UE在第一群组DCI中对应的信息比特位置,以及获知用于解扰的RNTI。UE在接收到第一群组DCI之后,根据已获知的RNTI进行解扰,并读取自身对应的信息比特位置,以得到该UE对应的TRP工作模式。
步骤302,接收所述基站发送的针对UE的第一特定消息。
第一特定消息是针对UE发送的,用于对UE进行动态配置,其中,第一特定消息中携带有数据调度信息,数据调度信息包括基于码本传输的数据发送信息或基于非码本传输的数据发送信息,在TRP工作模式为基于多TRP的传输的情况下,第一特定消息还包括波束映射方案的指示信息。
在本公开的一些实施例中,该第一特定消息可以为DCI,即第一特定DCI。
可选地,波束映射方案包括映射图样和时间单位。基于多TRP的传输对应波束与时间单位之间的映射图样可以为下列中的一种,但不限于以下列举几种的可能:
1)周期映射,两个TCI对应的波束(采用波束方向的表示TCI state标注为TCI 1和TCI 2)依次循环映射到配置的多个时间单位上,例如在包含4个时间单位的情况下,TCI 1和TCI2循环映射到4个时间单位,即映射顺序为TCI 1、TCI2、TCI1和TCI2;
2)连续映射,两个TCI对应的波束TCI 1和TCI 2连续循环映射到配置的多个时间单位上,例如在包含4个时间单位的情况下,TCI 1和TCI2分别重复若干次每当一个TCI达到重复次数时切换为另一个TCI进行映射,例如在包含4个时间单位的情况下,映射顺序为TCI 1、TCI1、TCI2和TCI2,又例如在包含8个时间单位的情况下,映射顺序为TCI 1、 TCI1、TCI2、TCI2、TCI 1、TCI1、TCI2和TCI2;
3)对半映射(half-half),两个TCI对应的波束TCI 1和TCI 2,分别映射到多个时间单位中的处于前半部分时间单位,以及后半部分时间单位,例如包含8个时间单位的情况下,映射顺序为TCI 1、TCI1、TCI1、TCI1、TCI 2、TCI2、TCI2和TCI2;
4)比特映射,通过比特图(Bitmap)指示具体的每一个TRP对应波束与时间单位之间的映射图样。
可选地,对于前述提及的时间单位,可选方案可以为下列中的一种,但不限于以下列举几种的可能:
1)名义传输时机(nominal repetition);
2)实际传输时机(actual repetition);
3)按时隙映射(slot-level)。
需要说明的是,前文在提及基于多TRP的传输时,通常以两个TRP进行举例,这是由于目前在基于多TRP的传输协作的相关技术中,限定为最多两个TRP,本实施例可以适用于基于更多TRP的传输的情况,对此并不限定。
步骤303,根据第一群组消息中TRP工作模式对应的解码策略,对第一特定消息进行解码。
在确定出UE对应的TRP工作模式之后,UE即可获知基站通过下行信道(例如PDCCH或PDSCH)下发的第一特定消息(例如第一特定DCI)中所需读取的特定信息域所在的比特位置,这是由于,UE已预先配置了不同TRP工作模式下针对UE的第一特定消息的解码策略,该解码策略指示了UE所需读取的特定信息域所在的比特位置,UE基于该解码策略进行解码,读取对应的比特位置。
若该UE的TRP工作模式为基于多TRP的传输,则对第一特定消息解码得到波束映射方案的指示信息,以及数据调度信息,例如基于码本传输的数据发送信息或者基于非码本传输的数据发送信息等。若该UE的TRP工作模式为基于单TRP的传输,则对第一特定消息解码得到数据调度信息。
可选地,波束映射方案的指示信息,可以是占用若干个比特的标识符,对应波束映射方案中的映射图样,或者对应时间单位,或者对应映射图样和时间单位的组合。具体基于标识符确定具体映射方案的方式至少存在以下几种可能的实现方式:
作为第一种可能的实现方式,基站预先发送了映射图样和时间单位中的一个,从而UE已预先配置了映射图样或时间单位。基站还通过发送或者对该UE预定义了标识符与映射图样和时间单位中的另一个之间的对应关系,从而UE可以根据第一特定消息中的标识符,确 定对应的映射图样或时间单位。
例如:基站通过RRC信令配置映射图样,通过该RRC信令或者其他高层信令配置了标识符与时间单位之间的对应关系。在接收到第一特定消息(例如第一特定DCI)之后,UE通过第一特定消息中的标识符,确定对应的时间单位。具体标识符与时间单位之间的对应关系如下表所示1。
标识符 时间单位
1 名义传输时机
2 实际传输时机
3 按时隙映射
表1标识符与时间单位之间的对应关系之一
可以理解的是,表1中的每一个元素、每一条对应关系,都是独立存在的;这些元素、对应关系被示例性的列在同一张表格中,但是并不代表表格中的所有元素、对应关系必须根据表格1中所示的同时存在。其中每一个元素的值和每一对应关系,是不依赖于表1中任何其他元素值或对应关系。因此本领域内技术人员可以理解,该表1中的每一个元素的取值、每一条对应关系,各种都是一个独立的实施例。
又例如:基站通过RRC信令配置时间单位,通过该RRC信令或者其他高层信令配置了标识符与映射图样之间的对应关系。在接收到第一特定DIC之后,UE通过第一特定DCI中的标识符,确定对应的映射图样。
作为第二种可能的实现方式,基站预先通过高层信令,如RRC信令,发送了标识符与波束映射方案之间的对应关系,或者是UE预定义了标识符与波束映射方案之间的对应关系。该波束映射方案是映射图样和时间单位的组合,从而UE可以根据第一特定DCI中的标识符,确定对应的映射图样和时间的组合。
标识符 映射图样和时间的组合
0 交替映射到名义传输时机
1 交替映射到实际传输时机
2 连续映射到实际传输时机
3 连续映射到实际传输时机
…… ……
6 比特映射到实际传输时机
7 比特映射到不同时隙
表2标识符与波束映射方案之间的对应关系之一
可以理解的是,表2中的每一个元素、每一条对应关系,都是独立存在的;这些元素、对应关系被示例性的列在同一张表格中,但是并不代表表格中的所有元素、对应关系必须根据表格2中所示的同时存在。其中每一个元素的值和每一对应关系,是不依赖于表2中任何其他元素值或对应关系。因此本领域内技术人员可以理解,该表2中的每一个元素的取值、每一条对应关系,各种都是一个独立的实施例。
作为第三种可能的实现方式,基站预先发送了波束映射方案,或者对UE预定义了波束映射方案,包括基于多TRP的传输对应波束与时间单位之间的一种可能的映射图样和/或一种可能的时间单位。基于第一特定DCI中携带的标识符,确定是否采用该映射图样和/或时间单位。在一些实施例中,基站可以通过高层信令发送该波束映射方案。
步骤304,根据解码后的第一特定消息,在上行信道以该TRP工作模式发送上行传输。
在本公开的一些实施例中,该特定消息可以为特定的DCI。
在一些实施例中,该上行信道为PUSCH或PUCCH;优选的可以为PUSCH。
响应于TRP工作模式为基于单TRP的传输,根据解码后的第一特定DCI可得到数据调度信息,根据该数据调度信息,在PUSCH以该基于单TRP的传输发送数据;
响应于TRP工作模式为基于多TRP的传输,根据解码后的第一特定DCI可得到数据调度信息,以及确定波束映射方案,根据波束映射方案、数据调度信息,在PUSCH以该基于多TRP的传输发送数据。
可选地,UE在PUSCH上向基站发送上行传输(PUSCHtransmission)。在本公开实施例中,上行传输可以为信令、数据、信令/数据混合传输。
可选地,UE在PUCCH上发送上行传输(PUCCHtransmission)。在本公开实施例中,上行传输可以为信令、数据、信令&数据混合传输。
本实施例中,通过基站在PDCCH上向UE发送DCI之后,由于该DCI携带有TRP工作模式和/或波束映射方案的指示信息,从而UE在基站调度下采用对应的TRP工作模式和/或波束映射方案在PUSCH上发送数据,相应地,基站接收该UE在PUSCH上以所述TRP工作模式和/或波束映射方案发送的数据,从而实现了在PUSCH上进行单TRP的传输或基于多TRP的 传输的切换,或者,波束映射方案的调度,提高了PUSCH的数据传输质量。
图4为本发明实施例提供的另一种数据传输方法的流程示意图,由UE执行。本实施提供的方法,基站对UE的TRP工作模式和波束映射方案进行调度,UE通过间接方式获知基站调度所指定的TRP工作模式是单TRP的传输或者是基于多TRP的传输,通过直接方式获知波束映射方案,并据此在上行信道上进行数据发送。
如图4所示,该方法可以包括以下步骤。
步骤401,接收基站发送的第二群组消息。
其中,第二群组消息携带有波束映射方案的指示信息。
其中,第一群组消息可以是PDCCH上传输的下行控制信令(DCI,Downlink Control Information)或是其他信令,或者,可以是PDSCH上传输的信令,本实施例中对于消息的具体形式不作限定。即:在一些实施例中,第二群组消息示例性的可以为第二群组DCI。
第二群组消息是由基站根据参数,从候选的多种波束映射方案中,确定一种适合UE的波束映射方案之后,生成的携带有该UE的波束映射方案的指示信息的群组消息。在一些实施例中,该参数可以为以下的至少一项:波束管理,对上行/下行信道状态进行信道质量测量得到的CSI测量量,调度波束映射方案。
第二群组消息由基站发送至一组UE,其中包含执行本实施例的UE。UE预先接收到基站发送的配置信息,从而已获知该UE在第二群组DCI中对应的信息比特位置,以及获知用于解扰的RNTI。UE在接收到第二群组DCI之后,根据已获知的RNTI进行解扰,并读取自身对应的信息比特位置,以得到该UE对应的波束映射方案。
在一些实施例中,UE根据预先接收到基站发送的配置信息或通信协议或条件参数或预存储的参数,从而获知该UE在第一群组消息中对应的信息比特位置,以及获知用于解扰的RNTI。在一些实施例中:所述第一群组消息为具有第一数量的比特位的比特位图(bitmap),该第一群组消息的每一个比特位对应一个或多个UE,以指示该一个或多个UE所对应的用于解扰的RNTI。在一些实施例中,UE可以根据高层基站发送的配置信息,确定该UE对应的比特位。在另一些实施例中,UE可以根据相应的通信协议,确定该UE对应的比特位。在又一些实施例中,UE可以根据条件参数,确定该UE对应的比特位;其中条件参数可以为以下的任一种:信道条件、负载条件,等。在又一些实施例中,UE可以根据预存储的参数,确定该UE对应的比特位;其中预存储的参数可以为以下的任意一种:UE等级(UEclass)、UE标识(UEID),等。
可选地,波束映射方案包括映射图样和时间单位。基于多TRP的传输对应波束与时间单 位之间的映射图样可以为下列中的一种,但不限于以下列举几种的可能:
1)周期映射,两个TCI对应的波束(采用波束方向的表示TCI state标注为TCI 1和TCI 2)依次循环映射到配置的多个时间单位上,例如在包含4个时间单位的情况下,TCI 1和TCI2循环映射到4个时间单位,即映射顺序为TCI 1、TCI2、TCI1和TCI2;
2)连续映射,两个TCI对应的波束TCI 1和TCI 2连续循环映射到配置的多个时间单位上,例如在包含4个时间单位的情况下,TCI 1和TCI2分别重复若干次每当一个TCI达到重复次数时切换为另一个TCI进行映射,例如在包含4个时间单位的情况下,映射顺序为TCI 1、TCI1、TCI2和TCI2,又例如在包含8个时间单位的情况下,映射顺序为TCI 1、TCI1、TCI2、TCI2、TCI 1、TCI1、TCI2和TCI2;
3)对半映射(half-half),两个TCI对应的波束TCI 1和TCI 2,分别映射到多个时间单位中的处于前半部分时间单位,以及后半部分时间单位,例如包含8个时间单位的情况下,映射顺序为TCI 1、TCI1、TCI1、TCI1、TCI 2、TCI2、TCI2和TCI2;
4)比特映射,通过比特图(Bitmap)指示具体的每一个TRP对应波束与时间单位之间的映射图样。
可选地,对于前述提及的时间单位,可选方案可以为下列中的一种,但不限于以下列举几种的可能:
1)名义传输时机(nominal repetition);
2)实际传输时机(actual repetition);
3)按时隙映射(slot-level)。
需要说明的是,前文在提及基于多TRP的传输时,通常以两个TRP进行举例,这是由于目前在基于多TRP的传输协作的相关技术中,限定为最多两个TRP,本实施例可以适用于基于更多TRP的传输的情况,对此并不限定。
步骤402,根据第二群组消息携带的所述波束映射方案的指示信息,确定对应的TRP工作模式。
可选地,波束映射方案的指示信息,可以是占用若干个比特的标识符,该标识符与波束映射方案以及TRP之间存在三者的对应关系。基于该标识符,可以对应波束映射方案中的映射图样和TRP工作模式,或者对应时间单位和TRP工作模式,或者对应映射图样和时间单位的组合以及TRP工作模式。
基于标识符确定对应映射方案和TRP工作模式的方式至少存在以下几种可能的实现方式:
作为第一种可能的实现方式,基站预先通过高层信令,如RRC信令,对UE已预先配置 了映射图样和时间单位中的一个,还可以是对UE预定义了映射图样和时间单位中的一个。在进行调度时,基站通过该高层信令发送了标识符与映射图样和时间单位中的另一个之间的对应关系,从而UE可以根据第二群组DCI中的标识符,确定对应的映射图样或时间单位。
例如:基站通过RRC信令配置映射图样,通过该RRC信令或者其他高层信令配置了标识符与时间单位和TRP工作模式之间的对应关系。在接收到第二群组DCI之后,UE通过第二群组DCI中的标识符,确定对应的时间单位和TRP工作模式。具体标识符与时间单位和TRP工作模式之间的对应关系如下表所示3。
标识符 时间单位 TRP工作模式
0 无(none) 基于单TRP的传输
1 名义传输时机 基于多TRP的传输
2 实际传输时机 基于多TRP的传输
3 按时隙映射 基于多TRP的传输
表3标识符与时间单位和TRP工作模式之间的对应关系
可以理解的是,表3中的每一个元素、每一条对应关系,都是独立存在的;这些元素、对应关系被示例性的列在同一张表格中,但是并不代表表格中的所有元素、对应关系必须根据表格3中所示的同时存在。其中每一个元素的值和每一对应关系,是不依赖于表3中任何其他元素值或对应关系。因此本领域内技术人员可以理解,该表3中的每一个元素的取值、每一条对应关系,各种都是一个独立的实施例。
又例如:基站通过RRC信令配置时间单位,通过该RRC信令或者其他高层信令配置了标识符与映射图样和TRP工作模式之间的对应关系。在接收到第二群组DCI之后,UE通过第二群组DCI中的标识符,确定对应的映射图样和TRP工作模式。
作为第二种可能的实现方式,基站预先通过高层信令,如RRC信令,发送了标识符与波束映射方案之间的对应关系,或者是UE预定义了标识符与波束映射方案之间的对应关系。该波束映射方案是映射图样和时间单位的组合,从而UE可以根据第二群组DCI中的标识符,确定对应的映射图样和时间的组合。
标识符 映射图样和时间的组合 TRP工作模式
0 无(none) 基于单TRP的传输
1 交替映射到名义传输时机 基于多TRP的传输
2 交替映射到实际传输时机 基于多TRP的传输
3 连续映射到实际传输时机 基于多TRP的传输
4 连续映射到实际传输时机 基于多TRP的传输
…… …… ……
7 比特映射到实际传输时机 基于多TRP的传输
表4标识符与波束映射方案和TRP工作模式之间的对应关系
可以理解的是,表4中的每一个元素、每一条对应关系,都是独立存在的;这些元素、对应关系被示例性的列在同一张表格中,但是并不代表表格中的所有元素、对应关系必须根据表格4中所示的同时存在。其中每一个元素的值和每一对应关系,是不依赖于表4中任何其他元素值或对应关系。因此本领域内技术人员可以理解,该表4中的每一个元素的取值、每一条对应关系,各种都是一个独立的实施例。
作为第三种可能的实现方式,基站预先通过高层信令发送了波束映射方案,或者对UE预定义了波束映射方案,包括基于多TRP的传输对应波束与时间单位之间的一种可能的映射图样和/或一种可能的时间单位。基于第二群组DCI中携带的标识符,确定是否采用该映射图样和/或时间单位。
步骤403,根据TRP工作模式,对基站发送的针对UE的特定DCI进行解码。
UE已预先配置了不同TRP工作模式下解码策略,该解码策略指示了UE所需读取的特定信息域所在的比特位置,UE基于该解码策略进行解码,读取特定DCI对应的比特位置,以得到数据调度信息,例如基于码本传输的数据发送信息或者基于非码本传输的数据发送信息。
例如:SRI或者TPMI/RI指示域在UE面向基于多TRP的传输时,基于单TRP的传输的2bit指示域直接扩展为两个TRP波束发送时的4bit。
步骤404,根据解码后的特定消息,在PUSCH以所述TRP工作模式和波束映射方案发送数据。
在本公开的一些实施例中,该特定消息可以为特定的DCI。
响应于TRP工作模式为基于单TRP的传输,根据解码后的特定DCI可得到数据调度信息,根据该数据调度信息,在上行信道(例如PUSCH或PUCCH)以该基于单TRP的传输发送数据;
响应于TRP工作模式为基于多TRP的传输,则根据解码后的特定消息可得到数据调度信息,根据前述步骤中确定出的波束映射方案,以及根据该数据调度信息,在上行信道(例如 PUSCH或PUCCH)以该基于多TRP的传输发送数据。
在一些实施例中,优选的,该上行信道为PUCCH。
本实施例中,通过基站在PDCCH上向UE发送DCI之后,由于该DCI携带有TRP工作模式和/或波束映射方案的指示信息,从而UE在基站调度下采用对应的TRP工作模式和/或波束映射方案在PUSCH上发送数据,相应地,基站接收该UE在PUSCH上以所述TRP工作模式和/或波束映射方案发送的数据,从而实现了在PUSCH上进行单TRP的传输或基于多TRP的传输的切换,或者,波束映射方案的调度,提高了PUSCH的数据传输质量。
图5为本发明实施例提供的另一种数据传输方法的流程示意图,由UE执行。本实施提供的方法,基站对UE的TRP工作模式和波束映射方案进行调度,UE获知基站调度所指定的TRP工作模式是单TRP的传输或者是基于多TRP的传输,以及波束映射方案,并据此在上行信道上进行数据发送。
如图5所示,该方法可以包括以下步骤。
步骤501,接收基站在PDCCH上发送的针对所述UE的第二特定消息。
其中,第二特定消息携带有波束映射方案的指示信息和/或TRP工作模式的指示信息。
第二特定消息是由基站在基于波束管理,或者是对上行/下行信道状态进行信道质量测量得到的CSI测量量,调度波束映射方案,以从候选的多种波束映射方案中,确定一种适合UE的波束映射方案和/或TRP工作模式之后,生成的携带有该UE的波束映射方案的指示信息和/或TRP工作模式的指示信息的针对该UE的特定消息。
在本公开的一些实施例中,该第二特定消息可以为特定的DCI,即第二特定DCI。
可选地,波束映射方案包括映射图样和时间单位。基于多TRP的传输对应波束与时间单位之间的映射图样可以为下列中的一种,但不限于以下列举几种的可能:
1)周期映射,两个TCI对应的波束(采用波束方向的表示TCI state标注为TCI 1和TCI 2)依次循环映射到配置的多个时间单位上,例如在包含4个时间单位的情况下,TCI 1和TCI2循环映射到4个时间单位,即映射顺序为TCI 1、TCI2、TCI1和TCI2;
2)连续映射,两个TCI对应的波束TCI 1和TCI 2连续循环映射到配置的多个时间单位上,例如在包含4个时间单位的情况下,TCI 1和TCI2分别重复若干次每当一个TCI达到重复次数时切换为另一个TCI进行映射,例如在包含4个时间单位的情况下,映射顺序为TCI 1、TCI1、TCI2和TCI2,又例如在包含8个时间单位的情况下,映射顺序为TCI 1、TCI1、TCI2、TCI2、TCI 1、TCI1、TCI2和TCI2;
3)对半映射(half-half),两个TCI对应的波束TCI 1和TCI 2,分别映射到多个时 间单位中的处于前半部分时间单位,以及后半部分时间单位,例如包含8个时间单位的情况下,映射顺序为TCI 1、TCI1、TCI1、TCI1、TCI 2、TCI2、TCI2和TCI2;
4)比特映射,通过比特图(Bitmap)指示具体的每一个TRP对应波束与时间单位之间的映射图样。
可选地,对于前述提及的时间单位,可选方案可以为下列中的一种,但不限于以下列举几种的可能:
1)名义传输时机(nominal repetition);
2)实际传输时机(actual repetition);
3)按时隙映射(slot-level)。
需要说明的是,前文在提及基于多TRP的传输时,通常以两个TRP进行举例,这是由于目前在基于多TRP的传输协作的相关技术中,限定为最多两个TRP,本实施例可以适用于基于更多TRP的传输的情况,对此并不限定。
进一步地,UE在接收到第二特定消息之后,可以采用预定义,或者预配置的几种候选解码策略,对其进行尝试性解码,直至解码成功,以得到第二特定消息携带的波束映射方案的指示信息和/或TRP工作模式的指示信息。
可选地,波束映射方案的指示信息,可以是占用若干个比特的标识符,对应波束映射方案中的映射图样,或者对应时间单位,或者对应映射图样和时间单位的组合。具体基于标识符确定具体映射方案的方式至少存在以下几种可能的实现方式:
作为第一种可能的实现方式,基站预先通过高层信令,如RRC信令,发送了映射图样和时间单位中的一个,从而UE已预先配置了映射图样或时间单位。基站还通过该高层信令发送或者对该UE预定义标识符与映射图样和时间单位中的另一个之间的对应关系,从而UE可以根据第二特定DCI中的标识符,确定对应的映射图样或时间单位。
例如:基站通过RRC信令配置映射图样,通过该RRC信令或者其他高层信令配置了标识符与时间单位之间的对应关系。在接收到第二特定DCI之后,UE通过第二特定DCI中的标识符,确定对应的时间单位。具体标识符与时间单位之间的对应关系如表5所示。
标识符 时间单位
0 无(none)
1 名义传输时机
2 实际传输时机
3 按时隙映射
表5标识符与时间单位之间的对应关系之二
可以理解的是,表5中的每一个元素、每一条对应关系,都是独立存在的;这些元素、对应关系被示例性的列在同一张表格中,但是并不代表表格中的所有元素、对应关系必须根据表格5中所示的同时存在。其中每一个元素的值和每一对应关系,是不依赖于表5中任何其他元素值或对应关系。因此本领域内技术人员可以理解,该表5中的每一个元素的取值、每一条对应关系,各种都是一个独立的实施例。
需要说明的是,表5中无(none)对应在面向单TRP的传输方式下,表示基站未选定时间单位。
又例如:基站通过RRC信令配置时间单位,通过该RRC信令或者其他高层信令配置了标识符与映射图样之间的对应关系。在接收到第二特定DCI之后,UE通过第二特定DCI中的标识符,确定对应的映射图样。
作为第二种可能的实现方式,基站预先通过高层信令,如RRC信令,发送了标识符与波束映射方案之间的对应关系,或者是UE预定义了标识符与波束映射方案之间的对应关系。该波束映射方案是映射图样和时间单位的组合,从而UE可以根据第二特定DCI中的标识符,确定对应的映射图样和时间的组合。表6为标识符与波束映射方案之间的对应关系。
标识符 映射图样和时间的组合
0 无(none)
1 周期映射到名义传输时机
2 周期映射到实际传输时机
3 连续映射到实际传输时机
4 连续映射到实际传输时机
…… ……
7 比特映射到实际传输时机
表6标识符与波束映射方案之间的对应关系之一
可以理解的是,表6中的每一个元素、每一条对应关系,都是独立存在的;这些元素、对应关系被示例性的列在同一张表格中,但是并不代表表格中的所有元素、对应关系必须根据表格6中所示的同时存在。其中每一个元素的值和每一对应关系,是不依赖于表6中任何其他元素值或对应关系。因此本领域内技术人员可以理解,该表6中的每一个元素的取值、每一条对应关系,各种都是一个独立的实施例。
需要说明的是,表6中无(none)对应在面向单TRP的传输方式下,表示基站未选定波 束映射方案,即未选定映射图样和时间的组合。
作为第三种可能的实现方式,基站预先通过高层信令发送了波束映射方案,或者对UE预定义了波束映射方案,包括基于多TRP的传输对应波束与时间单位之间的一种可能的映射图样和/或一种可能的时间单位。基于第二特定DCI中携带的标识符,确定是否采用该映射图样和/或时间单位。
步骤502,在上行信道上以该TRP工作模式和/或波束映射方案发送数据。
在一些实施例中,该上行信道可以为PUSCH或PUCCH;优选的,可以为PUSCH。
可选地,在第二特定消息中,还可以携带有数据调度信息,该数据调度信息包括:基于码本传输的数据发送信息或基于非码本传输的数据发送信息。
响应于TRP工作模式为基于单TRP的传输,根据该数据调度信息,在PUSCH以该基于单TRP的传输发送数据;
响应于TRP工作模式为基于多TRP的传输,根据前述步骤中确定出的波束映射方案,以及根据该数据调度信息,在PUSCH以该基于多TRP的传输发送数据。
本实施例中,通过基站在PDCCH上向UE发送DCI之后,由于该DCI携带有TRP工作模式和/或波束映射方案的指示信息,从而UE在基站调度下采用对应的TRP工作模式和/或波束映射方案在PUSCH上发送数据,相应地,基站接收该UE在PUSCH上以所述TRP工作模式和/或波束映射方案发送的数据,从而实现了在PUSCH上进行单TRP的传输或基于多TRP的传输的切换,或者,波束映射方案的调度,提高了PUSCH的数据传输质量。
图6为本发明实施例提供的一种数据传输方法的流程图,由基站执行。
如图6所示,该方法可以包括以下步骤。
步骤601,在物理下行控制信道PDCCH上向用户设备UE发送下行控制信息DCI。
其中,所述DCI,携带有TRP工作模式和/或波束映射方案的指示信息,所述TRP工作模式是基于单TRP的传输或基于多TRP的传输,所述波束映射方案包括面向多TRP对应的多个上行协作发送波束与时间单位之间的映射图样和/或所述时间单位的信息。
可选地,基站根据信道状态CSI测量量进行调度,以确定PUSCH上采用的TRP工作模式和波束映射方案中的至少一个。基站还可以基于波束管理以确定在PUSCH上采用的TRP工作模式和波束映射方案中的至少一个。由于UE采用的重传机制与TRP工作模式,以及波束映射方案之间存在一定的关联性,通过基站对TRP工作模式和/或波束映射方案的调度,实现了资源的优化配置,从而提高了通信质量。
可选地,波束映射方案包括映射图样和时间单位。基于多TRP的传输对应波束与时间单位之间的映射图样可以为下列中的一种,但不限于以下列举几种的可能:
1)周期映射,两个TCI对应的波束(采用波束方向的表示TCI state标注为TCI 1和TCI 2)依次循环映射到配置的多个时间单位上,例如在包含4个时间单位的情况下,TCI 1和TCI2循环映射到4个时间单位,即映射顺序为TCI 1、TCI2、TCI1和TCI2;
2)连续映射,两个TCI对应的波束TCI 1和TCI 2连续循环映射到配置的多个时间单位上,例如在包含4个时间单位的情况下,TCI 1和TCI2分别重复若干次每当一个TCI达到重复次数时切换为另一个TCI进行映射,例如在包含4个时间单位的情况下,映射顺序为TCI 1、TCI1、TCI2和TCI2,又例如在包含8个时间单位的情况下,映射顺序为TCI 1、TCI1、TCI2、TCI2、TCI 1、TCI1、TCI2和TCI2;
3)对半映射(half-half),两个TCI对应的波束TCI 1和TCI 2,分别映射到多个时间单位中的处于前半部分时间单位,以及后半部分时间单位,例如包含8个时间单位的情况下,映射顺序为TCI 1、TCI1、TCI1、TCI1、TCI 2、TCI2、TCI2和TCI2;
4)比特映射,通过比特图(Bitmap)指示具体的每一个TRP对应波束与时间单位之间的映射图样。
可选地,对于前述提及的时间单位,可选方案可以为下列中的一种,但不限于以下列举几种的可能:
1)名义传输时机(nominal repetition);
2)实际传输时机(actual repetition);
3)按时隙映射(slot-level)。
需要说明的是,前文在提及基于多TRP的传输时,通常以两个TRP进行举例,这是由于目前在基于多TRP的传输协作的相关技术中,限定为最多两个TRP,本实施例可以适用于基于更多TRP的传输的情况,对此并不限定。
步骤602,接收UE在PUSCH上以该TRP工作模式和/或波束映射方案发送的数据。
基站在对UE进行调度之后,对应地,基于该TRP工作模式和/或波束映射方案接收UE在PUSCH上发送的数据。
本实施例中,通过基站在PDCCH上向UE发送DCI之后,由于该DCI携带有TRP工作模式和/或波束映射方案的指示信息,从而UE在基站调度下采用对应的TRP工作模式和/或波束映射方案在PUSCH上发送数据,相应地,基站接收该UE在PUSCH上以所述TRP工作模式和/或波束映射方案发送的数据,从而实现了在PUSCH上进行单TRP的传输或基于多TRP的传输的切换,或者,波束映射方案的调度,提高了PUSCH的数据传输质量。
图7为本发明实施例提供的另一种数据传输方法的流程示意图,该方法由基站执行。
如图7所示,方法包括:
步骤701,在PDCCH上向UE发送第一群组DCI。
其中,第一群组DCI携带有TRP工作模式的指示信息。TRP工作模式是基于单TRP的传输或者是基于多TRP的传输。
第一群组DCI是由基站在基于波束管理,或者是对上行/下行信道状态进行信道质量测量得到的CSI测量量,调度TRP工作模式,以从基于单TRP的传输和基于多TRP的传输模式中确定一种适合UE的TRP工作模式之后,生成的携带有TRP工作模式的指示信息的群组DCI。
第一群组是基站发送至一组UE,其中包含执行本实施例的UE。UE预先接收到基站通过高层信令发送的配置信息,从而已获知该UE在第一群组DCI中对应的信息比特位置,以及获知用于解扰的RNTI。UE在接收到第一群组DCI之后,根据已获知的RNTI进行解扰,并读取自身对应的信息比特位置,以得到该UE对应的TRP工作模式。
步骤702,接收UE在PUSCH上以该TRP工作模式发送的数据。
基站在对UE进行调度之后,对应地,基于该TRP工作模式接收UE在PUSCH上发送的数据。
需要说明的是,在TRP工作模式为基于多TRP的传输时,UE采用的波束映射方案可以是基站通过高层信令,如RRC信令,预先配置给UE的,可选地,波束映射方案包括映射图样和时间单位。基于多TRP的传输对应波束与时间单位之间的映射图样可以为下列中的一种,但不限于以下列举几种的可能:
1)周期映射,两个TCI对应的波束(采用波束方向的表示TCI state标注为TCI 1和TCI 2)依次循环映射到配置的多个时间单位上,例如在包含4个时间单位的情况下,TCI 1和TCI2循环映射到4个时间单位,即映射顺序为TCI 1、TCI2、TCI1和TCI2;
2)连续映射,两个TCI对应的波束TCI 1和TCI 2连续循环映射到配置的多个时间单位上,例如在包含4个时间单位的情况下,TCI 1和TCI2分别重复若干次每当一个TCI达到重复次数时切换为另一个TCI进行映射,例如在包含4个时间单位的情况下,映射顺序为TCI 1、TCI1、TCI2和TCI2,又例如在包含8个时间单位的情况下,映射顺序为TCI 1、TCI1、TCI2、TCI2、TCI 1、TCI1、TCI2和TCI2;
3)对半映射(half-half),两个TCI对应的波束TCI 1和TCI 2,分别映射到多个时间单位中的处于前半部分时间单位,以及后半部分时间单位,例如包含8个时间单位的情况下,映射顺序为TCI 1、TCI1、TCI1、TCI1、TCI 2、TCI2、TCI2和TCI2;
4)比特映射,通过比特图(Bitmap)指示具体的每一个TRP对应波束与时间单位之间的映射图样。
可选地,对于前述提及的时间单位,可选方案可以为下列中的一种,但不限于以下列举几种的可能:
1)名义传输时机(nominal repetition);
2)实际传输时机(actual repetition);
3)按时隙映射(slot-level)。
需要说明的是,前文在提及基于多TRP的传输时,通常以两个TRP进行举例,这是由于目前在基于多TRP的传输协作的相关技术中,限定为最多两个TRP,本实施例可以适用于基于更多TRP的传输的情况,对此并不限定。
本实施例中,通过基站在PDCCH上向UE发送DCI之后,由于该DCI携带有TRP工作模式和/或波束映射方案的指示信息,从而UE在基站调度下采用对应的TRP工作模式和/或波束映射方案在PUSCH上发送数据,相应地,基站接收该UE在PUSCH上以所述TRP工作模式和/或波束映射方案发送的数据,从而实现了在PUSCH上进行单TRP的传输或基于多TRP的传输的切换,或者,波束映射方案的调度,提高了PUSCH的数据传输质量。
图8为本发明实施例提供的另一种数据传输方法的流程示意图,由基站执行。
如图8所示,该方法可以包括以下步骤。
步骤801,在PDCCH上向UE发送第一群组DCI。
其中,第一群组DCI携带有TRP工作模式的指示信息。TRP工作模式是基于单TRP的传输或者是基于多TRP的传输。
第一群组DCI是由基站在基于波束管理,或者是对上行/下行信道状态进行信道质量测量得到的CSI测量量,调度TRP工作模式,以从基于单TRP的传输和基于多TRP的传输模式中确定一种适合UE的TRP工作模式之后,生成的携带有TRP工作模式的指示信息的群组DCI。
第一群组是基站发送至一组UE,其中包含执行本实施例的UE。UE预先接收到基站通过高层信令发送的配置信息,从而已获知该UE在第一群组DCI中对应的信息比特位置,以及获知用于解扰的RNTI。UE在接收到第一群组DCI之后,根据已获知的RNTI进行解扰,并读取自身对应的信息比特位置,以得到该UE对应的TRP工作模式。
步骤802,向UE发送针对该UE的第一特定DCI。
其中,第一特定DCI,用于采用所述第一群组DCI中所述TRP工作模式对应的解码策略解码,携带有所述波束映射方案的指示信息。
第一特定DCI是基站针对UE发送的,用于对UE进行动态配置,其中,第一特定DCI中携带有数据调度信息,数据调度信息包括基于码本传输的数据发送信息或基于非码本传输的数据发送信息,在TRP工作模式为基于多TRP的传输的情况下,第一特定DCI还包括波束映射方案的指示信息。
可选地,波束映射方案包括映射图样和时间单位。基于多TRP的传输对应波束与时间单位之间的映射图样可以为下列中的一种,但不限于以下列举几种的可能:
1)周期映射,两个TCI对应的波束(采用波束方向的表示TCI state标注为TCI 1和TCI 2)依次循环映射到配置的多个时间单位上,例如在包含4个时间单位的情况下,TCI 1和TCI2循环映射到4个时间单位,即映射顺序为TCI 1、TCI2、TCI1和TCI2;
2)连续映射,两个TCI对应的波束TCI 1和TCI 2连续循环映射到配置的多个时间单位上,例如在包含4个时间单位的情况下,TCI 1和TCI2分别重复若干次每当一个TCI达到重复次数时切换为另一个TCI进行映射,例如在包含4个时间单位的情况下,映射顺序为TCI 1、TCI1、TCI2和TCI2,又例如在包含8个时间单位的情况下,映射顺序为TCI 1、TCI1、TCI2、TCI2、TCI 1、TCI1、TCI2和TCI2;
3)对半映射(half-half),两个TCI对应的波束TCI 1和TCI 2,分别映射到多个时间单位中的处于前半部分时间单位,以及后半部分时间单位,例如包含8个时间单位的情况下,映射顺序为TCI 1、TCI1、TCI1、TCI1、TCI 2、TCI2、TCI2和TCI2;
4)比特映射,通过比特图(Bitmap)指示具体的每一个TRP对应波束与时间单位之间的映射图样。
可选地,对于前述提及的时间单位,可选方案可以为下列中的一种,但不限于以下列举几种的可能:
1)名义传输时机(nominal repetition);
2)实际传输时机(actual repetition);
3)按时隙映射(slot-level)。
需要说明的是,前文在提及基于多TRP的传输时,通常以两个TRP进行举例,这是由于目前在基于多TRP的传输协作的相关技术中,限定为最多两个TRP,本实施例可以适用于基于更多TRP的传输的情况,对此并不限定。
为了使得UE基于指示信息可以获知对应的波束映射方案,本实施例中,基站可以预先通过高层信令,如RRC信令,向UE配置该指示信息对应波束映射方案。
可选地,波束映射方案的指示信息,可以是占用若干个比特的标识符,对应波束映射方案中的映射图样,或者对应时间单位,或者对应映射图样和时间单位的组合。具体基于标识 符确定具体映射方案的方式至少存在以下几种可能的实现方式:
作为第一种可能的实现方式,基站预先通过高层信令,如RRC信令,发送了映射图样和时间单位中的一个,从而UE已预先配置了映射图样或时间单位。基站还通过该高层信令发送或者对该UE预定义标识符与映射图样和时间单位中的另一个之间的对应关系,从而UE可以根据第一特定DCI中的标识符,确定对应的映射图样或时间单位。
例如:基站通过RRC信令配置映射图样,通过该RRC信令或者其他高层信令配置了标识符与时间单位之间的对应关系。在接收到第一特定DIC之后,UE通过第一特定DCI中的标识符,确定对应的时间单位。
又例如:基站通过RRC信令配置时间单位,通过该RRC信令或者其他高层信令配置了标识符与映射图样之间的对应关系。在接收到第一特定DIC之后,UE通过第一特定DCI中的标识符,确定对应的映射图样。
作为第二种可能的实现方式,基站预先通过高层信令,如RRC信令,发送了标识符与波束映射方案之间的对应关系,或者是UE预定义了标识符与波束映射方案之间的对应关系。该波束映射方案是映射图样和时间单位的组合,从而UE可以根据第一特定DCI中的标识符,确定对应的映射图样和时间的组合。
作为第三种可能的实现方式,基站预先通过高层信令对UE配置了波束映射方案,或者对UE预定义了波束映射方案,包括基于多TRP的传输对应波束与时间单位之间的一种可能的映射图样和/或一种可能的时间单位。基于第一特定DCI中携带的标识符,确定是否采用该映射图样和/或时间单位。
步骤803,接收UE在PUSCH上以该TRP工作模式和波束映射方案发送的数据。
本实施例中,通过基站在PDCCH上向UE发送DCI之后,由于该DCI携带有TRP工作模式和/或波束映射方案的指示信息,从而UE在基站调度下采用对应的TRP工作模式和/或波束映射方案在PUSCH上发送数据,相应地,基站接收该UE在PUSCH上以所述TRP工作模式和/或波束映射方案发送的数据,从而实现了在PUSCH上进行单TRP的传输或基于多TRP的传输的切换,或者,波束映射方案的调度,提高了PUSCH的数据传输质量。
图9为本发明实施例提供的另一种数据传输方法的流程示意图,由基站执行。
如图9所示,该方法包括:
步骤901,在PDCCH上向UE发送第二群组DCI。
其中,第二群组DCI携带有所述波束映射方案的指示信息,所述波束映射方案的指示信息与TRP工作模式存在对应关系。
第二群组DCI是由基站在基于波束管理,或者是对上行/下行信道状态进行信道质量测量得到的CSI测量量,调度波束映射方案,以从候选的多种波束映射方案中,确定一种适合UE的波束映射方案之后,生成的携带有该UE的波束映射方案的指示信息的群组DCI。
第二群组DCI由基站发送至一组UE,其中包含执行本实施例的UE。UE预先接收到基站通过高层信令发送的配置信息,从而已获知该UE在第二群组DCI中对应的信息比特位置,以及获知用于解扰的RNTI。UE在接收到第二群组DCI之后,根据已获知的RNTI进行解扰,并读取自身对应的信息比特位置,以得到该UE对应的波束映射方案。
可选地,波束映射方案包括映射图样和时间单位。基于多TRP的传输对应波束与时间单位之间的映射图样可以为下列中的一种,但不限于以下列举几种的可能:
1)周期映射,两个TCI对应的波束(采用波束方向的表示TCI state标注为TCI 1和TCI 2)依次循环映射到配置的多个时间单位上,例如在包含4个时间单位的情况下,TCI 1和TCI2循环映射到4个时间单位,即映射顺序为TCI 1、TCI2、TCI1和TCI2;
2)连续映射,两个TCI对应的波束TCI 1和TCI 2连续循环映射到配置的多个时间单位上,例如在包含4个时间单位的情况下,TCI 1和TCI2分别重复若干次每当一个TCI达到重复次数时切换为另一个TCI进行映射,例如在包含4个时间单位的情况下,映射顺序为TCI 1、TCI1、TCI2和TCI2,又例如在包含8个时间单位的情况下,映射顺序为TCI 1、TCI1、TCI2、TCI2、TCI 1、TCI1、TCI2和TCI2;
3)对半映射(half-half),两个TCI对应的波束TCI 1和TCI 2,分别映射到多个时间单位中的处于前半部分时间单位,以及后半部分时间单位,例如包含8个时间单位的情况下,映射顺序为TCI 1、TCI1、TCI1、TCI1、TCI 2、TCI2、TCI2和TCI2;
4)比特映射,通过比特图(Bitmap)指示具体的每一个TRP对应波束与时间单位之间的映射图样。
可选地,对于前述提及的时间单位,可选方案可以为下列中的一种,但不限于以下列举几种的可能:
1)名义传输时机(nominal repetition);
2)实际传输时机(actual repetition);
3)按时隙映射(slot-level)。
需要说明的是,前文在提及基于多TRP的传输时,通常以两个TRP进行举例,这是由于目前在基于多TRP的传输协作的相关技术中,限定为最多两个TRP,本实施例可以适用于基于更多TRP的传输的情况,对此并不限定。
可选地,波束映射方案的指示信息,可以是占用若干个比特的标识符,对应波束映射方 案中的映射图样,或者对应时间单位,或者对应映射图样和时间单位的组合。基站至少存在以下几种可能的实现方式,对UE进行映射方案的配置:
作为第一种可能的实现方式,基站预先通过高层信令,如RRC信令,对UE已预先配置了映射图样和时间单位中的一个。在进行调度时,基站通过该高层信令发送了标识符与映射图样和时间单位中的另一个之间的对应关系,从而UE可以根据第二群组DCI中的标识符,确定对应的映射图样或时间单位。
例如:基站通过RRC信令配置映射图样,通过该RRC信令或者其他高层信令配置了标识符与时间单位和TRP工作模式之间的对应关系。以使UE在接收到第二群组DCI之后,UE通过第二群组DCI中的标识符,确定对应的时间单位和TRP工作模式。
又例如:基站通过RRC信令配置时间单位,通过该RRC信令或者其他高层信令配置了标识符与映射图样和TRP工作模式之间的对应关系。以使UE在接收到第二群组DCI之后,UE通过第二群组DCI中的标识符,确定对应的映射图样和TRP工作模式。
作为第二种可能的实现方式,基站预先通过高层信令,如RRC信令,发送了标识符与波束映射方案之间的对应关系。该波束映射方案是映射图样和时间单位的组合,从而UE可以根据第二群组DCI中的标识符,确定对应的映射图样和时间的组合。
作为第三种可能的实现方式,基站预先通过高层信令发送了波束映射方案,包括基于多TRP的传输对应波束与时间单位之间的一种可能的映射图样和/或一种可能的时间单位。基于第二群组DCI中携带的标识符,确定是否采用该映射图样和/或时间单位。
步骤902,接收UE在PUSCH上以该TRP工作模式和波束映射方案发送的数据。
本实施例中,通过基站在PDCCH上向UE发送DCI之后,由于该DCI携带有TRP工作模式和/或波束映射方案的指示信息,从而UE在基站调度下采用对应的TRP工作模式和/或波束映射方案在PUSCH上发送数据,相应地,基站接收该UE在PUSCH上以所述TRP工作模式和/或波束映射方案发送的数据,从而实现了在PUSCH上进行单TRP的传输或基于多TRP的传输的切换,或者,波束映射方案的调度,提高了PUSCH的数据传输质量。
图10为本发明实施例提供的另一种数据传输方法的流程示意图,由基站执行。
如图10所示,该方法可以包括以下步骤。
步骤1001,在PDCCH上向所述UE发送针对所述UE的第二特定DCI。
其中,所述第二特定DCI携带有所述波束映射方案的指示信息和/或所述TRP工作模式的指示信息。
第二特定DCI是由基站在基于波束管理,或者是对上行/下行信道状态进行信道质量测 量得到的CSI测量量,调度波束映射方案,以从候选的多种波束映射方案中,确定一种适合UE的波束映射方案和/或TRP工作模式之后,生成的携带有该UE的波束映射方案的指示信息和/或TRP工作模式的指示信息的针对该UE的特定DCI。
可选地,波束映射方案包括映射图样和时间单位。基于多TRP的传输对应波束与时间单位之间的映射图样可以为下列中的一种,但不限于以下列举几种的可能:
1)周期映射,两个TCI对应的波束(采用波束方向的表示TCI state标注为TCI 1和TCI 2)依次循环映射到配置的多个时间单位上,例如在包含4个时间单位的情况下,TCI 1和TCI2循环映射到4个时间单位,即映射顺序为TCI 1、TCI2、TCI1和TCI2;
2)连续映射,两个TCI对应的波束TCI 1和TCI 2连续循环映射到配置的多个时间单位上,例如在包含4个时间单位的情况下,TCI 1和TCI2分别重复若干次每当一个TCI达到重复次数时切换为另一个TCI进行映射,例如在包含4个时间单位的情况下,映射顺序为TCI 1、TCI1、TCI2和TCI2,又例如在包含8个时间单位的情况下,映射顺序为TCI 1、TCI1、TCI2、TCI2、TCI 1、TCI1、TCI2和TCI2;
3)对半映射(half-half),两个TCI对应的波束TCI 1和TCI 2,分别映射到多个时间单位中的处于前半部分时间单位,以及后半部分时间单位,例如包含8个时间单位的情况下,映射顺序为TCI 1、TCI1、TCI1、TCI1、TCI 2、TCI2、TCI2和TCI2;
4)比特映射,通过比特图(Bitmap)指示具体的每一个TRP对应波束与时间单位之间的映射图样。
可选地,对于前述提及的时间单位,可选方案可以为下列中的一种,但不限于以下列举几种的可能:
1)名义传输时机(nominal repetition);
2)实际传输时机(actual repetition);
3)按时隙映射(slot-level)。
需要说明的是,前文在提及基于多TRP的传输时,通常以两个TRP进行举例,这是由于目前在基于多TRP的传输协作的相关技术中,限定为最多两个TRP,本实施例可以适用于基于更多TRP的传输的情况,对此并不限定。
可选地,波束映射方案的指示信息,可以是占用若干个比特的标识符,对应波束映射方案中的映射图样,或者对应时间单位,或者对应映射图样和时间单位的组合。具体基站至少存在以下几种可能的实现方式对UE进行映射方案的配置:
作为第一种可能的实现方式,基站预先通过高层信令,如RRC信令,发送了映射图样和时间单位中的一个,从而UE已预先配置了映射图样或时间单位。基站还通过该高层信令发 送或者对该UE预定义标识符与映射图样和时间单位中的另一个之间的对应关系,从而UE可以根据第二特定DCI中的标识符,确定对应的映射图样或时间单位。
例如:基站通过RRC信令配置映射图样,通过该RRC信令或者其他高层信令配置了标识符与时间单位之间的对应关系。在接收到第二特定DCI之后,UE通过第二特定DCI中的标识符,确定对应的时间单位。
需要说明的是,标识符中可以存在特定取值对应在面向单TRP的传输方式下,表示基站未选定时间单位。
又例如:基站通过RRC信令配置时间单位,通过该RRC信令或者其他高层信令配置了标识符与映射图样之间的对应关系。在接收到第二特定DCI之后,UE通过第二特定DCI中的标识符,确定对应的映射图样。
作为第二种可能的实现方式,基站预先通过高层信令,如RRC信令,发送了标识符与波束映射方案之间的对应关系,或者是UE预定义了标识符与波束映射方案之间的对应关系。该波束映射方案是映射图样和时间单位的组合,从而UE可以根据第二特定DCI中的标识符,确定对应的映射图样和时间的组合。
需要说明的是,标识符中可以存在特定取值对应在面向单TRP的传输方式下,表示基站未选定波束映射方案,即未选定映射图样和时间的组合。
作为第三种可能的实现方式,基站预先通过高层信令发送了波束映射方案,或者对UE预定义了波束映射方案,包括基于多TRP的传输对应波束与时间单位之间的一种可能的映射图样和/或一种可能的时间单位。基于第二特定DCI中携带的标识符,确定是否采用该映射图样和/或时间单位。
步骤1002,接收UE在PUSCH上以该TRP工作模式和波束映射方案发送的数据。
本实施例中,通过基站在PDCCH上向UE发送DCI之后,由于该DCI携带有TRP工作模式和/或波束映射方案的指示信息,从而UE在基站调度下采用对应的TRP工作模式和/或波束映射方案在PUSCH上发送数据,相应地,基站接收该UE在PUSCH上以所述TRP工作模式和/或波束映射方案发送的数据,从而实现了在PUSCH上进行单TRP的传输或基于多TRP的传输的切换,或者,波束映射方案的调度,提高了PUSCH的数据传输质量。
与上述几种实施例提供的数据传输方法相对应,本发明还提供一种数据传输装置,由于本发明实施例提供的数据传输装置与上述几种实施例提供的法相对应,因此在数据传输方法的实施方式也适用于本实施例提供的数据传输装置,在本实施例中不再详细描述。图11-图16是根据本发明提出的数据传输装置的结构示意图。
图11为本发明实施例提供的数据传输装置的结构示意图。所述装置应用于用户设备UE。
如图11所示,该数据传输装置110包括:获取模块1101和传输模块1102,其中:
获取模块1101,被配置为获取基站发送的控制信令;其中,所述控制信令,携带有传输接入点TRP工作模式和/或波束映射方案的指示信息,所述TRP工作模式是基于单TRP的传输或基于多TRP的传输,所述波束映射方案包括面向多TRP对应的多个上行协作发送波束与时间单位之间的映射图样和/或所述时间单位的信息;多TRP对应的多个上行协作发送波束与时间单位之间的映射图样和/或所述时间单位的信息;
传输模块1102,被配置为以所述TRP工作模式和/或波束映射方案向所述基站发送上行传输。
在本发明的实施例中,可选地,如图12所示,所述获取模块1101,包括:第一接收单元11011,被配置为接收所述基站在下行信道上发送的第一群组消息;其中,所述第一群组消息携带有所述TRP工作模式的指示信息。
在本公开的一些实施例中,消息可以是PDCCH上传输的下行控制信令(DCI,Downlink Control Information)或是其他信令,或者,可以是PDSCH上传输的信令,本实施例中对于消息的具体形式不作限定。即:在本公开的一些实施例中,第一群组消息示例性的可以为第一群组DCI。
在一些实施例中,下行信道可以为物理下行控制信道PDCCH或是物理下行共享信道PDSCH。优选的,下行信道可以为PDCCH。
在本发明的实施例中,所述获取模块1101,还包括:第二接收单元11012,被配置为接收所述基站在所述下行信道(例如PDCCH或PDSCH)上发送的针对所述UE的第一特定消息(例如第一特定DCI);解码单元11013,被配置为根据所述第一群组消息(例如第一群组DCI)中所述TRP工作模式对应的解码策略,对所述第一特定消息(例如第一特定DCI解码),以得到所述波束映射方案的指示信息。
在本发明的一个实施例中,所述装置,还包括处理模块1103,被配置为:根据所述基站发送的高层信令,配置所述指示信息对应的波束映射方案;或者,对所述UE预定义所述指示信息对应的波束映射方案。
在本发明的实施例中,如图13所示,所述获取模块1101,包括:第三接收单元11014,被配置为接收所述基站在下行信道(例如PDCCH或PDSCH)上发送的第二群组消息(例如第二群组DCI);其中,所述第二群组消息携带有所述波束映射方案的指示信息;确定单元11015,被配置为根据所述第二群组消息携带的所述波束映射方案的指示信息,确定对应的所述TRP工作模式。
在本发明的实施例中,如图14所示,所述获取模块1101,被配置为:第四接收单元11016,用于接收基站在下行信道(例如PDCCH或PDSCH)上发送的针对所述UE的第二特定消息(例如第二特定DCI);其中,所述第二特定消息携带有所述波束映射方案的指示信息和/或所述TRP工作模式的指示信息。
在本发明的实施例中,所述第二特定消息携带有所述TRP工作模式的指示信息,所述处理模块1103,被配置为:根据所述基站发送的高层信令,配置所述指示信息对应的波束映射方案;或者,对所述UE预定义所述指示信息对应的波束映射方案。
在本发明的实施例中,所述控制信令携带的波束映射方案的指示信息,表征所述基站选定的映射图样与时间单位的组合,或者,表征所述基站未选定波束映射方案。在本发明的实施例中,如图15所示,进一步地,在本发明实施例的一种可能的实现方式中,所述控制信令携带的波束映射方案的指示信息,表征所述映射图样和所述时间单位中的一个;所述装置,还包括:配置模块1104,被配置为根据所述基站发送的高层信令,配置所述映射图样和所述时间单位中的另一个。
在本发明的实施例中,如图16所示,所述装置还包括解码模块1105,被配置为:采用所述TRP工作模式对应的解码策略,对所述基站发送的针对所述UE的特定DCI解码,以得到物理上行共享信道PUSCH采用的数据调度信息;其中,所述PUSCH,用于向所述基站发送所述数据,所述数据调度信息包括基于码本传输的数据发送信息或基于非码本传输的数据发送信息。
本实施例中,通过基站在PDCCH上向UE发送DCI之后,由于该DCI携带有TRP工作模式和/或波束映射方案的指示信息,从而UE在基站调度下采用对应的TRP工作模式和/或波束映射方案在PUSCH上发送数据,相应地,基站接收该UE在PUSCH上以所述TRP工作模式和/或波束映射方案发送的数据,从而实现了在PUSCH上进行单TRP的传输或基于多TRP的传输的切换,或者,波束映射方案的调度,提高了PUSCH的数据传输质量。
与上述几种实施例提供的数据传输方法相对应,本发明还提供一种数据传输装置,由于本发明实施例提供的数据传输装置与上述几种实施例提供的数据传输方法相对应,因此在数据传输方法的实施方式也适用于本实施例提供的数据传输装置,在本实施例中不再详细描述。图17-图22是根据本发明提出的数据传输装置的结构示意图。
图17为本发明实施例提供的数据传输装置的结构示意图。所述装置应用于基站。
如图17所示,该数据传输装置170包括:发送模块1701和接收模块1702,其中:
发送模块1701,被配置为向用户设备UE发送控制信令;其中,所述控制信令,携带有传输接入点TRP工作模式和/或波束映射方案的指示信息,所述TRP工作模式是基于单TRP 的传输或基于多TRP的传输,所述波束映射方案包括面向多TRP对应的多个上行协作发送波束与时间单位之间的映射图样和/或所述时间单位的信息;多TRP对应的多个上行协作发送波束与时间单位之间的映射图样和/或所述时间单位的信息;
接收模块1702,被配置为接收所述UE以所述TRP工作模式和/或波束映射方案发送的数据。
在本发明的实施例中,如图18所示,所述发送模块1701,包括:第一发送单元17011,被配置为在物理下行控制信道PDCCH上向所述UE发送第一群组下行控制信息DCI;其中,所述第一群组DCI携带有所述TRP工作模式的指示信息。
在本发明的实施例中,所述发送模块1701,还包括:第二发送单元17012,被配置为向所述UE发送针对所述UE的第一特定DCI;其中,所述第一特定DCI,用于采用所述第一群组DCI中所述TRP工作模式对应的解码策略解码,携带有所述波束映射方案的指示信息。
在本发明的实施例中,所述装置,还包括:第一配置模块1703,被配置为向所述UE发送用于配置所述指示信息对应波束映射方案的高层信令。
在本发明的实施例中,如图19所示,所述发送模块1701,包括:第三发送单元17013,被配置为在所述PDCCH上向所述UE发送第二群组DCI;其中,所述第二群组DCI携带有所述波束映射方案的指示信息,所述波束映射方案的指示信息与TRP工作模式存在对应关系。
在本发明的实施例中,如图20所示,所述发送模块1701,包括:第四发送单元17014,被配置为在所述PDCCH上向所述UE发送针对所述UE的第二特定DCI;其中,所述第二特定DCI携带有所述波束映射方案的指示信息和/或所述TRP工作模式的指示信息。
在本发明的实施例中,所述第二特定DCI携带有所述TRP工作模式的指示信息,所述第一配置模块1703,被配置为向所述UE发送用于配置所述指示信息对应波束映射方案的高层信令。
在本发明的实施例中,所述控制信令携带的波束映射方案的指示信息,表征所述基站选定的映射图样与时间单位的组合,或者,表征所述基站未选定波束映射方案。
在本发明的实施例中,如图21所示,所述控制信令携带的波束映射方案的指示信息,表征所述映射图样和所述时间单位中的一个;所述装置,还包括:第二配置模块1704,被配置为向所述UE发送所述高层信令,以配置所述映射图样和所述时间单位中的另一个。
在本发明的实施例中,如图22所示,所述装置,还包括调度模块1705,被配置为:根据信道状态CSI测量量进行调度,以确定所述TRP工作模式和所述波束映射方案中的至少一个;和/或,波束管理以确定所述TRP工作模式和所述波束映射方案中的至少一个。
本实施例中,通过基站在PDCCH上向UE发送DCI之后,由于该DCI携带有TRP工作模 式和/或波束映射方案的指示信息,从而UE在基站调度下采用对应的TRP工作模式和/或波束映射方案在PUSCH上发送数据,相应地,基站接收该UE在PUSCH上以所述TRP工作模式和/或波束映射方案发送的数据,从而实现了在PUSCH上进行单TRP的传输或基于多TRP的传输的切换,或者,波束映射方案的调度,提高了PUSCH的数据传输质量。
根据本发明的实施例,本发明还提供了一种通信设备和一种可读存储介质。
如图23所示,是根据本发明实施例的物理上行共享信道的数据传输设备的框图。通信设备旨在表示各种形式的数字计算机,诸如,膝上型计算机、台式计算机、工作台、个人数字助理、服务器、刀片式服务器、大型计算机、和其它适合的计算机。通信设备还可以表示各种形式的移动装置,诸如,个人数字处理、蜂窝电话、智能电话、可穿戴设备和其它类似的计算装置。本文所示的部件、它们的连接和关系、以及它们的功能仅仅作为示例,并且不意在限制本文中描述的和/或者要求的本发明的实现。
如图23所示,该通信设备包括:一个或多个处理器1100、存储器1200,以及用于连接各部件的接口,包括高速接口和低速接口。各个部件利用不同的总线互相连接,并且可以被安装在公共主板上或者根据需要以其它方式安装。处理器可以对在通信设备内执行的指令进行处理,包括存储在存储器中或者存储器上以在外部输入/输出装置(诸如,耦合至接口的显示设备)上显示GUI的图形信息的指令。在其它实施方式中,若需要,可以将多个处理器和/或多条总线与多个存储器和多个存储器一起使用。同样,可以连接多个通信设备,各个设备提供部分必要的操作(例如,作为服务器阵列、一组刀片式服务器、或者多处理器系统)。图23中以一个处理器1100为例。
存储器1200即为本发明所提供的非瞬时计算机可读存储介质。其中,所述存储器存储有可由至少一个处理器执行的指令,以使所述至少一个处理器执行本发明所提供的数据传输方法。本发明的非瞬时计算机可读存储介质存储计算机指令,该计算机指令用于使计算机执行本发明所提供的数据传输方法。
存储器1200作为一种非瞬时计算机可读存储介质,可用于存储非瞬时软件程序、非瞬时计算机可执行程序以及模块,如本发明实施例中的数据传输方法对应的程序指令/模块(例如,附图11所示的获取模块1101和传输模块1102,或者是附图17所示的发送模块1701和接收模块1702)。处理器1100通过运行存储在存储器1200中的非瞬时软件程序、指令以及模块,从而执行服务器的各种功能应用以及数据处理,即实现上述方法实施例中的数据传输方法。
存储器1200可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储根据定位通信设备的使用所创建的数据 等。此外,存储器1200可以包括高速随机存取存储器,还可以包括非瞬时存储器,例如至少一个磁盘存储器件、闪存器件、或其他非瞬时固态存储器件。可选地,存储器1200可选包括相对于处理器1100远程设置的存储器,这些远程存储器可以通过网络连接至定位通信设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
物理上行共享信道的数据传输的通信设备还可以包括:输入装置1300和输出装置1400。处理器1100、存储器1200、输入装置1300和输出装置1400可以通过总线或者其他方式连接,图22中以通过总线连接为例。
输入装置1300可接收输入的数字或字符信息,以及产生与定位通信设备的用户设置以及功能控制有关的键信号输入,例如触摸屏、小键盘、鼠标、轨迹板、触摸板、指示杆、一个或者多个鼠标按钮、轨迹球、操纵杆等输入装置。输出装置1400可以包括显示设备、辅助照明装置(例如,LED)和触觉反馈装置(例如,振动电机)等。该显示设备可以包括但不限于,液晶显示器(LCD)、发光二极管(LED)显示器和等离子体显示器。在一些实施方式中,显示设备可以是触摸屏。
此处描述的系统和技术的各种实施方式可以在数字电子电路系统、集成电路系统、专用ASIC(专用集成电路)、计算机硬件、固件、软件、和/或它们的组合中实现。这些各种实施方式可以包括:实施在一个或者多个计算机程序中,该一个或者多个计算机程序可在包括至少一个可编程处理器的可编程系统上执行和/或解释,该可编程处理器可以是专用或者通用可编程处理器,可以从存储系统、至少一个输入装置、和至少一个输出装置接收数据和指令,并且将数据和指令传输至该存储系统、该至少一个输入装置、和该至少一个输出装置。
这些计算程序(也称作程序、软件、软件应用、或者代码)包括可编程处理器的机器指令,并且可以利用高级过程和/或面向对象的编程语言、和/或汇编/机器语言来实施这些计算程序。如本文使用的,术语“机器可读介质”和“计算机可读介质”指的是用于将机器指令和/或数据提供给可编程处理器的任何计算机程序产品、设备、和/或装置(例如,磁盘、光盘、存储器、可编程逻辑装置(PLD)),包括,接收作为机器可读信号的机器指令的机器可读介质。术语“机器可读信号”指的是用于将机器指令和/或数据提供给可编程处理器的任何信号。
为了提供与用户的交互,可以在计算机上实施此处描述的系统和技术,该计算机具有:用于向用户显示信息的显示装置(例如,CRT(阴极射线管)或者LCD(液晶显示器)监视器);以及键盘和指向装置(例如,鼠标或者轨迹球),用户可以通过该键盘和该指向装置来将输入提供给计算机。其它种类的装置还可以用于提供与用户的交互;例如,提供给用户的反馈可以是任何形式的传感反馈(例如,视觉反馈、听觉反馈、或者触觉反馈);并且可以 用任何形式(包括声输入、语音输入或者、触觉输入)来接收来自用户的输入。
可以将此处描述的系统和技术实施在包括后台部件的计算系统(例如,作为数据服务器)、或者包括中间件部件的计算系统(例如,应用服务器)、或者包括前端部件的计算系统(例如,具有图形用户界面或者网络浏览器的用户计算机,用户可以通过该图形用户界面或者该网络浏览器来与此处描述的系统和技术的实施方式交互)、或者包括这种后台部件、中间件部件、或者前端部件的任何组合的计算系统中。可以通过任何形式或者介质的数字数据通信(例如,通信网络)来将系统的部件相互连接。通信网络的示例包括:局域网(LAN)、广域网(WAN)和互联网。
计算机系统可以包括客户端和服务器。客户端和服务器一般远离彼此并且通常通过通信网络进行交互。通过在相应的计算机上运行并且彼此具有客户端-服务器关系的计算机程序来产生客户端和服务器的关系。
根据本发明实施例的数据传输装置,通过基站在PDCCH上向UE发送DCI之后,由于该DCI携带有TRP工作模式和/或波束映射方案的指示信息,从而UE在基站调度下采用对应的TRP工作模式和/或波束映射方案在PUSCH上发送数据,相应地,基站接收该UE在PUSCH上以所述TRP工作模式和/或波束映射方案发送的数据,从而实现了在PUSCH上进行单TRP的传输或基于多TRP的传输的切换,或者,波束映射方案的调度,提高了PUSCH的数据传输质量。
应该理解,可以使用上面所示的各种形式的流程,重新排序、增加或删除步骤。例如,本发申请中记载的各步骤可以并行地执行也可以顺序地执行也可以不同的次序执行,只要能够实现本发明公开的技术方案所期望的结果,本文在此不进行限制。
上述具体实施方式,并不构成对本发明保护范围的限制。本领域技术人员应该明白的是,根据设计要求和其他因素,可以进行各种修改、组合、子组合和替代。任何在本发明的精神和原则之内所作的修改、等同替换和改进等,均应包含在本发明保护范围之内。

Claims (25)

  1. 一种数据传输方法,其特征在于,所述方法应用于用户设备UE,所述方法包括:
    获取基站发送的控制信令;其中,所述控制信令,携带有传输接入点TRP工作模式和/或波束映射方案的指示信息,所述TRP工作模式是基于单TRP的传输或基于多TRP的传输,所述波束映射方案包括面向多TRP对应的多个上行协作发送波束与时间单位之间的映射图样和/或所述时间单位的信息;
    以所述TRP工作模式和/或波束映射方案向所述基站发送数据。
  2. 根据权利要求1所述的数据传输方法,其特征在于,所述获取基站发送的控制信令,包括:
    接收所述基站在物理下行控制信道PDCCH上发送的第一群组下行控制信息DCI;其中,所述第一群组DCI携带有所述TRP工作模式的指示信息。
  3. 根据权利要求2所述的数据传输方法,其特征在于,所述接收所述基站在物理下行控制信道PDCCH上发送的第一群组下行控制信息DCI之后,还包括:
    接收所述基站在所述PDCCH上发送的针对所述UE的第一特定DCI;
    根据所述第一群组DCI中所述TRP工作模式对应的解码策略,对所述第一特定DCI解码,以得到所述波束映射方案的指示信息。
  4. 根据权利要求3所述的数据传输方法,其特征在于,所述以所述TRP工作模式和/或波束映射方案向所述基站发送数据之前,还包括:
    根据所述基站发送的高层信令,配置所述指示信息对应的波束映射方案;
    或者,对所述UE预定义所述指示信息对应的波束映射方案。
  5. 根据权利要求1所述的数据传输方法,其特征在于,所述获取基站发送的控制信令,包括:
    接收所述基站在PDCCH上发送的第二群组DCI;其中,所述第二群组DCI携带有所述波束映射方案的指示信息;
    根据所述第二群组DCI携带的所述波束映射方案的指示信息,确定对应的所述TRP工作模式。
  6. 根据权利要求1所述的数据传输方法,其特征在于,所述获取基站发送的控制信令,包括:
    接收基站在PDCCH上发送的针对所述UE的第二特定DCI;其中,所述第二特定DCI携带有所述波束映射方案的指示信息和/或所述TRP工作模式的指示信息。
  7. 根据权利要求6所述的数据传输方法,其特征在于,所述第二特定DCI携带有所述TRP工作模式的指示信息,所述以所述TRP工作模式和/或波束映射方案向所述基站发送数据之前,还包括:
    根据所述基站发送的高层信令,配置所述指示信息对应的波束映射方案;
    或者,对所述UE预定义所述指示信息对应的波束映射方案。
  8. 根据权利要求1-7任一项所述的数据传输方法,其特征在于,所述控制信令携带的波束映射方案的指示信息,表征所述基站选定的映射图样与时间单位的组合,或者,表征所述基站未选定波束映射方案。
  9. 根据权利要求1-7任一项所述的数据传输方法,其特征在于,所述控制信令携带的波束映射方案的指示信息,表征所述映射图样和所述时间单位中的一个;
    所述以所述TRP工作模式和/或波束映射方案向所述基站发送数据之前,还包括:
    根据所述基站发送的高层信令,配置所述映射图样和所述时间单位中的另一个。
  10. 根据权利要求1-9中任一项所述的数据传输方法,其特征在于,所述以所述TRP工作模式和/或波束映射方案向所述基站发送数据之前还包括:
    采用所述TRP工作模式对应的解码策略,对所述基站发送的针对所述UE的特定DCI解码,以得到物理上行共享信道PUSCH采用的数据调度信息;其中,所述PUSCH,用于向所述基站发送所述数据,所述数据调度信息包括基于码本传输的数据发送信息或基于非码本传输的数据发送信息。
  11. 一种数据传输方法,其特征在于,应用于基站,所述方法包括:
    向用户设备UE发送控制信令;其中,所述控制信令,携带有传输接入点TRP工作模式和/或波束映射方案的指示信息,所述TRP工作模式是基于单TRP的传输或基于多TRP的传 输,所述波束映射方案包括面向多TRP对应的多个上行协作发送波束与时间单位之间的映射图样和/或所述时间单位的信息;
    接收所述UE以所述TRP工作模式和/或波束映射方案发送的数据。
  12. 根据权利要求11所述的数据传输方法,其特征在于,所述向用户设备UE发送控制信令,包括:
    在物理下行控制信道PDCCH上向所述UE发送第一群组下行控制信息DCI;其中,所述第一群组DCI携带有所述TRP工作模式的指示信息。
  13. 根据权利要求12所述的数据传输方法,其特征在于,所述向用户设备UE发送控制信令之后,还包括:
    向所述UE发送针对所述UE的第一特定DCI;其中,所述第一特定DCI,用于采用所述第一群组DCI中所述TRP工作模式对应的解码策略解码,携带有所述波束映射方案的指示信息。
  14. 根据权利要求13所述的数据传输方法,其特征在于,所述接收所述UE以所述TRP工作模式和/或波束映射方案发送的数据之前,还包括:
    向所述UE发送用于配置所述指示信息对应波束映射方案的高层信令。
  15. 根据权利要求11所述的数据传输方法,其特征在于,所述向用户设备UE发送控制信令,包括:
    在PDCCH上向所述UE发送第二群组DCI;其中,所述第二群组DCI携带有所述波束映射方案的指示信息,所述波束映射方案的指示信息与TRP工作模式存在对应关系。
  16. 根据权利要求11所述的数据传输方法,其特征在于,所述向用户设备UE发送控制信令,包括:
    在PDCCH上向所述UE发送针对所述UE的第二特定DCI;其中,所述第二特定DCI携带有所述波束映射方案的指示信息和/或所述TRP工作模式的指示信息。
  17. 根据权利要求16所述的数据传输方法,其特征在于,所述第二特定DCI携带有所述TRP工作模式的指示信息,所述接收所述UE以所述TRP工作模式和/或波束映射方案发送的 数据之前,还包括:
    向所述UE发送用于配置所述指示信息对应波束映射方案的高层信令。
  18. 根据权利要求11-17任一项所述的数据传输方法,其特征在于,所述控制信令携带的波束映射方案的指示信息,表征所述基站选定的映射图样与时间单位的组合,或者,表征所述基站未选定波束映射方案。
  19. 根据权利要求11-17任一项所述的数据传输方法,其特征在于,所述控制信令携带的波束映射方案的指示信息,表征所述映射图样和所述时间单位中的一个;
    所述接收所述UE以所述TRP工作模式和/或波束映射方案发送的数据之前,还包括:
    向所述UE发送高层信令,以配置所述映射图样和所述时间单位中的另一个。
  20. 根据权利要求11-19中任一项所述的数据传输方法,其特征在于,所述向用户设备UE发送控制信令之前还包括:
    根据信道状态CSI测量量进行调度,以确定所述TRP工作模式和所述波束映射方案中的至少一个;
    和/或,波束管理以确定所述TRP工作模式和所述波束映射方案中的至少一个。
  21. 一种数据传输装置,其特征在于,应用于用户设备UE,所述装置包括:
    获取模块,被配置为获取基站发送的控制信令;其中,所述控制信令,携带有传输接入点TRP工作模式和/或波束映射方案的指示信息,所述TRP工作模式是基于单TRP的传输或基于多TRP的传输,所述波束映射方案包括面向多TRP对应的多个上行协作发送波束与时间单位之间的映射图样和/或所述时间单位的信息;多TRP对应的多个上行协作发送波束与时间单位之间的映射图样和/或所述时间单位的信息
    传输模块,被配置为以所述TRP工作模式和/或波束映射方案向所述基站发送数据。
  22. 一种数据传输装置,其特征在于,应用于基站,所述装置包括:
    发送模块,被配置为向用户设备UE发送控制信令;其中,所述控制信令,携带有传输接入点TRP工作模式和/或波束映射方案的指示信息,所述TRP工作模式是基于单TRP的传输或基于多TRP的传输,所述波束映射方案包括面向多TRP对应的多个上行协作发送波束与 时间单位之间的映射图样和/或所述时间单位的信息;多TRP对应的多个上行协作发送波束与时间单位之间的映射图样和/或所述时间单位的信息
    接收模块,被配置为接收所述UE以所述TRP工作模式和/或波束映射方案发送的数据。
  23. 一种通信设备,其特征在于,包括处理器、收发器、存储器以及存储在所述存储器上的计算机程序,所述处理器运行所述计算机程序,以实现如权利要求1-10任一项所述的数据传输方法。
  24. 一种通信设备,其特征在于,包括处理器、收发器、存储器以及存储在所述存储器上的计算机程序,所述处理器运行所述计算机程序,以实现如权利要求11-20任一项所述的数据传输方法。
  25. 一种处理器可读存储介质,其特征在于,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行权利要求1-10任一项所述的数据传输方法,或者,权利要求11-20任一项所述的数据传输方法。
PCT/CN2020/122974 2020-10-22 2020-10-22 一种数据传输方法及装置 WO2022082653A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/032,968 US20230397015A1 (en) 2020-10-22 2020-10-22 Data communication method and apparatus
PCT/CN2020/122974 WO2022082653A1 (zh) 2020-10-22 2020-10-22 一种数据传输方法及装置
CN202080002902.2A CN114731648A (zh) 2020-10-22 2020-10-22 一种数据传输方法及装置
EP20958235.2A EP4236523A4 (en) 2020-10-22 2020-10-22 DATA TRANSMISSION METHOD AND APPARATUS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/122974 WO2022082653A1 (zh) 2020-10-22 2020-10-22 一种数据传输方法及装置

Publications (1)

Publication Number Publication Date
WO2022082653A1 true WO2022082653A1 (zh) 2022-04-28

Family

ID=81291131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/122974 WO2022082653A1 (zh) 2020-10-22 2020-10-22 一种数据传输方法及装置

Country Status (4)

Country Link
US (1) US20230397015A1 (zh)
EP (1) EP4236523A4 (zh)
CN (1) CN114731648A (zh)
WO (1) WO2022082653A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024065356A1 (en) * 2022-09-29 2024-04-04 Qualcomm Incorporated Techniques for transmission reception point switching during repetitions

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107920328A (zh) * 2016-10-10 2018-04-17 中兴通讯股份有限公司 一种确定寻呼波束的方法、装置和系统
US20190082426A1 (en) * 2017-09-08 2019-03-14 Asustek Computer Inc. Method and apparatus for channel usage in unlicensed spectrum considering beamformed transmission in a wireless communication system
CN110024299A (zh) * 2016-09-28 2019-07-16 Idac控股公司 用于波束管理的系统和方法
CN111416695A (zh) * 2019-01-07 2020-07-14 电信科学技术研究院有限公司 一种数据传输方法、终端和网络侧设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3651397A1 (en) * 2018-11-12 2020-05-13 Panasonic Intellectual Property Corporation of America User equipment and network node involved in the transmission of signals

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110024299A (zh) * 2016-09-28 2019-07-16 Idac控股公司 用于波束管理的系统和方法
CN107920328A (zh) * 2016-10-10 2018-04-17 中兴通讯股份有限公司 一种确定寻呼波束的方法、装置和系统
US20190082426A1 (en) * 2017-09-08 2019-03-14 Asustek Computer Inc. Method and apparatus for channel usage in unlicensed spectrum considering beamformed transmission in a wireless communication system
CN111416695A (zh) * 2019-01-07 2020-07-14 电信科学技术研究院有限公司 一种数据传输方法、终端和网络侧设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NOKIA, ALCATEL-LUCENT SHANGHAI BELL: "On beam grouping and reporting", 3GPP DRAFT; R1-1705959, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Spokane, WA, USA; 20170403 - 20170407, 2 April 2017 (2017-04-02), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051244068 *
See also references of EP4236523A4 *

Also Published As

Publication number Publication date
EP4236523A1 (en) 2023-08-30
EP4236523A4 (en) 2023-12-13
CN114731648A (zh) 2022-07-08
US20230397015A1 (en) 2023-12-07

Similar Documents

Publication Publication Date Title
CN112930700B (zh) 用于通过mimo操作来节省用户设备功率的方法和设备
JP7151796B2 (ja) 複数のtrp送信/パネルに用いられるcsiレポーティング
US10856292B2 (en) Communication method and base station
WO2019085842A1 (en) System and method for indicating wireless channel status
US20230224892A1 (en) Methods for network assisted beamforming for sidelink unicast communication
EP3890407A1 (en) Communication method and apparatus
US20230239032A1 (en) Beam processing method and apparatus, and related device
WO2020135071A1 (zh) 一种信息传输方法、网络设备、终端设备及存储介质
CN114337953B (zh) 上行信道参数的确定和配置方法及装置
CN112019313B (zh) 确定小区激活时延的方法和装置
CN112672378A (zh) 资源测量的方法和装置
CN114337755A (zh) 波束信息指示、获取方法、装置、终端及网络侧设备
EP2374224B1 (en) Method for transmitting pilot allocation information to user equipment in a multi-user multiple input multiple output system
CN113170469B (zh) 波束指示方法及装置
WO2022082653A1 (zh) 一种数据传输方法及装置
WO2022147675A1 (zh) 上行天线面板的确定方法、装置及通信设备
US20230421335A1 (en) Transmission method and apparatus
US20230247467A1 (en) Method and apparatus for determining channel state information, method and apparatus for determining reporting setting, and related device
WO2022104735A1 (zh) 波束指示方法、装置及通信设备
CN112243246B (zh) 用于信道测量的接收参数的确定方法和装置
CN109842436B (zh) 一种上行信号传输方法、终端和网络侧设备
RU2815922C1 (ru) Способ и устройство для указания луча и устройство связи
CN115150025B (zh) Csi反馈方法、相关设备及可读存储介质
WO2023066333A1 (zh) 信道状态信息csi测量方法、终端及网络侧设备
CN115208526B (zh) 信号传输方法、装置及终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20958235

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020958235

Country of ref document: EP

Effective date: 20230522