WO2023274369A1 - 传输方法、装置、通信设备及存储介质 - Google Patents

传输方法、装置、通信设备及存储介质 Download PDF

Info

Publication number
WO2023274369A1
WO2023274369A1 PCT/CN2022/102905 CN2022102905W WO2023274369A1 WO 2023274369 A1 WO2023274369 A1 WO 2023274369A1 CN 2022102905 W CN2022102905 W CN 2022102905W WO 2023274369 A1 WO2023274369 A1 WO 2023274369A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
beam information
information
bwp
target
Prior art date
Application number
PCT/CN2022/102905
Other languages
English (en)
French (fr)
Inventor
杨宇
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2023274369A1 publication Critical patent/WO2023274369A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the present application belongs to the technical field of communication, and in particular relates to a transmission method, device, communication equipment and storage medium.
  • the network will configure multiple bandwidth parts (Bandwidth part, BWP) on a cell.
  • BWP Bandwidth part
  • PDCCH Physical Downlink Control Channel
  • the terminal will pass A timer (timer) switches from the current active BWP (active BWP) to the default downlink BWP (default DL BWP) or default downlink/uplink BWP pair (default DL/UL BWP pair), so as to achieve the effect of power saving.
  • the network activates or indicates new beam information for a channel or RS, such as TCI state (TCI state), quasi co-location information (Quasi Co-Location information, QCL information), spatial relation information (spatial relation information), etc.
  • TCI state TCI state
  • QCL information quasi co-location information
  • spatial relation information spatial relation information
  • Embodiments of the present application provide a transmission method, device, communication device, and storage medium, which can solve the problem of inconsistent beam information between the network and the UE after BWP handover.
  • a transmission method includes:
  • the target communication device determines, based on the time information of the first beam information and the time information of switching to the second BWP, the transmission target on the second BWP Target beam information of the signal;
  • the target communication device transmits the target signal based on the target beam information
  • the target communication device is a network side device or a terminal
  • the first beam information is sent by the network side device to the terminal.
  • a transmission device comprising:
  • the first determination module is configured to, in the case of determining that it is necessary to switch from the first BWP to the second BWP, based on the time information of the first beam information and the time information of switching to the second BWP, determine on the second BWP Target beam information for transmitting target signals;
  • a transmission module configured to transmit the target signal based on the target beam information
  • the target communication device is a network side device or a terminal
  • the first beam information is sent by the network side device to the terminal.
  • a communication device which includes a processor, a memory, and a program or instruction stored in the memory and operable on the processor, and the program or instruction is executed by the processor When executed, the steps of the method described in the first aspect are realized.
  • a target communication device including a processor and a communication interface, wherein the processor is used for:
  • the communication interface is used for:
  • the target communication device is a network side device or a terminal
  • the first beam information is sent by the network side device to the terminal.
  • a readable storage medium is provided, and a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, the steps of the method according to the first aspect are implemented.
  • a sixth aspect provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, the processor is used to run programs or instructions, and implement the method as described in the first aspect A step of.
  • a computer program/program product is provided, the computer program/program product is stored in a non-transitory storage medium, and the program/program product is executed by at least one processor to implement the program described in the first aspect The steps of the method.
  • the target beam information of the signal ensures that the target beam information determined by the network and the terminal is consistent, ensures beam alignment during BWP switching, and reduces interruption of information transmission.
  • FIG. 1 is a structural diagram of a wireless communication system applicable to an embodiment of the present application
  • FIG. 2 is a schematic flowchart of a transmission method provided in an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a BWP handover delay provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a transmission device provided in an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a hardware structure of a terminal implementing an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a hardware structure of a network side device implementing an embodiment of the present application.
  • first, second and the like in the specification and claims of the present application are used to distinguish similar objects, and are not used to describe a specific sequence or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances such that the embodiments of the application are capable of operation in sequences other than those illustrated or described herein and that "first" and “second” distinguish objects. It is usually one category, and the number of objects is not limited. For example, there may be one or more first objects.
  • “and/or” in the description and claims means at least one of the connected objects, and the character “/” generally means that the related objects are an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technology can be used for the above-mentioned system and radio technology, and can also be used for other systems and radio technologies.
  • NR New Radio
  • the following description describes the New Radio (NR) system for illustrative purposes, and uses NR terminology in most of the following descriptions, but these techniques can also be applied to applications other than NR system applications, such as the 6th generation (6 th Generation, 6G) communication system.
  • 6G 6th Generation
  • FIG. 1 is a structural diagram of a wireless communication system to which an embodiment of the present application is applicable.
  • the wireless communication system includes a terminal 11 and a network side device 12.
  • the terminal 11 can also be called a terminal device or a user terminal or a user equipment (User Equipment, UE), and the terminal 11 can be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer , personal digital assistant (Personal Digital Assistant, PDA), handheld computer, netbook, ultra-mobile personal computer (ultra-mobile personal computer, UMPC), mobile Internet device (Mobile Internet Device, MID), augmented reality (augmented reality, AR) /Virtual reality (virtual reality, VR) equipment, robots, wearable devices (Wearable Device), vehicle-mounted equipment (VUE), pedestrian terminal (PUE), smart home (home equipment with wireless communication functions, such as refrigerators, TVs, washing machine or furniture, etc.), wearable devices include: smart watches, smart bracelets, smart headphones, smart glasses
  • the network side device 12 may be a base station or a core network, where a base station may be called a node B, an evolved node B, an access point, a base transceiver station (Base Transceiver Station, BTS), a radio base station, a radio transceiver, a basic service Basic Service Set (BSS), Extended Service Set (ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolved Node B, WLAN access point, WiFi node, transmission Receiving point (Transmitting Receiving Point, TRP) or some other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical terms. It should be noted that in the embodiment of this application, only The base station in the NR system is taken as an example, but the specific type of the base station is not limited.
  • the analog beamforming is transmitted in full bandwidth, and each polarization element on the panel of each high-frequency antenna array can only transmit analog beams in a time-division multiplexed manner.
  • the shaping weight of the analog beam is realized by adjusting the parameters of the RF front-end phase shifter and other equipment.
  • the training of the simulated beamforming vector can be carried out in a polling manner, that is, the array elements of each polarization direction of each antenna panel transmit the training signal (that is, the candidate forming vector) at the appointed time sequentially in a time-division multiplexing manner, and the terminal After the measurement, the beam report is fed back, and the training signal is used by the network side to implement the simulated beam transmission in the next service transmission.
  • the content of the beam report usually includes several optimal transmit beam identities and the measured received power of each transmit beam.
  • the network can configure a reference signal resource set (RS resource set), which includes at least one reference signal resource, such as a synchronization signal and a PBCH block resource (Synchronization Signal and PBCH block resource, referred to as SSB resource) or channel state information Reference signal resource (Channel State Information Reference Signal resource, CSI-RS resource).
  • RS resource set which includes at least one reference signal resource, such as a synchronization signal and a PBCH block resource (Synchronization Signal and PBCH block resource, referred to as SSB resource) or channel state information Reference signal resource (Channel State Information Reference Signal resource, CSI-RS resource).
  • the UE measures the Layer 1 Reference Signal Received Power (Layer 1 Reference Signal Received Power, L1-RSRP)/Layer 1 Signal to Interference plus Noise Ratio (Signal to Interference plus Noise Ratio, L1-SINR) of each RS resource, and can calculate the maximum At least one optimal measurement result is reported to the network, and the reported content includes SS/PBCH Block Resource Indicator (SSBRI) or channel state information reference signal resource indicator (Channel State Information Reference Signal Resource Indicator, CRI), and the corresponding The L1-RSRP/L1-SINR.
  • the content of the report may reflect at least one optimal beam and its quality, for the network to determine beam information for transmitting channels or signals with the UE.
  • the network can make beam indications for downlink and uplink channels or reference signals, which are used to establish beam links between the network and UE to realize the transmission of channels or reference signals.
  • the network uses RRC signaling to configure K TCI (TCI: Transmission Configuration Indication, transmission configuration indication) states for each CORESET.
  • TCI Transmission Configuration Indication, transmission configuration indication
  • K Transmission Configuration Indication
  • the media access control layer control element Media Access Control Control Element, MAC CE
  • K no additional MAC CE command is required.
  • the UE monitors the PDCCH, it can use the same QCL (Quasi-colocation) information for all search spaces in the CORESET, that is, use the same TCI state to monitor the PDCCH.
  • the referenceSignal in the TCI state (such as periodic CSI-RS resource, semi-persistent CSI-RS resource, SS block, etc.) and the UE-specific PDCCH DMRS port are spatially QCL.
  • the UE can know which receiving beam is used to receive the PDCCH according to the TCI state.
  • the network can configure M TCI states through Radio Resource Control (RRC) signaling, and then use the MAC CE command to activate 2 N TCI states, Then, the TCI state is notified through the N-bit TCI field of the downlink control information (Downlink Control Information, DCI).
  • RRC Radio Resource Control
  • DCI Downlink Control Information
  • the referenceSignal in the TCI state and the demodulation reference signal (Dedicated deModulation Reference Signal, DMRS) port of the PDSCH to be scheduled are QCL of.
  • the UE can know which receiving beam is used to receive the PDSCH according to the TCI state.
  • the network can configure QCL information for the CSI-RS resource through RRC signaling.
  • the network can indicate its QCL information when activating a CSI-RS resource from the CSI-RS resource set configured by RRC through the MAC CE command.
  • the CSI-RS type is aperiodic CSI-RS
  • the network can configure QCL information for the CSI-RS resource through RRC signaling, and use DCI to trigger the CSI-RS.
  • the network can use RRC signaling to configure spatial relation information for each PUCCH resource through the parameter PUCCH-SpatialRelationInfo.
  • the spatial relation information configured for PUCCH resource contains multiple, use MAC-CE to indicate or activate one of them spatial relation information.
  • the spatial relation information configured for the PUCCH resource contains only one, no additional MAC CE command is required.
  • the spatial relation information of PUSCH is when the DCI carried by PDCCH schedules PUSCH, each SRI codepoint of the SRI field in DCI can indicate an SRI, and the SRI can be used to indicate the spatial relation information of PUSCH.
  • the network can configure spatial relation information for the SRS resource through RRC signaling.
  • the SRS type is semi-persistent SRS
  • the network can activate one from a set of spatial relation information configured by RRC through the MAC CE command.
  • the SRS type is aperiodic SRS
  • the network can configure spatial relation information for the SRS resource through RRC signaling, and can also use MAC CE commands to update the spatial relation information of the aperiodic SRS resource.
  • the activated beam information takes effect after the delay of TCI state switching (TCI state is used to indicate beam information), and the known TCI state and unknown are distinguished in this delay There are two cases of TCI state.
  • the TCI state switching delay (if the beam information is indicated by the MAC CE, the switching delay includes from MAC CE to The duration for the MAC CE command to take effect) is:
  • the TCI state switching delay is:
  • T HARQ is the duration between downlink data transmission and ACK
  • T first-SSB is the transmission time of the first SSB after the UE decodes the MAC CE
  • T SSB-proc 2ms. If the TCI state is not in the activated TCI state list, additional processing time is required. For the case of unknown TCI state, the additional processing time is the time required for L1-RSRP measurement and reporting.
  • the network can also configure the threshold parameter timeDurationForQCL based on the UE capability.
  • the DCI schedules the PDSCH at slot n
  • the default beam can be used to transmit the PDSCH.
  • the TCI state indicated by the DCI can be used to determine the beam information of the PDSCH.
  • common beam is also introduced, that is, the beam indicated by DCI can be used for multiple channels or RS transmission, and the effective time of common beam (ie beam application time) is: at the end of DCI acknowledgment character (Acknowledgment, ACK)
  • ACK DCI acknowledgment character
  • the first slot after at least X ms or Y symbols after a symbol is used as BAT.
  • the network can also configure multiple BWPs on one cell. Each bandwidth part corresponds to a Numerology, bandwidth, frequency location.
  • the base station configures up to four downlink BWPs and up to four uplink BWPs for the UE.
  • the base station configures up to four DL/UL BWP pairs for the UE.
  • the center carrier frequency of DL BWP and UL BWP in each DL/UL BWP pair is the same.
  • each UE will have a default DL BWP, or default DL/UL BWP pair.
  • the default DL BWP, or default DL/UL BWP pair is usually a BWP with a relatively small bandwidth.
  • the UE will pass a timer to switch from the current active BWP to the default DL BWP or default DL/UL BWP pair, so as to achieve the effect of power saving.
  • Active BWP switching is realized through RRC or DCI or timer.
  • DCI-based BWP switching the UE receives the BWP switching command at slot n, and the UE can receive PDSCH (during downlink BWP switching) or send PUSCH (during uplink BWP switching) on the new BWP after the BWP switching delay is T BWPswitchDelay .
  • timer-based BWP switching when the timer expires at slot n, the UE can receive PDSCH (during downlink BWP switching) or send PUSCH (during uplink BWP switching) on the new BWP after the BWP switching delay T BWPswitchDelay .
  • the UE shall not receive or transmit signals within T BWPswitchDelay starting from slot n.
  • Fig. 2 is a schematic flow chart of the transmission method provided by the embodiment of the present application. As shown in Fig. 2, the method includes the following steps:
  • Step 200 when it is determined that it is necessary to switch from the first BWP to the second BWP, the target communication device determines based on the time information of the first beam information and the time information of switching to the second BWP Target beam information for transmitting target signals;
  • Step 210 the target communication device transmits the target signal based on the target beam information
  • the target communication device is a network side device or a terminal
  • the first beam information is sent by the network side device to the terminal.
  • the target communication device may be a terminal
  • the target communication device may be a network side device
  • FIG. 3 is a schematic diagram of the BWP switching delay provided by the embodiment of the present application, as shown in FIG. 3, that is, when the network activates or indicates new beam information (new TCI state) for a certain channel or RS, Before the beam application time, an example of a scenario where BWP switching needs to be performed is not intended to limit the embodiments of the present application.
  • the terminal when the terminal determines that it needs to switch from the first BWP to the second BWP, it can determine that it needs to perform BWP switching according to the BWP switching command indicated by the DCI of the network side device, or according to the timeout of the BWP switching timer. And, after the BWP switching delay stipulated in the protocol, the BWP switching is completed.
  • the first BWP may be an active BWP
  • the second BWP may be an inactive BWP
  • the network side device can use the DCI instruction to switch to the second BWP at slot n, then the terminal can switch from the first BWP to the second BWP within the BWP switching delay after slot n, and the second BWP becomes the active BWP, And the first BWP becomes the inactive BWP.
  • the network side device may directly determine that it is necessary to switch from the first BWP to the second BWP;
  • the first BWP and the second BWP may be in the same cell, or in different cells.
  • the target signal may be a channel and/or a reference signal that needs to be transmitted after switching to the second BWP.
  • the terminal and/or the network-side device may determine, based on the time information of the first beam information and the time information of switching to the second BWP, when it is determined that it is necessary to switch from the first BWP to the second BWP.
  • the target beam information used to transmit the target signal on the second BWP is to determine the target beam information used to transmit the target signal after the handover is completed.
  • the terminal and/or the network side device may transmit the target signal on the second BWP based on the target beam information
  • the beam information mentioned in the various embodiments of the present application may also be referred to as: identification information of the beam, spatial relation information, spatial domain transmission filter (spatial domain transmission filter) information, and spatial domain reception filter (spatial domain reception filter) information, spatial filter (spatial filter) information, transmission configuration indication state (TCI state) information, quasi co-location (Quasi Co-Location, QCL) information or QCL parameters, etc.
  • the downlink beam information can usually be represented by TCI state information or QCL information.
  • Uplink beam information can usually be represented by TCI state information or spatial relation information.
  • the target beam information of the signal ensures that the target beam information determined by the network and the terminal is consistent, ensures beam alignment during BWP switching, and reduces interruption of information transmission.
  • the target communication device determines target beam information for transmitting target signals based on time information of the first beam information and time information of switching to the second BWP, including:
  • the target beam information for transmitting the target signal is determined based on at least one of the target signal, time information of the first beam information, and time information of switching to the second BWP.
  • the method for determining the target beam information for transmitting the target signal may be different;
  • the target beam information for transmitting the target signal may be determined based on at least one of the target signal, time information of the first beam information, and time information of switching to the second BWP.
  • the time information of the first beam information includes the first beam information beam application time; the first beam information is indicated by the network side through a first command.
  • the target signal is PDCCH or PUCCH
  • it may be determined based on at least one of the time information of the first beam information indicated by the first command and the time information of switching to the second BWP. Describe the target beam information used to transmit the target signal.
  • the first beam information when it is public beam information, it may be based on at least one of the time information of the first beam information indicated by the first command and the time information of switching to the second BWP , determining the target beam information used to transmit the target signal.
  • the common beam information corresponds to at least two channels, or the common beam information corresponds to at least two reference signals, or the common beam information corresponds to at least one channel and at least one reference signal.
  • the first command may be any one of RRC signaling, MAC CE command, and DCI signaling.
  • the first command when it is DCI, it may be the same DCI or a different DCI from the DCI indicating BWP switching.
  • the first command may be sent on the first BWP, or on the second BWP.
  • the target channel may be at least one of downlink channel and uplink channel
  • the target RS may be at least one of downlink RS and uplink RS.
  • the first beam information may be public beam information.
  • the public beam information may be at least one of joint TCI state, separate DL TCI state, and separate UL TCI state.
  • K there are K pieces of first beam information, and K is a positive integer.
  • the first command can be MAC CE, activating one or more TCI states (such as activating one or more beams for the control channel), or the first command can be DCI, indicating 1 or more TCI states (such as data A channel indicates one or more beams).
  • the beam application time of the first beam which may be called BAT, may also be called beam effective time, and may be before or after the BWP switching is completed.
  • the determining the target beam information for transmitting the target signal based on at least one of the target signal, time information of the first beam information, and time information of switching to the second BWP includes the following At least one of:
  • the target beam information is the first beam information after the beam application time.
  • the beam application time T2 may mean that the first beam information instructed or activated by the network takes effect from this time point;
  • the first beam information may be used to transmit the target signal.
  • the terminal when the target signal is PDCCH or PUCCH, or when the first beam information indicated by the network side device is public beam information, when the target communication device is a terminal, the terminal may The first beam information can be obtained only based on the first command, and when the target communication device is a network-side device, the network-side device can directly determine the first beam information and indicate it to the terminal;
  • the target beam information used on the second BWP is the first beam information
  • the target beam information used on the second BWP is the first preset beam information
  • the first preset beam information may be the beam information of a certain PDCCH on the preset BWP, or the beam information of the last used PDCCH on the preset BWP, or the last used beam information on the preset BWP.
  • the preset BWP may be the first BWP and/or the second BWP.
  • the preset BWP is determined according to whether there is beam information of the preset channel on the second BWP; or, the preset BWP is determined according to whether there is beam information of the preset channel on the second BWP within a preset time.
  • Set BWP is determined according to whether there is beam information of the preset channel on the second BWP.
  • the network side device has not activated the PDCCH beam information for the terminal on the second BWP, or the network side device has not activated the PDCCH beam information on the second BWP for the terminal within a certain period of time before switching to the second BWP , determine the first BWP as the preset BWP; on the contrary, if the network side device has activated PDCCH beam information for the terminal on the second BWP, or the network side device has given the terminal a specific time period before switching to the second BWP. The beam information of the PDCCH on the second BWP is activated, and the second BWP is determined as the preset BWP.
  • the time information T1 of switching to the second BWP is after the beam application time T2, it may be determined that the target beam information after T1 is the first beam information;
  • the target beam information is first preset beam information
  • the target beam information is the first beam application time information.
  • the target signal as PDCCH as an example, if the beam application time is after the BWP switching is completed, at least one of the following items is included:
  • the beam information of the PDCCH is preset beam information on a preset BWP (first preset beam information). If the preset BWP is the first BWP and/or the second BWP, it depends on whether the network side device has activated PDCCH beam information for the terminal on the second BWP, and the preset beam information is a certain PDCCH beam on the preset BWP information, or the beam information of the last used PDCCH on the preset BWP, or the last used beam information on the preset BWP.
  • the second beam information of the PDCCH is the first beam information.
  • the target beam information may also be determined based on the transmission time of the first command; wherein , if the network side device sends the first command after the BWP handover is completed, the target beam information can be determined by at least one of the following:
  • the time information T1 of switching to the second BWP is before the transmission time T3 of the first command, it is determined that before the transmission time T3 of the first command, that is, between T1 and T3, in the second
  • the target beam information on the BWP is the second preset beam information
  • the time information T1 of switching to the second BWP is before the transmission time T3 of the first command, it is determined to be after the transmission time T3 of the first command and before the beam application time T2, that is, at Between T3 and T2, the target beam information on the second BWP is third preset beam information, where T3 is earlier than T2;
  • the target beam information on the second BWP is the first Beam information, where T3 is earlier than T2.
  • the time information of the first beam information includes at least one of the following:
  • the first activation time of the M beam information is the beam information activated by the network side device through the second command and corresponding to the second BWP, the first activation time is the M beam information Activated effective time, M is a positive integer;
  • Time information corresponding to the third command where the time information corresponding to the third command is the beam application time of the first beam information indicated by the third command.
  • the target signal is PDSCH, or, the first beam information is public beam information;
  • the second command may be any one of RRC signaling, MAC CE command, and DCI signaling.
  • the second command can be sent on the first BWP, or on the second BWP.
  • the target channel may be at least one of downlink channel and uplink channel
  • the target RS may be at least one of downlink RS and uplink RS.
  • the first beam information may be public beam information.
  • the public beam information may be at least one of joint TCI state, separate DL TCI state, and separate UL TCI state.
  • K there are K pieces of first beam information, and K is a positive integer.
  • the second command may be MAC CE, which is used to activate M beam information on the second BWP, such as activating M TCI states, where M is a positive integer;
  • the third command may be DCI, indicating one or more TCI states.
  • the third command may be DCI, which may be the same DCI or a different DCI from the DCI indicating BWP switching.
  • the determining the target beam information for transmitting the target signal based on at least one of the target signal, time information of the first beam information, and time information of switching to the second BWP includes the following At least one of:
  • the target beam information determines whether the transmission time of the target signal is before the time information corresponding to the third command. If the transmission time of the target signal is before the time information corresponding to the third command, determine the target beam information as fourth preset beam information;
  • the transmission time of the target signal is after the time information corresponding to the third command, and the transmission time of the target signal is after the first activation time, determine that the target beam information is the first Beam information; the first beam information is at least one of the M beam information;
  • the target beam information is fifth preset beam information.
  • the target signal is PDSCH, or, the first beam information is common beam information;
  • the transmission time of the target signal can be Tk
  • the time information for switching to the second BWP can be T4
  • the first activation time can be T5
  • the time information corresponding to the third command can be T6; these four can be compared to determine the corresponding situation, where the larger the value, the later the corresponding time, and the smaller the value, the earlier the corresponding time.
  • T4>T5 may indicate that the time information T4 for switching to the second BWP is in the After the first activation time T5.
  • the target beam information when the transmission time Tk of the target signal is before the time information T6 corresponding to the third command, determine the target beam information as the fourth preset beam information;
  • the target beam information used to transmit the target signal on the second BWP is the fourth preset beam information
  • the second BWP is used for transmission
  • the target beam information of the target signal is the fourth preset beam information
  • the target beam information is the fourth preset beam information
  • the transmission time Tk of the target signal is the first Four preset beam information
  • the time information T4 of switching to the second BWP is after the first activation time T5, and the interval between the transmission time of the third command and the transmission time Tk of the target signal is smaller than the first threshold
  • the target beam information used to transmit the target signal on the second BWP is the fourth preset beam information
  • the transmission time Tk of the target signal is before the time information T6 corresponding to the third command, the transmission time Tk of the target signal
  • the target beam information used to transmit the target signal on the second BWP is the fourth preset beam information
  • the time information T4 of switching to the second BWP is before the first activation time T5, and the interval between the transmission time of the third command and the transmission time of the target signal is less than the first threshold
  • the target beam information used to transmit the target signal on the second BWP is the fourth preset beam information
  • the transmission time Tk of the target signal Before the first activation time T5 when the transmission time Tk of the target signal is after switching to the time information T4 of the second BWP, that is, in the case of T4 ⁇ Tk ⁇ T6 ⁇ T5 or T4 ⁇ Tk ⁇ T5 ⁇ T6, It may be determined that after T4, the target beam information used to transmit the target signal on the second BWP is the fourth preset beam information;
  • the transmission time Tk of the target signal is before the first activation time T5
  • the transmission time of the third command is the same as the first activation time T5.
  • the target beam information can be determined to be the fourth preset beam information
  • the fourth beam information may be the default beam information determined by the protocol; for example, it may be the beam information corresponding to the CORESET with the smallest ID in the latest time slot in which the UE listens to the CORESET on the preset BWP.
  • This beam information is only the fourth beam information. Examples of beam information, not limiting;
  • the target beam information used to transmit the target signal on the second BWP is the first Beam information; the first beam information is at least one of the M beam information activated by the network side device through the second command and taking effect at the first activation time T5;
  • the transmission time Tk of the target signal is after the time information T6 corresponding to the third command, and the transmission time Tk of the target signal is after the first activation time T5, that is, at T6
  • the transmission time Tk of the target signal is after the first activation time T5
  • determine that the target beam information is the first beam information
  • the first beam information is activated by the network side device through the second command, and the first activation At least one of the M beam information effective at time T5;
  • the interval between the transmission time of the third command and the transmission time Tk of the target signal is greater than or equal to a first threshold, and the transmission time Tk of the target signal is after the first activation time T5
  • T6 ⁇ T5 ⁇ Tk or T5 ⁇ T6 ⁇ Tk it is determined that the target beam information is the first beam information; the first beam information is activated by the network side device through the second command At least one of the M beam information that takes effect at the first activation time T5;
  • the time information T4 of switching to the second BWP is after the first activation time T5, and the time information T4 of switching to the second BWP is before the time information T6 corresponding to the third command, and the If the transmission time Tk of the target signal is after the time information T6 corresponding to the third command, that is, in the case of T5 ⁇ T4 ⁇ T6 ⁇ Tk, determine that the target beam information is the first beam information;
  • the first beam information is at least one of the M beam information;
  • the time information T4 of switching to the second BWP is after the first activation time T5, and the time information T4 of switching to the second BWP is before the time information T6 corresponding to the third command, and the
  • the interval between the transmission time of the third command and the transmission time of the target signal is greater than or equal to the first threshold, that is, in the case of T5 ⁇ T4 ⁇ T6 ⁇ Tk, determine that the target beam information is the first A piece of beam information; the first beam information is at least one of the M pieces of beam information;
  • the time information T4 of switching to the second BWP is before the first activation time T5, and the first activation time T5 is before the time information T6 corresponding to the third command, and the target signal
  • the transmission time Tk of the third command is after the time information T6 corresponding to the third command, that is, in the case of T4 ⁇ T5 ⁇ T6 ⁇ Tk, it is determined that after the first activation time T5, the target beam information is The first beam information; the first beam information is at least one of the M pieces of beam information.
  • the time information T4 of switching to the second BWP is before the first activation time T5, and the first activation time T5 is before the time information T6 corresponding to the third command, and the third
  • the interval between the transmission time of the command and the transmission time of the target signal is greater than or equal to the first threshold, that is, in the case of T4 ⁇ T5 ⁇ T6 ⁇ Tk, it is determined that after the first activation time T5, the The target beam information is the first beam information; the first beam information is at least one of the M pieces of beam information.
  • the time information T4 of switching to the second BWP is before the first activation time T5, and the first activation time T5 is after the time information T6 corresponding to the third command, and the target signal
  • the transmission time Tk of the third command is after the time information T6 corresponding to the third command and the first activation time T5, that is, in the case of T4 ⁇ T6 ⁇ T5 ⁇ Tk or T6 ⁇ T4 ⁇ T5 ⁇ Tk, it is determined
  • the target beam information is the first beam information; the first beam information is at least one of the M pieces of beam information.
  • the target signal when the time information T4 of switching to the second BWP is before the first activation time T5, and the first activation time T5 is after the time information T6 corresponding to the third command, the target signal
  • the transmission time Tk is after the first activation time T5
  • the interval between the transmission time of the third command and the transmission time Tk of the target signal is greater than or equal to the first threshold, that is, T4 ⁇ T6 ⁇
  • the target beam information is the first beam information
  • the first beam information is the M at least one of the beam information.
  • the time information T4 of switching to the second BWP is after the first activation time T5, and the first activation time T5 is after the time information T6 corresponding to the third command, and the target signal
  • the transmission time Tk of the third command is after the time information T6 corresponding to the third command, that is, in the case of T6 ⁇ T5 ⁇ T4 ⁇ Tk, it is determined that after the first activation time T5, the target beam information is The first beam information; the first beam information is at least one of the M pieces of beam information.
  • the time information T4 of switching to the second BWP is after the first activation time T5, and the first activation time T5 is after the time information T6 corresponding to the third command, and the third
  • the interval between the transmission time of the command and the transmission time of the target signal is greater than or equal to the first threshold, that is, in the case of T6 ⁇ T5 ⁇ T4 ⁇ Tk, it is determined that after the first activation time T5, the The target beam information is the first beam information; the first beam information is at least one of the M pieces of beam information.
  • the time information T4 of switching to the second BWP is before the first activation time T5, and the first activation time T5 is before the time information T6 corresponding to the third command, and the target signal
  • the transmission time Tk is after the time information T6 corresponding to the third command, that is, in the case of T5 ⁇ T6 ⁇ T4 ⁇ Tk, it is determined that after the first activation time T5, the target beam information is The first beam information; the first beam information is at least one of the M pieces of beam information.
  • the time information T4 of switching to the second BWP is before the first activation time T5, and the first activation time T5 is before the time information T6 corresponding to the third command, and the third
  • the interval between the transmission time of the command and the transmission time of the target signal is greater than or equal to the first threshold, that is, in the case of T5 ⁇ T6 ⁇ T4 ⁇ Tk, it is determined that after the first activation time T5, the The target beam information is the first beam information; the first beam information is at least one of the M pieces of beam information.
  • the target beam information is fifth preset beam information.
  • the interval between the transmission time of the third command and the transmission time of the target signal is greater than or equal to a first threshold, and the transmission time Tk of the target signal is before the first activation time T5 , that is, in the case of T6 ⁇ Tk ⁇ T5, the target beam information is the fifth preset beam information.
  • the time information T4 of switching to the second BWP is before the first activation time T5, and the first activation time T5 is after the time information T6 corresponding to the third command, and the target signal
  • the transmission time Tk of the target signal is before the first activation time T5
  • the transmission time Tk of the target signal is after the time information T6 corresponding to the third command, that is, T4 ⁇ T6 ⁇ Tk ⁇ T5
  • the target beam information is the fifth preset beam information
  • the time information T4 of switching to the second BWP is before the first activation time T5, and the first activation time T5 is after the time information T6 corresponding to the third command, and the target signal
  • the transmission time Tk of is before the first activation time T5, and when the interval between the transmission time of the third command and the transmission time of the target signal is greater than or equal to the first threshold, that is, T4 ⁇ T6 ⁇ Tk ⁇ T5, it is determined that before the first activation time T5, the target beam information is the fifth preset beam information;
  • the target beam information may also be determined based on the first activation time and the transmission time of the third command; wherein, The target beam information can be determined by at least one of the following:
  • the target beam information on the second BWP is sixth preset beam information
  • the target beam information on the second BWP is sixth preset beam information
  • the target beam information on the second BWP is the seventh preset beam information
  • the target beam information on the second BWP is seventh preset beam information
  • the transmission time T7 of the third command is before the first activation time T5, that is, T4 ⁇ T7 ⁇ T5, in the case of the second On the BWP, it can be determined that before the first activation time T5, the target beam information on the second BWP is the eighth preset beam information, and the eighth preset beam information can be any preset beam information or preset at least one of the active beam information;
  • the time information T4 of switching to the second BWP is at the first activation time T5, and the first activation time T5 is before the transmission time T7 of the third command, T4 ⁇ T5 ⁇ T7, it can be determined that between T4 and T5, the second The target beam information on the second BWP is the ninth preset beam information; it can be determined that between T5 and T7, the target beam information on the second BWP is the tenth preset beam information, and the tenth preset beam information It can be any preset beam information or at least one of the M beam information activated at T5.
  • the preset beam information includes at least one of the following:
  • the beam information of the preset channel is the beam information of the preset channel
  • the last used beam information is the last used beam information
  • At least one of N activated beam information where N is a positive integer
  • At least one of the most recently activated P beam information, P is a positive integer
  • the first preset beam information, the second preset beam information, the third preset beam information, the fourth preset beam information, the fifth preset beam information, the sixth preset beam information, and the seventh preset beam information Any one or more preset beam information in the beam information, the eighth preset beam information, the ninth preset beam information and the tenth preset beam information may include at least one of the following:
  • the beam information of the preset channel is the beam information of the preset channel
  • the last used beam information is the last used beam information
  • At least one of N activated beam information where N is a positive integer
  • At least one of the most recently activated P beam information, P is a positive integer
  • the first preset beam information, the second preset beam information, the third preset beam information, the fourth preset beam information, the fifth preset beam information, the sixth preset beam information, and the seventh preset beam information information, any one or more of the eighth preset beam information, any one or more of the ninth preset beam information and the tenth preset beam information may include at least one of the following :
  • the beam information of the preset channel on the preset BWP such as the beam information used by the first BWP or the second BWP, a specific PDCCH or the last transmitted PDCCH or the last transmitted channel or RS;
  • the beam information corresponding to the minimum code point (codepoint) for example, the network activates 8 TCI states for PDSCH, corresponding to codepoints from 0 to 7, and codepoint 0 corresponds to The TCI state is used as the preset beam information;
  • the preset activated beam information may be at least one beam information activated by the network side device on the preset BWP, and the preset activated beam information may be It is used for a specific channel (such as PDCCH or PDSCH), or for multiple channels (such as activated common beam information); in addition, the activated at least one beam information can also be the latest activated at least one beam information;
  • At least one preset common beam in the common beam information activated on the preset BWP for example, the common beam information corresponding to the smallest code point among the multiple activated common beam information;
  • the manner of determining the preset BWP may be based on whether the network side device activates or indicates beam information of a preset channel for the UE on the second BWP, or activates or indicates public beam information. If yes, the default BWP may be the second BWP, and if not, the default BWP is the first BWP.
  • the preset BWP may always be the first BWP or always the second BWP.
  • the preset BWP includes at least one of the following:
  • the second BWP The second BWP.
  • the preset BWP includes the second BWP
  • beam information activated or indicated within a first historical time period exists on the second BWP.
  • the first preset beam information, the second preset beam information, the third preset beam information, the fourth preset beam information, the fifth preset beam information, the sixth preset beam information, and the seventh preset beam information may be the same as or different from the eighth preset beam information;
  • the first preset beam information, the second preset beam information, the third preset beam information, the fourth preset beam information, the fifth preset beam information, the sixth preset beam information, and the seventh preset beam information may be different beam information in different scenarios.
  • the preset time slots include:
  • the first preset beam information, the second preset beam information, the third preset beam information, the fourth preset beam information, the fifth preset beam information, the sixth preset beam information, and the seventh preset beam information may be the beam information on the latest time slot where the preset channel is located, such as any one or more preset beam information on the time slot, Or the latest beam information used on this time slot, etc.;
  • the first preset beam information, the second preset beam information, the third preset beam information, the fourth preset beam information, the fifth preset beam information, the sixth preset beam information, and the seventh preset beam information Beam information, and any one of the preset beam information in the eighth preset beam information may be the beam information on any one or more time slots where the preset channel is located, such as any one or more preset beam information on the time slot. Beam information, or the latest beam information used on this time slot, etc.;
  • the preset channel includes at least one of the following:
  • the first preset beam information, the second preset beam information, the third preset beam information, the fourth preset beam information, the fifth preset beam information, the sixth preset beam information, and the seventh preset beam information Beam information, and any one of the preset beam information in the eighth preset beam information may be the beam information on the PDCCH transmitted last time, such as any one or more preset beam information of the channel, or the last use of the channel beam information, etc.;
  • the first preset beam information, the second preset beam information, the third preset beam information, the fourth preset beam information, the fifth preset beam information, the sixth preset beam information, and the seventh preset beam information Beam information, and any one of the preset beam information in the eighth preset beam information may be the beam information on the PDSCH transmitted last time, such as any one or more preset beam information of the channel, or the last used channel beam information, etc.;
  • the first preset beam information, the second preset beam information, the third preset beam information, the fourth preset beam information, the fifth preset beam information, the sixth preset beam information, and the seventh preset beam information Beam information, and any one of the preset beam information in the eighth preset beam information can be the beam information on the PUCCH transmitted last time, such as any one or more preset beam information of the channel, or the last used channel beam information, etc.;
  • the first preset beam information, the second preset beam information, the third preset beam information, the fourth preset beam information, the fifth preset beam information, the sixth preset beam information, and the seventh preset beam information Beam information, and any one of the preset beam information in the eighth preset beam information may be beam information on the preset PDCCH, such as any one or more preset beam information of the channel, or the last used beam of the channel information, etc.;
  • the first preset beam information, the second preset beam information, the third preset beam information, the fourth preset beam information, the fifth preset beam information, the sixth preset beam information, and the seventh preset beam information Beam information, and any one of the preset beam information in the eighth preset beam information may be beam information on the preset PDSCH, such as any one or more preset beam information of the channel, or the last used beam of the channel information, etc.;
  • the first preset beam information, the second preset beam information, the third preset beam information, the fourth preset beam information, the fifth preset beam information, the sixth preset beam information, and the seventh preset beam information Beam information, and any one of the preset beam information in the eighth preset beam information may be beam information on the preset PUCCH, such as any one or more preset beam information of the channel, or the last used beam of the channel information, etc.;
  • the first preset beam information, the second preset beam information, the third preset beam information, the fourth preset beam information, the fifth preset beam information, the sixth preset beam information, and the seventh preset beam information Beam information, and any one of the preset beam information in the eighth preset beam information can be the beam information on the CORESET with the smallest ID, such as any one or more preset beam information of the CORESET, or the CORESET last used beam information, etc.;
  • the preset channel corresponds to the same TRP identification information as the target signal, or the preset beam information corresponds to the same TRP identification information as the target signal.
  • the preset channel may correspond to the same TRP identification information as the target signal.
  • the above TRP identification information may be a high layer signaling parameter CORESETPoolIndex.
  • a first delay is included in the time interval between the transmission time of any command and the activation time or beam application time of the beam information activated or indicated by the command, and the first delay is on the second BWP ;
  • the first delay includes at least one of the following:
  • any command may be the first command or the second command or the third command
  • the beam switching delay TCI state switching delay
  • TCI state switching delay the time interval between the transmission time of the first command and the activation time or beam application time of the beam information activated or indicated by the first command
  • the beam switching delay (TCI state switching delay) between the second command (such as MAC CE) and the effective time of the beam information activated by the second command (such as the M beam information indicated by the second command MAC CE) which is the time interval between the transmission time of the second command and the activation time or beam application time of the beam information activated or indicated by the second command;
  • the above time interval may also include a first delay
  • the first time delay is on the second BWP
  • the first delay includes any one or more of the following:
  • the measurement and processing of the above-mentioned RS are performed on the second BWP, and the above-mentioned command and its ACK may be on the first BWP or the second BWP.
  • the second duration between the command and the ACK of the command is determined based on at least one of the following:
  • the subcarrier interval of the BWP where the ACK is transmitted is transmitted.
  • the command may be a first command or a second command or a third command
  • the second duration between the first command and the ACK of the first command is determined based on at least one of the following:
  • the subcarrier interval of the BWP where the ACK is transmitted is transmitted.
  • the second duration between the second command and the ACK of the second command is determined based on at least one of the following:
  • the subcarrier interval of the BWP where the ACK is transmitted is transmitted.
  • the second duration between the third command and the ACK of the third command is determined based on at least one of the following:
  • the subcarrier interval of the BWP where the ACK is transmitted is transmitted.
  • the target beam information of the signal ensures that the target beam information determined by the network and the terminal is consistent, ensures beam alignment during BWP switching, and reduces interruption of information transmission.
  • the execution subject may be a transmission device, or a control module in the transmission device for executing the transmission method.
  • the transmission device provided in the embodiment of the present application is described by taking the transmission device executing the transmission method as an example.
  • FIG. 4 is a schematic structural diagram of a transmission device provided in an embodiment of the present application. As shown in FIG. 4 , the device includes: a first determination module 410 and a transmission module 420; wherein:
  • the first determination module 410 is configured to determine the time information on the second BWP based on the time information of the first beam information and the time information of switching to the second BWP when it is determined that it is necessary to switch from the first BWP to the second BWP.
  • the transmission module 420 is configured to transmit the target signal based on the target beam information
  • the first beam information is sent by the network side device to the terminal.
  • the first determination module 410 may determine that Target beam information for transmitting target signals on the second BWP; then, based on the target beam information, transmit the target signals through the transmission module 420;
  • the target communication device is a network-side device or a terminal
  • the first beam information is sent by the network-side device to the terminal
  • the target beam information of the signal ensures that the target beam information determined by the network and the terminal is consistent, ensures beam alignment during BWP switching, and reduces interruption of information transmission.
  • the first determination module is also used for:
  • the target beam information for transmitting the target signal is determined based on at least one of the target signal, time information of the first beam information, and time information of switching to the second BWP.
  • the time information of the first beam information includes the first beam information beam application time; the first beam information is indicated by the network side through a first command.
  • the first determination module is also used for at least one of the following:
  • the target beam information is the first beam information after the beam application time.
  • the time information of the first beam information includes at least one of the following:
  • the first activation time of the M beam information is the beam information activated by the network side device through the second command and corresponding to the second BWP, the first activation time is the M beam information Activated effective time, M is a positive integer;
  • Time information corresponding to the third command where the time information corresponding to the third command is the beam application time of the first beam information indicated by the third command.
  • the first determination module is also used for at least one of the following:
  • the target beam information determines whether the transmission time of the target signal is before the time information corresponding to the third command. If the transmission time of the target signal is before the time information corresponding to the third command, determine the target beam information as fourth preset beam information;
  • the transmission time of the target signal is after the time information corresponding to the third command, and the transmission time of the target signal is after the first activation time, determine that the target beam information is the first Beam information; the first beam information is at least one of the M beam information;
  • the target beam information is fifth preset beam information.
  • the preset beam information includes at least one of the following:
  • the beam information of the preset channel is the beam information of the preset channel
  • the last used beam information is the last used beam information
  • At least one of N activated beam information where N is a positive integer
  • At least one of the most recently activated P beam information, P is a positive integer
  • the preset time slots include:
  • the preset BWP includes at least one of the following:
  • the second BWP The second BWP.
  • the preset BWP includes the second BWP
  • beam information activated or indicated within a first historical time period exists on the second BWP.
  • the preset channel includes at least one of the following:
  • the preset channel corresponds to the same TRP identification information as the target signal, or the preset beam information corresponds to the same TRP identification information as the target signal.
  • a first delay is included in the time interval between the transmission time of any command and the activation time or beam application time of the beam information activated or indicated by the command, and the first delay is on the second BWP ;
  • the first delay includes at least one of the following:
  • the second duration between the command and the ACK of the command is determined based on at least one of the following:
  • the subcarrier interval of the BWP where the ACK is transmitted is transmitted.
  • the target beam information of the signal ensures that the target beam information determined by the network and the terminal is consistent, ensures beam alignment during BWP switching, and reduces interruption of information transmission.
  • the transmission device in the embodiment of the present application may be a device, a device with an operating system or an electronic device, or may be a component, an integrated circuit, or a chip in a terminal.
  • the apparatus or electronic equipment may be a mobile terminal or a non-mobile terminal.
  • the mobile terminal may include but not limited to the types of terminals 11 listed above, and the non-mobile terminal may be a server, a network attached storage (Network Attached Storage, NAS), a personal computer (personal computer, PC), a television ( television, TV), teller machines or self-service machines, etc., are not specifically limited in this embodiment of the present application.
  • the transmission device provided in the embodiment of the present application can realize each process realized by the method embodiments in FIG. 2 to FIG. 3 , and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • FIG. 5 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the programs or instructions that can run on the processor 501 for example, when the communication device 500 is a terminal, the programs or instructions are executed by the processor 501 to implement the various processes of the above transmission method embodiments, and can achieve the same technical effect.
  • the communication device 500 is a network-side device, when the program or instruction is executed by the processor 501, each process of the above transmission method embodiment can be achieved, and the same technical effect can be achieved. To avoid repetition, details are not repeated here.
  • the embodiment of the present application also provides a target communication device, including a processor and a communication interface, wherein the processor is used for:
  • the communication interface is used for:
  • the target communication device is a network side device or a terminal
  • the first beam information is sent by the network side device to the terminal.
  • This embodiment of the target communication device corresponds to the method embodiment corresponding to the above-mentioned target communication device, and each implementation process and implementation mode of the above-mentioned method embodiment can be applied to this embodiment of the target communication device, and can achieve the same technical effect .
  • the target communication device may be a terminal
  • An embodiment of the present application also provides a terminal, including a processor and a communication interface, where the processor is configured to:
  • the communication interface is used for:
  • the first beam information is sent to the terminal by a network side device.
  • This terminal embodiment corresponds to the above-mentioned method embodiment, and each implementation process and implementation mode of the above-mentioned method embodiment can be applied to this terminal embodiment, and can achieve the same technical effect.
  • FIG. 6 is a schematic diagram of a hardware structure of a terminal implementing an embodiment of the present application.
  • the terminal 600 includes but is not limited to: a radio frequency unit 601, a network module 602, an audio output unit 603, an input unit 604, a sensor 605, a display unit 606, a user input unit 607, an interface unit 608, a memory 609, and a processor 610, etc. at least some of the components.
  • the terminal 600 may also include a power supply (such as a battery) for supplying power to various components, and the power supply may be logically connected to the processor 610 through the power management system, so as to manage charging, discharging, and power consumption through the power management system. Management and other functions.
  • a power supply such as a battery
  • the terminal structure shown in FIG. 6 does not constitute a limitation on the terminal.
  • the terminal may include more or fewer components than shown in the figure, or combine some components, or arrange different components, which will not be repeated here.
  • the input unit 604 may include a graphics processor (Graphics Processing Unit, GPU) 6041 and a microphone 6042, and the graphics processor 6041 is used for the image capture device (such as the image data of the still picture or video obtained by the camera) for processing.
  • the display unit 606 may include a display panel 6061, and the display panel 6061 may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 607 includes a touch panel 6071 and other input devices 6072 .
  • the touch panel 6071 is also called a touch screen.
  • the touch panel 6071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 6072 may include, but are not limited to, physical keyboards, function keys (such as volume control buttons, switch buttons, etc.), trackballs, mice, and joysticks, which will not be repeated here.
  • the radio frequency unit 601 receives the downlink data from the network side device, and processes it to the processor 610; in addition, sends the uplink data to the network side device.
  • the radio frequency unit 601 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the memory 609 can be used to store software programs or instructions as well as various data.
  • the memory 609 may mainly include a program or instruction storage area and a data storage area, wherein the program or instruction storage area may store an operating system, an application program or instructions required by at least one function (such as a sound playback function, an image playback function, etc.) and the like.
  • the memory 609 may include a high-speed random access memory, and may also include a nonvolatile memory, wherein the nonvolatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM) , PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • PROM erasable programmable read-only memory
  • Erasable PROM Erasable PROM
  • EPROM electrically erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory for example at least one magnetic disk storage device, flash memory device, or other non-volatile solid-state storage device.
  • the processor 610 may include one or more processing units; optionally, the processor 610 may integrate an application processor and a modem processor, wherein the application processor mainly processes the operating system, user interface and application programs or instructions, etc., Modem processors mainly handle wireless communications, such as baseband processors. It can be understood that the foregoing modem processor may not be integrated into the processor 610 .
  • processor 610 is used for:
  • the target communication device determines, based on the time information of the first beam information and the time information of switching to the second BWP, the transmission target on the second BWP Target beam information of the signal;
  • the target communication device transmits the target signal based on the target beam information
  • the target communication device is a network side device or a terminal
  • the first beam information is sent by the network side device to the terminal.
  • the target beam information of the signal ensures that the target beam information determined by the network and the terminal is consistent, ensures beam alignment during BWP switching, and reduces interruption of information transmission.
  • the processor 610 is used for:
  • the target beam information for transmitting the target signal is determined based on at least one of the target signal, time information of the first beam information, and time information of switching to the second BWP.
  • the time information of the first beam information includes the first beam information beam application time; the first beam information is indicated by the network side through a first command.
  • the processor 610 is used for at least one of the following:
  • the target beam information is the first beam information after the beam application time.
  • the time information of the first beam information includes at least one of the following:
  • the first activation time of the M beam information is the beam information activated by the network side device through the second command and corresponding to the second BWP, the first activation time is the M beam information Activated effective time, M is a positive integer;
  • Time information corresponding to the third command where the time information corresponding to the third command is the beam application time of the first beam information indicated by the third command.
  • the processor 610 is used for at least one of the following:
  • the target beam information determines whether the transmission time of the target signal is before the time information corresponding to the third command. If the transmission time of the target signal is before the time information corresponding to the third command, determine the target beam information as fourth preset beam information;
  • the transmission time of the target signal is after the time information corresponding to the third command, and the transmission time of the target signal is after the first activation time, determine that the target beam information is the first Beam information; the first beam information is at least one of the M beam information;
  • the target beam information is fifth preset beam information.
  • the preset beam information includes at least one of the following:
  • the beam information of the preset channel is the beam information of the preset channel
  • the last used beam information is the last used beam information
  • At least one of N activated beam information where N is a positive integer
  • At least one of the most recently activated P beam information, P is a positive integer
  • the preset time slots include:
  • the preset BWP includes at least one of the following:
  • the second BWP The second BWP.
  • the preset BWP includes the second BWP
  • beam information activated or indicated within a first historical time period exists on the second BWP.
  • the preset channel includes at least one of the following:
  • the preset channel carries the same TRP identification information corresponding to the target signal.
  • a first delay is included in the time interval between the transmission time of any command and the activation time or beam application time of the beam information activated or indicated by the command, and the first delay is on the second BWP ;
  • the first delay includes at least one of the following:
  • the second duration between the command and the ACK of the command is determined based on at least one of the following:
  • the subcarrier interval of the BWP where the ACK is transmitted is transmitted.
  • the target beam information of the signal ensures that the target beam information determined by the network and the terminal is consistent, ensures beam alignment during BWP switching, and reduces interruption of information transmission.
  • the target communication device may be a network side device
  • the embodiment of the present application also provides a network side device, including a processor and a communication interface, wherein the processor is used for:
  • the communication interface is used for:
  • the target communication device is a network side device
  • the first beam information is sent by the network side device to the terminal.
  • the network-side device embodiment corresponds to the above-mentioned method embodiment, and each implementation process and implementation mode of the above-mentioned method embodiment can be applied to the network-side device embodiment, and can achieve the same technical effect.
  • FIG. 7 is a schematic diagram of a hardware structure of a network side device implementing an embodiment of the present application.
  • the network device 700 includes: an antenna 701 , a radio frequency device 702 , and a baseband device 703 .
  • the antenna 701 is connected to the radio frequency device 702 .
  • the radio frequency device 702 receives information through the antenna 701, and sends the received information to the baseband device 703 for processing.
  • the baseband device 703 processes the information to be sent and sends it to the radio frequency device 702
  • the radio frequency device 702 processes the received information and sends it out through the antenna 701 .
  • the foregoing frequency band processing device may be located in the baseband device 703 , and the method performed by the network side device in the above embodiments may be implemented in the baseband device 703 , and the baseband device 703 includes a processor 704 and a memory 705 .
  • the baseband device 703, for example, may include at least one baseband board, and the baseband board is provided with a plurality of chips, as shown in FIG.
  • the baseband device 703 may also include a network interface 706 for exchanging information with the radio frequency device 702, such as a common public radio interface (CPRI for short).
  • a network interface 706 for exchanging information with the radio frequency device 702, such as a common public radio interface (CPRI for short).
  • CPRI common public radio interface
  • the network-side device in this embodiment of the present invention also includes: instructions or programs stored in the memory 705 and operable on the processor 704, and the processor 704 calls the instructions or programs in the memory 705 to execute the modules shown in FIG. 4 To avoid duplication, the method of implementation and to achieve the same technical effect will not be repeated here.
  • processor 704 is used for:
  • the target communication device determines, based on the time information of the first beam information and the time information of switching to the second BWP, the transmission target on the second BWP Target beam information of the signal;
  • the target communication device transmits the target signal based on the target beam information
  • the target communication device is a network side device or a terminal
  • the first beam information is sent by the network side device to the terminal.
  • the target beam information of the signal ensures that the target beam information determined by the network and the terminal is consistent, ensures beam alignment during BWP switching, and reduces interruption of information transmission.
  • processor 704 is used for:
  • the target beam information for transmitting the target signal is determined based on at least one of the target signal, time information of the first beam information, and time information of switching to the second BWP.
  • the time information of the first beam information includes the first beam information beam application time; the first beam information is indicated by the network side through a first command.
  • the processor 704 is used for at least one of the following:
  • the target beam information is the first beam information after the beam application time.
  • the time information of the first beam information includes at least one of the following:
  • the first activation time of the M beam information is the beam information activated by the network side device through the second command and corresponding to the second BWP, the first activation time is the M beam information Activated effective time, M is a positive integer;
  • Time information corresponding to the third command where the time information corresponding to the third command is the beam application time of the first beam information indicated by the third command.
  • the processor 704 is used for at least one of the following:
  • the target beam information determines whether the transmission time of the target signal is before the time information corresponding to the third command. If the transmission time of the target signal is before the time information corresponding to the third command, determine the target beam information as fourth preset beam information;
  • the transmission time of the target signal is after the time information corresponding to the third command, and the transmission time of the target signal is after the first activation time, determine that the target beam information is the first Beam information; the first beam information is at least one of the M beam information;
  • the target beam information is fifth preset beam information.
  • the preset beam information includes at least one of the following:
  • the beam information of the preset channel is the beam information of the preset channel
  • the last used beam information is the last used beam information
  • At least one of N activated beam information where N is a positive integer
  • At least one of the most recently activated P beam information, P is a positive integer
  • the preset time slots include:
  • the preset BWP includes at least one of the following:
  • the second BWP The second BWP.
  • the preset BWP includes the second BWP
  • beam information activated or indicated within a first historical time period exists on the second BWP.
  • the preset channel includes at least one of the following:
  • the preset channel carries the same TRP identification information corresponding to the target signal.
  • a first delay is included in the time interval between the transmission time of any command and the activation time or beam application time of the beam information activated or indicated by the command, and the first delay is on the second BWP ;
  • the first delay includes at least one of the following:
  • the second duration between the command and the ACK of the command is determined based on at least one of the following:
  • the subcarrier interval of the BWP where the ACK is transmitted is transmitted.
  • the target beam information of the signal ensures that the target beam information determined by the network and the terminal is consistent, ensures beam alignment during BWP switching, and reduces interruption of information transmission.
  • the embodiment of the present application also provides a readable storage medium.
  • the readable storage medium stores programs or instructions.
  • the program or instructions are executed by the processor, the various processes of the above-mentioned transmission method embodiments can be achieved, and the same Technical effects, in order to avoid repetition, will not be repeated here.
  • the processor is the processor in the terminal described in the foregoing embodiments.
  • the readable storage medium includes a readable storage medium, such as a computer read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk or an optical disk, and the like.
  • the embodiment of the present application further provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement each of the above transmission method embodiments process, and can achieve the same technical effect, in order to avoid repetition, it will not be repeated here.
  • chips mentioned in the embodiments of the present application may also be referred to as system-on-chip, system-on-chip, system-on-a-chip, or system-on-chip.
  • the term “comprising”, “comprising” or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article or apparatus comprising a set of elements includes not only those elements, It also includes other elements not expressly listed, or elements inherent in the process, method, article, or device. Without further limitations, an element defined by the phrase “comprising a " does not preclude the presence of additional identical elements in the process, method, article, or apparatus comprising that element.
  • the scope of the methods and devices in the embodiments of the present application is not limited to performing functions in the order shown or discussed, and may also include performing functions in a substantially simultaneous manner or in reverse order according to the functions involved. Functions are performed, for example, the described methods may be performed in an order different from that described, and various steps may also be added, omitted, or combined. Additionally, features described with reference to certain examples may be combined in other examples.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种传输方法、装置、通信设备及存储介质,属于通信技术领域,本申请实施例的传输方法包括:在确定需要从第一BWP切换至第二BWP的情况下,目标通信设备基于第一波束信息的时间信息,和切换至第二BWP的时间信息,确定在所述第二BWP上用于传输目标信号的目标波束信息;目标通信设备基于所述目标波束信息传输所述目标信号;其中,所述目标通信设备为网络侧设备或终端,所述第一波束信息是所述网络侧设备发送给所述终端的。

Description

传输方法、装置、通信设备及存储介质
相关申请的交叉引用
本申请要求于2021年07月01日提交的申请号为202110745009.5,发明名称为“传输方法、装置、通信设备及存储介质”的中国专利申请的优先权,其通过引用方式全部并入本申请。
技术领域
本申请属于通信技术领域,具体涉及一种传输方法、装置、通信设备及存储介质。
背景技术
在通信系统中,网络会在一个小区上配置多个带宽部分(Bandwidth part,BWP),当终端长时间没有收到数据或者检测到物理下行控制信道(Physical Downlink Control Channel,PDCCH),终端会通过一个定时器(timer),从当前的激活BWP(active BWP)切换到默认下行BWP(default DL BWP)或者默认下行/上行BWP对(default DL/UL BWP pair),从而达到省电的效果。
当网络为某个信道或RS激活或指示了新的波束信息时,比如TCI状态(TCI state),准共址信息(Quasi Co-Location information,QCL information),空间关系信息(spatial relation information)等,若在波束应用时间之前,根据网络指示或者timer超时需要执行BWP切换,那么在BWP切换完成后,现有技术无法确定在新BWP上该信道或RS的波束信息,可能导致网络和UE的波束信息不一致,信息传输中断。
发明内容
本申请实施例提供一种传输方法、装置、通信设备及存储介质,能够解决在BWP切换后网络和UE的波束信息不一致的问题。
第一方面,提供了一种传输方法,该方法包括:
在确定需要从第一BWP切换至第二BWP的情况下,目标通信设备基于第一波束信息的时间信息,和切换至第二BWP的时间信息,确定在所述第二BWP上用于传输目标信号的目标波束信息;
目标通信设备基于所述目标波束信息传输所述目标信号;
其中,所述目标通信设备为网络侧设备或终端,所述第一波束信息是所述网络侧设备发送给所述终端的。
第二方面,提供了一种传输装置,该装置包括:
第一确定模块,用于在确定需要从第一BWP切换至第二BWP的情况下,基于第一波束信息的时间信息,和切换至第二BWP的时间信息,确定在所述第二BWP上用于传输目标信号的目标波束信息;
传输模块,用于基于所述目标波束信息传输所述目标信号;
其中,所述目标通信设备为网络侧设备或终端,所述第一波束信息是所述网络侧设备发送给所述终端的。
第三方面,提供了一种通信设备,该通信设备包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第四方面,提供了一种目标通信设备,包括处理器及通信接口,其中,所述处理器用于:
在确定需要从第一BWP切换至第二BWP的情况下,基于第一波束信息的时间信息,和切换至第二BWP的时间信息,确定在所述第二BWP上用于传输目标信号的目标波束信息;
所述通信接口用于:
基于所述目标波束信息传输所述目标信号;
其中,所述目标通信设备为网络侧设备或终端,所述第一波束信息是所述网络侧设备发送给所述终端的。
第五方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤。
第六方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法的步骤。
第七方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在非瞬态的存储介质中,所述程序/程序产品被至少一个处理器执行以实现如第一方面所述的方法的步骤。
在本申请实施例中,通过基于第一波束信息的时间信息,和切换至第二BWP的时间信息,确定从第一BWP切换至第二BWP后,在所述第二BWP上用于传输目标信号的目标波束信息,保证网络和终端确定的目标波束信息一致,保证BWP切换时的波束对齐,减少信息传输的中断。
附图说明
图1是本申请实施例可应用的一种无线通信系统的结构图;
图2是本申请实施例提供的传输方法的流程示意图;
图3是本申请实施例提供的BWP切换时延的示意图;
图4是本申请实施例提供的传输装置的结构示意图;
图5是本申请实施例提供的通信设备的结构示意图;
图6为实现本申请实施例的一种终端的硬件结构示意图;
图7为实现本申请实施例的一种网络侧设备的硬件结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6 th Generation,6G)通信系统。
图1是本申请实施例可应用的一种无线通信系统的结构图。无线通 信系统包括终端11和网络侧设备12。其中,终端11也可以称作终端设备或者用户终端或用户设备(User Equipment,UE),终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(VUE)、行人终端(PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装、游戏机等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以是基站或核心网,其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、WLAN接入点、WiFi节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例,但是并不限定基站的具体类型。
首先对以下内容进行介绍:
(1)关于波束测量和报告(beam measurement and beam reporting);
模拟波束赋形是全带宽发射的,并且每个高频天线阵列的面板上每个极化方向阵元仅能以时分复用的方式发送模拟波束。模拟波束的赋形 权值是通过调整射频前端移相器等设备的参数来实现。
可以使用轮询的方式进行模拟波束赋形向量的训练,即每个天线面板每个极化方向的阵元以时分复用方式依次在约定时间发送训练信号(即候选的赋形向量),终端经过测量后反馈波束报告,供网络侧在下一次传输业务时采用该训练信号来实现模拟波束发射。波束报告的内容通常包括最优的若干个发射波束标识以及测量出的每个发射波束的接收功率。
在做波束测量时,网络可以配置参考信号资源集合(RS resource set),其中包括至少一个参考信号资源,例如同步信号和PBCH块资源(Synchronization Signal and PBCH block resource,简称SSB resource)或信道状态信息参考信号资源(Channel State Information Reference Signal resource,CSI-RS resource)。UE测量每个RS resource的层1参考信号接收功率(Layer 1Reference Signal Received Power,L1-RSRP)/层1信号与干扰加噪声比(Signal to Interference plus Noise Ratio,L1-SINR),并可以将最优的至少一个测量结果上报给网络,上报内容包括SSB资源指示符(SS/PBCH Block Resource Indicator,SSBRI)或信道状态信息参考信号资源指示符(Channel State Information Reference Signal Resource Indicator,CRI)、及对应的L1-RSRP/L1-SINR。该报告内容可以反映至少一个最优的波束及其质量,供网络确定用来与UE传输信道或信号的波束信息。
(2)关于波束指示(beam indication)机制
在经过波束测量和波束报告后,网络可以对下行与上行链路的信道或参考信号做波束指示,用于网络与UE之间建立波束链路,实现信道或参考信号的传输。
对于物理下行控制信道(physical downlink control channel,PDCCH)的波束指示,网络使用RRC信令为每个CORESET配置K个TCI(TCI:Transmission Configuration Indication,传输配置指示)state,当K>1时, 由媒体访问控制层控制元素(Media Access Control Control Element,MAC CE)指示或激活1个TCI state,当K=1时,不需要额外的MAC CE命令。UE在监听PDCCH时,可以对CORESET内全部search space使用相同QCL(准共址,Quasi-colocation)信息,即使用相同的TCI state来监听PDCCH。该TCI状态中的referenceSignal(例如周期CSI-RS resource、半持续CSI-RS resource、SS block等)与UE-specific PDCCH DMRS端口是空间QCL的。UE可以根据该TCI状态即可获知使用哪个接收波束来接收PDCCH。
对于物理下行共享信道(Physical Downlink Shared Channel,PDSCH)的波束指示,网络可以通过无线资源控制(Radio Resource Control,RRC)信令配置M个TCI state,再使用MAC CE命令激活2 N个TCI state,然后通过下行控制信息(Downlink Control Information,DCI)的N-bit TCI field来通知TCI状态,该TCI状态中的referenceSignal与要调度的PDSCH的解调参考信号(Dedicated deModulation Reference Signal,DMRS)端口是QCL的。UE可以根据该TCI状态即可获知使用哪个接收波束来接收PDSCH。
对于CSI参考信号(CSI Reference Signal,CSI-RS)的波束指示,当CSI-RS类型为周期CSI-RS时,网络可以通过RRC信令为CSI-RS resource配置QCL信息。当CSI-RS类型为半持续CSI-RS时,网络可以通过MAC CE命令来从RRC配置的CSI-RS resource set中激活一个CSI-RS resource时指示其QCL信息。当CSI-RS类型为非周期CSI-RS时,网络可以通过RRC信令为CSI-RS resource配置QCL信息,并使用DCI来触发CSI-RS。
对于PUCCH的波束指示,网络可以使用RRC信令通过参数PUCCH-SpatialRelationInfo为每个PUCCH resource配置spatial relation information,当为PUCCH resource配置的spatial relation information包含多个时,使用MAC-CE指示或激活其中一个spatial relation information。 当为PUCCH resource配置的spatial relation information只包含1个时,不需要额外的MAC CE命令。
对于PUSCH的波束指示,PUSCH的spatial relation信息是当PDCCH承载的DCI调度PUSCH时,DCI中的SRI field的每个SRI codepoint可以指示一个SRI,该SRI可以用于指示PUSCH的spatial relation information。
对于探测参考信号(Sounding Reference Signal,SRS)的波束指示,当SRS类型为周期SRS时,网络可以通过RRC信令为SRS resource配置spatial relation information。当SRS类型为半持续SRS时,网络可以通过MAC CE命令来从RRC配置的一组spatial relation information中激活一个。当SRS类型为非周期SRS时,网络可以通过RRC信令为SRS resource配置spatial relation information,还可以使用MAC CE命令更新非周期SRS resource的spatial relation information。
(3)关于波束切换过程中的波束应用时间(beam application time,BAT);
在通信系统中,当网络使用MAC CE激活TCI state时,在TCI state切换的时延(TCI state用于指示波束信息)之后激活的波束信息生效,在该时延中区分了known TCI state和unknown TCI state两种情况。
如果波束信息target TCI state是known,UE在时隙n(slot n)接收到了MAC CE,则TCI state切换时延(若指示该波束信息的是MAC CE,则该切换时延包括从MAC CE到MAC CE指令生效的时长)为:
Figure PCTCN2022102905-appb-000001
如果target TCI state是unknown,UE在slot n接收到了MAC CE,则TCI state切换时延为:
Figure PCTCN2022102905-appb-000002
Figure PCTCN2022102905-appb-000003
其中,T HARQ是下行数据传输和ACK之间的时长,T first-SSB是在UE解码MAC CE之后的第一个SSB的传输时间,T SSB-proc=2ms。如果TCI state 不在激活的TCI state list内,则还需要额外的处理时间additional processing time。对于unknown TCI state的情况,额外处理时间是L1-RSRP测量和上报所需时间。
在通信系统中,网络还可以基于UE capability配置门限参数timeDurationForQCL,当在slot n时DCI调度了PDSCH时,若在DCI和PDSCH之间的offset小于该门限值,则可以使用default beam传输PDSCH,若在DCI和PDSCH之间的offset大于或等于该门限值,则可以使用DCI指示的TCI state确定PDSCH的波束信息。
在通信系统中,还引入common beam,即DCI指示的beam可以用于多个信道或RS传输,common beam的生效时间(即波束应用时间)为:在DCI的确认字符(Acknowledgement,ACK)的最后一个符号之后的至少X ms或Y symbols后的第一个slot作为BAT。
(4)关于带宽部分BWP切换;
在通信系统中,网络还可以在一个小区上配置多个BWP。每个带宽部分对应于一个Numerology,bandwidth,frequency location。对于FDD系统或者paired spectrum,基站给UE配置至多四个下行BWP和至多四个上行BWP。对于TDD系统或者unpaired spectrum,基站给UE配至多四个DL/UL BWP pair。每个DL/UL BWP pair中的DL BWP和UL BWP的中心载频是一样的。此外,每个UE会有一个default DL BWP,或者default DL/UL BWP pair。default DL BWP,或者default DL/UL BWP pair通常是一个相对小带宽的BWP,当UE长时间没有收到数据或者检测到PDCCH,UE会通过一个timer,从当前的active BWP切换到default DL BWP或者default DL/UL BWP pair,从而达到省电的效果。
Active BWP切换是通过RRC或DCI或timer来实现。对基于DCI的BWP切换,UE在slot n接收到BWP切换命令,在BWP切换时延T BWPswitchDelay之后UE才能在new BWP上接收PDSCH(下行BWP切换时)或发送PUSCH(上行BWP切换时)。对基于timer的BWP切换, 在slot n时该timer超时,在BWP切换时延T BWPswitchDelay之后UE才能在new BWP上接收PDSCH(下行BWP切换时)或发送PUSCH(上行BWP切换时)。在从slot n开始的T BWPswitchDelay之内UE不接收或发射信号。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的传输方法及装置进行详细地说明。
图2是本申请实施例提供的传输方法的流程示意图,如图2所示,所述方法包括如下步骤:
步骤200,在确定需要从第一BWP切换至第二BWP的情况下,目标通信设备基于第一波束信息的时间信息,和切换至第二BWP的时间信息,确定在所述第二BWP上用于传输目标信号的目标波束信息;
步骤210,目标通信设备基于所述目标波束信息传输所述目标信号;
其中,所述目标通信设备为网络侧设备或终端,所述第一波束信息是所述网络侧设备发送给所述终端的。
可选地,目标通信设备可以为终端;
可选地,目标通信设备可以为网络侧设备;
可选地,图3是本申请实施例提供的BWP切换时延的示意图,如图3所示,即为当网络为某个信道或RS激活或指示了新的波束信息(new TCI state),在波束应用时间之前,需要执行BWP切换的场景示例,不作为对本申请各实施例的限定。
可选地,终端在确定需要从第一BWP切换至第二BWP时,可以根据网络侧设备的DCI指示的BWP切换命令,或者根据BWP切换的timer超时,确定需要执行BWP切换。并且,在协议约定的BWP切换时延后,完成BWP切换。
例如,第一BWP可以为active BWP,第二BWP为inactive BWP。
可选地,网络侧设备可以在slot n使用DCI指示切换至第二BWP,则终端可以在slot n后的BWP切换时延内从第一BWP切换至第二 BWP,第二BWP成为active BWP,而第一BWP成为inactive BWP。
可选地,网络侧设备可以直接确定需要从第一BWP切换至第二BWP;
可选地,第一BWP和第二BWP可以在相同小区,或者在不同小区。
可选地,目标信号可以是需要在切换至第二BWP后传输的信道和/或参考信号。
可选地,终端和/或网络侧设备可以在确定需要从第一BWP切换至第二BWP的情况下,基于第一波束信息的时间信息,和切换至第二BWP的时间信息,确定在所述第二BWP上用于传输目标信号的目标波束信息,即确定切换完成后用于传输目标信号的目标波束信息。
可选地,在确定用于传输目标信号的目标波束信息后,终端和/或网络侧设备可以基于目标波束信息在第二BWP上传输所述目标信号
可选地,本申请各实施例所提及的波束信息,也可以称为:波束的标识信息、空间关系(spatial relation)信息、空域发送滤波器(spatial domain transmission filter)信息、空域接收滤波器(spatial domain reception filter)信息、空域滤波器(spatial filter)信息、传输配置指示状态(TCI state)信息、准共址(Quasi Co-Location,QCL)信息或QCL参数等。其中,下行波束信息通常可使用TCI state信息或QCL信息表示。上行波束信息通常可使用TCI state信息或spatial relation信息表示。
在本申请实施例中,通过基于第一波束信息的时间信息,和切换至第二BWP的时间信息,确定从第一BWP切换至第二BWP后,在所述第二BWP上用于传输目标信号的目标波束信息,保证网络和终端确定的目标波束信息一致,保证BWP切换时的波束对齐,减少信息传输的中断。
可选地,所述目标通信设备基于第一波束信息的时间信息,和切换至第二BWP的时间信息,确定用于传输目标信号的目标波束信息,包 括:
基于所述目标信号,第一波束信息的时间信息,和所述切换至第二BWP的时间信息中的至少一项,确定所述用于传输目标信号的目标波束信息。
可选地,在目标信号不同的情况下,确定所述用于传输目标信号的目标波束信息的方法可以不同;
因此,可以基于所述目标信号,第一波束信息的时间信息,和所述切换至第二BWP的时间信息中的至少一项,确定所述用于传输目标信号的目标波束信息。
可选地,在所述目标信号为PDCCH或PUCCH的情况下,或,在所述第一波束信息为公共波束信息的情况下,所述第一波束信息的时间信息包括所述第一波束信息的波束应用时间;所述第一波束信息是由网络侧通过第一命令指示的。
具体地,在所述目标信号为PDCCH或PUCCH的情况下,可以基于第一命令指示的第一波束信息的时间信息,和所述切换至第二BWP的时间信息中的至少一项,确定所述用于传输目标信号的目标波束信息。
可选地,在所述第一波束信息为公共波束信息的情况下,可以基于第一命令指示的第一波束信息的时间信息,和所述切换至第二BWP的时间信息中的至少一项,确定所述用于传输目标信号的目标波束信息。
可选地,公共波束信息对应至少两个信道,或者,所述公共波束信息对应至少两个参考信号,或者,所述公共波束信息对应至少一个信道和至少一个参考信号。
可选地,第一命令可以为RRC信令、MAC CE命令、DCI信令任一项。
可选地,当第一命令是DCI时,与指示BWP切换的DCI可以是同一个DCI或不同DCI。
可选地,第一命令可以在第一BWP上发送,或者在第二BWP上发 送。
可选地,目标信道可以为下行信道、上行信道至少一种,目标RS可以为下行RS、上行RS至少一种。
可选地,第一波束信息可以为公共波束信息。
其中,公共波束信息可以为joint TCI state、separate DL TCI state、separate UL TCI state中至少一项。
可选地,第一波束信息为K个,K为正整数。
例如,第一命令可以为MAC CE,激活一个或多个TCI states(如为控制信道激活一个或多个波束),或第一命令可以为DCI,指示1个或多个TCI state(如为数据信道指示一个或多个波束)。
可选地,第一波束的波束应用时间,可以称为BAT,也可称为波束生效时间,可以在BWP切换完成之前或者之后。
可选地,所述基于所述目标信号,第一波束信息的时间信息,和切换至第二BWP的时间信息中的至少一项,确定所述用于传输目标信号的目标波束信息,包括以下至少一项:
在切换至第二BWP的时间信息在所述波束应用时间之后的情况下,确定所述目标波束信息为所述第一波束信息;
在切换至第二BWP的时间信息在所述波束应用时间之前的情况下,确定在所述波束应用时间之前,所述目标波束信息为第一预设波束信息;
在切换至第二BWP的时间信息在所述波束应用时间之前的情况下,确定在所述波束应用时间之后,所述目标波束信息为所述第一波束信息。
具体地,波束应用时间T2可以是指从这个时间点开始网络指示或激活的第一波束信息生效;
可选地,在波束应用时间之后,可以采用第一波束信息进行目标信号的传输。
可选地,本申请实施例中,所述目标信号为PDCCH或PUCCH的情况下,或,网络侧设备指示的第一波束信息为公共波束信息的情况下,目标通信设备为终端时,终端可以仅基于第一命令即可以获知第一波束信息,目标通信设备为网络侧设备时,网络侧设备可以直接确定第一波束信息并指示给终端;
可选地,可以在所述波束应用时间T2之后,确定在第二BWP上所使用的目标波束信息为第一波束信息;
可选地,可以在所述波束应用时间T2之前,确定在第二BWP上所使用的目标波束信息为第一预设波束信息;
其中,第一预设波束信息可以是预设BWP上的某个PDCCH的波束信息,或预设BWP上最近一次使用的PDCCH的波束信息,或预设BWP上最近一次使用的波束信息。
可选地,所述预设BWP可以是第一BWP和/或第二BWP。
可选地,根据在第二BWP上是否存在预设信道的波束信息,来确定预设BWP;或者,根据在第二BWP上在预设时间内是否存在预设信道的波束信息,来确定预设BWP。例如,若在第二BWP上网络侧设备未给终端激活过PDCCH的波束信息,或在切换至第二BWP之前的特定时长内网络侧设备未给终端激活过第二BWP上的PDCCH的波束信息,将第一BWP确定为预设BWP;反之,若在第二BWP上网络侧设备曾给终端激活过PDCCH的波束信息,或在切换至第二BWP之前的特定时长内网络侧设备曾给终端激活过第二BWP上PDCCH的波束信息,将第二BWP确定为预设BWP。
可选地,可以在切换至第二BWP的时间信息T1在波束应用时间T2之后的情况下,确定在T1之后所述目标波束信息为所述第一波束信息;
可选地,可以在切换至第二BWP的时间信息T1在所述波束应用时间之前的情况下,确定在所述波束应用时间T2之前,即在T1至T2之间,所述目标波束信息为第一预设波束信息;
可选地,可以在切换至第二BWP的时间信息在所述波束应用时间之前的情况下,确定在所述波束应用时间之后,即在T2之后,所述目标波束信息为所述第一波束信息。
以目标信号为PDCCH为例,若波束应用时间在BWP切换完成之后,包括以下至少一项:
在第二BWP上、在波束应用时间之前的时间长度内,所述PDCCH的波束信息为预设BWP上预设波束信息(第一预设波束信息)。如预设BWP为第一BWP和/或第二BWP,取决于网络侧设备是否在第二BWP上为终端激活过PDCCH的波束信息,预设波束信息为预设BWP上的某个PDCCH的波束信息、或预设BWP上最近一次使用的PDCCH的波束信息、或预设BWP上最近一次使用的波束信息。
在第二BWP上,在波束应用时间之后,所述PDCCH的第二波束信息为所述第一波束信息。
可选地,所述目标信号为PDCCH或PUCCH的情况下,或,网络侧设备指示的第一波束信息为公共波束信息的情况下,还可以基于第一命令的传输时间确定目标波束信息;其中,若在BWP切换完成之后,网络侧设备发送第一命令,则可以通过以下至少一项确定目标波束信息:
在切换至第二BWP的时间信息T1在所述第一命令的传输时间T3之前的情况下,确定在所述第一命令的传输时间T3之前,即T1和T3之间,在所述第二BWP上的目标波束信息为第二预设波束信息;
在切换至第二BWP的时间信息T1在所述第一命令的传输时间T3之前的情况下,确定在所述第一命令的传输时间T3之后,且在所述波束应用时间T2之前,即在T3和T2之间,在所述第二BWP上所述目标波束信息为第三预设波束信息,其中,T3早于T2;
在切换至第二BWP的时间信息T1在所述第一命令的传输时间T3之前的情况下,确定在波束应用时间T2之后,在所述第二BWP上所述目标波束信息为所述第一波束信息,其中,T3早于T2。
可选地,在所述目标信号为PDSCH的情况下,或,在所述第一波束信息为公共波束信息的情况下,所述第一波束信息的时间信息包括以下至少一项:
M个波束信息的第一激活时间,所述M个波束信息是所述网络侧设备通过第二命令激活的且对应第二BWP的波束信息,所述第一激活时间是所述M个波束信息被激活的生效时间,M为正整数;
第三命令对应的时间信息,所述第三命令对应的时间信息为所述第三命令指示的第一波束信息的波束应用时间。
具体地,目标信号为PDSCH,或,所述第一波束信息为公共波束信息;
可选地,第二命令可以为RRC信令、MAC CE命令、和DCI信令中的任一项。
可选地,第二命令可以在第一BWP上发送,或者在第二BWP上发送。
可选地,目标信道可以为下行信道、上行信道至少一种,目标RS可以为下行RS、上行RS至少一种。
可选地,第一波束信息可以为公共波束信息。
其中,公共波束信息可以为joint TCI state、separate DL TCI state、separate UL TCI state中至少一项。
可选地,第一波束信息为K个,K为正整数。
例如,第二命令可以为MAC CE,用于激活在第二BWP上的M个波束信息,如激活M个TCI states,M为正整数;
可选地,第三命令可以为DCI,指示1个或多个TCI state。
可选地,第三命令可以为DCI,可以与指示BWP切换的DCI是同一个DCI或不同DCI。
可选地,所述基于所述目标信号,第一波束信息的时间信息,和切换至第二BWP的时间信息中的至少一项,确定所述用于传输目标信号的 目标波束信息,包括以下至少一项:
在所述目标信号的传输时间在所述第三命令对应的时间信息之前的情况下,确定所述目标波束信息为第四预设波束信息;
所述目标信号的传输时间在所述第三命令对应的时间信息之后,且所述目标信号的传输时间在所述第一激活时间之后的情况下,确定所述目标波束信息为所述第一波束信息;所述第一波束信息是所述M个波束信息中的至少一个;
在所述目标信号的传输时间在所述第三命令对应的时间信息之后,且所述目标信号的传输时间在所述第一激活时间之前,所述目标波束信息为第五预设波束信息。
具体地,目标信号为PDSCH,或,所述第一波束信息为公共波束信息;
可选地,目标信号的传输时间可以为Tk,切换至第二BWP的时间信息可以为T4,第一激活时间可以为T5,第三命令对应的时间信息可以为T6;可以通过比较这四者的大小,确定对应的情况,其中,越大则表示对应的时刻越晚,对越小则表示对应的时刻越早,例如,T4>T5可以表示切换至第二BWP的时间信息T4在所述第一激活时间T5之后。
可选地,在目标信号的传输时间Tk在所述第三命令对应的时间信息T6之前的情况下,确定所述目标波束信息为第四预设波束信息;
可选地,在Tk在T5或T6的任一时刻之前的情况下,不论其他时间关系为何种情况,均可以确定在第二BWP上用于传输目标信号的目标波束信息为第四预设波束信息;
可选地,在Tk<T6的情况下,不论T4和T5之间的大小关系为何种情况,不论T5与T6、T5与Tk的关系为何种情况,均可以确定在第二BWP上用于传输目标信号的目标波束信息为第四预设波束信息;
可选地,在所述第三命令的传输时间和所述目标信号的传输时间之间的时间间隔小于第一门限时,确定所述目标波束信息为第四预设波束 信息;
可选地,在切换至第二BWP的时间信息T4在所述第一激活时间T5之后,且目标信号的传输时间Tk在所述第三命令对应的时间信息T6之前,目标信号的传输时间Tk在所述切换至第二BWP的时间信息T4之后的情况下,即T5<T4<Tk<T6的情况下,可以确定T4后,在第二BWP上用于传输目标信号的目标波束信息为第四预设波束信息;
可选地,在切换至第二BWP的时间信息T4在所述第一激活时间T5之后,且所述第三命令的传输时间与所述目标信号的传输时间Tk之间的间隔小于第一门限的情况下,即T5<T4<Tk<T6的情况下,可以确定T4后,在第二BWP上用于传输目标信号的所述目标波束信息为第四预设波束信息;
可选地,在切换至第二BWP的时间信息T4在所述第一激活时间T5之前,且目标信号的传输时间Tk在所述第三命令对应的时间信息T6之前,目标信号的传输时间Tk在第一激活时间T5之后的情况下,即在T4<T5<Tk<T6的情况下,可以确定T4后,在第二BWP上用于传输目标信号的所述目标波束信息为第四预设波束信息;
可选地,在切换至第二BWP的时间信息T4在所述第一激活时间T5之前,且所述第三命令的传输时间与所述目标信号的传输时间之间的间隔小于第一门限的情况下,在T4<T5<Tk<T6的情况下,可以确定T4后,在第二BWP上用于传输目标信号的所述目标波束信息为第四预设波束信息;
可选地,在切换至第二BWP的时间信息T4在所述第一激活时间T5之前,且目标信号的传输时间Tk在所述第三命令对应的时间信息T6之前,目标信号的传输时间Tk在第一激活时间T5之前,目标信号的传输时间Tk在切换至第二BWP的时间信息T4之后的情况下,即在T4<Tk<T6<T5或T4<Tk<T5<T6的情况下,可以确定T4后,在第二BWP上用于传输目标信号的所述目标波束信息为第四预设波束信息;
可选地,在切换至第二BWP的时间信息T4在所述第一激活时间T5之前,目标信号的传输时间Tk在第一激活时间T5之前,且所述第三命令的传输时间与所述目标信号的传输时间之间的间隔小于第一门限的情况下,即T4<Tk<T6<T5或T4<Tk<T5<T6的情况下,可以确定所述目标波束信息为第四预设波束信息;
可选地,第四波束信息可以是协议确定的默认波束信息;比如,可以是预设BWP上UE监听CORESET的最近一个时隙中最小ID的CORESET对应的波束信息,此波束信息仅为第四波束信息的示例,不作为对其的限定;
可选地,在Tk大于T5且Tk大于T6的情况下,不论T5和T6之间大小关系为何种情况,均可以确定在第二BWP上用于传输目标信号的目标波束信息为所述第一波束信息;所述第一波束信息是网络侧设备通过第二命令激活的、且在第一激活时间T5生效的M个波束信息中的至少一个;
可选地,所述目标信号的传输时间Tk在所述第三命令对应的时间信息T6之后,且所述目标信号的传输时间Tk在所述第一激活时间T5之后的情况下,即在T6<T5<Tk或T5<T6≤Tk的情况下,确定所述目标波束信息为所述第一波束信息;所述第一波束信息是网络侧设备通过第二命令激活的、且在第一激活时间T5生效的M个波束信息中的至少一个;
可选地,所述第三命令的传输时间与所述目标信号的传输时间Tk之间的间隔大于或等于第一门限,且所述目标信号的传输时间Tk在所述第一激活时间T5之后的情况下,即在T6<T5<Tk或T5<T6≤Tk的情况下,确定所述目标波束信息为所述第一波束信息;所述第一波束信息是网络侧设备通过第二命令激活的、且在第一激活时间T5生效的M个波束信息中的至少一个;
可选地,在切换至第二BWP的时间信息T4在所述第一激活时间T5 之后,且切换至第二BWP的时间信息T4在所述第三命令对应的时间信息T6之前,且所述目标信号的传输时间Tk在所述第三命令对应的时间信息T6之后的情况下,即在T5<T4<T6≤Tk的情况下,确定所述目标波束信息为所述第一波束信息;所述第一波束信息是所述M个波束信息中的至少一个;
可选地,在切换至第二BWP的时间信息T4在所述第一激活时间T5之后,且切换至第二BWP的时间信息T4在所述第三命令对应的时间信息T6之前,且所述第三命令的传输时间与所述目标信号的传输时间之间的间隔大于或等于第一门限的情况下,即T5<T4<T6≤Tk的情况下,确定所述目标波束信息为所述第一波束信息;所述第一波束信息是所述M个波束信息中的至少一个;
可选地,在切换至第二BWP的时间信息T4在所述第一激活时间T5之前,且所述第一激活时间T5在所述第三命令对应的时间信息T6之前,且所述目标信号的传输时间Tk在所述第三命令对应的时间信息T6之后的情况下,即在T4<T5<T6≤Tk的情况下,确定在所述第一激活时间T5之后,所述目标波束信息为所述第一波束信息;所述第一波束信息是所述M个波束信息中的至少一个。
可选地,在切换至第二BWP的时间信息T4在所述第一激活时间T5之前,且所述第一激活时间T5在所述第三命令对应的时间信息T6之前,且所述第三命令的传输时间与所述目标信号的传输时间之间的间隔大于或等于第一门限的情况下,即T4<T5<T6≤Tk的情况下,确定在所述第一激活时间T5之后,所述目标波束信息为所述第一波束信息;所述第一波束信息是所述M个波束信息中的至少一个。
可选地,在切换至第二BWP的时间信息T4在所述第一激活时间T5之前,且所述第一激活时间T5在所述第三命令对应的时间信息T6之后,且所述目标信号的传输时间Tk在所述第三命令对应的时间信息T6和所述第一激活时间T5之后的情况下,即在T4<T6<T5<Tk或T6< T4<T5<Tk的情况下,确定在所述第一激活时间T5之后,所述目标波束信息为所述第一波束信息;所述第一波束信息是所述M个波束信息中的至少一个。
可选地,在切换至第二BWP的时间信息T4在所述第一激活时间T5之前,且所述第一激活时间T5在所述第三命令对应的时间信息T6之后,所述目标信号的传输时间Tk在所述第一激活时间T5之后,且所述第三命令的传输时间与所述目标信号的传输时间Tk之间的间隔大于或等于第一门限的情况下,即T4<T6<T5<Tk或T6<T4<T5<Tk的情况下,确定在所述第一激活时间T5之后,所述目标波束信息为所述第一波束信息;所述第一波束信息是所述M个波束信息中的至少一个。
可选地,在切换至第二BWP的时间信息T4在所述第一激活时间T5之后,且所述第一激活时间T5在所述第三命令对应的时间信息T6之后,且所述目标信号的传输时间Tk在所述第三命令对应的时间信息T6之后的情况下,即在T6<T5<T4<Tk的情况下,确定在所述第一激活时间T5之后,所述目标波束信息为所述第一波束信息;所述第一波束信息是所述M个波束信息中的至少一个。
可选地,在切换至第二BWP的时间信息T4在所述第一激活时间T5之后,且所述第一激活时间T5在所述第三命令对应的时间信息T6之后,且所述第三命令的传输时间与所述目标信号的传输时间之间的间隔大于或等于第一门限的情况下,即T6<T5<T4<Tk的情况下,确定在所述第一激活时间T5之后,所述目标波束信息为所述第一波束信息;所述第一波束信息是所述M个波束信息中的至少一个。
可选地,在切换至第二BWP的时间信息T4在所述第一激活时间T5之前,且所述第一激活时间T5在所述第三命令对应的时间信息T6之前,且所述目标信号的传输时间Tk在所述第三命令对应的时间信息T6之后的情况下,即在T5<T6<T4<Tk的情况下,确定在所述第一激活时间T5之后,所述目标波束信息为所述第一波束信息;所述第一波束信 息是所述M个波束信息中的至少一个。
可选地,在切换至第二BWP的时间信息T4在所述第一激活时间T5之前,且所述第一激活时间T5在所述第三命令对应的时间信息T6之前,且所述第三命令的传输时间与所述目标信号的传输时间之间的间隔大于或等于第一门限的情况下,即T5<T6<T4<Tk的情况下,确定在所述第一激活时间T5之后,所述目标波束信息为所述第一波束信息;所述第一波束信息是所述M个波束信息中的至少一个。
可选地,在所述目标信号的传输时间Tk在所述第三命令对应的时间信息T6之后,且所述目标信号的传输时间Tk在所述第一激活时间T5之前,即T6≤Tk<T5的情况下,所述目标波束信息为第五预设波束信息。
可选地,在所述第三命令的传输时间与所述目标信号的传输时间之间的间隔大于或等于第一门限,且所述目标信号的传输时间Tk在所述第一激活时间T5之前,即T6≤Tk<T5的情况下,所述目标波束信息为第五预设波束信息。
可选地,在切换至第二BWP的时间信息T4在所述第一激活时间T5之前,且所述第一激活时间T5在所述第三命令对应的时间信息T6之后,且所述目标信号的传输时间Tk在所述第一激活时间T5之前,且所述目标信号的传输时间Tk在所述第三命令对应的时间信息T6之后的情况下,即T4<T6≤Tk<T5,确定在所述第一激活时间T5之前,所述目标波束信息为第五预设波束信息;
可选地,在切换至第二BWP的时间信息T4在所述第一激活时间T5之前,且所述第一激活时间T5在所述第三命令对应的时间信息T6之后,且所述目标信号的传输时间Tk在所述第一激活时间T5之前,且在所述第三命令的传输时间与所述目标信号的传输时间之间的间隔大于或等于第一门限的情况下,即T4<T6≤Tk<T5,确定在所述第一激活时间T5之前,所述目标波束信息为第五预设波束信息;
可选地,目标信号为PDSCH的情况下,或,所述第一波束信息为公 共波束信息的情况下,还可以基于第一激活时间和第三命令的传输时间,确定目标波束信息;其中,可以通过以下至少一项确定目标波束信息:
在切换至第二BWP的时间信息在所述第二命令的传输时间之前、且所述第三命令的传输时间与所述目标信号的传输时间之间的间隔小于第一门限的情况下,确定在所述第一激活时间T5之前,在所述第二BWP上所述目标波束信息为第六预设波束信息;
在切换至第二BWP的时间信息在所述第二命令的传输时间之前、且目标信号的传输时间Tk在所述第三命令的传输时间T7之前的情况下,确定在第一激活时间T5之前,在所述第二BWP上所述目标波束信息为第六预设波束信息;
在切换至第二BWP的时间信息在所述第二命令的传输时间之前、且所述第三命令的传输时间与所述目标信号的传输时间之间的间隔大于或者等于第一门限的情况下,确定在第一激活时间T5之前,在所述第二BWP上所述目标波束信息为第七预设波束信息;
在切换至第二BWP的时间信息在所述第二命令的传输时间之前、且目标信号的传输时间Tk在所述第三命令对应的时间信息之后的情况下,确定在第一激活时间T5之前,在所述第二BWP上所述目标波束信息为第七预设波束信息;
在切换至第二BWP的时间信息T4在第三命令的传输时间T7之前,第三命令的传输时间T7在第一激活时间T5之前,即T4<T7<T5的情况下,在所述第二BWP上,可以确定在第一激活时间T5之前,在所述第二BWP上所述目标波束信息为第八预设波束信息,第八预设波束信息可以为任一预设波束信息或预设的激活波束信息中的至少一个;
在切换至第二BWP的时间信息T4在第一激活时间T5,第一激活时间T5在第三命令的传输时间T7之前,T4<T5<T7,可以确定在T4至T5之间,所述第二BWP上所述目标波束信息为第九预设波束信息;可 以确定在T5至T7之间,所述第二BWP上所述目标波束信息为第十预设波束信息,第十预设波束信息可以为任一预设波束信息或在T5激活的M个波束信息中的至少一个。
可选地,预设波束信息包括以下至少一项:
预设BWP上的波束信息;
预设时隙上的波束信息;
预设信道的波束信息;
最近一次使用的波束信息;
N个激活的波束信息中的至少一个,N为正整数;
最近激活的P个波束信息中的至少一个,P为正整数;
最近一次使用的公共波束信息。
可选地,第一预设波束信息,第二预设波束信息,第三预设波束信息,第四预设波束信息,第五预设波束信息,第六预设波束信息,第七预设波束信息,第八预设波束信息,第九预设波束信息和第十预设波束信息中的任意一个或多个预设波束信息可以包括以下至少一项:
预设BWP上的波束信息;
预设时隙上的波束信息;
预设信道的波束信息;
最近一次使用的波束信息;
N个激活的波束信息中的至少一个,N为正整数;
最近激活的P个波束信息中的至少一个,P为正整数;
最近一次使用的公共波束信息。
具体地,第一预设波束信息,第二预设波束信息,第三预设波束信息,第四预设波束信息,第五预设波束信息,第六预设波束信息,第七预设波束信息,第八预设波束信息,第九预设波束信息和第十预设波束信息中的任意一个或多个预设波束信息中的任意一个或多个预设波束信息可以包括以下至少一项:
预设BWP上预设信道的波束信息,如第一BWP或第二BWP上、特定PDCCH或最近一次传输的PDCCH或最近一次传输的信道或RS所用的波束信息;
预设BWP中监听CORESET的时隙内ID最小的CORESET的波束信息;
预设BWP中监听CORESET的一个或多个时隙内ID最小的CORESET的波束信息;
预设BWP中为PDSCH激活的至少一个波束信息中、对应最小码点(codepoint)的波束信息;如,网络为PDSCH激活了8个TCI state,分别对应codepoint从0至7,则将codepoint 0对应的TCI state作为预设波束信息;
预设BWP中预设的激活波束信息中的至少一个波束信息,其中,预设的激活波束信息可以是网络侧设备在预设BWP上激活的至少一个波束信息,这些预设的激活波束信息可以是用于特定信道(如PDCCH或PDSCH),或用于多个信道(如激活的公共波束信息);另外,这些激活的至少一个波束信息还可以是最近一次激活的至少一个波束信息;
预设BWP上最近一次使用的common beam信息;
预设BWP上激活的common beam信息中的至少一个预设的common beam;如,激活的多个common beam信息中对应最小码点的common beam信息;
其中,预设BWP的确定方式,可以根据网络侧设备是否在第二BWP上为UE激活或指示过预设信道的波束信息,或者激活或指示过公共波束信息。若是,则预设BWP可以为第二BWP,若否,则预设BWP为第一BWP。
可选地,预设BWP也可以总是为第一BWP或总是为第二BWP。
可选地,所述预设BWP包括以下至少一项:
所述第一BWP;
所述第二BWP。
可选地,在所述预设BWP包括所述第二BWP的情况下,所述第二BWP上存在第一历史时间段内被激活或被指示的波束信息。
可选地,第一预设波束信息,第二预设波束信息,第三预设波束信息,第四预设波束信息,第五预设波束信息,第六预设波束信息,第七预设波束信息,和第八预设波束信息之间可以相同或者不同;
可选地,第一预设波束信息,第二预设波束信息,第三预设波束信息,第四预设波束信息,第五预设波束信息,第六预设波束信息,第七预设波束信息,和第八预设波束信息中的任一个预设波束信息在不同的场景下可以为不同的波束信息。
可选地,所述预设时隙包括:
监听CORESET的最近一个时隙;
监听CORESET的任意一个或多个时隙;
预设信道所在的最近一个时隙;
预设信道所在的任意一个或多个时隙。
可选地,第一预设波束信息,第二预设波束信息,第三预设波束信息,第四预设波束信息,第五预设波束信息,第六预设波束信息,第七预设波束信息,和第八预设波束信息中的任一个预设波束信息可以为预设信道所在的最近一个时隙上的波束信息,比如该时隙上的任一个或多个预设波束信息,或该时隙上最近一次使用的波束信息等;
可选地,第一预设波束信息,第二预设波束信息,第三预设波束信息,第四预设波束信息,第五预设波束信息,第六预设波束信息,第七预设波束信息,和第八预设波束信息中的任一个预设波束信息可以为预设信道所在的任意一个或多个时隙上的波束信息,比如该时隙上的任一个或多个预设波束信息,或该时隙上最近一次使用的波束信息等;
可选地,所述预设信道包括以下至少一项:
最近一次传输的PDCCH;
最近一次传输的PDSCH;
最近一次传输的PUCCH;
预设PDCCH;
预设PDSCH;
预设PUCCH;
具有最小ID的CORESET。
可选地,第一预设波束信息,第二预设波束信息,第三预设波束信息,第四预设波束信息,第五预设波束信息,第六预设波束信息,第七预设波束信息,和第八预设波束信息中的任一个预设波束信息可以为最近一次传输的PDCCH上的波束信息,比如该信道的任一个或多个预设波束信息,或者该信道最近一次使用的波束信息等;
可选地,第一预设波束信息,第二预设波束信息,第三预设波束信息,第四预设波束信息,第五预设波束信息,第六预设波束信息,第七预设波束信息,和第八预设波束信息中的任一个预设波束信息可以为最近一次传输的PDSCH上的波束信息,比如该信道的任一个或多个预设波束信息,或者该信道最近一次使用的波束信息等;
可选地,第一预设波束信息,第二预设波束信息,第三预设波束信息,第四预设波束信息,第五预设波束信息,第六预设波束信息,第七预设波束信息,和第八预设波束信息中的任一个预设波束信息可以为最近一次传输的PUCCH上的波束信息,比如该信道的任一个或多个预设波束信息,或者该信道最近一次使用的波束信息等;
可选地,第一预设波束信息,第二预设波束信息,第三预设波束信息,第四预设波束信息,第五预设波束信息,第六预设波束信息,第七预设波束信息,和第八预设波束信息中的任一个预设波束信息可以为预设PDCCH上的波束信息,比如该信道的任一个或多个预设波束信息,或者该信道最近一次使用的波束信息等;
可选地,第一预设波束信息,第二预设波束信息,第三预设波束信 息,第四预设波束信息,第五预设波束信息,第六预设波束信息,第七预设波束信息,和第八预设波束信息中的任一个预设波束信息可以为预设PDSCH上的波束信息,比如该信道的任一个或多个预设波束信息,或者该信道最近一次使用的波束信息等;
可选地,第一预设波束信息,第二预设波束信息,第三预设波束信息,第四预设波束信息,第五预设波束信息,第六预设波束信息,第七预设波束信息,和第八预设波束信息中的任一个预设波束信息可以为预设PUCCH上的波束信息,比如该信道的任一个或多个预设波束信息,或者该信道最近一次使用的波束信息等;
可选地,第一预设波束信息,第二预设波束信息,第三预设波束信息,第四预设波束信息,第五预设波束信息,第六预设波束信息,第七预设波束信息,和第八预设波束信息中的任一个预设波束信息可以为具有最小ID的CORESET上的波束信息,比如该CORESET的任一个或多个预设波束信息,或者该CORESET最近一次使用的波束信息等;
可选地,所述预设信道与所述目标信号对应相同的TRP标识信息,或所述预设波束信息与所述目标信号对应相同的TRP标识信息。
可选地,预设信道可以与目标信号对应相同的TRP标识信息。
上述TRP标识信息可以是高层信令参数CORESETPoolIndex。
可选地,在任一个命令的传输时间和所述命令激活或指示的波束信息的激活时间或波束应用时间之间的时间间隔内包含第一时延,所述第一时延在第二BWP上;
所述第一时延包括以下至少一项:
第一个SSB的测量和处理所需时长;
用于时频跟踪的TRS的测量和处理所需时长;
用于时频跟踪的CSI-RS的测量和处理所需时长;
L1-RSRP的测量和上报所需时长。
可选地,任一个命令可以为第一命令或第二命令或第三命令;
可选地,第一命令(如MAC CE)和第一命令激活或指示的波束信息的生效时间(比如第一命令MAC CE激活的波束信息的应用时间)之间的波束切换时延(TCI state switching delay),即为第一命令的传输时间和所述第一命令激活或指示的波束信息的激活时间或波束应用时间之间的时间间隔;
可选地,第二命令(如MAC CE)和第二命令激活的波束信息的生效时间(比如第二命令MAC CE指示激活的M个波束信息)之间的波束切换时延(TCI state switching delay),即为第二命令的传输时间和所述第二命令激活或指示的波束信息的激活时间或波束应用时间之间的时间间隔;
可选地,第三命令(如DCI)和第三命令指示的波束信息的生效时间(比如第三命令DCI指示的波束信息的应用时间)之间的波束切换时延(TCI state switching delay),即为第三命令的传输时间和第三命令激活或指示的波束信息的激活时间或波束应用时间之间的时间间隔;
可选地,在上述时间间隔内还可以包括第一时延;
可选地,第一时延在第二BWP上;
可选地,第一时延包括以下任一项或多项:
第一个SSB的测量和处理所需时长;
用于时频跟踪的TRS的测量和处理所需时长;
用于时频跟踪的CSI-RS的测量和处理所需时长;
L1-RSRP的测量和上报所需时长。
可选地,上述RS(如SSB或TRS或CSI-RS等)的测量和处理是在第二BWP上进行的,而上述命令及其ACK可以在第一BWP或第二BWP。
可选地,所述命令和所述命令的ACK之间的第二时长基于以下至少一项确定:
所述命令传输所在的BWP的子载波间隔;
所述ACK传输所在的BWP的子载波间隔。
可选地,命令可以为第一命令或第二命令或第三命令;
可选地,第一命令和所述第一命令的ACK之间的第二时长基于以下至少一项确定:
所述第一命令传输所在的BWP的子载波间隔;
所述ACK传输所在的BWP的子载波间隔。
可选地,第二命令和所述第二命令的ACK之间的第二时长基于以下至少一项确定:
所述第二命令传输所在的BWP的子载波间隔;
所述ACK传输所在的BWP的子载波间隔。
可选地,第三命令和所述第三命令的ACK之间的第二时长基于以下至少一项确定:
所述第三命令传输所在的BWP的子载波间隔;
所述ACK传输所在的BWP的子载波间隔。
在本申请实施例中,通过基于第一波束信息的时间信息,和切换至第二BWP的时间信息,确定从第一BWP切换至第二BWP后,在所述第二BWP上用于传输目标信号的目标波束信息,保证网络和终端确定的目标波束信息一致,保证BWP切换时的波束对齐,减少信息传输的中断。
需要说明的是,本申请实施例提供的传输方法,执行主体可以为传输装置,或者,该传输装置中的用于执行传输方法的控制模块。本申请实施例中以传输装置执行传输方法为例,说明本申请实施例提供的传输装置。
图4是本申请实施例提供的传输装置的结构示意图,如图4所示,所述装置包括:第一确定模块410和传输模块420;其中:
第一确定模块410用于在确定需要从第一BWP切换至第二BWP的情况下,基于第一波束信息的时间信息,和切换至第二BWP的时间信 息,确定在所述第二BWP上用于传输目标信号的目标波束信息;
传输模块420用于基于所述目标波束信息传输所述目标信号;
其中,所述第一波束信息是网络侧设备发送给终端的。
可选地,传输装置可以在确定需要从第一BWP切换至第二BWP的情况下,基于第一波束信息的时间信息,和切换至第二BWP的时间信息,通过第一确定模块410确定在所述第二BWP上用于传输目标信号的目标波束信息;随后基于所述目标波束信息,通过传输模块420传输所述目标信号;
其中,所述目标通信设备为网络侧设备或终端,所述第一波束信息是所述网络侧设备发送给所述终端的
在本申请实施例中,通过基于第一波束信息的时间信息,和切换至第二BWP的时间信息,确定从第一BWP切换至第二BWP后,在所述第二BWP上用于传输目标信号的目标波束信息,保证网络和终端确定的目标波束信息一致,保证BWP切换时的波束对齐,减少信息传输的中断。
可选地,所述第一确定模块还用于:
基于所述目标信号,第一波束信息的时间信息,和所述切换至第二BWP的时间信息中的至少一项,确定所述用于传输目标信号的目标波束信息。
可选地,在所述目标信号为PDCCH或PUCCH的情况下,或,在所述第一波束信息为公共波束信息的情况下,所述第一波束信息的时间信息包括所述第一波束信息的波束应用时间;所述第一波束信息是由网络侧通过第一命令指示的。
可选地,所述第一确定模块还用于以下至少一项:
在切换至第二BWP的时间信息在所述波束应用时间之后的情况下,确定所述目标波束信息为所述第一波束信息;
在切换至第二BWP的时间信息在所述波束应用时间之前的情况下, 确定在所述波束应用时间之前,所述目标波束信息为第一预设波束信息;
在切换至第二BWP的时间信息在所述波束应用时间之前的情况下,确定在所述波束应用时间之后,所述目标波束信息为所述第一波束信息。
可选地,在所述目标信号为PDSCH的情况下,或,在所述第一波束信息为公共波束信息的情况下,所述第一波束信息的时间信息包括以下至少一项:
M个波束信息的第一激活时间,所述M个波束信息是所述网络侧设备通过第二命令激活的且对应第二BWP的波束信息,所述第一激活时间是所述M个波束信息被激活的生效时间,M为正整数;
第三命令对应的时间信息,所述第三命令对应的时间信息为所述第三命令指示的第一波束信息的波束应用时间。
可选地,所述第一确定模块还用于以下至少一项:
在所述目标信号的传输时间在所述第三命令对应的时间信息之前的情况下,确定所述目标波束信息为第四预设波束信息;
所述目标信号的传输时间在所述第三命令对应的时间信息之后,且所述目标信号的传输时间在所述第一激活时间之后的情况下,确定所述目标波束信息为所述第一波束信息;所述第一波束信息是所述M个波束信息中的至少一个;
在所述目标信号的传输时间在所述第三命令对应的时间信息之后,且所述目标信号的传输时间在所述第一激活时间之前,所述目标波束信息为第五预设波束信息。
可选地,预设波束信息包括以下至少一项:
预设BWP上的波束信息;
预设时隙上的波束信息;
预设信道的波束信息;
最近一次使用的波束信息;
N个激活的波束信息中的至少一个,N为正整数;
最近激活的P个波束信息中的至少一个,P为正整数;
最近一次使用的公共波束信息。
可选地,所述预设时隙包括:
监听CORESET的最近一个时隙;
监听CORESET的任意一个或多个时隙;
预设信道所在的最近一个时隙;
预设信道所在的任意一个或多个时隙。
可选地,所述预设BWP包括以下至少一项:
所述第一BWP;
所述第二BWP。
可选地,在所述预设BWP包括所述第二BWP的情况下,所述第二BWP上存在第一历史时间段内被激活或被指示的波束信息。
可选地,所述预设信道包括以下至少一项:
最近一次传输的PDCCH;
最近一次传输的PDSCH;
最近一次传输的PUCCH;
预设PDCCH;
预设PDSCH;
预设PUCCH;
具有最小ID的CORESET。
可选地,所述预设信道与所述目标信号对应相同的TRP标识信息,或所述预设波束信息与所述目标信号对应相同的TRP标识信息。
可选地,在任一个命令的传输时间和所述命令激活或指示的波束信息的激活时间或波束应用时间之间的时间间隔内包含第一时延,所述第一时延在第二BWP上;
所述第一时延包括以下至少一项:
第一个SSB的测量和处理所需时长;
用于时频跟踪的TRS的测量和处理所需时长;
用于时频跟踪的CSI-RS的测量和处理所需时长;
L1-RSRP的测量和上报所需时长。
可选地,所述命令和所述命令的ACK之间的第二时长基于以下至少一项确定:
所述命令传输所在的BWP的子载波间隔;
所述ACK传输所在的BWP的子载波间隔。
在本申请实施例中,通过基于第一波束信息的时间信息,和切换至第二BWP的时间信息,确定从第一BWP切换至第二BWP后,在所述第二BWP上用于传输目标信号的目标波束信息,保证网络和终端确定的目标波束信息一致,保证BWP切换时的波束对齐,减少信息传输的中断。
本申请实施例中的传输装置可以是装置,具有操作系统的装置或电子设备,也可以是终端中的部件、集成电路、或芯片。该装置或电子设备可以是移动终端,也可以为非移动终端。示例性的,移动终端可以包括但不限于上述所列举的终端11的类型,非移动终端可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例提供的传输装置能够实现图2至图3的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,图5是本申请实施例提供的通信设备的结构示意图,如图5所示,本申请实施例还提供一种通信设备500,包括处理器501,存储器502,存储在存储器502上并可在所述处理器501上运行的程序或指令,例如,该通信设备500为终端时,该程序或指令被处理器501执行时实 现上述传输方法实施例的各个过程,且能达到相同的技术效果。该通信设备500为网络侧设备时,该程序或指令被处理器501执行时实现上述传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种目标通信设备,包括处理器和通信接口,其中,所述处理器用于:
在确定需要从第一BWP切换至第二BWP的情况下,基于第一波束信息的时间信息,和切换至第二BWP的时间信息,确定在所述第二BWP上用于传输目标信号的目标波束信息;
所述通信接口用于:
基于所述目标波束信息传输所述目标信号;
其中,所述目标通信设备为网络侧设备或终端,所述第一波束信息是所述网络侧设备发送给所述终端的。
该目标通信设备实施例是与上述目标通信设备对应的方法实施例对应的,上述方法实施例的各个实施过程和实现方式均可适用于该目标通信设备实施例中,且能达到相同的技术效果。
可选地,该目标通信设备,可以是终端;
本申请实施例还提供一种终端,包括处理器和通信接口,其中,所述处理器用于:
在确定需要从第一BWP切换至第二BWP的情况下,基于第一波束信息的时间信息,和切换至第二BWP的时间信息,确定在所述第二BWP上用于传输目标信号的目标波束信息;
所述通信接口用于:
基于所述目标波束信息传输所述目标信号;
其中,所述目标通信设备终端,所述第一波束信息是网络侧设备发送给所述终端的。该终端实施例是与上述方法实施例对应的,上述方法实施例的各个实施过程和实现方式均可适用于该终端实施例中,且能达 到相同的技术效果。
具体地,图6为实现本申请实施例的一种终端的硬件结构示意图。
该终端600包括但不限于:射频单元601、网络模块602、音频输出单元603、输入单元604、传感器605、显示单元606、用户输入单元607、接口单元608、存储器609、以及处理器610等中的至少部分部件。
本领域技术人员可以理解,终端600还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器610逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图6中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元604可以包括图形处理器(Graphics Processing Unit,GPU)6041和麦克风6042,图形处理器6041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元606可包括显示面板6061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板6061。用户输入单元607包括触控面板6071以及其他输入设备6072。触控面板6071,也称为触摸屏。触控面板6071可包括触摸检测装置和触摸控制器两个部分。其他输入设备6072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元601将来自网络侧设备的下行数据接收后,给处理器610处理;另外,将上行的数据发送给网络侧设备。通常,射频单元601包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器609可用于存储软件程序或指令以及各种数据。存储器609 可主要包括存储程序或指令区和存储数据区,其中,存储程序或指令区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器609可以包括高速随机存取存储器,还可以包括非易失性存储器,其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
处理器610可包括一个或多个处理单元;可选的,处理器610可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序或指令等,调制解调处理器主要处理无线通信,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器610中。
其中,处理器610用于:
在确定需要从第一BWP切换至第二BWP的情况下,目标通信设备基于第一波束信息的时间信息,和切换至第二BWP的时间信息,确定在所述第二BWP上用于传输目标信号的目标波束信息;
目标通信设备基于所述目标波束信息传输所述目标信号;
其中,所述目标通信设备为网络侧设备或终端,所述第一波束信息是所述网络侧设备发送给所述终端的。
在本申请实施例中,通过基于第一波束信息的时间信息,和切换至第二BWP的时间信息,确定从第一BWP切换至第二BWP后,在所述第二BWP上用于传输目标信号的目标波束信息,保证网络和终端确定的目标波束信息一致,保证BWP切换时的波束对齐,减少信息传输的中断。
可选地,处理器610用于:
基于所述目标信号,第一波束信息的时间信息,和所述切换至第二BWP的时间信息中的至少一项,确定所述用于传输目标信号的目标波束信息。
可选地,在所述目标信号为PDCCH或PUCCH的情况下,或,在所述第一波束信息为公共波束信息的情况下,所述第一波束信息的时间信息包括所述第一波束信息的波束应用时间;所述第一波束信息是由网络侧通过第一命令指示的。
可选地,处理器610用于以下至少一项:
在切换至第二BWP的时间信息在所述波束应用时间之后的情况下,确定所述目标波束信息为所述第一波束信息;
在切换至第二BWP的时间信息在所述波束应用时间之前的情况下,确定在所述波束应用时间之前,所述目标波束信息为第一预设波束信息;
在切换至第二BWP的时间信息在所述波束应用时间之前的情况下,确定在所述波束应用时间之后,所述目标波束信息为所述第一波束信息。
可选地,在所述目标信号为PDSCH的情况下,或,在所述第一波束信息为公共波束信息的情况下,所述第一波束信息的时间信息包括以下至少一项:
M个波束信息的第一激活时间,所述M个波束信息是所述网络侧设备通过第二命令激活的且对应第二BWP的波束信息,所述第一激活时间是所述M个波束信息被激活的生效时间,M为正整数;
第三命令对应的时间信息,所述第三命令对应的时间信息为所述第三命令指示的第一波束信息的波束应用时间。
可选地,处理器610用于以下至少一项:
在所述目标信号的传输时间在所述第三命令对应的时间信息之前的情况下,确定所述目标波束信息为第四预设波束信息;
所述目标信号的传输时间在所述第三命令对应的时间信息之后,且所述目标信号的传输时间在所述第一激活时间之后的情况下,确定所述目标波束信息为所述第一波束信息;所述第一波束信息是所述M个波束信息中的至少一个;
在所述目标信号的传输时间在所述第三命令对应的时间信息之后,且所述目标信号的传输时间在所述第一激活时间之前,所述目标波束信息为第五预设波束信息。
可选地,预设波束信息包括以下至少一项:
预设BWP上的波束信息;
预设时隙上的波束信息;
预设信道的波束信息;
最近一次使用的波束信息;
N个激活的波束信息中的至少一个,N为正整数;
最近激活的P个波束信息中的至少一个,P为正整数;
最近一次使用的公共波束信息。
可选地,所述预设时隙包括:
监听CORESET的最近一个时隙;
监听CORESET的任意一个或多个时隙;
预设信道所在的最近一个时隙;
预设信道所在的任意一个或多个时隙。
可选地,所述预设BWP包括以下至少一项:
所述第一BWP;
所述第二BWP。
可选地,在所述预设BWP包括所述第二BWP的情况下,所述第二BWP上存在第一历史时间段内被激活或被指示的波束信息。
可选地,所述预设信道包括以下至少一项:
最近一次传输的PDCCH;
最近一次传输的PDSCH;
最近一次传输的PUCCH;
预设PDCCH;
预设PDSCH;
预设PUCCH;
具有最小ID的CORESET。
可选地,所述预设信道携带与所述目标信号对应相同的TRP标识信息。
可选地,在任一个命令的传输时间和所述命令激活或指示的波束信息的激活时间或波束应用时间之间的时间间隔内包含第一时延,所述第一时延在第二BWP上;
所述第一时延包括以下至少一项:
第一个SSB的测量和处理所需时长;
用于时频跟踪的TRS的测量和处理所需时长;
用于时频跟踪的CSI-RS的测量和处理所需时长;
L1-RSRP的测量和上报所需时长。
可选地,所述命令和所述命令的ACK之间的第二时长基于以下至少一项确定:
所述命令传输所在的BWP的子载波间隔;
所述ACK传输所在的BWP的子载波间隔。
在本申请实施例中,通过基于第一波束信息的时间信息,和切换至第二BWP的时间信息,确定从第一BWP切换至第二BWP后,在所述第二BWP上用于传输目标信号的目标波束信息,保证网络和终端确定的目标波束信息一致,保证BWP切换时的波束对齐,减少信息传输的中断。
可选地,该目标通信设备,可以是网络侧设备;
本申请实施例还提供一种网络侧设备,包括处理器和通信接口,其 中,所述处理器用于:
在确定需要从第一BWP切换至第二BWP的情况下,基于第一波束信息的时间信息,和切换至第二BWP的时间信息,确定在所述第二BWP上用于传输目标信号的目标波束信息;
所述通信接口用于:
基于所述目标波束信息传输所述目标信号;
其中,所述目标通信设备为网络侧设备,所述第一波束信息是网络侧设备发送给所述终端的。该网络侧设备实施例是与上述方法实施例对应的,上述方法实施例的各个实施过程和实现方式均可适用于该网络侧设备实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种网络侧设备。图7为实现本申请实施例的一种网络侧设备的硬件结构示意图,如图7所示,该网络设备700包括:天线701、射频装置702、基带装置703。天线701与射频装置702连接。在上行方向上,射频装置702通过天线701接收信息,将接收的信息发送给基带装置703进行处理。在下行方向上,基带装置703对要发送的信息进行处理,并发送给射频装置702,射频装置702对收到的信息进行处理后经过天线701发送出去。
上述频带处理装置可以位于基带装置703中,以上实施例中网络侧设备执行的方法可以在基带装置703中实现,该基带装置703包括处理器704和存储器705。
基带装置703例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图7所示,其中一个芯片例如为处理器704,与存储器705连接,以调用存储器705中的程序,执行以上方法实施例中所示的网络设备操作。
该基带装置703还可以包括网络接口706,用于与射频装置702交互信息,该接口例如为通用公共无线接口(common public radio interface,简称CPRI)。
具体地,本发明实施例的网络侧设备还包括:存储在存储器705上并可在处理器704上运行的指令或程序,处理器704调用存储器705中的指令或程序执行图4所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
其中,处理器704用于:
在确定需要从第一BWP切换至第二BWP的情况下,目标通信设备基于第一波束信息的时间信息,和切换至第二BWP的时间信息,确定在所述第二BWP上用于传输目标信号的目标波束信息;
目标通信设备基于所述目标波束信息传输所述目标信号;
其中,所述目标通信设备为网络侧设备或终端,所述第一波束信息是所述网络侧设备发送给所述终端的。
在本申请实施例中,通过基于第一波束信息的时间信息,和切换至第二BWP的时间信息,确定从第一BWP切换至第二BWP后,在所述第二BWP上用于传输目标信号的目标波束信息,保证网络和终端确定的目标波束信息一致,保证BWP切换时的波束对齐,减少信息传输的中断。
可选地,处理器704用于:
基于所述目标信号,第一波束信息的时间信息,和所述切换至第二BWP的时间信息中的至少一项,确定所述用于传输目标信号的目标波束信息。
可选地,在所述目标信号为PDCCH或PUCCH的情况下,或,在所述第一波束信息为公共波束信息的情况下,所述第一波束信息的时间信息包括所述第一波束信息的波束应用时间;所述第一波束信息是由网络侧通过第一命令指示的。
可选地,处理器704用于以下至少一项:
在切换至第二BWP的时间信息在所述波束应用时间之后的情况下,确定所述目标波束信息为所述第一波束信息;
在切换至第二BWP的时间信息在所述波束应用时间之前的情况下,确定在所述波束应用时间之前,所述目标波束信息为第一预设波束信息;
在切换至第二BWP的时间信息在所述波束应用时间之前的情况下,确定在所述波束应用时间之后,所述目标波束信息为所述第一波束信息。
可选地,在所述目标信号为PDSCH的情况下,或,在所述第一波束信息为公共波束信息的情况下,所述第一波束信息的时间信息包括以下至少一项:
M个波束信息的第一激活时间,所述M个波束信息是所述网络侧设备通过第二命令激活的且对应第二BWP的波束信息,所述第一激活时间是所述M个波束信息被激活的生效时间,M为正整数;
第三命令对应的时间信息,所述第三命令对应的时间信息为所述第三命令指示的第一波束信息的波束应用时间。
可选地,处理器704用于以下至少一项:
在所述目标信号的传输时间在所述第三命令对应的时间信息之前的情况下,确定所述目标波束信息为第四预设波束信息;
所述目标信号的传输时间在所述第三命令对应的时间信息之后,且所述目标信号的传输时间在所述第一激活时间之后的情况下,确定所述目标波束信息为所述第一波束信息;所述第一波束信息是所述M个波束信息中的至少一个;
在所述目标信号的传输时间在所述第三命令对应的时间信息之后,且所述目标信号的传输时间在所述第一激活时间之前,所述目标波束信息为第五预设波束信息。
可选地,预设波束信息包括以下至少一项:
预设BWP上的波束信息;
预设时隙上的波束信息;
预设信道的波束信息;
最近一次使用的波束信息;
N个激活的波束信息中的至少一个,N为正整数;
最近激活的P个波束信息中的至少一个,P为正整数;
最近一次使用的公共波束信息。
可选地,所述预设时隙包括:
监听CORESET的最近一个时隙;
监听CORESET的任意一个或多个时隙;
预设信道所在的最近一个时隙;
预设信道所在的任意一个或多个时隙。
可选地,所述预设BWP包括以下至少一项:
所述第一BWP;
所述第二BWP。
可选地,在所述预设BWP包括所述第二BWP的情况下,所述第二BWP上存在第一历史时间段内被激活或被指示的波束信息。
可选地,所述预设信道包括以下至少一项:
最近一次传输的PDCCH;
最近一次传输的PDSCH;
最近一次传输的PUCCH;
预设PDCCH;
预设PDSCH;
预设PUCCH;
具有最小ID的CORESET。
可选地,所述预设信道携带与所述目标信号对应相同的TRP标识信息。
可选地,在任一个命令的传输时间和所述命令激活或指示的波束信息的激活时间或波束应用时间之间的时间间隔内包含第一时延,所述第 一时延在第二BWP上;
所述第一时延包括以下至少一项:
第一个SSB的测量和处理所需时长;
用于时频跟踪的TRS的测量和处理所需时长;
用于时频跟踪的CSI-RS的测量和处理所需时长;
L1-RSRP的测量和上报所需时长。
可选地,所述命令和所述命令的ACK之间的第二时长基于以下至少一项确定:
所述命令传输所在的BWP的子载波间隔;
所述ACK传输所在的BWP的子载波间隔。
在本申请实施例中,通过基于第一波束信息的时间信息,和切换至第二BWP的时间信息,确定从第一BWP切换至第二BWP后,在所述第二BWP上用于传输目标信号的目标波束信息,保证网络和终端确定的目标波束信息一致,保证BWP切换时的波束对齐,减少信息传输的中断。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯 片,芯片系统或片上系统芯片等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (32)

  1. 一种传输方法,包括:
    在确定需要从第一BWP切换至第二BWP的情况下,目标通信设备基于第一波束信息的时间信息,和切换至第二BWP的时间信息,确定在所述第二BWP上用于传输目标信号的目标波束信息;
    目标通信设备基于所述目标波束信息传输所述目标信号;
    其中,所述目标通信设备为网络侧设备或终端,所述第一波束信息是所述网络侧设备发送给所述终端的。
  2. 根据权利要求1所述的传输方法,其中,所述目标通信设备基于第一波束信息的时间信息,和切换至第二BWP的时间信息,确定用于传输目标信号的目标波束信息,包括:
    基于所述目标信号,第一波束信息的时间信息,和所述切换至第二BWP的时间信息中的至少一项,确定所述用于传输目标信号的目标波束信息。
  3. 根据权利要求2所述的传输方法,其中,在所述目标信号为物理下行控制信道PDCCH或物理上行控制信道PUCCH的情况下,或,在所述第一波束信息为公共波束信息的情况下,所述第一波束信息的时间信息包括所述第一波束信息的波束应用时间;所述第一波束信息是由网络侧通过第一命令指示的。
  4. 根据权利要求3所述的传输方法,其中,所述基于所述目标信号,第一波束信息的时间信息,和切换至第二BWP的时间信息中的至少一项,确定所述用于传输目标信号的目标波束信息,包括以下至少一项:
    在切换至第二BWP的时间信息在所述波束应用时间之后的情况下,确定所述目标波束信息为所述第一波束信息;
    在切换至第二BWP的时间信息在所述波束应用时间之前的情况下, 确定在所述波束应用时间之前,所述目标波束信息为第一预设波束信息;
    在切换至第二BWP的时间信息在所述波束应用时间之前的情况下,确定在所述波束应用时间之后,所述目标波束信息为所述第一波束信息。
  5. 根据权利要求2所述的传输方法,其中,在所述目标信号为物理下行共享信道PDSCH的情况下,或,在所述第一波束信息为公共波束信息的情况下,所述第一波束信息的时间信息包括以下至少一项:
    M个波束信息的第一激活时间,所述M个波束信息是所述网络侧设备通过第二命令激活的且对应第二BWP的波束信息,所述第一激活时间是所述M个波束信息被激活的生效时间,M为正整数;
    第三命令对应的时间信息,所述第三命令对应的时间信息为所述第三命令指示的第一波束信息的波束应用时间。
  6. 根据权利要求5所述的传输方法,其中,所述基于所述目标信号,第一波束信息的时间信息,和切换至第二BWP的时间信息中的至少一项,确定所述用于传输目标信号的目标波束信息,包括以下至少一项:
    在所述目标信号的传输时间在所述第三命令对应的时间信息之前的情况下,确定所述目标波束信息为第四预设波束信息;
    所述目标信号的传输时间在所述第三命令对应的时间信息之后,且所述目标信号的传输时间在所述第一激活时间之后的情况下,确定所述目标波束信息为所述第一波束信息;所述第一波束信息是所述M个波束信息中的至少一个;
    在所述目标信号的传输时间在所述第三命令对应的时间信息之后,且所述目标信号的传输时间在所述第一激活时间之前,所述目标波束信息为第五预设波束信息。
  7. 根据权利要求4或6所述的传输方法,其中,预设波束信息包括 以下至少一项:
    预设BWP上的波束信息;
    预设时隙上的波束信息;
    预设信道的波束信息;
    最近一次使用的波束信息;
    N个激活的波束信息中的至少一个,N为正整数;
    最近激活的P个波束信息中的至少一个,P为正整数;
    最近一次使用的公共波束信息。
  8. 根据权利要求7所述的传输方法,其中,所述预设时隙包括:
    监听CORESET的最近一个时隙;
    监听CORESET的任意一个或多个时隙;
    预设信道所在的最近一个时隙;
    预设信道所在的任意一个或多个时隙。
  9. 根据权利要求7或8所述的传输方法,其中,所述预设BWP包括以下至少一项:
    所述第一BWP;
    所述第二BWP。
  10. 根据权利要求9所述的传输方法,其中,在所述预设BWP包括所述第二BWP的情况下,所述第二BWP上存在第一历史时间段内被激活或被指示的波束信息。
  11. 根据权利要求7或8所述的传输方法,其中,所述预设信道包括以下至少一项:
    最近一次传输的PDCCH;
    最近一次传输的PDSCH;
    最近一次传输的PUCCH;
    预设PDCCH;
    预设PDSCH;
    预设PUCCH;
    具有最小ID的CORESET。
  12. 根据权利要求11所述的传输方法,其中,所述预设信道与所述目标信号对应相同的TRP标识信息,或所述预设波束信息与所述目标信号对应相同的TRP标识信息。
  13. 根据权利要求3或5或6所述的传输方法,其中,在任一个命令的传输时间和所述命令激活或指示的波束信息的激活时间或波束应用时间之间的时间间隔内包含第一时延,所述第一时延在第二BWP上;
    所述第一时延包括以下至少一项:
    第一个SSB的测量和处理所需时长;
    用于时频跟踪的TRS的测量和处理所需时长;
    用于时频跟踪的CSI-RS的测量和处理所需时长;
    L1-RSRP的测量和上报所需时长。
  14. 根据权利要求13所述的传输方法,其中,所述命令和所述命令的ACK之间的第二时长基于以下至少一项确定:
    所述命令传输所在的BWP的子载波间隔;
    所述ACK传输所在的BWP的子载波间隔。
  15. 一种传输装置,所述装置包括:
    第一确定模块,用于在确定需要从第一BWP切换至第二BWP的情况下,基于第一波束信息的时间信息,和切换至第二BWP的时间信息,确定在所述第二BWP上用于传输目标信号的目标波束信息;
    传输模块,用于基于所述目标波束信息传输所述目标信号;
    其中,所述第一波束信息是网络侧设备发送给终端的。
  16. 根据权利要求15所述的传输装置,其中,所述第一确定模块还用于:
    基于所述目标信号,第一波束信息的时间信息,和所述切换至第二BWP的时间信息中的至少一项,确定所述用于传输目标信号的目标波束 信息。
  17. 根据权利要求16所述的传输装置,其中,在所述目标信号为PDCCH或PUCCH的情况下,或,在所述第一波束信息为公共波束信息的情况下,所述第一波束信息的时间信息包括所述第一波束信息的波束应用时间;所述第一波束信息是由网络侧通过第一命令指示的。
  18. 根据权利要求17所述的传输装置,其中,所述第一确定模块还用于以下至少一项:
    在切换至第二BWP的时间信息在所述波束应用时间之后的情况下,确定所述目标波束信息为所述第一波束信息;
    在切换至第二BWP的时间信息在所述波束应用时间之前的情况下,确定在所述波束应用时间之前,所述目标波束信息为第一预设波束信息;
    在切换至第二BWP的时间信息在所述波束应用时间之前的情况下,确定在所述波束应用时间之后,所述目标波束信息为所述第一波束信息。
  19. 根据权利要求16所述的传输装置,其中,在所述目标信号为PDSCH的情况下,或,在所述第一波束信息为公共波束信息的情况下,所述第一波束信息的时间信息包括以下至少一项:
    M个波束信息的第一激活时间,所述M个波束信息是所述网络侧设备通过第二命令激活的且对应第二BWP的波束信息,所述第一激活时间是所述M个波束信息被激活的生效时间,M为正整数;
    第三命令对应的时间信息,所述第三命令对应的时间信息为所述第三命令指示的第一波束信息的波束应用时间。
  20. 根据权利要求19所述的传输装置,其中,所述第一确定模块还用于以下至少一项:
    在所述目标信号的传输时间在所述第三命令对应的时间信息之前的情况下,确定所述目标波束信息为第四预设波束信息;
    所述目标信号的传输时间在所述第三命令对应的时间信息之后,且所述目标信号的传输时间在所述第一激活时间之后的情况下,确定所述目标波束信息为所述第一波束信息;所述第一波束信息是所述M个波束信息中的至少一个;
    在所述目标信号的传输时间在所述第三命令对应的时间信息之后,且所述目标信号的传输时间在所述第一激活时间之前,所述目标波束信息为第五预设波束信息。
  21. 根据权利要求18或20所述的传输装置,其中,预设波束信息包括以下至少一项:
    预设BWP上的波束信息;
    预设时隙上的波束信息;
    预设信道的波束信息;
    最近一次使用的波束信息;
    N个激活的波束信息中的至少一个,N为正整数;
    最近激活的P个波束信息中的至少一个,P为正整数;
    最近一次使用的公共波束信息。
  22. 根据权利要求21所述的传输装置,其中,所述预设时隙包括:
    监听CORESET的最近一个时隙;
    监听CORESET的任意一个或多个时隙;
    预设信道所在的最近一个时隙;
    预设信道所在的任意一个或多个时隙。
  23. 根据权利要求21或22所述的传输装置,其中,所述预设BWP包括以下至少一项:
    所述第一BWP;
    所述第二BWP。
  24. 根据权利要求23所述的传输装置,其中,在所述预设BWP包括所述第二BWP的情况下,所述第二BWP上存在第一历史时间段内被 激活或被指示的波束信息。
  25. 根据权利要求21或22所述的传输装置,其中,所述预设信道包括以下至少一项:
    最近一次传输的PDCCH;
    最近一次传输的PDSCH;
    最近一次传输的PUCCH;
    预设PDCCH;
    预设PDSCH;
    预设PUCCH;
    具有最小ID的CORESET。
  26. 根据权利要求25所述的传输装置,其中,所述预设信道携带与所述目标信号对应相同的TRP标识信息。
  27. 根据权利要求17或19或20所述的传输装置,其中,在任一个命令的传输时间和所述命令激活或指示的波束信息的激活时间或波束应用时间之间的时间间隔内包含第一时延,所述第一时延在第二BWP上;
    所述第一时延包括以下至少一项:
    第一个SSB的测量和处理所需时长;
    用于时频跟踪的TRS的测量和处理所需时长;
    用于时频跟踪的CSI-RS的测量和处理所需时长;
    L1-RSRP的测量和上报所需时长。
  28. 根据权利要求27所述的传输装置,其中,所述命令和所述命令的ACK之间的第二时长基于以下至少一项确定:
    所述命令传输所在的BWP的子载波间隔;
    所述ACK传输所在的BWP的子载波间隔。
  29. 一种目标通信设备,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至14任一项所述的传输方法的步骤。
  30. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至14任一项所述的传输方法的步骤。
  31. 一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令执行时实现如权利要求1至14任一项所述的传输方法的步骤。
  32. 一种计算机程序产品,所述计算机程序产品被存储在非瞬态的存储介质中,所述程序产品被至少一个处理器执行以实现如权利要求1至14任一项所述的传输方法的步骤。
PCT/CN2022/102905 2021-07-01 2022-06-30 传输方法、装置、通信设备及存储介质 WO2023274369A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110745009.5 2021-07-01
CN202110745009.5A CN115567950A (zh) 2021-07-01 2021-07-01 传输方法、装置、通信设备及存储介质

Publications (1)

Publication Number Publication Date
WO2023274369A1 true WO2023274369A1 (zh) 2023-01-05

Family

ID=84692550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/102905 WO2023274369A1 (zh) 2021-07-01 2022-06-30 传输方法、装置、通信设备及存储介质

Country Status (2)

Country Link
CN (1) CN115567950A (zh)
WO (1) WO2023274369A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220312382A1 (en) * 2021-03-29 2022-09-29 Qualcomm Incorporated Identifying a default beam for communications on a physical downlink shared channel (pdsch)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190215888A1 (en) * 2018-01-09 2019-07-11 Comcast Cable Communications, Llc Beam Selection in Beam Failure Recovery Request Retransmission
CN112425240A (zh) * 2020-09-30 2021-02-26 北京小米移动软件有限公司 频域资源的切换方法、设备及计算机可读存储介质
US20210099981A1 (en) * 2019-09-30 2021-04-01 Comcast Cable Communications, Llc Downlink reception and beam management

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190215888A1 (en) * 2018-01-09 2019-07-11 Comcast Cable Communications, Llc Beam Selection in Beam Failure Recovery Request Retransmission
US20210099981A1 (en) * 2019-09-30 2021-04-01 Comcast Cable Communications, Llc Downlink reception and beam management
CN112425240A (zh) * 2020-09-30 2021-02-26 北京小米移动软件有限公司 频域资源的切换方法、设备及计算机可读存储介质

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220312382A1 (en) * 2021-03-29 2022-09-29 Qualcomm Incorporated Identifying a default beam for communications on a physical downlink shared channel (pdsch)

Also Published As

Publication number Publication date
CN115567950A (zh) 2023-01-03

Similar Documents

Publication Publication Date Title
WO2022028373A1 (zh) 测量上报方法、装置及设备
CN110351052B (zh) 信道和信号的传输方法及通信设备
WO2022068867A1 (zh) 波束处理方法、装置及相关设备
WO2022068875A1 (zh) 波束信息指示、获取方法、装置、终端及网络侧设备
WO2022068907A1 (zh) 波束信息指示、获取方法、装置、终端及网络侧设备
WO2023011545A1 (zh) 小区切换方法、装置、用户设备及存储介质
WO2023274369A1 (zh) 传输方法、装置、通信设备及存储介质
WO2023045955A1 (zh) 传输处理方法、装置、终端、网络侧设备及存储介质
WO2023284801A1 (zh) Tci状态确定方法、装置、终端及网络侧设备
WO2023011481A1 (zh) 波束信息确定方法、装置、通信设备及存储介质
CN115913475B (zh) 波束信息确定方法、装置、通信设备及存储介质
WO2023198183A1 (zh) 信息获取方法、信息发送方法、装置、终端及网络侧设备
WO2023011532A1 (zh) 波束应用时间的确定方法、终端及网络侧设备
WO2023284800A1 (zh) Srs的传输方法、装置、终端及网络侧设备
WO2022148365A1 (zh) 准共址信息的确定、获取方法及通信设备
WO2023104106A1 (zh) 检测及配置参考信号的方法、装置、终端及网络侧设备
WO2023179753A1 (zh) 波束信息指示方法、装置、终端及网络侧设备
WO2022253271A1 (zh) Srs资源发送方法、装置、用户设备及存储介质
WO2023066333A1 (zh) 信道状态信息csi测量方法、终端及网络侧设备
WO2023104089A1 (zh) 波束检测方法、终端及网络侧设备
WO2023056929A1 (zh) 准共址下行rs的确定方法、装置及终端
WO2023116905A1 (zh) 定位参考信号的处理方法、设备及可读存储介质
WO2022268215A1 (zh) 参考信号的传输方法和设备
WO2023109763A1 (zh) Prach传输方法、装置及终端
WO2024032665A1 (zh) 配置方法、装置、用户设备以及网络侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22832181

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE