WO2023104089A1 - 波束检测方法、终端及网络侧设备 - Google Patents

波束检测方法、终端及网络侧设备 Download PDF

Info

Publication number
WO2023104089A1
WO2023104089A1 PCT/CN2022/137232 CN2022137232W WO2023104089A1 WO 2023104089 A1 WO2023104089 A1 WO 2023104089A1 CN 2022137232 W CN2022137232 W CN 2022137232W WO 2023104089 A1 WO2023104089 A1 WO 2023104089A1
Authority
WO
WIPO (PCT)
Prior art keywords
tci state
tci
bfd
priority
feedback information
Prior art date
Application number
PCT/CN2022/137232
Other languages
English (en)
French (fr)
Inventor
洪琪
王臣玺
李�根
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2023104089A1 publication Critical patent/WO2023104089A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/24Negotiating SLA [Service Level Agreement]; Negotiating QoS [Quality of Service]

Definitions

  • the present application belongs to the technical field of communication, and in particular relates to a beam detection method, a terminal and a network side device.
  • the terminal will periodically receive and measure a beam failure detection reference signal (Beam Failure Detection-Reference Signal, RS, BFD-RS), and judge whether a beam failure event occurs according to the measurement result.
  • RS Beam Failure Detection-Reference Signal
  • BFD-RS Beam Failure Detection-Reference Signal
  • the network-side device may not be able to send BFD-RS due to some reasons. For example, in the unlicensed spectrum, the network-side device may not successfully access the channel due to the failure of Listen Before Talk (LBT). BFD-RS cannot be sent.
  • the terminal still defaults to a beam failure event and reports a beam failure instance (Beam Failure Instance, BFI). In this way, the probability of BFI is greatly increased, so that the terminal thinks that the beam fails and initiates a beam failure recovery process, which consumes more communication resources.
  • BFI Beam Failure Instance
  • Embodiments of the present application provide a beam detection method, a terminal, and a network side device, which can solve the problem of frequent triggering of a recovery process due to beam failure and waste of communication resources.
  • a beam detection method including: a terminal preferentially detects a BFD-RS through a transmission configuration indicator (Transmission Configuration Indicator, TCI) state with the highest priority; wherein, the terminal is configured with multiple TCI states, Each TCI state in the plurality of TCI states corresponds to a priority; if the BFD-RS is not detected through the TCI state with the highest priority, the BFD-RS is detected through the TCI state of the second priority, or through multiple A TCI state detects multiple BFD-RSs, and selects a BFD-RS link according to the signal quality of the multiple BFD-RSs.
  • TCI Transmission Configuration Indicator
  • a beam detection method including: a network side device preferentially sends a BFD-RS through a beam corresponding to the TCI state with the highest priority; wherein, the network side device is configured with multiple TCI states for the terminal, so Each TCI state in the plurality of TCI states corresponds to a priority; if the beam corresponding to the TCI state with the highest priority satisfies the first condition, send the BFD-RS through the beam corresponding to the TCI state of the second priority, or Multiple BFD-RSs are sent through beams corresponding to multiple TCI states.
  • a beam detection device including: a beam detection module, configured to preferentially detect a BFD-RS through the TCI state with the highest priority; wherein, the device is configured with multiple TCI states, and the multiple Each TCI state in the TCI state corresponds to a priority; the beam detection module is also used to detect BFD-RS through the TCI state with the highest priority if no BFD-RS is detected through the TCI state with the highest priority.
  • RS or detect multiple BFD-RSs through multiple TCI states, and select a BFD-RS link according to the signal quality of the multiple BFD-RSs.
  • a beam detection device including: a sending module, configured to preferentially send a BFD-RS through a beam corresponding to a TCI state with the highest priority; wherein, the device is configured with multiple TCI states for a terminal, so Each TCI state in the plurality of TCI states corresponds to a priority; the sending module is further configured to: if the beam corresponding to the TCI state with the highest priority satisfies the first condition, then the TCI state corresponding to the secondary priority beams to send BFD-RSs, or beams corresponding to multiple TCI states to send multiple BFD-RSs.
  • a terminal in a fifth aspect, includes a processor and a memory, the memory stores programs or instructions that can run on the processor, and when the programs or instructions are executed by the processor, the following The steps of the method in one aspect.
  • a terminal including a processor and a communication interface, wherein the communication interface is used to preferentially detect BFD-RS through the TCI state with the highest priority; wherein, the terminal is configured with multiple TCI states , each TCI state in the plurality of TCI states corresponds to a priority; if the BFD-RS is not detected through the TCI state with the highest priority, the BFD-RS is detected through the TCI state of the second priority, or through Multiple TCI states detect multiple BFD-RSs, and select a BFD-RS link according to the signal quality of the multiple BFD-RSs.
  • a network-side device in a seventh aspect, includes a processor and a memory, the memory stores programs or instructions that can run on the processor, and the programs or instructions are executed by the processor When realizing the steps of the method as described in the second aspect.
  • a network-side device including a processor and a communication interface, wherein the communication interface is used to send BFD-RS preferentially through the beam corresponding to the TCI state with the highest priority; wherein the network-side device Multiple TCI states are configured for the terminal, and each TCI state in the multiple TCI states corresponds to a priority; if the beam corresponding to the TCI state with the highest priority satisfies the first condition, the TCI with the second priority is passed.
  • the beam corresponding to the state sends the BFD-RS, or sends multiple BFD-RS through the beams corresponding to the multiple TCI states.
  • a ninth aspect provides a beam detection system, including: a terminal and a network-side device, the terminal can be used to perform the steps of the method described in the first aspect, and the network-side device can be used to perform the steps of the method described in the second aspect steps of the method described above.
  • a readable storage medium is provided, and a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, the steps of the method described in the first aspect are implemented, or the steps of the method as described in the first aspect are implemented, or the The steps of the method described in the second aspect.
  • a chip in an eleventh aspect, includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run a program or an instruction to implement the method described in the first aspect. The steps of the method, or the steps of implementing the method as described in the second aspect.
  • a computer program/program product is provided, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the The steps of the method, or realize the steps of the method as described in the second aspect.
  • the network side device configures multiple TCI states for the terminal, and each TCI state corresponds to a priority.
  • the terminal firstly detects BFD-RS through the TCI state with the highest priority. If the subsequent TCI state with the highest priority If BFD-RS is not detected, BFD-RS can be detected through the secondary priority TCI state, or multiple BFD-RS can be detected through multiple TCI states at the same time, and the BFD-RS link can be selected according to the signal quality of multiple BFD-RS , the embodiment of the present application can reduce or prevent the terminal from frequently initiating a beam failure recovery process, so as to save communication resources and improve communication efficiency.
  • FIG. 1 is a schematic diagram of a wireless communication system according to an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a beam detection method according to an embodiment of the present application
  • FIG. 3 is a schematic flowchart of a beam detection method according to an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a beam detection device according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a beam detection device according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a terminal according to an embodiment of the present application.
  • Fig. 8 is a schematic structural diagram of a network side device according to an embodiment of the present application.
  • first, second and the like in the specification and claims of the present application are used to distinguish similar objects, and are not used to describe a specific sequence or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances such that the embodiments of the application are capable of operation in sequences other than those illustrated or described herein and that "first" and “second” distinguish objects. It is usually one category, and the number of objects is not limited. For example, there may be one or more first objects.
  • “and/or” in the description and claims means at least one of the connected objects, and the character “/” generally means that the related objects are an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technologies can be used for the above-mentioned systems and radio technologies as well as other systems and radio technologies.
  • NR New Radio
  • the following description describes the New Radio (NR) system for illustrative purposes, and uses NR terminology in most of the following descriptions, but these techniques can also be applied to applications other than NR system applications, such as the 6th generation (6 th Generation, 6G) communication system.
  • 6G 6th Generation
  • Fig. 1 shows a block diagram of a wireless communication system to which the embodiment of the present application is applicable.
  • the wireless communication system includes a terminal 11 and a network side device 12 .
  • the terminal 11 can be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a palmtop computer, a netbook, a super mobile personal computer (ultra-mobile personal computer, UMPC), mobile Internet device (Mobile Internet Device, MID), augmented reality (augmented reality, AR) / virtual reality (virtual reality, VR) equipment, robot, wearable device (Wearable Device) , vehicle equipment (VUE), pedestrian terminal (PUE), smart home (home equipment with wireless communication functions, such as refrigerators, TVs, washing machines or furniture, etc.), game consoles, personal computers (personal computers, PCs), teller machines or self-service Wearable devices include: smart watches, smart bracelets, smart headphones, smart glasses, smart jewelry (
  • the network side device 12 may include an access network device or a core network device, wherein the access network device may also be called a radio access network device, a radio access network (Radio Access Network, RAN), a radio access network function, or a wireless access network unit.
  • RAN Radio Access Network
  • the access network equipment may include a base station, a wireless local area network (Wireless Local Area Network, WLAN) access point or a wireless fidelity (Wireless Fidelity, WiFi) node, etc.
  • the base station may be called a node B, an evolved node B (eNB), an access network Access Point, Base Transceiver Station (BTS), Radio Base Station, Radio Transceiver, Basic Service Set (BSS), Extended Service Set (ESS), Home Node B, Home Evolution Type B node, Transmitting Receiving Point (Transmitting Receiving Point, TRP) or some other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical terms. It should be noted that in this application In the embodiment, only the base station in the NR system is used as an example for introduction, and the specific type of the base station is not limited.
  • an embodiment of the present application provides a beam detection method 200, which can be executed by a terminal, in other words, the method can be executed by software or hardware installed in the terminal, and the method includes the following steps.
  • the terminal preferentially detects a beam failure detection-reference signal (Beam Failure Detection-Reference Signal, RS, BFD-RS) through the transmission configuration indicator (Transmission Configuration Indicator, TCI) state (state) with the highest priority.
  • a beam failure detection-reference signal Beam Failure Detection-Reference Signal, RS, BFD-RS
  • TCI Transmission Configuration Indicator
  • the terminal is configured with multiple TCI states, and each TCI state in the multiple TCI states corresponds to a priority.
  • the network-side device can configure a priority for each TCI state; or, the priority corresponding to the TCI state can be equal to the priority of the BFD-RS, wherein the network-side device can configure the priority for the BFD-RS , the BFD-RS configuration may include the TCI state.
  • the terminal and the network side device may have gone through a beam training process, so as to determine the optimal beam, and the optimal beam may be the beam corresponding to the TCI state with the highest priority above.
  • the terminal preferentially detects the BFD-RS through the TCI state with the highest priority, and at the same time, the terminal also preferentially receives data and signaling through the TCI state with the highest priority.
  • the network side device will also give priority to sending BFD-RS through the TCI state with the highest priority above, and send data and signaling to the terminal through the TCI state with the highest priority above.
  • the above BFD-RS may be sent periodically, therefore, the non-detection of BFD-RS mentioned in this step may mean that no BFD-RS is detected within one detection period; it may also be within multiple consecutive periods Neither BFD-RS was detected.
  • the non-detected BFD-RS mentioned in this embodiment may be that the signal quality of the detected BFD-RS is lower than a certain threshold, and the signal quality can be determined by reference signal receiving power (Reference Signal Receiving Power, RSRP), signal interference and noise Ratio (Signal to Interference plus Noise Ratio, SINR), block error rate (BLock Error Rate, BLER) and other parameters to judge.
  • RSRP Reference Signal Receiving Power
  • SINR Signal Interference plus Noise Ratio
  • BLER Block Error Rate
  • the secondary priority mentioned in this step may be the second highest priority.
  • the network side device is configured with TCI state 1, TCI state 2 and TCI state 3 for the terminal, TCI state 1 has the highest priority, and TCI state 3 has the lowest priority.
  • the terminal first detects the BFD-RS and receives data and signaling through the beam corresponding to the TCI state 1; if the BFD-RS is not detected through the beam corresponding to the TCI state 1, the BFD-RS and the BFD-RS are detected through the beam corresponding to the TCI state 2. Receive data and signaling, etc.; or, simultaneously detect BFD-RS through beams corresponding to TCI state 1, TCI state 2, and TCI state 3. If the terminal detects that the signal quality of BFD-RS on the beam corresponding to TCI state 2 is the highest, Then, the beam corresponding to the TCI state 2 is subsequently used to detect the BFD-RS and receive data and signaling.
  • the network side device configures multiple TCI states for the terminal, each TCI state corresponds to a priority, and the terminal first detects the BFD-RS through the TCI state with the highest priority. If no BFD-RS is detected in the TCI state of the current state, BFD-RS can be detected through the TCI state of the second priority, or multiple BFD-RS can be detected through multiple TCI states at the same time, and BFD can be selected according to the signal quality of multiple BFD-RS - RS link, the embodiment of the present application can reduce or avoid the recovery process of the beam failure initiated by the terminal, so as to save communication resources and improve communication efficiency.
  • the method further includes: the terminal sends feedback information through the beam corresponding to the first TCI state, and the feedback information is used to determine whether the beam corresponding to the first TCI state A beam failure occurs, and the first TCI state is one of multiple TCI states configured for the terminal.
  • the terminal when the terminal detects BFD-RS through the TCI state with the highest priority, the terminal can send feedback information through the beam corresponding to the TCI state with the highest priority.
  • the network side device can Alternatively, the quality of the beam corresponding to the TCI state with the highest priority is determined according to the content of the feedback information.
  • the feedback information occupies 1 bit, and the terminal periodically sends 1 bit of feedback information to tell the network side device that the current beam link corresponding to the TCI state with the highest priority is good. If the network-side device does not receive feedback information in a certain cycle, or does not receive feedback information in multiple consecutive cycles, it is considered that there is a problem with the beam corresponding to the TCI state with the highest priority, and the network-side device can pass the second-priority
  • the beam corresponding to the TCI state sends BFD-RS, data and signaling, etc.
  • the feedback information occupies 1 bit, and the terminal sends feedback information periodically, or sends feedback information under the trigger of the network side device, "1" means that the beam link corresponding to the current highest priority TCI state is good; “0 ” indicates that the link quality of the beam corresponding to the current TCI state with the highest priority is poor.
  • the above-mentioned first TCI state may be referred to as the TCI state currently used by the terminal, which includes not only the highest priority TCI state, but also the secondary priority TCI state used by the terminal for detection after S204.
  • the terminal sending the feedback information through the beam corresponding to the first TCI state includes: the terminal sending the feedback information through the beam corresponding to the first TCI state according to a first principle; wherein the first principle includes the following One: 1) Periodic transmission, the period can be configured by the network side device or predefined by the protocol; 2) Aperiodic or periodic transmission according to the trigger of the network side device.
  • the network-side device configuration or network-side device trigger mentioned above can be directly configured by RRC; it can also be configured by RRC, and the downlink control information (Downlink Control Information, DCI) can choose one case; it can also be directly configured by DCI.
  • DCI Downlink Control Information
  • the method further includes: the terminal receiving first configuration information, the first configuration information is used to configure at least one of the following related to the feedback information: start time, end time, duration, period , interval, and time-frequency position.
  • the terminal sending the feedback information through the beam corresponding to the first TCI state according to the first principle includes: the terminal sending the feedback information on the first channel through the beam corresponding to the first TCI state according to the first principle; wherein, the The first channel includes at least one of the following 1) and 2):
  • a physical random access channel Physical Random Access Channel, PRACH
  • PRACH Physical Random Access Channel
  • the PRACH has a corresponding relationship with the BFD-RS (such as the synchronization signal/physical broadcast channel signal block (Synchronization Signal and PBCH block, SSB)/CSI-RS), and the BFD-RS corresponds to the first TCI
  • BFD-RS such as the synchronization signal/physical broadcast channel signal block (Synchronization Signal and PBCH block, SSB)/CSI-RS
  • the feedback information may be a preamble (Preamble) sequence, which does not need to carry additional information or bits, so as to save signaling resource overhead.
  • Preamble preamble
  • the physical uplink channel may include a physical uplink control channel (Physical Uplink Control Channel, PUCCH) or a physical uplink shared channel (Physical Uplink Shared Channel, PUSCH), etc.
  • the feedback information may be indicated explicitly, that is, explicitly indicated by the number of bits; the feedback information may also be indicated implicitly, for example, implicitly indicated by sequence length, sequence cyclic shift, sequence position, etc.
  • the network side device After receiving the physical uplink channel, the network side device will know which TCI state of which BFD-RS it corresponds to, without additional signaling Indicates the TCI state, which is convenient for saving signaling resource overhead.
  • the terminal when the terminal detects BFD-RS through the TCI state with the highest priority, the terminal can send feedback information through the beam corresponding to the TCI state with the highest priority. After the terminal sends the feedback information, the terminal can also pass the The TCI state with the highest priority detects the BFD-RS. If no corresponding BFD-RS is detected, the BFD-RS is detected on the BFD-RS corresponding to the secondary priority or the second priority within the subsequent fixed period of time. Time periods can be predefined for the protocol.
  • the network side device may send information on beams of different priorities according to whether feedback information is received. That is, if the network side device receives the feedback information, it still sends the BFD-RS with the highest priority. If no feedback information is received, the RS of the second priority or the second priority is sent.
  • the terminal detects BFD-RS through the TCI state with the highest priority within a certain period of time. If no corresponding BFD-RS is detected, the terminal detects multiple BFD-RSs at the same time within a certain period of time. According to the received signal quality, select Corresponding BFD-RS link.
  • the signal quality can be judged by parameters such as RSRP/SINR/BLER.
  • the parameter index can be predefined for the protocol, or the terminal can realize it by itself.
  • the network side device sends information on all configured beams according to whether the network side device receives feedback information or the feedback information indicates that the signal quality received by the terminal is not good.
  • the network side device mentioned in the above two examples depends on whether the feedback information is received.
  • the judgment standard can be that every time the network side device does not receive the feedback information, it will send the BFD-RS with the second priority or the second priority; or, if the feedback information that the network side device does not receive meets certain conditions, it will send the BFD-RS with the second priority BFD-RS of the first or second priority.
  • the feedback information not received by the network side device satisfies a certain condition. It may be that no fixed number of feedback information is received within a fixed time, and the fixed time and fixed number are predefined by the protocol.
  • a counter may be set, and the duration of the timer and the maximum value of the counter are predefined by the protocol or pre-configured by the network side device. If the network side device does not receive the feedback signal, the counter will be incremented by 1, and then the timer will be reset. If feedback is received within the timer duration, the counter is reset and cleared.
  • the network side device configures multiple TCI states and priorities for the terminal, which will be described in two examples below.
  • the terminal may obtain by receiving second configuration information, the second configuration information is used to configure a BFD-RS for the terminal, and the BFD-RS configured for the terminal includes the plurality of TCI states , each TCI state in the plurality of TCI states corresponds to a priority.
  • the second configuration information configures multiple or multiple groups of BFD-RSs for the terminal, and each or multiple groups of BFD-RSs correspond to a TCI state.
  • the network side device may explicitly configure multiple TCI states through the second configuration information and each TCI state corresponds to a priority.
  • the terminal may obtain by receiving third configuration information, the third configuration information is used to configure a control resource set (Control Resource SET, CORESET) for the terminal, and the CORESET includes the multiple TCI states, each TCI state in the plurality of TCI states corresponds to a priority.
  • the BFD-RS is determined by the TCI state with the highest priority among the activated multiple TCI states corresponding to the Physical Downlink Control Channel (PDCCH). That is, there are multiple TCI states in the pre-configured CORESET of the network side device, and the corresponding priorities are configured.
  • the network side device may implicitly configure multiple TCI states and each TCI state has a corresponding priority through the third configuration information.
  • the corresponding priority of each TCI state is directly indicated by indication information; or determined according to the identification size of each TCI state or the order of configuration, for example, the TCI state The smaller the ID, the higher the priority; the earlier the TCI status configuration, the higher the priority, etc.
  • the number of the above multiple TCI states and the priority configuration can be dynamically updated.
  • the update is performed by the network side device, and can be updated through Radio Resource Control (Radio Resource Control, RRC) or Media Access Control Control Element (Media Access Control Control Element, MAC CE).
  • RRC Radio Resource Control
  • MAC CE Media Access Control Control Element
  • the method further includes: the terminal receives a configuration update message, and the configuration update message is used to update at least one of the following: the number of the multiple TCI states; among the multiple TCI states, at least The priority corresponding to a TCI state.
  • the network side equipment configures BFD-RS as follows: the base station configures multiple TCI states (states) for each BFD-RS or CORESET (assuming 3 beams: beam1, beam2, beam3) . Each TCI state is configured with a corresponding priority (assuming the priority order is beam1>beam2>beam3).
  • the RRC dynamically configures the TCI state information of the CORESET, which generally means that the multiple TCI states are adjacent beams.
  • the base station preferentially transmits information on the beam with the highest TCI state priority (assumed to be beam 1), and the user equipment (User Equipment, UE, also referred to as the terminal) also preferentially receives information on the beam with the highest TCI state priority (beam1).
  • the number of the TCI states and the priority order can be dynamically controlled by the RRC layer on the network side.
  • the base station configures the UE to upload feedback information: 1.
  • the base station pre-configures the period for the UE to upload the feedback signal; 2.
  • the base station triggers the UE to upload the feedback information in a certain way.
  • the trigger method can be directly configured by RRC. It can also be realized by RRC configuration and DCI selection. It can also be directly configured by DCI.
  • the configuration includes at least one of the following 1) to 5).
  • Step 1 The UE detects the BFD-RS signal (on beam1), and the BFD-RS has a Quasi co-location (QCL) type D relationship with the highest priority TCI state in the CORESET.
  • QCL Quasi co-location
  • Step 2 The UE will report the current beam information within a certain period of time/or periodically. Tell the base station whether the current beam link is successful. The reporting may be based on the channel in 1) or 2) below.
  • the feedback information can be uploaded through the PRACH.
  • the PRACH has a corresponding relationship with the BFD-RS (SSB).
  • the feedback information is the Preamble sequence, and no additional information or bits need to be carried.
  • the base station After receiving the PRACH, the base station knows which BFD-RS (SSB) it corresponds to.
  • the channel may have a corresponding relationship with the BFD-RS, which is similar to the corresponding relationship between the PRACH channel and the SSB channel.
  • the channel may not correspond to the BFD-RS, and the feedback information is uploaded on the beam (beam1) corresponding to the BFD-RS.
  • the feedback information can be indicated explicitly, that is, explicitly indicated by the number of bits; the feedback information can be indicated implicitly, that is, implicitly indicated by sequence length, sequence cyclic shift, sequence position, etc.
  • Step 3 If the base station receives the feedback information uploaded by the UE, it proves that the beam has not failed (failure), so the base station continues to transmit information on the beam with the highest TCI state priority (beam 1). If the base station does not receive the feedback information uploaded by the UE, it proves that the beam fails, so the base station transmits information on the next priority beam (beam2).
  • the criterion for determining that the base station has not received the feedback information uploaded by the UE may be one of the following:
  • the base station Each time the base station does not receive the feedback information, it sends the RS of the second priority or the second priority.
  • the RS of the second priority or the second priority is sent.
  • the above condition may be: no fixed number of feedback information is received within a fixed time, and the fixed time and fixed number may be predefined by the protocol.
  • a counter can be set, and the timer duration and the maximum value of the counter are predefined by the protocol/preconfigured by the base station. If the base station does not receive the feedback information, the counter is incremented by 1, and then the timer is reset. If a feedback message is received within the timer duration, the counter is reset and cleared.
  • Step 4 UE detects the beam with the highest priority (beam1) within a certain period of time. If the beam information is detected, it proves that no beam failure event is formed, and the beam1 connection is continued to be used for data transmission; if the beam information is not detected, then Continue to detect the beam (beam2) information of the secondary priority. If beam2 is successfully detected, the UE subsequently uses beam2 to receive data. Alternatively, the UE detects multiple BFD-RSs simultaneously within a certain period of time, and selects a corresponding BFD-RS link according to the received signal quality.
  • Embodiment 1 For the configuration process before the execution of this embodiment, refer to Embodiment 1, which includes the following steps:
  • Step 1 The UE detects the BFD-RS signal (on beam1), the relationship between the BFD-RS and the highest priority TCI state QCL type D in CORESET.
  • Step 2 The UE will report the current beam information within a certain period of time/or periodically. Tell the base station whether the current beam link is successful. The reporting may be based on the channel in 1) or 2) below.
  • the feedback information can be uploaded through the PRACH.
  • the PRACH has a corresponding relationship with the BFD-RS (SSB).
  • the feedback information is the Preamble sequence, and no additional information or bits need to be carried.
  • the base station After receiving the PRACH, the base station knows which BFD-RS (SSB) it corresponds to.
  • the channel may have a corresponding relationship with the BFD-RS, which is similar to the corresponding relationship between the PRACH channel and the SSB channel.
  • the channel may not correspond to the BFD-RS, and the feedback information is uploaded on the beam (beam1) corresponding to the BFD-RS.
  • the feedback information can be indicated explicitly, that is, explicitly indicated by the number of bits; the feedback information can be indicated implicitly, that is, implicitly indicated by sequence length, sequence cyclic shift, sequence position, and the like.
  • Step 3 If the base station receives the feedback information uploaded by the UE, but the feedback information shows that the beam signal quality of the current link is not good, or the base station does not receive the feedback information uploaded by the UE. Then the base station transmits information on beams of all priorities, that is, similar to PDCCH repetition (repetion), the PDCCH carries other information that is consistent, but the corresponding beams are inconsistent.
  • Step 4 UE detects the beam with the highest priority (beam1) within a certain period of time. If the beam information is detected, it proves that no beam failure event is formed, and the beam1 connection is continued to be used for data transmission; if the beam information is not detected, then Continue to detect the beam (beam2) information of the secondary priority. If beam2 is successfully detected, the UE subsequently uses beam2 to receive data. Alternatively, the UE detects multiple BFD-RSs simultaneously within a certain period of time, and selects a corresponding BFD-RS link according to the received signal quality.
  • the beam detection method according to the embodiment of the present application has been described in detail above with reference to FIG. 2 .
  • a beam detection method according to another embodiment of the present application will be described in detail below with reference to FIG. 3 . It can be understood that the interaction between the network-side device and the terminal described from the network-side device is the same as or corresponds to the description of the terminal side in the method shown in FIG. 2 , and related descriptions are appropriately omitted to avoid repetition.
  • Fig. 3 is a schematic diagram of the implementation flow of the beam detection method according to the embodiment of the present application, which can be applied to a network side device. As shown in FIG. 3 , the method 300 includes the following steps.
  • the network side device preferentially sends the BFD-RS through the beam corresponding to the TCI state with the highest priority.
  • the network side device is configured with multiple TCI states for the terminal, and each TCI state in the multiple TCI states corresponds to a priority.
  • the network side device configures multiple TCI states for the terminal, each TCI state corresponds to a priority, and the network side device preferentially sends BFD-RS through the beam corresponding to the TCI state with the highest priority, if If the beam corresponding to the TCI state with the highest priority satisfies the first condition, the BFD-RS is sent through the beam corresponding to the TCI state with the second priority, or multiple BFD-RS are sent through the beams corresponding to multiple TCI states.
  • the embodiment can reduce or prevent the terminal from initiating a beam failure recovery process, which is convenient for saving communication resources and improving communication efficiency.
  • the beam corresponding to the TCI state with the highest priority meeting the first condition includes: the network side device does not receive feedback information through the beam corresponding to the TCI state with the highest priority; or The network side device receives the feedback information through the beam corresponding to the TCI state with the highest priority, and the signal quality of the channel carrying the feedback information is lower than a signal quality threshold.
  • the failure to receive feedback information through the beam corresponding to the TCI state with the highest priority includes: receiving no feedback information within a fixed time through the beam corresponding to the TCI state with the highest priority. A fixed number of said feedback messages.
  • the method further includes: the network side device receiving feedback information through a beam corresponding to the first TCI state; determining whether a beam corresponding to the first TCI state generates a beam according to the feedback information Fail, the first TCI state is one of multiple TCI states configured for the terminal.
  • the feedback information is periodically sent by the terminal. If the network side device does not receive the feedback information in a certain period, or does not receive the feedback information in multiple consecutive periods, it is considered that the beam corresponding to the first TCI state is generated. A beam failure event; or, the network side device receives feedback information indicating that the link quality of the beam corresponding to the first TCI state is not good, and determines that a beam failure event occurs on the beam corresponding to the first TCI state.
  • the receiving the feedback information by the network-side device through the beam corresponding to the first TCI state includes: the network-side device receiving the feedback information through the beam corresponding to the first TCI state according to the first principle; wherein , the first principle includes one of the following: periodic reception; according to the trigger of the network side device, aperiodic or periodic reception.
  • the method further includes: the network side device sending first configuration information, where the first configuration information is used to configure at least one of the following related to the feedback information: a start time, Stop moment, duration, period, interval, time-frequency position.
  • the receiving the feedback information by the network side device through the beam corresponding to the first TCI state according to the first principle includes: the network side device according to the first principle, through the beam corresponding to the first TCI state Receive feedback information on the first channel; wherein the first channel includes at least one of the following: a PRACH corresponding to the beam corresponding to the first TCI state; a physical uplink channel; wherein the physical uplink channel is the same as the There is a corresponding relationship or no corresponding relationship between the first TCI state.
  • the method further includes: the network side device sending second configuration information, the second configuration information is used to configure BFD-RS for the terminal, and the BFD configured for the terminal - the RS includes the multiple TCI states, and each TCI state in the multiple TCI states corresponds to a priority; or, the network side device sends third configuration information, and the third configuration information is used for all
  • the terminal configures a control resource set CORESET, the CORESET includes the multiple TCI states, and each TCI state in the multiple TCI states corresponds to a priority.
  • the corresponding priority of each TCI state is directly indicated by indication information; or determined according to the size of the identifier of each TCI state or the order of configuration.
  • the method further includes: the network side device sending a configuration update message, where the configuration update message is used to update at least one of the following: the number of the multiple TCI states; the multiple Among the TCI states, at least one TCI state corresponds to the priority.
  • the beam detection method provided in the embodiment of the present application may be executed by a beam detection device.
  • the beam detection device performed by the beam detection device is taken as an example to illustrate the beam detection device provided in the embodiment of the present application.
  • Fig. 4 is a schematic structural diagram of a beam detection device according to an embodiment of the present application, and the device may correspond to a terminal in other embodiments. As shown in FIG. 4 , the device 400 includes the following modules.
  • the beam detection module 402 is configured to preferentially detect the BFD-RS through the TCI state with the highest priority; wherein, the device is configured with multiple TCI states, and each TCI state in the multiple TCI states corresponds to a priority.
  • the beam detection module 402 is further configured to detect BFD-RS through the TCI state with the highest priority if no BFD-RS is detected through the TCI state with the highest priority, or detect multiple BFD through multiple TCI states -RS, and select a BFD-RS link according to the signal quality of the multiple BFD-RSs.
  • the aforementioned beam detection module 402 may be a communication interface, such as a receiving module.
  • the apparatus 400 may also include a processing module.
  • the network side equipment configures multiple TCI states for the device, and each TCI state corresponds to a priority, and the beam detection module preferentially detects the BFD-RS through the TCI state with the highest priority. If no BFD-RS is detected in the TCI state with the highest priority, BFD-RS can be detected through the TCI state with the second priority, or multiple BFD-RS can be detected through multiple TCI states at the same time, and the signals of multiple BFD-RS can be The quality selects the BFD-RS link, and the embodiments of the present application can reduce or avoid the process of initiating beam failure recovery, which is convenient for saving communication resources and improving communication efficiency.
  • the apparatus further includes: a sending module, configured to send feedback information through a beam corresponding to the first TCI state, and the feedback information is used to determine whether the beam corresponding to the first TCI state has Beam failure, the first TCI state is one of a plurality of TCI states configured for the apparatus.
  • a sending module configured to send feedback information through a beam corresponding to the first TCI state, and the feedback information is used to determine whether the beam corresponding to the first TCI state has Beam failure, the first TCI state is one of a plurality of TCI states configured for the apparatus.
  • the sending module is configured to: send feedback information through a beam corresponding to the first TCI state according to a first principle; wherein the first principle includes one of the following: periodic sending; According to the trigger of the network side device, send aperiodically or periodically.
  • the device further includes: a receiving module, configured to receive first configuration information, where the first configuration information is used to configure at least one of the following related to the feedback information: a start time, Stop moment, duration, period, interval, time-frequency position.
  • a receiving module configured to receive first configuration information, where the first configuration information is used to configure at least one of the following related to the feedback information: a start time, Stop moment, duration, period, interval, time-frequency position.
  • the sending module is configured to: according to the first principle, send feedback information on the first channel through the beam corresponding to the first TCI state; wherein the first channel includes at least one of the following One: the PRACH corresponding to the beam corresponding to the first TCI state; a physical uplink channel; wherein, the physical uplink channel has a corresponding relationship or no corresponding relationship with the first TCI state.
  • the device further includes a receiving module, configured to: receive second configuration information, the second configuration information is used to configure BFD-RS for the device, and the BFD configured for the device - the RS includes the multiple TCI states, and each TCI state in the multiple TCI states corresponds to a priority; or, receiving third configuration information, the third configuration information is used to configure CORESET for the device,
  • the CORESET includes the multiple TCI states, and each TCI state in the multiple TCI states corresponds to a priority.
  • the corresponding priority of each TCI state is directly indicated by indication information; or determined according to the size of the identifier of each TCI state or the order of configuration.
  • the receiving module is further configured to receive a configuration update message, where the configuration update message is used to update at least one of the following: the number of the multiple TCI states; the multiple TCI states Among them, at least one TCI state corresponds to a priority.
  • the device 400 according to the embodiment of the present application can refer to the process of the method 200 corresponding to the embodiment of the present application, and each unit/module in the device 400 and the above-mentioned other operations and/or functions are respectively in order to realize the corresponding process in the method 200, And can achieve the same or equivalent technical effect, for the sake of brevity, no more details are given here.
  • the beam detection apparatus in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or a component in the electronic device, such as an integrated circuit or a chip.
  • the electronic device may be a terminal, or other devices other than the terminal.
  • the terminal may include, but not limited to, the types of terminal 11 listed above, and other devices may be servers, Network Attached Storage (NAS), etc., which are not specifically limited in this embodiment of the present application.
  • NAS Network Attached Storage
  • Fig. 5 is a schematic structural diagram of a beam detection apparatus according to an embodiment of the present application, and the apparatus may correspond to network-side devices in other embodiments. As shown in FIG. 5 , the device 500 includes the following modules.
  • the sending module 502 is configured to preferentially send the BFD-RS through the beam corresponding to the TCI state with the highest priority; wherein, the device is configured with multiple TCI states for the terminal, and each TCI state in the multiple TCI states corresponds to a priority.
  • the sending module 502 is further configured to: if the beam corresponding to the TCI state with the highest priority satisfies the first condition, send the BFD-RS through the beam corresponding to the TCI state of the second priority, or send the BFD-RS through the beam corresponding to the TCI state of multiple TCI states.
  • the beam transmits multiple BFD-RSs.
  • the apparatus 500 may also include a processing module.
  • the beam detection device configureds multiple TCI states for the terminal, each TCI state corresponds to a priority, and the beam corresponding to the TCI state with the highest priority is given priority to sending BFD-RS, if the TCI state with the highest priority.
  • the beam corresponding to the TCI state satisfies the first condition, then the BFD-RS is sent through the beam corresponding to the sub-priority TCI state, or multiple BFD-RS are sent through the beams corresponding to the multiple TCI states, the embodiment of the present application can reduce or avoid The terminal initiates a beam failure recovery process, which is convenient for saving communication resources and improving communication efficiency.
  • the beam corresponding to the TCI state with the highest priority meeting the first condition includes: the beam corresponding to the TCI state with the highest priority does not receive feedback information; or, the beam corresponding to the TCI state with the highest priority does not receive feedback information; The beam corresponding to the highest TCI state receives the feedback information, and the signal quality of the channel carrying the feedback information is lower than the signal quality threshold.
  • the failure to receive feedback information through the beam corresponding to the TCI state with the highest priority includes: receiving no feedback information within a fixed time through the beam corresponding to the TCI state with the highest priority. A fixed number of said feedback messages.
  • the device further includes a receiving module configured to receive feedback information through a beam corresponding to the first TCI state; the device further includes a determining module configured to determine the first TCI according to the feedback information Whether a beam failure occurs in a beam corresponding to a TCI state, where the first TCI state is one of multiple TCI states configured for the terminal.
  • the receiving module is configured to receive feedback information through a beam corresponding to the first TCI state according to a first principle; wherein, the first principle includes one of the following: periodic reception; according to Triggering of the device, aperiodic or periodic reception.
  • the sending module 502 is further configured to send first configuration information, where the first configuration information is used to configure at least one of the following related to the feedback information: start time, end time , duration, period, interval, time-frequency position.
  • the receiving module is configured to receive feedback information on the first channel through the beam corresponding to the first TCI state according to the first principle; wherein the first channel includes at least one of the following : a PRACH corresponding to the beam corresponding to the first TCI state; a physical uplink channel; wherein, there is a corresponding relationship between the physical uplink channel and the first TCI state or there is no corresponding relationship.
  • the sending module is further configured to: send second configuration information, the second configuration information is used to configure BFD-RS for the terminal, and the BFD-RS configured for the terminal Including the multiple TCI states, each TCI state in the multiple TCI states corresponds to a priority; or, sending third configuration information, the third configuration information is used to configure CORESET for the terminal, the The CORESET includes the multiple TCI states, and each TCI state in the multiple TCI states corresponds to a priority.
  • the corresponding priority of each TCI state is directly indicated by indication information; or determined according to the size of the identifier of each TCI state or the order of configuration.
  • the sending module 502 is further configured to send a configuration update message, where the configuration update message is used to update at least one of the following: the number of states of the multiple TCIs; Among the states, the priority corresponding to at least one TCI state.
  • the device 500 according to the embodiment of the present application can refer to the process of the method 300 corresponding to the embodiment of the present application, and each unit/module in the device 500 and the above-mentioned other operations and/or functions are respectively in order to realize the corresponding process in the method 300, And can achieve the same or equivalent technical effect, for the sake of brevity, no more details are given here.
  • the beam detection device provided in the embodiment of the present application can realize the various processes realized by the method embodiments in Fig. 2 to Fig. 3, and achieve the same technical effect. In order to avoid repetition, details are not repeated here.
  • this embodiment of the present application also provides a communication device 600, including a processor 601 and a memory 602, and the memory 602 stores programs or instructions that can run on the processor 601, such as , when the communication device 600 is a terminal, when the program or instruction is executed by the processor 601, each step of the embodiment of the above-mentioned beam detection method can be realized, and the same technical effect can be achieved.
  • the communication device 600 is a network-side device, when the program or instruction is executed by the processor 601, each step of the above beam detection method embodiment can be achieved, and the same technical effect can be achieved. To avoid repetition, details are not repeated here.
  • the embodiment of the present application also provides a terminal, including a processor and a communication interface, and the communication interface is used to preferentially detect the BFD-RS through the TCI state with the highest priority; wherein, the terminal is configured with multiple TCI states, and the Each TCI state in the multiple TCI states has a corresponding priority; if the BFD-RS is not detected through the TCI state with the highest priority, the BFD-RS is detected through the TCI state of the second priority, or through multiple The TCI state detects multiple BFD-RSs, and selects a BFD-RS link according to the signal quality of the multiple BFD-RSs.
  • FIG. 7 is a schematic diagram of a hardware structure of a terminal implementing an embodiment of the present application.
  • the terminal 700 includes, but is not limited to: a radio frequency unit 701, a network module 702, an audio output unit 703, an input unit 704, a sensor 705, a display unit 706, a user input unit 707, an interface unit 708, a memory 709, and a processor 710. At least some parts.
  • the terminal 700 may also include a power supply (such as a battery) for supplying power to various components, and the power supply may be logically connected to the processor 710 through the power management system, so as to manage charging, discharging, and power consumption through the power management system. Management and other functions.
  • a power supply such as a battery
  • the terminal structure shown in FIG. 7 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than shown in the figure, or combine some components, or arrange different components, which will not be repeated here.
  • the input unit 704 may include a graphics processing unit (Graphics Processing Unit, GPU) 7041 and a microphone 7042, and the graphics processor 7041 is used by the image capture device (such as the image data of the still picture or video obtained by the camera) for processing.
  • the display unit 706 may include a display panel 7061, and the display panel 7061 may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 707 includes at least one of a touch panel 7071 and other input devices 7072 .
  • the touch panel 7071 is also called a touch screen.
  • the touch panel 7071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 7072 may include, but are not limited to, physical keyboards, function keys (such as volume control buttons, switch buttons, etc.), trackballs, mice, and joysticks, which will not be described in detail here.
  • the radio frequency unit 701 may transmit the downlink data from the network side device to the processor 710 for processing after receiving the downlink data; in addition, the radio frequency unit 701 may send uplink data to the network side device.
  • the radio frequency unit 701 includes, but is not limited to, an antenna, an amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the memory 709 can be used to store software programs or instructions as well as various data.
  • the memory 709 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instructions required by at least one function (such as a sound playing function, image playback function, etc.), etc.
  • memory 709 may include volatile memory or nonvolatile memory, or, memory 709 may include both volatile and nonvolatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically programmable Erase Programmable Read-Only Memory (Electrically EPROM, EEPROM) or Flash.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • Erasable PROM Erasable PROM
  • EPROM erasable programmable read-only memory
  • Electrical EPROM Electrical EPROM
  • EEPROM electronically programmable Erase Programmable Read-Only Memory
  • Volatile memory can be random access memory (Random Access Memory, RAM), static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), synchronous dynamic random access memory (Synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (Double Data Rate SDRAM, DDRSDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous connection dynamic random access memory (Synch link DRAM , SLDRAM) and Direct Memory Bus Random Access Memory (Direct Rambus RAM, DRRAM).
  • RAM Random Access Memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM Double Data Rate SDRAM
  • DDRSDRAM double data rate synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM enhanced synchronous dynamic random access memory
  • Synch link DRAM , SLDRAM
  • Direct Memory Bus Random Access Memory Direct Rambus
  • the processor 710 may include one or more processing units; optionally, the processor 710 integrates an application processor and a modem processor, wherein the application processor mainly processes operations related to the operating system, user interface, and application programs, etc., Modem processors mainly process wireless communication signals, such as baseband processors. It can be understood that the foregoing modem processor may not be integrated into the processor 710 .
  • the radio frequency unit 701 may be configured to preferentially detect the BFD-RS through the TCI state with the highest priority; wherein, the terminal is configured with multiple TCI states, and each TCI state in the multiple TCI states corresponds to a priority level; if no BFD-RS is detected through the TCI state with the highest priority, then detect a BFD-RS through a TCI state with a lower priority, or detect multiple BFD-RS through multiple TCI states, and Select a BFD-RS link based on the signal quality of each BFD-RS.
  • each TCI state corresponds to a priority
  • the terminal first detects the BFD-RS through the TCI state with the highest priority. If no BFD-RS is detected in the TCI state, then the BFD-RS can be detected through the TCI state of the second priority, or multiple BFD-RS can be detected through multiple TCI states at the same time, and the BFD-RS can be selected according to the signal quality of multiple BFD-RS.
  • the RS link the embodiment of the present application can reduce or avoid the recovery process of the beam failure initiated by the terminal, so as to save communication resources and improve communication efficiency.
  • the terminal 700 provided in the embodiment of the present application can also implement the various processes of the above embodiments of the beam detection method, and can achieve the same technical effect. To avoid repetition, details are not repeated here.
  • the embodiment of the present application also provides a network-side device, including a processor and a communication interface, and the communication interface is used to send BFD-RS preferentially through the beam corresponding to the TCI state with the highest priority; wherein the network-side device is a terminal Multiple TCI states are configured, and each TCI state in the multiple TCI states corresponds to a priority; if the beam corresponding to the TCI state with the highest priority satisfies the first condition, the TCI state corresponding to the secondary priority beams to send BFD-RSs, or beams corresponding to multiple TCI states to send multiple BFD-RSs.
  • the network-side device embodiment corresponds to the above-mentioned network-side device method embodiment, and each implementation process and implementation mode of the above-mentioned method embodiment can be applied to this network-side device embodiment, and can achieve the same technical effect.
  • the embodiment of the present application also provides a network side device.
  • the network side device 800 includes: an antenna 81 , a radio frequency device 82 , a baseband device 83 , a processor 84 and a memory 85 .
  • the antenna 81 is connected to a radio frequency device 82 .
  • the radio frequency device 82 receives information through the antenna 81, and sends the received information to the baseband device 83 for processing.
  • the baseband device 83 processes the information to be sent and sends it to the radio frequency device 82
  • the radio frequency device 82 processes the received information and sends it out through the antenna 81 .
  • the method performed by the network side device in the above embodiments may be implemented in the baseband device 83, where the baseband device 83 includes a baseband processor.
  • the baseband device 83 can include at least one baseband board, for example, a plurality of chips are arranged on the baseband board, as shown in FIG.
  • the program executes the network device operations shown in the above method embodiments.
  • the network side device may also include a network interface 86, such as a common public radio interface (common public radio interface, CPRI).
  • a network interface 86 such as a common public radio interface (common public radio interface, CPRI).
  • the network-side device 800 in the embodiment of the present application further includes: instructions or programs stored in the memory 85 and operable on the processor 84, and the processor 84 calls the instructions or programs in the memory 85 to execute the various programs shown in FIG.
  • the method of module execution achieves the same technical effect, so in order to avoid repetition, it is not repeated here.
  • the embodiment of the present application also provides a readable storage medium.
  • the readable storage medium stores programs or instructions.
  • the program or instructions are executed by the processor, the various processes of the above beam detection method embodiments can be realized, and the same To avoid repetition, the technical effects will not be repeated here.
  • the processor is the processor in the terminal described in the foregoing embodiments.
  • the readable storage medium includes a computer-readable storage medium, such as a computer read-only memory ROM, a random access memory RAM, a magnetic disk or an optical disk, and the like.
  • the embodiment of the present application further provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the above beam detection method embodiment
  • the chip includes a processor and a communication interface
  • the communication interface is coupled to the processor
  • the processor is used to run programs or instructions to implement the above beam detection method embodiment
  • the chip mentioned in the embodiment of the present application may also be called a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip.
  • An embodiment of the present application further provides a computer program/program product, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the above embodiment of the beam detection method
  • the embodiment of the present application also provides a beam detection system, including: a terminal and a network-side device, the terminal can be used to perform the steps of the above-mentioned beam detection method, and the network-side device can be used to perform the above-mentioned beam detection method The steps of the detection method.
  • the term “comprising”, “comprising” or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article or apparatus comprising a set of elements includes not only those elements, It also includes other elements not expressly listed, or elements inherent in the process, method, article, or device. Without further limitations, an element defined by the phrase “comprising a " does not preclude the presence of additional identical elements in the process, method, article, or apparatus comprising that element.
  • the scope of the methods and devices in the embodiments of the present application is not limited to performing functions in the order shown or discussed, and may also include performing functions in a substantially simultaneous manner or in reverse order according to the functions involved. Functions are performed, for example, the described methods may be performed in an order different from that described, and various steps may also be added, omitted, or combined. Additionally, features described with reference to certain examples may be combined in other examples.
  • the methods of the above embodiments can be implemented by means of software plus a necessary general-purpose hardware platform, and of course also by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of computer software products, which are stored in a storage medium (such as ROM/RAM, magnetic disk, etc.) , CD-ROM), including several instructions to make a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the methods described in the various embodiments of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种波束检测方法、终端及网络侧设备,属于通信技术领域。本申请实施例的波束检测方法包括:终端优先通过优先级最高的TCI状态检测BFD-RS;其中,所述终端被配置有多个TCI状态,所述多个TCI状态中的每个TCI状态对应有优先级;若通过所述优先级最高的TCI状态未检测到BFD-RS,则通过次优先级的TCI状态检测BFD-RS,或通过多个TCI状态检测多个BFD-RS,并根据所述多个BFD-RS的信号质量选择BFD-RS链接。

Description

波束检测方法、终端及网络侧设备
相关申请的交叉引用
本申请要求在2021年12月10日提交的中国专利申请第202111508867.4号的优先权,该中国专利申请的全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种波束检测方法、终端及网络侧设备。
背景技术
通常,终端会周期性地接收波束失败检测参考信号(Beam Failure Detection-Reference Signal,RS,BFD-RS)并进行测量,并根据测量结果判断是否发生波束失败事件。在一些场景中,网络侧设备可能由于一些原因而无法发送BFD-RS,例如,在非授权频谱中,网络侧设备可能由于先听后说(Listen Before Talk,LBT)失败没有成功接入信道,BFD-RS无法发送。然而,根据相关技术中的方案,终端依然会默认发生了波束失败事件,并上报波束失败实例(Beam Failure Instance,BFI)。这样大大的增加了BFI的概率,使得终端认为波束失败而发起波束失败恢复流程,消耗较多的通信资源。
发明内容
本申请实施例提供一种波束检测方法、终端及网络侧设备,能够解决因波束失败恢复流程被频繁触发,浪费通信资源的问题。
第一方面,提供了一种波束检测方法,包括:终端优先通过优先级最高的传输配置指示(Transmission Configuration Indicator,TCI)状态检测BFD-RS;其中,所述终端被配置有多个TCI状态,所述多个TCI状态中的每个TCI状态对应有优先级;若通过所述优先级最高的TCI状态未检测到BFD-RS,则 通过次优先级的TCI状态检测BFD-RS,或通过多个TCI状态检测多个BFD-RS,并根据所述多个BFD-RS的信号质量选择BFD-RS链接。
第二方面,提供了一种波束检测方法,包括:网络侧设备优先通过优先级最高的TCI状态对应的波束发送BFD-RS;其中,所述网络侧设备为终端配置有多个TCI状态,所述多个TCI状态中的每个TCI状态对应有优先级;若所述优先级最高的TCI状态对应的波束满足第一条件,则通过次优先级的TCI状态对应的波束发送BFD-RS,或通过多个TCI状态对应的波束发送多个BFD-RS。
第三方面,提供了一种波束检测装置,包括:波束检测模块,用于优先通过优先级最高的TCI状态检测BFD-RS;其中,所述装置被配置有多个TCI状态,所述多个TCI状态中的每个TCI状态对应有优先级;所述波束检测模块,还用于若通过所述优先级最高的TCI状态未检测到BFD-RS,则通过次优先级的TCI状态检测BFD-RS,或通过多个TCI状态检测多个BFD-RS,并根据所述多个BFD-RS的信号质量选择BFD-RS链接。
第四方面,提供了一种波束检测装置,包括:发送模块,用于优先通过优先级最高的TCI状态对应的波束发送BFD-RS;其中,所述装置为终端配置有多个TCI状态,所述多个TCI状态中的每个TCI状态对应有优先级;所述发送模块,还用于若所述优先级最高的TCI状态对应的波束满足第一条件,则通过次优先级的TCI状态对应的波束发送BFD-RS,或通过多个TCI状态对应的波束发送多个BFD-RS。
第五方面,提供了一种终端,该终端包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第六方面,提供了一种终端,包括处理器及通信接口,其中,所述通信接口用于优先通过优先级最高的TCI状态检测BFD-RS;其中,所述终端被配置有多个TCI状态,所述多个TCI状态中的每个TCI状态对应有优先级;若通过所述优先级最高的TCI状态未检测到BFD-RS,则通过次优先级的TCI 状态检测BFD-RS,或通过多个TCI状态检测多个BFD-RS,并根据所述多个BFD-RS的信号质量选择BFD-RS链接。
第七方面,提供了一种网络侧设备,该网络侧设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第二方面所述的方法的步骤。
第八方面,提供了一种网络侧设备,包括处理器及通信接口,其中,所述通信接口用于优先通过优先级最高的TCI状态对应的波束发送BFD-RS;其中,所述网络侧设备为终端配置有多个TCI状态,所述多个TCI状态中的每个TCI状态对应有优先级;若所述优先级最高的TCI状态对应的波束满足第一条件,则通过次优先级的TCI状态对应的波束发送BFD-RS,或通过多个TCI状态对应的波束发送多个BFD-RS。
第九方面,提供了一种波束检测系统,包括:终端及网络侧设备,所述终端可用于执行如第一方面所述的方法的步骤,所述网络侧设备可用于执行如第二方面所述的方法的步骤。
第十方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤。
第十一方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法的步骤,或实现如第二方面所述的方法的步骤。
第十二方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤。
在本申请实施例中,网络侧设备为终端配置多个TCI状态,每个TCI状态对应有优先级,终端优先通过优先级最高的TCI状态检测BFD-RS,若后续通过优先级最高的TCI状态未检测到BFD-RS,则可以通过次优先级的TCI状态检测BFD-RS,或同时通过多个TCI状态检测多个BFD-RS,并根据多 个BFD-RS的信号质量选择BFD-RS链接,本申请实施例可以减少或避免终端频繁发起波束失败恢复流程,便于节约通信资源,提高通信效率。
附图说明
图1是根据本申请实施例的无线通信系统的示意图;
图2是根据本申请实施例的波束检测方法的示意性流程图;
图3是根据本申请实施例的波束检测方法的示意性流程图;
图4是根据本申请实施例的波束检测装置的结构示意图;
图5是根据本申请实施例的波束检测装置的结构示意图;
图6是根据本申请实施例的通信设备的结构示意图;
图7是根据本申请实施例的终端的结构示意图;
图8是根据本申请实施例的网络侧设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用 于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6 th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(VUE)、行人终端(PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备可以包括基站、无线局域网(Wireless Local Area Network,WLAN)接入点或无线保真(Wireless Fidelity,WiFi)节点等,基 站可被称为节点B、演进节点B(eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的波束检测方法进行详细地说明。
如图2所示,本申请实施例提供一种波束检测方法200,该方法可以由终端执行,换言之,该方法可以由安装在终端的软件或硬件来执行,该方法包括如下步骤。
S202:终端优先通过优先级最高的传输配置指示(Transmission Configuration Indicator,TCI)状态(state)检测波束失败检测参考信号(Beam Failure Detection-Reference Signal,RS,BFD-RS)。
其中,所述终端被配置有多个TCI状态,所述多个TCI状态中的每个TCI状态对应有优先级。该实施例中,网络侧设备可以为每个TCI状态配置优先级;或者,该TCI状态对应的优先级可以等同于BFD-RS的优先级,其中,网络侧设备可以为BFD-RS配置优先级,BFD-RS的配置中可以包括TCI状态。
该实施例执行之前,终端和网络侧设备之间可能已经经过了波束训练过程,从而确定出最优的波束,该最优的波束可以是上述优先级最高的TCI状态对应的波束。
该实施例中,终端优先通过优先级最高的TCI状态检测BFD-RS,同时,终端也会优先通过该优先级最高的TCI状态接收数据和信令等。对于网络侧设备而言,网络侧设备也会优先通过上述优先级最高的TCI状态发送BFD-RS,优先通过上述优先级最高的TCI状态向终端发送数据和信令等。
S204:若通过所述优先级最高的TCI状态未检测到BFD-RS,则通过次优先级的TCI状态检测BFD-RS,或通过多个TCI状态检测多个BFD-RS,并根据所述多个BFD-RS的信号质量选择BFD-RS链接。
上述BFD-RS可以是周期性发送的,因此,该步骤中提到的未检测到BFD-RS,可以是在一个检测周期内未检测到BFD-RS;还可以是在多个连续的周期内均未检测到BFD-RS。该实施例中提到的未检测到BFD-RS,可以是检测的BFD-RS的信号质量低于一定阈值,该信号质量可以通过参考信号接收功率(Reference Signal Receiving Power,RSRP),信干噪比(Signal to Interference plus Noise Ratio,SINR),误块率(BLock Error Rate,BLER)等参数指标进行判断。
该步骤中提到的次优先级可以是第二高优先级。
该实施例例如,网络侧设备为终端配置有TCI状态1,TCI状态2和TCI状态3,TCI状态1的优先级最高,TCI状态3的优先级最低。终端优先通过TCI状态1对应的波束检测BFD-RS及接收数据和信令等;后续若通过TCI状态1对应的波束没有检测到BFD-RS,则通过TCI状态2对应的波束检测BFD-RS以及接收数据和信令等;或者,同时通过TCI状态1,TCI状态2和TCI状态3对应的波束检测BFD-RS,终端若检测到TCI状态2对应的波束上的BFD-RS的信号质量最高,则后续通过TCI状态2对应的波束检测BFD-RS以及接收数据和信令等。
本申请实施例提供的波束检测方法,网络侧设备为终端配置多个TCI状态,每个TCI状态对应有优先级,终端优先通过优先级最高的TCI状态检测BFD-RS,若后续通过优先级最高的TCI状态未检测到BFD-RS,则可以通过次优先级的TCI状态检测BFD-RS,或同时通过多个TCI状态检测多个BFD-RS,并根据多个BFD-RS的信号质量选择BFD-RS链接,本申请实施例可以减少或避免终端发起波束失败恢复流程,便于节约通信资源,提高通信效率。
可选地,在实施例200的基础上,所述方法还包括:所述终端通过第一 TCI状态对应的波束发送反馈信息,所述反馈信息用于确定所述第一TCI状态对应的波束是否发生波束失败,所述第一TCI状态是为所述终端配置的多个TCI状态之一。
该实施例例如,终端在通过优先级最高的TCI状态检测BFD-RS时,终端可以通过优先级最高的TCI状态对应的波束发送反馈信息,这样,网络侧设备即可根据是否接收到反馈信息,或者是根据反馈信息的内容,来确定优先级最高的TCI状态对应的波束的质量。
具体例如,反馈信息占用1比特,终端周期性的发送1比特反馈信息,告诉网络侧设备当前优先级最高的TCI状态对应的波束链接是好的。若网络侧设备在某个周期未接收到反馈信息,或者是多个连续的周期未接收到反馈信息,则认为优先级最高的TCI状态对应的波束出现问题,网络侧设备可以通过次优先级的TCI状态对应的波束发送BFD-RS以及数据和信令等。
又例如,反馈信息占用1比特,终端周期性发送反馈信息,或者是在网络侧设备的触发下发送反馈信息,“1”代表当前优先级最高的TCI状态对应的波束链接是好的;“0”代表当前优先级最高的TCI状态对应的波束链接质量不佳。
可以理解,上述第一TCI状态可以称作是终端当前使用的TCI状态,不仅包括优先级最高的TCI状态,还可以包括S204之后终端检测使用的次优先级的TCI状态等。
可选地,所述终端通过第一TCI状态对应的波束发送反馈信息包括:所述终端根据第一原则,通过第一TCI状态对应的波束发送反馈信息;其中,所述第一原则包括如下之一:1)周期性发送,所述周期可以由网络侧设备配置或协议预定义;2)根据网络侧设备的触发,非周期或周期性发送。
上述提到的网络侧设备配置或网络侧设备触发,可由RRC直接配置;也可由RRC配置,下行控制信息(Downlink Control Information,DCI)选择一种情况;也可由DCI直接配置。
可选地,所述方法还包括:所述终端接收第一配置信息,所述第一配置 信息用于配置所述反馈信息相关的如下至少之一:起始时刻,中止时刻,持续时间,周期,间隔,时频位置。
所述终端根据第一原则,通过第一TCI状态对应的波束发送反馈信息包括:所述终端根据第一原则,通过第一TCI状态对应的波束在第一信道上发送反馈信息;其中,所述第一信道包括如下1)和2)至少之一:
1)与所述第一TCI状态对应的波束相对应的物理随机接入信道(Physical Random Access Channel,PRACH)。例如,终端在PRACH上反馈信息,该PRACH与BFD-RS(如同步信号/物理广播信道信号块(Synchronization Signal and PBCH block,SSB)/CSI-RS)有对应关系,BFD-RS与第一TCI状态也存在对应关系,例如,BFD-RS与TCI状态是一一对应关系。此时,反馈信息可以是前导码(Preamble)序列,不再需要携带额外信息或者比特,便于节约信令资源开销。网络侧设备接收收到PRACH后,就知道其对应哪个BFD-RS的哪个TCI状态。
2)物理上行信道;其中,所述物理上行信道与所述第一TCI状态存在对应关系或不存在对应关系。该物理上行信道可以包括物理上行控制信道(Physical Uplink Control Channel,PUCCH)或物理上行共享信道(Physical Uplink Shared Channel,PUSCH)等。该反馈信息可以显式指示,即用比特数显式指示;该反馈信息还可以隐示指示,例如,用序列长度,序列循环移位,序列位置等隐式指示。
在所述物理上行信道与所述第一TCI状态存在对应关系的情况下,网络侧设备接收收到物理上行信道后,就知道其对应哪个BFD-RS的哪个TCI状态,无需额外的信令再来指示TCI状态,便于节约信令资源开销。
前文实施例提到终端通过优先级最高的TCI状态检测BFD-RS时,终端可以通过优先级最高的TCI状态对应的波束发送反馈信息,终端在发送反馈信息后,终端还可以在一定时间内通过优先级最高的TCI状态检测BFD-RS,若没有检测到相应BFD-RS,则在后续固定时间段内的次优先级或者第二优先级对应的BFD-RS上检测BFD-RS,该后续固定时间段可以为协议预定义。 该实施例中,网络侧设备可以根据是否收到反馈信息,在不同优先级的beam上发送信息。即,若网络侧设备收到反馈信息,则还是发送优先级最高的BFD-RS。若没有收到反馈信息,则发送次优先级或者第二优先级的RS。
或者,终端在一定时间内通过优先级最高的TCI状态检测BFD-RS,若没有检测到相应BFD-RS,则终端在一定时间内同时检测多个BFD-RS,根据收到的信号质量,选择相应的BFD-RS链接。所述信号质量可以通过RSRP/SINR/BLER等参数指标进行判断。该参数指标可以为协议预定义,或者终端自我实现。该实施例中,网络侧设备根据是否收到反馈信息或者反馈信息指示终端收到的信号质量不好,则网络侧设备在所有配置的beam上发送信息。
上述两个例子中提到的网络侧设备根据是否收到反馈信息。该判定标准可以为每次网络侧设备没有收到反馈信息,则发送次优先级或者第二优先级的BFD-RS;或者,网络侧设备没有收到的反馈信息满足一定条件,则发送次优先级或者第二优先级的BFD-RS。
所述网络侧设备没有收到的反馈信息满足一定条件。可以为在固定时间内没有收到固定数目的反馈信息,该固定时间以及固定数目由协议预定义。在一个具体的例子中,可以设置计数器,由协议预定义/网络侧设备预配置定时器时长以及计数器最大值。网络侧设备没收到反馈信号则计数器+1,然后定时器重置计时。若定时器时长内收到了反馈,则计数器重置清零。
可选地,前文各个实施例提到了网络侧设备为终端配置多个TCI状态及优先级,以下将分两个例子进行说明。
在一个例子中,所述终端可以通过接收第二配置信息获得,所述第二配置信息用于为所述终端配置BFD-RS,为所述终端配置的BFD-RS包括所述多个TCI状态,所述多个TCI状态中的每个TCI状态对应有优先级。例如,第二配置信息为终端配置多个或多组BFD-RS,每个或组BFD-RS对应一个TCI状态。该例子中,网络侧设备可以通过第二配置信息显式配置多个TCI状态以及每个TCI状态对应有优先级。
在另一个例子中,所述终端可以通过接收第三配置信息获得,所述第三配置信息用于为所述终端配置控制资源集(Control Resource SET,CORESET),所述CORESET中包括所述多个TCI状态,所述多个TCI状态中的每个TCI状态对应有优先级。该例子例如,BFD-RS由物理下行控制信道(Physical Downlink Control Channel,PDCCH)对应的激活的多个TCI state中优先级最高的TCI state确定。即,网络侧设备预配置的CORESET中有多个TCI state,并配置相应的优先级。该例子中,网络侧设备可以通过第三配置信息隐式配置多个TCI状态以及每个TCI状态对应有优先级。
可选地,所述多个TCI状态中,每个TCI状态对应优先级是通过指示信息直接指示的;或者是根据每个TCI状态的标识大小或配置的先后顺序确定的,例如,TCI状态的标识越小,优先级越高;TCI状态配置越前,优先级越高等。
上述多个TCI状态的个数,以及优先级配置可动态更新。该更新由网络侧设备执行,可以通过无线资源控制(Radio Resource Control,RRC)或媒体接入控制控制单元(Media Access Control Control Element,MAC CE)进行更新。
在一个例子中,所述方法还包括:所述终端接收配置更新消息,所述配置更新消息用于更新如下至少之一:所述多个TCI状态的数量;所述多个TCI状态中,至少一个TCI状态对应的优先级。
为详细说明本申请实施例提供的波束检测方法,以下将结合几个具体的实施例进行说明。
实施例一
该实施例执行之前,网络侧设备(如基站)对BFD-RS的配置如下:基站对每个BFD-RS或者CORESET配置多个TCI状态(state)(假设3个beam:beam1,beam2,beam3)。每个TCI state配置相应的优先级(假设优先级顺序为beam1>beam2>beam3)。
需要说明的是,RRC动态配置CORESET的TCI state信息,一般情况下 指该多个TCI state是相邻的波束(beam)。
基站优先在TCI state优先级最高的beam上传输信息(假设为beam 1),用户设备(User Equipment,UE,也简称为终端)也优先在TCI state优先级最高的beam(beam1)上接收信息。该TCI state的个数,以及优先级顺序可以由网络侧RRC层动态控制。
基站对UE上传反馈信息的配置:1,基站预配置UE上传反馈信号的周期;2,或者基站通过某种方式触发UE上传反馈信息,该触发方式可以由RRC直接配置。也可由RRC配置,DCI选择来实现。也可由DCI直接配置。所述配置包括如下1)至5)至少一种。
1)反馈信息的起始。
2)反馈信息的中止时刻。
3)反馈信息的持续时间。
4)反馈信息的周期/间隔。
5)反馈信息的时频位置。
该实施例包括如下步骤:
步骤1:UE检测BFD-RS信号(在beam1上),该BFD-RS与CORESET中的最高优先级的TCI state是类型D准共址(Quasi co-location(QCL)type D)关系。
步骤2:UE会在一定时间内/或者周期性的一直上报当前的beam信息。告诉基站当前的beam链接是否成功。该上报可基于如下1)或2)中的信道。
1)可以通过PRACH上传反馈信息。该PRACH与BFD-RS(SSB)有对应关系。此时,反馈信息就是Preamble序列,不再需要携带额外信息或者比特。基站收到PRACH后,就知道其对应哪个BFD-RS(SSB)。
2)可以通过PUCCH/PUSCH上传反馈信息。该信道可以与BFD-RS有对应关系,即类似PRACH信道与SSB信道的对应关系。该信道也可以与BFD-RS没有对应关系,其在BFD-RS对应的beam上(beam1)上传反馈信息。
该反馈信息可以显示指示,即用比特数显式指示;该反馈信息可以隐式 指示,即用序列长度,序列循环移位,序列位置等隐式指示。
步骤3:基站如果收到了UE上传的反馈信息,证明该beam并没有失败(failure),因此基站继续在TCI state优先级最高的beam上(beam 1)传输信息。基站如果没有收到UE上传的反馈信息,证明该beam失败,因此基站在下一个优先级的beam(beam2)上传输信息。其中,基站没有收到UE上传的反馈信息的判定标准可为如下之一:
1、每次基站没有收到反馈信息,则发送次优先级或者第二优先级的RS。
2、基站没有收到的反馈信息满足一定条件,则发送次优先级或者第二优先级的RS。
上述条件可以为:在固定时间内没有收到固定数目的反馈信息,该固定时间以及固定数目可以由协议预定义。或者,可以设置计数器,由协议预定义/基站预配置计时器时长以及计数器最大值。基站没收到反馈信息则计数器+1,然后计时器重置计时。若计时器时长内收到了反馈信息,则计数器重置清零。
步骤4:UE在一定时间内检测优先级最高的beam(beam1),若检测到该beam信息,则证明没有形成beam failure事件,继续使用beam1连接进行数据传输;若没有检测到该beam信息,则继续检测次优先级的beam(beam2)信息,若成功检测到beam2,则UE后续使用beam2进行数据接收。或者,UE在一定时间内同时检测多个BFD-RS,根据收到的信号质量,选择相应的BFD-RS链接。
实施例二
该实施例执行之前的配置过程参见实施例一,该实施例包括如下步骤:
步骤1:UE检测BFD-RS信号(在beam1上),该BFD-RS与CORESET中的最高优先级的TCI state QCL type D的关系。
步骤2:UE会在一定时间内/或者周期性的一直上报当前的beam信息。告诉基站当前的beam链接是否成功。该上报可基于如下1)或2)中的信道。
1)可以通过PRACH上传反馈信息。该PRACH与BFD-RS(SSB)有 对应关系。此时,反馈信息就是Preamble序列,不再需要携带额外信息或者bit。基站收到PRACH后,就知道其对应哪个BFD-RS(SSB)。
2)可以通过PUCCH/PUSCH上传反馈信息。该信道可以与BFD-RS有对应关系,即类似PRACH信道与SSB信道的对应关系。该信道也可以与BFD-RS没有对应关系,其在BFD-RS对应的beam上(beam1)上传反馈信息。
该反馈信息可以显示指示,即用比特数显式指示;该反馈信息可以隐式指示,即用序列长度,序列循环移位,序列位置等隐式指示。
步骤3:基站如果收到了UE上传的反馈信息,但是反馈信息显示当前链接的beam信号质量不好,或者基站没有收到UE上传的反馈信息。则基站在所有优先级的beam上传输信息,即类似PDCCH重复(repetion),PDCCH携带其他信息一致,但是对应的beam不一致。
步骤4:UE在一定时间内检测优先级最高的beam(beam1),若检测到该beam信息,则证明没有形成beam failure事件,继续使用beam1连接进行数据传输;若没有检测到该beam信息,则继续检测次优先级的beam(beam2)信息,若成功检测到beam2,则UE后续使用beam2进行数据接收。或者,UE在一定时间内同时检测多个BFD-RS,根据收到的信号质量,选择相应的BFD-RS链接。
以上结合图2详细描述了根据本申请实施例的波束检测方法。下面将结合图3详细描述根据本申请另一实施例的波束检测方法。可以理解的是,从网络侧设备描述的网络侧设备与终端的交互与图2所示的方法中的终端侧的描述相同或相对应,为避免重复,适当省略相关描述。
图3是本申请实施例的波束检测方法实现流程示意图,可以应用在网络侧设备。如图3所示,该方法300包括如下步骤。
S302:网络侧设备优先通过优先级最高的TCI状态对应的波束发送BFD-RS。
其中,所述网络侧设备为终端配置有多个TCI状态,所述多个TCI状态中的每个TCI状态对应有优先级。
S304:若所述优先级最高的TCI状态对应的波束满足第一条件,则通过次优先级的TCI状态对应的波束发送BFD-RS,或通过多个TCI状态对应的波束发送多个BFD-RS。
本申请实施例提供的波束检测方法,网络侧设备为终端配置多个TCI状态,每个TCI状态对应有优先级,网络侧设备优先通过优先级最高的TCI状态对应的波束发送BFD-RS,若所述优先级最高的TCI状态对应的波束满足第一条件,则通过次优先级的TCI状态对应的波束发送BFD-RS,或通过多个TCI状态对应的波束发送多个BFD-RS,本申请实施例可以减少或避免终端发起波束失败恢复流程,便于节约通信资源,提高通信效率。
可选地,作为一个实施例,所述优先级最高的TCI状态对应的波束满足第一条件包括:所述网络侧设备通过所述优先级最高的TCI状态对应的波束没有接收到反馈信息;或者,所述网络侧设备通过所述优先级最高的TCI状态对应的波束接收到反馈信息,承载所述反馈信息的信道的信号质量低于信号质量阈值。
可选地,作为一个实施例,所述通过所述优先级最高的TCI状态对应的波束没有接收到反馈信息包括:通过所述优先级最高的TCI状态对应的波束,在固定时间内没有收到固定数目的所述反馈信息。
可选地,作为一个实施例,所述方法还包括:所述网络侧设备通过第一TCI状态对应的波束接收反馈信息;根据所述反馈信息确定所述第一TCI状态对应的波束是否发生波束失败,所述第一TCI状态是为所述终端配置的多个TCI状态之一。
该例子例如,反馈信息是终端周期性发送的,若网络侧设备在某个周期未接收到反馈信息,或者是多个连续的周期未接收到反馈信息,则认为第一TCI状态对应的波束发生波束失败事件;或者,网络侧设备接收到的反馈信息指示第一TCI状态对应的波束链接质量不佳,则确定第一TCI状态对应的波束发生波束失败事件。
可选地,作为一个实施例,所述网络侧设备通过第一TCI状态对应的波 束接收反馈信息包括:所述网络侧设备根据第一原则,通过第一TCI状态对应的波束接收反馈信息;其中,所述第一原则包括如下之一:周期性接收;根据所述网络侧设备的触发,非周期或周期性接收。
可选地,作为一个实施例,所述方法还包括:所述网络侧设备发送第一配置信息,所述第一配置信息用于配置所述反馈信息相关的如下至少之一:起始时刻,中止时刻,持续时间,周期,间隔,时频位置。
可选地,作为一个实施例,所述网络侧设备根据第一原则,通过第一TCI状态对应的波束接收反馈信息包括:所述网络侧设备根据第一原则,通过第一TCI状态对应的波束在第一信道上接收反馈信息;其中,所述第一信道包括如下至少之一:与所述第一TCI状态对应的波束相对应的PRACH;物理上行信道;其中,所述物理上行信道与所述第一TCI状态存在对应关系或不存在对应关系。
可选地,作为一个实施例,所述方法还包括:所述网络侧设备发送第二配置信息,所述第二配置信息用于为所述终端配置BFD-RS,为所述终端配置的BFD-RS包括所述多个TCI状态,所述多个TCI状态中的每个TCI状态对应有优先级;或者,所述网络侧设备发送第三配置信息,所述第三配置信息用于为所述终端配置控制资源集CORESET,所述CORESET中包括所述多个TCI状态,所述多个TCI状态中的每个TCI状态对应有优先级。
可选地,作为一个实施例,所述多个TCI状态中,每个TCI状态对应优先级是通过指示信息直接指示的;或者是根据每个TCI状态的标识大小或配置的先后顺序确定的。
可选地,作为一个实施例,所述方法还包括:所述网络侧设备发送配置更新消息,所述配置更新消息用于更新如下至少之一:所述多个TCI状态的数量;所述多个TCI状态中,至少一个TCI状态对应的优先级。
本申请实施例提供的波束检测方法,执行主体可以为波束检测装置。本申请实施例中以波束检测装置执行波束检测方法为例,说明本申请实施例提供的波束检测装置。
图4是根据本申请实施例的波束检测装置的结构示意图,该装置可以对应于其他实施例中的终端。如图4所示,装置400包括如下模块。
波束检测模块402,用于优先通过优先级最高的TCI状态检测BFD-RS;其中,所述装置被配置有多个TCI状态,所述多个TCI状态中的每个TCI状态对应有优先级。
所述波束检测模块402,还用于若通过所述优先级最高的TCI状态未检测到BFD-RS,则通过次优先级的TCI状态检测BFD-RS,或通过多个TCI状态检测多个BFD-RS,并根据所述多个BFD-RS的信号质量选择BFD-RS链接。
上述波束检测模块402可以是通信接口,如接收模块等。装置400还可以包括处理模块。
本申请实施例提供的波束检测装置,网络侧设备为该装置配置多个TCI状态,每个TCI状态对应有优先级,波束检测模块优先通过优先级最高的TCI状态检测BFD-RS,若后续通过优先级最高的TCI状态未检测到BFD-RS,则可以通过次优先级的TCI状态检测BFD-RS,或同时通过多个TCI状态检测多个BFD-RS,并根据多个BFD-RS的信号质量选择BFD-RS链接,本申请实施例可以减少或避免发起波束失败恢复流程,便于节约通信资源,提高通信效率。
可选地,作为一个实施例,所述装置还包括:发送模块,用于通过第一TCI状态对应的波束发送反馈信息,所述反馈信息用于确定所述第一TCI状态对应的波束是否发生波束失败,所述第一TCI状态是为所述装置配置的多个TCI状态之一。
可选地,作为一个实施例,所述发送模块,用于:根据第一原则,通过第一TCI状态对应的波束发送反馈信息;其中,所述第一原则包括如下之一:周期性发送;根据网络侧设备的触发,非周期或周期性发送。
可选地,作为一个实施例,所述装置还包括:接收模块,用于接收第一配置信息,所述第一配置信息用于配置所述反馈信息相关的如下至少之一: 起始时刻,中止时刻,持续时间,周期,间隔,时频位置。
可选地,作为一个实施例,所述发送模块,用于:根据第一原则,通过第一TCI状态对应的波束在第一信道上发送反馈信息;其中,所述第一信道包括如下至少之一:与所述第一TCI状态对应的波束相对应的PRACH;物理上行信道;其中,所述物理上行信道与所述第一TCI状态存在对应关系或不存在对应关系。
可选地,作为一个实施例,所述装置还包括接收模块,用于:接收第二配置信息,所述第二配置信息用于为所述装置配置BFD-RS,为所述装置配置的BFD-RS包括所述多个TCI状态,所述多个TCI状态中的每个TCI状态对应有优先级;或者,接收第三配置信息,所述第三配置信息用于为所述装置配置CORESET,所述CORESET中包括所述多个TCI状态,所述多个TCI状态中的每个TCI状态对应有优先级。
可选地,作为一个实施例,所述多个TCI状态中,每个TCI状态对应优先级是通过指示信息直接指示的;或者是根据每个TCI状态的标识大小或配置的先后顺序确定的。
可选地,作为一个实施例,所述接收模块,还用于接收配置更新消息,所述配置更新消息用于更新如下至少之一:所述多个TCI状态的数量;所述多个TCI状态中,至少一个TCI状态对应的优先级。
根据本申请实施例的装置400可以参照对应本申请实施例的方法200的流程,并且,该装置400中的各个单元/模块和上述其他操作和/或功能分别为了实现方法200中的相应流程,并且能够达到相同或等同的技术效果,为了简洁,在此不再赘述。
本申请实施例中的波束检测装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
图5是根据本申请实施例的波束检测装置的结构示意图,该装置可以对应于其他实施例中的网络侧设备。如图5所示,装置500包括如下模块。
发送模块502,用于优先通过优先级最高的TCI状态对应的波束发送BFD-RS;其中,所述装置为终端配置有多个TCI状态,所述多个TCI状态中的每个TCI状态对应有优先级。
所述发送模块502,还用于若所述优先级最高的TCI状态对应的波束满足第一条件,则通过次优先级的TCI状态对应的波束发送BFD-RS,或通过多个TCI状态对应的波束发送多个BFD-RS。
装置500还可以包括处理模块。
本申请实施例提供的波束检测装置,为终端配置多个TCI状态,每个TCI状态对应有优先级,优先通过优先级最高的TCI状态对应的波束发送BFD-RS,若所述优先级最高的TCI状态对应的波束满足第一条件,则通过次优先级的TCI状态对应的波束发送BFD-RS,或通过多个TCI状态对应的波束发送多个BFD-RS,本申请实施例可以减少或避免终端发起波束失败恢复流程,便于节约通信资源,提高通信效率。
可选地,作为一个实施例,所述优先级最高的TCI状态对应的波束满足第一条件包括:通过所述优先级最高的TCI状态对应的波束没有接收到反馈信息;或者,通过所述优先级最高的TCI状态对应的波束接收到反馈信息,承载所述反馈信息的信道的信号质量低于信号质量阈值。
可选地,作为一个实施例,所述通过所述优先级最高的TCI状态对应的波束没有接收到反馈信息包括:通过所述优先级最高的TCI状态对应的波束,在固定时间内没有收到固定数目的所述反馈信息。
可选地,作为一个实施例,所述装置还包括接收模块,用于通过第一TCI状态对应的波束接收反馈信息;所述装置还包括确定模块,用于根据所述反馈信息确定所述第一TCI状态对应的波束是否发生波束失败,所述第一TCI状态是为所述终端配置的多个TCI状态之一。
可选地,作为一个实施例,所述接收模块,用于根据第一原则,通过第 一TCI状态对应的波束接收反馈信息;其中,所述第一原则包括如下之一:周期性接收;根据所述装置的触发,非周期或周期性接收。
可选地,作为一个实施例,所述发送模块502,还用于发送第一配置信息,所述第一配置信息用于配置所述反馈信息相关的如下至少之一:起始时刻,中止时刻,持续时间,周期,间隔,时频位置。
可选地,作为一个实施例,所述接收模块,用于根据第一原则,通过第一TCI状态对应的波束在第一信道上接收反馈信息;其中,所述第一信道包括如下至少之一:与所述第一TCI状态对应的波束相对应的PRACH;物理上行信道;其中,所述物理上行信道与所述第一TCI状态存在对应关系或不存在对应关系。
可选地,作为一个实施例,所述发送模块,还用于:发送第二配置信息,所述第二配置信息用于为所述终端配置BFD-RS,为所述终端配置的BFD-RS包括所述多个TCI状态,所述多个TCI状态中的每个TCI状态对应有优先级;或者,发送第三配置信息,所述第三配置信息用于为所述终端配置CORESET,所述CORESET中包括所述多个TCI状态,所述多个TCI状态中的每个TCI状态对应有优先级。
可选地,作为一个实施例,所述多个TCI状态中,每个TCI状态对应优先级是通过指示信息直接指示的;或者是根据每个TCI状态的标识大小或配置的先后顺序确定的。
可选地,作为一个实施例,所述发送模块502,还用于发送配置更新消息,所述配置更新消息用于更新如下至少之一:所述多个TCI状态的数量;所述多个TCI状态中,至少一个TCI状态对应的优先级。
根据本申请实施例的装置500可以参照对应本申请实施例的方法300的流程,并且,该装置500中的各个单元/模块和上述其他操作和/或功能分别为了实现方法300中的相应流程,并且能够达到相同或等同的技术效果,为了简洁,在此不再赘述。
本申请实施例提供的波束检测装置能够实现图2至图3的方法实施例实 现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图6所示,本申请实施例还提供一种通信设备600,包括处理器601和存储器602,存储器602上存储有可在所述处理器601上运行的程序或指令,例如,该通信设备600为终端时,该程序或指令被处理器601执行时实现上述波束检测方法实施例的各个步骤,且能达到相同的技术效果。该通信设备600为网络侧设备时,该程序或指令被处理器601执行时实现上述波束检测方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种终端,包括处理器和通信接口,所述通信接口用于优先通过优先级最高的TCI状态检测BFD-RS;其中,所述终端被配置有多个TCI状态,所述多个TCI状态中的每个TCI状态对应有优先级;若通过所述优先级最高的TCI状态未检测到BFD-RS,则通过次优先级的TCI状态检测BFD-RS,或通过多个TCI状态检测多个BFD-RS,并根据所述多个BFD-RS的信号质量选择BFD-RS链接。该终端实施例与上述终端侧方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该终端实施例中,且能达到相同的技术效果。具体地,图7为实现本申请实施例的一种终端的硬件结构示意图。
该终端700包括但不限于:射频单元701、网络模块702、音频输出单元703、输入单元704、传感器705、显示单元706、用户输入单元707、接口单元708、存储器709以及处理器710等中的至少部分部件。
本领域技术人员可以理解,终端700还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器710逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图7中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元704可以包括图形处理单元(Graphics Processing Unit,GPU)7041和麦克风7042,图形处理器7041对 在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元706可包括显示面板7061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板7061。用户输入单元707包括触控面板7071以及其他输入设备7072中的至少一种。触控面板7071,也称为触摸屏。触控面板7071可包括触摸检测装置和触摸控制器两个部分。其他输入设备7072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元701接收来自网络侧设备的下行数据后,可以传输给处理器710进行处理;另外,射频单元701可以向网络侧设备发送上行数据。通常,射频单元701包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器709可用于存储软件程序或指令以及各种数据。存储器709可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器709可以包括易失性存储器或非易失性存储器,或者,存储器709可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器709包括但不限于这些和任意其它适 合类型的存储器。
处理器710可包括一个或多个处理单元;可选的,处理器710集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器710中。
其中,射频单元701,可以用于优先通过优先级最高的TCI状态检测BFD-RS;其中,所述终端被配置有多个TCI状态,所述多个TCI状态中的每个TCI状态对应有优先级;若通过所述优先级最高的TCI状态未检测到BFD-RS,则通过次优先级的TCI状态检测BFD-RS,或通过多个TCI状态检测多个BFD-RS,并根据所述多个BFD-RS的信号质量选择BFD-RS链接。
本申请实施例提供的终端,由于网络侧设备为终端配置多个TCI状态,每个TCI状态对应有优先级,终端优先通过优先级最高的TCI状态检测BFD-RS,若后续通过优先级最高的TCI状态未检测到BFD-RS,则可以通过次优先级的TCI状态检测BFD-RS,或同时通过多个TCI状态检测多个BFD-RS,并根据多个BFD-RS的信号质量选择BFD-RS链接,本申请实施例可以减少或避免终端发起波束失败恢复流程,便于节约通信资源,提高通信效率。
本申请实施例提供的终端700还可以实现上述波束检测方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种网络侧设备,包括处理器和通信接口,所述通信接口用于优先通过优先级最高的TCI状态对应的波束发送BFD-RS;其中,所述网络侧设备为终端配置有多个TCI状态,所述多个TCI状态中的每个TCI状态对应有优先级;若所述优先级最高的TCI状态对应的波束满足第一条件,则通过次优先级的TCI状态对应的波束发送BFD-RS,或通过多个TCI状态对应的波束发送多个BFD-RS。该网络侧设备实施例与上述网络侧设备方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该网络侧设备实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种网络侧设备。如图8所示,该网络侧设备800包括:天线81、射频装置82、基带装置83、处理器84和存储器85。天线81与射频装置82连接。在上行方向上,射频装置82通过天线81接收信息,将接收的信息发送给基带装置83进行处理。在下行方向上,基带装置83对要发送的信息进行处理,并发送给射频装置82,射频装置82对收到的信息进行处理后经过天线81发送出去。
以上实施例中网络侧设备执行的方法可以在基带装置83中实现,该基带装置83包括基带处理器。
基带装置83例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图8所示,其中一个芯片例如为基带处理器,通过总线接口与存储器85连接,以调用存储器85中的程序,执行以上方法实施例中所示的网络设备操作。
该网络侧设备还可以包括网络接口86,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本申请实施例的网络侧设备800还包括:存储在存储器85上并可在处理器84上运行的指令或程序,处理器84调用存储器85中的指令或程序执行图5所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述波束检测方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述波束检测方法实施例的各个过程,且能达到相同的技术效果,为避免重复, 这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述波束检测方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种波束检测系统,包括:终端及网络侧设备,所述终端可用于执行如上所述的波束检测方法的步骤,所述网络侧设备可用于执行如上所述的波束检测方法的步骤。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (39)

  1. 一种波束检测方法,包括:
    终端优先通过优先级最高的传输配置指示TCI状态检测波束失败检测参考信号BFD-RS;其中,所述终端被配置有多个TCI状态,所述多个TCI状态中的每个TCI状态对应有优先级;
    若通过所述优先级最高的TCI状态未检测到BFD-RS,则通过次优先级的TCI状态检测BFD-RS,或通过多个TCI状态检测多个BFD-RS,并根据所述多个BFD-RS的信号质量选择BFD-RS链接。
  2. 根据权利要求1所述的方法,其中,所述方法还包括:
    所述终端通过第一TCI状态对应的波束发送反馈信息,所述反馈信息用于确定所述第一TCI状态对应的波束是否发生波束失败,所述第一TCI状态是为所述终端配置的多个TCI状态之一。
  3. 根据权利要求2所述的方法,其中,所述终端通过第一TCI状态对应的波束发送反馈信息包括:所述终端根据第一原则,通过第一TCI状态对应的波束发送反馈信息;其中,所述第一原则包括如下之一:
    周期性发送;
    根据网络侧设备的触发,非周期或周期性发送。
  4. 根据权利要求3所述的方法,其中,所述方法还包括:所述终端接收第一配置信息,所述第一配置信息用于配置所述反馈信息相关的如下至少之一:
    起始时刻,中止时刻,持续时间,周期,间隔,时频位置。
  5. 根据权利要求3所述的方法,其中,所述终端根据第一原则,通过第一TCI状态对应的波束发送反馈信息包括:所述终端根据第一原则,通过第一TCI状态对应的波束在第一信道上发送反馈信息;其中,所述第一信道包括如下至少之一:
    与所述第一TCI状态对应的波束相对应的物理随机接入信道PRACH;
    物理上行信道;其中,所述物理上行信道与所述第一TCI状态存在对应 关系或不存在对应关系。
  6. 根据权利要求1至5任一项所述的方法,其中,所述方法还包括:
    所述终端接收第二配置信息,所述第二配置信息用于为所述终端配置BFD-RS,为所述终端配置的BFD-RS包括所述多个TCI状态,所述多个TCI状态中的每个TCI状态对应有优先级;或者,
    所述终端接收第三配置信息,所述第三配置信息用于为所述终端配置控制资源集CORESET,所述CORESET中包括所述多个TCI状态,所述多个TCI状态中的每个TCI状态对应有优先级。
  7. 根据权利要求6所述的方法,其中,
    所述多个TCI状态中,每个TCI状态对应优先级是通过指示信息直接指示的;或者是根据每个TCI状态的标识大小或配置的先后顺序确定的。
  8. 根据权利要求6所述的方法,其中,所述方法还包括:所述终端接收配置更新消息,所述配置更新消息用于更新如下至少之一:
    所述多个TCI状态的数量;
    所述多个TCI状态中,至少一个TCI状态对应的优先级。
  9. 一种波束检测方法,包括:
    网络侧设备优先通过优先级最高的TCI状态对应的波束发送BFD-RS;其中,所述网络侧设备为终端配置有多个TCI状态,所述多个TCI状态中的每个TCI状态对应有优先级;
    若所述优先级最高的TCI状态对应的波束满足第一条件,则通过次优先级的TCI状态对应的波束发送BFD-RS,或通过多个TCI状态对应的波束发送多个BFD-RS。
  10. 根据权利要求9所述的方法,其中,所述优先级最高的TCI状态对应的波束满足第一条件包括:
    所述网络侧设备通过所述优先级最高的TCI状态对应的波束没有接收到反馈信息;或者,
    所述网络侧设备通过所述优先级最高的TCI状态对应的波束接收到反馈 信息,承载所述反馈信息的信道的信号质量低于信号质量阈值。
  11. 根据权利要求10所述的方法,其中,所述通过所述优先级最高的TCI状态对应的波束没有接收到反馈信息包括:
    通过所述优先级最高的TCI状态对应的波束,在固定时间内没有收到固定数目的所述反馈信息。
  12. 根据权利要求9至11任一项所述的方法,其中,所述方法还包括:
    所述网络侧设备通过第一TCI状态对应的波束接收反馈信息;
    根据所述反馈信息确定所述第一TCI状态对应的波束是否发生波束失败,所述第一TCI状态是为所述终端配置的多个TCI状态之一。
  13. 根据权利要求12所述的方法,其中,所述网络侧设备通过第一TCI状态对应的波束接收反馈信息包括:所述网络侧设备根据第一原则,通过第一TCI状态对应的波束接收反馈信息;其中,所述第一原则包括如下之一:
    周期性接收;
    根据所述网络侧设备的触发,非周期或周期性接收。
  14. 根据权利要求13所述的方法,其中,所述方法还包括:所述网络侧设备发送第一配置信息,所述第一配置信息用于配置所述反馈信息相关的如下至少之一:
    起始时刻,中止时刻,持续时间,周期,间隔,时频位置。
  15. 根据权利要求13所述的方法,其中,所述网络侧设备根据第一原则,通过第一TCI状态对应的波束接收反馈信息包括:所述网络侧设备根据第一原则,通过第一TCI状态对应的波束在第一信道上接收反馈信息;其中,所述第一信道包括如下至少之一:
    与所述第一TCI状态对应的波束相对应的PRACH;
    物理上行信道;其中,所述物理上行信道与所述第一TCI状态存在对应关系或不存在对应关系。
  16. 根据权利要求9至15任一项所述的方法,其中,所述方法还包括:
    所述网络侧设备发送第二配置信息,所述第二配置信息用于为所述终端 配置BFD-RS,为所述终端配置的BFD-RS包括所述多个TCI状态,所述多个TCI状态中的每个TCI状态对应有优先级;或者,
    所述网络侧设备发送第三配置信息,所述第三配置信息用于为所述终端配置控制资源集CORESET,所述CORESET中包括所述多个TCI状态,所述多个TCI状态中的每个TCI状态对应有优先级。
  17. 根据权利要求16所述的方法,其中,
    所述多个TCI状态中,每个TCI状态对应优先级是通过指示信息直接指示的;或者是根据每个TCI状态的标识大小或配置的先后顺序确定的。
  18. 根据权利要求16所述的方法,其中,所述方法还包括:所述网络侧设备发送配置更新消息,所述配置更新消息用于更新如下至少之一:
    所述多个TCI状态的数量;
    所述多个TCI状态中,至少一个TCI状态对应的优先级。
  19. 一种波束检测装置,包括:
    波束检测模块,用于优先通过优先级最高的TCI状态检测BFD-RS;其中,所述装置被配置有多个TCI状态,所述多个TCI状态中的每个TCI状态对应有优先级;
    所述波束检测模块,还用于若通过所述优先级最高的TCI状态未检测到BFD-RS,则通过次优先级的TCI状态检测BFD-RS,或通过多个TCI状态检测多个BFD-RS,并根据所述多个BFD-RS的信号质量选择BFD-RS链接。
  20. 根据权利要求19所述的装置,其中,所述装置还包括发送模块,用于通过第一TCI状态对应的波束发送反馈信息,所述反馈信息用于确定所述第一TCI状态对应的波束是否发生波束失败,所述第一TCI状态是为所述装置配置的多个TCI状态之一。
  21. 根据权利要求20所述的装置,其中,所述发送模块,用于根据第一原则,通过第一TCI状态对应的波束发送反馈信息;其中,所述第一原则包括如下之一:
    周期性发送;
    根据网络侧设备的触发,非周期或周期性发送。
  22. 根据权利要求21所述的装置,其中,所述装置还包括接收模块,用于接收第一配置信息,所述第一配置信息用于配置所述反馈信息相关的如下至少之一:
    起始时刻,中止时刻,持续时间,周期,间隔,时频位置。
  23. 根据权利要求21所述的装置,其中,所述发送模块,用于根据第一原则,通过第一TCI状态对应的波束在第一信道上发送反馈信息;其中,所述第一信道包括如下至少之一:
    与所述第一TCI状态对应的波束相对应的PRACH;
    物理上行信道;其中,所述物理上行信道与所述第一TCI状态存在对应关系或不存在对应关系。
  24. 根据权利要求19至23任一项所述的装置,其中,所述装置还包括接收模块,用于:
    接收第二配置信息,所述第二配置信息用于为所述装置配置BFD-RS,为所述装置配置的BFD-RS包括所述多个TCI状态,所述多个TCI状态中的每个TCI状态对应有优先级;或者,
    接收第三配置信息,所述第三配置信息用于为所述装置配置CORESET,所述CORESET中包括所述多个TCI状态,所述多个TCI状态中的每个TCI状态对应有优先级。
  25. 根据权利要求24所述的装置,其中,
    所述多个TCI状态中,每个TCI状态对应优先级是通过指示信息直接指示的;或者是根据每个TCI状态的标识大小或配置的先后顺序确定的。
  26. 根据权利要求24所述的装置,其中,所述接收模块,还用于接收配置更新消息,所述配置更新消息用于更新如下至少之一:
    所述多个TCI状态的数量;
    所述多个TCI状态中,至少一个TCI状态对应的优先级。
  27. 一种波束检测装置,包括:
    发送模块,用于优先通过优先级最高的TCI状态对应的波束发送BFD-RS;其中,所述装置为终端配置有多个TCI状态,所述多个TCI状态中的每个TCI状态对应有优先级;
    所述发送模块,还用于若所述优先级最高的TCI状态对应的波束满足第一条件,则通过次优先级的TCI状态对应的波束发送BFD-RS,或通过多个TCI状态对应的波束发送多个BFD-RS。
  28. 根据权利要求27所述的装置,其中,所述优先级最高的TCI状态对应的波束满足第一条件包括:
    通过所述优先级最高的TCI状态对应的波束没有接收到反馈信息;或者,
    通过所述优先级最高的TCI状态对应的波束接收到反馈信息,承载所述反馈信息的信道的信号质量低于信号质量阈值。
  29. 根据权利要求28所述的装置,其中,所述通过所述优先级最高的TCI状态对应的波束没有接收到反馈信息包括:
    通过所述优先级最高的TCI状态对应的波束,在固定时间内没有收到固定数目的所述反馈信息。
  30. 根据权利要求27至29任一项所述的装置,其中,
    所述装置还包括接收模块,用于通过第一TCI状态对应的波束接收反馈信息;
    所述装置还包括确定模块,用于根据所述反馈信息确定所述第一TCI状态对应的波束是否发生波束失败,所述第一TCI状态是为所述终端配置的多个TCI状态之一。
  31. 根据权利要求30所述的装置,其中,所述接收模块,用于根据第一原则,通过第一TCI状态对应的波束接收反馈信息;其中,所述第一原则包括如下之一:
    周期性接收;
    根据所述装置的触发,非周期或周期性接收。
  32. 根据权利要求30所述的装置,其中,所述发送模块,还用于发送第 一配置信息,所述第一配置信息用于配置所述反馈信息相关的如下至少之一:
    起始时刻,中止时刻,持续时间,周期,间隔,时频位置。
  33. 根据权利要求30所述的装置,其中,所述接收模块,用于根据第一原则,通过第一TCI状态对应的波束在第一信道上接收反馈信息;其中,所述第一信道包括如下至少之一:
    与所述第一TCI状态对应的波束相对应的PRACH;
    物理上行信道;其中,所述物理上行信道与所述第一TCI状态存在对应关系或不存在对应关系。
  34. 根据权利要求27至33任一项所述的装置,其中,所述发送模块,还用于:
    发送第二配置信息,所述第二配置信息用于为所述终端配置BFD-RS,为所述终端配置的BFD-RS包括所述多个TCI状态,所述多个TCI状态中的每个TCI状态对应有优先级;或者,
    发送第三配置信息,所述第三配置信息用于为所述终端配置CORESET,所述CORESET中包括所述多个TCI状态,所述多个TCI状态中的每个TCI状态对应有优先级。
  35. 根据权利要求34所述的装置,其中,
    所述多个TCI状态中,每个TCI状态对应优先级是通过指示信息直接指示的;或者是根据每个TCI状态的标识大小或配置的先后顺序确定的。
  36. 根据权利要求34所述的装置,其中,所述发送模块,还用于发送配置更新消息,所述配置更新消息用于更新如下至少之一:
    所述多个TCI状态的数量;
    所述多个TCI状态中,至少一个TCI状态对应的优先级。
  37. 一种终端,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至8任一项所述的波束检测方法的步骤。
  38. 一种网络侧设备,包括处理器和存储器,所述存储器存储可在所述 处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求9至18任一项所述的波束检测方法的步骤。
  39. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至8任一项所述的波束检测方法的步骤,或者实现如权利要求9至18任一项所述的波束检测方法的步骤。
PCT/CN2022/137232 2021-12-10 2022-12-07 波束检测方法、终端及网络侧设备 WO2023104089A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111508867.4A CN116261152A (zh) 2021-12-10 2021-12-10 波束检测方法、终端及网络侧设备
CN202111508867.4 2021-12-10

Publications (1)

Publication Number Publication Date
WO2023104089A1 true WO2023104089A1 (zh) 2023-06-15

Family

ID=86684915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/137232 WO2023104089A1 (zh) 2021-12-10 2022-12-07 波束检测方法、终端及网络侧设备

Country Status (2)

Country Link
CN (1) CN116261152A (zh)
WO (1) WO2023104089A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020246014A1 (ja) * 2019-06-06 2020-12-10 株式会社Nttドコモ 端末及び無線通信方法
CN112840695A (zh) * 2021-01-04 2021-05-25 北京小米移动软件有限公司 波束失败检测bfd资源的确定方法、装置及通信设备
WO2021175237A1 (en) * 2020-03-03 2021-09-10 FG Innovation Company Limited Methods and apparatus for beam failure detection reference signal determination

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020246014A1 (ja) * 2019-06-06 2020-12-10 株式会社Nttドコモ 端末及び無線通信方法
WO2021175237A1 (en) * 2020-03-03 2021-09-10 FG Innovation Company Limited Methods and apparatus for beam failure detection reference signal determination
CN112840695A (zh) * 2021-01-04 2021-05-25 北京小米移动软件有限公司 波束失败检测bfd资源的确定方法、装置及通信设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OPPO: "Enhancements on beam management for multi-TRP", 3GPP DRAFT; R1-2100121, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210125 - 20210205, 19 January 2021 (2021-01-19), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051970819 *

Also Published As

Publication number Publication date
CN116261152A (zh) 2023-06-13

Similar Documents

Publication Publication Date Title
CA3127395C (en) Method for beam failure recovery, method for beam failure handling, terminal, and network-side device
WO2023116883A1 (zh) Msg1重复传输的时频资源确定方法、装置及终端
US20240023108A1 (en) Method and apparatus for determining pucch resource, and terminal
WO2023274369A1 (zh) 传输方法、装置、通信设备及存储介质
WO2023104089A1 (zh) 波束检测方法、终端及网络侧设备
WO2022206740A1 (zh) 波束切换方法、装置及存储介质
WO2022028404A1 (zh) 信号传输的方法、终端设备和网络设备
JP2022518777A (ja) Pucchの送信方法、受信方法、端末及びネットワーク側機器
WO2024017321A1 (zh) 唤醒信号的发送和反馈方法、设备及可读存储介质
WO2024032665A1 (zh) 配置方法、装置、用户设备以及网络侧设备
WO2023197991A1 (zh) 小区切换方法、小区切换配置方法、装置、终端及网络侧设备
WO2023093709A1 (zh) 激活或去激活Gap的方法、终端及网络侧设备
WO2023217092A1 (zh) 监听方法、装置、终端、网络侧设备及可读存储介质
WO2024032490A1 (zh) 测量处理方法、装置、终端及网络侧设备
WO2024055998A1 (zh) 网络侧状态转换的方法、终端及网络侧设备
WO2023160547A1 (zh) 信息响应方法、信息发送方法、终端及网络侧设备
CN115913475B (zh) 波束信息确定方法、装置、通信设备及存储介质
WO2023011595A1 (zh) 信息上报方法、终端及网络侧设备
WO2023198183A1 (zh) 信息获取方法、信息发送方法、装置、终端及网络侧设备
WO2023160536A1 (zh) 信息响应方法、信息发送方法、终端及网络侧设备
WO2023221819A1 (zh) 信号发送条件确定方法、ssb周期控制方法、装置、终端和网络侧设备
WO2023198122A1 (zh) 资源配置方法、装置及通信设备
WO2023185819A1 (zh) Pdcch监听方法、终端、网络侧设备及介质
WO2023246880A1 (zh) 副链路传输处理方法、副链路传输配置方法、装置、终端和网络侧设备
WO2024067508A1 (zh) 小区同步方法、装置、终端、网络侧设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22903510

Country of ref document: EP

Kind code of ref document: A1