WO2023246880A1 - 副链路传输处理方法、副链路传输配置方法、装置、终端和网络侧设备 - Google Patents

副链路传输处理方法、副链路传输配置方法、装置、终端和网络侧设备 Download PDF

Info

Publication number
WO2023246880A1
WO2023246880A1 PCT/CN2023/101768 CN2023101768W WO2023246880A1 WO 2023246880 A1 WO2023246880 A1 WO 2023246880A1 CN 2023101768 W CN2023101768 W CN 2023101768W WO 2023246880 A1 WO2023246880 A1 WO 2023246880A1
Authority
WO
WIPO (PCT)
Prior art keywords
slot
secondary link
granularity
psfch
pscch
Prior art date
Application number
PCT/CN2023/101768
Other languages
English (en)
French (fr)
Inventor
王欢
纪子超
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2023246880A1 publication Critical patent/WO2023246880A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • the present application belongs to the field of communication technology, and specifically relates to a secondary link transmission processing method, a secondary link transmission configuration method, a device, a terminal and a network side device.
  • the sidelink (SL) transmission granularity is usually slot granularity.
  • the sidelink transmission concept is introduced in which the transmission granularity is sub-slot (sub-slot) granularity.
  • the start time of the secondary link transmission is no longer limited to the start position of the time slot, but can also be the start position of the sub-slot.
  • the secondary link transmission at sub-slot granularity involves different processing methods.
  • the secondary link transmission processing method in the related art cannot be applied to different transmission granularities, which will result in secondary link transmission. Link transmission performance is poor.
  • Embodiments of the present application provide a secondary link transmission processing method, a secondary link transmission configuration method, a device, a terminal and a network side device, which can solve the problem that the secondary link transmission processing method in related technologies cannot be applied to different transmission granularities. The problem of poor transmission performance of the secondary link.
  • a secondary link transmission processing method which method includes:
  • the terminal determines the transmission granularity of the first channel of the physical secondary link.
  • the transmission granularity of the first channel of the physical secondary link includes at least one of time slot granularity and sub-slot granularity.
  • the first physical secondary link channel includes physical At least one of the secondary link control channel PSCCH and the physical secondary link shared channel PSSCH;
  • the terminal performs secondary link resource selection, and the granularity of the secondary link resource selection includes at least one of slot granularity and sub-slot granularity;
  • the terminal performs secondary link transmission according to the selected secondary link resource, and the granularity of the secondary link transmission includes at least one of time slot granularity and sub-slot granularity.
  • a secondary link transmission processing device which device includes:
  • a first determination module configured to determine the transmission granularity of the first channel of the physical secondary link.
  • the transmission granularity of the first channel of the physical secondary link includes at least one of time slot granularity and sub-slot granularity.
  • the physical secondary link The first channel includes at least one of the physical secondary link control channel PSCCH and the physical secondary link shared channel PSSCH;
  • a selection module configured to select secondary link resources, where the granularity of secondary link resource selection includes at least one of slot granularity and sub-slot granularity;
  • a transmission module configured for the terminal to perform secondary link transmission according to the selected secondary link resource, where the granularity of the secondary link transmission includes at least one of slot granularity and sub-slot granularity.
  • a secondary link transmission configuration method which method includes:
  • the network side device sends a first message, the first message includes first configuration information, the first configuration information is used to configure at least one of N and i, and at least one of N and i is used. Determine the end position of the listening window on the terminal.
  • a secondary link transmission configuration device which device includes:
  • a first sending module configured to send a first message, where the first message includes first configuration information, where the first configuration information is used to configure at least one of N and i, where N and i At least one is used by the terminal to determine the end position of the listening window.
  • a terminal in a fifth aspect, includes a processor and a memory.
  • the memory stores programs or instructions that can be run on the processor.
  • the program or instructions are executed by the processor, the following implementations are implemented: The steps of the method described in one aspect.
  • a terminal including a processor and a communication interface, wherein the communication interface or the processor is used to determine the transmission granularity of the first channel of the physical secondary link, and the first channel of the physical secondary link
  • the transmission granularity includes at least one of slot granularity and sub-slot granularity
  • the first physical secondary link channel includes at least one of physical secondary link control channel PSCCH and physical secondary link shared channel PSSCH
  • the The communication interface or the processor is also used to perform secondary link resource selection.
  • the granularity of the secondary link resource selection includes at least one of time slot granularity and sub-slot granularity.
  • the communication interface or the processor is further Used for secondary link transmission based on selected secondary link resources,
  • the granularity of the secondary link transmission includes at least one of slot granularity and sub-slot granularity.
  • a network side device in a seventh aspect, includes a processor and a memory.
  • the memory stores programs or instructions that can be run on the processor.
  • the program or instructions are executed by the processor.
  • a network side device including a processor and a communication interface, wherein the communication interface is used to send a first message, the first message includes first configuration information, and the first configuration information is At least one of N and i is configured, and at least one of N and i is used for the terminal to determine the end position of the listening window.
  • a communication system including: a terminal and a network side device.
  • the terminal can be used to perform the steps of the method described in the first aspect.
  • the network side device can be used to perform the steps of the method described in the third aspect. steps of the method.
  • a readable storage medium is provided. Programs or instructions are stored on the readable storage medium. When the programs or instructions are executed by a processor, the steps of the method described in the first aspect are implemented, or the steps of the method are implemented as described in the first aspect. The steps of the method described in the third aspect.
  • a chip in an eleventh aspect, includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the method described in the first aspect. method, or implement a method as described in the third aspect.
  • a computer program/program product is provided, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement as described in the first aspect
  • the terminal can first determine the transmission granularity of the first channel of the physical secondary link during the secondary link transmission processing, and then perform secondary link transmission. Link resource selection and secondary link transmission. In this way, the terminal can use appropriate processing methods to select secondary link resources and secondary link transmission according to the transmission granularity of the first channel of the physical secondary link, thereby improving secondary link transmission. performance.
  • Figure 1 is a block diagram of a wireless communication system provided by an embodiment of the present application.
  • Figure 2 is a flow chart of a secondary link transmission processing method provided by an embodiment of the present application.
  • Figures 3 to 7 are example diagrams of the end position of the listening window provided by the embodiment of the present application.
  • Figure 8 is a structural diagram of a secondary link transmission processing device provided by an embodiment of the present application.
  • Figure 9 is a flow chart of a secondary link transmission configuration method provided by an embodiment of the present application.
  • Figure 10 is a structural diagram of a secondary link transmission configuration device provided by an embodiment of the present application.
  • Figure 11 is a structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 12 is a schematic diagram of the hardware structure of a terminal provided by an embodiment of the present application.
  • Figure 13 is a schematic diagram of the hardware structure of a network-side device provided by an embodiment of the present application.
  • first, second, etc. in the description and claims of this application are used to distinguish similar objects and are not used to describe a specific order or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and that "first" and “second” are distinguished objects It is usually one type, and the number of objects is not limited.
  • the first object can be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the related objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced, LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • system and “network” in the embodiments of this application are often used interchangeably, and the described technology can be used not only for the above-mentioned systems and radio technologies, but also for other systems and radio technologies.
  • NR New Radio
  • 6th Generation 6th Generation
  • FIG. 1 shows a block diagram of a wireless communication system to which embodiments of the present application are applicable.
  • the wireless communication system includes a terminal 11 and a network side device 12.
  • the terminal 11 can be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer), or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a handheld computer, a netbook, or a super mobile personal computer.
  • Tablet Personal Computer Tablet Personal Computer
  • laptop computer laptop computer
  • PDA Personal Digital Assistant
  • PDA Personal Digital Assistant
  • UMPC ultra-mobile personal computer
  • UMPC mobile Internet device
  • MID mobile Internet device
  • augmented reality augmented reality, AR
  • VR virtual reality
  • robots wearable devices
  • Vehicle user equipment VUE
  • pedestrian terminal pedestrian terminal
  • PUE pedestrian terminal
  • smart home home equipment with wireless communication functions, such as refrigerators, TVs, washing machines or furniture, etc.
  • game consoles personal computers (personal computer, PC), teller machine or self-service machine and other terminal-side devices.
  • Wearable devices include: smart watches, smart bracelets, smart headphones, smart glasses, smart jewelry (smart bracelets, smart bracelets, smart rings, smart necklaces, smart anklets) bracelets, smart anklets, etc.), smart wristbands, smart clothing, etc.
  • the network side equipment 12 may include access network equipment or core network equipment, where the access network equipment may also be called wireless access network equipment, radio access network (Radio Access Network, RAN), radio access network function or wireless access network unit.
  • Access network equipment can include base stations, Wireless Local Area Network (WLAN) access points or Wireless Fidelity (WiFi) nodes, etc.
  • the base station can be called Node B, Evolved Node B (Evolved Node B).
  • the base station is not limited to specific technical terms. It needs to be explained that , in the embodiment of this application, only the base station in the NR system is taken as an example for introduction, and the specific type of the base station is not limited.
  • Figure 2 is a flow chart of a secondary link transmission processing method provided by an embodiment of the present application. As shown in Figure 2, the secondary link transmission processing method includes the following steps:
  • Step 201 The terminal determines the transmission granularity of the first channel of the physical secondary link, where the transmission granularity of the first channel of the physical secondary link includes at least one of slot granularity and sub-slot granularity;
  • Step 202 The terminal performs secondary link resource selection, and the granularity of the secondary link resource selection includes at least one of slot granularity and sub-slot granularity;
  • Step 203 The terminal performs secondary link transmission according to the selected secondary link resource, and the granularity of the secondary link transmission includes at least one of slot granularity and sub-slot granularity.
  • the granularity in the embodiment of this application can be understood as time domain granularity or time granularity, including time slot granularity with slot as the time unit and sub-slot granularity with sub-slot as the time unit.
  • the sub-slot time unit can be defined as a smaller time transmission granularity than the slot.
  • the starting position of the sub-slot can be a certain symbol in the slot, and the end position can also be a certain symbol in the slot.
  • Sub-slot The length from the start position to the end position is less than the length of the slot.
  • the end position of the sub-slot can be agreed to be the last symbol of the slot.
  • the above-mentioned first physical side link channel includes at least one of a physical side link control channel (Physical SideLink Control Channel, PSCCH) and a physical side link shared channel (Physical SideLink Shared Channel, PSSCH).
  • PSCCH Physical SideLink Control Channel
  • PSSCH Physical SideLink Shared Channel
  • the physical side link is The first channel of the link can be represented as PSCCH/PSSCH.
  • the terminal can first determine the transmission granularity of the first channel of the physical secondary link during the secondary link transmission processing, and then perform secondary link transmission. Link resource selection and secondary link transmission. In this way, the terminal can use appropriate processing methods to select secondary link resources and secondary link transmission according to the transmission granularity of the first channel of the physical secondary link, thereby improving secondary link transmission. performance.
  • the embodiments of the present application involve multiple aspects such as secondary link resource selection, secondary link transmission, and secondary link feedback.
  • the following describes the implementation of secondary link resource selection, secondary link transmission, and other aspects.
  • the method before the terminal selects secondary link resources, the method further includes:
  • the terminal determines the resource selection trigger time and the listening window.
  • the interval between the end position of the listening window and the starting position of the target time slot is greater than a preset value.
  • the target time slot is the resource selection trigger time.
  • the terminal detects the PSCCH before the end position of the listening window to obtain the detection result
  • the terminal selects secondary link resources, including:
  • the terminal selects a secondary link resource after the resource selection triggering time based on the detection result.
  • the terminal selects available transmission resources from the (pre)configured resource pool.
  • the terminal first performs channel monitoring before resource selection, selects a resource set with less interference based on the channel monitoring results, and then randomly selects resources for transmission from the resource set.
  • the specific working method is as follows: after the resource selection is triggered, the terminal first determines the resource selection window. The lower boundary of the resource selection window is at the T1 time after the resource selection trigger time, and the upper boundary of the resource selection window is at T2 after the resource selection trigger time. Time, where T1 is independently selected by the terminal.
  • T1 is not greater than Tproc,1 (resource selection processing time).
  • T2 is the packet delay budget (Packet Delay) transmitted by the terminal in its Transport Block (TB). Budget, PDB) selected value, T2 is not earlier than T1.
  • the terminal Before resource selection, the terminal needs to determine the candidate resource set for resource selection, where the number of candidate resource sub-channels (sub-channels) is determined by the Medium Access Control (MAC) layer.
  • the terminal compares the estimated Reference Signal Received Power (RSRP) on the resource within the resource selection window with the corresponding RSRP threshold. If the RSRP is higher than the RSRP threshold, then the resource is Resources are excluded and cannot be included in the alternative resource collection. After resource exclusion, the remaining resources in the resource selection window form a set of alternative resources.
  • RSRP Reference Signal Received Power
  • the resources in the alternative resource set must account for no less than x% of the resources in the resource selection window. If it is less than x%, the RSRP threshold needs to be increased according to the step value (such as 3dB), and then the above resource exclusion operation is performed. , until no less than x% of the resources can be selected.
  • the terminal randomly selects transmission resources from the alternative resource set, and the number of selected resources is determined according to the decision of the MAC layer. In the above process, the terminal can estimate the RSRP through the PSCCH/PSSCH in the sensing window.
  • the sensing window can be before the Tproc,0 time of the resource selection trigger time. Tproc,0 is the sensing result processing time.
  • the system can introduce secondary link transmission at sub-slot granularity.
  • the terminal needs to process sub-slots more frequently. For example, if there are multiple sub-link transmissions in one time slot, time slot, the number of PSCCHs demodulated by the terminal in the sub-time slot will increase, and the time for the terminal to process the PSCCH will be delayed.
  • the terminal before the terminal selects the secondary link resource, the terminal can determine the appropriate resource selection trigger time and listening window based on the transmission granularity of the first channel of the physical secondary link.
  • the resource selection trigger moment determined by the terminal may be the start position (or end position) of a certain time slot, or it may be the start position (or end position) of a certain sub-time slot of a certain time slot.
  • the end position of the listening window determined by the terminal may be the start position (or end position) of a certain time slot, or it may be the start position (or end position) of a certain sub-time slot of a certain time slot.
  • the terminal determines the resource selection triggering time and the listening window at different timings, or at the same timing, which is not limited in the embodiments of the present application.
  • the terminal can improve the secondary link transmission performance by determining the appropriate resource selection trigger time and listening window.
  • the granularity of the secondary link resource selection is slot granularity
  • the end position of the listening window includes any of the following:
  • At least one of the N and the i is based on a protocol agreement or is configured or pre-configured by the network;
  • the sub-slot PSCCH is a PSCCH associated with a PSSCH transmitted at sub-slot granularity, and the timeslot PSCCH is the PSCCH associated with the PSSCH transmitted at slot granularity.
  • the terminal can detect the PSCCH before the end position of the listening window. Since the system can introduce secondary link transmission with sub-slot granularity, the PSCCH before the end position of the listening window can include the time slot PSCCH.
  • the sub-slot PSCCH may also be included.
  • the processing time of the terminal to process the sub-slot PSCCH may be insufficient. For example, assuming that the sub-slot PSCCH exists in the last one or more time slots of the listening window, then It may be that due to limitations of terminal hardware conditions, the terminal has insufficient processing time to process the sub-slot PSCCH.
  • the end position of the listening window can be appropriately adjusted, To solve the problem of insufficient processing time for the terminal to process the sub-slot PSCCH.
  • the end position of the listening window may be the starting position of the i-th sub-slot in the N-th time slot before the target time slot. Setting the end position of the listening window to the starting position of the sub-slot can ensure The Nth time slot within the listening window does not include the sub-slot PSCCH, which solves the problem of insufficient processing time for the terminal to process the sub-slot PSCCH.
  • the end position of the listening window may be the end position of the i-th sub-slot PSCCH in the N-th time slot before the target time slot, and the end position of the listening window is set to the i-th sub-slot PSCCH.
  • the end position can ensure that the Nth time slot within the listening window does not include the i+1th sub-time slot PSCCH and subsequent sub-time slots PSCCH, thereby solving the problem of insufficient processing time for the terminal to process the sub-time slot PSCCH.
  • the end position of the listening window is the end position of the first sub-slot PSCCH in slot n-2 (corresponding to the position of A' in Figure 4).
  • the end position of the listening window may be the starting position of the i-th sub-slot PSCCH in the N-th time slot before the target time slot, and the end position of the listening window is set to the i-th sub-slot PSCCH.
  • the starting position can ensure that the Nth time slot within the listening window does not include the i-th sub-time slot PSCCH and subsequent sub-time slots PSCCH, thereby solving the problem of insufficient processing time for the terminal to process the sub-time slot PSCCH.
  • the end position of the listening window is the starting position of the first sub-slot PSCCH in slot n-2 (corresponding to the position of A' in Figure 5).
  • the end position of the listening window may be the end position of the time slot PSCCH of the Nth time slot before the target time slot, and the end position of the listening window is set to the time slot PSCCH.
  • the end position can ensure that the Nth time slot within the listening window only contains the time slot PSCCH and not the sub-slot PSCCH, thereby solving the problem of insufficient processing time for the terminal to process the sub-slot PSCCH.
  • the end position of the listening window is the end position of the time slot PSCCH in slot n-2 (corresponding to the position of A' in Figure 6).
  • the end position of the listening window may be determined independently by the terminal, or may be determined by the terminal based on protocol agreement or network side configuration or pre-configuration.
  • This embodiment may be applicable to secondary link transmission using time slots as the time domain granularity, or may be applicable to secondary link transmission using sub-slots as the time domain granularity.
  • the granularity of the secondary link resource selection is slot granularity
  • the method further includes:
  • the terminal determines whether to detect the first PSCCH
  • the first PSCCH is the PSCCH associated with the PSSCH transmitted at sub-slot granularity
  • M is an integer greater than or equal to 1.
  • the terminal may determine whether to detect the first PSCCH.
  • the terminal can determine whether to detect the sub-slot PSCCH to solve the problem of the terminal Solve the problem of insufficient processing time of sub-slot PSCCH.
  • the terminal determines whether to detect the first PSCCH, including at least one of the following:
  • the terminal determines whether to detect the first PSCCH based on terminal implementation
  • the terminal determines whether to detect the first PSCCH based on protocol agreement or network configuration information or preconfiguration information;
  • the terminal determines whether to detect the first PSCCH based on the duration from the first PSCCH to the starting position of the target timeslot.
  • the terminal can determine that the sub-slot PSCCH in the previous slot of slot n-Tproc,0 (i.e. slot n-2) does not need to be detected, or some sub-slots close to slot n PSCCH does not need to be detected, or whether to detect sub-slot PSCCH is decided based on the terminal implementation (UE implementation).
  • the terminal can decide whether to detect the sub-slot PSCCH based on the duration from the sub-slot PSCCH to slot n, for example, if the length is longer than the preset time unit (the preset time unit can include slot, sub-slot, ms (i.e. milliseconds) , ⁇ s (that is, microseconds) or symbol, etc.), the terminal detects the sub-slot PSCCH, otherwise, the terminal does not detect the sub-slot PSCCH.
  • the preset time unit can include slot, sub-slot, ms (i.e. milliseconds) , ⁇ s (that is,
  • this embodiment may be applicable to secondary link transmission using time slots as the time domain granularity, or may be applicable to secondary link transmission using sub-slots as the time domain granularity.
  • the granularity of the secondary link resource selection is sub-slot granularity, and the granularity of the secondary link transmission is sub-slot granularity;
  • the terminal selects secondary link resources, including:
  • the terminal numbers the time domain resources at sub-slot granularity according to the preset numbering rules
  • the terminal selects the secondary link resource according to the number of the time domain resource.
  • the granularity of secondary link resource selection is defined with sub-slot granularity.
  • Tproc,0 and Tproc,1 are both defined with sub-slot granularity to accurately ensure the processing time of PSCCH/PSSCH. time) demand.
  • the terminal can index and number the time domain resources with sub-slot as the time domain granularity according to the preset numbering rules, and select secondary link resources according to the index number of the time domain resources.
  • the terminal selects secondary link resources according to the number of time domain resources, including:
  • the terminal determines the secondary link resource selection time parameter according to the number of the time domain resource
  • the terminal selects secondary link resources according to the secondary link resource selection time parameter
  • the secondary link resource selection time parameter includes at least one of the following:
  • pre-emption check Resource preemption check
  • the end position of the listening window can be slot n-Tproc,0', Tproc,0' is defined based on the sub-slot granularity, or the re-evaluation time can be at least before the sub-slot to be transmitted or reserved.
  • T sub-slots, or the pre-emption check time can be at least K sub-slots before the sub-slots to be transmitted or reserved.
  • the method further includes:
  • the terminal determines a first physical side link feedback channel (Physical SideLink Feedback Channel, PSFCH), the first PSFCH is the PSFCH corresponding to the first PSSCH, and the first PSSCH is the PSSCH transmitted at sub-slot granularity.
  • PSFCH Physical SideLink Feedback Channel
  • the system can introduce secondary link transmission at sub-slot granularity. If PSCCH/PSSCH transmission at sub-slot granularity and PSCCH/PSCCH transmission at slot granularity exist at the same time, the terminal needs to distinguish the corresponding PSFCH resources, otherwise The terminal may cause misunderstandings when demodulating the PSFCH.
  • the terminal can determine the PSFCH feedback resource corresponding to the PSCCH/PSSCH transmitted with sub-slot as the basic unit, thereby ensuring that the terminal performs the secondary link hybrid automatic repeat request (Hybrid Automatic Repeat Request) on the correct PSFCH resource.
  • HARQ hybrid Automatic Repeat Request
  • the terminal determines the first PSFCH, including at least one of the following:
  • the terminal determines the first PSFCH according to the timeslot identifier of the first PSSCH;
  • the terminal determines the first PSFCH according to the number of the first PSSCH, and there is a preset mapping relationship between the number of the first PSSCH and the first PSFCH.
  • the network side device can independently configure the PSFCH resources of sub-slot PSCCH/PSSCH, or it can configure PSFCH resources uniformly (that is, sub-slot PSCCH/PSSCH and slot PSCCH/PSSCH are equipped with unified PSFCH resources).
  • the terminal can determine the first PSFCH according to the PSFCH feedback resource determination process agreed in Release 16 (Rel-16), that is: determine the first PSFCH according to the timeslot identifier of PSCCH/PSSCH, Specifically, the time domain (occasion) and frequency domain (such as PSFCH RB set, etc.) of the first PSFCH are determined.
  • the terminal can determine the first PSFCH according to the number of the first PSSCH, and there is a preset mapping relationship between the number of the first PSSCH and the first PSFCH. Specific examples are as follows:
  • the numbering method can be: slot PSCCH/PSSCH numbering is #1 to #n, sub-slot PSCCH/PSSCH numbering is #n+1 to #2*n. If there are multiple sub-slots in the slot, sub-slot Continue numbering #2*n+1 to #3*n, and so on.
  • the numbering method can also be: a slot PSCCH/PSSCH number is #m, the sub-slot PSCCH/PSSCH number within the slot is #m+1, if there are multiple sub-slots in the slot, the sub-slot continues to be numbered# m+2, and so on, and then continue with the next slot number.
  • the mapping relationship between the number of the first PSSCH and the first PSFCH may be, for example: the first numbered PSCCH/PSSCH resource corresponds to a PSFCH resource from PRB#1 to PRB#n, and the second numbered PSCCH/PSSCH resource corresponds to to a PSFCH from PRB#n+1 to PRB#2*n, and so on.
  • PRB refers to Physical Resource Block (Physical Resource Block).
  • the terminal determines the first PSFCH, including:
  • the terminal determines the first PSFCH.
  • the terminal does not need to perform PSFCH feedback, and there is no need to determine the first PSFCH.
  • the method further includes:
  • the terminal obtains the configuration parameters of the first PSFCH.
  • the configuration parameters of the first PSFCH are agreed through a protocol or configured or pre-configured through a network side device.
  • the configuration parameters include at least one of resource configuration parameters and feedback timing configuration parameters. one item;
  • the terminal determines the first PSFCH, including:
  • the terminal determines the first PSFCH according to the configuration parameters of the first PSFCH.
  • the configuration parameters of the first PSFCH and the configuration parameters of the second PSFCH are The numbers are independent of each other, the second PSFCH is the PSFCH corresponding to the second PSSCH, and the second PSSCH is the PSSCH transmitted at the time slot granularity.
  • the configuration parameters of the first PSFCH include at least one of the following:
  • the time domain resource configuration parameters of the first PSFCH are the time domain resource configuration parameters of the first PSFCH.
  • the frequency domain resource configuration parameters of the first PSFCH are the frequency domain resource configuration parameters of the first PSFCH.
  • the minimum time interval between the first PSSCH and the first PSFCH is the minimum time interval between the first PSSCH and the first PSFCH.
  • the following describes the two resource configuration parameters of the first PSFCH (that is, the PSFCH corresponding to the PSCCH/PSSCH transmitted with the sub-slot as the basic unit) and the second PSFCH (that is, the PSFCH corresponding to the PSCCH/PSSCH transmitted with the slot as the basic time unit).
  • the main situations are explained in detail.
  • Case 1 The PSFCH corresponding to PSCCH/PSSCH transmitted with slot as the basic time unit and the PSFCH corresponding to PSCCH/PSSCH transmitted with sub-slot as the basic unit are mapped to different PSFCH occasions. That is, independently configure the PSFCH occasion corresponding to the PSCCH/PSSCH transmitted with the sub-slot as the basic unit. For example, at least the minimum interval between the PSCCH/PSSCH and the corresponding PSFCH occasion, the PSFCH cycle and the offset (offset) of the start of the PSFCH cycle. An independent configuration.
  • the PSFCH corresponding to the PSCCH/PSSCH transmitted with slot as the basic time unit and the PSFCH corresponding to the PSCCH/PSSCH transmitted with sub-slot as the basic time unit are mapped to different PSFCH resource block sets (PSFCH RB sets). That is, independently configure the resource block set (RB set) of the PSFCH corresponding to the PSCCH/PSSCH transmitted using the sub-slot as the basic unit.
  • Case 2 The PSFCH corresponding to PSCCH/PSSCH transmitted with slot as the basic time unit and the PSFCH corresponding to PSCCH/PSSCH transmitted with sub-slot as the basic unit are mapped to the same PSFCH occasion.
  • the PSFCH corresponding to the PSCCH/PSSCH transmitted using the slot as the basic time unit and the PSFCH corresponding to the PSCCH/PSSCH transmitted using the sub-slot as the basic time unit are mapped to the same PSFCH RB set.
  • code domain resources such as cyclic shift (CS)
  • CS cyclic shift
  • the PSFCH corresponding to the PSCCH/PSSCH transmitted with slot as the basic time unit and the PSFCH corresponding to the PSCCH/PSSCH transmitted with sub-slot as the basic unit are mapped to the same code domain resource (such as CS).
  • the PSFCH corresponding to PSCCH/PSSCH transmitted with slot as the basic time unit and the PSFCH corresponding to PSCCH/PSSCH transmitted with sub-slot as the basic unit are mapped to different PSFCH RB sets. That is, independently configure the RB set of the PSFCH corresponding to the PSCCH/PSSCH transmitted using the sub-slot as the basic unit.
  • the above two situations each have their own advantages.
  • the first situation can effectively handle the additional processing time overhead caused by sub-slot PSCCH/PSSCH demodulation.
  • the second situation can save PSFCH resource overhead and avoid half-duplex conflicts between PSFCH and PSSCH. Issues such as automatic gain control (AGC) changes, the premise is that the additional time for the terminal to process sub-slot PSCCH/PSSCH and the time to process slot PSCCH/PSSCH are of a comparable time magnitude.
  • AGC automatic gain control
  • the resource configuration parameters of the PSFCH resources corresponding to the PSCCH/PSSCH transmitted with the slot as the basic time unit and the PSFCH resources corresponding to the PSCCH/PSSCH transmitted with the sub-slot as the basic time unit can be the same. This can save the signaling overhead of configuring different parameters.
  • independently configuring the PSFCH resources corresponding to PSCCH/PSSCH transmitted with sub-slot as the basic time unit can also reduce the collision probability of PSFCH, that is, it can reduce the occurrence of PSFCH corresponding to PSCCH/PSSCH transmitted with different basic time units. The probability of collision improves the transmission efficiency of PSFCH.
  • the PSCCH/PSSCH resource transmitted with slot as the basic time unit corresponds to the first PSFCH occasion after at least P slots (that is, the minimum time interval between the second PSSCH and the second PSFCH is P slots), with sub-slot as The PSCCH/PSSCH resources transmitted in the basic time unit correspond to the first PSFCH occasion after at least Q slots or Q sub-slots (that is, the minimum time interval between the first PSSCH and the first PSFCH is Q slots or Q sub-slots) -slot).
  • the values of P and Q can be preconfigured separately.
  • the granularity of the secondary link transmission is sub-slot granularity
  • the terminal determines the first PSFCH, including:
  • the terminal numbers the time domain resources at sub-slot granularity according to the preset numbering rules
  • the terminal determines the first PSFCH feedback resource according to the number of the time domain resource.
  • the granularity of secondary link transmission is sub-slot granularity.
  • the feedback interval from PSSCH to PSFCH is defined with sub-slot granularity to accurately ensure the processing time required for PSCCH/PSSCH. beg.
  • the terminal can index the time domain resources with sub-slot as the time domain granularity, and the time parameters related to HARQ feedback can be determined according to the index number, so that the terminal can determine the first PSFCH feedback resource based on the time parameters related to HARQ feedback.
  • the time parameters related to HARQ feedback may include, for example: the first PSFCH period, the offset (offset) of the first PSFCH start, the occurrence of PSFCH feedback, and so on.
  • the embodiments of the present application can enable the terminal to adapt to the time requirements of the secondary link transmission processing with sub-slot granularity, thereby improving the secondary link transmission performance.
  • the execution subject may be a secondary link transmission processing device.
  • the secondary link transmission processing method performed by the secondary link transmission processing apparatus is used as an example to illustrate the secondary link transmission processing apparatus provided by the embodiment of the present application.
  • FIG 8 shows a structural diagram of a secondary link transmission processing device provided by an embodiment of the present application.
  • the secondary link transmission processing device 300 includes:
  • the first determination module 301 is used to determine the transmission granularity of the first channel of the physical secondary link.
  • the transmission granularity of the first channel of the physical secondary link includes at least one of time slot granularity and sub-slot granularity.
  • the first link channel includes at least one of the physical secondary link control channel PSCCH and the physical secondary link shared channel PSSCH;
  • Selection module 302 configured to select secondary link resources, where the granularity of secondary link resource selection includes at least one of slot granularity and sub-slot granularity;
  • the transmission module 303 is used for the terminal to perform secondary link transmission according to the selected secondary link resource, and the granularity of the secondary link transmission includes at least one of slot granularity and sub-slot granularity.
  • the secondary link transmission processing device 300 also includes:
  • the second determination module is used to determine the resource selection triggering moment and the listening window.
  • the distance between the end position of the listening window and the starting position of the target time slot is greater than the preset value.
  • the target time slot is where the resource selection triggering time is located. time slot;
  • a detection module used to detect the PSCCH before the end position of the listening window to obtain the detection result
  • the selection module 302 is specifically used for:
  • secondary link resource selection is performed after the resource selection triggering moment.
  • the granularity of the secondary link resource selection is time slot granularity
  • the end position of the listening window includes any of the following:
  • At least one of the N and the i is based on a protocol agreement or is configured or pre-configured by the network;
  • the sub-slot PSCCH is a PSCCH associated with a PSSCH transmitted at sub-slot granularity, and the timeslot PSCCH is the PSCCH associated with the PSSCH transmitted at slot granularity.
  • the granularity of the secondary link resource selection is time slot granularity
  • the secondary link transmission processing device 300 also includes:
  • a third determination module configured to determine whether to detect the first PSCCH when the last M time slots of the listening window include the first PSCCH
  • the first PSCCH is the PSCCH associated with the PSSCH transmitted at sub-slot granularity
  • M is an integer greater than or equal to 1.
  • the third determination module is specifically used for at least one of the following:
  • Whether to detect the first PSCCH is determined based on the duration from the first PSCCH to the starting position of the target timeslot.
  • the granularity of the secondary link resource selection is sub-slot granularity, and the granularity of the secondary link transmission is sub-slot granularity;
  • the selection module 302 includes:
  • the first numbering unit is used to number time domain resources at sub-slot granularity according to the preset numbering rules
  • the selection unit is used to select the secondary link resource according to the number of the time domain resource.
  • the selection unit includes:
  • the determination subunit is used to determine the secondary link resource selection time parameter according to the number of the time domain resource
  • a selection subunit configured to select secondary link resources according to the secondary link resource selection time parameter
  • the secondary link resource selection time parameter includes at least one of the following:
  • the secondary link transmission processing device 300 also includes:
  • the fourth determination module is used to determine the first physical secondary link feedback channel PSFCH, where the first PSFCH is the PSFCH corresponding to the first PSSCH, and the first PSSCH is the PSSCH transmitted at sub-slot granularity.
  • the fourth determination module is used for at least one of the following:
  • the first PSFCH is determined according to the number of the first PSSCH, and there is a preset mapping relationship between the number of the first PSSCH and the first PSFCH.
  • the fourth determination module is specifically used to:
  • the first PSFCH is determined.
  • the granularity of the secondary link transmission is sub-slot granularity
  • the fourth determination module includes:
  • the second numbering unit is used to number the time domain resources at sub-slot granularity according to the preset numbering rules
  • the determining unit is configured to determine the first PSFCH feedback resource according to the number of the time domain resource.
  • the secondary link transmission processing device 300 also includes:
  • Obtaining module configured to obtain the configuration parameters of the first PSFCH.
  • the configuration parameters of the first PSFCH are agreed through a protocol or configured or pre-configured through network side equipment.
  • the configuration parameters include resource configuration parameters and feedback timing configuration parameters. at least one of;
  • the fourth determination module is specifically used for:
  • the terminal determines the first PSFCH according to the configuration parameters of the first PSFCH.
  • the configuration parameters of the first PSFCH and the configuration parameters of the second PSFCH are independent of each other, the second PSFCH is the PSFCH corresponding to the second PSSCH, and the second PSSCH is the PSSCH transmitted at slot granularity.
  • the configuration parameters of the first PSFCH include at least one of the following:
  • the time domain resource configuration parameters of the first PSFCH are the time domain resource configuration parameters of the first PSFCH.
  • the frequency domain resource configuration parameters of the first PSFCH are the frequency domain resource configuration parameters of the first PSFCH.
  • the minimum time interval between the first PSSCH and the first PSFCH is the minimum time interval between the first PSSCH and the first PSFCH.
  • the embodiments of the present application can enable the terminal to adapt to the time requirements of the secondary link transmission processing with sub-slot granularity, thereby improving the secondary link transmission performance.
  • the secondary link transmission processing device in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or may be a component in the electronic device, such as an integrated circuit or chip.
  • the electronic device may be a terminal or other devices other than the terminal.
  • terminals may include but are not limited to the types of terminals 11 listed above, and other devices may be servers, network attached storage (Network Attached Storage, NAS), etc., which are not specifically limited in the embodiment of this application.
  • the secondary link transmission processing device provided by the embodiment of the present application can implement each process implemented by the method embodiments of Figures 2 to 7, and achieve the same technical effect. To avoid duplication, the details will not be described here.
  • FIG. 9 shows a flow chart of a secondary link transmission configuration method provided by an embodiment of the present application. As shown in Figure 9, the secondary link transmission configuration method includes the following steps:
  • Step 401 The network side device sends a first message, the first message includes first configuration information, the first configuration information is used to configure at least one of N and i, and at least one of N and i One is used by the terminal to determine the end position of the listening window.
  • the end position of the listening window includes any of the following:
  • the sub-slot PSCCH is the PSCCH associated with the PSSCH transmitted at the sub-slot granularity
  • the timeslot PSCCH is the PSCCH associated with the PSSCH transmitted at the time slot granularity
  • it also includes:
  • the network side device sends a second message.
  • the second message includes second configuration information.
  • the second configuration information is used to indicate whether the terminal detects the first PSCCH in the last M time slots of the listening window.
  • the first PSCCH is the PSCCH associated with the PSSCH transmitted at sub-slot granularity
  • M is an integer greater than or equal to 1.
  • it also includes:
  • the network side device sends a third message, the third message includes configuration parameters of the first physical secondary link feedback channel PSFCH, the first PSFCH is the PSFCH corresponding to the first PSSCH, and the first PSSCH is the sub-link feedback channel PSFCH.
  • the configuration parameters of the first PSFCH include at least one of resource configuration parameters and feedback timing configuration parameters.
  • the configuration parameters of the first PSFCH and the configuration parameters of the second PSFCH are independent of each other, the second PSFCH is the PSFCH corresponding to the second PSSCH, and the second PSSCH is the PSSCH transmitted at slot granularity. .
  • the configuration parameters of the first PSFCH include at least one of the following:
  • the time domain resource configuration parameters of the first PSFCH are the time domain resource configuration parameters of the first PSFCH.
  • the frequency domain resource configuration parameters of the first PSFCH are the frequency domain resource configuration parameters of the first PSFCH.
  • the minimum time interval between the first PSSCH and the first PSFCH is the minimum time interval between the first PSSCH and the first PSFCH.
  • the network side device configures the relevant parameters of the secondary link transmission to enable the terminal to adapt to the time requirements of the secondary link transmission processing with sub-slot granularity, thereby improving the secondary link transmission performance.
  • the execution subject may be a secondary link transmission configuration device.
  • the secondary link transmission configuration device performing the secondary link transmission configuration method is taken as an example to illustrate the secondary link transmission configuration device provided by the embodiment of the present application.
  • Figure 10 shows a structural diagram of a secondary link transmission configuration device provided by an embodiment of the present application. As shown in the picture As shown in 10, the secondary link transmission configuration 500 includes:
  • the first sending module 501 is used to send a first message, the first message includes first configuration information, the first configuration information is used to configure at least one of N and i, where N and i At least one of is used by the terminal to determine the end position of the listening window.
  • the end position of the listening window includes any of the following:
  • the sub-slot PSCCH is the PSCCH associated with the PSSCH transmitted at the sub-slot granularity
  • the timeslot PSCCH is the PSCCH associated with the PSSCH transmitted at the time slot granularity
  • the secondary link transmission configuration 500 also includes:
  • the second sending module is configured to send a second message.
  • the second message includes second configuration information.
  • the second configuration information is used to indicate whether the terminal transmits the first PSCCH in the last M time slots of the listening window.
  • the first PSCCH is the PSCCH associated with the PSSCH transmitted at sub-slot granularity, and M is an integer greater than or equal to 1.
  • the secondary link transmission configuration 500 also includes:
  • the third sending module is configured to send a third message.
  • the third message includes the configuration parameters of the first physical secondary link feedback channel PSFCH.
  • the first PSFCH is the PSFCH corresponding to the first PSSCH.
  • the first PSSCH is For PSSCH transmitted at sub-slot granularity, the configuration parameters of the first PSFCH include at least one of resource configuration parameters and feedback timing configuration parameters.
  • the configuration parameters of the first PSFCH and the configuration parameters of the second PSFCH are independent of each other, the second PSFCH is the PSFCH corresponding to the second PSSCH, and the second PSSCH is the PSSCH transmitted at slot granularity.
  • the configuration parameters of the first PSFCH include at least one of the following:
  • the time domain resource configuration parameters of the first PSFCH are the time domain resource configuration parameters of the first PSFCH.
  • the frequency domain resource configuration parameters of the first PSFCH are the frequency domain resource configuration parameters of the first PSFCH.
  • the minimum time interval between the first PSSCH and the first PSFCH is the minimum time interval between the first PSSCH and the first PSFCH.
  • the terminal by configuring the relevant parameters of the secondary link transmission, the terminal can be adapted to the time requirement of the secondary link transmission processing with sub-slot granularity, thereby improving the secondary link transmission performance.
  • the secondary link transmission configuration device in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or may be a component in the electronic device, such as an integrated circuit or chip.
  • the electronic device may be a terminal or other devices other than the terminal.
  • terminals may include but are not limited to the types of terminals 11 listed above, and other devices may be servers, network attached storage (Network Attached Storage, NAS), etc., which are not specifically limited in the embodiment of this application.
  • NAS Network Attached Storage
  • the secondary link transmission configuration device provided by the embodiment of the present application can implement each process implemented by the method embodiment in Figure 9 and achieve the same technical effect. To avoid duplication, the details will not be described here.
  • this embodiment of the present application also provides a communication device 600, which includes a processor 601 and a memory 602.
  • the memory 602 stores programs or instructions that can be run on the processor 601, for example.
  • the communication device 600 is a terminal, when the program or instruction is executed by the processor 601, each step of the above embodiment of the secondary link transmission processing method is implemented, and the same technical effect can be achieved.
  • the communication device 600 is a network-side device, when the program or instruction is executed by the processor 601, each step of the above-mentioned secondary link transmission configuration method embodiment is implemented, and the same technical effect can be achieved. To avoid duplication, it will not be described again here. .
  • An embodiment of the present application also provides a terminal, including a processor and a communication interface.
  • the communication interface or the processor is used to determine the transmission granularity of the first channel of the physical secondary link.
  • the transmission granularity of the first channel of the physical secondary link is The granularity includes at least one of slot granularity and sub-slot granularity
  • the first physical secondary link channel includes at least one of PSCCH and PSSCH
  • the communication interface or the processor is also used to perform secondary link Resource selection.
  • the granularity of the secondary link resource selection includes at least one of time slot granularity and sub-slot granularity.
  • the communication interface or the processor is also configured to perform secondary link transmission according to the selected secondary link resource.
  • the granularity of the secondary link transmission includes at least one of slot granularity and sub-slot granularity.
  • This terminal embodiment corresponds to the above-mentioned terminal-side method embodiment. Each implementation process and implementation manner of the above-mentioned method embodiment can be applied to this terminal embodiment, and can achieve the same technical effect.
  • FIG. 12 is a schematic diagram of the hardware structure of a terminal that implements an embodiment of the present application.
  • the terminal 700 includes but is not limited to: a radio frequency unit 701, a network module 702, an audio output unit 703, an input unit 704, a sensor 705, a display unit 706, a user input unit 707, an interface unit 708, a memory 709, a processor 710, etc. At least some parts.
  • the terminal 700 may also include a power supply (such as a battery) that supplies power to various components.
  • the power supply may be logically connected to the processor 710 through a power management system, thereby managing charging, discharging, and power consumption through the power management system. Management and other functions.
  • the terminal structure shown in Figure 12 does not constitute a limitation on the terminal.
  • the terminal may include more or fewer components than shown in the figure, or some components may be combined or arranged differently, which will not be described again here.
  • the input unit 704 may include a graphics processing unit (Graphics Processing Unit, GPU) 7041 and a microphone 7042.
  • the graphics processor 7041 is responsible for the image capture device (GPU) in the video capture mode or the image capture mode. Process the image data of still pictures or videos obtained by cameras (such as cameras).
  • the display unit 706 may include a display panel 7061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 707 includes a touch panel 7071 and at least one of other input devices 7072 .
  • Touch panel 7071 also called touch screen.
  • the touch panel 7071 may include two parts: a touch detection device and a touch controller.
  • Other input devices 7072 may include but are not limited to physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be described again here.
  • the radio frequency unit 701 after receiving downlink data from the network side device, can transmit it to the processor 710 for processing; in addition, the radio frequency unit 701 can send uplink data to the network side device.
  • the radio frequency unit 701 includes, but is not limited to, an antenna, amplifier, transceiver, coupler, low noise amplifier, duplexer, etc.
  • Memory 709 may be used to store software programs or instructions as well as various data.
  • the memory 709 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instructions required for at least one function (such as a sound playback function, Image playback function, etc.) etc.
  • memory 709 may include volatile memory or non-volatile memory, or memory 709 may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory. Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (Random Access Memory, RAM), static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), synchronous dynamic random access memory (Synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (Double Data Rate SDRAM, DDRSDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous link dynamic random access memory (Synch link DRAM) , SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DRRAM).
  • RAM Random Access Memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM Double Data Rate SDRAM
  • DDRSDRAM double data rate synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM enhanced synchronous dynamic random access memory
  • Synch link DRAM synchronous link dynamic random access memory
  • SLDRAM direct memory bus
  • the processor 710 may include one or more processing units; optionally, the processor 710 integrates an application processor and a modem processor, where the application processor mainly handles operations related to the operating system, user interface, application programs, etc., Modem processors mainly process wireless communication signals, such as baseband processors. It can be understood that the above-mentioned modem processor may not be integrated into the processor 710.
  • radio frequency unit 701 and the processor 710 is used for:
  • the transmission granularity of the first channel of the physical secondary link includes at least one of a time slot granularity and a sub-slot granularity.
  • the first channel of the physical secondary link includes a physical secondary link. At least one of the link control channel PSCCH and the physical secondary link shared channel PSSCH;
  • the granularity of the secondary link resource selection includes at least one of slot granularity and sub-slot granularity
  • Secondary link transmission is performed according to the selected secondary link resource, and the granularity of the secondary link transmission includes at least one of time slot granularity and sub-slot granularity.
  • the terminal can first determine the transmission granularity of the first channel of the physical secondary link during the secondary link transmission processing, and then perform secondary link transmission. Link resource selection and secondary link transmission. In this way, the terminal can use appropriate processing methods to select secondary link resources and secondary link transmission according to the transmission granularity of the first channel of the physical secondary link, thereby improving secondary link transmission. performance.
  • At least one of the radio frequency unit 701 and the processor 710 is also used to:
  • the target time slot is the resource selection trigger time. in the time slot;
  • secondary link resource selection is performed after the resource selection triggering moment.
  • the granularity of the secondary link resource selection is time slot granularity
  • the end position of the listening window includes any of the following:
  • At least one of the N and the i is based on a protocol agreement or is configured or pre-configured by the network;
  • the sub-slot PSCCH is a PSCCH associated with a PSSCH transmitted at sub-slot granularity, and the timeslot PSCCH is the PSCCH associated with the PSSCH transmitted at slot granularity.
  • the granularity of the secondary link resource selection is time slot granularity
  • the processor 710 is also configured to:
  • the first PSCCH is the PSCCH associated with the PSSCH transmitted at sub-slot granularity
  • M is an integer greater than or equal to 1.
  • processor 710 is also used for at least one of the following:
  • Whether to detect the first PSCCH is determined based on the duration from the first PSCCH to the starting position of the target timeslot.
  • the granularity of the secondary link resource selection is sub-slot granularity, and the granularity of the secondary link transmission is sub-slot granularity;
  • At least one of the radio frequency unit 701 and the processor 710 is also used for:
  • Time domain resources are numbered at sub-slot granularity according to the preset numbering rules
  • the secondary link resource is selected.
  • At least one of the radio frequency unit 701 and the processor 710 is also used to:
  • the secondary link resource selection time parameter includes at least one of the following:
  • At least one of the radio frequency unit 701 and the processor 710 is also used to:
  • the first physical secondary link feedback channel PSFCH is determined, the first PSFCH is the PSFCH corresponding to the first PSSCH, and the first PSSCH is the PSSCH transmitted at sub-slot granularity.
  • At least one of the radio frequency unit 701 and the processor 710 is also used for at least one of the following:
  • the terminal determines the first PSFCH according to the timeslot identifier of the first PSSCH;
  • the terminal determines the first PSFCH according to the number of the first PSSCH, and there is a preset mapping relationship between the number of the first PSSCH and the first PSFCH.
  • At least one of the radio frequency unit 701 and the processor 710 is also used to:
  • the terminal determines the first PSFCH.
  • the granularity of the secondary link transmission is sub-slot granularity
  • At least one of the radio frequency unit 701 and the processor 710 is also used for:
  • Time domain resources are numbered at sub-slot granularity according to the preset numbering rules
  • the first PSFCH feedback resource is determined according to the number of the time domain resource.
  • At least one of the radio frequency unit 701 and the processor 710 is also used to:
  • the configuration parameters of the first PSFCH are agreed through a protocol or configured or pre-configured through a network side device, and the configuration parameters include at least one of resource configuration parameters and feedback timing configuration parameters;
  • the first PSFCH is determined according to the configuration parameters of the first PSFCH.
  • the configuration parameters of the first PSFCH and the configuration parameters of the second PSFCH are independent of each other, the second PSFCH is the PSFCH corresponding to the second PSSCH, and the second PSSCH is the PSSCH transmitted at slot granularity.
  • the configuration parameters of the first PSFCH include at least one of the following:
  • the time domain resource configuration parameters of the first PSFCH are the time domain resource configuration parameters of the first PSFCH.
  • the frequency domain resource configuration parameters of the first PSFCH are the frequency domain resource configuration parameters of the first PSFCH.
  • the minimum time interval between the first PSSCH and the first PSFCH is the minimum time interval between the first PSSCH and the first PSFCH.
  • the terminal can be adapted to the time requirement of the secondary link transmission processing with sub-slot granularity, thereby improving the secondary link transmission performance.
  • An embodiment of the present application also provides a network side device, including a processor and a communication interface.
  • the communication interface is used to send a first message.
  • the first message includes first configuration information.
  • the first configuration information is used to send
  • the end position of the listening window is configured as any of the following: the starting position of the i-th sub-time slot in the N-th time slot before the target time slot, where the target time slot is the time slot where the resource selection trigger moment is located; The end position of the i-th sub-slot PSCCH in the N-th time slot before the target time slot; the starting position of the i-th sub-slot PSCCH in the N-th time slot before the target time slot; the The end position of the time slot PSCCH in the Nth time slot before the target time slot; wherein the sub-time slot PSCCH is the PSCCH associated with the PSSCH transmitted at sub-slot granularity, and the time slot PSCCH is at the time slot granularity The PSCCH associated with the
  • the embodiment of the present application also provides a network side device.
  • the network side device 800 includes: an antenna 81 , a radio frequency device 82 , a baseband device 83 , a processor 84 and a memory 85 .
  • the antenna 81 is connected to the radio frequency device 82 .
  • the radio frequency device 82 receives information through the antenna 81 and sends the received information to the baseband device 83 for processing.
  • the baseband device 83 processes the information to be sent and sends it to the radio frequency device 82.
  • the radio frequency device 82 processes the received information and then sends it out through the antenna 81.
  • the method performed by the network side device in the above embodiment can be implemented in the baseband device 83, which includes a baseband processor.
  • the baseband device 83 may include, for example, at least one baseband board on which multiple chips are disposed, as shown in FIG. Program to perform the network device operations shown in the above method embodiments.
  • the network side device may also include a network interface 86, which is, for example, a common public radio interface (CPRI).
  • a network interface 86 which is, for example, a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the network side device 800 in this embodiment of the present invention also includes: instructions or programs stored in the memory 85 and executable on the processor 84.
  • the processor 84 calls the instructions or programs in the memory 85 to execute the various operations shown in Figure 10. The method of module execution and achieving the same technical effect will not be described in detail here to avoid duplication.
  • Embodiments of the present application also provide a readable storage medium, the readable storage medium stores a program or instructions, and when the program or instructions are executed by a processor, each process of the above-mentioned secondary link transmission processing method embodiment is implemented, and can achieve the same technical effect, so to avoid repetition, we will not repeat them here.
  • the processor is the processor in the terminal described in the above embodiment.
  • the readable storage medium includes computer readable storage media, such as computer read-only memory ROM, random access memory RAM, magnetic disk or optical disk, etc.
  • An embodiment of the present application further provides a chip.
  • the chip includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the above-mentioned secondary link transmission processing method.
  • Each process of the embodiment can achieve the same technical effect, so to avoid repetition, it will not be described again here.
  • chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-chip or system-on-chip, etc.
  • Embodiments of the present application further provide a computer program/program product.
  • the computer program/program product is stored in a storage medium.
  • the computer program/program product is executed by at least one processor to implement the above-mentioned secondary link transmission processing.
  • Each process of the method embodiment can achieve the same technical effect, so to avoid repetition, it will not be described again here.
  • the embodiment of the present application also provides a communication system, including: a terminal and a network side device.
  • the terminal can be used to perform the steps of the secondary link transmission processing method as described above.
  • the network side color palette can be used to perform the above steps. The steps of the secondary link transmission configuration method described above.
  • the methods of the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is better. implementation.
  • the technical solution of the present application can be embodied in the form of a computer software product that is essentially or contributes to the existing technology.
  • the computer software product is stored in a storage medium (such as ROM/RAM, disk , CD), including several instructions to cause a terminal (which can be a mobile phone, computer, server, air conditioner, or network device, etc.) to execute the methods described in various embodiments of this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种副链路传输处理方法、副链路传输配置方法、装置、终端和网络侧设备,属于通信技术领域,本申请实施例的副链路传输处理方法包括:终端确定物理副链路第一信道的传输粒度,所述物理副链路第一信道的传输粒度包括时隙粒度和子时隙粒度中的至少一项,所述物理副链路第一信道包括PSCCH和PSSCH中的至少一项;所述终端进行副链路资源选择,所述副链路资源选择的粒度包括时隙粒度和子时隙粒度中的至少一项;所述终端根据选择的副链路资源进行副链路传输,所述副链路传输的粒度包括时隙粒度和子时隙粒度中的至少一项。

Description

副链路传输处理方法、副链路传输配置方法、装置、终端和网络侧设备
相关申请的交叉引用
本申请主张在2022年06月22日在中国提交的中国专利申请No.202210716259.0的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种副链路传输处理方法、副链路传输配置方法、装置、终端和网络侧设备。
背景技术
相关技术中,副链路(Sidelink,SL)传输粒度通常为时隙(slot)粒度,在此基础上,引入了传输粒度为子时隙(sub-slot)粒度的副链路传输概念,该情况下,副链路传输的开始时间不再限于时隙的开始位置,还可以是子时隙的开始位置。相比于时隙粒度的副链路传输,子时隙粒度的副链路传输涉及不同的处理方式,相关技术中的副链路传输处理方式并不能适用于不同的传输粒度,这将导致副链路传输性能较差。
发明内容
本申请实施例提供一种副链路传输处理方法、副链路传输配置方法、装置、终端和网络侧设备,能够解决相关技术中副链路传输处理方式并不能适用于不同的传输粒度而导致副链路传输性能较差的问题。
第一方面,提供了一种副链路传输处理方法,该方法包括:
终端确定物理副链路第一信道的传输粒度,所述物理副链路第一信道的传输粒度包括时隙粒度和子时隙粒度中的至少一项,所述物理副链路第一信道包括物理副链路控制信道PSCCH和物理副链路共享信道PSSCH中的至少一项;
所述终端进行副链路资源选择,所述副链路资源选择的粒度包括时隙粒度和子时隙粒度中的至少一项;
所述终端根据选择的副链路资源进行副链路传输,所述副链路传输的粒度包括时隙粒度和子时隙粒度中的至少一项。
第二方面,提供了一种副链路传输处理装置,该装置包括:
第一确定模块,用于确定物理副链路第一信道的传输粒度,所述物理副链路第一信道的传输粒度包括时隙粒度和子时隙粒度中的至少一项,所述物理副链路第一信道包括物理副链路控制信道PSCCH和物理副链路共享信道PSSCH中的至少一项;
选择模块,用于进行副链路资源选择,所述副链路资源选择的粒度包括时隙粒度和子时隙粒度中的至少一项;
传输模块,用于终端根据选择的副链路资源进行副链路传输,所述副链路传输的粒度包括时隙粒度和子时隙粒度中的至少一项。
第三方面,提供了一种副链路传输配置方法,该方法包括:
网络侧设备发送第一消息,所述第一消息包括第一配置信息,所述第一配置信息用于配置N和i中的至少一者,所述N和所述i中的至少一者用于终端确定监听窗口的结束位置。
第四方面,提供了一种副链路传输配置装置,该装置包括:
第一发送模块,用于发送第一消息,所述第一消息包括第一配置信息,所述第一配置信息用于配置N和i中的至少一者,所述N和所述i中的至少一者用于终端确定监听窗口的结束位置。
第五方面,提供了一种终端,该终端包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第六方面,提供了一种终端,包括处理器及通信接口,其中,所述通信接口或所述处理器用于确定物理副链路第一信道的传输粒度,所述物理副链路第一信道的传输粒度包括时隙粒度和子时隙粒度中的至少一项,所述物理副链路第一信道包括物理副链路控制信道PSCCH和物理副链路共享信道PSSCH中的至少一项,所述通信接口或所述处理器还用于进行副链路资源选择,所述副链路资源选择的粒度包括时隙粒度和子时隙粒度中的至少一项,所述通信接口或所述处理器还用于根据选择的副链路资源进行副链路传输, 所述副链路传输的粒度包括时隙粒度和子时隙粒度中的至少一项。
第七方面,提供了一种网络侧设备,该网络侧设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第三方面所述的方法的步骤。
第八方面,提供了一种网络侧设备,包括处理器及通信接口,其中,所述通信接口用于发送第一消息,所述第一消息包括第一配置信息,所述第一配置信息用于配置N和i中的至少一者,所述N和所述i中的至少一者用于终端确定监听窗口的结束位置。
第九方面,提供了一种通信系统,包括:终端及网络侧设备,所述终端可用于执行如第一方面所述的方法的步骤,所述网络侧设备可用于执行如第三方面所述的方法的步骤。
第十方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第三方面所述的方法的步骤。
第十一方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法,或实现如第三方面所述的方法。
第十二方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面所述的方法的步骤,或者实现如第三方面所述的方法的步骤。
在本申请实施例中,考虑到系统可引入子时隙粒度的副链路传输,终端在副链路传输处理过程中,可先确定物理副链路第一信道的传输粒度,而后再进行副链路资源选择以及副链路传输,这样,终端可根据物理副链路第一信道的传输粒度,采用合适的处理方式进行副链路资源选择以及副链路传输,从而能够提高副链路传输性能。
附图说明
图1是本申请实施例提供的一种无线通信系统的框图;
图2是本申请实施例提供的一种副链路传输处理方法的流程图;
图3至图7是本申请实施例提供的监听窗口的结束位置的示例图;
图8是本申请实施例提供的一种副链路传输处理装置的结构图;
图9是本申请实施例提供的一种副链路传输配置方法的流程图;
图10是本申请实施例提供的一种副链路传输配置装置的结构图;
图11是本申请实施例提供的一种通信设备的结构图;
图12是本申请实施例提供的一种终端的硬件结构示意图;
图13是本申请实施例提供的一种网络侧设备的硬件结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描 述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(Vehicle User Equipment,VUE)、行人终端(Pedestrian User Equipment,PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备可以包括基站、无线局域网(Wireless Local Area Network,WLAN)接入点或无线保真(Wireless Fidelity,WiFi)节点等,基站可被称为节点B、演进节点B(Evolved Node B,eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的副链路传输处理方法、副链路传输配置方法、装置、终端、网络侧设备和存储 介质进行详细地说明。
请参见图2,图2是本申请实施例提供的副链路传输处理方法的流程图。如图2所示,副链路传输处理方法包括以下步骤:
步骤201:终端确定物理副链路第一信道的传输粒度,所述物理副链路第一信道的传输粒度包括时隙粒度和子时隙粒度中的至少一项;
步骤202:终端进行副链路资源选择,所述副链路资源选择的粒度包括时隙粒度和子时隙粒度中的至少一项;
步骤203:终端根据选择的副链路资源进行副链路传输,所述副链路传输的粒度包括时隙粒度和子时隙粒度中的至少一项。
本申请实施例中的粒度可理解为时域粒度或时间粒度,包括以slot为时间单元的时隙粒度和以sub-slot为时间单元的子时隙粒度。sub-slot时间单元可以定义为比slot更小的时间传输粒度,sub-slot的开始位置可以是slot内的某个符号(symbol),结束位置也可以是slot内的某个symbol,sub-slot的开始位置到结束位置的长度小于slot的长度。作为示例,sub-slot的结束位置可以约定为slot的最后一个symbol。
上述物理副链路第一信道包括物理副链路控制信道(Physical SideLink Control Channel,PSCCH)和物理副链路共享信道(Physical SideLink Shared Channel,PSSCH)中的至少一项,为了描述方便,物理副链路第一信道可表示为PSCCH/PSSCH。
在本申请实施例中,考虑到系统可引入子时隙粒度的副链路传输,终端在副链路传输处理过程中,可先确定物理副链路第一信道的传输粒度,而后再进行副链路资源选择以及副链路传输,这样,终端可根据物理副链路第一信道的传输粒度,采用合适的处理方式进行副链路资源选择以及副链路传输,从而能够提高副链路传输性能。
本申请实施例涉及副链路资源选择、副链路传输和副链路反馈等多个方面,以下对副链路资源选择、副链路传输等方面的实施方式进行说明。
在一些实施例中,所述终端进行副链路资源选择之前,所述方法还包括:
所述终端确定资源选择触发时刻和监听窗口,所述监听窗口的结束位置与目标时隙的开始位置的间隔大于预设值,所述目标时隙为所述资源选择触 发时刻所在的时隙;
所述终端在所述监听窗口的结束位置之前,对PSCCH进行检测,以得到检测结果;
所述终端进行副链路资源选择,包括:
所述终端根据所述检测结果,在所述资源选择触发时刻之后进行副链路资源选择。
相关技术中,副链路资源的分配方式有两种:一种是基于基站调度,另一种是基于终端自主选择。对于终端自主选择的资源分配方式,终端在(预)配置的资源池中选择可用的传输资源。终端在资源选择之前先进行信道监听,根据信道监听结果选择出干扰较小的资源集合,再从资源集合中随机选择用于传输的资源。具体的工作方式如下:终端在资源选择被触发后,首先确定资源选择窗口,资源选择窗口的下边界在资源选择触发时刻之后的T1时间,资源选择窗口的上边界在资源选择触发时刻之后的T2时间,其中T1是终端自主选择的,T1的值不大于Tproc,1(资源选择处理时间),T2是终端实现的方式在其传输块(Transport Block,TB)传输的包延时预算(Packet Delay Budget,PDB)内选择的值,T2不早于T1。终端在资源选择之前,需要确定资源选择的备选资源结合(candidate resource set),其中备选资源子信道(sub-channel)的个数由媒体接入控制(Medium Access Control,MAC)层确定,终端根据资源选择窗口内的资源上预估的参考信号接收功率测量值(Reference Signal Received Power,RSRP)与相应的RSRP门限(RSRP threshold)进行对比,如果RSRP高于RSRP threshold,那么对该资源进行资源排除,不能纳入备选资源集合。进行资源排除后资源选择窗口内剩余的资源组成备选资源集合。备选资源集合中的资源在资源选择窗口中的资源的占比要不少于x%,如果少于x%,RSRP threshold需要按照步进值(如3dB)进行增加,再进行上述资源排除操作,直到可以选出不少于x%的资源。备选资源集合确定后,终端随机在备选资源集合中选择传输资源,所选资源的个数根据MAC层的决策确定。上述过程中,终端可通过监听(sensing)窗口中的PSCCH/PSSCH预估RSRP,监听窗口可在资源选择触发时刻的Tproc,0时间之前,Tproc,0为监听结果处理时间。
如前所述,系统可引入子时隙粒度的副链路传输,相比于时隙粒度的副链路传输,终端需要更频繁地处理子时隙,例如,如果一个时隙内存在多个子时隙,则终端解调子时隙的PSCCH的个数会增加,终端处理PSCCH的时长会延后。该实施方式中,终端进行副链路资源选择之前,可基于物理副链路第一信道的传输粒度确定出合适的资源选择触发时刻和监听窗口。
终端确定的资源选择触发时刻可能是某个时隙的开始位置(或结束位置),也可能是某个时隙的某个子时隙的开始位置(或结束位置)。相应的,终端确定的监听窗口的结束位置可能是某个时隙的开始位置(或结束位置),也可能是某个时隙的某个子时隙的开始位置(或结束位置)。终端确定资源选择触发时刻和监听窗口可以是在不同的时机下确定,也可以是在同一时机下确定,本申请实施例对此不作限定。
该实施方式中,终端通过确定合适的资源选择触发时刻和监听窗口,能够提高副链路传输性能。
在一些实施例中,所述副链路资源选择的粒度为时隙粒度;
所述监听窗口的结束位置包括以下任一项:
所述目标时隙之前的第N个时隙中的第i个子时隙的开始位置;
所述目标时隙之前的第N个时隙中的第i个子时隙PSCCH的结束位置;
所述目标时隙之前的第N个时隙中的第i个子时隙PSCCH的开始位置;
所述目标时隙之前的第N个时隙的时隙PSCCH的结束位置;
其中,所述N和所述i中的至少一者基于协议约定或由网络配置或预配置;所述子时隙PSCCH为以子时隙粒度传输的PSSCH所关联的PSCCH,所述时隙PSCCH为以时隙粒度传输的PSSCH所关联的PSCCH。
相关技术中,终端可对监听窗口的结束位置之前的PSCCH进行检测,由于系统可引入子时隙粒度的副链路传输,因此,在监听窗口的结束位置之前的PSCCH既可以包括时隙PSCCH,还可以包括子时隙PSCCH,在包括子时隙PSCCH的情况下,终端处理子时隙PSCCH的处理时间可能不足,例如,假设监听窗口的最后一个或多个时隙存在子时隙PSCCH,则可能由于终端硬件条件的限制而导致终端处理子时隙PSCCH的处理时间不足。
鉴于此,该实施方式中,可以对监听窗口的结束位置进行适当地调整, 以解决终端处理子时隙PSCCH的处理时间不足的问题。
在一些示例中,监听窗口的结束位置可以是目标时隙之前的第N个时隙中的第i个子时隙的开始位置,将监听窗口的结束位置设置为子时隙的开始位置,可以确保监听窗口内的第N个时隙不包含子时隙PSCCH,解决了终端处理子时隙PSCCH的处理时间不足的问题。
假设相关技术中监听窗口的结束位置为slot n-Tproc,0(对应图3中A所在的位置,即slot n-1的开始位置或slot n-2的结束位置),则该实施方式中,监听窗口的结束位置为slot n-Tproc,0’(对应图3中A’所在的位置),其中,Tproc,0’基于sub-slot为粒度定义,例如Tproc,0’=Tproc,0+number of sub-slot。
在另一些示例中,监听窗口的结束位置可以是目标时隙之前的第N个时隙中的第i个子时隙PSCCH的结束位置,将监听窗口的结束位置设置为第i个子时隙PSCCH的结束位置,可以确保该监听窗口内的第N个时隙不包含第i+1个子时隙PSCCH及以后的子时隙PSCCH,从而解决了终端处理子时隙PSCCH的处理时间不足的问题。
假设相关技术中监听窗口的结束位置为slot n-Tproc,0(对应图4中A所在的位置,即slot n-1的开始位置或slot n-2的结束位置),则该实施方式中,监听窗口的结束位置为slot n-2中的第一个子时隙PSCCH的结束位置(对应图4中A’所在的位置)。
在另一些示例中,监听窗口的结束位置可以是目标时隙之前的第N个时隙中的第i个子时隙PSCCH的开始位置,将监听窗口的结束位置设置为第i个子时隙PSCCH的开始位置,可以确保该监听窗口内的第N个时隙不包含第i个子时隙PSCCH及以后的子时隙PSCCH,从而解决了终端处理子时隙PSCCH的处理时间不足的问题。
假设相关技术中监听窗口的结束位置为slot n-Tproc,0(对应图5中A所在的位置,即slot n-1的开始位置或slot n-2的结束位置),则该实施方式中,监听窗口的结束位置为slot n-2中的第一个子时隙PSCCH的开始位置(对应图5中A’所在的位置)。
在又一些示例中,监听窗口的结束位置可以是目标时隙之前的第N个时隙的时隙PSCCH的结束位置,将监听窗口的结束位置设置为时隙PSCCH的 结束位置,可以确保该监听窗口内的第N个时隙仅包含时隙PSCCH而不包含子时隙PSCCH,从而解决了终端处理子时隙PSCCH的处理时间不足的问题。
假设相关技术中监听窗口的结束位置为slot n-Tproc,0(对应图6中A所在的位置,即slot n-1的开始位置或slot n-2的结束位置),则该实施方式中,监听窗口的结束位置为slot n-2中的时隙PSCCH的结束位置(对应图6中A’所在的位置)。
该实施方式,通过对监听窗口的结束位置进行适当地调整,能够解决终端处理子时隙PSCCH的处理时间不足的问题。
需要说明的是,监听窗口的结束位置可以是由终端自主确定,也可以是由终端基于协议约定或网络侧配置或预配置确定。该实施方式既可以适用于以时隙为时域粒度的副链路传输,也可以适用于以子时隙为时域粒度的副链路传输。
在一些实施例中,所述副链路资源选择的粒度为时隙粒度;
在所述监听窗口的最后M个时隙中包括第一PSCCH的情况下,所述方法还包括:
所述终端确定是否对所述第一PSCCH进行检测;
其中,所述第一PSCCH为以子时隙粒度传输的PSSCH所关联的PSCCH,M为大于或等于1的整数。
该实施方式中,如果监听窗口的最后M个时隙中包括第一PSCCH(即子时隙PSCCH),则终端可以确定是否对第一PSCCH进行检测。
作为示例,如图7所示,假设slot n-2为监听窗口的最后一个时隙,该时隙中包括子时隙PSCCH,则终端可确定是否对该子时隙PSCCH进行检测,以解决终端处理子时隙PSCCH的处理时间不足的问题。
在一些实施例中,所述终端确定是否对所述第一PSCCH进行检测,包括以下至少一项:
所述终端基于终端实现,确定是否对所述第一PSCCH进行检测;
所述终端基于协议约定或网络配置信息或预配置信息,确定是否对所述第一PSCCH进行检测;
所述终端根据所述第一PSCCH至所述目标时隙的开始位置的时长,确定是否对所述第一PSCCH进行检测。
作为示例,如图7所示,终端可以确定slot n-Tproc,0的前一个slot(即slot n-2)内的子时隙PSCCH不需要检测,或者,靠近slot n的某些子时隙PSCCH不需要检测,或者基于终端实现(UE implementation)决定是否检测子时隙PSCCH。或者,终端可以根据子时隙PSCCH到slot n的时长,决定是否检测子时隙PSCCH,例如,当时长大于预设时间单元(预设时间单元可以包括slot、sub-slot、ms(即毫秒)、μs(即微秒)或symbol等等)时,终端检测子时隙PSCCH,否则,终端不检测子时隙PSCCH。
需要说明的是,该实施方式既可以适用于以时隙为时域粒度的副链路传输,也可以适用于以子时隙为时域粒度的副链路传输。
在一些实施例中,所述副链路资源选择的粒度为子时隙粒度,且所述副链路传输的粒度为子时隙粒度;
所述终端进行副链路资源选择,包括:
所述终端根据预设的编号规则,以子时隙粒度对时域资源进行编号;
所述终端根据时域资源的编号,进行副链路资源选择。
该实施方式中,副链路资源选择的粒度以sub-slot为粒度定义,例如,Tproc,0以及Tproc,1均以sub-slot为粒度定义,以精确地保证PSCCH/PSSCH的处理时间(processing time)需求。
终端在进行副链路资源选择时,可以根据预设的编号规则,以sub-slot为时域粒度对时域资源进行索引编号,并根据时域资源的索引编号,进行副链路资源选择。
在一些实施例中,所述终端根据时域资源的编号,进行副链路资源选择,包括:
所述终端根据时域资源的编号,确定副链路资源选择时间参数;
所述终端根据所述副链路资源选择时间参数,进行副链路资源选择;
其中,所述副链路资源选择时间参数包括以下至少一项:
监听窗口的开始位置;
监听窗口的结束位置;
资源选择窗口的开始位置;
资源选择触发时刻;
资源重评估(re-evaluation)时刻;
资源抢占检查(pre-emption check)时刻。
例如,监听窗口的结束位置可以是slot n-Tproc,0’,Tproc,0’基于sub-slot为粒度定义,或者,re-evaluation时刻可以是至少在待传输或待预留的sub-slot前的T个sub-slot,或者,pre-emption check时刻可以是至少在待传输或待预留的sub-slot前的K个sub-slot。
以上为副链路资源选择和副链路传输等方面的相关实施方式,以下对副链路反馈的相关实施方式进行说明。
在一些实施例中,所述方法还包括:
所述终端确定第一物理副链路反馈信道(Physical SideLink Feedback Channel,PSFCH),所述第一PSFCH为第一PSSCH对应的PSFCH,所述第一PSSCH为以子时隙粒度传输的PSSCH。
如前所述,系统可引入子时隙粒度的副链路传输,如果子时隙粒度的PSCCH/PSSCH传输和时隙粒度的PSCCH/PSCCH传输同时存在,则终端需要区分相应的PSFCH资源,否则终端在解调PSFCH时可能产生误解。
该实施方式中,终端能够确定以sub-slot为基本单元传输的PSCCH/PSSCH对应的PSFCH反馈资源,从而确保终端在正确的PSFCH资源上进行副链路混合自动重传请求(Hybrid Automatic Repeat Request,HARQ)反馈,从而能够提高副链路传输性能。
在一些实施例中,所述终端确定第一PSFCH,包括以下至少一项:
所述终端根据所述第一PSSCH的时隙标识,确定所述第一PSFCH;
所述终端根据所述第一PSSCH的编号,确定所述第一PSFCH,所述第一PSSCH的编号与所述第一PSFCH存在预设映射关系。
网络侧设备可以独立配置sub-slot PSCCH/PSSCH的PSFCH资源,也可以统一配置PSFCH资源(即sub-slot PSCCH/PSSCH与slot PSCCH/PSSCH配有统一的PSFCH资源)。
该实施方式中,无论网络侧设备是独立配置sub-slot PSCCH/PSSCH的 PSFCH资源,还是统一配置PSFCH资源,终端均可按照版本16(Rel-16)中约定的PSFCH反馈资源确定流程来确定第一PSFCH,即:根据PSCCH/PSSCH的时隙标识,确定第一PSFCH,具体的,确定第一PSFCH的时域(occasion)和频域(如PSFCH RB set等)。
而如果统一配置PSFCH资源,终端可以根据第一PSSCH的编号确定第一PSFCH,第一PSSCH的编号与第一PSFCH存在预设映射关系。具体示例如下:
对一组slot PSCCH/PSSCH资源和sub-slot PSCCH/PSSCH资源进行逻辑编号。编号的方式例如可以是:slot PSCCH/PSSCH编号为#1到#n,sub-slot PSCCH/PSSCH编号为#n+1到#2*n,如果slot内有多个sub-slot,sub-slot继续编号#2*n+1到#3*n,依次类推。编号的方式例如还可以是:一个slot PSCCH/PSSCH编号为#m,slot内的sub-slot PSCCH/PSSCH编号为#m+1,如果slot内有多个sub-slot,sub-slot继续编号#m+2,依此类推,再继续下一个slot的编号。第一PSSCH的编号与第一PSFCH存在的映射关系例如可以是:第一个编号的PSCCH/PSSCH资源对应到一个PRB#1到PRB#n的PSFCH资源,第二个编号的PSCCH/PSSCH资源对应到一个PRB#n+1到PRB#2*n的PSFCH,依此类推。其中,PRB是指物理资源块(Physical Resource Block)。
在一些实施例中,所述终端确定第一PSFCH,包括:
在所述第一PSSCH传输的数据为有效数据的情况下,所述终端确定第一PSFCH。
如果第一PSSCH传输无效数据(dummy data),则终端无需进行PSFCH反馈,也就无需确定第一PSFCH。
在一些实施例中,所述方法还包括:
所述终端获取所述第一PSFCH的配置参数,所述第一PSFCH的配置参数通过协议约定或通过网络侧设备配置或预配置,所述配置参数包括资源配置参数和反馈时序配置参数中的至少一项;
所述终端确定第一PSFCH,包括:
所述终端根据所述第一PSFCH的配置参数,确定所述第一PSFCH。
在一些实施例中,所述第一PSFCH的配置参数与第二PSFCH的配置参 数互相独立,所述第二PSFCH为第二PSSCH对应的PSFCH,所述第二PSSCH为以时隙粒度传输的PSSCH。
在一些实施例中,所述第一PSFCH的配置参数包括以下至少一种:
所述第一PSFCH的时域资源配置参数;
所述第一PSFCH的频域资源配置参数;
所述第一PSFCH的码域资源配置参数;
所述第一PSSCH与所述第一PSFCH的最小时间间隔。
以下就第一PSFCH(即以sub-slot为基本单元传输的PSCCH/PSSCH对应的PSFCH)和第二PSFCH(即以slot为基本时间单元传输的PSCCH/PSSCH对应的PSFCH)的资源配置参数的两种主要情况进行具体说明。
情况一:以slot为基本时间单元传输的PSCCH/PSSCH对应的PSFCH,与以sub-slot为基本单元传输的PSCCH/PSSCH对应的PSFCH映射到不相同的PSFCH occasion。即独立配置以sub-slot为基本单元传输的PSCCH/PSSCH对应的PSFCH occasion,例如,PSCCH/PSSCH与对应的PSFCH occasion的最小间隔、PSFCH周期和PSFCH周期开始的偏移量(offset)中的至少一项独立配置。
可选地,以slot为基本时间单元传输的PSCCH/PSSCH对应的PSFCH,与以sub-slot为基本时间单元传输的PSCCH/PSSCH对应的PSFCH映射到不同的PSFCH资源块集(PSFCH RB set)。即独立配置以sub-slot为基本单元传输的PSCCH/PSSCH对应的PSFCH的资源块集(Resource block set,RB set)。
情况二:以slot为基本时间单元传输的PSCCH/PSSCH对应的PSFCH,与以sub-slot为基本单元传输的PSCCH/PSSCH对应的PSFCH映射到相同的PSFCH occasion。
在此情况下,以slot为基本时间单元传输的PSCCH/PSSCH对应的PSFCH,与以sub-slot为基本单元传输的PSCCH/PSSCH对应的PSFCH映射到相同的PSFCH RB set。可选地,独立配置以sub-slot为基本单元传输的PSCCH/PSSCH对应的PSFCH的码域资源(如循环移位(cyclic shift,CS))。或者,以slot为基本时间单元传输的PSCCH/PSSCH对应的PSFCH,与以sub-slot为基本单元传输的PSCCH/PSSCH对应的PSFCH映射到相同的码域资源(如CS)。
或者,以slot为基本时间单元传输的PSCCH/PSSCH对应的PSFCH,与以sub-slot为基本单元传输的PSCCH/PSSCH对应的PSFCH映射到不同的PSFCH RB set。即独立配置以sub-slot为基本单元传输的PSCCH/PSSCH对应的PSFCH的RB set。
上述两种情况各有优势,其中,情况一能够有效的处理sub-slot PSCCH/PSSCH解调带来的额外处理时间开销,情况二能够节省PSFCH资源开销,避免PSFCH与PSSCH的半双工冲突以及自动增益控制(Automatic Gain Control,AGC)变动等问题,前提是终端额外处理sub-slot PSCCH/PSSCH的时间和处理slot PSCCH/PSSCH的时间在相当的时间量级。额外的,情况一和情况二中,以slot为基本时间单元传输的PSCCH/PSSCH对应的PSFCH资源和以sub-slot为基本时间单元传输的PSCCH/PSSCH对应的PSFCH资源的资源配置参数可以相同,这能够节省配置不同参数的信令的开销。情况二中,独立配置以sub-slot为基本时间单元传输的PSCCH/PSSCH对应的PSFCH资源,还能够降低PSFCH的碰撞概率,即能够降低以不同的基本时间单元传输的PSCCH/PSSCH对应的PSFCH发生碰撞的概率,提高PSFCH的发射效率。
以下就第一PSFCH和第二PSFCH的反馈时序配置参数的情况进行具体说明:
以slot为基本时间单元传输的PSCCH/PSSCH资源对应于其至少P个slot后的第一个PSFCH occasion(即第二PSSCH与第二PSFCH的最小时间间隔为P个slot),以sub-slot为基本时间单元传输的PSCCH/PSSCH资源对应于其至少Q个slot或Q个sub-slot后的第一个PSFCH occasion(即第一PSSCH与第一PSFCH的最小时间间隔为Q个slot或Q个sub-slot)。P和Q的值可以分别预配置。
在一些实施例中,所述副链路传输的粒度为子时隙粒度;
所述终端确定第一PSFCH,包括:
所述终端根据预设的编号规则,以子时隙粒度对时域资源进行编号;
所述终端根据时域资源的编号,确定第一PSFCH反馈资源。
该实施方式中,副链路传输的粒度为子时隙粒度,例如,PSSCH到PSFCH的反馈间隔以sub-slot粒度定义,以精确地保证PSCCH/PSSCH的处理时间需 求。
终端可以以sub-slot为时域粒度对时域资源进行索引编号,HARQ反馈相关的时间参数可以根据该索引编号确定,从而终端可基于HARQ反馈相关的时间参数确定第一PSFCH反馈资源。HARQ反馈相关的时间参数例如可以包括:第一PSFCH周期、第一PSFCH开始的偏移量(offset)、PSFCH反馈的occasion等等。
综上,本申请实施例通过以上实施方式,能够使终端适应sub-slot为粒度的副链路传输处理的时间要求,从而能够提高副链路传输性能。
本申请实施例提供的副链路传输处理方法,执行主体可以为副链路传输处理装置。本申请实施例中以副链路传输处理装置执行副链路传输处理方法为例,说明本申请实施例提供的副链路传输处理装置。
图8示出了本申请实施例提供的副链路传输处理装置的结构图。如图8所示,副链路传输处理装置300包括:
第一确定模块301,用于确定物理副链路第一信道的传输粒度,所述物理副链路第一信道的传输粒度包括时隙粒度和子时隙粒度中的至少一项,所述物理副链路第一信道包括物理副链路控制信道PSCCH和物理副链路共享信道PSSCH中的至少一项;
选择模块302,用于进行副链路资源选择,所述副链路资源选择的粒度包括时隙粒度和子时隙粒度中的至少一项;
传输模块303,用于终端根据选择的副链路资源进行副链路传输,所述副链路传输的粒度包括时隙粒度和子时隙粒度中的至少一项。
可选地,副链路传输处理装置300还包括:
第二确定模块,用于确定资源选择触发时刻和监听窗口,所述监听窗口的结束位置与目标时隙的开始位置的间隔大于预设值,所述目标时隙为所述资源选择触发时刻所在的时隙;
检测模块,用于在所述监听窗口的结束位置之前,对PSCCH进行检测,以得到检测结果;
选择模块302具体用于:
根据所述检测结果,在所述资源选择触发时刻之后进行副链路资源选择。
可选地,所述副链路资源选择的粒度为时隙粒度;
所述监听窗口的结束位置包括以下任一项:
所述目标时隙之前的第N个时隙中的第i个子时隙的开始位置;
所述目标时隙之前的第N个时隙中的第i个子时隙PSCCH的结束位置;
所述目标时隙之前的第N个时隙中的第i个子时隙PSCCH的开始位置;
所述目标时隙之前的第N个时隙的时隙PSCCH的结束位置;
其中,所述N和所述i中的至少一者基于协议约定或由网络配置或预配置;所述子时隙PSCCH为以子时隙粒度传输的PSSCH所关联的PSCCH,所述时隙PSCCH为以时隙粒度传输的PSSCH所关联的PSCCH。
可选地,所述副链路资源选择的粒度为时隙粒度;
副链路传输处理装置300还包括:
第三确定模块,用于在所述监听窗口的最后M个时隙中包括第一PSCCH的情况下,确定是否对所述第一PSCCH进行检测;
其中,所述第一PSCCH为以子时隙粒度传输的PSSCH所关联的PSCCH,M为大于或等于1的整数。
可选地,所述第三确定模块具体用于以下至少一项:
基于终端实现,确定是否对所述第一PSCCH进行检测;
基于协议约定或网络配置信息或预配置信息,确定是否对所述第一PSCCH进行检测;
根据所述第一PSCCH至所述目标时隙的开始位置的时长,确定是否对所述第一PSCCH进行检测。
可选地,所述副链路资源选择的粒度为子时隙粒度,且所述副链路传输的粒度为子时隙粒度;
选择模块302包括:
第一编号单元,用于根据预设的编号规则,以子时隙粒度对时域资源进行编号;
选择单元,用于根据时域资源的编号,进行副链路资源选择。
可选地,所述选择单元包括:
确定子单元,用于根据时域资源的编号,确定副链路资源选择时间参数;
选择子单元,用于根据所述副链路资源选择时间参数,进行副链路资源选择;
其中,所述副链路资源选择时间参数包括以下至少一项:
监听窗口的开始位置;
监听窗口的结束位置;
资源选择窗口的开始位置;
资源选择触发时刻;
资源重评估时刻;
资源抢占检查时刻。
可选地,副链路传输处理装置300还包括:
第四确定模块,用于确定第一物理副链路反馈信道PSFCH,所述第一PSFCH为第一PSSCH对应的PSFCH,所述第一PSSCH为以子时隙粒度传输的PSSCH。
可选地,所述第四确定模块用于以下至少一项:
根据所述第一PSSCH的时隙标识,确定所述第一PSFCH;
根据所述第一PSSCH的编号,确定所述第一PSFCH,所述第一PSSCH的编号与所述第一PSFCH存在预设映射关系。
可选地,所述第四确定模块具体用于:
在所述第一PSSCH传输的数据为有效数据的情况下,确定第一PSFCH。
可选地,所述副链路传输的粒度为子时隙粒度;
所述第四确定模块包括:
第二编号单元,用于根据预设的编号规则,以子时隙粒度对时域资源进行编号;
确定单元,用于根据时域资源的编号,确定第一PSFCH反馈资源。
可选地,副链路传输处理装置300还包括:
获取模块,用于获取所述第一PSFCH的配置参数,所述第一PSFCH的配置参数通过协议约定或通过网络侧设备配置或预配置,所述配置参数包括资源配置参数和反馈时序配置参数中的至少一项;
所述第四确定模块具体用于:
所述终端根据所述第一PSFCH的配置参数,确定所述第一PSFCH。
可选地,所述第一PSFCH的配置参数与第二PSFCH的配置参数互相独立,所述第二PSFCH为第二PSSCH对应的PSFCH,所述第二PSSCH为以时隙粒度传输的PSSCH。
可选地,所述第一PSFCH的配置参数包括以下至少一种:
所述第一PSFCH的时域资源配置参数;
所述第一PSFCH的频域资源配置参数;
所述第一PSFCH的码域资源配置参数;
所述第一PSSCH与所述第一PSFCH的最小时间间隔。
综上,本申请实施例通过以上实施方式,能够使终端适应sub-slot为粒度的副链路传输处理的时间要求,从而能够提高副链路传输性能。
本申请实施例中的副链路传输处理装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的副链路传输处理装置能够实现图2至图7的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
图9示出了本申请实施例提供的一种副链路传输配置方法的流程图。如图9所示,副链路传输配置方法包括以下步骤:
步骤401:网络侧设备发送第一消息,所述第一消息包括第一配置信息,所述第一配置信息用于配置N和i中的至少一者,所述N和所述i中的至少一者用于终端确定监听窗口的结束位置。
在一些实施例中,所述监听窗口的结束位置包括以下任一项:
目标时隙之前的第N个时隙中的第i个子时隙的开始位置,所述目标时隙为所述资源选择触发时刻所在的时隙;
所述目标时隙之前的第N个时隙中的第i个子时隙PSCCH的结束位置;
所述目标时隙之前的第N个时隙中的第i个子时隙PSCCH的开始位置;
所述目标时隙之前的第N个时隙的时隙PSCCH的结束位置;
其中,所述子时隙PSCCH为以子时隙粒度传输的PSSCH所关联的PSCCH,所述时隙PSCCH为以时隙粒度传输的PSSCH所关联的PSCCH。
在一些实施例中,还包括:
所述网络侧设备发送第二消息,所述第二消息包括第二配置信息,所述第二配置信息用于指示终端是否对所述监听窗口的最后M个时隙中的第一PSCCH进行检测,所述第一PSCCH为以子时隙粒度传输的PSSCH所关联的PSCCH,M为大于或等于1的整数。
在一些实施例中,还包括:
所述网络侧设备发送第三消息,所述第三消息包括第一物理副链路反馈信道PSFCH的配置参数,所述第一PSFCH为第一PSSCH对应的PSFCH,所述第一PSSCH为以子时隙粒度传输的PSSCH,所述第一PSFCH的配置参数包括资源配置参数和反馈时序配置参数中的至少一项。
在一些实施例中,所述第一PSFCH的配置参数与第二PSFCH的配置参数互相独立,所述第二PSFCH为第二PSSCH对应的PSFCH,所述第二PSSCH为以时隙粒度传输的PSSCH。
在一些实施例中,所述第一PSFCH的配置参数包括以下至少一种:
所述第一PSFCH的时域资源配置参数;
所述第一PSFCH的频域资源配置参数;
所述第一PSFCH的码域资源配置参数;
所述第一PSSCH与所述第一PSFCH的最小时间间隔。
本申请实施例中,网络侧设备通过对副链路传输的相关参数进行配置,能够使终端适应sub-slot为粒度的副链路传输处理的时间要求,从而能够提高副链路传输性能。
本申请实施例的相关说明可参见图2至图7的方法实施例的相关说明,并能够达到相同的有益效果,为避免重复,对此不作赘述。
本申请实施例提供的副链路传输配置方法,执行主体可以为副链路传输配置装置。本申请实施例中以副链路传输配置装置执行副链路传输配置方法为例,说明本申请实施例提供的副链路传输配置装置。
图10示出了本申请实施例提供的副链路传输配置装置的结构图。如图 10所示,副链路传输配置500包括:
第一发送模块501,用于发送第一消息,所述第一消息包括第一配置信息,所述第一配置信息用于配置N和i中的至少一者,所述N和所述i中的至少一者用于终端确定监听窗口的结束位置。
可选地,所述监听窗口的结束位置包括以下任一项:
目标时隙之前的第N个时隙中的第i个子时隙的开始位置,所述目标时隙为所述资源选择触发时刻所在的时隙;
所述目标时隙之前的第N个时隙中的第i个子时隙PSCCH的结束位置;
所述目标时隙之前的第N个时隙中的第i个子时隙PSCCH的开始位置;
所述目标时隙之前的第N个时隙的时隙PSCCH的结束位置;
其中,所述子时隙PSCCH为以子时隙粒度传输的PSSCH所关联的PSCCH,所述时隙PSCCH为以时隙粒度传输的PSSCH所关联的PSCCH。
可选地,副链路传输配置500还包括:
第二发送模块,用于发送第二消息,所述第二消息包括第二配置信息,所述第二配置信息用于指示终端是否对所述监听窗口的最后M个时隙中的第一PSCCH进行检测,所述第一PSCCH为以子时隙粒度传输的PSSCH所关联的PSCCH,M为大于或等于1的整数。
可选地,副链路传输配置500还包括:
第三发送模块,用于发送第三消息,所述第三消息包括第一物理副链路反馈信道PSFCH的配置参数,所述第一PSFCH为第一PSSCH对应的PSFCH,所述第一PSSCH为以子时隙粒度传输的PSSCH,所述第一PSFCH的配置参数包括资源配置参数和反馈时序配置参数中的至少一项。
可选地,所述第一PSFCH的配置参数与第二PSFCH的配置参数互相独立,所述第二PSFCH为第二PSSCH对应的PSFCH,所述第二PSSCH为以时隙粒度传输的PSSCH。
可选地,所述第一PSFCH的配置参数包括以下至少一种:
所述第一PSFCH的时域资源配置参数;
所述第一PSFCH的频域资源配置参数;
所述第一PSFCH的码域资源配置参数;
所述第一PSSCH与所述第一PSFCH的最小时间间隔。
本申请实施例中,通过对副链路传输的相关参数进行配置,能够使终端适应sub-slot为粒度的副链路传输处理的时间要求,从而能够提高副链路传输性能。
本申请实施例中的副链路传输配置装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的副链路传输配置装置能够实现图9的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图11所示,本申请实施例还提供一种通信设备600,包括处理器601和存储器602,存储器602上存储有可在所述处理器601上运行的程序或指令,例如,该通信设备600为终端时,该程序或指令被处理器601执行时实现上述副链路传输处理方法实施例的各个步骤,且能达到相同的技术效果。该通信设备600为网络侧设备时,该程序或指令被处理器601执行时实现上述副链路传输配置方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种终端,包括处理器和通信接口,所述通信接口或所述处理器用于确定物理副链路第一信道的传输粒度,所述物理副链路第一信道的传输粒度包括时隙粒度和子时隙粒度中的至少一项,所述物理副链路第一信道包括PSCCH和PSSCH中的至少一项,所述通信接口或所述处理器还用于进行副链路资源选择,所述副链路资源选择的粒度包括时隙粒度和子时隙粒度中的至少一项,所述通信接口或所述处理器还用于根据选择的副链路资源进行副链路传输,所述副链路传输的粒度包括时隙粒度和子时隙粒度中的至少一项。该终端实施例与上述终端侧方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该终端实施例中,且能达到相同的技术效果。具体地,图12为实现本申请实施例的一种终端的硬件结构示意图。
该终端700包括但不限于:射频单元701、网络模块702、音频输出单元703、输入单元704、传感器705、显示单元706、用户输入单元707、接口单元708、存储器709以及处理器710等中的至少部分部件。
本领域技术人员可以理解,终端700还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器710逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图12中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元704可以包括图形处理单元(Graphics Processing Unit,GPU)7041和麦克风7042,图形处理器7041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元706可包括显示面板7061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板7061。用户输入单元707包括触控面板7071以及其他输入设备7072中的至少一种。触控面板7071,也称为触摸屏。触控面板7071可包括触摸检测装置和触摸控制器两个部分。其他输入设备7072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元701接收来自网络侧设备的下行数据后,可以传输给处理器710进行处理;另外,射频单元701可以向网络侧设备发送上行数据。通常,射频单元701包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器709可用于存储软件程序或指令以及各种数据。存储器709可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器709可以包括易失性存储器或非易失性存储器,或者,存储器709可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically  EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器709包括但不限于这些和任意其它适合类型的存储器。
处理器710可包括一个或多个处理单元;可选的,处理器710集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器710中。
其中,射频单元701和处理器710中的至少一者用于:
确定物理副链路第一信道的传输粒度,所述物理副链路第一信道的传输粒度包括时隙粒度和子时隙粒度中的至少一项,所述物理副链路第一信道包括物理副链路控制信道PSCCH和物理副链路共享信道PSSCH中的至少一项;
进行副链路资源选择,所述副链路资源选择的粒度包括时隙粒度和子时隙粒度中的至少一项;
根据选择的副链路资源进行副链路传输,所述副链路传输的粒度包括时隙粒度和子时隙粒度中的至少一项。
在本申请实施例中,考虑到系统可引入子时隙粒度的副链路传输,终端在副链路传输处理过程中,可先确定物理副链路第一信道的传输粒度,而后再进行副链路资源选择以及副链路传输,这样,终端可根据物理副链路第一信道的传输粒度,采用合适的处理方式进行副链路资源选择以及副链路传输,从而能够提高副链路传输性能。
可选地,射频单元701和处理器710中的至少一者还用于:
确定资源选择触发时刻和监听窗口,所述监听窗口的结束位置与目标时隙的开始位置的间隔大于预设值,所述目标时隙为所述资源选择触发时刻所 在的时隙;
在所述监听窗口的结束位置之前,对PSCCH进行检测,以得到检测结果;
根据所述检测结果,在所述资源选择触发时刻之后进行副链路资源选择。
可选地,所述副链路资源选择的粒度为时隙粒度;
所述监听窗口的结束位置包括以下任一项:
所述目标时隙之前的第N个时隙中的第i个子时隙的开始位置;
所述目标时隙之前的第N个时隙中的第i个子时隙PSCCH的结束位置;
所述目标时隙之前的第N个时隙中的第i个子时隙PSCCH的开始位置;
所述目标时隙之前的第N个时隙的时隙PSCCH的结束位置;
其中,所述N和所述i中的至少一者基于协议约定或由网络配置或预配置;所述子时隙PSCCH为以子时隙粒度传输的PSSCH所关联的PSCCH,所述时隙PSCCH为以时隙粒度传输的PSSCH所关联的PSCCH。
可选地,所述副链路资源选择的粒度为时隙粒度;
在所述监听窗口的最后M个时隙中包括第一PSCCH的情况下,处理器710还用于:
确定是否对所述第一PSCCH进行检测;
其中,所述第一PSCCH为以子时隙粒度传输的PSSCH所关联的PSCCH,M为大于或等于1的整数。
可选地,处理器710还用于以下至少一项:
基于终端实现,确定是否对所述第一PSCCH进行检测;
基于协议约定或网络配置信息或预配置信息,确定是否对所述第一PSCCH进行检测;
根据所述第一PSCCH至所述目标时隙的开始位置的时长,确定是否对所述第一PSCCH进行检测。
可选地,所述副链路资源选择的粒度为子时隙粒度,且所述副链路传输的粒度为子时隙粒度;
射频单元701和处理器710中的至少一者还用于:
根据预设的编号规则,以子时隙粒度对时域资源进行编号;
根据时域资源的编号,进行副链路资源选择。
可选地,射频单元701和处理器710中的至少一者还用于:
根据时域资源的编号,确定副链路资源选择时间参数;
根据所述副链路资源选择时间参数,进行副链路资源选择;
其中,所述副链路资源选择时间参数包括以下至少一项:
监听窗口的开始位置;
监听窗口的结束位置;
资源选择窗口的开始位置;
资源选择触发时刻;
资源重评估时刻;
资源抢占检查时刻。
可选地,射频单元701和处理器710中的至少一者还用于:
确定第一物理副链路反馈信道PSFCH,所述第一PSFCH为第一PSSCH对应的PSFCH,所述第一PSSCH为以子时隙粒度传输的PSSCH。
可选地,射频单元701和处理器710中的至少一者还用于以下至少一项:
所述终端根据所述第一PSSCH的时隙标识,确定所述第一PSFCH;
所述终端根据所述第一PSSCH的编号,确定所述第一PSFCH,所述第一PSSCH的编号与所述第一PSFCH存在预设映射关系。
可选地,射频单元701和处理器710中的至少一者还用于:
在所述第一PSSCH传输的数据为有效数据的情况下,所述终端确定第一PSFCH。
可选地,所述副链路传输的粒度为子时隙粒度;
射频单元701和处理器710中的至少一者还用于:
根据预设的编号规则,以子时隙粒度对时域资源进行编号;
根据时域资源的编号,确定第一PSFCH反馈资源。
可选地,射频单元701和处理器710中的至少一者还用于:
获取所述第一PSFCH的配置参数,所述第一PSFCH的配置参数通过协议约定或通过网络侧设备配置或预配置,所述配置参数包括资源配置参数和反馈时序配置参数中的至少一项;
根据所述第一PSFCH的配置参数,确定所述第一PSFCH。
可选地,所述第一PSFCH的配置参数与第二PSFCH的配置参数互相独立,所述第二PSFCH为第二PSSCH对应的PSFCH,所述第二PSSCH为以时隙粒度传输的PSSCH。
可选地,所述第一PSFCH的配置参数包括以下至少一种:
所述第一PSFCH的时域资源配置参数;
所述第一PSFCH的频域资源配置参数;
所述第一PSFCH的码域资源配置参数;
所述第一PSSCH与所述第一PSFCH的最小时间间隔。
综上,本申请实施例中,通过以上实施方式,能够使终端适应sub-slot为粒度的副链路传输处理的时间要求,从而能够提高副链路传输性能。
本申请实施例还提供一种网络侧设备,包括处理器和通信接口,所述通信接口用于发送第一消息,所述第一消息包括第一配置信息,所述第一配置信息用于将监听窗口的结束位置配置为以下任一项:目标时隙之前的第N个时隙中的第i个子时隙的开始位置,所述目标时隙为所述资源选择触发时刻所在的时隙;所述目标时隙之前的第N个时隙中的第i个子时隙PSCCH的结束位置;所述目标时隙之前的第N个时隙中的第i个子时隙PSCCH的开始位置;所述目标时隙之前的第N个时隙的时隙PSCCH的结束位置;其中,所述子时隙PSCCH为以子时隙粒度传输的PSSCH所关联的PSCCH,所述时隙PSCCH为以时隙粒度传输的PSSCH所关联的PSCCH。该网络侧设备实施例与上述网络侧设备方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该网络侧设备实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种网络侧设备。如图13所示,该网络侧设备800包括:天线81、射频装置82、基带装置83、处理器84和存储器85。天线81与射频装置82连接。在上行方向上,射频装置82通过天线81接收信息,将接收的信息发送给基带装置83进行处理。在下行方向上,基带装置83对要发送的信息进行处理,并发送给射频装置82,射频装置82对收到的信息进行处理后经过天线81发送出去。
以上实施例中网络侧设备执行的方法可以在基带装置83中实现,该基带装置83包括基带处理器。
基带装置83例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图13所示,其中一个芯片例如为基带处理器,通过总线接口与存储器85连接,以调用存储器85中的程序,执行以上方法实施例中所示的网络设备操作。
该网络侧设备还可以包括网络接口86,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本发明实施例的网络侧设备800还包括:存储在存储器85上并可在处理器84上运行的指令或程序,处理器84调用存储器85中的指令或程序执行图10所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述副链路传输处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述副链路传输处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述副链路传输处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种通信系统,包括:终端及网络侧设备,所述终端可用于执行如上所述的副链路传输处理方法的步骤,所述网络侧色板可用于执行如上所述的副链路传输配置方法的步骤。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (25)

  1. 一种副链路传输处理方法,包括:
    终端确定物理副链路第一信道的传输粒度,所述物理副链路第一信道的传输粒度包括时隙和子时隙中的至少一项,所述物理副链路第一信道包括物理副链路控制信道PSCCH和物理副链路共享信道PSSCH中的至少一项;
    所述终端进行副链路资源选择,所述副链路资源选择的粒度包括时隙粒度和子时隙粒度中的至少一项;
    所述终端根据选择的副链路资源进行副链路传输,所述副链路传输的粒度包括时隙粒度和子时隙粒度中的至少一项。
  2. 根据权利要求1所述的方法,其中,所述终端进行副链路资源选择之前,所述方法还包括:
    所述终端确定资源选择触发时刻和监听窗口,所述监听窗口的结束位置与目标时隙的开始位置的间隔大于预设值,所述目标时隙为所述资源选择触发时刻所在的时隙;
    所述终端在所述监听窗口的结束位置之前,对PSCCH进行检测,以得到检测结果;
    所述终端进行副链路资源选择,包括:
    所述终端根据所述检测结果,在所述资源选择触发时刻之后进行副链路资源选择。
  3. 根据权利要求2所述的方法,其中,所述副链路资源选择的粒度为时隙粒度;
    所述监听窗口的结束位置包括以下任一项:
    所述目标时隙之前的第N个时隙中的第i个子时隙的开始位置;
    所述目标时隙之前的第N个时隙中的第i个子时隙PSCCH的结束位置;
    所述目标时隙之前的第N个时隙中的第i个子时隙PSCCH的开始位置;
    所述目标时隙之前的第N个时隙的时隙PSCCH的结束位置;
    其中,所述N和所述i中的至少一者基于协议约定或由网络配置或预配置;所述子时隙PSCCH为以子时隙粒度传输的PSSCH所关联的PSCCH,所 述时隙PSCCH为以时隙粒度传输的PSSCH所关联的PSCCH。
  4. 根据权利要求2所述的方法,其中,所述副链路资源选择的粒度为时隙粒度;
    在所述监听窗口的最后M个时隙中包括第一PSCCH的情况下,所述方法还包括:
    所述终端确定是否对所述第一PSCCH进行检测;
    其中,所述第一PSCCH为以子时隙粒度传输的PSSCH所关联的PSCCH,M为大于或等于1的整数。
  5. 根据权利要求4所述的方法,其中,所述终端确定是否对所述第一PSCCH进行检测,包括以下至少一项:
    所述终端基于终端实现,确定是否对所述第一PSCCH进行检测;
    所述终端基于协议约定或网络配置信息或预配置信息,确定是否对所述第一PSCCH进行检测;
    所述终端根据所述第一PSCCH至所述目标时隙的开始位置的时长,确定是否对所述第一PSCCH进行检测。
  6. 根据权利要求1所述的方法,其中,所述副链路资源选择的粒度为子时隙粒度,且所述副链路传输的粒度为子时隙粒度;
    所述终端进行副链路资源选择,包括:
    所述终端根据预设的编号规则,以子时隙粒度对时域资源进行编号;
    所述终端根据时域资源的编号,进行副链路资源选择。
  7. 根据权利要求6所述的方法,其中,所述终端根据时域资源的编号,进行副链路资源选择,包括:
    所述终端根据时域资源的编号,确定副链路资源选择时间参数;
    所述终端根据所述副链路资源选择时间参数,进行副链路资源选择;
    其中,所述副链路资源选择时间参数包括以下至少一项:
    监听窗口的开始位置;
    监听窗口的结束位置;
    资源选择窗口的开始位置;
    资源选择触发时刻;
    资源重评估时刻;
    资源抢占检查时刻。
  8. 根据权利要求1所述的方法,所述方法还包括:
    所述终端确定第一物理副链路反馈信道PSFCH,所述第一PSFCH为第一PSSCH对应的PSFCH,所述第一PSSCH为以子时隙粒度传输的PSSCH。
  9. 根据权利要求8所述的方法,其中,所述终端确定第一PSFCH,包括以下至少一项:
    所述终端根据所述第一PSSCH的时隙标识,确定所述第一PSFCH;
    所述终端根据所述第一PSSCH的编号,确定所述第一PSFCH,所述第一PSSCH的编号与所述第一PSFCH存在预设映射关系。
  10. 根据权利要求8所述的方法,其中,所述终端确定第一PSFCH,包括:
    在所述第一PSSCH传输的数据为有效数据的情况下,所述终端确定第一PSFCH。
  11. 根据权利要求8所述的方法,其中,所述副链路传输的粒度为子时隙粒度;
    所述终端确定第一PSFCH,包括:
    所述终端根据预设的编号规则,以子时隙粒度对时域资源进行编号;
    所述终端根据时域资源的编号,确定第一PSFCH反馈资源。
  12. 根据权利要求8所述的方法,所述方法还包括:
    所述终端获取所述第一PSFCH的配置参数,所述第一PSFCH的配置参数通过协议约定或通过网络侧设备配置或预配置,所述配置参数包括资源配置参数和反馈时序配置参数中的至少一项;
    所述终端确定第一PSFCH,包括:
    所述终端根据所述第一PSFCH的配置参数,确定所述第一PSFCH。
  13. 根据权利要求12所述的方法,其中,所述第一PSFCH的配置参数与第二PSFCH的配置参数互相独立,所述第二PSFCH为第二PSSCH对应的PSFCH,所述第二PSSCH为以时隙粒度传输的PSSCH。
  14. 根据权利要求12或13所述的方法,其中,所述第一PSFCH的配置 参数包括以下至少一种:
    所述第一PSFCH的时域资源配置参数;
    所述第一PSFCH的频域资源配置参数;
    所述第一PSFCH的码域资源配置参数;
    所述第一PSSCH与所述第一PSFCH的最小时间间隔。
  15. 一种副链路传输配置方法,包括:
    网络侧设备发送第一消息,所述第一消息包括第一配置信息,所述第一配置信息用于配置N和i中的至少一者,所述N和所述i中的至少一者用于终端确定监听窗口的结束位置。
  16. 根据权利要求15所述的方法,其中,还包括:所述监听窗口的结束位置包括以下任一项:
    目标时隙之前的第N个时隙中的第i个子时隙的开始位置,所述目标时隙为资源选择触发时刻所在的时隙;
    所述目标时隙之前的第N个时隙中的第i个子时隙PSCCH的结束位置;
    所述目标时隙之前的第N个时隙中的第i个子时隙PSCCH的开始位置;
    所述目标时隙之前的第N个时隙的时隙PSCCH的结束位置;
    其中,所述子时隙PSCCH为以子时隙粒度传输的PSSCH所关联的PSCCH,所述时隙PSCCH为以时隙粒度传输的PSSCH所关联的PSCCH。
  17. 根据权利要求15所述的方法,所述方法还包括:
    所述网络侧设备发送第二消息,所述第二消息包括第二配置信息,所述第二配置信息用于指示终端是否对所述监听窗口的最后M个时隙中的第一PSCCH进行检测,所述第一PSCCH为以子时隙粒度传输的PSSCH所关联的PSCCH,M为大于或等于1的整数。
  18. 根据权利要求15所述的方法,所述方法还包括:
    所述网络侧设备发送第三消息,所述第三消息包括第一物理副链路反馈信道PSFCH的配置参数,所述第一PSFCH为第一PSSCH对应的PSFCH,所述第一PSSCH为以子时隙粒度传输的PSSCH,所述第一PSFCH的配置参数包括资源配置参数和反馈时序配置参数中的至少一项。
  19. 根据权利要求18所述的方法,其中,所述第一PSFCH的配置参数 与第二PSFCH的配置参数互相独立,所述第二PSFCH为第二PSSCH对应的PSFCH,所述第二PSSCH为以时隙粒度传输的PSSCH。
  20. 根据权利要求18或19所述的方法,其中,所述第一PSFCH的配置参数包括以下至少一种:
    所述第一PSFCH的时域资源配置参数;
    所述第一PSFCH的频域资源配置参数;
    所述第一PSFCH的码域资源配置参数;
    所述第一PSSCH与所述第一PSFCH的最小时间间隔。
  21. 一种副链路传输处理装置,包括:
    第一确定模块,用于确定物理副链路第一信道的传输粒度,所述物理副链路第一信道的传输粒度包括时隙粒度和子时隙粒度中的至少一项,所述物理副链路第一信道包括物理副链路控制信道PSCCH和物理副链路共享信道PSSCH中的至少一项;
    选择模块,用于进行副链路资源选择,所述副链路资源选择的粒度包括时隙粒度和子时隙粒度中的至少一项;
    传输模块,用于终端根据选择的副链路资源进行副链路传输,所述副链路传输的粒度包括时隙粒度和子时隙粒度中的至少一项。
  22. 一种副链路传输配置装置,包括:
    第一发送模块,用于发送第一消息,所述第一消息包括第一配置信息,所述第一配置信息用于配置N和i中的至少一者,所述N和所述i中的至少一者用于终端确定监听窗口的结束位置。
  23. 一种终端,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,其中,所述程序或指令被所述处理器执行时实现如权利要求1至14中任一项所述的副链路传输处理方法的步骤。
  24. 一种网络侧设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,其中,所述程序或指令被所述处理器执行时实现如权利要求15至20中任一项所述的副链路传输配置方法的步骤。
  25. 一种可读存储介质,所述可读存储介质上存储程序或指令,其中,所述程序或指令被处理器执行时实现如权利要求1至14中任一项所述的副链 路传输处理方法,或者实现如权利要求15至20中任一项所述的副链路传输配置方法的步骤。
PCT/CN2023/101768 2022-06-22 2023-06-21 副链路传输处理方法、副链路传输配置方法、装置、终端和网络侧设备 WO2023246880A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210716259.0A CN117320160A (zh) 2022-06-22 2022-06-22 副链路传输处理方法、副链路传输配置方法、装置、终端和网络侧设备
CN202210716259.0 2022-06-22

Publications (1)

Publication Number Publication Date
WO2023246880A1 true WO2023246880A1 (zh) 2023-12-28

Family

ID=89235882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/101768 WO2023246880A1 (zh) 2022-06-22 2023-06-21 副链路传输处理方法、副链路传输配置方法、装置、终端和网络侧设备

Country Status (2)

Country Link
CN (1) CN117320160A (zh)
WO (1) WO2023246880A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101873537A (zh) * 2009-04-22 2010-10-27 中兴通讯股份有限公司 业务指示方法、监听窗口扩展方法、休眠参数调整方法
CN110651515A (zh) * 2017-05-04 2020-01-03 株式会社Ntt都科摩 资源配置和调度方法、基站以及用户设备
WO2020033628A1 (en) * 2018-08-08 2020-02-13 Idac Holdings, Inc Sidelink resource selection and control
US20210250772A1 (en) * 2020-02-11 2021-08-12 Samsung Electronics Co., Ltd. Resource selection for sidelink
WO2021238920A1 (zh) * 2020-05-27 2021-12-02 华为技术有限公司 指示侧行链路资源的方法、装置及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101873537A (zh) * 2009-04-22 2010-10-27 中兴通讯股份有限公司 业务指示方法、监听窗口扩展方法、休眠参数调整方法
CN110651515A (zh) * 2017-05-04 2020-01-03 株式会社Ntt都科摩 资源配置和调度方法、基站以及用户设备
WO2020033628A1 (en) * 2018-08-08 2020-02-13 Idac Holdings, Inc Sidelink resource selection and control
US20210250772A1 (en) * 2020-02-11 2021-08-12 Samsung Electronics Co., Ltd. Resource selection for sidelink
WO2021238920A1 (zh) * 2020-05-27 2021-12-02 华为技术有限公司 指示侧行链路资源的方法、装置及系统

Also Published As

Publication number Publication date
CN117320160A (zh) 2023-12-29

Similar Documents

Publication Publication Date Title
WO2023116591A1 (zh) 传输确定方法、装置、终端、网络侧设备和存储介质
WO2023116883A1 (zh) Msg1重复传输的时频资源确定方法、装置及终端
WO2023284801A1 (zh) Tci状态确定方法、装置、终端及网络侧设备
WO2023246880A1 (zh) 副链路传输处理方法、副链路传输配置方法、装置、终端和网络侧设备
JP2024502344A (ja) 省電力処理方法、及び省電力処理装置
CN115701730A (zh) 旁链路反馈信息的信道接入方法、处理方法及相关设备
WO2023207804A1 (zh) 信道接入方法、装置及通信设备
WO2024027561A1 (zh) 传输方法及装置
WO2023143532A1 (zh) 资源选择方法及装置、终端
WO2023116903A1 (zh) Sl信号处理方法、设备及可读存储介质
WO2023116905A1 (zh) 定位参考信号的处理方法、设备及可读存储介质
WO2023246587A1 (zh) 传输方法、设备及可读存储介质
WO2023088480A1 (zh) 侧链路资源确定方法及终端
WO2023030096A1 (zh) 传输处理方法、装置、终端及存储介质
WO2023246586A1 (zh) 传输方法、设备及可读存储介质
WO2023198173A1 (zh) 确定sl定位参考信号资源的方法、终端及网络侧设备
WO2023116904A1 (zh) 定位方法、设备及可读存储介质
WO2024067573A1 (zh) Sl资源分配方法、装置及终端
WO2023051540A1 (zh) 收端辅助信息的传输方法、装置、终端及网络侧设备
WO2023109763A1 (zh) Prach传输方法、装置及终端
WO2023125304A1 (zh) 通信操作执行方法、装置、终端和存储介质
WO2023011532A1 (zh) 波束应用时间的确定方法、终端及网络侧设备
WO2023185819A1 (zh) Pdcch监听方法、终端、网络侧设备及介质
WO2024099188A1 (zh) 传输位置确定方法、装置、用户设备及存储介质
WO2023109759A1 (zh) Prach传输方法、装置及终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23826525

Country of ref document: EP

Kind code of ref document: A1