WO2024099188A1 - 传输位置确定方法、装置、用户设备及存储介质 - Google Patents

传输位置确定方法、装置、用户设备及存储介质 Download PDF

Info

Publication number
WO2024099188A1
WO2024099188A1 PCT/CN2023/128635 CN2023128635W WO2024099188A1 WO 2024099188 A1 WO2024099188 A1 WO 2024099188A1 CN 2023128635 W CN2023128635 W CN 2023128635W WO 2024099188 A1 WO2024099188 A1 WO 2024099188A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
cpe
start position
resources
resource
Prior art date
Application number
PCT/CN2023/128635
Other languages
English (en)
French (fr)
Inventor
王欢
纪子超
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2024099188A1 publication Critical patent/WO2024099188A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/40Resource management for direct mode communication, e.g. D2D or sidelink

Definitions

  • the present application belongs to the field of communication technology, and specifically relates to a transmission location determination method, device, user equipment and storage medium.
  • CPE cyclic prefix extension
  • the CPE start position is used to solve the problem of collision between UEs, the impact on the UE transmission performance is not considered. Therefore, the reliability of the UE when selecting the CPE start position to transmit SL resources is low.
  • the embodiments of the present application provide a transmission position determination method, apparatus, user equipment, and storage medium, which can solve the problem of low reliability when the UE selects a CPE starting position to transmit SL resources.
  • a method for determining a transmission position comprising: a first user equipment UE selects a CPE starting position from a plurality of cyclic prefix extension CPE starting positions to perform a sidelink SL transmission.
  • a transmission position determination device comprising: an execution module; the execution module is used to select a CPE start position from multiple cyclic prefix extension CPE start positions to perform sidelink SL transmission.
  • a UE which includes a processor and a memory, wherein the memory stores a program or instruction that can be executed on the processor, and when the program or instruction is executed by the processor, the steps of the method described in the first aspect are implemented.
  • a UE comprising a processor and a communication interface, wherein the processor is used for a first user equipment UE to select a CPE starting position from multiple cyclic prefix extended CPE starting positions to perform sidelink SL transmission.
  • a readable storage medium on which a program or instruction is stored.
  • the program or instruction is executed by a processor, the steps of the method described in the first aspect are implemented.
  • a chip comprising a processor and a communication interface, the communication interface and The processor is coupled, and the processor is used to run a program or instruction to implement the method as described in the first aspect.
  • a computer program/program product is provided, wherein the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the steps of the transmission position determination method as described in the first aspect.
  • the first user equipment UE can select a CPE starting position from multiple CPE starting positions to perform sidelink SL transmission.
  • the first UE can select a suitable CPE starting position from multiple CPE starting positions to perform SL transmission before performing SL transmission, the reliability of transmitting SL resources is improved.
  • FIG1 is a schematic diagram of the architecture of a communication system provided in an embodiment of the present application.
  • FIG2 is a schematic diagram of a flow chart of a method for determining a transmission position provided in an embodiment of the present application
  • FIG3 is a schematic diagram of the structure of a transmission position determination device provided in an embodiment of the present application.
  • FIG4 is a schematic diagram of the hardware structure of a communication device provided in an embodiment of the present application.
  • FIG5 is a schematic diagram of the hardware structure of a UE provided in an embodiment of the present application.
  • first, second, etc. in the specification and claims of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It should be understood that the terms used in this way are interchangeable under appropriate circumstances, so that the embodiments of the present application can be implemented in an order other than those illustrated or described here, and the objects distinguished by “first” and “second” are generally of the same type, and the number of objects is not limited.
  • the first object can be one or more.
  • “and/or” in the specification and claims represents at least one of the connected objects, and the character “/" generally represents that the objects associated with each other are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • NR New Radio
  • 6G 6th Generation
  • FIG1 is a block diagram of a wireless communication system applicable to the embodiment of the present application.
  • the wireless communication system includes a terminal 11 and a network side device 12.
  • the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a palm computer, a netbook, an ultra-mobile personal computer (ultra-mobile personal computer, UMPC), Mobile Internet Device (MID), augmented reality (AR)/virtual reality (VR) equipment, robots, wearable devices (Wearable Device), vehicle-mounted equipment (VUE), pedestrian terminal (PUE), smart home (home appliances with wireless communication functions, such as refrigerators, TVs, washing machines or furniture, etc.), game consoles, personal computers (PC), ATMs or self-service machines and other terminal side devices, wearable devices include: smart watches, smart bracelets, smart headphones, smart glasses, smart jewelry (smart bracelets, smart bracelets, smart rings, smart necklaces
  • the network side device 12 may include access network equipment or core network equipment, wherein the access network device 12 may also be called wireless access network equipment, wireless access network (Radio Access Network, RAN), wireless access network function or wireless access network unit.
  • the access network device 12 may include a base station, a WLAN access point or a WiFi node, etc.
  • the base station may be referred to as a node B, an evolved node B (eNB), an access point, a base transceiver station (Base Transceiver Station, BTS), a radio base station, a radio transceiver, a basic service set (Basic Service Set, BSS), an extended service set (Extended Service Set, ESS), a home B node, a home evolved B node, a transmitting and receiving point (Transmitting Receiving Point, TRP) or some other suitable term in the field.
  • the base station is not limited to specific technical vocabulary. It should be noted that in the embodiment of the present application, only the base station in the NR system is used as an example for introduction, and the specific type of the base station is not limited.
  • NR New Radio
  • mode 1 base station scheduling
  • mode 2 UE autonomous resource selection
  • the resource allocation method of base station scheduling the sidelink resources used by the UE for data transmission are determined by the base station and notified to the downlink UE through downlink signaling;
  • the resource allocation method of UE autonomous selection the UE selects available transmission resources from the (pre)configured resource pool.
  • the UE Before selecting resources, the UE first performs channel monitoring, selects a resource set with less interference based on the channel monitoring results, and then randomly selects resources for transmission from the resource set.
  • the physical (PHY) layer After the downlink UE resource selection is triggered, the physical (PHY) layer first determines the resource selection window.
  • the lower boundary of the resource selection window is T1 time after the resource selection is triggered, and the upper boundary of the resource selection is T2 time after the trigger.
  • T1 is the value selected by the UE implementation in the range of [T1_min, T1_max]
  • T2 is the value selected by the UE implementation within the remaining packet delay budget (PDB) of its TB transmission.
  • T2 is no earlier than T1.
  • the PHY layer Before the UE selects resources, the PHY layer needs to determine the candidate resource set for resource selection, where the number of candidate resource sub-channels is determined by the Medium Access Control (MAC) layer.
  • the UE compares the estimated Reference Signal Received Power (RSRP) measurement value on the resources in the resource selection window (for example, estimated by monitoring the Physical SideLink Control Channel (PSCCH)/Physical SideLink Shared Channel (PSSCH)) with the corresponding RSRP threshold value (threshold). If the RSRP of the current transmission resource is higher than the RSRP threshold, the resource is excluded and cannot be included in the candidate resource set. After resource exclusion, the remaining resources in the resource selection window constitute the candidate resource set.
  • RSRP Reference Signal Received Power
  • the resources in the candidate resource set must account for no less than x% of the resources in the resource selection window. If it is less than x%, the RSRP threshold needs to be increased by a step value (3dB), and then the resource exclusion operation is performed until no less than the above x% of resources can be selected.
  • the above RSRP comparison is related to the priority of the TB to be transmitted and the priority value demodulated on the PSCCH, and the specific process is not repeated here.
  • the PHY layer reports the candidate resource set to the MAC layer, and the MAC layer randomly selects transmission resources from the candidate resource set. The number of selected resources is determined according to the decision of the MAC layer.
  • LBT Listen Before Talk
  • unlicensed bands can operate in 5GHz, 37GHz and 60GHz bands. Since unlicensed bands are shared by multiple technologies (RATs), such as WiFi, radar, LTE-LAA, etc., in some countries or regions, unlicensed bands must comply with regulations when used to ensure that all devices can use the resource fairly, such as LBT, maximum channel occupancy time (MCOT) and other rules.
  • RATs technologies
  • MCOT maximum channel occupancy time
  • ED energy detection
  • the channel When the detected power is lower than a threshold, the channel is considered to be idle and the transmission node can send. Otherwise, the channel is considered to be busy and the transmission node cannot send.
  • the transmission node can be a base station, UE, WiFi AP, etc. After the transmission node starts transmitting, the channel occupancy time (COT) cannot exceed MCOT.
  • the transmission node In addition, according to the occupied channel bandwidth (OCB) regulation, in the unlicensed frequency band, the transmission node must occupy at least 70% (60GHz) or 80% (5GHz) of the bandwidth of the entire frequency band during each transmission.
  • Type1LBT is a channel listening mechanism based on back-off. When the transmitting node senses that the channel is busy, it backs off and continues to listen until it senses that the channel is empty.
  • Type2C is that the sending node does not do LBT, that is, no LBT or immediate transmission.
  • Type2A and Type2B LBT are one-shot LBT, that is, the node does LBT once before transmission, and transmits if the channel is empty, and does not transmit if the channel is busy. The difference is that Type2A does LBT within 25us, which is applicable when the gap between two transmissions is greater than or equal to 25us when the COT is shared.
  • Type2B does LBT within 16us, which is applicable when the gap between two transmissions is equal to 16us when the COT is shared.
  • Type 2 LBT which is applicable to LAA/eLAA/FeLAA.
  • the gap between two transmissions is greater than or equal to 25us, and eNB and UE can use Type 2 LBT.
  • the types of LBT are Type 1, Type 2 and Type 3.
  • Type 1 is a channel listening mechanism based on fallback
  • Type 2 is one-shot LBT
  • 5us LBT is performed within 8us
  • Type 3 does not perform LBT.
  • resource preemption mechanism is supported, which is briefly described as follows. If the resources reserved by a UE overlap (partially overlap) with the resources reserved/selected by other UEs with higher priority services, and if the SL-RSRP measurement value of the UE on the relevant resources is greater than a certain associated SL-RSRP threshold value, the UE port physical layer (PHY) layer triggers the preemption condition pre-emption report to the MAC layer to trigger the reselection of resources.
  • PHY physical layer
  • the UE performs preemption detection at least at time 'm-T3', where time 'm' is the time when the resource is located or the time when the reservation information of the resource is sent, and T3 at least includes the time when the UE performs resource preemption detection.
  • the duration of the selection process The UE re-executes the resource selection step at least at 'm-T3' to obtain a candidate resource set. If the resource selected by the UE is still in the candidate resource set, the UE does not need to reselect the resource; otherwise, the UE selects a new transmission resource in the candidate set.
  • CPE is a padding signal added before SL transmission resources.
  • CPE can have multiple lengths. When performing SL transmission, UE will select a CPE length, or it can choose no CPE (the length of CPE can be randomly selected, or selected according to the priority of SL transmission. The higher the priority, the longer the CPE length). Then, if two UEs with overlapping resources select different CPE lengths, the starting positions of the SL transmission of the two UEs will be different, which can avoid collisions.
  • each UE can select a CPE start position for the SL transmission resource to transmit the SL resource according to the CPE start position. For example, when two UEs select different CPE start positions, the SL resources behind the CPE start position can be cancelled according to the CPE start position, and only the SL resources in front of the CPE start position can be transmitted, thereby avoiding collisions between UEs.
  • the CPE start position is used to solve the problem of collisions between UEs, the impact on the UE transmission performance is not considered. Therefore, the reliability of the UE when selecting the CPE start position to transmit the SL resource is low.
  • the first user equipment UE can select a CPE starting position from multiple CPE starting positions to perform sidelink SL transmission.
  • the first UE since the first UE can select a suitable CPE starting position from multiple CPE starting positions to perform SL transmission before performing SL transmission, the reliability of transmitting SL resources is improved.
  • the technical solution provided in the embodiments of the present application can be applied to scenarios of determining the location of transmission resources or other scenarios.
  • FIG. 2 shows a flow chart of a method for determining a transmission position provided in an embodiment of the present application.
  • the method for determining a transmission position may include the following step 101:
  • Step 101 The first UE selects a CPE starting position from multiple CPE starting positions and performs SL transmission.
  • step 101 can be specifically implemented through the following step 201.
  • Step 201 The first UE selects a CPE start position from multiple CPE start positions based on first information and performs sidelink SL transmission.
  • the first information includes at least one of the following: the transmission priority of the first UE, the remaining PDB duration associated with the transmission resource of the first UE, the number of failures of the first UE to perform LBT, the number of failures of the first UE to perform LBT, and the number of failures of the first UE to perform LBT. Duration, contention window size (CWS) size for the first UE to perform LBT, and usage scenario of CPE.
  • CWS contention window size
  • the selecting of a CPE starting position from multiple CPE starting positions includes three cases:
  • a CPE start position is selected from multiple CPE start positions
  • a CPE start position is selected from multiple CPE start positions and no CPE start position
  • a CPE start position is selected from a CPE start position and a non-CPE start position.
  • the first information includes a transmission priority of the first UE; the step 201 may be specifically implemented through the following steps 201a and 201b.
  • Step 201a The first UE determines a first transmission priority group according to the transmission priority of the first UE.
  • the above-mentioned first transmission priority group is the transmission priority group to which the transmission priority of the first UE belongs.
  • multiple transmission priorities belonging to a certain transmission priority range can be combined into a transmission priority group, and multiple CPEs belonging to a certain CPE length range can be combined into a CPE start position group to obtain multiple transmission priority groups and multiple CPE start position groups.
  • a mapping relationship between transmission priority groups and CPE start position groups may be agreed upon. For example, a transmission priority group with a higher average priority corresponds to a CPE start position group with a longer average length.
  • Step 201b The first UE selects a CPE start position from the first CPE start position group corresponding to the first transmission priority group and performs SL transmission.
  • the first UE can determine a first transmission priority group (i.e., the first transmission priority group) corresponding to the transmission priority of the first UE based on the transmission priority of the first UE, and then determine a first CPE start position group corresponding to the first transmission priority group based on the mapping relationship, so as to randomly select a CPE start position in the first CPE start position group to perform SL transmission.
  • a first transmission priority group i.e., the first transmission priority group
  • a mapping relationship between the remaining PDB length range and the CPE start position can be agreed upon. For example, the shorter the remaining PDB duration, the longer the corresponding CPE or the closer the CPE start position is.
  • the first UE may select a CPE start position corresponding to the remaining PDB duration associated with the transmission resources of the first UE from multiple CPE start positions based on the remaining PDB duration associated with the transmission resources of the first UE, and perform SL transmission.
  • a mapping relationship between the number of failures of the UE in performing LBT and the starting position of the CPE can be agreed upon. For example, the more failures the UE in performing LBT, the longer the corresponding CPE.
  • the first UE may select a CPE starting position corresponding to the number of failures of the first UE in performing LBT from multiple CPE starting positions, and perform SL transmission.
  • a mapping relationship between the duration of the UE performing LBT and the starting position of the CPE can be agreed upon. For example, the longer the duration of the UE performing LBT, the shorter the corresponding CPE.
  • the first UE may select a CPE start position corresponding to the duration of the LBT performed by the first UE from multiple CPE start positions according to the duration of the LBT performed by the first UE, and perform SL transmission.
  • a mapping relationship between the CWS size of the UE performing LBT and the starting position of the CPE can be agreed upon. For example, the larger the CWS of the UE performing LBT, the shorter the corresponding CPE.
  • the first UE may select a CPE starting position corresponding to the CWS size of LBT performed by the first UE from multiple CPE starting positions according to the CWS size of LBT performed by the first UE, and perform SL transmission.
  • the first information includes a usage scenario of the CPE; the step 201 can be specifically implemented through the following step 201c.
  • Step 201c The first UE selects a preset CPE start position from multiple CPE start positions and performs SL transmission.
  • the first UE when it transmits resources, it can select a preset CPE start position from multiple CPE start positions to perform SL transmission. Denied, other rules are adopted.
  • step 201c can be specifically implemented by the following step 201c1.
  • Step 201c1 When the first UE and the second UE share the COT, the first UE selects a preset CPE start position from multiple CPE start positions and performs SL transmission.
  • the above-mentioned second UE is a UE whose SL transmission resources overlap with those of the first UE.
  • the first UE when the first UE wants to use the COT shared by the second UE, the first UE may use a preset CPE start position for SL transmission before transmission (of the first shared COT).
  • the first UE if the first UE selects a CPE of preset length, and the Gap between the SL transmission with the UE sharing the COT can be less than a preset time (e.g., 16us), the first UE can use the CPE of preset length to perform SL transmission. Denied, use other rules.
  • a preset time e.g. 16us
  • step 201c can be specifically implemented by the following step 201c2.
  • Step 201c2 When the first UE continuously transmits, the first UE selects a preset CPE start position from multiple CPE start positions and performs SL transmission.
  • the first UE when the first UE uses CPE to fill the gap Gap between resources, it can select a preset CPE start position, deny, or adopt other rules.
  • the above-mentioned preset CPE starting position may be agreed upon by the protocol or configured or pre-configured.
  • the protocol stipulates that the CPE with the longest length or the CPE with the earliest transmission position is used.
  • the protocol may stipulate that the CPE can fill the gap so that the distance to the previous resource is less than a preset time (16us/25us), etc.
  • the first UE can achieve continuous transmission, thereby improving the channel access probability.
  • step 201 can be specifically implemented by the following step 201d.
  • Step 201d When the first condition is met, the first UE selects a CPE start position from multiple CPE start positions based on the first information and performs SL transmission.
  • the above-mentioned first condition can be understood as that the resource set corresponding to the first UE allows FDM between multiple UEs.
  • the transmission position determination method provided in the embodiment of the present application may further include the following step 301.
  • Step 301 When the first condition is met, the first UE randomly selects one of the CPE start positions from multiple CPE start positions. At the start of the CPE, SL transmission is performed.
  • the first UE can randomly select a CPE starting position to perform SL transmission.
  • the first UE may select a fixed CPE starting position, ensuring that transmissions of different priorities all have a chance to proceed.
  • the first condition includes any one of the following:
  • the reserved resources of the second UE overlap with the transmission resources of the first UE.
  • the second UE is a UE whose SL transmission resources overlap with those of the first UE.
  • the determination time of the above-mentioned first condition is: N time units before the first UE performs SL transmission, where N is a positive integer.
  • the first UE in the SL transmission time domain resources, when the resource set corresponding to the first UE allows FDM between multiple UEs, and the second UE reserved resources overlap with the transmission resources of the first UE (that is, the SL transmission does not have FDM transmission), the first UE can select a CPE start position from multiple CPE start positions based on the first information to perform SL transmission. Otherwise, a fixed CPE start position is used.
  • the overlapping portion of the above resources needs to be greater than a preset number.
  • the first UE may determine, based on the SCI associated with the demodulated transmission resources of the second UE, that "on the SL transmission resources, the reserved resources of the second UE all overlap with the transmission resources of the first UE.”
  • the resource set corresponding to the first UE allows FDM between multiple UEs, and when the reserved resources of the second UE are not detected on the SL transmission time domain resources, the first UE can select a CPE start position from multiple CPE start positions based on the first information to perform SL transmission. Otherwise, a fixed start position is used.
  • the first UE when it determines whether there are reserved resources for the second UE on the SL transmission resources, it can make the determination based on the SCI associated with the demodulated transmission resources of the second UE.
  • the second information associated with the SL transmission resource satisfies the second condition
  • the second information includes at least one of the following: the transmission priority of the first UE, the remaining PDB duration associated with the transmission resources of the first UE, and the propagation form associated with the transmission resources of the first UE.
  • the second condition includes any one of the following:
  • Condition A On the SL transmission time domain resources, the transmission priority of the first UE is higher than or not lower than the first threshold value;
  • the first UE can select a CPE starting position from multiple CPE starting positions based on the first information to perform SL transmission. Otherwise, a fixed starting position is used.
  • the above-mentioned first threshold value may be agreed upon/configured/pre-configured by protocol.
  • Condition B On the SL transmission time domain resource, the remaining PDB duration associated with the transmission resource of the first UE is less than or equal to the second threshold value;
  • the first UE can select a CPE start position from multiple CPE start positions based on the first information to perform SL transmission. Otherwise, a fixed start position is used.
  • the second threshold value may be agreed upon/configured/pre-configured by protocol.
  • the propagation form associated with the transmission resources of the first UE is a preset propagation form or a unicast propagation form.
  • the first UE can select a CPE start position from multiple CPE start positions based on the first information to perform SL transmission. Otherwise, a fixed start position is used.
  • the transmission priority associated with the first reserved resources is lower than or not higher than the transmission priority of the first UE.
  • the first reserved resource is a resource in the reserved resources of the second UE whose CPE start position is later than the CPE start position of the first UE.
  • the CPE starting position of the reserved resources of the above-mentioned second UE is determined by the first UE by demodulating the reserved resources of the second UE, or is determined by the first UE by demodulating the side link control information SCI associated with the reserved resources of the second UE.
  • the first UE may select a CPE start position from multiple CPE start positions based on the first information to perform SL transmission. Otherwise, a fixed start position is used.
  • the determination can be made based on the SCI associated with the transmission resources of the demodulated second UE.
  • step 201 can be specifically implemented by the following step 201e.
  • Step 201e When the resource set (RB set or resource block set) corresponding to the first UE allows the selection of the CPE start position, the first UE selects a CPE start position from multiple CPE start positions based on the first information and performs SL transmission.
  • the resource set RB set or resource block set
  • the resource set corresponding to the first UE can configure/preconfigure/indicate whether to allow the first UE to select a CPE start position from multiple CPE start positions for SL transmission.
  • the first UE selects a CPE start position from multiple CPE start positions based on the first information and performs SL transmission.
  • the resource set corresponding to the first UE can configure/pre-configure/indicate whether the UE needs to perform TDM transmission on the resource set, or whether the transmission needs to occupy all the resources on the resource set, or whether the transmission needs to occupy a certain proportion of the resources on the resource set.
  • the resource set may only allow the UE to perform TDM transmission, and the first UE may select a CPE starting position from multiple CPE starting positions for SL transmission; or, there is no restriction on the resource set, and the first UE chooses to transmit on a suitable resource set based on its own transmission situation (for example, the size of frequency domain resources).
  • step 201 can be specifically implemented through the following step 201f.
  • Step 201f when the transmission resources of the first UE meet the resource preemption condition and the reserved resources of the second UE meet the third condition, the first UE does not trigger resource reselection, and selects a CPE start position from multiple CPE start positions to perform SL transmission.
  • the above-mentioned second UE is a UE whose SL transmission resources overlap with those of the first UE.
  • the third condition includes at least one of the following:
  • the CPE start position associated with the reserved resources of the second UE is before the CPE start position of the first UE;
  • the total transmission energy associated with the reserved resources of the second UE is greater than or equal to the third threshold.
  • the selected resources of the first UE satisfying the resource preemption condition may include at least one of the following: an RSRP measurement value associated with the reserved resources of the second UE overlapping with the transmission resources of the first UE is higher than an RSRP threshold; a transmission priority associated with the reserved resources of the second UE is higher than the transmission priority of the first UE; a transmission priority associated with the reserved resources of the second UE is higher than a preset transmission priority threshold.
  • the first UE may determine through an implicit rule whether the CPE start positions associated with the reserved resources of the second UE are all before the CPE start position of the first UE.
  • the CPE start position associated with the reserved resources of the second UE is before the CPE start position of the first UE.
  • the preset energy value may be an energy detection threshold (EDT).
  • EDT energy detection threshold
  • the above-mentioned CPE start position is the CPE start position corresponding to the first automatic gain adjustment AGC position in a time unit, or the CPE start position corresponding to an AGC position other than the first AGC position in a time unit.
  • the above-mentioned starting position of a CPE or the length of a CPE is: independently configured or independently indicated.
  • the first UE may transmit with the first AGC position in a time slot as the CPE start position and transmit with the second/nth AGC position in the slot as the CPE start position.
  • the length of CPE for transmission with the first AGC position in the slot as the starting position of PSCCH/PSSCH, can be x1, x2, x3...; for transmission with the first AGC position in the slot as the starting position of PSCCH/PSSCH, the length of CPE can be x1+L, x2+L, x3+L...
  • the transmission with the first AGC position in the slot as the CPE start position can access the channel at an earlier time.
  • the length of L can be variable, such as any value in the number of symbol symbols from the end position of the first AGC to the start position of the second AGC.
  • the length of CPE for transmission with the first AGC position in the slot as the starting position of PSCCH/PSSCH, can be x1, x2, x3...; for transmission with the first AGC position in the slot as the starting position of PSCCH/PSSCH, the length of CPE can be x1*K, x2*K, x3*K...
  • the "execution of SL transmission" in the above step 201 can be specifically implemented through the following step 201g.
  • Step 201g The first UE starts to perform LBT from a CPE starting position, and performs SL transmission if LBT is successful.
  • the first UE may attempt to access at the selected CPE starting position and a later CPE starting position, and as long as LBT is successful, the first UE may perform SL transmission.
  • the first user equipment UE can select a CPE starting position from multiple CPE starting positions to perform sidelink SL transmission.
  • the first UE before performing SL transmission, the first UE can select a suitable CPE starting position from multiple CPE starting positions to perform SL Transmission, therefore, improves the reliability when transmitting SL resources.
  • the transmission location determination method provided in the embodiment of the present application may be executed by a transmission location determination device.
  • the transmission location determination device executing the transmission location determination method is taken as an example to illustrate the transmission location determination device provided in the embodiment of the present application.
  • Fig. 3 shows a possible structural diagram of a transmission position determination device involved in an embodiment of the present application, and the transmission position determination device is applied to a first UE.
  • the transmission position determination device 70 may include: an execution module 71 .
  • the execution module 71 is used to select a CPE start position from a plurality of cyclic prefix extension CPE start positions to perform sidelink SL transmission.
  • An embodiment of the present application provides a transmission position determination device. Since the transmission position determination device can select a suitable CPE start position from multiple CPE start positions to perform SL transmission before performing SL transmission, the reliability of transmitting SL resources is improved.
  • the execution module 71 is specifically configured to select a CPE start position from a plurality of CPE start positions based on the first information, and perform SL transmission;
  • the first information includes at least one of the following items: the transmission priority of the first UE, the remaining packet delay budget PDB duration associated with the transmission resources of the first UE, the number of failures of the first UE to perform listen-before-talk LBT, the duration of the first UE performing LBT, the size of the contention window CWS for the first UE to perform LBT, and the usage scenario of CPE.
  • the first information includes the transmission priority of the first UE; the execution module 71 is specifically used to determine a first transmission priority group according to the transmission priority of the first UE, the first transmission priority group being the transmission priority group in which the transmission priority of the first UE is located; and select a CPE start position from the first CPE start position group corresponding to the first transmission priority group to perform SL transmission.
  • the first information includes the length of each CPE among the multiple CPEs; the execution module 71 is specifically used to select a preset CPE start position from the multiple CPE start positions and perform SL transmission.
  • the execution module 71 is specifically configured to select a preset CPE start position from a plurality of CPE start positions to perform SL transmission when the first UE and the second UE share the channel occupancy time COT.
  • the execution module 71 is specifically configured to select a preset CPE start position from a plurality of CPE start positions and perform SL transmission when the first UE transmits continuously.
  • the execution module 71 is specifically configured to select a CPE start position from a plurality of CPE start positions based on the first information and perform SL transmission when the first condition is met.
  • the execution module 71 is further used to randomly select a CPE start position from multiple CPE start positions to perform SL transmission when the first condition is met.
  • the first condition includes any one of the following: on the SL transmission resources, the reserved resources of the second UE overlap with the transmission resources of the first UE, and the second UE is a UE that performs SL transmission time domain resource multiplexing with the first UE; on the SL transmission resources, the reserved resources of the second UE are not detected; the second information associated with the SL transmission resources satisfies the second condition; on the SL transmission resources, the transmission priority associated with the first reserved resources is lower than or not higher than the transmission priority of the first UE, and the first reserved resources are resources in the reserved resources of the second UE whose CPE start position is later than the CPE start position of the first UE; wherein the second information includes at least one of the following: the transmission priority of the first UE, the remaining PDB duration associated with the transmission resources of the first UE, and the propagation form associated with the transmission resources of the first UE.
  • the second condition includes any one of the following: on the SL transmission time domain resource, the first The transmission priority of the UE is higher than or not lower than the first threshold value; on the SL transmission time domain resources, the remaining PDB duration associated with the transmission resources of the first UE is less than or equal to the second threshold value; on the SL transmission time domain resources, the propagation form associated with the transmission resources of the first UE is a preset propagation form or a unicast propagation form.
  • the determination time of the first condition is: N time units before the first UE performs SL transmission, where N is a positive integer.
  • the execution module 71 is specifically used to select a CPE starting position from multiple CPE starting positions based on the first information and perform SL transmission when the resource set corresponding to the first UE allows the selection of the CPE starting position.
  • the execution module 71 is specifically used to not trigger resource reselection and select a CPE start position from multiple CPE start positions to perform SL transmission when the transmission resources of the first UE meet the resource preemption condition and the reserved resources of the second UE meet the third condition; wherein the third condition includes at least one of the following: the CPE start position associated with the reserved resources of the second UE is before the CPE start position of the first UE, and the second UE is a UE that overlaps with the SL transmission resources of the first UE; the total transmission energy associated with the reserved resources of the second UE is greater than or equal to the third threshold value.
  • a CPE start position is the CPE start position corresponding to the first automatic gain adjustment ACG position in a time unit, or the CPE start position corresponding to an ACG position other than the first ACG position in a time unit; the length of a CPE start position or a CPE is: independent configuration or independent indication.
  • the transmission position determination device provided in the embodiment of the present application can implement each process implemented by the first UE in the above method embodiment and achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • the transmission position determination device in the embodiment of the present application may be a UE, such as a UE with an operating system, or a component in the UE, such as an integrated circuit or a chip.
  • the UE may be a terminal, or may be other devices other than a terminal.
  • the UE may include but is not limited to the types of UE 11 listed above, and other devices may be servers, network attached storage (NAS), etc., which are not specifically limited in the embodiment of the present application.
  • an embodiment of the present application also provides a communication device 5000, including a processor 5001 and a memory 5002, and the memory 5002 stores programs or instructions that can be executed on the processor 5001.
  • the communication device 5000 is a UE
  • the program or instructions are executed by the processor 5001 to implement the various steps of the above-mentioned first UE-side method embodiment, and can achieve the same technical effect. To avoid repetition, they are not repeated here.
  • the embodiment of the present application also provides a UE, including a processor and a communication interface, the processor is used to select a CPE start position from multiple CPE start positions based on first information, and perform sidelink SL transmission; wherein the first information includes at least one of the following: the transmission priority of the first UE, the remaining PDB duration associated with the transmission resource of the first UE, the number of failures of the first UE to perform LBT, the duration of the first UE to perform LBT, the CWS size of the first UE to perform LBT, and the length of each CPE in multiple CPEs.
  • This UE embodiment corresponds to the above-mentioned first UE side method embodiment, and each implementation process and implementation method of the above-mentioned method embodiment can be applied to this UE embodiment, and can achieve the same technical effect.
  • FIG5 is a schematic diagram of the hardware structure of a UE implementing an embodiment of the present application.
  • the UE 7000 includes but is not limited to: a radio frequency unit 7001, a network module 7002, an audio output unit 7003, an input unit 7004, a sensor 7005, a display unit 7006, a user input unit 7007, an interface unit 7008, a memory 7009 and at least some of the components of the processor 7010.
  • the UE 7000 may also include a power source (such as a battery) for supplying power to each component.
  • the power supply can be logically connected to the processor 7010 through the power management system, so that the power management system can realize functions such as managing charging, discharging, and power consumption management.
  • the UE structure shown in FIG5 does not constitute a limitation on the UE.
  • the UE may include more or fewer components than shown in the figure, or combine certain components, or arrange the components differently, which will not be described in detail here.
  • the input unit 7004 may include a graphics processing unit (GPU) 70041 and a microphone 70042, and the graphics processor 70041 processes the image data of the static picture or video obtained by the image capture device (such as a camera) in the video capture mode or the image capture mode.
  • the display unit 7006 may include a display panel 70061, and the display panel 70061 may be configured in the form of a liquid crystal display, an organic light emitting diode, etc.
  • the user input unit 7007 includes a touch panel 70071 and at least one of other input devices 70072.
  • the touch panel 70071 is also called a touch screen.
  • the touch panel 70071 may include two parts: a touch detection device and a touch controller.
  • Other input devices 70072 may include, but are not limited to, a physical keyboard, function keys (such as a volume control key, a switch key, etc.), a trackball, a mouse, and a joystick, which will not be repeated here.
  • the RF unit 7001 can transmit the data to the processor 7010 for processing; in addition, the RF unit 7001 can send uplink data to the network side device.
  • the RF unit 7001 includes but is not limited to an antenna, an amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, etc.
  • the memory 7009 can be used to store software programs or instructions and various data.
  • the memory 7009 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instruction required for at least one function (such as a sound playback function, an image playback function, etc.), etc.
  • the memory 7009 may include a volatile memory or a non-volatile memory, or the memory 7009 may include both volatile and non-volatile memories.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), an electrically erasable programmable read-only memory (EEPROM), or a flash memory.
  • the volatile memory may be a random access memory (RAM), a static random access memory (SRAM), a dynamic random access memory (DRAM), a synchronous dynamic random access memory (SDRAM), a double data rate synchronous dynamic random access memory (DDRSDRAM), an enhanced synchronous dynamic random access memory (ESDRAM), a synchronous link dynamic random access memory (SLDRAM) and a direct memory bus random access memory (DRRAM).
  • the memory 7009 in the embodiment of the present application includes but is not limited to these and any other suitable types of memory.
  • the processor 7010 may include one or more processing units; optionally, the processor 7010 integrates an application processor and a modem processor, wherein the application processor mainly processes operations related to an operating system, a user interface, and application programs, and the modem processor mainly processes wireless communication signals, such as a baseband processor. It is understandable that the modem processor may not be integrated into the processor 7010.
  • the processor 7010 is used to select a CPE start position from a plurality of cyclic prefix extension CPE start positions to perform sidelink SL transmission.
  • An embodiment of the present application provides a UE. Before executing SL transmission, the UE can select a suitable CPE starting position from multiple CPE starting positions to perform SL transmission, thereby improving the reliability of transmitting SL resources.
  • the UE provided in the embodiment of the present application can implement each process implemented by the first UE in the above method embodiment and achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • An embodiment of the present application also provides a readable storage medium, on which a program or instruction is stored.
  • a program or instruction is stored.
  • each process of the above-mentioned transmission position determination method embodiment is implemented, and the same technical effect can be achieved. To avoid repetition, it will not be repeated here.
  • the processor is the processor in the communication device described in the above embodiment.
  • the readable storage medium includes a computer readable storage medium, such as a computer read-only memory ROM, a random access memory RAM, a magnetic disk or an optical disk.
  • An embodiment of the present application further provides a chip, which includes a processor and a communication interface, wherein the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the various processes of the above-mentioned method embodiment, and can achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • the chip mentioned in the embodiments of the present application can also be called a system-level chip, a system chip, a chip system or a system-on-chip chip, etc.
  • the embodiments of the present application further provide a computer program/program product, which is stored in a storage medium and is executed by at least one processor to implement the various processes of the above-mentioned method embodiments and can achieve the same technical effect. To avoid repetition, it will not be described here.
  • the technical solution of the present application can be embodied in the form of a computer software product, which is stored in a storage medium (such as ROM/RAM, a magnetic disk, or an optical disk), and includes a number of instructions for enabling a terminal (which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) to execute the methods described in each embodiment of the present application.
  • a storage medium such as ROM/RAM, a magnetic disk, or an optical disk
  • a terminal which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种传输位置确定方法、装置、用户设备及存储介质,属于通信技术领域,该方法包括:第一用户设备UE从多个循环前缀扩展CPE开始位置中选择一个CPE开始位置,执行旁链路SL传输。

Description

传输位置确定方法、装置、用户设备及存储介质
相关申请的交叉引用
本申请主张在2022年11月07日在中国提交的申请号为202211387731.7的中国专利的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种传输位置确定方法、装置、用户设备及存储介质。
背景技术
多个用户设备(User Equipment,UE)选择了同样的旁链路(sidelink,SL)传输资源时,UE间的传输会互相干扰,导致传输失败,因此为SL传输资源设定了多个循环前缀扩展(Cyclic prefix extension,CPE)开始位置,每个UE可以为SL传输资源选择一个CPE开始位置,以根据CPE开始位置传输SL资源,例如:当两个UE分别选择不同的CPE开始位置时,可以根据CPE开始位置取消传输CPE开始位置靠后的SL资源,只传输CPE开始位置靠前的SL资源,从而避免UE间相互碰撞。
然而,上述采用CPE开始位置解决UE间相互碰撞的问题时,并未考虑对UE传输性能的影响,因此,UE选择CPE开始位置传输SL资源时的可靠性较低。
发明内容
本申请实施例提供一种传输位置确定方法、装置、用户设备及存储介质,能够解决UE选择CPE开始位置传输SL资源时的可靠性较低的问题。
第一方面,提供了一种传输位置确定方法,该方法包括:第一用户设备UE从多个循环前缀扩展CPE开始位置中选择一个CPE开始位置,执行旁链路SL传输。
第二方面,提供了一种传输位置确定装置,该装置包括:执行模块;该执行模块,用于从多个循环前缀扩展CPE开始位置中选择一个CPE开始位置,执行旁链路SL传输。
第三方面,提供了一种UE,该终端包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第四方面,提供了一种UE,包括处理器及通信接口,其中,所述处理器用于第一用户设备UE从多个循环前缀扩展CPE开始位置中选择一个CPE开始位置,执行旁链路SL传输。
第五方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤。
第六方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和 所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法。
第七方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面所述的传输位置确定方法的步骤。
在本申请实施例中,第一用户设备UE可以从多个CPE开始位置中选择一个CPE开始位置,执行旁链路SL传输。本方案中,由于第一UE在执行SL传输之前,可以从多个CPE开始位置中选择一个适合的CPE开始位置,以执行SL传输,因此,提高了传输SL资源时的可靠性。
附图说明
图1是本申请实施例提供的一种通信系统的架构示意图;
图2是本申请实施例提供的一种传输位置确定方法的流程示意图;
图3是本申请实施例提供的一种传输位置确定装置的结构示意图;
图4是本申请实施例提供的一种通信设备的硬件结构示意图;
图5是本申请实施例提供的一种UE的硬件结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、 移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(VUE)、行人终端(PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备12也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备12可以包括基站、WLAN接入点或WiFi节点等,基站可被称为节点B、演进节点B(eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。
以下将对本申请实施例提供的技术方案所涉及的技术术语进行示例性说明。
(1)SL资源分配方式
在相关技术中,新空口(New Radio,NR)SL资源分配方式有两种,一种基于基站调度(mode 1),另一种基于UE自主资源选择(mode 2)。对于基站调度的资源分配方式,UE用于数据传输的sidelink资源由基站决定,并通过下行信令通知下行UE;对于UE自主选择的资源分配方式,UE在(预)配置的资源池中选择可用的传输资源,UE在资源选择之前先进行信道监听,根据信道监听结果选择出干扰较小的资源集合,再从该资源集合中随机选择用于传输的资源。
对于mode 2,具体的工作方式如下:
1)下行UE在资源选择被触发后,首先物理(PHY)层确定资源选择窗口,资源选择窗口的下边界在资源选择触发后的T1时间,资源选择的上边界在触发后的T2时间,其中T1是UE实现的方式在一个[T1_min,T1_max]范围内选择的,T2是UE实现的方式在其TB传输的剩余包延时预算(Packet Delay Budget,PDB)内选择的值,T2不早于T1。
2)UE在资源选择的之前,PHY层需要确定资源选择的备选资源结合(candidate resource set),其中备选资源子信道(sub-channel)的个数由介质访问控制(Medium Access Control,MAC)层确定,UE根据资源选择窗口内的资源上预估的参考信号接收功率(Reference Signal Received Power,RSRP)测量值(例如通过监听物理副链路控制信道(Physical SideLink Control Channel,PSCCH)/物理副链路共享信道(Physical SideLink Shared Channel,PSSCH)预估)与相应的RSRP门限值(threshold)做对比,如果当前传输资源的RSRP高于RSRP threhold,那么对该资源进行资源排除,不能纳入备选资源集合。进行资源排除后资源选择窗口内剩余的资源组成备选资源集合。备选资源集合中的资源在资源选择窗口中的资源的占比要不少于x%,如果少于x%,RSRP threshold需要按照步进值(3dB)进行增加,再进行资源排除操作,直到可以选出不少于上述x%的资源。另外, 上述RSRP对比与待传输TB的priority以及PSCCH上解调的priority值相关,具体过程不赘述。
3)备选资源集合确定后,PHY层将备选资源集合上报到MAC层,MAC层随机在备选资源集合中选择传输资源,所选资源的个数根据MAC层的决策确定。
(2)Sidelink在非授权频谱的相关技术
对于SL-U(非授权频谱的sidelink),需要在发送SL数据前,通过先听后说(Listen Before Talk,LBT)获取信道。下面对LBT技术做简要的介绍:
在未来通信系统中,共享频谱例如非授权频段(unlicensed band)可以作为授权频段(licensed band)的补充帮助运营商对服务进行扩容。为了与NR部署保持一致并尽可能的最大化基于NR的非授权接入,非授权频段可以工作在5GHz,37GHz和60GHz频段。由于非授权频段由多种技术(RATs)共用,例如WiFi,雷达,LTE-LAA等,因此在某些国家或者区域,非授权频段在使用时必须符合regulation以保证所有设备可以公平的使用该资源,例如LBT,最大信道占用时间(maximum channel occupancy time,MCOT)等规则。当传输节点需要发送信息是,需要先做LBT时,对周围的节点进行功率检测(energy detection,ED),当检测到的功率低于一个门限时,认为信道为空(idle),传输节点可以进行发送。反之,则认为信道为忙,传输节点不能进行发送。传输节点可以是基站,UE,WiFi AP等等。传输节点开始传输后,信道占用时间(channel occupancy time,COT)不能超过MCOT。此外,根据occupied channel bandwidth(OCB)regulation,在非授权频段上,传输节点在每次传输时要占用整个频带的至少70%(60GHz)或者80%(5GHz)的带宽。
在NRU中常用的LBT的类型(type)可以分为Type1,Type2A,Type2B和Type2C。Type1LBT是基于回退(back-off)的信道侦听机制,当传输节点侦听到信道为忙时,进行回退,继续做侦听,直到侦听到信道为空。Type2C是发送节点不做LBT,即no LBT或者立即发送(immediate transmission)。Type2A和Type2B LBT是one-shot LBT,即节点在传输前做一次LBT,信道为空则进行传输,信道为忙则不传输。区别是Type2A在25us内做LBT,适用于在共享COT时,两个传输之间的gap大于等于25us。而Type2B在16us内做LBT,适用于在共享COT时,两个传输之间的gap等于16us。此外,还有Type2LBT,适用于LAA/eLAA/FeLAA,当共享COT时,两个传输之间的gap大于等于25us,eNB和UE可以采用Type 2LBT。此外,在frequency range 2-2中,LBT的类型有Type1,Type2和Type3.Type1是基于回退的信道侦听机制,Type2是one-shot LBT,在8us内做5us的LBT,Type3是不做LBT。
(3)NR SL资源抢占(Resource pre-emption)
在Mode 2资源分配模式中,资源抢占机制被支持,该机制的简要描述如下。一个UE已经预留的资源和其它具有更高优先级业务的UE所预留/选择的资源重叠(部分重叠),如果该UE在相关资源上的SL-RSRP测量值大于某个associated SL-RSRP门限值时,该UE端口物理(Port Physical Layer,PHY)层触发抢占条件pre-emption report到MAC层,以触发资源的重新选择。
UE为了判断已经预留的资源是否被抢占,UE至少在‘m-T3’时刻进行抢占检测,‘m’时刻是该资源所在的时刻或者是该资源的预留信息发送的时刻,T3至少包括UE进行资源 选择处理的时长。UE至少在‘m-T3’重新执行资源选择的步骤,得到备选资源集合。如果UE所选资源仍在该备选资源集合中,UE无需进行资源重选;否则,UE在备选集合中选择新的传输资源。
(4)变长CPE的应用
CPE为SL传输资源前增加的填充信号。CPE的长度可以有多种,UE在进行SL传输的时候会选择一种CPE长度,也可以选择无CPE(CPE的长度可以是random选择,或者根据SL传输的优先级选择,优先级越高CPE长度越长)。那么,如果资源重叠的两个UE间选择了不同的CPE长度,两个UE的SL传输的开始位置会不同,便可以避免相互碰撞。
在资源池中仅允许UE间进行时分复用技术(Time Division Multiple,TDM)资源复用的情况下,这种方案表现良好。但是,在资源池中允许UE间进行频分多路复用(Frequency-division multiplexing,FDM)的情况下,如果FDM的两个UE使用了不同的CPE长度,那么这两个UE间会出现堵塞(blocking)的问题。针对这个问题,相关会议上讨论了解决方案,仅当UE使用资源块(Resource Block,RB)集合上的全部资源传输的时候,UE可以从多个CPE开始位置中选择一个开始位置进行SL传输,否在采用固定的传输开始位置(例如多个CPE开始位置中的一个,或者无CPE是的SL传输开始位置),以保证FDM的两个UE间传输开始位置一致。
在相关技术中,多个UE选择了同样的SL传输资源时,UE间的传输会互相干扰,导致传输失败,因此为SL传输资源设定了多个CPE开始位置,每个UE可以为SL传输资源选择一个CPE开始位置,以根据CPE开始位置传输SL资源,例如:当两个UE分别选择不同的CPE开始位置时,可以根据CPE开始位置取消传输CPE开始位置靠后的SL资源,只传输CPE开始位置靠前的SL资源,从而避免UE间相互碰撞。然而,上述采用CPE开始位置解决UE间相互碰撞的问题时,并未考虑对UE传输性能的影响,因此,UE选择CPE开始位置传输SL资源时的可靠性较低。
在本申请实施例提供的传输位置确定方法中,第一用户设备UE可以从多个CPE开始位置中选择一个CPE开始位置,执行旁链路SL传输。本方案中,由于第一UE在执行SL传输之前,可以从多个CPE开始位置中选择一个适合的CPE开始位置,以执行SL传输,因此,提高了传输SL资源时的可靠性。
示例性地,本申请实施例提供的技术方案可以应用于确定传输资源位置场景或其他场景中。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的传输位置确定方法进行详细地说明。
图2示出了本申请实施例提供的一种传输位置确定方法的流程示意图,如图2所示,该传输位置确定方法可以包括如下步骤101:
步骤101、第一UE从多个CPE开始位置中选择一个CPE开始位置,执行SL传输。
可选地,本申请实施例中,上述步骤101具体可以通过下述的步骤201实现。
步骤201、第一UE基于第一信息,从多个CPE开始位置中选择一个CPE开始位置,执行旁链路SL传输。
本申请实施例中,上述第一信息包括以下至少一项:第一UE的传输优先级、第一UE的传输资源关联的剩余PDB时长、第一UE进行LBT的失败次数、第一UE进行LBT的 时长、第一UE进行LBT的竞争窗口(Contention Window Size,CWS)大小、CPE的使用场景。
可选的,本申请实施例中,上述从多个CPE开始位置中选择一个CPE开始位置包括三种情况:
第一种情况、从多个CPE开始位置中选择一个CPE开始位置;
第二种情况、从多个CPE开始位置和无CPE开始位置中选择一个CPE开始位置;
第三种情况、从一个CPE开始位置和无CPE开始位置中选择一个CPE开始位置。
可选地,本申请实施例中,上述第一信息包括第一UE的传输优先级;上述步骤201具体可以通过下述的步骤201a和步骤201b实现。
步骤201a、第一UE根据第一UE的传输优先级,确定第一传输优先级组。
本申请实施例中,上述第一传输优先级组为第一UE的传输优先级所在的传输优先级组。
可选地,本申请实施例中,可以将属于某个传输优先级范围的多个传输优先级组成传输优先级组,属于某个CPE长度范围的多个CPE组成CPE开始位置组,以得到多个传输优先级组和多个CPE开始位置组。
可选地,本申请实施例中,可以约定传输优先级组与CPE开始位置组的映射关系,例如,平均优先级越高的传输优先级组对应平均长度越长的CPE开始位置组。
步骤201b、第一UE从第一传输优先级组对应的第一CPE开始位置组中,选择一个CPE开始位置,执行SL传输。
可选地,本申请实施例中,第一UE可以根据第一UE的传输优先级,确定与第一UE的传输优先级对应的第一传输优先级组(即第一传输优先级组),然后根据映射关系确定与第一传输优先级组对应的第一CPE开始位置组,以在第一CPE开始位置组中随机选择一个CPE开始位置,执行SL传输。
如此,可以保证同等优先级的资源重叠的传输仍有机会依靠选择CPE开始位置避免碰撞。
可选地,本申请实施例中,可以约定剩余PDB长度范围与CPE开始位置的映射关系,例如剩余PDB时长越短,则对应的CPE越长或CPE开始位置越靠前。
示例性地,第一UE可以根据第一UE的传输资源关联的剩余PDB时长,从多个CPE开始位置中选择与第一UE的传输资源关联的剩余PDB时长对应的一个CPE开始位置,执行SL传输。
如此,保证了低时延数据传输的可靠性。
可选地,本申请实施例中,可以约定UE进行LBT的失败次数与CPE开始位置的映射关系,例如UE进行LBT的失败次数越多,则对应的CPE越长。
示例性地,第一UE可以根据第一UE进行LBT的失败次数,从多个CPE开始位置中选择与第一UE进行LBT的失败次数对应的一个CPE开始位置,执行SL传输。
可选地,本申请实施例中,可以约定UE进行LBT的时长与CPE开始位置的映射关系,例如UE进行LBT的时长越长,则对应的CPE越短。
示例性地,第一UE可以根据第一UE进行LBT的时长,从多个CPE开始位置中选择与第一UE进行LBT的时长对应的一个CPE开始位置,执行SL传输。
可选地,本申请实施例中,可以约定UE进行LBT的CWS大小与CPE开始位置的映射关系,例如UE进行LBT的CWS越大,则对应的CPE越短。
示例性地,第一UE可以根据第一UE进行LBT的CWS大小,从多个CPE开始位置中选择与第一UE进行LBT的CWS大小对应的一个CPE开始位置,执行SL传输。
如此,避免了特定的UE总是不能接入信道,失去公平性。
可选地,本申请实施例中,上述第一信息包括CPE的使用场景;上述步骤201具体可以通过下述的步骤201c实现。
步骤201c、第一UE从多个CPE开始位置中选择预设的CPE开始位置,执行SL传输。
可以理解,第一UE传输资源时,可以从多个CPE开始位置中选择预设的CPE开始位置,执行SL传输。否认,采用其他规则。
可选地,本申请实施例中,上述步骤201c具体可以通过下述的步骤201c1实现。
步骤201c1、在第一UE与第二UE共享COT的情况下,第一UE从多个CPE开始位置中选择预设的CPE开始位置,执行SL传输。
本申请实施例中,上述第二UE为与第一UE的SL传输资源重叠的UE。
可选地,本申请实施例中,在第一UE想要使用第二UE共享的COT时,第一UE可以在(第一个共享COT的)传输前采用预设的CPE开始位置进行SL传输。
如此,提高了信道接入概率。
可选地,本申请实施例中,若第一UE选择预设长度的CPE后,与共享COT的UE的SL传输间的Gap能够小于预设时间(例如16us),则第一UE可以采用预设长度的CPE,执行SL传输。否认,采用其他规则。
可选地,本申请实施例中,上述步骤201c具体可以通过下述的步骤201c2实现。
步骤201c2、在第一UE连续传输的情况下,第一UE从多个CPE开始位置中选择预设的CPE开始位置,执行SL传输。
可选地,本申请实施例中,第一UE使用CPE填充资源间的缺口Gap的时候,可以选择预设的CPE开始位置,否认,采用其他规则。
可选地,本申请实施例中,上述预设的CPE开始位置可以是协议约定的或配置的或预配置的。
例如,协议约定使用长度最长的CPE或传输位置最靠前的CPE。
可选地,本申请实施例中,协议可以约定CPE能够填充Gap以至距离前一个资源的距离小于预设时间(16us/25us)等。
如此,第一UE可以实现连续传输,从而提高信道接入概率。
可选地,本申请实施例中,上述步骤201具体可以通过下述的步骤201d实现。
步骤201d、在满足第一条件的情况下,第一UE基于第一信息,从多个CPE开始位置中选择一个CPE开始位置,执行SL传输。
可选的,本申请实施例中,上述第一条件可以理解为第一UE对应的资源集合允许多个UE间进行FDM。
可选地,本申请实施例中,本申请实施例提供的传输位置确定方法还可以包括下述的步骤301。
步骤301、在满足第一条件的情况下,第一UE从多个CPE开始位置中随机选择一个 CPE开始位置,执行SL传输。
可以理解,在第一UE对应的资源集合中允许UE间进行FDM时,第一UE可以随机选择一个CPE开始位置,以执行SL传输。
如此,第一UE有可能选择到固定CPE开始位置,保证了不同优先级的传输均有机会进行。
可选地,本申请实施例中,上述第一条件,包括以下任一项:
A、在SL传输资源上,第二UE的预留资源均与第一UE的传输资源重叠。
可选地,本申请实施例中,第二UE为与第一UE的SL传输资源重叠的UE。
可选地,本申请实施例中,上述第一条件的判定时刻为:第一UE执行SL传输前的N个时间单元,N为正整数。
可选地,本申请实施例中,在SL传输时域资源上,第一UE对应的资源集合允许多个UE间进行FDM,且第二UE预留资源均与第一UE的传输资源重叠时(即该SL传输没有FDM的传输),第一UE可以基于第一信息,从多个CPE开始位置中选择一个CPE开始位置,执行SL传输。否则,采用固定的CPE开始位置。
可选地,本申请实施例中,上述资源重叠部分需要大于预设数量。
可选地,本申请实施例中,第一UE可以根据解调第二UE的传输资源关联的SCI判定“在SL传输资源上,第二UE的预留资源均与第一UE的传输资源重叠”。
B、在SL传输资源上,未检测到第二UE的预留资源;
可选地,本申请实施例中,在SL传输时域资源上,第一UE对应的资源集合允许多个UE间进行FDM,且SL传输时域资源上没有检测到第二UE的预留资源时,第一UE可以基于第一信息,从多个CPE开始位置中选择一个CPE开始位置,进行SL传输。否则,采用固定的开始位置。
可选地,本申请实施例中,第一UE判定在SL传输资源上,是否有第二UE的预留资源时,可以根据解调第二UE的传输资源关联的SCI判定。
C、SL传输资源关联的第二信息满足第二条件;
其中,第二信息包括以下至少一项:第一UE的传输优先级、第一UE的传输资源关联的剩余PDB时长、第一UE的传输资源关联的传播形式。
可选地,本申请实施例中,上述第二条件包括以下任一项:
条件A、在SL传输时域资源上,第一UE的传输优先级高于或不低于第一门限值;
可以理解,在SL传输时域资源上,第一UE传输优先级高于或不低于第一门限值时,第一UE可以基于第一信息,从多个CPE开始位置中选择一个CPE开始位置,进行SL传输。否则,采用固定的开始位置。
可选地,本申请实施例中,上述第一门限值可以是协议约定的/配置/预配置的。
条件B、在SL传输时域资源上,第一UE的传输资源关联的剩余PDB时长小于或等于第二门限值;
可以理解,在SL传输时域资源上,第一UE传输资源关联的剩余PDB时长小于或等于第二门限值时,第一UE可以基于第一信息,从多个CPE开始位置中选择一个CPE开始位置,进行SL传输。否则,采用固定的开始位置。
可选地,本申请实施例中,上述第二门限值可以是协议约定的/配置/预配置的。
条件C、在SL传输时域资源上,第一UE的传输资源关联的传播形式为预设传播形式或单播传播形式。
可以理解,在SL传输时域资源上,第一UE的传输资源关联的传播形式为预设传播形式或单播传播形式时,第一UE可以基于第一信息,从多个CPE开始位置中选择一个CPE开始位置,进行SL传输。否则,采用固定的开始位置。
如此,仅允许传输优先级较高的或特定的SL传输,提高了传输的可靠性。
D、在传输资源上,第一预留资源所关联的传输优先级低于或不高于第一UE的传输优先级。
本申请实施例中,上述第一预留资源为第二UE的预留资源中CPE开始位置晚于第一UE的CPE开始位置的资源。
可选地,本申请实施例中,上述第二UE的预留资源的CPE开始位置由第一UE通过解调第二UE的预留资源确定,或由第一UE通过解调第二UE的预留资源关联的旁链路控制信息SCI确定。
可选地,本申请实施例中,在SL传输时域资源上,第一UE的传输优先级高于或不低于第一预留资源所关联的传输优先级时,第一UE可以基于第一信息,从多个CPE开始位置中选择一个CPE开始位置,进行SL传输。否则,采用固定的开始位置。
可选地,本申请实施例中,第一UE判定在SL传输资源上,第一预留资源所关联的传输优先级是否低于或不高于第一UE的传输优先级时,可以根据解调第二UE的传输资源关联的SCI判定。
可选地,本申请实施例中,上述步骤201具体可以通过下述的步骤201e实现。
步骤201e、在第一UE对应的资源集合(RB set or resource block set)允许选择CPE开始位置的情况下,第一UE基于第一信息,从多个CPE开始位置中选择一个CPE开始位置,执行SL传输。
可选地,本申请实施例中,第一UE对应的资源集合可以配置/预配置/指示是否允许第一UE从多个CPE开始位置中选择一个CPE开始位置,进行SL传输。以在第一UE对应的资源集合允许选择CPE开始位置的情况下,第一UE基于第一信息,从多个CPE开始位置中选择一个CPE开始位置,执行SL传输。
如此,可以控制不同资源集合上传输的效率。
示例性地,第一UE对应的资源集合可以配置/预配置/指示是否需要UE在该资源集合上进行TDM传输,或者传输需要占满资源集合上的资源,或者传输需要占一定比例的资源集合上的资源。
例如:资源集合可以仅允许UE进行TDM传输,第一UE可以从多个CPE开始位置中选择一个CPE开始位置进行SL传输;或者,资源集合没有限制,第一UE根据自身的传输情况(例如,频域资源大小)选择在合适的资源集合上传输。
可选地,本申请实施例中,上述步骤201具体可以通过下述的步骤201f实现。
步骤201f、在第一UE的传输资源满足资源抢占条件、且第二UE的预留资源满足第三条件的情况下,第一UE不触发资源重选,并从多个CPE开始位置中选择一个CPE开始位置,执行SL传输。
本申请实施例中,上述第二UE为与第一UE的SL传输资源重叠的UE。
可选地,本申请实施例中,上述第三条件包括以下至少一项:
第二UE的预留资源关联的CPE开始位置在第一UE的CPE开始位置之前;
第二UE的预留资源关联的传输总能量大于或等于第三门限值。
可选地,本申请实施例中,第一UE的已选资源满足资源抢占条件(pre-emption report)可以包括以下至少一项:与第一UE的传输资源重叠的第二UE的预留资源关联的RSRP测量值高于RSRP门限;第二UE的预留资源关联的传输优先级高于第一UE的传输优先级;第二UE的预留资源关联的传输优先级高于预设传输优先级门限。
可选地,本申请实施例中,第一UE可以通过隐式规则判定第二UE的预留资源关联的CPE开始位置是否均在第一UE的CPE开始位置之前。
例如,若第二UE的预留资源关联的传输优先级高于第一UE的传输优先级,则第二UE的预留资源关联的CPE开始位置均在第一UE的CPE开始位置之前。
可选地,本申请实施例中。上述预设能量值可以为能量检测门限(Energy detection threshold,EDT)。
可选地,本申请实施例中,上述一个CPE开始位置为一个时间单元中的第一个自动增益调整AGC位置对应的CPE开始位置,或为一个时间单元中除第一个AGC位置之外的AGC位置对应的CPE开始位置。
可选地,本申请实施例中,上述一个CPE开始位置或一个CPE的长度为:独立配置或独立指示。
可选地,本申请实施例中,第一UE可以以时隙(slot)中首个AGC位置为CPE开始位置的传输和以slot中第二个/第n个AGC位置为CPE开始位置的传输。
可选地,本申请实施例中,对于以slot中首个AGC位置为PSCCH/PSSCH开始位置的传输,CPE的长度可以为x1,x2,x3…;对于以slot中首个AGC位置为PSCCH/PSSCH开始位置的传输,CPE的长度可以为x1+L,x2+L,x3+L…。
如此,以slot中首个AGC位置为CPE开始位置的传输可以有在更早的时候接入信道。可选地,本申请实施例中,L长度可以为变长,例如从第一个AGC结束位置到第二个AGC开始的位置的symbol符号的个数中的任意值。
可选地,本申请实施例中,对于以slot中首个AGC位置为PSCCH/PSSCH开始位置的传输,CPE的长度可以为x1,x2,x3…;对于以slot中首个AGC位置为PSCCH/PSSCH开始位置的传输,CPE的长度可以为x1*K,x2*K,x3*K…。
可选地,本申请实施例中,上述步骤201中的“执行SL传输”具体可以通过下述的步骤201g实现。
步骤201g、第一UE从一个CPE开始位置开始执行LBT,并在LBT成功的情况下,执行SL传输。
可选地,本申请实施例中,第一UE选择一个CPE开始位置后,第一UE可以在所选的CPE开始位置以及较晚的CPE开始位置处尝试接入,只要LBT成功,第一UE便可以进行SL传输。
在本申请实施例提供的传输位置确定确定方法中,第一用户设备UE可以从多个CPE开始位置中选择一个CPE开始位置,执行旁链路SL传输。本方案中,由于第一UE在执行SL传输之前,可以从多个CPE开始位置中选择一个适合的CPE开始位置,以执行SL 传输,因此,提高了传输SL资源时的可靠性。
本申请实施例提供的传输位置确定方法,执行主体可以为传输位置确定装置。本申请实施例中以传输位置确定装置执行传输位置确定方法为例,说明本申请实施例提供的传输位置确定装置。
图3示出了本申请实施例中涉及的传输位置确定装置的一种可能的结构示意图,该传输位置确定装置应用于第一UE。如图3所示,传输位置确定装置70可以包括:执行模块71。
其中,执行模块71,用于从多个循环前缀扩展CPE开始位置中选择一个CPE开始位置,执行旁链路SL传输。
本申请实施例提供一种传输位置确定装置,由于传输位置确定装置在执行SL传输之前,可以从多个CPE开始位置中选择一个适合的CPE开始位置,以执行SL传输,因此,提高了传输SL资源时的可靠性。
在一种可能的实现方式中,执行模块71,具体用于基于第一信息,从多个CPE开始位置中选择一个CPE开始位置,执行SL传输;
其中,第一信息包括以下至少一项:第一UE的传输优先级、第一UE的传输资源关联的剩余包延时预算PDB时长、第一UE进行先听后说LBT的失败次数、第一UE进行LBT的时长、第一UE进行LBT的竞争窗口CWS大小、CPE的使用场景。
在一种可能的实现方式中,第一信息包括第一UE的传输优先级;执行模块71,具体用于根据第一UE的传输优先级,确定第一传输优先级组,第一传输优先级组为第一UE的传输优先级所在的传输优先级组;并从第一传输优先级组对应的第一CPE开始位置组中,选择一个CPE开始位置,执行SL传输。
在一种可能的实现方式中,第一信息包括多个CPE中每个CPE的长度;执行模块71,具体用于从多个CPE开始位置中选择预设的CPE开始位置,执行SL传输。
在一种可能的实现方式中,执行模块71,具体用于在第一UE与第二UE共享信道占用时间COT的情况下,从多个CPE开始位置中选择预设的CPE开始位置,执行SL传输。
在一种可能的实现方式中,执行模块71,具体用于在第一UE连续传输的情况下,从多个CPE开始位置中选择预设的CPE开始位置,执行SL传输。
在一种可能的实现方式中,执行模块71,具体用于在满足第一条件的情况下,基于第一信息,从多个CPE开始位置中选择一个CPE开始位置,执行SL传输。
在一种可能的实现方式中,执行模块71,还用于在满足第一条件的情况下的情况下,从多个CPE开始位置中随机选择一个CPE开始位置,执行SL传输。
在一种可能的实现方式中,第一条件,包括以下任一项:在SL传输资源上,第二UE的预留资源均与第一UE的传输资源重叠,第二UE为与第一UE进行SL传输时域资源复用的UE;在SL传输资源上,未检测到第二UE的预留资源;SL传输资源关联的第二信息满足第二条件;在SL传输资源上,第一预留资源所关联的传输优先级低于或不高于第一UE的传输优先级,第一预留资源为第二UE的预留资源中CPE开始位置晚于第一UE的CPE开始位置的资源;其中,第二信息包括以下至少一项:第一UE的传输优先级、第一UE的传输资源关联的剩余PDB时长、第一UE的传输资源关联的传播形式。
在一种可能的实现方式中,第二条件包括以下任一项:在SL传输时域资源上,第一 UE的传输优先级高于或不低于第一门限值;在SL传输时域资源上,第一UE的传输资源关联的剩余PDB时长小于或等于第二门限值;在SL传输时域资源上,第一UE的传输资源关联的传播形式为预设传播形式或单播传播形式。
在一种可能的实现方式中,第一条件的判定时刻为:第一UE执行SL传输前的N个时间单元,N为正整数。
在一种可能的实现方式中,执行模块71,具体用于在第一UE对应的资源集合允许选择CPE开始位置的情况下,基于第一信息,从多个CPE开始位置中选择一个CPE开始位置,执行SL传输。
在一种可能的实现方式中,执行模块71,具体用于在第一UE的传输资源满足资源抢占条件、且第二UE的预留资源满足第三条件的情况下,不触发资源重选,并从多个CPE开始位置中选择一个CPE开始位置,执行SL传输;其中,第三条件包括以下至少一项:第二UE的预留资源关联的CPE开始位置在第一UE的CPE开始位置之前,第二UE为与第一UE的SL传输资源重叠的UE;第二UE的预留资源关联的传输总能量大于或等于第三门限值。
在一种可能的实现方式中,一个CPE开始位置为一个时间单元中的第一个自动增益调整ACG位置对应的CPE开始位置,或为一个时间单元中除第一个ACG位置之外的ACG位置对应的CPE开始位置;一个CPE开始位置或一个CPE的长度为:独立配置或独立指示。
本申请实施例提供的传输位置确定装置能够实现上述方法实施例中第一UE实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例中的传输位置确定装置可以是UE,例如具有操作系统的UE,也可以是UE中的部件,例如集成电路或芯片。该UE可以是终端,也可以为除终端之外的其他设备。示例性的,UE可以包括但不限于上述所列举的UE 11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
可选地,如图4所示,本申请实施例还提供一种通信设备5000,包括处理器5001和存储器5002,存储器5002上存储有可在所述处理器5001上运行的程序或指令,例如,该通信设备5000为UE时,该程序或指令被处理器5001执行时实现上述第一UE侧方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种UE,包括处理器和通信接口,处理器用于基于第一信息,从多个CPE开始位置中选择一个CPE开始位置,执行旁链路SL传输;其中,第一信息包括以下至少一项:第一UE的传输优先级、第一UE的传输资源关联的剩余PDB时长、第一UE进行LBT的失败次数、第一UE进行LBT的时长、第一UE进行LBT的CWS大小、多个CPE中每个CPE的长度。该UE实施例与上述第一UE侧方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该UE实施例中,且能达到相同的技术效果。
具体地,图5为实现本申请实施例的一种UE的硬件结构示意图。
该UE 7000包括但不限于:射频单元7001、网络模块7002、音频输出单元7003、输入单元7004、传感器7005、显示单元7006、用户输入单元7007、接口单元7008、存储器7009以及处理器7010等中的至少部分部件。
本领域技术人员可以理解,UE 7000还可以包括给各个部件供电的电源(比如电池), 电源可以通过电源管理系统与处理器7010逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图5中示出的UE结构并不构成对UE的限定,UE可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元7004可以包括图形处理单元(Graphics Processing Unit,GPU)70041和麦克风70042,图形处理器70041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元7006可包括显示面板70061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板70061。用户输入单元7007包括触控面板70071以及其他输入设备70072中的至少一种。触控面板70071,也称为触摸屏。触控面板70071可包括触摸检测装置和触摸控制器两个部分。其他输入设备70072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元7001接收来自网络侧设备的下行数据后,可以传输给处理器7010进行处理;另外,射频单元7001可以向网络侧设备发送上行数据。通常,射频单元7001包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器7009可用于存储软件程序或指令以及各种数据。存储器7009可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器7009可以包括易失性存储器或非易失性存储器,或者,存储器7009可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器7009包括但不限于这些和任意其它适合类型的存储器。
处理器7010可包括一个或多个处理单元;可选的,处理器7010集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器7010中。
其中,处理器7010,用于用于从多个循环前缀扩展CPE开始位置中选择一个CPE开始位置,执行旁链路SL传输。
本申请实施例提供一种UE,由于UE在执行SL传输之前,可以从多个CPE开始位置中选择一个适合的CPE开始位置,以执行SL传输,因此,提高了传输SL资源时的可靠性。
本申请实施例提供的UE能够实现上述方法实施例中第一UE实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述传输位置确定方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的通信设备中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (32)

  1. 一种传输位置确定方法,所述方法包括:
    第一用户设备UE从多个循环前缀扩展CPE开始位置中选择一个CPE开始位置,执行旁链路SL传输。
  2. 根据权利要求1所述的方法,其中,第一UE从多个CPE开始位置中选择一个CPE开始位置,执行SL传输,包括:
    第一UE基于第一信息,从多个CPE开始位置中选择一个CPE开始位置,执行SL传输;
    其中,所述第一信息包括以下至少一项:所述第一UE的传输优先级、所述第一UE的传输资源关联的剩余包延时预算PDB时长、所述第一UE进行先听后说LBT的失败次数、所述第一UE进行LBT的时长、所述第一UE进行LBT的竞争窗口CWS大小、CPE的使用场景。
  3. 根据权利要求2所述的方法,其中,所述第一信息包括所述第一UE的传输优先级;
    所述第一UE基于第一信息,从多个CPE开始位置中选择一个CPE开始位置,执行SL传输,包括:
    所述第一UE根据所述第一UE的传输优先级,确定第一传输优先级组,所述第一传输优先级组为所述第一UE的传输优先级所在的传输优先级组;
    所述第一UE从所述第一传输优先级组对应的第一CPE开始位置组中,选择一个CPE开始位置,执行SL传输。
  4. 根据权利要求2所述的方法,其中,所述第一信息包括所述CPE的使用场景;
    所述第一UE基于第一信息,从多个CPE开始位置中选择一个CPE开始位置,执行SL传输,包括:
    所述第一UE从所述多个CPE开始位置中选择预设的CPE开始位置,执行SL传输。
  5. 根据权利要求4所述的方法,其中,所述第一UE从所述多个CPE开始位置中选择预设的CPE开始位置,执行SL传输,包括:
    在所述第一UE与第二UE共享信道占用时间COT的情况下,所述第一UE从所述多个CPE开始位置中选择预设的CPE开始位置,执行SL传输。
  6. 根据权利要求4所述的方法,其中,所述第一UE从所述多个CPE开始位置中选择预设的CPE开始位置,执行SL传输,包括:
    在所述第一UE连续传输的情况下,所述第一UE从所述多个CPE开始位置中选 择预设的CPE开始位置,执行SL传输。
  7. 根据权利要求2所述的方法,其中,所述第一UE基于第一信息,从多个CPE开始位置中选择一个CPE开始位置,执行SL传输,包括:
    在满足第一条件的情况下,所述第一UE基于第一信息,从多个CPE开始位置中选择一个CPE开始位置,执行SL传输。
  8. 根据权利要求7所述的方法,其中,所述方法还包括:
    在满足所述第一条件的情况下的情况下,所述第一UE从多个CPE开始位置中随机选择一个CPE开始位置,执行SL传输。
  9. 根据权利要求7所述的方法,其中,所述第一条件,包括以下任一项:
    在SL传输资源上,第二UE的预留资源均与所述第一UE的传输资源重叠,所述第二UE为与所述第一UE的SL传输资源重叠的UE;
    在SL传输资源上,未检测到第二UE的预留资源;
    SL传输资源关联的第二信息满足第二条件;
    在SL传输资源上,第一预留资源所关联的传输优先级低于或不高于所述第一UE的传输优先级,所述第一预留资源为第二UE的预留资源中CPE开始位置晚于所述第一UE的CPE开始位置的资源;
    其中,所述第二信息包括以下至少一项:所述第一UE的传输优先级、所述第一UE的传输资源关联的剩余PDB时长、所述第一UE的传输资源关联的传播形式。
  10. 根据权利要求9所述的方法,其中,所述第二条件包括以下任一项:
    在SL传输时域资源上,所述第一UE的传输优先级高于或不低于第一门限值;
    在SL传输时域资源上,所述第一UE的传输资源关联的剩余PDB时长小于或等于第二门限值;
    在SL传输时域资源上,所述第一UE的传输资源关联的传播形式为预设传播形式或单播传播形式。
  11. 根据权利要求9或10所述的方法,其中,所述第一条件的判定时刻为:所述第一UE执行SL传输前的N个时间单元,N为正整数。
  12. 根据权利要求2所述的方法,其中,所述第一UE基于第一信息,从多个CPE开始位置中选择一个CPE开始位置,执行SL传输,包括:
    在所述第一UE对应的资源集合允许选择CPE开始位置的情况下,所述第一UE基于所述第一信息,从所述多个CPE开始位置中选择一个CPE开始位置,执行SL传输。
  13. 根据权利要求1所述的方法,其中,所述第一UE从多个CPE开始位置中选 择一个CPE开始位置,执行SL传输,包括:
    在所述第一UE的传输资源满足资源抢占条件、且第二UE的预留资源满足第三条件的情况下,所述第一UE不触发资源重选,并从所述多个CPE开始位置中选择一个CPE开始位置,执行SL传输;
    其中,所述第三条件包括以下至少一项:
    所述第二UE的预留资源关联的CPE开始位置在所述第一UE的CPE开始位置之前,所述第二UE为与所述第一UE的SL传输资源重叠的UE;
    所述第二UE的预留资源关联的传输总能量大于或等于第三门限值。
  14. 根据权利要求1所述的方法,其中,所述一个CPE开始位置为一个时间单元中的第一个自动增益调整ACG位置对应的CPE开始位置,或为一个时间单元中除所述第一个ACG位置之外的ACG位置对应的CPE开始位置;所述一个CPE开始位置或所述一个CPE的长度为:独立配置或独立指示。
  15. 根据权利要求1所述的方法,其中,所述执行SL传输,包括:
    所述第一UE从所述一个CPE开始位置以及所述一个CPE开始位置之后的CPE开始位置尝试接入信道,并在LBT成功的情况下,执行SL传输。
  16. 一种传输位置确定装置,所述装置包括:执行模块;
    所述执行模块,用于从多个循环前缀扩展CPE开始位置中选择一个CPE开始位置,执行旁链路SL传输。
  17. 根据权利要求16所述的装置,其中,所述执行模块,具体用于基于第一信息,从多个CPE开始位置中选择一个CPE开始位置,执行SL传输;
    其中,所述第一信息包括以下至少一项:所述第一UE的传输优先级、所述第一UE的传输资源关联的剩余包延时预算PDB时长、所述第一UE进行先听后说LBT的失败次数、所述第一UE进行LBT的时长、所述第一UE进行LBT的竞争窗口CWS大小、CPE的使用场景。
  18. 根据权利要求17所述的装置,其中,所述第一信息包括所述第一UE的传输优先级;
    所述执行模块,具体用于根据所述第一UE的传输优先级,确定第一传输优先级组,所述第一传输优先级组为所述第一UE的传输优先级所在的传输优先级组;并从所述第一传输优先级组对应的第一CPE开始位置组中,选择一个CPE开始位置,执行SL传输。
  19. 根据权利要求17所述的装置,其中,所述第一信息包括所述CPE的使用场景;所述执行模块,具体用于从所述多个CPE开始位置中选择预设的CPE开始位置,执 行SL传输。
  20. 根据权利要求19所述的装置,其中,所述执行模块,具体用于在所述第一UE与第二UE共享信道占用时间COT的情况下,从所述多个CPE开始位置中选择预设的CPE开始位置,执行SL传输。
  21. 根据权利要求19所述的装置,其中,所述执行模块,具体用于在所述第一UE连续传输的情况下,从所述多个CPE开始位置中选择预设的CPE开始位置,执行SL传输。
  22. 根据权利要求17所述的装置,其中,所述执行模块,具体用于在满足第一条件的情况下,基于第一信息,从多个CPE开始位置中选择一个CPE开始位置,执行SL传输。
  23. 根据权利要求22所述的装置,其中,
    所述执行模块,还用于在满足所述第一条件的情况下的情况下,从多个CPE开始位置中随机选择一个CPE开始位置,执行SL传输。
  24. 根据权利要求22所述的装置,其中,所述第一条件,包括以下任一项:
    在SL传输资源上,第二UE的预留资源均与所述第一UE的传输资源重叠,所述第二UE为与所述第一UE的SL传输资源重叠的UE;
    在SL传输资源上,未检测到第二UE的预留资源;
    SL传输资源关联的第二信息满足第二条件;
    在SL传输资源上,第一预留资源所关联的传输优先级低于或不高于所述第一UE的传输优先级,所述第一预留资源为第二UE的预留资源中CPE开始位置晚于所述第一UE的CPE开始位置的资源;
    其中,所述第二信息包括以下至少一项:所述第一UE的传输优先级、所述第一UE的传输资源关联的剩余PDB时长、所述第一UE的传输资源关联的传播形式。
  25. 根据权利要求24所述的装置,其中,所述第二条件包括以下任一项:
    在SL传输时域资源上,所述第一UE的传输优先级高于或不低于第一门限值;
    在SL传输时域资源上,所述第一UE的传输资源关联的剩余PDB时长小于或等于第二门限值;
    在SL传输时域资源上,所述第一UE的传输资源关联的传播形式为预设传播形式或单播传播形式。
  26. 根据权利要求24或25所述的装置,其中,所述第一条件的判定时刻为:所述第一UE执行SL传输前的N个时间单元,N为正整数。
  27. 根据权利要求17所述的装置,其中,所述执行模块,具体用于在所述第一 UE对应的资源集合允许选择CPE开始位置的情况下,基于所述第一信息,从所述多个CPE开始位置中选择一个CPE开始位置,执行SL传输。
  28. 根据权利要求16所述的装置,其中,所述执行模块,具体用于在所述第一UE的传输资源满足资源抢占条件、且第二UE的预留资源满足第三条件的情况下,不触发资源重选,并从所述多个CPE开始位置中选择一个CPE开始位置,执行SL传输;
    其中,所述第三条件包括以下至少一项:
    所述第二UE的预留资源关联的CPE开始位置在所述第一UE的CPE开始位置之前,所述第二UE为与所述第一UE的SL传输资源重叠的UE;
    所述第二UE的预留资源关联的传输总能量大于或等于第三门限值。
  29. 根据权利要求16所述的装置,其中,所述一个CPE开始位置为一个时间单元中的第一个自动增益调整ACG位置对应的CPE开始位置,或为一个时间单元中除所述第一个ACG位置之外的ACG位置对应的CPE开始位置;所述一个CPE开始位置或所述一个CPE的长度为:独立配置或独立指示。
  30. 根据权利要求16所述的装置,其中,所述执行模块,还用于所述第一UE从所述一个CPE开始位置以及所述一个CPE开始位置之后的CPE开始位置尝试接入信道,并在LBT成功的情况下,执行SL传输。
  31. 一种用户设备UE,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至15中任一项所述的传输位置确定方法的步骤。
  32. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至15中任一项所述的传输位置确定方法的步骤。
PCT/CN2023/128635 2022-11-07 2023-10-31 传输位置确定方法、装置、用户设备及存储介质 WO2024099188A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211387731.7A CN117998588A (zh) 2022-11-07 2022-11-07 传输位置确定方法、装置、用户设备及存储介质
CN202211387731.7 2022-11-07

Publications (1)

Publication Number Publication Date
WO2024099188A1 true WO2024099188A1 (zh) 2024-05-16

Family

ID=90895060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/128635 WO2024099188A1 (zh) 2022-11-07 2023-10-31 传输位置确定方法、装置、用户设备及存储介质

Country Status (2)

Country Link
CN (1) CN117998588A (zh)
WO (1) WO2024099188A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113518385A (zh) * 2020-04-09 2021-10-19 上海诺基亚贝尔股份有限公司 与lbt过程有关的操作
US20210368542A1 (en) * 2020-05-22 2021-11-25 Qualcomm Incorporated Network controlled sidelink off-loading over unlicensed carrier
US20220007374A1 (en) * 2020-07-06 2022-01-06 Charter Communications Operating, Llc Methods and apparatus for access node selection and link optimization in quasi-licensed wireless systems
WO2023154354A1 (en) * 2022-02-09 2023-08-17 Interdigital Patent Holdings, Inc. Methods for sidelink unlicensed channel access

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113518385A (zh) * 2020-04-09 2021-10-19 上海诺基亚贝尔股份有限公司 与lbt过程有关的操作
US20210368542A1 (en) * 2020-05-22 2021-11-25 Qualcomm Incorporated Network controlled sidelink off-loading over unlicensed carrier
US20220007374A1 (en) * 2020-07-06 2022-01-06 Charter Communications Operating, Llc Methods and apparatus for access node selection and link optimization in quasi-licensed wireless systems
WO2023154354A1 (en) * 2022-02-09 2023-08-17 Interdigital Patent Holdings, Inc. Methods for sidelink unlicensed channel access

Also Published As

Publication number Publication date
CN117998588A (zh) 2024-05-07

Similar Documents

Publication Publication Date Title
CN108886816B (zh) 数据发送方法和用户设备
US20230180292A1 (en) Channel access method for unlicensed spectrum, terminal, and network side device
US20240172277A1 (en) Channel access method and processing method for sidelink feedback information, and related device
EP4192065A1 (en) Sidelink resource selection method and terminal
WO2024099188A1 (zh) 传输位置确定方法、装置、用户设备及存储介质
WO2024067734A1 (zh) 传输资源的确定方法、装置、ue及可读存储介质
WO2023143532A1 (zh) 资源选择方法及装置、终端
CN113890698A (zh) 旁链路传输方法、传输装置和通信设备
WO2023246587A1 (zh) 传输方法、设备及可读存储介质
WO2024131755A1 (zh) 信息传输方法、装置及终端
WO2024037642A1 (zh) 数据传输方法、装置、终端及介质
WO2024032497A1 (zh) 信道接入进程的处理方法、装置及终端
WO2024125428A1 (zh) 传输方法、设备及可读存储介质
WO2024067573A1 (zh) Sl资源分配方法、装置及终端
WO2023072209A1 (zh) 传输处理方法、装置、终端及可读存储介质
WO2024022293A1 (zh) 物理侧链路反馈信道psfch发送方法及终端
US20240114554A1 (en) Method and Device for Determining Resource in Shared Band
US20240032078A1 (en) Sidelink resource recommendation method and apparatus, device, and readable storage medium
WO2023051449A1 (zh) 资源重选的方法、装置、设备及计算机存储介质
WO2023246880A1 (zh) 副链路传输处理方法、副链路传输配置方法、装置、终端和网络侧设备
WO2022152270A1 (zh) 数据传输方法、装置及ue
WO2023093717A1 (zh) Sl业务传输处理方法、装置、终端及存储介质
CN118139193A (zh) 用于副链路资源选择的方法、装置和终端
CN118250670A (zh) 资源预留方法、装置及终端
CN118250818A (zh) 信息传输方法、装置及终端