WO2022152270A1 - 数据传输方法、装置及ue - Google Patents

数据传输方法、装置及ue Download PDF

Info

Publication number
WO2022152270A1
WO2022152270A1 PCT/CN2022/072139 CN2022072139W WO2022152270A1 WO 2022152270 A1 WO2022152270 A1 WO 2022152270A1 CN 2022072139 W CN2022072139 W CN 2022072139W WO 2022152270 A1 WO2022152270 A1 WO 2022152270A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
ffp
transmission
idle period
time domain
Prior art date
Application number
PCT/CN2022/072139
Other languages
English (en)
French (fr)
Other versions
WO2022152270A9 (zh
Inventor
姜蕾
鲁智
李娜
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to KR1020237027355A priority Critical patent/KR20230131241A/ko
Priority to JP2023543036A priority patent/JP2024502676A/ja
Priority to EP22739145.5A priority patent/EP4280491A4/en
Publication of WO2022152270A1 publication Critical patent/WO2022152270A1/zh
Publication of WO2022152270A9 publication Critical patent/WO2022152270A9/zh
Priority to US18/351,027 priority patent/US20240023164A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • H04W74/0816Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA] with collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/11Semi-persistent scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • H04L1/0013Rate matching, e.g. puncturing or repetition of code symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1893Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0866Non-scheduled access, e.g. ALOHA using a dedicated channel for access

Definitions

  • the present application belongs to the field of communication technologies, and specifically relates to a data transmission method, device and UE.
  • the transmit/receive timing of frame-based equipment usually adopts a periodic structure, and its period is a fixed frame period (Fixed Frame Period, FFP).
  • the base station and user equipment can use different FFP periods and/or different FFP start positions, such that The flexibility brought by the configuration can meet the transmission requirements of URLLC.
  • the UE may use its own FFP to initiate Channel Occupancy Time (COT) for transmission, and the UE may also share the COT initiated by the base station, that is, the UE may perform uplink transmission in the COT of the base station.
  • COT Channel Occupancy Time
  • Embodiments of the present application provide a data transmission method, device, and UE, which can solve the problem that the repeated transmission is configured to transmit within the idle period of the FFP, and the UE cannot determine how to perform the repeated transmission.
  • an embodiment of the present application provides a data transmission method, the method includes: in the case that the time domain resources of the first data overlap with the first idle period, the UE transmits the first data according to the first transmission rule; wherein , the first data is data that is repeatedly transmitted, the first idle period is the idle period of the first FFP, and the first FFP is the FFP used by the UE.
  • an embodiment of the present application provides a data transmission apparatus, the data transmission apparatus includes: a transmission module; A transmission rule transmits the first data; wherein, the first data is repeatedly transmitted data, the first idle period is the idle period of the first FFP, and the first FFP is the FFP used by the UE.
  • an embodiment of the present application provides a UE, the UE includes a processor, a memory, and a program or instruction stored in the memory and executable on the processor, the program or instruction being executed by the The processor implements the steps of the data transmission method described in the first aspect when executed.
  • an embodiment of the present application provides a readable storage medium, where a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, the data transmission method according to the first aspect is implemented A step of.
  • an embodiment of the present application provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is configured to run a program or an instruction, and implement the first aspect the data transmission method.
  • the UE when the time domain resource of the first data overlaps with the first idle period, the UE transmits the first data according to the first transmission rule; wherein the first data is repeatedly transmitted data, and the first idle The period is the idle period of the first FFP, and the first FFP is the FFP used by the UE. That is, in the process of repeated data transmission by the UE, there is a conflict between the time domain resources of the first data in the repeatedly transmitted data transmitted by the UE and the idle period of the FFP used by the UE. In the case of data transmission, the UE can transmit the first data according to the first transmission rule, thereby completing repeated transmission, avoiding the problem of not knowing how to transmit data when the UE is configured to repeatedly transmit data in the idle period of the FFP used.
  • FIG. 1 is a schematic structural diagram of an FFP provided in an embodiment of the present application.
  • FIG. 2 is one of schematic diagrams of transmission resources provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a wireless communication system according to an embodiment of the present application.
  • FIG. 4 is one of the schematic flowcharts of the data transmission method provided by the embodiment of the present application.
  • FIG. 5 is the second schematic flowchart of the data transmission method provided by the embodiment of the present application.
  • FIG. 6 is a second schematic diagram of transmission resources provided by an embodiment of the present application.
  • FIG. 7 is a third schematic diagram of transmission resources provided by an embodiment of the present application.
  • FIG. 8 is a fourth schematic diagram of transmission resources provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a possible data transmission apparatus provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a possible UE according to an embodiment of the present application.
  • FIG. 11 is a schematic hardware diagram of a UE according to an embodiment of the present application.
  • unlicensed band can be used as a supplement to licensed band to help operators expand service capacity.
  • NR New Radio
  • the unlicensed frequency band can operate in the 5GHz, 37GHz or 60GHz frequency bands.
  • unlicensed frequency bands can be shared by multiple radio access technologies (Radio Access Technology, RAT).
  • Radio Access Technology RAT
  • RAT Radio Access Technology
  • wireless broadband Wireless-Fidelity, WiFi
  • radar Long Term Evolution-License Assisted Access
  • LTE-LAA Long Term Evolution-Licence Assisted Access
  • LBT listen before talk
  • MCOT maximum channel occupancy time
  • the FBE node occupies the channel by using the LBT-based channel access mechanism.
  • the node that initiates the transmission sequence including one or more consecutive transmissions is called the initiating node (Initiating Device), and the other nodes are called the responding node (Responding Device).
  • An FBE node can be an initiating node, a responding node, or a node that supports both initiating and responding.
  • the set of FFP values supported by the node is declared by the device manufacturer, and the value of FFP is between 1ms and 10ms.
  • a transfer can only be started at the start of the FFP.
  • a node can change its currently applied FFP, and the change frequency cannot exceed 200ms.
  • FIG. 1 is a schematic structural diagram of an FFP provided by an embodiment of the present application. As shown in FIG. 1 , the FFP may include a COT and an idle period (idle period).
  • the initiating node Before starting transmission at the beginning of a certain FFP, the initiating node performs channel idle estimation (Clear Channel Assess, CCA). As shown in Figure 1, a node may perform CCA during the idle period of the previous FFP. If it is judged that the channel is empty, it can be sent immediately; if it is judged that the channel is busy, it is not allowed to send within the next FFP duration. That is to say, the initiating node needs to do one-shot LBT before transmission, namely Cat.2LBT. Among them, the short control signaling transmission (Short Control Signalling Transmissions) specified by the regulatory requirements is excluded.
  • CCA Channel Assessment
  • the total duration that the corresponding initiating node can transmit without re-estimating the availability of the channel is defined as COT.
  • the COT cannot be longer than 95% of the FFP.
  • the Idle Period is located after the COT. The Idle Period lasts until the start of the next FFP. The length of the idle period is at least 5% of the FFP, and the minimum value is 100 ⁇ s.
  • the initiating node can transmit multiple times on the designated channel without performing additional CCA, and the time interval between adjacent transmissions of these transmissions does not exceed 16 ⁇ s. If the time interval between adjacent transmissions in the COT exceeds 16 ⁇ s, the initiating node needs to perform CCA again before continuing the transmission. When the CCA judges that the channel is idle, the initiating node continues to transmit. Among them, the time interval between all adjacent transmissions is included in the duration of the COT.
  • the initiating node may authorize one or more associated responding nodes to transmit the right to use the specified channel for certain periods of time within the COT. After a certain node correctly receives the data packet for it, it can directly transmit the management and control frame (eg ACK frame) corresponding to the data packet on the designated channel without CCA. This node needs to ensure that these continuously transmitted frames cannot exceed the maximum COT duration mentioned above.
  • ACK frame management and control frame
  • the responding node After receiving the authorization to use the specified channel from an initiating node within a certain period of time, the responding node will perform the following operations: if the responding node initiates transmission after the last transmission of the authorization indicated by the initiating node, the transmission is initiated after a maximum interval of 16 ⁇ s. Then the responding node does not need to perform CCA before transmission; if the interval exceeds 16 ⁇ s, CCA is performed before the authorized transmission period begins. If the channel is determined to be busy, the responding node discards the grant; if the channel is determined to be empty, the responding node may initiate transmission on the designated channel.
  • the transmission duration can occupy the remaining part of the COT in the current FFP at most, and multiple transmissions can be started within the time range of the remaining part, as long as the time interval between adjacent transmissions does not exceed 16 ⁇ s, and the authorization is discarded after the transmission is completed.
  • gNB and UE may adopt different FFP periods and/or different FFP start positions.
  • the network cannot change the configuration of the gNB or the FFP of the UE within 200ms after the configuration is completed.
  • the UE may use its own FFP to initiate COT (ie UE-initiated COT) for data transmission.
  • the gNB can use its own FFP to initiate COT (ie gNB-initiated COT).
  • the gNB starts transmission from the starting position of the gNB FFP, and the UE can share the COT of the gNB, that is, the UE can perform uplink transmission within the COT of the gNB. .
  • the PUSCH repetition transmission is PUSCH repetition type B
  • the PUSCH repetition transmission across the slot boundary is supported. That is, when a PUSCH transmission encounters slot boundaries, uplink and downlink switching points or invalid symbols, the PUSCH can be divided into multiple parts.
  • Each repetition indicated for the network device may be referred to as a nominal repetition.
  • the portion of each valid symbol is called an actual repetition.
  • the unavailable symbol is any of the following: synchronization signal and physical broadcast channel signal block (Synchronization Signal and PBCH block, SSB), symbol of control resource set 0 (CORESET 0), radio resource control (Radio Resource Control, RRC) Configured unavailable symbols, semi-static Downlink (DL) symbols.
  • the number of nominal repeated transmissions indicated or notified by the network device may not be equal to the actual number of repeated transmissions.
  • FIG. 2 is a schematic diagram of a transmission resource provided by an embodiment of the present application. As shown in FIG. 2 , four nominal repeated transmissions are included, each repeated transmission lasts 4 symbols, and the number of nominal repeated transmissions is four. When a nominal transmission 3 crosses a slot boundary, the nominal transmission is divided by 3 into 2 actual transmissions, so that the number of actual transmissions is 5.
  • first, second and the like in the description and claims of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It is to be understood that the data so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and distinguish between “first”, “second”, etc.
  • the objects are usually of one type, and the number of objects is not limited.
  • the first object may be one or more than one.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the associated objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technology can be used not only for the above-mentioned systems and radio technologies, but also for other systems and radio technologies.
  • NR New Radio
  • NR terminology is used in most of the following description, although these techniques are also applicable to applications other than NR system applications, such as 6th Generation (6G) communication systems .
  • 6G 6th Generation
  • FIG. 3 shows a schematic diagram of a wireless communication system to which an embodiment of the present application can be applied.
  • the wireless communication system includes UE 11 and network equipment 12.
  • the UE 11 may also be called a terminal device or a user terminal, and the UE 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), handheld computer, netbook, ultra-mobile personal computer (UMPC), mobile internet device (Mobile Internet Device, MID), wearable device (Wearable Device) or vehicle-mounted equipment (VUE), pedestrian terminal (PUE) and other terminal-side devices, wearable devices include: bracelets, headphones, glasses, etc.
  • the network device 12 may be a base station or a core network, where the base station may be referred to as a Node B, an evolved Node B, an access point, a Base Transceiver Station (BTS), a radio base station, a radio transceiver, a basic service set (Basic Service Set, BSS), Extended Service Set (Extended Service Set, ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolved Node B, WLAN Access Point, WiFi Node, Transmission and Reception Point (Transmitting Receiving Point, TRP) or some other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical vocabulary, it should be noted that in the embodiment of this application, only NR is used The base station in the system is taken as an example, but the specific type of the base station is not limited.
  • FIG. 4 is a schematic flowchart of a data transmission method according to an embodiment of the present application. As shown in Figure 4, the data transmission method includes the following steps 101:
  • Step 101 In the case that the time domain resource of the first data overlaps with the first idle period, the UE transmits the first data according to the first transmission rule.
  • the first data is data that is repeatedly transmitted, the first idle period is an idle period of the first FFP, and the first FFP is an FFP used by the UE.
  • the first data may be data sent by the UE or data received by the UE, which is not specifically limited in this embodiment of the present application.
  • the first data is any one of the following: data carried in the PUSCH, data carried in a physical downlink shared channel (Physical downlink shared channel, PDSCH).
  • data carried in the PUSCH data carried in a physical downlink shared channel (Physical downlink shared channel, PDSCH).
  • PDSCH Physical downlink shared channel
  • the first data may be data carried in the PUSCH for repeated transmission, and the first data may be data carried in the PDSCH for repeated transmission.
  • the first FFP is the FFP used by the COT (denoted as: UE-initiated COT) initiated by the UE to transmit data, or the FFP used by the COT (denoted as: gNB-initiated COT) initiated by the base station shared by the UE to transmit data. .
  • the first idle period is the idle period of the FFP corresponding to the UE-initiated COT; in the case where the UE shares the COT initiated by the base station, the first idle period is for the UE to share the gNB-initiated COT , the idle period of the FFP corresponding to the gNB-initiated COT.
  • the repetition type of the repeated transmission is repetition type A or repetition type B.
  • the first data is any one of the following: data of repetition type A (referred to as: PUSCH repetition type A) carried on PUSCH and transmitted repeatedly, data of repetition type A carried on PDSCH and repeatedly transmitted Data (denoted as: PDSCH repetition type A), data of repetition type B carried on PUSCH and repeatedly transmitted (denoted as: PUSCH repetition type B), carried on PDSCH and repeatedly transmitted data of repetition type B ( Recorded as: PDSCH repetition type B).
  • the UE may transmit the first data according to the first transmission rule based on the time domain information of the first idle period.
  • the time domain information of the first idle period includes at least one of the following items: a start time domain position of the first idle period, an end time domain position, and a duration of the first idle period.
  • the overlap between the time domain resources of the first data and the first idle period may be any of the following: the entire time domain resources of the first data overlap with the first idle period, and the part of the time domain resources of the first data overlaps with the first idle period.
  • the first idle periods overlap.
  • An embodiment of the present application provides a data transmission method.
  • the UE transmits the first data according to the first transmission rule; wherein the first data is data that is repeatedly transmitted , the first idle period is the idle period of the first FFP, and the first FFP is the FFP used by the UE. That is, in the process of repeated data transmission by the UE, there is a conflict between the time domain resources of the first data in the repeatedly transmitted data transmitted by the UE and the idle period of the FFP used by the UE.
  • the UE can transmit the first data according to the first transmission rule, thereby completing repeated transmission, avoiding the problem of not knowing how to transmit data when the UE is configured to repeatedly transmit data in the idle period of the FFP used.
  • step 100 in the data transmission method provided by this embodiment of the present application, before the above step 101 , the following step 100 may be further included:
  • Step 100 The UE determines whether the time domain resource of the first data overlaps with the first idle period.
  • the UE may determine whether the time domain resources of the first data overlap with the first idle period according to the target configuration information.
  • the target configuration information includes first configuration information and second configuration information, the first configuration information includes time domain information of the first data, and the second configuration information includes time domain information of the first idle period.
  • step 101 can be specifically performed by the following step 101a or step 101b:
  • Step 101a In the case that the time domain resource of the first data overlaps with the first idle period, the UE cancels the transmission of the first data.
  • the number of data repeatedly transmitted by the UE is 4, the time domain resources of the repeated transmission 3 overlap with the idle period 1 of the FFP 1, the UE can cancel the transmission of the repeated transmission 3, and continue to transmit the repeated transmission 4.
  • the time domain resources of a PUSCH repetition overlap with the idle period, and the UE may discard the entire PUSCH repetition.
  • PUSCH nominal repeat transmission 1 For PUSCH repetition type B, the time domain resources of PUSCH nominal repeat transmission 1 (PUSCH nominal repetition 1) overlap with idle period 1 of FFP 1, and the UE can discard the entire PUSCH nominal repeat transmission 1 that overlaps with the idle period; PUSCH actual repeat transmission 1 ( The time domain resource of PUSCH actual repetition 1) overlaps with the idle period 1 of FFP 1, and the UE can discard the entire PUSCH that overlaps with the idle period to actually repeat transmission 1.
  • the idle period in Example 1 and Example 2 can be the idle period of the FFP corresponding to the UE-Initiated COT, or the idle period of the FFP corresponding to the gNB when the UE shares the gNB-initiated COT.
  • Step 101b in the case that the time domain resource of the first data overlaps with the first idle period, the UE transmits the first data on the first time domain resource.
  • the first time domain resource is an available time domain resource located after the first idle period.
  • the available resources are available time domain resources determined by the UE.
  • the UE delays the transmission of the first data; if the first data also includes repeatedly transmitted data, the UE delays both the first data and the repeated data after the first data. transmission.
  • the UE does not discard any data, and postpones the transmission of the first data and the data repeatedly transmitted after the first data. If the time domain resources of the repeatedly transmitted data overlap with the idle period again, the UE can continue to postpone the transmission.
  • the number of data for repeated transmission is 4, the time domain resource of repeated transmission 3 overlaps with the first idle period, and the UE postpones repeated transmission 3 to the available time domain resources after the first idle period for transmission. Repeat transmission 3 continues with repeat transmission 4.
  • the entire PUSCH repetition that overlaps with the idle period can be delayed to continue transmission on the next available resource.
  • the first time domain resource is an available time domain resource located after the first idle period among the time domain resources corresponding to the next FFP of the first FFP.
  • the time domain resources of repeated transmission 3 overlap with the idle period 1 of FFP 1, and the UE can determine whether there are available time domain resources in the time period where FFP2 is located. If there are available time domain resources in the time period where FFP 2 is located, then The UE transmits repeated transmission 3 on the available time domain resources.
  • step 101b may be performed by the following step 101b1 or step 101b2:
  • Step 101b1 In the case where the time domain resource of the first data overlaps with the first idle period, if the channel is detected to be empty before the next FFP of the first FFP, the UE transmits the first data on the first time domain resource .
  • the first FFP is the FFP used by the COT transmission data initiated by the UE.
  • the UE may perform LBT before the next FFP of the first FFP, and determine whether the channel of the next FFP of the first FFP is empty.
  • idle period 1 is the idle period of FFP 1
  • FFP 2 is the next FFP of FFP 1
  • the UE can perform LBT in idle period 1 of FFP 1 to determine whether the channel of FFP 2 is empty.
  • Step 101b2 In the case that the time domain resource of the first data overlaps with the first idle period, if the channel sharing information is detected in the next FFP of the first FFP, transmit the first data on the first time domain resource.
  • the first FFP is an FFP used by the base station shared by the UE for COT transmission data.
  • gNB configures PUSCH repetition (type A or type B) for UE. 4 repeated transmissions are included in the transmission process. Among them, repeated transmission 3 overlaps with the idle period of the FFP used by the UE.
  • the UE transmits in the UE-initiated COT, the time domain resources of the repeated transmission 3 overlap with the idle period 1-1 corresponding to the UE's FFP 1-1, and the UE transmits the repeated transmission 1 and the repeated transmission.
  • the UE performs LBT in the idle period 1-1 of FFP 1-1, determines that the channel of FFP 1-2 is empty, and continues to transmit repeat transmission 3 and repeat transmission 4 on the available resources in FFP 1-2, for example The UE transmits repeat transmission 3 and repeat transmission 4 from the starting position of FFP 1-2.
  • the UE shares the gNB-initiated COT, and the time domain resources of repeated transmission 3 overlap with the idle period 2-1 corresponding to the FFP 2-1 of the gNB.
  • the UE detects whether there is channel sharing information in FFP 2-2. In the case of detecting channel sharing information, the UE continues to transmit repeated transmission 3 and repeated transmission 4 in the gNB-initiated COT detected by FFP 2-2. For example, the UE Repeat transmission 3 and repeat transmission 4 are transmitted after the downlink transmission of FFP 2-2.
  • the channel sharing information may be any downlink signaling or signal sent by the base station, or downlink signaling or signal sent at a specific location, or dedicated channel sharing indication information.
  • the UE does not discard any repeated transmission, and when the repeated transmission overlaps with the idle period of the FFP used by the UE, the UE may postpone the repeated transmission to the next available resource for transmission.
  • the above four repeated transmissions may all be nominal repeated transmissions, or may include actual repeated transmissions divided according to other rules (such as time slot boundaries), which are not made in this embodiment of the present application. Specific restrictions.
  • the UE can first determine whether there are available time domain resources in the next FFP, if there are available time domain resources in the next FFP, for example
  • the UE can perform CCA during the idle period of the first FFP to determine whether the channel of the second FFP is empty.
  • the data is postponed to the second FFP for continuous transmission.
  • the UE can detect whether the second FFP has received the channel sharing information. If the second FFP detects the channel sharing information, the UE can A piece of data is postponed to the second FFP and continues to be transmitted.
  • the UE may puncture the transmission in the overlapping portion of the idle period.
  • the first data is PUSCH repeat transmission of type A (PUSCH repetition type A)
  • the first data is data that continues to be transmitted after puncturing the configured repeat transmission
  • the UE may discard the overlapped portion of the first data with the idle period. transmission.
  • the above step 101 may be performed by the following steps 101c1 and 101c2:
  • Step 101c1 In the case that the time domain resources of the first data overlap with the first idle period, the UE divides the first data according to the target idle period.
  • the target idle period is the first idle period or the second idle period
  • the second idle period is the idle period of the FFP to be switched by the UE.
  • the UE may divide the first data according to the start position and the end position of the first idle period.
  • the above-mentioned repeated transmission may be nominal repeated transmission, or may be actual repeated transmission (actual repeated transmission that has been divided according to other regulations). That is, the first data divided by the UE may be the nominal repeated transmission configured by the network, or may be the actual repeated transmission that has been divided for the nominal repeated transmission.
  • the first data may be type B PUSCH repetition transmission (PUSCH repetition type B).
  • Step 101c2 the UE cancels the transmission of the first part of the first data.
  • the first part is the part of the first data that overlaps with the target idle period.
  • the UE can split or segment the repeated transmission for the idle period, and then the UE cancels (discards) the repeated transmission. The part that overlaps with idle period.
  • the time domain resources of the repeated transmission 3 overlap with the idle period 1 of the FFP 1, and the UE can divide the repeated transmission 3 into three parts A, B, and C according to the start position and the end position of the idle period 1. part.
  • the time domain resources corresponding to part B and the overlap of repeated transmission 3 and idle period 1 that is, part B is the above-mentioned first part
  • part A is the part before the first part
  • part C is the part after the first part.
  • the UE may cancel the transmission of the B part of repeated transmission 3.
  • the data in which the first data does not overlap with the idle period may include one part or two parts, which is not specifically limited in this embodiment of the present application.
  • step 101c3 or step 101c4 may be further included:
  • Step 101c3 If the transmission duration of the second part of the first data is less than or equal to a preset threshold, the UE cancels the transmission of the second part of the first data.
  • Step 101c4 If the transmission duration of the second part of the first data is greater than a preset threshold, the UE transmits the second part of the first data.
  • the second part of the first data includes at least one of the following: a part of the first data that is located before the first part, and a part of the first data that is located after the first part.
  • the transmission duration of the second part is less than or equal to the preset threshold, it can indicate that the amount of data in the second part is small; if the transmission duration of the second part is greater than the preset threshold, it can indicate that the amount of data in the second part is large. .
  • the value range of the preset threshold may be set according to actual needs, which is not specifically limited in this embodiment of the present application.
  • the UE discards all the first data.
  • the UE when the time domain resources of the first data overlap with the first idle period, the UE can divide the first data according to the first idle period, cancel the transmission of the first part, and then according to the transmission length of the second part Determine whether to cancel the transmission, cancel the transmission of the second part if the transmission length of the second part is less than or equal to the preset threshold, and transmit the second part if the transmission length of the second part is greater than the preset threshold.
  • the UE in the case where the first FFP is the FFP used by the COT transmission data initiated by the base station shared by the UE, if the time domain resources of the first data overlap with the first idle period , the UE can switch to the FFP initiated by the UE for subsequent repeated transmission, the second FFP is the FFP used by the COT transmission data initiated by the UE, the UE can divide the first data according to the second idle period, and the second idle period is the second FFP idle period.
  • the idle period of the first data and the second FFP may overlap, or may not overlap with the idle period of the second FFP.
  • the UE divides the first data based on the idle period of the second FFP.
  • step 101c5 may also be included:
  • Step 101c5 the UE transmits the second part of the first data and other data based on the second FFP.
  • the second part of the first data is the part of the first data that is located after the first part, and the other data mentioned above are the repeatedly transmitted data located after the first data.
  • the UE may switch the COT used for transmitting data when the time domain resource of the first data overlaps with the first idle period.
  • the UE cannot complete all repeated transmissions in the COT of the base station, the UE can initiate the COT by itself, the UE can divide the first data according to the idle period of the second FFP, and based on the Second FFP, complete the transmission of the remaining duplicate data.
  • the UE can Configuration selection switches to transmit data within the UE-initiated COT.
  • the network device configures 4 PUSCH nominal repeated transmissions for the UE.
  • the UE shares the gNB-initiated COT to transmit the 4 nominal repeat transmissions.
  • the UE may transmit PUSCH nominal repeat transmission 1 and nominal repeat transmission 2 within FFP 2-1.
  • the UE cannot complete all repeated transmissions within FFP 2-1.
  • Uplink transmission exists at the starting time domain position of FFP 2-2.
  • the UE divides the nominal repeated transmission 3 according to the idle period 1-1 of the UE FFP 1-1, and discards the idle period 1 -1 corresponds to the PUSCH part, and performs LBT before the start of FFP 1-2 (that is, the next one of FFP 1-1) (that is, within the idle period 1-1 of FFP 1-1). If the channel is empty, the UE continues to transmit the split actual repeated transmission 3 and nominal repeated transmission 4 in the COT initiated by the UE, and the UE starts to transmit the actual repeated transmission 3 from the starting position of FFP 1-2.
  • the UE in the case where the UE repeatedly transmits data within the COT of the shared gNB, if the time domain resource of the first data overlaps with the first idle period, the UE divides the first data according to the second idle period. Since each gNB-initiated COT starts with downlink transmission, that is, the FFP start position of each gNB needs to transmit downlink data. If the UE continues to share the gNB's COT to transmit the remaining data, it will overlap with the downlink data of the gNB's FFP start position. The data transfer needs to be dropped. Therefore, by adopting the above method of dividing data and switching FFPs, it can be avoided that the UE cannot transmit at the starting position of the next FFP of the gNB, thereby reducing the loss of repeated transmission of data.
  • the UE under the FBE channel access mechanism, can flexibly perform the division of nominal shared channel transmission and the selection of COT according to the FFP of the gNB and/or the UE, and can complete the repeated transmission of the shared channel with minimal loss.
  • the method may further include step 102:
  • Step 102 The UE transmits other uplink signals on the second time domain resource in the case of canceling the transmission of the data on the second time domain resource.
  • the second time domain resource is the time domain resource of the first data
  • the start position of the second time domain resource is aligned with the start position of the third FFP
  • the third FFP is the next FFP of the first FFP.
  • the UE when the UE cancels the transmission of the first data, or the UE cancels the transmission of part of the first data, it may cause that there is no data to transmit in the time domain resource starting from the start position of the next FFP of the first FFP, then The UE may fill other uplink signals for transmission from the starting position.
  • the other uplink signal may be a sounding reference signal (Sounding Reference Signal, SRS), a demodulation reference signal (Demodulation Reference Signal, DMRS), and the like.
  • SRS Sounding Reference Signal
  • DMRS demodulation Reference Signal
  • the repeated transmission 3 is directly discarded; or in conjunction with FIG. 7 or FIG. 8 , after the repeated transmission 3 is divided according to the idle period, the transmission length of the second part of the actual transmission is less than the preset threshold. In the case of , the second part is discarded; after the above two processes, if the starting time domain resource of the next FFP has no data to start transmission, for example, the time domain resource corresponding to part C in FIG. 7 has no data transmission, then the UE can Fill other data on the time domain resources corresponding to Part C.
  • the repeated transmission is not allowed to be scheduled within the idle period of the FFP corresponding to the COT where the UE transmits.
  • the execution body may be a data transmission device, or a control module in the data transmission device for executing the data transmission method.
  • a method for performing data transmission by a data transmission device is used as an example to describe the data transmission device provided by the embodiment of the present application.
  • FIG. 9 is a schematic diagram of a possible structure of a data transmission apparatus provided by an embodiment of the present application.
  • the data transmission apparatus 700 includes: a transmission module 701; In the case where the time domain resources of 100 overlap with the first idle period, the first data is transmitted according to the first transmission rule; wherein, the first data is the data of repeated transmission, the first idle period is the idle period of the first FFP, and the first FFP FFP used by user equipment UE.
  • the data transmission apparatus 700 further includes: a determination module 702; the determination module 702 is configured to determine whether the time domain resources of the first data overlap with the first idle period.
  • the repetition type of repeated transmission is repetition type A or repetition type B; the transmission module is specifically configured to: cancel the transmission of the first data; or, transmit the first data on the first time domain resource, and the first time domain resource is Available time domain resources after the first idle period.
  • the first time domain resource is an available time domain resource located after the first idle period among the time domain resources corresponding to the next FFP of the first FFP.
  • the transmission module is specifically configured to: if it is detected that the channel is empty before the next FFP, transmit the first data on the first time domain resource; the first FFP is the COT transmission data time domain FFP initiated by the UE; or , if the channel sharing information is detected in the next FFP, the first data is transmitted on the first time domain resource; the first FFP is the FFP used by the COT transmission data initiated by the base station shared by the UE.
  • the repetition type of repeated transmission is repetition type B; the transmission module is specifically configured to: divide the first data according to the target idle period; the target idle period is the first idle period or the second idle period, and the second idle period is the UE The idle period of the FFP to be switched; cancel the transmission of the first part of the first data; wherein, the first part is the part of the first data that overlaps with the target idle period.
  • the transmission module is further configured to: after dividing the first data, if the transmission duration of the second part of the first data is less than or equal to the preset threshold, cancel the transmission of the second part of the first data; After the first data, if the transmission duration of the second part of the first data is greater than the preset threshold, the second part of the first data is transmitted; wherein the second part includes at least one of the following: the first data is located before the first part , the part of the first data after the first part.
  • the first FFP is the FFP used for COT transmission data initiated by the base station shared by the UE;
  • the second idle period is the idle period of the second FFP;
  • the second FFP is the FFP used by the COT transmission data initiated by the UE;
  • the transmission module It is also used to transmit the second part of the first data and other data based on the second FFP after dividing the first data; wherein, the second part is the part located after the first part in the first data, and the other data is located in the first part. Data for repeated transmissions after the data.
  • the transmission module is further configured to transmit other uplink signals on the second time domain resource in the case of canceling the transmission of data on the second time domain resource; wherein the second time domain resource is the time of the first data. domain resource, the starting position of the second time domain resource is aligned with the starting position of the third FFP, and the third FFP is the next FFP of the first FFP.
  • the first FFP is an FFP used for COT transmission data initiated by the UE, or an FFP used for COT transmission data initiated by a base station shared by the UE.
  • the first data is any one of the following: data carried in the physical uplink shared channel PUSCH, and data carried in the physical downlink shared channel PDSCH.
  • An embodiment of the present application provides a data transmission device.
  • the data transmission device transmits the first data according to a first transmission rule; wherein the first data is repeated transmission
  • the first idle period is the idle period of the first FFP
  • the first FFP is the FFP used by the UE. That is, in the process of repeated data transmission by the UE, there is a conflict between the time domain resources of the first data in the repeatedly transmitted data transmitted by the UE and the idle period of the FFP used by the UE.
  • the data transmission apparatus can transmit the first data according to the first transmission rule, so as to complete the repeated transmission, avoiding the problem of not knowing how to transmit data when the UE is configured to repeatedly transmit data in the idle period of the used FFP.
  • the data transmission device in this embodiment of the present application may be a device, or may be a component, an integrated circuit, or a chip in a terminal.
  • the apparatus may be a mobile electronic device or a non-mobile electronic device.
  • the mobile electronic device may be a mobile phone, a tablet computer, a notebook computer, a palmtop computer, an in-vehicle electronic device, a wearable device, an ultra-mobile personal computer (UMPC), a netbook, or a personal digital assistant (personal digital assistant).
  • UMPC ultra-mobile personal computer
  • netbook or a personal digital assistant
  • non-mobile electronic devices can be servers, network attached storage (Network Attached Storage, NAS), personal computer (personal computer, PC), television (television, TV), teller machine or self-service machine, etc., this application Examples are not specifically limited.
  • Network Attached Storage NAS
  • personal computer personal computer, PC
  • television television
  • teller machine or self-service machine etc.
  • the data transmission device in this embodiment of the present application may be a device with an operating system.
  • the operating system may be an Android (Android) operating system, an ios operating system, or other possible operating systems, which are not specifically limited in the embodiments of the present application.
  • the data transmission apparatus provided in the embodiments of the present application can implement each process implemented by the data transmission apparatus in the method embodiments of FIG. 4 to FIG. 8 , and to avoid repetition, details are not described here.
  • an embodiment of the present application further provides a UE 800, including a processor 801, a memory 802, a program or instruction stored in the memory 802 and executable on the processor 801, the When the program or instruction is executed by the processor 801, each process of the foregoing data transmission method embodiment is implemented, and the same technical effect can be achieved. To avoid repetition, details are not repeated here.
  • the UE in the embodiment of the present application includes the above-mentioned mobile electronic device and non-mobile electronic device.
  • FIG. 11 is a schematic diagram of a hardware structure of a UE implementing an embodiment of the present application.
  • the UE 1000 includes but is not limited to: a radio frequency unit 1001, a network module 1002, an audio output unit 1003, an input unit 1004, a sensor 1005, a display unit 1006, a user input unit 1007, an interface unit 1008, a memory 1009, and a processor 1010 and other components .
  • the UE 1000 may also include a power supply (such as a battery) for supplying power to various components, and the power supply may be logically connected to the processor 1010 through a power management system, so as to manage charging, discharging, and power consumption through the power management system management and other functions.
  • a power supply such as a battery
  • the UE structure shown in FIG. 11 does not constitute a limitation on the UE, and the UE may include more or less components than shown, or combine some components, or arrange different components, which will not be repeated here.
  • the radio frequency unit 1001 is configured to transmit the first data according to the first transmission rule when the time domain resources of the first data overlap with the first idle period;
  • the idle period is the idle period of the first FFP, and the first FFP is the FFP used by the UE.
  • An embodiment of the present application provides a UE.
  • the UE transmits the first data according to the first transmission rule; wherein the first data is data that is repeatedly transmitted, and the first data is An idle period is the idle period of the first FFP, and the first FFP is the FFP used by the UE. That is, in the process of repeated data transmission by the UE, there is a conflict between the time domain resources of the first data in the repeatedly transmitted data transmitted by the UE and the idle period of the FFP used by the UE.
  • the UE can transmit the first data according to the first transmission rule, thereby completing repeated transmission, avoiding the problem of not knowing how to transmit data when the UE is configured to repeatedly transmit data in the idle period of the FFP used.
  • the repetition type of repeated transmission is repetition type A or repetition type B; the radio frequency unit 1001 is also used for the UE to cancel the transmission of the first data; or, the UE transmits the first data on the first time domain resource, and the first time Domain resources are available time domain resources after the first idle period.
  • the radio frequency unit 1001 is specifically configured to transmit the first data on the first time domain resource if the channel is detected to be empty before the next FFP; the first FFP is the FFP used by the COT transmission data initiated by the UE; or , if the channel sharing information is detected in the next FFP, the first data is transmitted on the first time domain resource; the first FFP is the FFP used by the COT transmission data initiated by the base station shared by the UE.
  • the radio frequency unit 1001 is specifically used for the UE to divide the first data according to the target idle period; the target idle period is the first idle period or the second idle period, and the second idle period is the idle period of the FFP to be switched by the UE; The UE cancels transmitting the first part of the first data; wherein, the first part is the part of the first data that overlaps with the target idle period.
  • the radio frequency unit 1001 is further configured to cancel the transmission of the second part of the first data if the transmission duration of the second part of the first data is less than or equal to the preset threshold after dividing the first data; If the transmission duration of the second part of the data is greater than the preset threshold, the second part of the first data is transmitted; wherein, the second part includes at least one of the following: a part of the first data that is located before the first part, a part of the first data The part after the first part.
  • the first FFP is the FFP used for COT transmission data initiated by the base station shared by the UE;
  • the second idle period is the idle period of the second FFP;
  • the second FFP is the FFP used by the COT transmission data initiated by the UE;
  • the radio frequency unit 1001 is also used to transmit the second part of the first data and other data based on the second FFP after dividing the first data; wherein, the second part is the part located after the first part in the first data, and the other data is located in the first part. Data for repeated transmissions after the data.
  • the radio frequency unit 1001 is further configured to transmit other uplink signals on the second time domain resource in the case of canceling the transmission of data on the second time domain resource; wherein the second time domain resource is the time of the first data domain resource, the starting position of the second time domain resource is aligned with the starting position of the third FFP, and the third FFP is the next FFP of the first FFP.
  • the input unit 1004 may include a graphics processor (Graphics Processing Unit, GPU) 1041 and a microphone 1042. Such as camera) to obtain still pictures or video image data for processing.
  • the display unit 1006 may include a display panel 1061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 1007 includes a touch panel 1071 and other input devices 1072 .
  • the touch panel 1071 is also called a touch screen.
  • the touch panel 1071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 1072 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which are not described herein again.
  • Memory 1009 may be used to store software programs as well as various data, including but not limited to application programs and operating systems.
  • the processor 1010 may integrate an application processor and a modem processor, wherein the application processor mainly processes the operating system, user interface, and application programs, and the like, and the modem processor mainly processes wireless communication. It can be understood that, the above-mentioned modulation and demodulation processor may not be integrated into the processor 1010.
  • the embodiments of the present application further provide a readable storage medium, where a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, each process of the foregoing data transmission method embodiment can be achieved, and the same can be achieved. In order to avoid repetition, the technical effect will not be repeated here.
  • the processor is the processor in the UE described in the foregoing embodiment.
  • the readable storage medium includes a computer-readable storage medium, such as a computer read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk or an optical disk, and the like.
  • An embodiment of the present application further provides a chip, where the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is configured to run a program or an instruction to implement the above data transmission method embodiments.
  • the chip includes a processor and a communication interface
  • the communication interface is coupled to the processor
  • the processor is configured to run a program or an instruction to implement the above data transmission method embodiments.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip, or the like.
  • the method of the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course can also be implemented by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of a software product in essence or in a part that contributes to the prior art, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, CD-ROM), including several instructions to make a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the methods described in the various embodiments of this application.
  • a storage medium such as ROM/RAM, magnetic disk, CD-ROM

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

本申请公开了一种数据传输方法、装置及UE,属于通信技术领域。以解决重复传输配置在FFP的空闲时段内传输,UE无法确定如何进行重复传输的问题。该方法包括:在第一数据的时域资源与第一空闲时段重叠的情况下,UE按照第一传输规则传输第一数据;其中,第一数据为重复传输的数据,第一空闲时段为第一FFP的空闲时段,第一FFP为该UE使用的FFP。

Description

数据传输方法、装置及UE
相关申请的交叉引用
本申请主张在2021年1月15日在中国提交的中国专利申请号202110055722.7的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种数据传输方法、装置及UE。
背景技术
基于帧的设备(Frame Based Equipment,FBE)的发送/接收定时通常采用周期结构,其周期为固定帧周期(Fixed Frame Period,FFP)。
在超高可靠和低时延通信(Ultra-Reliable and Low Latency Communications,URLLC)中,基站和用户设备(User Equipment,UE)可以采用不同的FFP周期和/或不同的FFP起始位置,这样的配置带来的灵活性可以满足URLLC的传输要求。其中,UE可以采用自己的FFP发起信道占用时间(Channel Occupancy Time,COT)以进行传输,UE也可共享基站发起的COT,即UE可以在基站的COT内进行上行传输。
然而,在FBE信道接入机制里,不能在FFP的空闲时段(idle period)内传输数据,而重复传输的配置与FFP的配置相互独立,因此存在二者不匹配的情况,如可能导致重复传输配置在FFP的idle period内传输,从而使得UE无法确定如何进行重复传输。
发明内容
本申请实施例提供一种数据传输方法、装置及UE,能够解决重复传输配置在FFP的空闲时段内传输,UE无法确定如何进行重复传输的问题。
第一方面,本申请实施例提供了一种数据传输方法,该方法包括:在第一数据的时域资源与第一空闲时段重叠的情况下,UE按照第一传输规则传输第一数据;其中,第一数据为重复传输的数据,第一空闲时段为第一FFP的空闲时段,第一FFP为UE使用的FFP。
第二方面,本申请实施例提供了一种数据传输装置,该数据传输装置包括:传输模块;传输模块,用于在第一数据的时域资源与第一空闲时段重叠的情况下,按照第一传输规则传输第一数据;其中,第一数据为重复传输的数据,第一空闲时段为第一FFP的空闲时段,第一FFP为UE使用的FFP。
第三方面,本申请实施例提供了一种UE,该UE包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的数据传输方法的步骤。
第四方面,本申请实施例提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的数据传输方法的步骤。
第五方面,本申请实施例提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所 述的数据传输方法。
在本申请实施例中,在第一数据的时域资源与第一空闲时段重叠的情况下,UE按照第一传输规则传输第一数据;其中,第一数据为重复传输的数据,第一空闲时段为第一FFP的空闲时段,第一FFP为UE使用的FFP。即,在UE进行数据重复传输的过程中,UE传输的重复传输的数据中第一数据的时域资源和UE使用的FFP的空闲时段存在冲突,也就是说在配置UE在FFP的空闲时段重复传输数据的情况下,UE可以按照第一传输规则传输第一数据,从而完成重复传输,避免了UE被配置在使用的FFP的空闲时段重复传输数据的情况下不知如何传输的问题。
附图说明
图1为本申请实施例提供的一种FFP结构示意图;
图2为本申请实施例提供的传输资源的示意图之一;
图3为本申请实施例提供的一种无线通信系统的示意图;
图4为本申请实施例提供的数据传输方法的流程示意图之一;
图5为本申请实施例提供的数据传输方法的流程示意图之二;
图6为本申请实施例提供的传输资源的示意图之二;
图7为本申请实施例提供的传输资源的示意图之三;
图8为本申请实施例提供的传输资源的示意图之四;
图9为本申请实施例提供的一种数据传输装置可能的结构示意图;
图10为本申请实施例提供的一种UE可能的结构示意图;
图11为本申请实施例提供的一种UE的硬件示意图。
具体实施方式
首先对本申请实施例中涉及的相关术语进行解释:
1、非授权频段
在未来通信系统中,共享频谱例如非授权频段(unlicensed band)可以作为授权频段(licensed band)的补充,帮助运营商对服务进行扩容。为了与新空口(New Radio,NR)系统部署保持一致,并尽可能的最大化基于NR的非授权接入,非授权频段可以工作在5GHz、37GHz或60GHz频段。
通常,非授权频段可以由多种无线接入技术(Radio Access Technology,RAT)共用。例如无线宽带(Wireless-Fidelity,WiFi),雷达,长期演进-授权频谱辅助接入(Long Term Evolution-Licence Assisted Access,LTE-LAA)等技术。因此,在一些国家或者区域,在使用时非授权频段需要符合规则(regulation),以保证所有设备可以公平地使用该资源。
例如,需要符合先听后送(listen before talk,LBT)、最大信道占用时间(maximum channel occupancy time,MCOT)等规则。当传输节点需要发送信息时,需要先做LBT对周围的节点进行功率检测(energy detection,ED)。若检测到的功率低于一个门限时,则认为信道为空(idle),传输节点可以进行发送,传输节点开始传输后,占用的信道时间不能超过MCOT。若检测到的功率高于或等于一个门限时,则认为信道为忙,传输节点不能进行发送。其中,传输节点可以为基站、UE、WiFi AP等。
2、FBE信道接入机制
通常,FBE节点采用基于LBT的信道接入机制占用信道。其中,发起包含一次或多次连续传输的传输序列的节点称之为发起节点(Initiating Device),其它节点称之为响应节点(Responding Device)。FBE节点可以为发起节点、响应节点,或者同时支持发起和响应的节点。节点支持的FFP取值集合由设备制造商声明,FFP的取值在 1ms~10ms之间。仅可在FFP的开始时刻启动传输。节点可以更改其当前应用的FFP,更改频度不能高于200ms一次。
图1为本申请实施例提供的一种FFP结构示意图,如图1所示,FFP可以包括COT和空闲时段(idle period)。
在某个FFP的开始时刻启动传输之前,发起节点执行信道空闲估计(Clear Channel Assess,CCA)。如图1中所示,节点可以在前一个FFP的空闲时段执行CCA。若判断信道为空,则可以立即发送;若判断信道为忙,则在紧接着的FFP时长内都不允许发送。也就是说,发起节点在传输之前需要做one-shot LBT,即Cat.2LBT。其中,监管要求规定的短控制信令传输(Short Control Signalling Transmissions)除外。
在某个已开始发送数据的FFP内,对应的发起节点无需重新估计信道的可用性便可传输的总时长,定义为COT。COT不能长于FFP的95%,Idle Period位于COT之后,Idle Period持续至下一个FFP的开始时刻结束,空闲时段的长度至少为FFP的5%,且最小值为100μs。
发起节点在COT内,可以在指定信道上传输多次而无需执行额外的CCA,这些传输的相邻传输之间的时间间隔都不超过16μs。若COT内相邻传输之间的时间间隔超过16μs,则发起节点在继续传输之前,需要再次执行CCA。当CCA判断信道为空闲时发起节点继续传输。其中,所有相邻传输之间的时间间隔都计入COT的时长。
发起节点可以将COT内某些时段的指定信道的使用权授权给一到多个关联的响应节点进行传输。某个节点在正确收到针对它的数据包之后,可以不作CCA直接立即在指定信道上传输数据包对应的管理和控制帧(例如ACK帧)。此节点需要保证这些连续传输的帧不能超出上述提到的最大COT时长。
响应节点在收到某个发起节点对指定信道在某些时段内的使用授权之后,将执行如下操作:如果响应节点在发起节点指示授权的最后一次传输结束之后,最多间隔16μs后就发起传输,则响应节点在传输之前无需执行CCA;若间隔超过16μs,则在授权的传输时段开始之前执行CCA。若确定信道为忙,则响应节点丢弃此授权;若确定信道为空,则响应节点可在指定信道上启动传输。传输时长最多可占用当前FFP内COT的剩余部分,在剩余部分的时间范围内可启动多次传输,只要相邻传输的时间间隔不超过16μs即可,传输完毕后丢弃此授权。
在Rel-17URLLC中,gNB和UE可以采用不同的FFP周期和/或不同的FFP起始位置。网络在配置完成后的200ms内不可以对gNB或者UE的FFP的配置进行改变。UE可以采用自己的FFP发起COT(即UE-initiated COT)进行数据传输。gNB可以采用自己的FFP发起COT(即gNB-initiated COT),在gNB获得信道后,gNB从gNB FFP起始位置开始传输,UE可共享gNB的COT,即UE可以在gNB的COT内进行上行传输。
3、物理上行共享信道(Physical Uplink Shared Channel,PUSCH)重复传输
在rel-16中,对于URLLC业务,为了改进时延和可靠性的要求,在PUSCH重复传输为PUSCH repetition type B的情况下,支持跨时隙边界(slot boundary)的PUSCH重复传输。即,当一个PUSCH传输遇到时隙边界,上下行切换点或无效符号时,该PUSCH可以被划分成多个部分。对于网络设备指示的每一个重复传输可以称为一个名义重复传输(nominal repetition)。当一个名义PUSCH被划分时,每一个有效符号的部分被称为实际重复传输(actual repetition)。
需要说明的是,若一个名义传输遇到不可用符号,该实际传输将被取消传输或丢弃(drop)。其中,不可用符号为以下任一项:同步信号和物理广播信道信号块(Synchronization Signal and PBCH block,SSB)、控制资源集0(CORESET 0)的符号、无线资源控制(Radio Resource Control,RRC)配置的不可用符号,半静态的下 行(Downlink,DL)符号。
可以理解,网络设备指示或通知的名义重复传输的次数可以不等于实际重复传输的数目。
图2为本申请实施例提供的一种传输资源示意图,如图2中所示,包括4个名义重复传输,每个重复传输持续4个符号,名义重复传输的数量为4。当名义传输3跨时隙边界时,该名义传输被3划分为2个实际的传输,这样,实际传输的数量为5。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”等所区分的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”,一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。然而,以下描述出于示例目的描述了NR系统,并且在以下大部分描述中使用NR术语,尽管这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图3示出本申请实施例可应用的一种无线通信系统的示意图。无线通信系统包括UE 11和网络设备12。其中,UE 11也可以称作终端设备或者用户终端,UE 11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备(VUE)、行人终端(PUE)等终端侧设备,可穿戴式设备包括:手环、耳机、眼镜等。需要说明的是,在本申请实施例并不限定UE 11的具体类型。网络设备12可以是基站或核心网,其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、WLAN接入点、WiFi节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例,但是并不限定基站的具体类型。
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的数据传输方法进行详细地说明。
图4为本申请实施例提供的一种数据传输方法的流程示意图。如图4中所示,该 数据传输方法包括下述的步骤101:
步骤101、在第一数据的时域资源与第一空闲时段重叠的情况下,UE按照第一传输规则传输第一数据。
其中,第一数据为重复传输的数据,第一空闲时段为第一FFP的空闲时段,第一FFP为UE使用的FFP。
需要说明的是,第一数据可以为UE发送的数据,也可以为UE接收的数据,本申请实施例对此不作具体限定。
可选地,第一数据为以下任一项:承载在PUSCH中的数据、承载在物理下行共享信道(Physical downlink shared channel,PDSCH)中的数据。
例如,第一数据可以为承载在PUSCH中重复传输的数据,第一数据可以为承载在PDSCH中重复传输的数据。
可选地,第一FFP为UE发起的COT(记为:UE-initiated COT)传输数据使用的FFP,或为UE共享的基站发起的COT(记为:gNB-initiated COT)传输数据使用的FFP。
进而,在UE发起COT传输数据的情况下,第一空闲时段为UE-initiated COT对应的FFP的idle period;在UE共享基站发起的COT的情况下,第一空闲时段为UE共享gNB-initiated COT时,gNB-initiated COT对应的FFP的idle period。
可选地,重复传输的重复类型为重复类型A或重复类型B。
示例性地,第一数据为以下任一项:承载在PUSCH上传输且重复传输的重复类型A的数据(记为:PUSCH repetition type A)、承载在PDSCH上传输且重复传输的重复类型A的数据(记为:PDSCH repetition type A)、承载在PUSCH上传输且重复传输的重复类型B的数据(记为:PUSCH repetition type B)、承载在PDSCH上传输且重复传输的重复类型B的数据(记为:PDSCH repetition type B)。
示例性地,UE可以基于第一空闲时段的时域信息,按照第一传输规则传输第一数据。
其中,第一空闲时段的时域信息包括以下至少一项:第一空闲时段的起始时域位置、结束时域位置、第一空闲时段的时长。
需要说明的是,第一数据的时域资源与第一空闲时段重叠可以为以下任意一项:第一数据的整个时域资源与第一空闲时段重叠,第一数据的时域资源的部分与第一空闲时段重叠。
本申请实施例提供一种数据传输方法,在第一数据的时域资源与第一空闲时段重叠的情况下,UE按照第一传输规则传输第一数据;其中,第一数据为重复传输的数据,第一空闲时段为第一FFP的空闲时段,第一FFP为UE使用的FFP。即,在UE进行数据重复传输的过程中,UE传输的重复传输的数据中第一数据的时域资源和UE使用的FFP的空闲时段存在冲突,也就是说在配置UE在FFP的空闲时段重复传输数据的情况下,UE可以按照第一传输规则传输第一数据,从而完成重复传输,避免了UE被配置在使用的FFP的空闲时段重复传输数据的情况下不知如何传输的问题。
可选地,结合图4,如图5所示,本申请实施例提供的数据传输方法中,在上述步骤101之前,还可以包括下述的步骤100:
步骤100、UE确定第一数据的时域资源与第一空闲时段是否重叠。
示例性地,UE可以根据目标配置信息,确定第一数据的时域资源与第一空闲时段是否重叠。
其中,目标配置信息包括第一配置信息和第二配置信息,第一配置信息包括第一数据的时域信息,第二配置信息包括第一空闲时段的时域信息。
可选地,本申请实施例提供的数据传输方法中,上述的步骤101具体可以通过下 述的步骤101a或步骤101b执行:
步骤101a、在第一数据的时域资源与第一空闲时段重叠的情况下,UE取消传输第一数据。
可以理解,在本申请实施例中,UE取消的是重复传输的数据中的第一数据的传输,其他重复数据继续传输。
示例性地,UE重复传输的数据数量为4个,重复传输3的时域资源与FFP 1的idle period 1重叠,UE可以取消传输重复传输3,继续传输重复传输4。
示例1:
对于PUSCH repetition type A,一个PUSCH repetition的时域资源与idle period重叠,UE可以丢弃整个该PUSCH repetition。
示例2:
对于PUSCH repetition type B,PUSCH名义重复传输1(PUSCH nominal repetition1)的时域资源与FFP 1的idle period 1重叠,UE可以丢弃整个与idle period重叠的PUSCH名义重复传输1;PUSCH实际重复传输1(PUSCH actual repetition 1)的时域资源与FFP 1的idle period 1重叠,UE可以丢弃整个与idle period重叠的PUSCH实际重复传输1。
其中,示例1和示例2中的idle period,可以为UE-Initiated COT对应的FFP的idle period,也可以为UE在共享gNB-initiated COT时,gNB对应的FFP的idle period。
步骤101b、在第一数据的时域资源与第一空闲时段重叠的情况下,UE在第一时域资源上传输第一数据。
其中,第一时域资源为位于第一空闲时段之后的可用时域资源。
示例性地,该可用资源为UE确定的可用时域资源。
可以理解,第一数据之后不包括其他重复传输的数据,UE将第一数据延迟传输;第一数据之后还包括重复传输的数据,则UE将第一数据和第一数据之后的重复数据均延迟传输。
也就是说,UE不丢弃任何数据,顺延传输第一数据以及第一数据之后重复传输的数据,若再次遇到重复传输的数据的时域资源与idle period重叠,UE可以继续顺延传输。
示例性地,重复传输的数据数量为4个,重复传输3的时域资源与第一idle period重叠,UE将重复传输3顺延至第一idle period之后的可用时域资源上传输,在传输完重复传输3之后继续传输重复传输4。
示例3:
当PUSCH repetition(type A或type B)的时域资源与idle period重叠的时候,可以顺延与idle period重叠的整个PUSCH repetition,到下一个可用资源上继续传输。
可选地,第一时域资源为第一FFP的下一个FFP对应的时域资源中,位于第一空闲时段之后的可用时域资源。
结合图5,重复传输3的时域资源与FFP 1的idle period 1重叠,UE可以确定FFP2所在时间段是否存在可用的时域资源,若FFP 2所在的时间段存在可用的时域资源,则UE在该可用的时域资源上传输重复传输3。
可选地,本申请实施例提供的数据传输方法中,上述的步骤101b可以通过下述的步骤101b1或步骤101b2执行:
步骤101b1、在第一数据的时域资源与第一空闲时段重叠的情况下,若在第一FFP的下一个FFP前检测到信道为空,则UE在第一时域资源上传输第一数据。
其中,第一FFP为UE发起的COT传输数据使用的FFP。
示例性地,UE可以在第一FFP的下一个FFP前进行LBT,确定第一FFP的下一 个FFP的信道是否为空。
例如,结合图5,idle period 1为FFP 1的空闲时段,FFP 2为FFP 1的下一个FFP,UE可以在FFP 1的idle period 1进行LBT,以确定FFP 2的信道是否为空。
步骤101b2、在第一数据的时域资源与第一空闲时段重叠的情况下,若在第一FFP的下一个FFP内检测到信道共享信息,则在第一时域资源上传输第一数据。
其中,第一FFP为UE共享的基站发起的COT传输数据使用的FFP。
例如,gNB给UE配置PUSCH repetition(type A或type B)。在传输过程中包括4个重复传输。其中,重复传输3与UE使用的FFP的idle period有重叠。
示例4:
结合图6中的(a),UE在UE-initiated COT内传输,重复传输3的时域资源与UE的FFP 1-1对应的空闲时段1-1重叠,UE传输完重复传输1和重复传输2之后,UE在FFP 1-1的空闲时段1-1做LBT,确定FFP 1-2的信道为空,则在FFP 1-2内的可用资源上继续传输重复传输3和重复传输4,例如UE从FFP 1-2的起始位置开始传输重复传输3和重复传输4。
示例5:
结合图6中的(b),UE共享gNB-initiated COT,重复传输3的时域资源与gNB的FFP 2-1对应的空闲时段2-1重叠,UE传输完重复传输1和重复传输2之后,UE检测FFP 2-2内是否有信道共享信息,在检测到信道共享信息的情况下,UE在FFP 2-2检测到的gNB-initiated COT内继续传输重复传输3和重复传输4,例如UE在FFP 2-2的下行传输之后传输重复传输3和重复传输4。
其中,该信道共享信息可以是基站发送的任意下行信令、信号,或者是在特定位置发送的下行信令、信号,或者是专属的信道共享指示信息。
也就是说,UE不丢弃任何重复传输,当重复传输与UE使用的FFP的空闲时段重叠,UE可以将重复传输顺延到下一个可用的资源上传输。
需要说明的是,在传输重复传输过程中,上述4个重复传输可以全为名义重复传输,也可以包括根据其他规则(例如时隙边界)分割后的实际重复传输,本申请实施例对此不作具体限定。
基于该方案,在第一数据的时域资源与第一空闲时段重叠的情况下,UE可以先确定下一个FFP是否存在可用的时域资源,若下一个FFP内存在可用的时域资源,例如UE在自己发起的COT传输数据的情况下,UE可以在第一FFP的空闲时段内进行CCA,确定第二FFP的信道是否为空,第二FFP的信道为空的情况下,可以将第一数据顺延到第二FFP内继续传输,在UE共享基站的COT传输数据的情况下,UE可以检测第二FFP是否接收到信道共享信息,若第二FFP检测到信道共享信息,则UE可以将第一数据顺延到第二FFP内继续传输。
可选地,在重复传输的重复类型为重复类型A的情况下,UE可以对与idle period重叠部分的传输进行打孔(puncture)。
例如,第一数据为类型A的PUSCH重复传输(PUSCH repetition type A),第一数据为对配置的重复传输打孔后继续传输的数据,UE可以丢弃该第一数据中与idle period重叠部分的传输。
可选地,本申请实施例提供的数据传输方法中,在重复传输的重复类型为重复类型B的情况下,上述的步骤101可以通过下述的步骤101c1和步骤101c2执行:
步骤101c1、在第一数据的时域资源与第一空闲时段重叠的情况下,UE根据目标空闲时段,分割第一数据。
其中,目标空闲时段为第一空闲时段或第二空闲时段,第二空闲时段为UE待切换的FFP的空闲时段。
示例性地,UE可以根据第一空闲时段的起始位置和结束位置,分割第一数据。
需要说明的是,上述的重复传输可以为名义重复传输、也可以为实际重复传输(已经根据其他规定分割后的实际重复传输)。即,UE分割的第一数据,可以为网络配置的名义重复传输,也可以为已经对名义重复传输分割过的实际重复传输。
示例性地,第一数据可以为类型B的PUSCH重复传输(PUSCH repetition type B)。
步骤101c2、UE取消传输第一数据的第一部分。
其中,第一部分为第一数据中与目标空闲时段重叠的部分。
可以理解,若一个重复传输的时域资源与UE使用的FFP的idle period重叠时,UE可以对该重复传输针对该idle period进行分割(split or segmentation),然后UE取消传输(丢弃)该重复传输与idle period重叠的部分。
示例性地,结合图7,重复传输3的时域资源与FFP 1的空闲时段1重叠,UE可以按照空闲时段1的起始位置和结束位置,将重复传输3分割成A、B、C三个部分。其中,B部分对应的时域资源与重复传输3与空闲时段1的重叠(即B部分为上述的第一部分),A部分为第一部分之前的部分、C部分为第一部分之后的部分。UE可以取消传输重复传输3的B部分。
需要说明的是,在实际应用中,在分割之后,第一数据未与空闲时段重叠的数据可能包括一个部分,也可能包括两个部分,本申请实施例对此不作具体限定。
可选地,本申请实施例提供的数据传输方法中,在上述的步骤101c1之后,还可以包括下述的步骤101c3或步骤101c4:
步骤101c3、若第一数据的第二部分的传输时长小于或等于预设阈值,则UE取消传输第一数据的第二部分。
步骤101c4、若第一数据的第二部分的传输时长大于预设阈值,则UE传输第一数据的第二部分。
其中,第一数据的第二部分包括以下至少一项:第一数据中位于第一部分之前的部分、第一数据中位于第一部分之后的部分。
需要说明的是,第二部分的传输时长小于或等于预设阈值,可以指示第二部分的数据量较少;第二部分的传输时长大于预设阈值,可以指示第二部分的数据量较多。
需要说明的是,预设阈值的取值范围可以根据实际需要设定,本申请实施例对此不作具体限定。
示例性地,结合图7,若A部分的传输长度小于或等于X,则丢弃A部分;若A部分的传输长度大于X,则传输A部分;若C部分的传输长度小于或等于X,则丢弃C部分;若C部分的传输长度大于X,则传输C部分;其中,X=1个符号(symbol)。
可以理解,在A部分和C部分的传输长度均小于或等于X的情况下,UE丢弃第一数据的全部。
基于该方案,UE在在第一数据的时域资源与第一空闲时段重叠的情况下,UE可以根据第一空闲时段,分割第一数据,取消传输第一部分,然后根据第二部分的传输长度确定是否取消传输,在第二部分的传输长度小于或等于预设阈值的情况下,取消传输第二部分,在第二部分的传输长度大于预设阈值的情况下,传输第二部分。
可选地,本申请实施例提供的数据传输方法中,在第一FFP为UE共享的基站发起的COT传输数据使用的FFP的情况下,若第一数据的时域资源与第一空闲时段重叠,UE可以切换至UE发起的FFP进行后续的重复传输,第二FFP为UE发起的COT传输数据使用的FFP,UE可以根据第二空闲时段,分割第一数据,第二空闲时段为第二FFP的空闲时段。
需要说明的是,第一数据与第二FFP的空闲时段可能存在重叠,也可能与第二FFP的空闲时段不存在重叠,在重叠的情况下UE基于第二FFP的空闲时段分割第一数据。
进而,在上述的步骤101c1之后,还可以包括下述的步骤101c5:
步骤101c5、UE基于第二FFP,传输第一数据的第二部分和其他数据。
其中,第一数据的第二部分为第一数据中位于第一部分之后的部分,上述的其他数据为位于第一数据之后的重复传输的数据。
也就是说,UE可以在第一数据的时域资源与第一空闲时段重叠的情况下,切换传输数据使用的COT。在UE共享基站的COT传输数据的情况下,UE无法在基站的COT内完成所有的重复传输,UE可以自己发起COT,UE可以根据第二FFP的空闲时段分割第一数据,并基于UE的第二FFP,完成剩余的重复数据的传输。
即,在UE共享gNB-initiated COT传输重复传输的情况下,若UE不能在gNB-initiated COT完成所有PUSCH repetition的传输,由于每个gNB-initiated COT都以下行传输开始,UE可以根据UE的FFP配置选择切换到UE-initiated COT内传输数据。
示例6:
结合图8,网络设备为UE配置4个PUSCH名义重复传输。UE共享gNB-initiated COT传输该4个名义重复传输。UE可以在FFP 2-1内传输PUSCH名义重复传输1和名义重复传输2。UE在FFP 2-1内无法完成所有重复传输。FFP 2-2的起始时域位置存在上行传输。若名义重复传输3的时域资源与FFP 1-1的空闲时段1-1存在重叠区域,则UE根据UE FFP 1-1的空闲时段1-1对名义重复传输3进行分割,丢弃空闲时段1-1对应的PUSCH部分,并在FFP 1-2(即FFP 1-1的下一个)开始之前(即,FFP 1-1的空闲时段1-1内)做LBT,若确定FFP 1-2的信道为空,则UE在UE发起的COT内,继续传输分割后的实际重复传输3和名义重复传输4,UE从FFP 1-2的起始位置开始传输实际重复传输3。
可以理解,在实际传输过程中,没有进行分割的名义重复传输即为实际重复传输。
基于该方案,在UE共享gNB的COT内重复传输数据的情况下,若第一数据的时域资源与第一空闲时段重叠,UE根据第二空闲时段,分割第一数据。由于每个gNB-initiated COT以下行传输开始,即每个gNB的FFP起始位置需要传输下行数据,若UE继续共享gNB的COT传输剩余的数据,则与gNB的FFP起始位置的下行数据重叠的数据传输需要被丢弃。因此,采用上述分割数据并切换FFP的方式,可以避免UE在gNB的下一个FFP的起始位置无法传输,从而可以减少重复传输数据的损失。
在本申请实施例中,在FBE信道接入机制下,UE可以灵活地根据gNB和/或UE的FFP,进行名义共享信道传输的分割、COT的选择,可以最小的损失完成共享信道的重复传输。
可选地,本申请实施例提供的数据传输方法中,在上述的步骤101a或步骤101c3之后,该方法还可以包括步骤102:
步骤102、UE在取消传输第二时域资源上的数据的情况下,在第二时域资源上传输其他上行信号。
其中,第二时域资源为第一数据的时域资源,第二时域资源的起始位置与第三FFP的起始位置对齐,第三FFP为第一FFP的下一个FFP。
也就是说,在UE取消传输第一数据,或者UE取消传输第一数据的部分数据的情况下,可能导致第一FFP的下一个FFP的起始位置开始的时域资源没有数据可以传输,则UE可以从该起始位置开始填充其他上行信号进行传输。
可选地,其他上行信号可以为探测参考信号(Sounding Reference Signal,SRS)、解调参考信号(Demodulation Reference Signal,DMRS)等。
示例7:
若UE未针对空闲时段对重复传输3做分割,直接丢弃重复传输3;或者结合图7 或图8,根据空闲时段分割重复传输3后,在实际传输的第二部分的传输长度小于预设阈值的情况下,丢弃第二部分;在上述两种处理后,若下一个FFP的起始时域资源没有数据开始传输,比如图7的C部分对应的时域资源没有数据传输,则UE可以在C部分对应的时域资源上填充其他数据。
基于该方案,若第一数据的时域资源与第一空闲时段重叠,若UE丢弃第一数据或者分割后丢弃第一数据的第二部分,可能会导致第二FFP的起始位置没有数据开始传输,由于在UE-initiated COT中,UE必须从FFP的起始位置开始传输,因此,在FFP 2起始位置对应PUSCH repetition的资源上填充其他上行信号,可以避免丢弃数据导致第二FFP的起始位置没有数据传输的问题。
可选地,在本申请实施例中,可以约定不允许将重复传输调度在UE传输所在的COT对应的FFP的空闲时段内。
需要说明的是,本申请实施例提供的数据传输方法,执行主体可以为数据传输装置,或者该数据传输装置中的用于执行数据传输的方法的控制模块。本申请实施例中以数据传输装置执行数据传输的方法为例,说明本申请实施例提供的数据传输的装置。
图9为本申请实施例提供的一种数据传输装置可能的结构示意图,如图9中的(a)所示,数据传输装置700包括:传输模块701;传输模块701,用于在第一数据的时域资源与第一空闲时段重叠的情况下,按照第一传输规则传输第一数据;其中,第一数据为重复传输的数据,第一空闲时段为第一FFP的空闲时段,第一FFP为用户设备UE使用的FFP。
可选地,如图9中的(b)所示,数据传输装置700还包括:确定模块702;确定模块702,用于确定第一数据的时域资源与第一空闲时段是否重叠。
可选地,重复传输的重复类型为重复类型A或重复类型B;传输模块具体用于:取消传输第一数据;或者,在第一时域资源上传输第一数据,第一时域资源为位于第一空闲时段之后的可用时域资源。
可选地,第一时域资源为第一FFP的下一个FFP对应的时域资源中,位于第一空闲时段之后的可用时域资源。
可选地,传输模块具体用于:若在下一个FFP前检测到信道为空,则在第一时域资源上传输第一数据;第一FFP为UE发起的COT传输数据时域的FFP;或者,若在下一个FFP内检测到信道共享信息,则在第一时域资源上传输第一数据;第一FFP为UE共享的基站发起的COT传输数据使用的FFP。
可选地,重复传输的重复类型为重复类型B;传输模块具体用于:根据目标空闲时段,分割第一数据;目标空闲时段为第一空闲时段或第二空闲时段,第二空闲时段为UE待切换的FFP的空闲时段;取消传输第一数据的第一部分;其中,第一部分为第一数据中与目标空闲时段重叠的部分。
可选地,传输模块还用于:在分割第一数据之后,若第一数据的第二部分的传输时长小于或等于预设阈值,则取消传输第一数据的第二部分;或者,在分割第一数据之后,若第一数据的第二部分的传输时长大于预设阈值,则传输第一数据的第二部分;其中,第二部分包括以下至少一项:第一数据中位于第一部分之前的部分、第一数据中位于第一部分之后的部分。
可选地,第一FFP为UE共享的基站发起的COT传输数据使用的FFP;第二空闲时段为第二FFP的空闲时段;第二FFP为UE发起的COT传输数据使用的FFP;传输模块,还用于在分割第一数据之后,基于第二FFP,传输第一数据的第二部分和其他数据;其中,第二部分为第一数据中位于第一部分之后的部分,其他数据为位于第一数据之后的重复传输的数据。
可选地,传输模块,还用于在取消传输第二时域资源上的数据的情况下,在第二 时域资源上传输其他上行信号;其中,第二时域资源为第一数据的时域资源,第二时域资源的起始位置与第三FFP的起始位置对齐,第三FFP为第一FFP的下一个FFP。
可选地,第一FFP为UE发起的COT传输数据使用的FFP,或为UE共享的基站发起的COT传输数据使用的FFP。
可选地,第一数据为以下任一项:承载在物理上行共享信道PUSCH中的数据、承载在物理下行共享信道PDSCH中的数据。
本申请实施例提供一种数据传输装置,在第一数据的时域资源与第一空闲时段重叠的情况下,数据传输装置按照第一传输规则传输第一数据;其中,第一数据为重复传输的数据,第一空闲时段为第一FFP的空闲时段,第一FFP为UE使用的FFP。即,在UE进行数据重复传输的过程中,UE传输的重复传输的数据中第一数据的时域资源和UE使用的FFP的空闲时段存在冲突,也就是说在配置UE在FFP的空闲时段重复传输数据的情况下,数据传输装置可以按照第一传输规则传输第一数据,从而完成重复传输,避免了UE被配置在使用的FFP的空闲时段重复传输数据的情况下不知如何传输的问题。
本申请实施例中的数据传输装置可以是装置,也可以是终端中的部件、集成电路、或芯片。该装置可以是移动电子设备,也可以为非移动电子设备。示例性的,移动电子设备可以为手机、平板电脑、笔记本电脑、掌上电脑、车载电子设备、可穿戴设备、超级移动个人计算机(ultra-mobile personal computer,UMPC)、上网本或者个人数字助理(personal digital assistant,PDA)等,非移动电子设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例中的数据传输装置可以为具有操作系统的装置。该操作系统可以为安卓(Android)操作系统,可以为ios操作系统,还可以为其他可能的操作系统,本申请实施例不作具体限定。
本申请实施例提供的数据传输装置能够实现图4至图8的方法实施例中数据传输装置实现的各个过程,为避免重复,这里不再赘述。
可选地,如图10所示,本申请实施例还提供一种UE 800,包括处理器801,存储器802,存储在存储器802上并可在所述处理器801上运行的程序或指令,该程序或指令被处理器801执行时实现上述数据传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
需要说明的是,本申请实施例中的UE包括上述所述的移动电子设备和非移动电子设备。
图11为实现本申请实施例的一种UE的硬件结构示意图。
该UE 1000包括但不限于:射频单元1001、网络模块1002、音频输出单元1003、输入单元1004、传感器1005、显示单元1006、用户输入单元1007、接口单元1008、存储器1009、以及处理器1010等部件。
本领域技术人员可以理解,UE 1000还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器1010逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图11中示出的UE结构并不构成对UE的限定,UE可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
其中,射频单元1001,用于在第一数据的时域资源与第一空闲时段重叠的情况下,UE按照第一传输规则传输第一数据;其中,第一数据为重复传输的数据,第一空闲时段为第一FFP的空闲时段,第一FFP为UE使用的FFP。
本申请实施例提供一种UE,在第一数据的时域资源与第一空闲时段重叠的情况 下,UE按照第一传输规则传输第一数据;其中,第一数据为重复传输的数据,第一空闲时段为第一FFP的空闲时段,第一FFP为UE使用的FFP。即,在UE进行数据重复传输的过程中,UE传输的重复传输的数据中第一数据的时域资源和UE使用的FFP的空闲时段存在冲突,也就是说在配置UE在FFP的空闲时段重复传输数据的情况下,UE可以按照第一传输规则传输第一数据,从而完成重复传输,避免了UE被配置在使用的FFP的空闲时段重复传输数据的情况下不知如何传输的问题。
可选地,重复传输的重复类型为重复类型A或重复类型B;射频单元1001,还用于UE取消传输第一数据;或者,UE在第一时域资源上传输第一数据,第一时域资源为位于第一空闲时段之后的可用时域资源。
可选地,射频单元1001,具体用于若在下一个FFP前检测到信道为空,则在第一时域资源上传输第一数据;第一FFP为UE发起的COT传输数据使用的FFP;或者,若在下一个FFP内检测到信道共享信息,则在第一时域资源上传输第一数据;第一FFP为UE共享的基站发起的COT传输数据使用的FFP。
可选地,射频单元1001,具体用于UE根据目标空闲时段,分割第一数据;目标空闲时段为第一空闲时段或第二空闲时段,第二空闲时段为UE待切换的FFP的空闲时段;UE取消传输第一数据的第一部分;其中,第一部分为第一数据中与目标空闲时段重叠的部分。
可选地,射频单元1001,还用于分割第一数据之后,若第一数据的第二部分的传输时长小于或等于预设阈值,则取消传输第一数据的第二部分;或者,若第一数据的第二部分的传输时长大于预设阈值,则传输第一数据的第二部分;其中,第二部分包括以下至少一项:第一数据中位于第一部分之前的部分、第一数据中位于第一部分之后的部分。
可选地,第一FFP为UE共享的基站发起的COT传输数据使用的FFP;第二空闲时段为第二FFP的空闲时段;第二FFP为UE发起的COT传输数据使用的FFP;射频单元1001,还用于分割第一数据之后,基于第二FFP,传输第一数据的第二部分和其他数据;其中,第二部分为第一数据中位于第一部分之后的部分,其他数据为位于第一数据之后的重复传输的数据。
可选地,射频单元1001,还用于取消传输第二时域资源上的数据的情况下,在第二时域资源上传输其他上行信号;其中,第二时域资源为第一数据的时域资源,第二时域资源的起始位置与第三FFP的起始位置对齐,第三FFP为第一FFP的下一个FFP。
应理解的是,本申请实施例中,输入单元1004可以包括图形处理器(Graphics Processing Unit,GPU)1041和麦克风1042,图形处理器1041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元1006可包括显示面板1061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板1061。用户输入单元1007包括触控面板1071以及其他输入设备1072。触控面板1071,也称为触摸屏。触控面板1071可包括触摸检测装置和触摸控制器两个部分。其他输入设备1072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。存储器1009可用于存储软件程序以及各种数据,包括但不限于应用程序和操作系统。处理器1010可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器1010中。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述数据传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的UE中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述数据传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片、系统芯片、芯片系统或片上系统芯片等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (25)

  1. 一种数据传输方法,所述方法包括:
    在第一数据的时域资源与第一空闲时段重叠的情况下,用户设备UE按照第一传输规则传输所述第一数据;
    其中,所述第一数据为重复传输的数据,所述第一空闲时段为第一固定帧周期FFP的空闲时段,所述第一FFP为所述UE使用的FFP。
  2. 根据权利要求1所述的方法,其中,所述重复传输的重复类型为重复类型A或重复类型B;
    所述UE按照第一传输规则传输所述第一数据,包括:
    所述UE取消传输所述第一数据;
    或者,
    所述UE在第一时域资源上传输所述第一数据,所述第一时域资源为位于所述第一空闲时段之后的可用时域资源。
  3. 根据权利要求2所述的方法,其中,所述第一时域资源为所述第一FFP的下一个FFP对应的时域资源中,位于所述第一空闲时段之后的可用时域资源。
  4. 根据权利要求3所述的方法,其中,所述在第一时域资源上传输所述第一数据,包括:
    若在所述下一个FFP前检测到信道为空,则在所述第一时域资源上传输所述第一数据;所述第一FFP为所述UE发起的信道占用时间COT传输数据使用的FFP;
    或者,
    若在所述下一个FFP内检测到信道共享信息,则在所述第一时域资源上传输所述第一数据;所述第一FFP为所述UE共享的基站发起的COT传输数据使用的FFP。
  5. 根据权利要求1所述的方法,其中,所述重复传输的重复类型为重复类型B;
    所述UE按照第一传输规则传输所述第一数据,包括:
    所述UE根据目标空闲时段,分割所述第一数据;所述目标空闲时段为所述第一空闲时段或第二空闲时段,所述第二空闲时段为所述UE待切换的FFP的空闲时段;
    所述UE取消传输第一数据的第一部分;
    其中,所述第一部分为所述第一数据中与所述目标空闲时段重叠的部分。
  6. 根据权利要求5所述的方法,其中,所述分割所述第一数据之后,所述方法还包括:
    若所述第一数据的第二部分的传输时长小于或等于预设阈值,则取消传输所述第一数据的第二部分;或者,
    若所述第一数据的第二部分的传输时长大于预设阈值,则传输所述第一数据的第二部分;
    其中,所述第二部分包括以下至少一项:所述第一数据中位于所述第一部分之前的部分、所述第一数据中位于所述第一部分之后的部分。
  7. 根据权利要求5所述的方法,其中,所述第一FFP为所述UE共享的基站发起的COT传输数据使用的FFP;所述第二空闲时段为第二FFP的空闲时段;所述第二FFP为所述UE发起的COT传输数据使用的FFP;所述分割所述第一数据之后,所述方法还包括:
    基于所述第二FFP,传输所述第一数据的第二部分和其他数据;
    其中,所述第二部分为所述第一数据中位于所述第一部分之后的部分,所述其他数据为位于所述第一数据之后的重复传输的数据。
  8. 根据权利要求2或6所述的方法,其中,所述方法还包括:
    在取消传输第二时域资源上的数据的情况下,在所述第二时域资源上传输其他上行信号;
    其中,所述第二时域资源为所述第一数据的时域资源,所述第二时域资源的起始位置与第三FFP的起始位置对齐,所述第三FFP为所述第一FFP的下一个FFP。
  9. 根据权利要求1至3、5或6中任一项所述的方法,其中,所述第一FFP为所述UE发起的COT传输数据使用的FFP,或为所述UE共享的基站发起的COT传输数据使用的FFP。
  10. 根据权利要求1所述的方法,其中,所述第一数据为以下任一项:承载在物理上行共享信道PUSCH中的数据、承载在物理下行共享信道PDSCH中的数据。
  11. 一种数据传输装置,所述数据传输装置包括:传输模块;
    所述传输模块,用于在第一数据的时域资源与第一空闲时段重叠的情况下,按照第一传输规则传输所述第一数据;
    其中,所述第一数据为重复传输的数据,所述第一空闲时段为第一固定帧周期FFP的空闲时段,所述第一FFP为用户设备UE使用的FFP。
  12. 根据权利要求11所述的数据传输装置,其中,所述重复传输的重复类型为重复类型A或重复类型B;
    所述传输模块具体用于:
    取消传输所述第一数据;
    或者,
    在第一时域资源上传输第一数据,所述第一时域资源为位于所述第一空闲时段之后的可用时域资源。
  13. 根据权利要求12所述的数据传输装置,其中,所述第一时域资源为所述第一FFP的下一个FFP对应的时域资源中,位于所述第一空闲时段之后的可用时域资源。
  14. 根据权利要求13所述的数据传输装置,其中,所述传输模块具体用于:
    若在所述下一个FFP前检测到信道为空,则在所述第一时域资源上传输所述第一数据;所述第一FFP为所述UE发起的信道占用时间COT传输数据时域的FFP;
    或者,
    若在所述下一个FFP内检测到信道共享信息,则在所述第一时域资源上传输所述第一数据;所述第一FFP为所述UE共享的基站发起的COT传输数据使用的FFP。
  15. 根据权利要求11所述的数据传输装置,其中,所述重复传输的重复类型为重复类型B;所述传输模块具体用于:
    根据目标空闲时段,分割所述第一数据;所述目标空闲时段为所述第一空闲时段或第二空闲时段,所述第二空闲时段为所述UE待切换的FFP的空闲时段;
    取消传输所述第一数据的第一部分;
    其中,所述第一部分为所述第一数据中与所述目标空闲时段重叠的部分。
  16. 根据权利要求15所述的数据传输装置,其中,所述传输模块还用于:
    在分割所述第一数据之后,若所述第一数据的第二部分的传输时长小于或等于预设阈值,则取消传输所述第一数据的第二部分;或者,
    在分割所述第一数据之后,若所述第一数据的第二部分的传输时长大于预设阈值,则传输所述第一数据的第二部分;
    其中,所述第二部分包括以下至少一项:所述第一数据中位于所述第一部分之前的部分、所述第一数据中位于所述第一部分之后的部分。
  17. 根据权利要求15所述的数据传输装置,其中,所述第一FFP为所述UE共享的基站发起的COT传输数据使用的FFP;所述第二空闲时段为第二FFP的空闲时段;所述第二FFP为所述UE发起的COT传输数据使用的FFP;
    所述传输模块,还用于在分割所述第一数据之后,基于所述第二FFP,传输所述第一数据的第二部分和其他数据;
    其中,所述第二部分为所述第一数据中位于所述第一部分之后的部分,所述其他数据为位于所述第一数据之后的重复传输的数据。
  18. 根据权利要求12或16所述的数据传输装置,其中,
    所述传输模块,还用于在取消传输第二时域资源上的数据的情况下,在所述第二时域资源上传输其他上行信号;
    其中,所述第二时域资源为所述第一数据的时域资源,所述第二时域资源的起始位置与第三FFP的起始位置对齐,所述第三FFP为所述第一FFP的下一个FFP。
  19. 根据权利要求11至13、15或16中任一项所述的数据传输装置,其中,所述第一FFP为所述UE发起的COT传输数据使用的FFP,或为所述UE共享的基站发起的COT传输数据使用的FFP。
  20. 根据权利要求11所述的数据传输装置,其中,所述第一数据为以下任一项:承载在物理上行共享信道PUSCH中的数据、承载在物理下行共享信道PDSCH中的数据。
  21. 一种用户设备UE,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至10中任一项所述的数据传输方法的步骤。
  22. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至10中任一项所述的数据传输方法的步骤。
  23. 一种计算机程序产品,所述程序产品被至少一个处理器执行以实现如权利要求1至10中任一项所述的方法。
  24. 一种电子设备,包括所述电子设备被配置成用于执行如权利要求1至10中任一项所述的方法。
  25. 一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如如权利要求1至10中任一项所述的方法。
PCT/CN2022/072139 2021-01-15 2022-01-14 数据传输方法、装置及ue WO2022152270A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020237027355A KR20230131241A (ko) 2021-01-15 2022-01-14 데이터 전송 방법, 장치 및 ue
JP2023543036A JP2024502676A (ja) 2021-01-15 2022-01-14 データ伝送方法、装置及びue
EP22739145.5A EP4280491A4 (en) 2021-01-15 2022-01-14 DATA TRANSMISSION METHOD AND APPARATUS, AND EU
US18/351,027 US20240023164A1 (en) 2021-01-15 2023-07-12 Data transmission method and apparatus, and ue

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110055722.7A CN114765481B (zh) 2021-01-15 2021-01-15 数据传输方法、装置及ue
CN202110055722.7 2021-01-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/351,027 Continuation US20240023164A1 (en) 2021-01-15 2023-07-12 Data transmission method and apparatus, and ue

Publications (2)

Publication Number Publication Date
WO2022152270A1 true WO2022152270A1 (zh) 2022-07-21
WO2022152270A9 WO2022152270A9 (zh) 2022-09-22

Family

ID=82363852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/072139 WO2022152270A1 (zh) 2021-01-15 2022-01-14 数据传输方法、装置及ue

Country Status (6)

Country Link
US (1) US20240023164A1 (zh)
EP (1) EP4280491A4 (zh)
JP (1) JP2024502676A (zh)
KR (1) KR20230131241A (zh)
CN (1) CN114765481B (zh)
WO (1) WO2022152270A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102326439A (zh) * 2010-05-17 2012-01-18 高通股份有限公司 用于高速分组接入(hspa)的替代传输方案
US20200037354A1 (en) * 2018-07-30 2020-01-30 Samsung Electronics Co., Ltd. Method and apparatus for frame based equipment operation of nr unlicensed
CN112042251A (zh) * 2018-04-26 2020-12-04 高通股份有限公司 基于帧的启动器设备操作

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080144612A1 (en) * 2006-12-13 2008-06-19 Nokia Corporation Flexible radio resource sharing in time and frequency domains among TDD communication systems
CN113228807B (zh) * 2019-01-09 2024-04-12 富士通株式会社 数据发送方法、装置和通信系统
WO2020160330A1 (en) * 2019-01-30 2020-08-06 Apple Inc. Prach and pucch design for mf-lite
CN111278123B (zh) * 2019-02-02 2022-08-19 维沃移动通信有限公司 非授权频段的信息传输方法、终端及网络设备
CN116406524A (zh) * 2020-09-03 2023-07-07 高通股份有限公司 基于帧的设备模式空闲时段中的物理上行链路共享信道重复处理

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102326439A (zh) * 2010-05-17 2012-01-18 高通股份有限公司 用于高速分组接入(hspa)的替代传输方案
CN112042251A (zh) * 2018-04-26 2020-12-04 高通股份有限公司 基于帧的启动器设备操作
US20200037354A1 (en) * 2018-07-30 2020-01-30 Samsung Electronics Co., Ltd. Method and apparatus for frame based equipment operation of nr unlicensed

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4280491A4 *

Also Published As

Publication number Publication date
JP2024502676A (ja) 2024-01-22
EP4280491A1 (en) 2023-11-22
CN114765481A (zh) 2022-07-19
EP4280491A4 (en) 2024-04-24
CN114765481B (zh) 2024-05-31
KR20230131241A (ko) 2023-09-12
US20240023164A1 (en) 2024-01-18
WO2022152270A9 (zh) 2022-09-22

Similar Documents

Publication Publication Date Title
CN111835458B (zh) 一种信息传输、接收方法、终端及网络侧设备
WO2022199544A1 (zh) 上行传输方法、装置及用户设备
CN111836397B (zh) 随机接入方法、终端及网络侧设备
WO2022194052A1 (zh) 传输处理方法、装置及终端
WO2022194056A1 (zh) 跳频处理方法、装置及终端
WO2022152270A1 (zh) 数据传输方法、装置及ue
EP4258586A1 (en) Uplink transmission method, terminal, and network side device
WO2022012592A1 (zh) 反馈信息传输方法、装置、终端及网络侧设备
WO2022017492A1 (zh) 定位处理方法、装置及设备
JP2024503007A (ja) リソース選択方法、省電力処理方法、装置及び機器
WO2022237679A1 (zh) 传输方法、装置、设备及可读存储介质
WO2022188836A1 (zh) Cot确定方法、上行传输方法和设备
WO2023143532A1 (zh) 资源选择方法及装置、终端
WO2023051540A1 (zh) 收端辅助信息的传输方法、装置、终端及网络侧设备
WO2022028480A1 (zh) 信息传输方法、信息传输装置、终端及网络侧设备
WO2024032497A1 (zh) 信道接入进程的处理方法、装置及终端
WO2023061489A1 (zh) 随机接入处理方法、装置、终端、网络侧设备及存储介质
EP4301068A1 (en) Method and device for indicating scs of initial downlink bwp
WO2023061345A1 (zh) 数据接收方法、数据发送方法及终端
US20240114554A1 (en) Method and Device for Determining Resource in Shared Band
WO2023072209A1 (zh) 传输处理方法、装置、终端及可读存储介质
WO2023109678A1 (zh) 资源冲突处理方法、装置及终端
WO2022148397A1 (zh) 共享频谱的信息传输方法、装置及节点
WO2023246586A1 (zh) 传输方法、设备及可读存储介质
WO2023083290A1 (zh) 随机接入方法、装置、终端及网络侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22739145

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023543036

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20237027355

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237027355

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022739145

Country of ref document: EP

Effective date: 20230816