WO2018095257A1 - 一种恢复数据传输的方法、终端和网络侧节点 - Google Patents

一种恢复数据传输的方法、终端和网络侧节点 Download PDF

Info

Publication number
WO2018095257A1
WO2018095257A1 PCT/CN2017/111155 CN2017111155W WO2018095257A1 WO 2018095257 A1 WO2018095257 A1 WO 2018095257A1 CN 2017111155 W CN2017111155 W CN 2017111155W WO 2018095257 A1 WO2018095257 A1 WO 2018095257A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
network side
side node
target
high frequency
Prior art date
Application number
PCT/CN2017/111155
Other languages
English (en)
French (fr)
Inventor
杨宇
孙晓东
宋扬
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2018095257A1 publication Critical patent/WO2018095257A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements

Definitions

  • the present disclosure relates to the field of communications technologies, and in particular, to a method, a terminal, and a network side node for recovering data transmission.
  • the high frequency band Since the high frequency band has abundant idle frequency resources, it can provide greater throughput for data transmission.
  • 3GPP, 3rd Generation Partnership Project has completed high frequency channel modeling work.
  • the wavelength of the high frequency signal is short, and more antenna array elements can be arranged on the same size panel, and beamforming technology is used to form a beam with stronger directivity and narrower lobe. Therefore, combining large-scale antennas with high-frequency communications is also one of the future trends.
  • the high-frequency beam of a large-scale antenna is narrow, the communication link of the high-frequency beam is prone to abnormal conditions.
  • the communication link of the high-frequency beam is compared. Anomalies such as easy breakage, poor reception quality, or poor reception power.
  • RRC radio resource control
  • Embodiments of the present disclosure provide a method, a terminal, and a network side node for recovering data transmission to solve a long delay between when an abnormality occurs in a communication link and when a data transmission is resumed.
  • an embodiment of the present disclosure provides a method for recovering data transmission, including:
  • the terminal receives the trigger signaling that is sent by the network side node and indicates at least one beam set;
  • the terminal recovers data transmission of the service by using a target beam in the at least one beam set
  • the target beam is a target beam determined by the terminal or the network side node in the at least one beam set.
  • an embodiment of the present disclosure provides a method for restoring data transmission, including:
  • the network side node sends, to the terminal, trigger signaling indicating at least one beam set
  • the network side node recovers data transmission of the service by using a target beam in the at least one beam set
  • the target beam is a target beam determined by the terminal or the network side node in the at least one beam set.
  • an embodiment of the present disclosure provides a terminal, including:
  • a triggering signaling receiving module configured to receive trigger signaling indicating at least one beam set sent by the network side node if the communication link of the high frequency beam for performing service transmission between the terminal and the network side node is abnormal;
  • a first data transmission recovery module configured to recover data transmission of the service by using a target beam in the at least one beam set
  • the target beam is a target beam determined by the terminal or the network side node in the at least one beam set.
  • an embodiment of the present disclosure provides a network side node, including:
  • a triggering signaling sending module configured to send, to the terminal, trigger signaling indicating at least one beam set if the communication link of the high frequency beam for performing service transmission between the network side node and the terminal is abnormal;
  • a second data transmission recovery module configured to recover data transmission of the service by using a target beam in the at least one beam set
  • the target beam is the terminal or the network side node at the at least one wave The target beam determined in the bundle set.
  • an embodiment of the present disclosure provides a terminal, including: a processor, a memory, and a computer program stored on the memory and executable on the processor, the computer program being executed by the processor.
  • an embodiment of the present disclosure provides a network side node, including: a processor, a memory, and a computer program stored on the memory and operable on the processor, the computer program being processed The steps in the method of recovering data transmission as described above are implemented when executed.
  • embodiments of the present disclosure provide a computer readable storage medium having stored thereon a computer program that, when executed by a processor, implements recovery performed by a terminal as described above The steps in the method of data transmission.
  • an embodiment of the present disclosure provides a computer readable storage medium having stored thereon a computer program, the computer program being executed by a processor to implement execution by a network side node as described above The steps in the method of restoring data transfer.
  • the terminal receives the trigger signaling that is sent by the network side node and indicates at least one beam set.
  • the terminal recovers data transmission of the service through a target beam in the at least one beam set; wherein the target beam is a target determined by the terminal or the network side node in the at least one beam set Beam. Therefore, when the communication link is abnormal, the RRC re-establishment is not required, and the data transmission of the target beam recovery service can be directly used to reduce the delay between the abnormality of the communication link and the recovery of the data transmission, and the user experience can also be improved.
  • FIG. 1 is a network structure diagram to which an embodiment of the present disclosure is applicable
  • FIG. 2 is a flowchart of a method for restoring data transmission provided by the first embodiment of the present disclosure
  • FIG. 3 is a flowchart of a method for restoring data transmission provided by a second embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of a beam between a terminal and a network side node according to a second embodiment of the present disclosure
  • FIG. 5 is a signaling diagram of a method for recovering data transmission provided by a second embodiment of the present disclosure
  • FIG. 6 is a flowchart of a method for restoring data transmission provided by a third embodiment of the present disclosure.
  • FIG. 7 is a flowchart of a method for restoring data transmission provided by a fourth embodiment of the present disclosure.
  • FIG. 8 is a structural diagram of a terminal provided by a fifth embodiment of the present disclosure.
  • FIG. 9 is a second structural diagram of a terminal provided by a fifth embodiment of the present disclosure.
  • FIG. 10 is a structural diagram of a first reference signal transmission module of a terminal according to a fifth embodiment of the present disclosure.
  • FIG. 11 is a second structural diagram of a first reference signal transmission module of a terminal according to a fifth embodiment of the present disclosure.
  • FIG. 12 is a third structural diagram of a terminal according to a fifth embodiment of the present disclosure.
  • FIG. 13 is a fourth structural diagram of a terminal provided by a fifth embodiment of the present disclosure.
  • FIG. 14A is a fifth structural diagram of a terminal according to a fifth embodiment of the present disclosure.
  • 14B is a sixth structural diagram of a terminal provided by a fifth embodiment of the present disclosure.
  • 15 is a seventh structural diagram of a terminal provided by a fifth embodiment of the present disclosure.
  • 16 is a structural diagram of a network side node provided by a sixth embodiment of the present disclosure.
  • 17 is a second structural diagram of a network side node according to a sixth embodiment of the present disclosure.
  • FIG. 18 is a structural diagram of a second reference signal transmission module of a network side node according to a sixth embodiment of the present disclosure.
  • 19 is a second structural diagram of a second reference signal transmission module of a network side node according to a sixth embodiment of the present disclosure.
  • FIG. 20 is a third structural diagram of a network side node according to a sixth embodiment of the present disclosure.
  • 21 is a fourth structural diagram of a network side node according to a sixth embodiment of the present disclosure.
  • 22A is a fifth structural diagram of a network side node according to a sixth embodiment of the present disclosure.
  • 22B is a sixth structural diagram of a network side node according to a sixth embodiment of the present disclosure.
  • FIG. 23 is a seventh structural diagram of a network side node according to a sixth embodiment of the present disclosure.
  • FIG. 24 is a structural diagram of a network side node according to a sixth embodiment of the present disclosure.
  • 25 is a structural diagram of a terminal provided by a seventh embodiment of the present disclosure.
  • 26 is a structural diagram of a terminal provided by an eighth embodiment of the present disclosure.
  • FIG. 27 is a structural diagram of a network side node provided by a ninth embodiment of the present disclosure.
  • FIG. 1 is a network structure diagram applicable to an embodiment of the present disclosure.
  • the terminal 11 and the network side node 12 are included, where the terminal may be a user equipment (UE, User Equipment), for example, may be a mobile phone, a tablet personal computer, or a laptop computer (Laptop Computer).
  • a terminal device such as a personal digital assistant (PDA), a mobile Internet device (MID), or a wearable device (Wearable Device).
  • PDA personal digital assistant
  • MID mobile Internet device
  • Wearable Device wearable device
  • the terminal 11 can establish communication with the network side node 12, wherein the network in the figure can indicate that the terminal 11 wirelessly establishes communication with the network side node 12, and the network side node 12 can be a Transmission Reception Point (TRP), or can It is a base station, and the base station may be a macro station, such as an LTE eNB, a 5G NR NB, or the like.
  • the network side node 12 may be an access point (AP). It should be noted that the specific type of the network side node 12 is not limited in the embodiment of the present disclosure.
  • FIG. 2 is a flowchart of a method for restoring data transmission provided by an embodiment of the present disclosure.
  • the figure, as shown in Figure 2 includes the following steps:
  • Step 201 If the communication link of the high-frequency beam for performing service transmission between the terminal and the network-side node is abnormal, the terminal receives the trigger signaling that is sent by the network-side node and indicates at least one beam set.
  • the high frequency beam may be a beam higher than a certain frequency threshold, for example, may be a beam between 6 GHz and 100 GHz. Of course, it can also be a beam of other frequencies, for example, 1 GHz or 3 GHz or 5 GHz, and the like. It should be noted that, in the embodiment of the present disclosure, the specific frequency of the high frequency beam is not limited, and the high frequency beam should be understood as a high frequency beam understood by those skilled in the art. In addition, the above-mentioned high frequency beam may also be a beam whose lobe is narrower than a certain threshold of a lobe. Similarly, the embodiment of the present disclosure is not limited to the lobe threshold.
  • the high-frequency beam for performing service transmission between the terminal and the network-side node may be a high-frequency beam that the terminal and the network-side node currently transmit services, for example, a beam for transmitting 5G network services.
  • the communication link of the high-frequency beam is abnormal, and the communication link established between the terminal and the network-side node on the high-frequency beam may affect the abnormality of the service transmission, for example, the communication link is broken, the transmission quality is reduced, and the signal strength is Reduce the anomalies that affect traffic transmission.
  • the terminal receives the trigger signaling sent by the network side node, and the trigger signaling indicates at least one beam set.
  • Each of the beam sets includes at least one beam, and the beams included in the beam set may be a high frequency beam or a low frequency beam, or may include a high frequency beam and a low frequency beam.
  • the foregoing communication link abnormality may be discovered by the terminal, or may be discovered by the network side node, and the embodiment of the present disclosure is not limited.
  • Step 202 The terminal recovers data transmission of the service by using a target beam in the at least one beam set.
  • the target beam is a target beam determined by the terminal or the network side node in the at least one beam set.
  • the at least one beam set and the beams included in the set may be determined, so that the target beam may be determined within the beams.
  • the network side node may also notify the terminal after determining the target beam in the at least one beam set, so that the terminal finds the target beam in the at least one beam set.
  • the above target beam can be Thus, one or more high frequency beams (which may also be referred to as narrow beams), or the target beam may also be one or more low frequency beams.
  • the data transmission of the service may be resumed by using the target beam.
  • the recovery here may be a data transmission between the terminal and the network side node to recover the foregoing service by using the target beam.
  • the data transmission for recovering the above-mentioned service may be data transmission for performing the above-mentioned service starting from the occurrence of the above-mentioned communication link abnormality. For example, when the T-th packet is transmitted between the terminal and the network-side node, that is, when the T-th data transmission fails, the data transmission can be resumed from the T-th packet.
  • the data transmission of the recovery service may be performed by using the first n data packets when the communication link is abnormal as a starting point, for example, when the T-th packet is transmitted between the terminal and the network-side node. If the T-th data transmission fails, the data transmission can be resumed from the Tn data packet.
  • the RRC re-establishment does not need to be initiated between the data transmission to restore the service, thereby reducing the data transmission delay. To enhance the user experience.
  • the terminal receives the indication of the at least one beam sent by the network side node. Trigger signaling of the set; the terminal recovers data transmission of the service through a target beam in the at least one beam set.
  • the target beam is a target beam determined by the terminal or the network side node in the at least one beam set. Therefore, when the communication link is abnormal, the RRC re-establishment is not required, and the data transmission of the target beam recovery service can be directly used to reduce the delay between the abnormality of the communication link and the recovery of the data transmission, and the user experience can also be improved.
  • FIG. 3 is a flowchart of a method for restoring data transmission provided by an embodiment of the present disclosure. As shown in FIG. 3, the method includes the following steps:
  • Step 301 If the communication link of the high-frequency beam for performing service transmission between the terminal and the network-side node is abnormal, the terminal receives the trigger signaling that is sent by the network-side node and indicates at least one beam set.
  • the trigger signaling may be trigger signaling, and the trigger signaling may be a network side node. Transmitted through the physical layer downlink control information (DCI, Downlink Control Information).
  • DCI Downlink Control Information
  • the foregoing trigger signaling may be understood as signaling that triggers a fast recovery mechanism of the startup beam, that is, the beam fast recovery mechanism may be initiated based on the signaling in the embodiment of the present disclosure.
  • the step of the terminal receiving the trigger signaling that is sent by the network side node and indicating the at least one beam set includes: the terminal receiving the network side node by using a wide beam or a low frequency beam or multiple narrow beams.
  • Trigger signaling indicating the at least one beam set sent by the physical layer downlink control information wherein the wide beam is pre-negotiated by the terminal with the network side node or notified by the network side node, and the lobe ratio is The lobes of the high frequency beam are wide and cover the beam of the terminal; the low frequency beam is pre-negotiated by the terminal with the network side node or notified by the network side node, and the frequency is higher than the high frequency The frequency of the beam is low and covers the beam of the terminal; the narrow beam is a wave that is pre-negotiated by the terminal with the network side node or notified by the network side node, and the wave and the wave of the high frequency beam The difference in the petals is within a preset range and covers the beam of the terminal.
  • the above trigger signaling can be transmitted through a wide beam or a low frequency beam or a plurality of narrow beams.
  • the terminal since the wide beam is pre-negotiated by the terminal with the network side node or notified by the network side node, the terminal can ensure that the terminal receives the trigger signaling on the band beam, so as to avoid the terminal not knowing at which resource location to receive the trigger signal. Therefore, the transmission resources are wasted, so as to save transmission resources.
  • the lobe of the wide beam is wider than the lobe of the high-frequency beam and covers the beam of the terminal, it is not easy to transmit the trigger signaling on the wide beam, thereby improving the trigger signaling reception. Success rate.
  • the terminal can ensure that the terminal receives the trigger signaling on the band beam to prevent the terminal from being aware of the Which resource location receives the trigger signaling, and the resulting transmission resources are wasted to achieve the purpose of saving transmission resources.
  • the frequency is lower than the frequency of the high-frequency beam and covers the beam of the terminal, and the low-frequency signal has the characteristics of long wavelength and strong diffraction capability, the success rate of the low-frequency beam transmission data is higher than that of the high-frequency beam. Therefore, the success rate of trigger signaling reception can be improved.
  • the terminal can ensure that the terminal receives the trigger signaling on the band beam.
  • the terminal does not know which resource location to receive the trigger signaling, and the transmission resource is wasted to save the transmission resource.
  • the success rate of trigger signaling reception can be improved.
  • the sending the trigger signaling by using the multiple narrow beams may be that the multiple narrow beams simultaneously send the trigger signaling, and may send the same trigger signaling at the same time to improve the success rate of the terminal receiving the trigger signaling.
  • the trigger signaling includes a sending pattern of the reference signal, or the trigger signaling is used to indicate sending pattern information of the reference signal pre-agreed by the terminal and the network side node; Transmitting pattern information for indicating the at least one beam set, and indicating an order in which the terminal and the network side node transmit reference signals within the at least one beam set.
  • the reference signal in the embodiments of the present disclosure may be referred to as a beam recovery reference signal (BRRS).
  • BRRS beam recovery reference signal
  • SRS Sounding Reference Signal
  • DMRS De Modulation Reference Signal
  • RS Reference Signal
  • the resource location for beam recovery can be different from the existing protocol. For example, some subcarriers in the first symbol are used.
  • the foregoing sending pattern information may be sent by the network side node to the terminal by using the trigger signaling, so that the flexibility of sending the pattern information may be improved.
  • the network side node may determine the sending according to the status of the network resource. Pattern information to adapt to current network conditions.
  • the triggering signaling indicates that the network side node and the terminal pre-agreed the transmission pattern information, the signaling overhead can be saved. Therefore, in this case, the trigger signaling only needs to include one indication, and does not need to include the transmission of the pattern information.
  • the foregoing transmission pattern information indicates the order in which the terminal and the network side node transmit the reference signal, it can be ensured that the terminal and the network side node can effectively receive the reference signal sent by the other party.
  • the order of sending the reference signals includes: preferentially transmitting an order of the high frequency beams in the at least one beam set.
  • the at least one beam set includes a pre-maintained original beam set including the high-frequency beam
  • the order of sending the reference signal includes: in the original beam set, The high frequency beam is centered in a transmission order from near to far according to a spatial orientation; or a transmission order in which the spatial orientation is from far to near centered on the high frequency beam; or within the original beam set, The high-frequency beam is centered in the order in which the spatial orientations are alternately transmitted.
  • the original beam set including the high frequency beam pre-maintained by the terminal may be a beam set maintained by the terminal and the network side node, and the beam set may be an uplink or downlink beam set. And the set may be several beam IDs and received power strengths obtained by beam training. Several beams in the set include the optimal beam found in beam training, the suboptimal beam, and so on.
  • the network side nodes and terminals originally use black beams for data transmission.
  • the network side node performs downlink beam recovery, and the transmission pattern information pattern of the reference signal triggered by the network side node may be executed in the original beam set, which is centered on the original beam, and is executed from near to far.
  • the transmission of the reference signal for example, the transmission order is a beam of 1-2-3-4. Therefore, it is possible to quickly measure a beam close to the original beam, and a beam that is actually close to the original beam is more suitable as a beam for recovering a service, that is, the above target beam.
  • the beam close to the original beam is preferentially measured, so that the target beam can be quickly selected to avoid excessive reference signal measurement operations and save terminal energy consumption.
  • the transmission sequence is 4-3-2-1 beam.
  • the transmission order in which the high-frequency beams are centered in accordance with the spatial orientation is alternated.
  • the terminal can quickly select the target beam to avoid excessive reference signal measurement operations and save terminal energy consumption. For example, if the rotation of the terminal also causes the original beam to be interrupted, the narrow beam near the original beam is likely to deviate from the optimal transmission direction, so that the reference signal can be alternately transmitted in the beam set.
  • the transmission order is a beam of 1-4-2-3.
  • the at least one beam set includes a pre-maintained original beam set including the high frequency beam, and at least one target beam set, and the sending reference signal An order of: a beam mixing transmission order within the set of original beams and the at least one target beam set; or, if only one target beam set is included, preferentially transmitting an order of beams within the target beam set; or If a plurality of target beam sets are included, the beams in the plurality of target beam sets are preferentially transmitted, and the plurality of target beam sets are sequentially transmitted in a set according to a set; or if multiple target beam sets are included, priority is given And transmitting an order of the beams within the plurality of target beam sets and transmitting the plurality of target beam sets in a collective order.
  • a target beam set that is preferentially transmitted that is, a beam set other than the original beam set
  • the original beam set number used before is 1 and the at least one target beam set includes the set 2 and the set 3
  • the beam of the beam set 2 can be preferentially transmitted, and then the beam of the beam set 3 can be transmitted, or the beam set 2 and the beam set 3
  • the beams in the alternate transmission that is, the first beam of beam set 2 - the first beam of beam set 3 - the second beam of beam set 2, the second beam of beam set 3, and so on.
  • the beam can be preferentially measured other than the original beam set, so that the target beam can be quickly selected in the scenario where the beam in the original beam set is not suitable as the target beam, thereby saving the terminal energy. Consumption.
  • Step 302 The terminal transmits a reference signal by using a beam in the at least one beam set.
  • the transmission reference signal can be understood as a reference signal transmitted between the terminal and the network side node.
  • the network side node may send a reference signal to the terminal, and the terminal selects the target beam according to the measurement of the reference signal.
  • the terminal sends a reference signal to the network side node, and the network side node selects the target beam according to the measurement of the reference signal.
  • the step of the terminal transmitting the reference signal by using the beam in the at least one beam set includes: the terminal sending a reference signal to the network side node on an uplink beam in the at least one beam set; The terminal receives the feedback information that is sent by the network side node and indicates the target beam, where the target beam is an uplink beam that is determined by the network side node according to the measurement result of the reference signal transmitted by the terminal.
  • the order in which the terminal sends the reference signal to the network side node on the uplink beam in the at least one beam set may refer to the sending order indicated in the transmission pattern information described in the previous implementation manner.
  • the sending order may also be pre-agreed by the terminal and the network side node, which is not limited thereto.
  • the terminal can transmit the reference signal on the uplink beam, and the network side node measures the transmitted reference signal to determine the target beam according to the measurement result.
  • the determined target beam is suitable for recovering the data transmission of the foregoing service, so as to improve the data transmission efficiency of the service.
  • the network side node sends a trigger signal in the downlink symbol
  • the terminal receives the trigger, and the transmission pattern information of the reference signal, and then uses the high frequency beam according to the transmission pattern information in the subsequent uplink symbol
  • the reference signal may also be transmitted as a narrow beam or a high frequency narrow beam
  • the network side node detects the optimal beam after detection, and notifies the terminal in the subsequent downlink symbol.
  • the traffic is then recovered using a temporary optimal beam.
  • the step of the terminal transmitting the reference signal by using the beam in the at least one beam set comprising: receiving, by the terminal, a reference signal sent by the network side node on a downlink beam in the at least one beam set
  • the terminal measures a reference signal sent by the network side node to obtain a measurement result; the terminal determines the target beam in a downlink beam of the at least one beam set according to the measurement result; the terminal Sending feedback information indicating the target beam to the network side node.
  • the network side node can transmit the reference signal on the downlink beam, and the terminal measures the transmitted reference signal to determine the target beam according to the measurement result.
  • the determined target beam is suitable for recovering the data transmission of the foregoing service, so as to improve the data transmission efficiency of the service.
  • the step of determining, by the terminal, the target beam in a downlink beam of the at least one beam set according to the measurement result including: the terminal, according to the measurement result, in the at least one beam set Determining, in the downlink beam, a downlink beam with the best transmission quality as the target beam; or if the terminal finds, according to the measurement result, a downlink beam having a transmission quality higher than a first preset threshold in the at least one beam set And determining, by the downlink beam that the transmission quality is higher than a preset threshold, the target beam.
  • the downlink beam with the best transmission quality can be improved as the target beam to improve the data transmission efficiency of the service.
  • the downlink beam whose transmission quality is higher than the first preset threshold is found, the downlink beam can be determined as the target beam, so that the target beam can be quickly determined, and too much can be avoided.
  • the reference signal is transmitted and measured, because after determining the target beam, the network side node can stop transmitting the reference signal. In order to save the energy consumption of the network side nodes and terminals.
  • the foregoing transmission quality includes at least one of received power, reception quality, and signal to noise ratio.
  • a beam with a received power, a reception quality, or a signal-to-noise ratio higher than a first preset threshold may be selected as a target beam, thereby ensuring reliability and transmission of data transmission when using data transmission of the target beam recovery service. Efficiency and so on.
  • step 302 is only optional. That is, in the second embodiment, it is also possible that step 302 is not performed. That is, the target beam is a target beam determined by the terminal or the network side node in the at least one beam set.
  • the target beam is a beam that the network side node and the terminal pre-arrange in the at least one beam set, or the target beam may be a beam indicated by the network side node in the at least one beam set, and the like.
  • Step 303 The terminal and the network side node resume data transmission of the service by using a target beam in the at least one beam set.
  • the target beam is a target beam determined by the terminal to measure the reference signal, or the target beam is a target beam notified by the terminal to the network side node.
  • the target beam determined by the foregoing may be a beam whose transmission quality meets a preset threshold, or the target beam may be a beam with the best transmission quality in the at least one beam set to improve transmission performance and quality of the data transmission after recovery.
  • the method before the step of receiving, by the network side node, trigger signaling indicating at least one beam set, the method further includes: determining, by the terminal, a service transmission with the network side node The communication link of the high frequency beam is abnormal; the terminal sends a recovery mechanism notification message to the network side node.
  • the recovery mechanism notification message is sent to the network side node.
  • the network side node can be notified in time to start the beam recovery mechanism to reduce the delay of data transmission.
  • the communication link abnormality of the high frequency beam that determines the service transmission between the network side node and the foregoing may be determined by physical layer measurement.
  • the communication link is abnormal, and the terminal does not receive an acknowledgement (ACK) or a negative acknowledgement (NACK) sent from the network side node at a predetermined location; or the terminal measures The receiving quality of the communication link is lower than a second preset threshold; or the terminal measures that the received power of the communication link is lower than a third preset threshold; or the terminal Measuring that the received signal to noise ratio of the communication link is lower than a fourth preset threshold; or the rate of change of the measured value of the communication link measured by the terminal reaches a fifth preset threshold.
  • ACK acknowledgement
  • NACK negative acknowledgement
  • the foregoing does not receive the acknowledgement (ACK) or the negative acknowledgement (NACK) sent from the network side node, and can be understood as that the ACK is not received at the predetermined position corresponding to the high-frequency beam.
  • NACK To NACK, it is determined that the communication link of the above high frequency beam is broken.
  • the receiving quality of the communication link is lower than the second preset threshold, and the receiving quality of the Physical Downlink Control Channel (PDCCH) or the Physical Downlink Shared Channel (PDSCH) is lower than that of the physical downlink control channel (PDCCH).
  • a second preset threshold is configurable, or may be pre-agreed or notified by the network side.
  • the terminal when the terminal detects any of the above conditions, it may be determined that the communication link of the high-frequency beam that performs the service transmission with the network-side node is abnormal, and the recovery notification message is sent.
  • the step of the foregoing terminal sending a recovery mechanism notification message to the network side node, where the terminal sends a recovery mechanism notification message to the network side node by using a wide beam or a low frequency beam or multiple narrow beams;
  • the wide beam is a beam having a lobe wider than a lobe of the high frequency beam, the low frequency beam being a beam having a lower frequency than a frequency of the high frequency beam, the narrow beam being a lobe and the The beam of the high frequency beam has a difference in the beam within a preset range.
  • the foregoing recovery mechanism notification message may be sent by using a wide beam or a low frequency beam or multiple narrow beams, and the wide beam or the low frequency beam or the multiple narrow beams herein may be referred to the sending trigger signaling described in the foregoing implementation manner.
  • a wide beam or a low frequency beam or a plurality of narrow beams are not described herein, and the beneficial effect of improving the success rate of the recovery mechanism notification message can also be achieved.
  • the method further includes: a step of starting a preset counting duration; and the step of the terminal sending a recovery mechanism notification message to the network side node, comprising: when the counter reaches the preset counting duration, the terminal Sending a recovery mechanism notification message to the network side node.
  • the preset counting duration may be pre-configured by the terminal, or may be notified by the network side node.
  • the startup counter may be started when the terminal does not receive an acknowledgement (ACK) or a negative acknowledgement (NACK) sent from the network side node at a predetermined location; or is measured at the terminal.
  • ACK acknowledgement
  • NACK negative acknowledgement
  • the receiving quality of the communication link is lower than the second preset threshold; or when the terminal measures that the received power of the communication link is lower than the third preset threshold; or And being activated when the terminal measures that the received signal to noise ratio of the communication link is lower than a fourth preset threshold; or the rate of change of the measured value of the communication link measured by the terminal reaches a fifth Activated when the threshold is preset.
  • the terminal receives the trigger that is sent by the network-side node and indicates the at least one beam set.
  • the method further includes: when the communication link of the high frequency beam for performing service transmission between the terminal and the network side node is abnormal, the terminal switches to a wide beam, a low frequency beam or more a narrow beam, and using the wide beam, the low frequency beam or the plurality of narrow beams to continue data transmission of the service with the network side node; or performing service transmission between the terminal and the network side node
  • the terminal suspends the service; wherein the wide beam is pre-negotiated by the terminal with the network side node or notified by the network side node, and the wave a lobe is wider than a lobe of the high frequency beam and covers a beam of the terminal; the low frequency beam is pre-negotiated by the terminal with the network side node or by the network Notifying the node, and the frequency is lower than the frequency of the high frequency beam and covering the beam of the terminal; the narrow beam is pre-negotiated by the terminal with the network side node or notified by the network side node, And
  • the terminal switches to the wide beam, the low-frequency beam, or the plurality of narrow beams to continue.
  • the data transmission of the business is abnormal.
  • the data transmission of the service may be continued by switching to the foregoing beam, and when the data transmission of the service is continued, the determination may be performed.
  • the process of the target beam described above is such that the service of the terminal is not interrupted in determining the target beam. And can also be implemented in determining the above target beam process will The service hangs and waits for recovery before data transfer.
  • the data transmission for continuing the foregoing service may be performed by continuing the data transmission of the foregoing service when the communication link is abnormal. For example, when the T-th packet is transmitted between the terminal and the network-side node, that is, when the T-th data transmission fails, the data transmission of the foregoing service may be continued from the T-th packet. Alternatively, the data transmission for continuing the service may be performed by using the first n data packets when the communication link is abnormal as a starting point for data transmission of the service. For example, when the T-th packet is transmitted between the terminal and the network-side node, that is, when the T-th data transmission fails, the data transmission of the foregoing service may be continued from the T-nth data packet.
  • the above target beam can be determined while continuing to transmit using the above beam, so that after determining the target beam, the time point of the target beam can be determined to restore the data transmission of the service.
  • the data packet of the foregoing service is the M-th packet by using the wide beam, the low-frequency beam or the plurality of narrow beams
  • the switch to the target beam and the M-th or M-th may be used.
  • One data packet is used as a starting point to recover the data transmission of the above services.
  • the specific recovery of the service packet is not limited. For example, it is possible to recover some data packets that have been transmitted by the terminal, thereby ensuring better continuity of the service.
  • the step of switching the terminal to a wide beam, a low frequency beam, or multiple narrow beams, and using the wide beam, the low frequency beam, or the multiple narrow beams to continue data transmission of the service with the network side node includes: the terminal switching to a wide beam, a low frequency beam, or a plurality of narrow beams, and using the wide beam, the low frequency beam, or the plurality of narrow beams and the network side node to preset a low scheduling coding scheme or a preset small
  • the packet mode continues the data transfer of the service.
  • the switching to the wide beam, the low frequency beam, or the plurality of narrow beams may be preset by a Modulation and Coding Scheme (MCS) or a preset TB size.
  • MCS Modulation and Coding Scheme
  • the success rate of data transmission can be further improved by MCS and small data packets.
  • the method further includes: after the terminal and the network side node resume data transmission of the service by using the target beam, and during data transmission, the terminal and the network side node pass beam training. a process of finding a switching beam; the terminal switching to the switching beam, and using the switching beam to perform data transmission of the service with the network side node.
  • the terminal and the network side node perform beam training to find the switching beam.
  • the switching beam can be understood as an optimal beam between the terminal and the network side node. For example, by scanning the transmit beam and the receive beam, the beam pair that can obtain the strongest received power is searched. When the strongest beam pair is different from the temporary optimal beam, the network side node and the terminal will switch to the strongest beam pair. Used for data transmission.
  • beam training can be performed when using the target beam to transmit data to determine a better switching beam to improve the transmission quality of the data transmission.
  • the terminal receives the indication of the at least one beam sent by the network side node. Trigger signaling of the set; the terminal transmitting a reference signal through a beam within the at least one beam set; the terminal recovering data transmission of the service through a target beam in the at least one beam set; wherein the target The beam is a target beam determined by the terminal to measure the reference signal, or the target beam is a target beam that is received by the network side node by the terminal.
  • the RRC re-establishment is not required, and the data transmission of the target beam recovery service can be directly used to reduce the delay between the abnormality of the communication link and the recovery of the data transmission, thereby improving the user experience.
  • the target beam is a target beam determined by the terminal or the network side node by measuring the reference signal, the transmission performance and quality of the data transmission after recovery can be improved.
  • FIG. 6 is a flowchart of a method for restoring data transmission provided by an embodiment of the present disclosure. As shown in FIG. 6, the method includes the following steps:
  • Step 601 If the communication link of the high frequency beam for performing service transmission between the network side node and the terminal is abnormal, the network side node sends trigger signaling indicating the at least one beam set to the terminal.
  • Step 602 The network side node recovers data transmission of the service by using a target beam in the at least one beam set.
  • the target beam is a target beam determined by the terminal or the network side node in the at least one beam set.
  • the network side node sends the indication to the terminal at least one beam set. Trigger signaling; the network side node recovers data transmission of the service through a target beam in the at least one beam set. Therefore, when the communication link is abnormal, the network side node is not required to perform the RRC re-establishment process initiated by the terminal, and the data transmission of the target beam recovery service can be directly used to reduce the delay between the abnormality of the communication link and the recovery of the data transmission. To enhance the user experience.
  • FIG. 7 is a flowchart of a method for restoring data transmission provided by an embodiment of the present disclosure. As shown in FIG. 7, the method includes the following steps:
  • Step 701 If the communication link of the high frequency beam for performing service transmission between the network side node and the terminal is abnormal, the network side node sends trigger signaling indicating the at least one beam set to the terminal.
  • the step that the network side node sends the trigger signaling indicating the at least one beam set to the terminal includes: the network side node passes the physical layer downlink control information in the wide beam or the low frequency beam or the multiple narrow beams. Transmitting, to the terminal, trigger signaling indicating at least one beam set; wherein the wide beam is pre-negotiated by the terminal with the network side node or notified by the network side node, and the lobe is higher than the The lobes of the frequency beam are wide and cover the beam of the terminal; the low frequency beam is pre-negotiated by the terminal with the network side node or notified by the network side node, and the frequency is higher than that of the high frequency beam The frequency is low and covers the beam of the terminal; the narrow beam is pre-negotiated by the terminal with the network side node or notified by the network side node, and the lobe and the lobe of the high frequency beam The difference is within a preset range and covers the beam of the terminal.
  • the wide beam, the low frequency beam, and the narrow beam refer to the related description of the second embodiment, which is not described herein, and the same or similar beneficial effects can be achieved.
  • the trigger signaling includes sending pattern information of the reference signal, or the trigger signaling is used to indicate a sending pattern letter of the reference signal pre-agreed by the terminal and the network side node.
  • the transmission pattern information is used to indicate the at least one beam set, and an order indicating that the reference signal is transmitted between the terminal and the network side node within the at least one beam set.
  • the foregoing sending the reference signal sequence includes: preferentially transmitting an order of the high frequency beams in the at least one beam set.
  • the at least one beam set includes a pre-maintained original beam set including the high-frequency beam
  • the order of sending the reference signal includes: in the original beam set, The high frequency beam is centered in a transmission order from near to far according to a spatial orientation; or a transmission order in which the spatial orientation is from far to near centered on the high frequency beam; or within the original beam set, The high-frequency beam is centered in the order in which the spatial orientations are alternately transmitted.
  • the at least one beam set includes a pre-maintained original beam set including the high frequency beam, and at least one target beam set
  • the sequence of sending the reference signal includes: Determining a beam mix transmission order within the original beam set and the at least one target beam set; or preferentially transmitting an order of beams within the target beam set if only one target beam set is included; or if multiple target beam sets are included And transmitting, in priority, the beams in the plurality of target beam sets, and the order in which the plurality of target beam sets are alternately transmitted in a set; or if the plurality of target beam sets are included, preferentially transmitting the multiple target beams A beam within the set, and the order in which the plurality of target beam sets are transmitted in a collective order.
  • Step 702 The network side node transmits the reference signal by using a beam in the at least one beam set.
  • the step of the network side node transmitting the reference signal by using the beam in the at least one beam set the network side node sending a reference to the terminal on the downlink beam in the at least one beam set
  • the network side node receives the feedback information that is sent by the terminal and indicates the target beam, where the target beam is determined by the terminal according to the measurement result of measuring the reference signal transmitted by the network side node. Downstream beam.
  • the step of the network side node transmitting the reference signal by using the beam in the at least one beam set includes: the network side node receiving the reference sent by the terminal on the uplink beam in the at least one beam set a signal; the network side node measures a reference signal sent by the terminal, and obtains a measurement result; the network side node determines the target beam in an uplink beam of the at least one beam set according to the measurement result; The network side node sends feedback information indicating the target beam to the terminal.
  • the step of determining, by the network side node, the target beam in an uplink beam of the at least one beam set according to the measurement result where: the network side node is configured according to the measurement result Determining, in the uplink beam of the at least one beam set, an uplink beam with the best transmission quality as the target beam; or if the network side node finds that the transmission quality in the at least one beam set is higher than the first according to the measurement result
  • the uplink beam whose transmission quality is higher than a preset threshold is determined as the target beam.
  • the transmission quality includes at least one of a received power, a received quality, and a signal to noise ratio.
  • step 702 is only optional. That is, in the fourth embodiment, it is also possible that step 702 is not performed. That is, the target beam is a target beam determined by the terminal or the network side node in the at least one beam set.
  • the target beam is a beam agreed by the network side node and the terminal in advance in the at least one beam set, or a target wave
  • the bundle may be a beam or the like indicated by the network side node in the at least one beam set described above.
  • Step 703 The network side node and the terminal resume data transmission of the service by using a target beam in the at least one beam set.
  • the target beam is a target beam determined by the network side node to measure the reference signal or the target beam is a target beam that the network side node receives the terminal notification.
  • the method further includes: determining, by the network side node, a high service transmission with the terminal The communication link of the frequency beam is abnormal.
  • the communication link is abnormal, including: the network side node does not receive a positive response feedback or a negative response feedback sent by the terminal at a predetermined location; or the network side node measures the communication The receiving quality of the link is lower than the second preset threshold; or the network side node measures that the received power of the communication link is lower than a third preset threshold; or the network side node measures the location The received signal to noise ratio of the communication link is lower than a fourth preset threshold; or the rate of change of the measured value of the communication link measured by the network side node reaches a fifth preset threshold.
  • the network side node sends, to the terminal, trigger signaling indicating at least one beam set.
  • the method further includes: starting a counter of a preset count duration; and the step of the network side node sending the trigger signaling indicating the at least one beam set to the terminal, including: When the preset counting duration is described, the network side node sends trigger signaling indicating the at least one beam set to the terminal.
  • the preset counting duration may be pre-agreed by the network side node and the terminal, or may be configured by the network side node.
  • reference may be made to the related description in the second embodiment, which is not described herein, and the same or similar beneficial effects can be achieved.
  • the network side node after the network side node determines a communication link abnormality of the high frequency beam for performing service transmission with the terminal, the network side node sends a trigger signal indicating the at least one beam set to the terminal.
  • the method further includes: when the communication link of the high frequency beam for performing service transmission between the network side node and the terminal is abnormal, the network side node switches to a wide beam, a low frequency beam, or Multiple narrow beams, and using the wide beam, low frequency beam or multiple narrow beams to continue data transmission of the service with the terminal; or high service transmission between the network side node and the terminal
  • the network side node suspends the service; wherein the wide beam is that the terminal is pre-negotiated with the network side node or notified by the network side node, and The lobe is wider than a lobe of the high frequency beam and covers a beam of the terminal; the low frequency beam is pre-negotiated with the network side node by the terminal or by the network Notifying the side no
  • the step that the network side node switches to a wide beam, a low frequency beam, or multiple narrow beams, and uses the wide beam, the low frequency beam, or multiple narrow beams to continue data transmission of the service with the terminal The network side node switches to a wide beam, a low frequency beam or a plurality of narrow beams, and uses the wide beam, the low frequency beam or the plurality of narrow beams to preset a low scheduling coding scheme or a preset small with the terminal.
  • the packet mode continues the data transfer of the service.
  • the method further includes: the network side node receiving the terminal by using a wide beam or a low frequency beam or more a recovery mechanism notification message sent by the narrow beam; wherein the wide beam is a beam having a lobe wider than a lobe of the high frequency beam, and the low frequency beam is lower in frequency than the frequency of the high frequency beam a beam, the narrow beam being a beam having a difference between a lobe and a lobe of the high frequency beam within a preset range.
  • the method further includes: after the network side node and the terminal recover the data transmission of the service by using the target beam, and when data is transmitted, the network side node and the terminal pass the beam
  • the training process searches for a switching beam; the network side node switches to the switching beam, and uses the switching beam to perform data transmission of the service with the terminal.
  • the network side node sends the indication to the terminal at least one beam set. Trigger signaling; the network side node transmits a reference signal through a beam in the at least one beam set; the network side node recovers data transmission of the service by using a target beam in the at least one beam set;
  • the target beam is a target beam determined by the network side node to measure the reference signal or the target beam is a target beam that the network side node receives the terminal notification.
  • the RRC re-establishment initiated by the terminal is not required, and the data transmission of the target beam recovery service can be directly used to reduce the delay between the abnormality of the communication link and the recovery of the data transmission, thereby improving the user experience.
  • the target beam is a target beam determined by the terminal or the network side node by measuring the reference signal, the transmission performance and quality of the data transmission after recovery can be improved.
  • FIG. 8 is a structural diagram of a terminal provided by an embodiment of the present disclosure, which can implement the details of the method for restoring data transmission in the first embodiment to the second embodiment, and achieve the same or similar effects.
  • the terminal 800 includes: a trigger signaling receiving module 801 and a first data transmission recovery module 802.
  • the trigger signaling receiving module 801 is connected to the first data transmission recovery module 802, where:
  • the triggering signaling receiving module 801 is configured to receive, by the network side node, trigger signaling indicating at least one beam set if the communication link of the high frequency beam for performing service transmission between the terminal and the network side node is abnormal.
  • a first data transmission recovery module 802 configured to recover data transmission of the service by using a target beam in the at least one beam set; wherein the target beam is the terminal or the network side node is in the at least one The target beam determined in the beam set.
  • the terminal 800 further includes:
  • a first reference signal transmission module 803, configured to pass a beam in the at least one beam set Transmitting a reference signal; wherein the target beam is a target beam determined by the terminal to measure the reference signal, or the target beam is a target beam that is received by the network side node by the terminal.
  • the first reference signal transmission module 803 includes:
  • the first reference signal sending unit 8031 is configured to send a reference signal to the network side node on an uplink beam in the at least one beam set.
  • the first feedback information receiving unit 8032 is configured to receive, by the network side node, feedback information indicating the target beam, where the target beam is measured by the network side node according to a reference signal transmitted by the terminal The measurement results determine the upstream beam.
  • the first reference signal transmission module 803 includes:
  • the first reference signal receiving unit 8033 is configured to receive a reference signal that is sent by the network side node on a downlink beam in the at least one beam set.
  • the first measuring unit 8034 is configured to measure a reference signal sent by the network side node, and obtain a measurement result.
  • the first determining unit 8035 is configured to determine the target beam in a downlink beam of the at least one beam set according to the measurement result.
  • the first feedback information sending unit 8036 is configured to send feedback information indicating the target beam to the network side node.
  • the first determining unit 8035 is configured to determine, according to the measurement result, a downlink beam with the best transmission quality as the target beam in a downlink beam of the at least one beam set; or the first determining unit 8035 And determining, by the terminal, that the downlink beam with the transmission quality higher than the preset threshold is determined when the terminal finds that there is a downlink beam with a transmission quality higher than the first preset threshold in the at least one beam set according to the measurement result. Is the target beam.
  • the transmission quality includes at least one of a received power, a received quality, and a signal to noise ratio.
  • the triggering signaling includes the sending pattern information of the reference signal, or the triggering signaling is used to indicate the sending pattern information of the reference signal pre-agreed by the terminal and the network side node; wherein the sending pattern is The information is used to indicate the at least one beam set, and an order indicating that the reference signal is transmitted between the terminal and the network side node within the at least one beam set.
  • the order of sending the reference signals includes: preferentially transmitting an order of the high frequency beams in the at least one beam set.
  • the at least one beam set includes a pre-maintained original beam set including the high-frequency beam
  • the order of sending the reference signal includes: in the original beam set,
  • the high frequency beam is a transmission order in which the high frequency beam is centered in a spatial orientation from near to far; or in the original beam set, the transmission order in which the high frequency beam is centered according to the spatial azimuth; or in the original beam Within the set, the transmission order of the spatial orientation from far to near is centered on the high frequency beam.
  • the at least one beam set includes a pre-maintained original beam set including the high frequency beam, and at least one target beam set
  • the sequence of sending the reference signal includes: Determining a beam mix transmission order within the original beam set and the at least one target beam set; or preferentially transmitting an order of beams within the target beam set if only one target beam set is included; or if multiple target beam sets are included And transmitting, in priority, the beams in the plurality of target beam sets, and the order in which the plurality of target beam sets are alternately transmitted in a set; or if the plurality of target beam sets are included, preferentially transmitting the multiple target beams A beam within the set, and the order in which the plurality of target beam sets are transmitted in a collective order.
  • the terminal 800 further includes:
  • the first abnormality determining module 804 is configured to determine that the communication link of the high frequency beam for performing service transmission with the network side node is abnormal.
  • the notification message sending module 805 is configured to send a recovery mechanism notification message to the network side node.
  • the communication link is abnormal, including:
  • the terminal does not receive the positive response feedback or the negative acknowledgement feedback sent by the network side node at the predetermined location; or the terminal measures that the receiving quality of the communication link is lower than the second preset threshold; Or the terminal measures that the received power of the communication link is lower than a third preset threshold; or the terminal measures that the received signal to noise ratio of the communication link is lower than a fourth preset threshold; Or the rate of change of the measured value of the communication link measured by the terminal reaches a fifth preset threshold.
  • the notification message sending module 805 is configured to send a recovery mechanism notification message to the network side node by using a wide beam or a low frequency beam or multiple narrow beams; wherein the wide beam is a lobe a beam wider than a lobe of the high frequency beam, the low frequency beam being a beam having a frequency lower than a frequency of the high frequency beam, the narrow beam being a lobe and a lobe of the high frequency beam A beam whose difference is within a preset range.
  • the terminal 800 further includes:
  • a first counter starting module 806, configured to start a counter of a preset counting duration
  • the notification message sending module 805 is configured to send a recovery mechanism to the network side node when the counter count reaches the preset counting duration Notification message.
  • the terminal 800 further includes:
  • a first data transmission module 807 configured to switch to a wide beam, a low frequency beam, or multiple narrow beams when a communication link of a high frequency beam for performing service transmission between the terminal and the network side node is abnormal And using the wide beam, the low frequency beam or the plurality of narrow beams to continue data transmission of the service with the network side node; or
  • the terminal 800 further includes:
  • the first service suspension module 808 is configured to suspend the service when the communication link of the high frequency beam for performing service transmission between the terminal and the network side node is abnormal;
  • the wide beam is pre-negotiated by the terminal with the network side node or notified by the network side node, and the lobe is wider than a lobe of the high frequency beam and covers a beam of the terminal;
  • the low frequency beam is pre-negotiated by the terminal with the network side node or notified by the network side node, and the frequency is lower than the frequency of the high frequency beam and covers the beam of the terminal;
  • the narrow beam is pre-negotiated by the terminal with the network side node or notified by the network side node, and a difference between a lobe and a lobe of the high frequency beam is within a preset range and covers the The beam of the terminal.
  • the first data transmission module 807 is configured to switch to a wide beam, a low frequency beam, or multiple narrow beams, and use the wide beam, the low frequency beam, or multiple narrow beams to preset low scheduling with the network side node.
  • the coding scheme or the preset small data packet mode continues the data transmission of the service.
  • the trigger signaling receiving module 801 is configured to receive, by the wide beam or the low frequency beam or the multiple narrow beams, trigger signaling that is sent by the network side node to send the at least one beam set by using physical layer downlink control information; Deriving a wide beam for the terminal to be pre-negotiated with the network side node or notified by the network side node, and the lobe is wider than the lobes of the high frequency beam and covers the end a beam of the end; the low frequency beam is pre-negotiated by the terminal with the network side node or notified by the network side node, and the frequency is lower than the frequency of the high frequency beam and covers the beam of the terminal; The narrow beam is pre-negotiated by the terminal with the network side node or notified by the network side node, and the difference between the lobe and the lobe of the high frequency beam is within a preset range and covers the terminal Beam.
  • the terminal 800 further includes:
  • the first searching module 809 is configured to search for a handover after the terminal and the network side node recover the data transmission of the service by using the target beam, and during data transmission, and the network side node through a beam training process. Beam.
  • the first switching module 8010 is configured to switch to the switching beam, and perform data transmission of the service with the network side node by using the switching beam.
  • the terminal if the communication link of the high-frequency beam for performing service transmission between the terminal and the network-side node is abnormal, the terminal receives the trigger signal that is sent by the network-side node and indicates at least one beam set.
  • the terminal recovers data transmission of the service by using a target beam in the at least one beam set; wherein the target beam is determined by the terminal or the network side node in the at least one beam set Target beam. Therefore, when the communication link is abnormal, the RRC re-establishment is not required, and the data transmission of the target beam recovery service can be directly used to reduce the delay between the abnormality of the communication link and the recovery of the data transmission, thereby improving the user experience.
  • FIG. 16 is a structural diagram of a network side node provided by an embodiment of the present disclosure, which can implement the details of the method for restoring data transmission in the third embodiment to the fourth embodiment, and achieve the same or similar effects.
  • the network side node 1600 includes: a trigger signaling sending module 1601 and a second data transmission restoring module 1602.
  • the trigger signaling sending module 1601 and the second data transmission recovery module 1602 are connected, where:
  • the trigger signaling sending module 1601 is configured to: if the communication link of the high frequency beam for performing service transmission between the network side node and the terminal is abnormal, send trigger signaling indicating the at least one beam set to the terminal.
  • a second data transmission recovery module 1602 configured to recover data transmission of the service by using a target beam in the at least one beam set; wherein the target beam is the terminal or the network A target beam determined by the network side node in the at least one beam set.
  • the network side node 1600 further includes:
  • a second reference signal transmission module 1603, configured to transmit a reference signal to the terminal by using a beam in the at least one beam set; wherein the target beam is determined by the network side node measuring the reference signal
  • the target beam or the target beam is a target beam that the network side node receives the terminal notification.
  • the second reference signal transmission module 1603 includes:
  • the second reference signal sending unit 16031 is configured to send a reference signal to the terminal on a downlink beam in the at least one beam set.
  • the second feedback information receiving unit 16032 is configured to receive, by the terminal, feedback information indicating the target beam, where the target beam is a measurement performed by the terminal according to a reference signal transmitted by the network side node. The resulting downlink beam is determined.
  • the second reference signal transmission module 1603 includes:
  • the second reference signal receiving unit 16033 is configured to receive a reference signal that is sent by the terminal on an uplink beam in the at least one beam set.
  • the second measuring unit 16034 is configured to perform measurement on the reference signal sent by the terminal, and obtain a measurement result.
  • the second determining unit 16035 is configured to determine the target beam in an uplink beam of the at least one beam set according to the measurement result.
  • the second feedback information sending unit 16036 is configured to send feedback information indicating the target beam to the terminal.
  • the second determining unit 16035 is configured to determine, according to the measurement result, an uplink beam with an optimal transmission quality as the target beam in an uplink beam of the at least one beam set; or
  • the second determining unit 16035 is configured to: if the network side node finds, according to the measurement result, that an uplink beam with a transmission quality higher than a first preset threshold exists in the at least one beam set, the transmission quality is An uplink beam higher than a preset threshold is determined as the target beam.
  • the transmission quality includes at least one of a received power, a received quality, and a signal to noise ratio.
  • the trigger signaling includes sending pattern information of the reference signal, or the trigger signal Sending the pattern information for indicating the reference signal that is pre-agreed by the terminal and the network side node; wherein the sending pattern information is used to indicate the at least one beam set, and indicating the terminal and the network side The order in which the reference signals are transmitted between the nodes within the at least one beam set.
  • the order of sending the reference signals includes: preferentially transmitting an order of the high frequency beams in the at least one beam set.
  • the at least one beam set includes a pre-maintained original beam set including the high-frequency beam
  • the order of sending the reference signal includes: in the original beam set,
  • the high frequency beam is a transmission order in which the high frequency beam is centered in a spatial orientation from near to far; or in the original beam set, the transmission order in which the high frequency beam is centered according to the spatial azimuth; or in the original beam Within the set, the transmission order of the spatial orientation from far to near is centered on the high frequency beam.
  • the at least one beam set includes a pre-maintained original beam set including the high frequency beam, and at least one target beam set
  • the sequence of sending the reference signal includes: Determining a beam mix transmission order within the original beam set and the at least one target beam set; or preferentially transmitting an order of beams within the target beam set if only one target beam set is included; or if multiple target beam sets are included And transmitting, in priority, the beams in the plurality of target beam sets, and the order in which the plurality of target beam sets are alternately transmitted in a set; or if the plurality of target beam sets are included, preferentially transmitting the multiple target beams A beam within the set, and the order in which the plurality of target beam sets are transmitted in a collective order.
  • the network side node 1600 further includes:
  • the second abnormality determining module 1604 is configured to determine, by the network side node, that the communication link of the high frequency beam for performing service transmission with the terminal is abnormal.
  • the communication link is abnormal, including: the network side node does not receive a positive response feedback or a negative response feedback sent by the terminal at a predetermined location; or the network side node measures the communication The receiving quality of the link is lower than the second preset threshold; or the network side node measures that the received power of the communication link is lower than a third preset threshold; or the network side node measures the location The received signal to noise ratio of the communication link is lower than a fourth preset threshold; or the rate of change of the measured value of the communication link measured by the network side node reaches a fifth preset threshold.
  • the network side node 1600 further includes:
  • a second counter starting module 1605 configured to start a counter of a preset counting duration
  • the trigger signaling sending module 1601 is configured to send, to the terminal, trigger signaling indicating at least one beam set when the counter count reaches the preset counting duration.
  • the network side node 1600 further includes:
  • a second data transmission module 1606, a second data transmission module configured to switch to a wide beam when the communication link of the high frequency beam for performing service transmission between the network side node and the terminal is abnormal a low frequency beam or a plurality of narrow beams, and using the wide beam, the low frequency beam or the plurality of narrow beams to continue data transmission of the service with the terminal;
  • the network side node 1600 further includes:
  • a second service suspension module 1607 configured to suspend the service when the communication link of the high frequency beam for performing service transmission between the network side node and the terminal is abnormal;
  • the wide beam is pre-negotiated by the terminal with the network side node or notified by the network side node, and the lobe is wider than a lobe of the high frequency beam and covers a beam of the terminal;
  • the low frequency beam is pre-negotiated by the terminal with the network side node or notified by the network side node, and the frequency is lower than the frequency of the high frequency beam and covers the beam of the terminal;
  • the narrow beam is pre-negotiated by the terminal with the network side node or notified by the network side node, and a difference between a lobe and a lobe of the high frequency beam is within a preset range and covers the The beam of the terminal.
  • the second data transmission module 1606 is configured to switch to a wide beam, a low frequency beam, or multiple narrow beams, and use the wide beam, the low frequency beam, or multiple narrow beams to preset low scheduling with the terminal.
  • the coding scheme or the preset small data packet mode continues the data transmission of the service.
  • the network side node 1600 further includes:
  • a notification message receiving module 1608, configured to receive, by the network side node, a recovery mechanism notification message that is sent by the terminal by using a wide beam or a low frequency beam or multiple narrow beams; wherein the wide beam is a lobe than the high frequency beam a beam having a wide beam, the low frequency beam being a beam having a frequency lower than a frequency of the high frequency beam, the narrow beam being a difference between a lobe and a lobe of the high frequency beam in a preset range The beam inside.
  • the trigger signaling sending module 1601 is configured to use a wide beam or a low frequency beam or multiple narrow beams. Transmitting, by the physical layer downlink control information, trigger signaling indicating at least one beam set to the terminal, where the wide beam is pre-negotiated by the terminal with the network side node or notified by the network side node, and The lobe is wider than a lobe of the high frequency beam and covers a beam of the terminal; the low frequency beam is pre-negotiated by the terminal with the network side node or notified by the network side node, and the frequency ratio is The frequency of the high frequency beam is low and covers the beam of the terminal; the narrow beam is pre-negotiated by the terminal with the network side node or notified by the network side node, and the lobes and the high The difference between the lobes of the frequency beam is within a preset range and covers the beam of the terminal.
  • the network side node 1600 further includes:
  • a second searching module 1609 configured to: after the network side node and the terminal recover the data transmission of the service by using the target beam, and during data transmission, search for a switching beam with the terminal through a beam training process;
  • the second switching module 16010 is configured to switch, by the network side node, to the switching beam, and perform data transmission of the service with the terminal by using the switching beam.
  • the network side node In the network side node provided by the embodiment of the present disclosure, if the communication link of the high frequency beam for performing service transmission between the network side node and the terminal is abnormal, the network side node sends a trigger indicating the at least one beam set to the terminal. Signaling; the network side node and the terminal recover data transmission of the service through a target beam in the at least one beam set. Therefore, when the communication link is abnormal, the network side node is not required to perform the RRC re-establishment process initiated by the terminal, and the data transmission of the target beam recovery service can be directly used to reduce the delay between the abnormality of the communication link and the recovery of the data transmission. To enhance the user experience.
  • FIG. 25 is a structural diagram of a terminal to which the embodiment of the present disclosure is applied, which can implement the details of the method for restoring data transmission in the first to second embodiments, and achieve the same effect.
  • the terminal 2500 includes at least one processor 2501, a memory 2502, at least one network interface 2504, and a user interface 2503.
  • the various components in terminal 2500 are coupled together by a bus system 2505.
  • the bus system 2505 is used to implement connection communication between these components.
  • the bus system 2505 includes a power bus, a control bus, and a status signal bus in addition to the data bus.
  • various buses are labeled as bus system 2505 in FIG.
  • the user interface 2503 may include a display, a keyboard, or a pointing device (eg, a mouse, a track ball, a touch pad, or a touch screen, etc.).
  • a pointing device eg, a mouse, a track ball, a touch pad, or a touch screen, etc.
  • the memory 2502 in the embodiments of the present disclosure may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (PROM), an erasable programmable read only memory (Erasable PROM, EPROM), or an electric Erase programmable read only memory (EEPROM) or flash memory.
  • the volatile memory can be a Random Access Memory (RAM) that acts as an external cache.
  • RAM Random Access Memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous DRAM).
  • SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • DDRSDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • SDRAM Synchronous Connection Dynamic Random Access Memory
  • DRRAM direct memory bus random access memory
  • the memory 2502 stores elements, executable modules or data structures, or a subset thereof, or their extended set: an operating system 25021 and an application 25022.
  • the operating system 25021 includes various system programs, such as a framework layer, a core library layer, a driver layer, and the like, for implementing various basic services and processing hardware-based tasks.
  • the application 25022 includes various applications, such as a media player (Media Player), a browser (Browser), etc., for implementing various application services.
  • a program implementing the method of the embodiments of the present disclosure may be included in the application 25022.
  • the processor 2501 is configured to: if the terminal and the network side node perform service transmission The communication link of the high frequency beam is abnormal, and receiving trigger signaling indicating the at least one beam set sent by the network side node; passing the at least one beam set The target beam of the combination recovers the data transmission of the service; wherein the target beam is a target beam determined by the terminal or the network side node in the at least one beam set.
  • the method disclosed in the above embodiments of the present disclosure may be applied to the processor 2501 or implemented by the processor 2501.
  • the processor 2501 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 2501 or an instruction in a form of software.
  • the processor 2501 may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), or the like. Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present disclosure may be implemented or carried out.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in connection with the embodiments of the present disclosure may be directly embodied by the execution of the hardware decoding processor or by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 2502, and the processor 2501 reads the information in the memory 2502 and performs the steps of the above method in combination with its hardware.
  • the embodiments described herein can be implemented in hardware, software, firmware, middleware, microcode, or a combination thereof.
  • the processing unit can be implemented in one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processing (DSP), Digital Signal Processing Equipment (DSP Device, DSPD), programmable Programmable Logic Device (PLD), Field-Programmable Gate Array (FPGA), general purpose processor, controller, microcontroller, microprocessor, other for performing the functions described herein In an electronic unit or a combination thereof.
  • ASICs Application Specific Integrated Circuits
  • DSP Digital Signal Processing
  • DSP Device Digital Signal Processing Equipment
  • PLD programmable Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • the techniques described herein can be implemented by modules (eg, procedures, functions, and so on) that perform the functions described herein.
  • the software code can be stored in memory and executed by the processor.
  • the memory can be implemented in the processor or external to the processor.
  • the processor 2501 is further configured to: transmit a reference signal by using a beam in the at least one beam set; where the target beam is determined by the terminal measuring the reference signal The target beam, or the target beam is a target beam that the terminal receives the network side node notification.
  • the processor 2501 is further configured to: send a reference signal to the network side node on an uplink beam in the at least one beam set; and receive feedback information that is sent by the network side node to indicate the target beam,
  • the target beam is an uplink beam determined by the network side node according to a measurement result of measuring a reference signal transmitted by the terminal.
  • the processor 2501 is further configured to: receive a reference signal sent by the network side node on a downlink beam in the at least one beam set; perform measurement on the reference signal sent by the network side node, and obtain a measurement result. And determining, according to the measurement result, the target beam in a downlink beam of the at least one beam set; and transmitting feedback information indicating the target beam to the network side node.
  • the processor 2501 is further configured to: determine, according to the measurement result, a downlink beam with the best transmission quality as the target beam in a downlink beam of the at least one beam set; or if the terminal is according to the The measurement result finds that when there is a downlink beam whose transmission quality is higher than the first preset threshold in the at least one beam set, the downlink beam whose transmission quality is higher than the preset threshold is determined as the target beam.
  • the transmission quality includes at least one of a received power, a received quality, and a signal to noise ratio.
  • the triggering signaling includes the sending pattern information of the reference signal, or the triggering signaling is used to indicate the sending pattern information of the reference signal pre-agreed by the terminal and the network side node; wherein the sending pattern is The information is used to indicate the at least one beam set, and an order indicating that the reference signal is transmitted between the terminal and the network side node within the at least one beam set.
  • the order of sending the reference signals includes: preferentially transmitting an order of the high frequency beams in the at least one beam set.
  • the at least one beam set includes a pre-maintained original beam set including the high-frequency beam
  • the order of sending the reference signal includes: in the original beam set,
  • the high frequency beam is a transmission order in which the high frequency beam is centered in a spatial orientation from near to far; or in the original beam set, the transmission order in which the high frequency beam is centered according to the spatial azimuth; or in the original beam Within the set, centered on the high-frequency beam, according to the spatial orientation from far to Near transmission order.
  • the at least one beam set includes a pre-maintained original beam set including the high frequency beam, and at least one target beam set
  • the sequence of sending the reference signal includes: Determining a beam mix transmission order within the original beam set and the at least one target beam set; or preferentially transmitting an order of beams within the target beam set if only one target beam set is included; or if multiple target beam sets are included And transmitting, in priority, the beams in the plurality of target beam sets, and the order in which the plurality of target beam sets are alternately transmitted in a set; or if the plurality of target beam sets are included, preferentially transmitting the multiple target beams A beam within the set, and the order in which the plurality of target beam sets are transmitted in a collective order.
  • the processor 2501 is further configured to: determine a communication link abnormality of the high frequency beam for performing service transmission with the network side node; and send a recovery mechanism notification message to the network side node.
  • the processor 2501 is further configured to: receive no positive response feedback or negative acknowledgement feedback sent by the network side node at a predetermined location; or measure that the receiving quality of the communication link is lower than the second pre- Setting a threshold value; or the terminal measures that the received power of the communication link is lower than a third preset threshold; or the terminal measures that the received signal to noise ratio of the communication link is lower than the fourth pre- The threshold value is set; or the measured rate of change of the measured value of the communication link reaches a fifth preset threshold value.
  • the processor 2501 is further configured to: send a recovery mechanism notification message to the network side node by using a wide beam or a low frequency beam or multiple narrow beams; wherein the wide beam is a lobe than the high frequency beam a beam having a wide width, the low frequency beam being a beam having a frequency lower than a frequency of the high frequency beam, wherein the narrow beam is a difference between a lobe and a lobe of the high frequency beam within a preset range Beam.
  • the processor 2501 is further configured to: start a counter of a preset count duration; and send a recovery mechanism notification message to the network side node when the counter count reaches the preset count duration.
  • the processor 2501 is further configured to switch to a wide beam, a low frequency beam, or multiple narrow beams when the communication link of the high frequency beam for performing service transmission between the terminal and the network side node is abnormal. And using the wide beam, the low frequency beam or the plurality of narrow beams to continue data transmission of the service with the network side node; or a high frequency beam for performing service transmission between the terminal and the network side node When the communication link is abnormal, the service is suspended;
  • the wide beam is pre-negotiated by the terminal with the network side node or by the network Notified by the network side node, and the lobe is wider than the lobe of the high frequency beam and covers the beam of the terminal;
  • the low frequency beam is pre-negotiated by the terminal with the network side node or notified by the network side node, and the frequency is lower than the frequency of the high frequency beam and covers the beam of the terminal;
  • the narrow beam is pre-negotiated by the terminal with the network side node or notified by the network side node, and a difference between a lobe and a lobe of the high frequency beam is within a preset range and covers the The beam of the terminal.
  • the processor 2501 is further configured to switch to a wide beam, a low frequency beam, or multiple narrow beams when the communication link of the high frequency beam for performing service transmission between the terminal and the network side node is abnormal. And using the wide beam, the low frequency beam or the plurality of narrow beams and the network side node to continue data transmission of the service in a preset low scheduling coding scheme or a preset small data packet manner.
  • the processor 2501 is further configured to: receive, in the wide beam or the low frequency beam or the multiple narrow beams, trigger signaling that is sent by the network side node to send the at least one beam set by using physical layer downlink control information; where The wide beam is pre-negotiated by the terminal with the network side node or notified by the network side node, and the lobe is wider than a lobe of the high frequency beam and covers a beam of the terminal; the low frequency beam Pre-negotiating with the network side node or notified by the network side node, and the frequency is lower than the frequency of the high frequency beam and covering the beam of the terminal; the narrow beam is the terminal Predetermined with the network side node or notified by the network side node, and the difference between the lobe and the lobe of the high frequency beam is within a preset range and covers the beam of the terminal.
  • the processor 2501 is further configured to: after the terminal and the network side node resume data transmission of the service by using the target beam, and perform data beam transmission with the network side node, And finding a switching beam; switching to the switching beam, and performing data transmission of the service with the network side node by using the switching beam.
  • the terminal if the communication link of the high-frequency beam for performing service transmission between the terminal and the network-side node is abnormal, the terminal receives the trigger signal that is sent by the network-side node and indicates at least one beam set.
  • the terminal recovers data transmission of the service by using a target beam in the at least one beam set; wherein the target beam is determined by the terminal or the network side node in the at least one beam set Target beam. Therefore, when the communication link is abnormal, the RRC reconstruction is not required, and the data transmission of the target beam recovery service can be directly used. To reduce the delay between the abnormality of the communication link and the recovery of data transmission, and improve the user experience.
  • FIG. 26 is a structural diagram of a terminal to which the embodiment of the present disclosure is applied, which can implement the details of the method for restoring data transmission in the first embodiment to the second embodiment, and achieve the same effect.
  • the terminal 2600 includes a radio frequency (RF) circuit 2610, a memory 2620, an input unit 2630, a display unit 2640, a processor 2650, an audio circuit 2660, a communication module 2670, and a power source 2680.
  • RF radio frequency
  • the input unit 2630 can be configured to receive numeric or character information input by the user, and generate signal input related to user settings and function control of the mobile terminal 2600.
  • the input unit 2630 may include a touch panel 2631.
  • the touch panel 2631 also referred to as a touch screen, can collect touch operations on or near the user (such as the operation of the user using any suitable object or accessory such as a finger or a stylus on the touch panel 2631), and according to the preset
  • the programmed program drives the corresponding connection device.
  • the touch panel 2631 may include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the touch orientation of the user, and detects a signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts the touch information into contact coordinates, and sends the touch information.
  • the processor 2650 is provided and can receive commands from the processor 2650 and execute them.
  • the touch panel 2631 can be implemented in various types such as resistive, capacitive, infrared, and surface acoustic waves.
  • the input unit 2630 may further include other input devices 2632.
  • the other input devices 2632 may include, but are not limited to, a physical keyboard, function keys (such as a volume control button, a switch button, etc.), a trackball, a mouse, a joystick, and the like. One or more of them.
  • the display unit 2640 can be used to display information input by the user or information provided to the user and various menu interfaces of the mobile terminal 2600.
  • the display unit 2640 can include a display panel 2641.
  • the display panel 2641 can be configured in the form of an LCD or an Organic Light-Emitting Diode (OLED).
  • the touch panel 2631 may cover the display panel 2641 to form a touch display screen, and when the touch display screen detects a touch operation on or near it, it is transmitted to the processor 2650 to determine the type of the touch event, and then the processor The 2650 provides a corresponding visual output on the touch display depending on the type of touch event.
  • the touch display includes an application interface display area and a common control display area.
  • the arrangement manner of the application interface display area and the display area of the common control is not limited, and the arrangement manner of the two display areas can be distinguished by up-and-down arrangement, left-right arrangement, and the like.
  • the application interface display area can be used to display the interface of the application. Each interface can contain interface elements such as at least one application's icon and/or widget desktop control.
  • the application interface display area can also be an empty interface that does not contain any content.
  • the common control display area is used to display controls with high usage, such as setting buttons, interface numbers, scroll bars, phone book icons, and the like.
  • the processor 2650 is a control center of the mobile terminal 2600, and connects various parts of the entire mobile phone by using various interfaces and lines, by running or executing software programs and/or modules stored in the first memory 2621, and calling the second storage.
  • the data in the memory 2622 performs various functions and processing data of the mobile terminal 2600, thereby performing overall monitoring of the mobile terminal 2600.
  • the processor 2650 can include one or more processing units.
  • the processor 2650 by calling a software program and/or module stored in the first memory 2621 and/or data in the second memory 2622, the processor 2650 is configured to: between the terminal and the network side node A communication link of the high frequency beam for performing the service transmission is abnormal, and receiving trigger signaling indicating the at least one beam set sent by the network side node; recovering the data transmission of the service by using the target beam in the at least one beam set;
  • the target beam is a target beam determined by the terminal or the network side node in the at least one beam set.
  • the processor 2650 is further configured to: transmit a reference signal by using a beam in the at least one beam set; where the target beam is a target beam determined by the terminal to measure the reference signal, or The target beam is a target beam that is received by the network side node by the terminal.
  • the processor 2650 is further configured to: send a reference signal to the network side node on an uplink beam in the at least one beam set; and receive feedback information that is sent by the network side node to indicate the target beam,
  • the target beam is an uplink beam determined by the network side node according to a measurement result of measuring a reference signal transmitted by the terminal.
  • the processor 2650 is further configured to: receive a reference signal sent by the network side node on a downlink beam in the at least one beam set; perform measurement on the reference signal sent by the network side node, and obtain a measurement result. According to the measurement result, under the at least one beam set Determining the target beam in a row beam; transmitting feedback information indicating the target beam to the network side node.
  • the processor 2650 is further configured to: determine, according to the measurement result, a downlink beam with the best transmission quality as the target beam in the downlink beam of the at least one beam set; or if the terminal is according to the The measurement result finds that when there is a downlink beam whose transmission quality is higher than the first preset threshold in the at least one beam set, the downlink beam whose transmission quality is higher than the preset threshold is determined as the target beam.
  • the transmission quality includes at least one of a received power, a received quality, and a signal to noise ratio.
  • the triggering signaling includes the sending pattern information of the reference signal, or the triggering signaling is used to indicate the sending pattern information of the reference signal pre-agreed by the terminal and the network side node; wherein the sending pattern is The information is used to indicate the at least one beam set, and an order indicating that the reference signal is transmitted between the terminal and the network side node within the at least one beam set.
  • the order of sending the reference signals includes: preferentially transmitting an order of the high frequency beams in the at least one beam set.
  • the at least one beam set includes a pre-maintained original beam set including the high-frequency beam
  • the order of sending the reference signal includes: in the original beam set,
  • the high frequency beam is a transmission order in which the high frequency beam is centered in a spatial orientation from near to far; or in the original beam set, the transmission order in which the high frequency beam is centered according to the spatial azimuth; or in the original beam Within the set, the transmission order of the spatial orientation from far to near is centered on the high frequency beam.
  • the at least one beam set includes a pre-maintained original beam set including the high frequency beam, and at least one target beam set
  • the sequence of sending the reference signal includes: Determining a beam mix transmission order within the original beam set and the at least one target beam set; or preferentially transmitting an order of beams within the target beam set if only one target beam set is included; or if multiple target beam sets are included And transmitting, in priority, the beams in the plurality of target beam sets, and the order in which the plurality of target beam sets are alternately transmitted in a set; or if the plurality of target beam sets are included, preferentially transmitting the multiple target beams A beam within the set, and the order in which the plurality of target beam sets are transmitted in a collective order.
  • the processor 2650 is further configured to: determine a communication link abnormality of the high frequency beam for performing service transmission with the network side node; and send a recovery mechanism notification message to the network side node.
  • the processor 2650 is further configured to: receive no positive response feedback or negative acknowledgement feedback sent by the network side node at a predetermined location; or measure that the receiving quality of the communication link is lower than the second pre- Setting a threshold value; or the terminal measures that the received power of the communication link is lower than a third preset threshold; or the terminal measures that the received signal to noise ratio of the communication link is lower than the fourth pre- The threshold value is set; or the measured rate of change of the measured value of the communication link reaches a fifth preset threshold value.
  • the processor 2650 is further configured to: send a recovery mechanism notification message to the network side node by using a wide beam or a low frequency beam or multiple narrow beams; wherein the wide beam is a lobe than the high frequency beam a beam having a wide width, the low frequency beam being a beam having a frequency lower than a frequency of the high frequency beam, wherein the narrow beam is a difference between a lobe and a lobe of the high frequency beam within a preset range Beam.
  • the processor 2650 is further configured to: start a counter of a preset count duration; and send a recovery mechanism notification message to the network side node when the counter count reaches the preset count duration.
  • the processor 2650 is further configured to switch to a wide beam, a low frequency beam, or multiple narrow beams when the communication link of the high frequency beam for performing service transmission between the terminal and the network side node is abnormal. And using the wide beam, the low frequency beam or the plurality of narrow beams to continue data transmission of the service with the network side node; or a high frequency beam for performing service transmission between the terminal and the network side node When the communication link is abnormal, the service is suspended;
  • the wide beam is pre-negotiated by the terminal with the network side node or notified by the network side node, and the lobe is wider than a lobe of the high frequency beam and covers a beam of the terminal;
  • the low frequency beam is pre-negotiated by the terminal with the network side node or notified by the network side node, and the frequency is lower than the frequency of the high frequency beam and covers the beam of the terminal;
  • the narrow beam is pre-negotiated by the terminal with the network side node or notified by the network side node, and a difference between a lobe and a lobe of the high frequency beam is within a preset range and covers the The beam of the terminal.
  • the processor 2650 is further configured to switch to a wide beam, a low frequency beam, or multiple narrow beams when the communication link of the high frequency beam for performing service transmission between the terminal and the network side node is abnormal. And using the wide beam, the low frequency beam or the plurality of narrow beams with the network side node to pre The data transmission of the service is continued by setting a low scheduling coding scheme or a preset small data packet manner.
  • the processor 2650 is further configured to: receive, in the wide beam or the low frequency beam or the multiple narrow beams, trigger signaling that is sent by the network side node to transmit the at least one beam set by using physical layer downlink control information; where The wide beam is pre-negotiated by the terminal with the network side node or notified by the network side node, and the lobe is wider than a lobe of the high frequency beam and covers a beam of the terminal; the low frequency beam Pre-negotiating with the network side node or notified by the network side node, and the frequency is lower than the frequency of the high frequency beam and covering the beam of the terminal; the narrow beam is the terminal Predetermined with the network side node or notified by the network side node, and the difference between the lobe and the lobe of the high frequency beam is within a preset range and covers the beam of the terminal.
  • the processor 2650 is further configured to: after the terminal and the network side node resume data transmission of the service by using the target beam, and perform data beam transmission with the network side node, And finding a switching beam; switching to the switching beam, and performing data transmission of the service with the network side node by using the switching beam.
  • the terminal if the communication link of the high-frequency beam for performing service transmission between the terminal and the network-side node is abnormal, the terminal receives the trigger signal that is sent by the network-side node and indicates at least one beam set.
  • the terminal recovers data transmission of the service by using a target beam in the at least one beam set; wherein the target beam is determined by the terminal or the network side node in the at least one beam set Target beam. Therefore, when the communication link is abnormal, the RRC re-establishment is not required, and the data transmission of the target beam recovery service can be directly used to reduce the delay between the abnormality of the communication link and the recovery of the data transmission, thereby improving the user experience.
  • FIG. 27 is a structural diagram of a network side node to which the embodiment of the present disclosure is applied, which can implement the details of the method for restoring data transmission in the third to fourth embodiments, and achieve the same effect.
  • the network side node 2700 includes a processor 2701, a transceiver 2702, a memory 2703, a user interface 2704, and a bus interface, where:
  • the processor 2701 is configured to read a program in the memory 2703 and perform the following process:
  • the transceiver 2702 transmits, to the terminal, trigger signaling indicating at least one beam set;
  • the target beam in the at least one beam set recovers data transmission of the service; wherein the target beam is a target beam determined by the terminal or the network side node in the at least one beam set.
  • the transceiver 2702 is configured to receive and transmit data under the control of the processor 2701.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 2701 and various circuits of memory represented by memory 2703.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • Transceiver 2702 can be a plurality of components, including a transmitter and a receiver, providing means for communicating with various other devices on a transmission medium.
  • the user interface 2704 may also be an interface capable of externally connecting the required devices, including but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 2701 is responsible for managing the bus architecture and general processing, and the memory 2703 can store data used by the processor 2701 when performing operations.
  • the processor 2701 is further configured to: transmit a reference signal by using a beam in the at least one beam set; where the target beam is a target beam that is determined by the network side node to measure the reference signal or The target beam is a target beam that is received by the terminal by the network side node.
  • the processor 2701 is further configured to: send a reference signal to the terminal on a downlink beam in the at least one beam set; and receive feedback information that is sent by the terminal to indicate the target beam, where
  • the target beam is a downlink beam determined by the terminal according to a measurement result of measuring a reference signal transmitted by the network side node.
  • the processor 2701 is further configured to: receive a reference signal sent by the terminal on an uplink beam in the at least one beam set; perform measurement on a reference signal sent by the terminal, and obtain a measurement result; As a result of the measurement, the target beam is determined in an uplink beam of the at least one beam set; and feedback information indicating the target beam is sent to the terminal.
  • the processor 2701 is further configured to: determine, according to the measurement result, an uplink beam with an optimal transmission quality as the target beam in an uplink beam of the at least one beam set; or if the network side node is configured according to The measurement result is found to be transmitted in the at least one beam set When the uplink beam whose quality is higher than the first preset threshold is used, the uplink beam whose transmission quality is higher than the preset threshold is determined as the target beam.
  • the transmission quality includes at least one of a received power, a received quality, and a signal to noise ratio.
  • the triggering signaling includes the sending pattern information of the reference signal, or the triggering signaling is used to indicate the sending pattern information of the reference signal pre-agreed by the terminal and the network side node; wherein the sending pattern is The information is used to indicate the at least one beam set, and an order indicating that the reference signal is transmitted between the terminal and the network side node within the at least one beam set.
  • the order of sending the reference signals includes: preferentially transmitting an order of the high frequency beams in the at least one beam set.
  • the at least one beam set includes a pre-maintained original beam set including the high-frequency beam
  • the order of sending the reference signal includes: in the original beam set,
  • the high frequency beam is a transmission order in which the high frequency beam is centered in a spatial orientation from near to far; or in the original beam set, the transmission order in which the high frequency beam is centered according to the spatial azimuth; or in the original beam Within the set, the transmission order of the spatial orientation from far to near is centered on the high frequency beam.
  • the at least one beam set includes a pre-maintained original beam set including the high frequency beam, and at least one target beam set
  • the sequence of sending the reference signal includes: Determining a beam mix transmission order within the original beam set and the at least one target beam set; or preferentially transmitting an order of beams within the target beam set if only one target beam set is included; or if multiple target beam sets are included And transmitting, in priority, the beams in the plurality of target beam sets, and the order in which the plurality of target beam sets are alternately transmitted in a set; or if the plurality of target beam sets are included, preferentially transmitting the multiple target beams A beam within the set, and the order in which the plurality of target beam sets are transmitted in a collective order.
  • the processor 2701 is further configured to: determine that the communication link of the high frequency beam for performing service transmission with the terminal is abnormal.
  • the communication link is abnormal, including: the network side node does not receive a positive response feedback or a negative response feedback sent by the terminal at a predetermined location; or the network side node measures the communication The receiving quality of the link is lower than the second preset threshold; or the network side The node measures that the received power of the communication link is lower than a third preset threshold; or the network side node measures that the received signal to noise ratio of the communication link is lower than a fourth preset threshold; or The rate of change of the measured value of the communication link measured by the network side node reaches a fifth preset threshold.
  • the processor 2701 is further configured to: start a counter of a preset counting duration; and when the counter count reaches the preset counting duration, send trigger signaling indicating the at least one beam set to the terminal.
  • the processor 2701 is further configured to: when the communication link of the high frequency beam for performing service transmission between the network side node and the terminal is abnormal, the network side node switches to a wide beam, a low frequency beam, or Multiple narrow beams, and using the wide beam, low frequency beam or multiple narrow beams to continue data transmission of the service with the terminal; or high service transmission between the network side node and the terminal When the communication link of the frequency beam is abnormal, the service is suspended;
  • the wide beam is pre-negotiated by the terminal with the network side node or notified by the network side node, and the lobe is wider than a lobe of the high frequency beam and covers a beam of the terminal;
  • the low frequency beam is pre-negotiated by the terminal with the network side node or notified by the network side node, and the frequency is lower than the frequency of the high frequency beam and covers the beam of the terminal;
  • the narrow beam is pre-negotiated by the terminal with the network side node or notified by the network side node, and a difference between a lobe and a lobe of the high frequency beam is within a preset range and covers the The beam of the terminal.
  • the processor 2701 is further configured to switch to a wide beam, a low frequency beam, or multiple narrow beams when the communication link of the high frequency beam for performing service transmission between the network side node and the terminal is abnormal. And using the wide beam, the low frequency beam or the plurality of narrow beams and the terminal to continue data transmission of the service in a preset low scheduling coding scheme or a preset small data packet manner.
  • the processor 2701 is further configured to: receive a recovery mechanism notification message that is sent by the terminal by using a wide beam or a low frequency beam or multiple narrow beams; wherein the wide beam is a wave with a lobe than the high frequency beam a beam having a wide width, the low frequency beam being a beam having a frequency lower than a frequency of the high frequency beam, wherein the narrow beam is a difference between a lobe and a lobe of the high frequency beam within a preset range Beam.
  • the processor 2701 is further configured to: send the trigger signaling indicating the at least one beam set to the terminal by using the physical layer downlink control information in the wide beam or the low frequency beam or the multiple narrow beams;
  • the wide beam is pre-negotiated by the terminal with the network side node or by the network Notified by the network side node, and the lobe is wider than the lobe of the high frequency beam and covers the beam of the terminal;
  • the low frequency beam is pre-negotiated by the terminal with the network side node or notified by the network side node, and the frequency is lower than the frequency of the high frequency beam and covers the beam of the terminal;
  • the narrow beam is pre-negotiated by the terminal with the network side node or notified by the network side node, and a difference between a lobe and a lobe of the high frequency beam is within a preset range and covers the The beam of the terminal.
  • the processor 2701 is further configured to: after the network side node and the terminal recover the data transmission of the service by using the target beam, and after the data transmission, search with the terminal through a beam training process. Switching a beam; the network side node switches to the switching beam, and uses the switching beam to perform data transmission of the service with the terminal.
  • the network side node In the network side node provided by the embodiment of the present disclosure, if the communication link of the high frequency beam for performing service transmission between the network side node and the terminal is abnormal, the network side node sends a trigger indicating the at least one beam set to the terminal. Signaling; the network side node recovers data transmission of the service through a target beam in the at least one beam set. Therefore, when the communication link is abnormal, the network side node is not required to perform the RRC re-establishment process initiated by the terminal, and the data transmission of the target beam recovery service can be directly used to reduce the delay between the abnormality of the communication link and the recovery of the data transmission. To enhance the user experience.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or one These features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present disclosure.
  • each functional unit in each embodiment of the present disclosure may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product. Based on such an understanding, a portion of the technical solution of the present disclosure that contributes in essence or to the prior art or a portion of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present disclosure.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a mobile hard disk, a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开文本实施例提供一种恢复数据传输的方法、终端和网络侧节点,该方法可包括:若终端与网络侧节点之间进行业务传输的高频波束的通信链路异常,所述终端接收所述网络侧节点发送的指示至少一个波束集合的触发信令;所述终端通过所述至少一个波束集合中的目标波束恢复所述业务的数据传输;其中,所述目标波束为所述终端或者所述网络侧节点在所述至少一个波束集合中确定的目标波束。

Description

一种恢复数据传输的方法、终端和网络侧节点
相关申请的交叉参考
本申请主张在2016年11月24日在中国提交的中国专利申请号No.201611052077.9的优先权,其全部内容通过引用包含于此。
技术领域
本公开文本涉及通信技术领域,尤其涉及一种恢复数据传输的方法、终端和网络侧节点。
背景技术
由于高频段具有丰富的空闲频率资源,可以为数据传输提供更大的吞吐量,目前第三代合作伙伴计划(3GPP,3rd Generation Partnership Project)已经完成了高频信道建模工作。其中,与低频段相比高频信号的波长短,能够在同样大小的面板上布置更多的天线阵元,利用波束赋形技术形成指向性更强,且波瓣更窄的波束。因此,将大规模天线和高频通信相结合也是未来的趋势之一。然而,由于大规模天线的高频波束很窄,所以高频波束的通信链路会很容易出现异常情况,例如,终端被物体阻挡或者终端旋转等情况下,高频波束的通信链路都会比较容易断掉、接收质量变差或者接收功率变差等异常。然而,目前通信系统中当判断高频波束的通信链路异常后,需要发起无线资源控制(RRC,Radio Resource Control)重建,再进行波束训练,以找到最优波束,从而使用最优波束恢复数据传输。可见,目前通信链路出现异常后到恢复数据传输之间存在较长时延。
发明内容
(一)要解决的技术问题
本公开文本实施例提供一种恢复数据传输的方法、终端和网络侧节点,以解决通信链路出现异常后到恢复数据传输之间存在较长时延。
(二)技术方案
第一方面,本公开文本实施例提供一种恢复数据传输的方法,包括:
若终端与网络侧节点之间进行业务传输的高频波束的通信链路异常,所述终端接收所述网络侧节点发送的指示至少一个波束集合的触发信令;以及
所述终端通过所述至少一个波束集合中的目标波束恢复所述业务的数据传输;
其中,所述目标波束为所述终端或者所述网络侧节点在所述至少一个波束集合中确定的目标波束。
第二方面,本公开文本实施例提供一种恢复数据传输的方法,包括:
若网络侧节点与终端之间进行业务传输的高频波束的通信链路异常,所述网络侧节点向所述终端发送指示至少一个波束集合的触发信令;以及
所述网络侧节点通过所述至少一个波束集合中的目标波束恢复所述业务的数据传输;
其中,所述目标波束为所述终端或者所述网络侧节点在所述至少一个波束集合中确定的目标波束。
第三方面,本公开文本实施例提供一种终端,包括:
触发信令接收模块,用于若所述终端与网络侧节点之间进行业务传输的高频波束的通信链路异常,接收所述网络侧节点发送的指示至少一个波束集合的触发信令;以及
第一数据传输恢复模块,用于通过所述至少一个波束集合中的目标波束恢复所述业务的数据传输;
其中,所述目标波束为所述终端或者所述网络侧节点在所述至少一个波束集合中确定的目标波束。
第四方面,本公开文本实施例提供一种网络侧节点,包括:
触发信令发送模块,用于若所述网络侧节点与终端之间进行业务传输的高频波束的通信链路异常,向所述终端发送指示至少一个波束集合的触发信令;以及
第二数据传输恢复模块,用于通过所述至少一个波束集合中的目标波束恢复所述业务的数据传输;
其中,所述目标波束为所述终端或者所述网络侧节点在所述至少一个波 束集合中确定的目标波束。
第五方面,本公开文本实施例提供一种终端,包括:处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如上所述的恢复数据传输的方法中的步骤。
第六方面,本公开文本实施例提供一种网络侧节点,包括:处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如上所述的恢复数据传输的方法中的步骤。
第七方面,本公开文本实施例提供一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如上所述的由终端执行的恢复数据传输的方法中的步骤。
第八方面,本公开文本实施例提供一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如上所述的由网络侧节点执行的恢复数据传输的方法中的步骤。
(三)有益效果
本公开文本的上述技术方案的有益效果如下:
这样,本公开文本实施例中,若终端与网络侧节点之间进行业务传输的高频波束的通信链路异常,所述终端接收所述网络侧节点发送的指示至少一个波束集合的触发信令;所述终端通过所述至少一个波束集合中的目标波束恢复所述业务的数据传输;其中,所述目标波束为所述终端或者所述网络侧节点在所述至少一个波束集合中确定的目标波束。从而在通信链路异常时,不需要发起RRC重建,直接可以使用上述目标波束恢复业务的数据传输,以降低通信链路出现异常后到恢复数据传输之间时延,以及还可以提升用户体验。
附图说明
为了更清楚地说明本公开文本实施例或现有技术中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开文本的一些实施例,对于本领域普通技术人员来讲,在 不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本公开文本实施例可应用的网络结构图;
图2是本公开文本第一实施例提供的恢复数据传输的方法的流程图;
图3是本公开文本第二实施例提供的恢复数据传输的方法的流程图;
图4是本公开文本第二实施例提供的终端与网络侧节点之间的波束示意图;
图5是本公开文本第二实施例提供的恢复数据传输的方法的信令图;
图6是本公开文本第三实施例提供的恢复数据传输的方法的流程图;
图7是本公开文本第四实施例提供的恢复数据传输的方法的流程图;
图8是本公开文本第五实施例提供的终端的结构图之一;
图9是本公开文本第五实施例提供的终端的结构图之二;
图10是本公开文本第五实施例提供的终端的第一参考信号传输模块的结构图之一;
图11是本公开文本第五实施例提供的终端的第一参考信号传输模块的结构图之二;
图12是本公开文本第五实施例提供的终端的结构图之三;
图13是本公开文本第五实施例提供的终端的结构图之四;
图14A是本公开文本第五实施例提供的终端的结构图之五;
图14B是本公开文本第五实施例提供的终端的结构图之六;
图15是本公开文本第五实施例提供的终端的结构图之七;
图16是本公开文本第六实施例提供的网络侧节点的结构图之一;
图17是本公开文本第六实施例提供的网络侧节点的结构图之二;
图18是本公开文本第六实施例提供的网络侧节点的第二参考信号传输模块的结构图之一;
图19是本公开文本第六实施例提供的网络侧节点的第二参考信号传输模块的结构图之二;
图20是本公开文本第六实施例提供的网络侧节点的结构图之三;
图21是本公开文本第六实施例提供的网络侧节点的结构图之四;
图22A是本公开文本第六实施例提供的网络侧节点的结构图之五;
图22B是本公开文本第六实施例提供的网络侧节点的结构图之六;
图23是本公开文本第六实施例提供的网络侧节点的结构图之七;
图24是本公开文本第六实施例提供的网络侧节点的结构图之八;
图25是本公开文本第七实施例提供的终端的结构图;
图26是本公开文本第八实施例提供的终端的结构图;以及
图27是本公开文本第九施例提供的网络侧节点的结构图。
具体实施方式
下面结合附图和实施例,对本公开文本的具体实施方式做进一步描述。以下实施例仅用于说明本公开文本,但不用来限制本公开文本的范围。
为使本公开文本实施例的目的、技术方案和优点更加清楚,下面将结合本公开文本实施例的附图,对本公开文本实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开文本的一部分实施例,而不是全部的实施例。基于所描述的本公开文本的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开文本保护的范围。
参见图1,图1为本公开文本实施例可应用的网络结构图。如图1所示,包括终端11和网络侧节点12,其中,终端可以是用户终端(UE,User Equipment),例如,可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(personal digital assistant,简称PDA)、移动上网装置(Mobile Internet Device,MID)或可穿戴式设备(Wearable Device)等终端侧设备。需要说明的是,在本公开文本实施例中并不限定终端11的具体类型。终端11可以与网络侧节点12建立通信,其中,附图中的网络可以表示终端11与网络侧节点12无线建立通信,网络侧节点12可以是传输接收点(TRP,Transmission Reception Point),或者可以是基站,基站可以是宏站,如LTE eNB、5G NR NB等。网络侧节点12或者可以是接入点(AP,access point)。需要说明的是,在本公开文本实施例中并不限定网络侧节点12的具体类型。
第一实施例
参见图2,图2是本公开文本实施例提供的恢复数据传输的方法的流程 图,如图2所示,包括以下步骤:
步骤201、若终端与网络侧节点之间进行业务传输的高频波束的通信链路异常,所述终端接收所述网络侧节点发送的指示至少一个波束集合的触发信令。
本公开文本实施例中,上述高频波束可以是高于某一频率阈值的波束,例如,可以是频率6GHz至100GHz之间的波束。当然,还可以是其他频率的波束,例如,1GHz或者3GHz或者5GHz等等。需要说明的是,本公开文本实施例中,对高频波束的具体频率不作限定,高频波束应该理解为本领域技术人员所理解的高频波束。另外,上述高频波束还可以是波瓣窄于某波瓣阈值的波束。同样的,对于该波瓣阈值本公开文本实施例也不作限定。
上述终端与网络侧节点之间进行业务传输的高频波束可以是,终端与网络侧节点当前传输业务的高频波束,例如,传输5G网络业务的波束。而上述高频波束的通信链路异常,可以是终端与网络侧节点在该高频波束上建立的通信链路出现影响业务传输的异常,例如,通信链路断掉、传输质量降低、信号强度降低等影响业务传输的异常。
在出现通信链路异常的情况下,终端就会接收到网络侧节点发送的上述触发信令,该触发信令指示至少一个波束集合。其中,每个波束集合中至少包括一个波束,这些波束集合内包括的波束可以是高频波束,也可以是低频波束,还可以是即包括高频波束,也包括低频波束。
另外,上述通信链路异常可以是终端发现的,也可以是由网络侧节点发现的,对此本公开文本实施例不作限定。
步骤202、终端通过所述至少一个波束集合中的目标波束恢复所述业务的数据传输。
其中,所述目标波束为所述终端或者所述网络侧节点在所述至少一个波束集合中确定的目标波束。
在终端接收到上述触发信令后,就可以确定上述至少一个波束集合,以及集合内包括的波束,从而可以在这些波束内确定上述目标波束。也可以是网络侧节点在上述至少一个波束集合内确定上述目标波束后通知终端,从而终端在上述至少一个波束集合内找到上述目标波束。其中,上述目标波束可 以是一个或者多个高频波束(也可以称作窄波束),或者上述目标波束也可以是一个或者多个低频波束。
当终端确认上述目标波束后,就可以通过上述目标波束恢复上述业务的数据传输。其中,这里恢复可以是终端与网络侧节点之间通过目标波束恢复上述业务的数据传输。另外,恢复上述业务的数据传输可以是以出现上述通信链路异常时为起点进行上述业务的数据传输。例如,终端与网络侧节点之间是在传输第T个数据包时断链的,即第T个数据传输失败,则可以从第T个数据包开始恢复数据传输。或者上述恢复业务的数据传输可以是以出现上述通信链路异常时的前n个数据包为起点进行上述业务的数据传输,例如,终端与网络侧节点之间是在传输第T个数据包时断链的,即第T个数据传输失败,则可以从第T-n个数据包开始恢复数据传输。
通过上述步骤可以实现在终端与网络侧节点之间进行业务传输的高频波束的通信链路异常后,到恢复该业务的数据传输之间,不需要发起RRC重建,从而可以降低数据传输时延,以提升用户体验。
本公开文本实施例提供的恢复数据传输的方法中,若终端与网络侧节点之间进行业务传输的高频波束的通信链路异常,所述终端接收所述网络侧节点发送的指示至少一个波束集合的触发信令;所述终端通过所述至少一个波束集合中的目标波束恢复所述业务的数据传输。其中,所述目标波束为所述终端或者所述网络侧节点在所述至少一个波束集合中确定的目标波束。从而在通信链路异常时,不需要发起RRC重建,直接可以使用上述目标波束恢复业务的数据传输,以降低通信链路出现异常后到恢复数据传输之间时延,以及还可以提升用户体验。
第二实施例
参见图3,图3是本公开文本实施例提供的恢复数据传输的方法的流程图,如图3所示,包括以下步骤:
步骤301、若终端与网络侧节点之间进行业务传输的高频波束的通信链路异常,所述终端接收所述网络侧节点发送的指示至少一个波束集合的触发信令。
上述触发信令可以是trigger信令,另外,该触发信令可以是网络侧节点 通过物理层下行控制信息(DCI,Downlink Control Information)发送的。另外,上述触发信令可以理解为触发启动波束快速恢复机制的信令,即本公开文本实施例中可以基于该信令启动波束快速恢复机制。
可选的,所述终端接收所述网络侧节点发送的指示至少一个波束集合的触发信令的步骤,包括:所述终端在宽波束或低频波束或多个窄波束接收所述网络侧节点通过物理层下行控制信息发送的指示至少一个波束集合的触发信令;其中,所述宽波束为所述终端与所述网络侧节点预先协商或者由所述网络侧节点通知的,且波瓣比所述高频波束的波瓣要宽并覆盖所述终端的波束;所述低频波束为所述终端与所述网络侧节点预先协商或者由所述网络侧节点通知的,且频率比所述高频波束的频率要低并覆盖所述终端的波束;所述窄波束为所述终端与所述网络侧节点预先协商或者由所述网络侧节点通知的,且波瓣与所述高频波束的波瓣的差值在预设范围内并覆盖所述终端的波束。
通过上述步骤可以实现通过宽波束或低频波束或多个窄波束传输上述触发信令。其中,由于宽波束为终端与网络侧节点预先协商或者由网络侧节点通知的,这样可以保证终端通过在该带波束上进行触发信令的接收,以避免终端不知道在哪个资源位置接收触发信令,而导致的传输资源浪费,以达到节约传输资源的目的。另外,由于宽波束的波瓣比上述高频波束的波瓣要宽并覆盖所述终端的波束,这样在该宽波束上传输触发信令就不容易传输失败,从而可以提高触发信令接收的成功率。
其中,由于低频波束为所述终端与所述网络侧节点预先协商或者由所述网络侧节点通知的,这样可以保证终端通过在该带波束上进行触发信令的接收,以避免终端不知道在哪个资源位置接收触发信令,而导致的传输资源浪费,以达到节约传输资源的目的。另外,由于频率比所述高频波束的频率要低并覆盖所述终端的波束,而低频信号具有波长较长、绕射能力强的特点,低频的波束传输数据的成功率高于高频波束,从而可以提高触发信令接收的成功率。
其中,由于窄波束为所述终端与所述网络侧节点预先协商或者由所述网络侧节点通知的,这样可以保证终端通过在该带波束上进行触发信令的接收, 以避免终端不知道在哪个资源位置接收触发信令,而导致的传输资源浪费,以达到节约传输资源的目的。另外,由于使用多个窄波束传输触发信令,从而可以提高触发信令接收的成功率。其中,上述通过多个窄波束发送触发信令可以是多个窄波束同时发送触发信令,且可以是同时发送相同的触发信令,以提高终端接收触发信令的成功率。
可选的,上述触发信令包括参考信号的发送图样信息(pattern),或者上述触发信令用于指示所述终端与所述网络侧节点预先约定的参考信号的发送图样信息;其中,所述发送图样信息用于指示所述至少一个波束集合,以及指示所述终端与所述网络侧节点之间在所述至少一个波束集合内发送参考信号的次序。
本公开文本实施例中参考信号可以称作为波束恢复参考信号(BRRS,beam recovery reference single)。例如,可以是探测参考信号(SRS,Sounding Reference Signal)或者可以是解调参考信号(DMRS,De Modulation Reference Signal),当然,也可以是其他新的参考信号(RS,Reference Signal)。对于使用SRS或DMRS作为BRRS,则用于波束恢复的资源位置可以与现有协议中不同。例如,使用第1个符号中某几个子载波。
该实施方式中,可以实现上述发送图样信息可以是网络侧节点通过上述触发信令发送给终端的,这样可以实现提高发送图样信息的灵活,例如,网络侧节点可以根据网络资源的状况确定上述发送图样信息,以适应当前网络状况。而触发信令指示网络侧节点与终端预先约定好的发送图样信息时,可以节约信令的开销。因此,该情况下,触发信令只需要包括一个指示就行,而不需要包括发送图样信息。
另外,由于上述发送图样信息指示了终端与网络侧节点传输参考信号的次序,从而可以保证终端与网络侧节点可以有效接收到对方发送的参考信号。
可选的,所述发送参考信号的次序,包括:优先发送所述至少一个波束集合内的高频波束的次序。
通过优先发送所述至少一个波束集合内的高频波束的次序,这样可以实现可以优先选择出适合的高频波束作为目标波束,从而选择出的目标波束与通信链路异常的高频波束更加相近,从而恢复业务的数据传输更加满足终端 的需求。
可选的,所述至少一个波束集合包括所述终端预先维护的包括所述高频波束在内的原波束集合,则所述发送参考信号的次序,包括:在所述原波束集合内,以所述高频波束为中心按照空间方位由近到远的发送次序;或者以所述高频波束为中心按照空间方位由远到近的发送次序;或者在所述原波束集合内,以所述高频波束为中心按照空间方位远近交替的发送次序。
其中,上述终端预先维护的包括所述高频波束在内的原波束集合可以是终端与网络侧节点共同维护的波束集合,该波束集合可以是上行或者下行波束集合。且该集合中可以是通过波束训练得到的若干个波束ID和接收功率强度。该集合中的若干个波束包括了波束训练中寻找到的最优波束、次最优波束、依次类推的几个波束。
例如,如图4所示,网络侧节点和终端原本使用黑色的波束进行数据传输。当该波束被阻挡时,网络侧节点进行下行波束的恢复,网络侧节点触发的参考信号的发送图样信息pattern可以按照在所述原波束集合内,依次以原波束为中心,由近及远执行参考信号的发送,例如发射顺序为1-2-3-4号波束。从而可以实现快速对与原波束相近的波束进行测量,而在实际就往往与原波束相近的波束更适合作为恢复业务的波束,即上述目标波束。这样优先对与原波束相近的波束进行测量,从而可以快速选择出目标波束,以避免过多的参考信号测量操作,节约终端能耗。同理,还可以实现以高频波束为中心按照空间方位由远到近的发送次序。例如,在图4中,发射顺序为4-3-2-1号波束。
另外,还可以实现在所述原波束集合内,以所述高频波束为中心按照空间方位远近交替的发送次序。同样有利用终端快速选择出目标波束,以避免过多的参考信号测量操作,节约终端能耗。例如,如果终端旋转也会导致原波束中断,那么原波束近处的窄波束很可能也偏离了最佳传输方向,因此可以在波束集合中,远近交替的发送参考信号。例如,发射顺序为1-4-2-3号波束。
可选的,所述至少一个波束集合包括所述终端预先维护的包括所述高频波束在内的原波束集合,以及至少一个目标波束集合,则所述发送参考信号 的次序,包括:在所述原波束集合和所述至少一个目标波束集合内的波束混合发送次序;或者若只包括一个目标波束集合,则优先发送所述目标波束集合内的波束的次序;或者若包括多个目标波束集合,则优先发送所述多个目标波束集合内的波束,且所述多个目标波束集合之间按集合交替发送的次序;或者若包括多个目标波束集合,则优先发送所述多个目标波束集合内的波束,且所述多个目标波束集合之间按集合顺序发送的次序。
该实施方式中,可以实现优先发送的目标波束集合,即原波束集合之外的其他波束集合。设之前所用原波束集合编号为1,上述至少一个目标波束集合包括集合2和集合3,则可以优先发射波束集合2的波束,再发射波束集合3的波束,或者在波束集合2和波束集合3中的波束交替发射,即波束集合2的第一个波束-波束集合3的第一个波束-波束集合2的第2个波束-波束集合3的第2个波束,依次类推。由于优先发送目标波束集合,这样可以实现优先测量原波束集合之外的其他波束,从而可以实现在原波束集合内的波束均不适合做作目标波束的场景下快速选择出目标波束,以节约终端的能耗。
步骤302、所述终端通过所述至少一个波束集合内的波束传输参考信号。
该步骤302中,传输参考信号可以理解为,终端与网络侧节点之间传输参考信号。对于下行波束可以是网络侧节点发送参考信号给终端,由终端根据对参考信号的测量选择出目标波束。而针对上行波束则是终端发送参考信号给网络侧节点,由网络侧节点根据对参考信号的测量选择出目标波束。
可选的,终端通过所述至少一个波束集合内的波束传输参考信号的步骤,包括:所述终端在所述至少一个波束集合内的上行波束上向所述网络侧节点发送参考信号;所述终端接收所述网络侧节点发送的指示所述目标波束的反馈信息,其中,所述目标波束为所述网络侧节点根据对所述终端发射的参考信号进行测量的测量结果确定的上行波束。
其中,终端在所述至少一个波束集合内的上行波束上向所述网络侧节点发送参考信号的次序可以参考前面实施方式中描述的发送图样信息中指示的发送次序。当然,发送次序也可以终端与网络侧节点预先约定的,对此不作限定。
通过上述步骤可以实现由终端在上行波束上发送参考信号,网络侧节点对发送的参考信号进行测量,以根据测量结果确定出上述目标波束。从而实现确定出的目标波束适合恢复上述业务的数据传输,以提高该业务的数据传输效率。例如,如图5所示,网络侧节点在下行符号发送触发信令(trigger),终端接收到trigger,以及参考信号的发送图样信息后,在随后的上行符号根据发送图样信息使用高频波束(也可以称作窄波束或者高频窄波束)发送参考信号,网络侧节点检测后确定最优波束,并在随后的下行符号通知终端。然后使用临时最优波束,恢复业务传输。
可选的,所述终端通过所述至少一个波束集合内的波束传输参考信号的步骤,包括:所述终端接收所述网络侧节点在所述至少一个波束集合内的下行波束上发送的参考信号;所述终端对所述网络侧节点发送的参考信号进行测量,获取测量结果;所述终端根据所述测量结果,在所述至少一个波束集合的下行波束中确定所述目标波束;所述终端向所述网络侧节点发送指示所述目标波束的反馈信息。
通过上述步骤可以实现由网络侧节点在下行波束上发送参考信号,终端对发送的参考信号进行测量,以根据测量结果确定出上述目标波束。从而实现确定出的目标波束适合恢复上述业务的数据传输,以提高该业务的数据传输效率。
可选的,所述终端根据所述测量结果在所述至少一个波束集合的下行波束中确定所述目标波束的步骤,包括:所述终端根据所述测量结果,在所述至少一个波束集合的下行波束中确定传输质量最优的下行波束作为所述目标波束;或者若所述终端根据所述测量结果查找到在所述至少一个波束集合内存在传输质量高于第一预设门限的下行波束时,将所述传输质量高于预设门限的下行波束确定为所述目标波束。
通过上述步骤可以提高确定传输质量最优的下行波束作为所述目标波束,以提高业务的数据传输效率。另外,还可以实现只要查找到传输质量高于第一预设门限的下行波束时,就可以将该下行波束确定为所述目标波束,从而可以实现快速确定出目标波束,以及还可以避免过多的参考信号发送和测量,因为在确定出上述目标波束后,网络侧节点就可以停止发送参考信号, 以达到节约网络侧节点和终端的能耗的效果。
可选的,上述传输质量包括接收功率、接收质量和信噪比中的至少一项。
该实施方式中,可以实现选择接收功率、接收质量或者信噪比高于第一预设门限的波束作为目标波束,从而在使用目标波束恢复业务的数据传输时,保证数据传输的可靠性、传输效率等。
需要说明的是,第二实施例中,步骤302仅是可选的。即第二实施例中,步骤302不执行也是可以的。也就是说,所述目标波束为所述终端或者所述网络侧节点在所述至少一个波束集合中确定的目标波束。例如,目标波束为网络侧节点与终端预先在上述至少一个波束集合中约定的波束,或者目标波束可以为网络侧节点在上述至少一个波束集合中指示的波束等等。
步骤303、所述终端与所述网络侧节点通过所述至少一个波束集合中的目标波束恢复所述业务的数据传输。
其中,所述目标波束为所述终端对所述参考信号进行测量而确定的目标波束,或者所述目标波束为所述终端接收所述网络侧节点通知的目标波束
其中,上述确定出的目标波束可以是传输质量满足预设门限的波束,或者上述目标波束可以是上述至少一个波束集合内传输质量最好的波束,以提高恢复后数据传输的传输性能和质量。
可选的,所述终端接收所述网络侧节点发送的指示至少一个波束集合的触发信令的步骤之前,所述方法还包括:所述终端确定与所述网络侧节点之间进行业务传输的高频波束的通信链路异常;所述终端向所述网络侧节点发送恢复机制通知消息。
通过上述步骤可以实现在终端确定上述高频波束的通信链路异常时,向网络侧节点发送恢复机制通知消息。这样可以及时通知网络侧节点启动波束恢复机制,以降低数据传输的时延。其中,上述确定与所述网络侧节点之间进行业务传输的高频波束的通信链路异常可以是通过物理层测量确定的。
可选的,上述通信链路异常,包括:所述终端在预定的位置没有收到来自所述网络侧节点发送的肯定应答反馈(ACK)或者否定应答反馈(NACK);或者所述终端测量到所述通信链路的接收质量低于第二预设门限值;或者所述终端测量到所述通信链路的接收功率低于第三预设门限值;或者所述终端 测量到所述通信链路的接收信噪比低于第四预设门限值;或者所述终端测量的所述通信链路的测量值的变化率达到第五预设门限值。
其中,上述没有收到来自所述网络侧节点发送的肯定应答反馈(ACK)或者否定应答反馈(NACK)可以理解为,在与上述高频波束对应的预定的位置即没有接收到ACK也没有收到NACK,从而确定上述高频波束的通信链路断掉。上述通信链路的接收质量低于第二预设门限值可以是物理下行控制信道(PDCCH,Physical Downlink Control Channel)、或者物理下行共享信道(PDSCH,Physical Downlink Shared Channel)的接收质量低于某个第二预设门限值。而上述变化率可以是最近两次测量值的比值、或者一段时间内的测量值变化速度等。另外,本公开文本实施例中,各预设门限均是可配置,或者可以预先约定,或者由网络侧通知。
该实施方式中,可以实现在终端检测到上述任一情况时,就可以确定与所述网络侧节点之间进行业务传输的高频波束的通信链路异常,从而发送上述恢复通知消息。
可选的,上述终端向所述网络侧节点发送恢复机制通知消息的步骤,包括:所述终端通过宽波束或低频波束或多个窄波束向所述网络侧节点发送恢复机制通知消息;其中,所述宽波束为波瓣比所述高频波束的波瓣要宽的波束,所述低频波束为频率比所述高频波束的频率要低的波束,所述窄波束为波瓣与所述高频波束的波瓣的差值在预设范围内的波束。
该实施方式中,可以通过宽波束或低频波束或多个窄波束发送上述恢复机制通知消息,且这里的宽波束或低频波束或多个窄波束可以参见上面实施方式中描述的发送触发信令的宽波束或低频波束或多个窄波束,此处不作赘述,且同样可以达到提高恢复机制通知消息的成功率的有益效果。
可选的,上述所述终端确定与所述网络侧节点之间进行业务传输的高频波束的通信链路异常的步骤之后,所述终端向所述网络侧节点发送恢复机制通知消息的步骤之前,所述方法还包括:启动预设计数时长的计数器;则所述终端向所述网络侧节点发送恢复机制通知消息的步骤,包括:在所述计数器计数到达所述预设计数时长时,终端向所述网络侧节点发送恢复机制通知消息。
该实施方式中,上述预设计数时长可以是终端预先配置的,也可以是网络侧节点通知的。另外,上述启动计数器可以是在所述终端在预定的位置没有收到来自所述网络侧节点发送的肯定应答反馈(ACK)或者否定应答反馈(NACK)时启动的;或者在所述终端测量到所述通信链路的接收质量低于第二预设门限值时启动的;或者在所述终端测量到所述通信链路的接收功率低于第三预设门限值时启动的;或者在所述终端测量到所述通信链路的接收信噪比低于第四预设门限值时启动的;或者在所述终端测量的所述通信链路的测量值的变化率达到第五预设门限值时启动的。
可选的,所述终端确定与所述网络侧节点之间进行业务传输的高频波束的通信链路异常的步骤之后,所述终端接收所述网络侧节点发送的指示至少一个波束集合的触发信令的步骤之前,所述方法还包括:在所述终端与所述网络侧节点之间进行业务传输的高频波束的通信链路异常时,所述终端切换至宽波束、低频波束或者多个窄波束,并使用所述宽波束、低频波束或者多个窄波束与所述网络侧节点继续进行所述业务的数据传输;或者在所述终端与所述网络侧节点之间进行业务传输的高频波束的通信链路异常时,所述终端将所述业务挂起;其中,所述宽波束为所述终端与所述网络侧节点预先协商或者由所述网络侧节点通知的,且波瓣比所述高频波束的波瓣要宽并覆盖所述终端的波束;所述低频波束为所述终端与所述网络侧节点预先协商或者由所述网络侧节点通知的,且频率比所述高频波束的频率要低并覆盖所述终端的波束;所述窄波束为所述终端与所述网络侧节点预先协商或者由所述网络侧节点通知的,且波瓣与所述高频波束的波瓣的差值在预设范围内并覆盖所述终端的波束。
该实施方式中,可以实现在所述终端与所述网络侧节点之间进行业务传输的高频波束的通信链路异常时,终端切换到上述宽波束、低频波束或者多个窄波束继续进行所述业务的数据传输。
需要说明的是,该实施方式中,可以是在出现通信链路异常时,就可以切换到上述波束继续进行所述业务的数据传输,且在继续进行所述业务的数据传输时,可以进行确定上述目标波束的过程,以实现在确定上述目标波束过程中终端的业务不会被中断。以及还可以实现在确定上述目标波束过程将 业务挂起,等待恢复后再进行数据传输。
其中,上述继续进行所述业务的数据传输可以是以出现上述通信链路异常时为起点继续进行上述业务的数据传输。例如,终端与网络侧节点之间是在传输第T个数据包时断链的,即第T个数据传输失败,则可以从第T个数据包开始继续进行上述业务的数据传输。或者,上述继续进行所述业务的数据传输可以是以出现上述通信链路异常时的前n个数据包为起点进行上述业务的数据传输。例如,终端与网络侧节点之间是在传输第T个数据包时断链的,即第T个数据传输失败,则可以从第T-n个数据包开始继续进行上述业务的数据传输。由于使用上述波束继续进行传输的同时,可以确定上述目标波束,从而在确定上述目标波束后,就可以确定目标波束的时间点恢复上述业务的数据传输。例如,确定上述目标波束时,使用上述宽波束、低频波束或者多个窄波束传输上述业务的数据包为第M个数据包,则可以使用切换到上述目标波束并以第M个或者第M-1个数据包为起点恢复上述业务的数据传输。需要说明的是,本公开文本实施例中,在恢复业务的数据传输时,具体以哪个数据包为起点进行业务的恢复不作限定。例如,可以恢复一些终端已经完成传输的数据包,从而保证业务有更好的连续性。
可选的,所述终端切换至宽波束、低频波束或者多个窄波束,并使用所述宽波束、低频波束或者多个窄波束与所述网络侧节点继续进行所述业务的数据传输的步骤,包括:所述终端切换至宽波束、低频波束或者多个窄波束,并使用所述宽波束、低频波束或者多个窄波束与所述网络侧节点以预设低调度编码方案或者预设小数据包方式继续进行所述业务的数据传输。
该实施方式中,可以实现在切换到上述宽波束、低频波束或者多个窄波束可以以预设低调度编码方案(MCS,Modulation and Coding Scheme)或者预设小数据包(TB size)方式,这样通过MCS和小数据包可以进一步提高数据传输的成功率。
可选的,上述方法还包括:在所述终端与所述网络侧节点通过所述目标波束恢复所述业务的数据传输后并在数据传输时,所述终端与所述网络侧节点通过波束训练过程,寻找切换波束;所述终端切换至所述切换波束,并使用所述切换波束与所述网络侧节点进行所述业务的数据传输。
通过上述步骤可以实现在使用目标波束恢复上述业务的数据传输过程中,终端与网络侧节点通过波束训练,寻找切换波束。其中,切换波束可以理解为终端与网络侧节点之间的最优波束。例如,通过发射波束和接收波束的扫描,搜索到能获得最强接收功率的波束对,当该最强波束对与临时最优波束不同时,网络侧节点和终端将切换至最强波束对,用于数据传输。
该实施方式中,可以实现在使用目标波束传输数据时,进行波束训练,以确定更优的切换波束,以提高数据传输的传输质量。
本公开文本实施例提供的恢复数据传输的方法中,若终端与网络侧节点之间进行业务传输的高频波束的通信链路异常,所述终端接收所述网络侧节点发送的指示至少一个波束集合的触发信令;所述终端通过所述至少一个波束集合内的波束传输参考信号;所述终端通过所述至少一个波束集合中的目标波束恢复所述业务的数据传输;其中,所述目标波束为所述终端对所述参考信号进行测量而确定的目标波束,或者所述目标波束为所述终端接收所述网络侧节点通知的目标波束。从而在通信链路异常时,不需要发起RRC重建,直接可以使用上述目标波束恢复业务的数据传输,以降低通信链路出现异常后到恢复数据传输之间时延,提升用户体验。由于目标波束为所述终端或者所述网络侧节点通过对所述参考信号进行测量而确定的目标波束,从而可以提高恢复后数据传输的传输性能和质量。
第三实施例
参见图6,图6是本公开文本实施例提供的恢复数据传输的方法的流程图,如图6所示,包括以下步骤:
步骤601、若网络侧节点与终端之间进行业务传输的高频波束的通信链路异常,所述网络侧节点向所述终端发送指示至少一个波束集合的触发信令。
其中,关于网络侧节点发送上述触发信令和高频波束的相关说明可以参见第一实施例和第二实施例的相关说明,此处不作赘述。
步骤602、网络侧节点通过所述至少一个波束集合中的目标波束恢复所述业务的数据传输。
其中,所述目标波束为所述终端或者所述网络侧节点在所述至少一个波束集合中确定的目标波束。
其中,关于目标波束和上述恢复业务的数据传输的相关说明可以参见第一实施例和第二实施例的相关说明,此处不作赘述。
本公开文本实施例提供的恢复数据传输的方法中,若网络侧节点与终端之间进行业务传输的高频波束的通信链路异常,所述网络侧节点向所述终端发送指示至少一个波束集合的触发信令;网络侧节点通过所述至少一个波束集合中的目标波束恢复所述业务的数据传输。从而在通信链路异常时,不需要网络侧节点不执行终端发起的RRC重建过程,直接可以使用上述目标波束恢复业务的数据传输,以降低通信链路出现异常后到恢复数据传输之间时延,提升用户体验。
第四实施例
参见图7,图7是本公开文本实施例提供的恢复数据传输的方法的流程图,如图7所示,包括以下步骤:
步骤701、若网络侧节点与终端之间进行业务传输的高频波束的通信链路异常,所述网络侧节点向所述终端发送指示至少一个波束集合的触发信令。
其中,关于网络侧节点发送上述触发信令和高频波束的相关说明可以参见第一实施例和第二实施例的相关说明,此处不作赘述。
可选的,所述网络侧节点向所述终端发送指示至少一个波束集合的触发信令的步骤,包括:所述网络侧节点在宽波束或低频波束或多个窄波束通过物理层下行控制信息向所述终端发送指示至少一个波束集合的触发信令;其中,所述宽波束为所述终端与所述网络侧节点预先协商或者由所述网络侧节点通知的,且波瓣比所述高频波束的波瓣要宽并覆盖所述终端的波束;所述低频波束为所述终端与所述网络侧节点预先协商或者由所述网络侧节点通知的,且频率比所述高频波束的频率要低并覆盖所述终端的波束;所述窄波束为所述终端与所述网络侧节点预先协商或者由所述网络侧节点通知的,且波瓣与所述高频波束的波瓣的差值在预设范围内并覆盖所述终端的波束。
其中,关于宽波束、低频波束和窄波束的相关说明可以参见第二实施例的相关说明,此处不作赘述,且还可以达到相同或相似的有益效果。
可选的,所述触发信令包括参考信号的发送图样信息,或者上述触发信令用于指示所述终端与所述网络侧节点预先约定的参考信号的发送图样信 息;其中,所述发送图样信息用于指示所述至少一个波束集合,以及指示所述终端与所述网络侧节点之间在所述至少一个波束集合内发送参考信号的次序。
其中,关于发送图样信息的相关说明可以参见第二实施例的相关说明,此处不作赘述,且还可以达到相同或相似的有益效果。
可选的,上述发送参考信号的次序,包括:优先发送所述至少一个波束集合内的高频波束的次序。
可选的,所述至少一个波束集合包括所述终端预先维护的包括所述高频波束在内的原波束集合,则所述发送参考信号的次序,包括:在所述原波束集合内,以所述高频波束为中心按照空间方位由近到远的发送次序;或者以所述高频波束为中心按照空间方位由远到近的发送次序;或者在所述原波束集合内,以所述高频波束为中心按照空间方位远近交替的发送次序。
可选的,所述至少一个波束集合包括所述终端预先维护的包括所述高频波束在内的原波束集合,以及至少一个目标波束集合,则所述发送参考信号的次序,包括:在所述原波束集合和所述至少一个目标波束集合内的波束混合发送次序;或者若只包括一个目标波束集合,则优先发送所述目标波束集合内的波束的次序;或者若包括多个目标波束集合,则优先发送所述多个目标波束集合内的波束,且所述多个目标波束集合之间按集合交替发送的次序;或者若包括多个目标波束集合,则优先发送所述多个目标波束集合内的波束,且所述多个目标波束集合之间按集合顺序发送的次序。
需要说明的是,上述介绍的多种参考信号的发送次序可以参见第二实施例的相关说明,此处不作赘述,且可以达到相同或相似的有益效果。
步骤702、网络侧节点通过所述至少一个波束集合内的波束传输参考信号。
可选的,所述网络侧节点通过所述至少一个波束集合内的波束传输参考信号的步骤,包括:所述网络侧节点在所述至少一个波束集合内的下行波束上向所述终端发送参考信号;所述网络侧节点接收所述终端发送的指示所述目标波束的反馈信息,其中,所述目标波束为所述终端根据对所述网络侧节点发射的参考信号进行测量的测量结果确定的下行波束。
其中,关于在下行波束上发送参考信号的相关说明可以参见第二实施例中介绍的终端在下行波束上接收参考参考信号的相关说明,此处不作赘述,且可以达到相同或相似的有益效果。
可选的,上述网络侧节点通过所述至少一个波束集合内的波束传输参考信号的步骤,包括:所述网络侧节点接收所述终端在所述至少一个波束集合内的上行波束上发送的参考信号;所述网络侧节点对所述终端发送的参考信号进行测量,获取测量结果;所述网络侧节点根据所述测量结果,在所述至少一个波束集合的上行波束中确定所述目标波束;所述网络侧节点向所述终端发送指示所述目标波束的反馈信息。
其中,关于在上行波束上接收参考信号,以及对参考信号进行测量并确定上述目标波束的实施方式可以参见第二实施例中介绍的终端对下行波束上接收参考信号,以及对参考信号进行测量并确定上述目标波束的实施方式,此处不作赘述,且可以达到相同或相似的有益效果。
可选的,所述网络侧节点根据所述测量结果,在所述至少一个波束集合的上行波束中确定所述目标波束的步骤,包括:所述网络侧节点根据所述测量结果,在所述至少一个波束集合的上行波束中确定传输质量最优的上行波束作为所述目标波束;或者若所述网络侧节点根据所述测量结果查找到在所述至少一个波束集合内存在传输质量高于第一预设门限的上行波束时,将所述传输质量高于预设门限的上行波束确定为所述目标波束。
其中,关于确定上述目标波束的实施方式可以参见第二实施例中终端确定上述目标波束的实施方式,此处不作赘述,且可以达到相同或相似的有益效果。
可选的,所述传输质量包括接收功率、接收质量和信噪比中的至少一项。
其中,关于传输质量的相关说明可以参见第二实施例中的相关说明,此处不作赘述,且可以达到相同或相似的有益效果。
需要说明的是,第四实施例中,步骤702仅是可选的。即第四实施例中,步骤702不执行也是可以的。也就是说,所述目标波束为所述终端或者所述网络侧节点在所述至少一个波束集合中确定的目标波束。例如,目标波束为网络侧节点与终端预先在上述至少一个波束集合中约定的波束,或者目标波 束可以为网络侧节点在上述至少一个波束集合中指示的波束等等。
步骤703、网络侧节点与所述终端通过所述至少一个波束集合中的目标波束恢复所述业务的数据传输。
其中,所述目标波束为所述网络侧节点对所述参考信号进行测量而确定的目标波束或者所述目标波束为所述网络侧节点接收所述终端通知的目标波束。
可选的,所述网络侧节点向所述终端发送指示至少一个波束集合的触发信令的步骤之前,所述方法还包括:所述网络侧节点确定与所述终端之间进行业务传输的高频波束的通信链路异常。
其中,网络侧节点确定上述通信链路异常的可以参见第二实施例中终端确定上述通信链路异常的实施方式,此处不作赘述,且可以达到相同或相似的有益效果。
可选的,所述通信链路异常,包括:所述网络侧节点在预定的位置没有收到来自所述终端发送的肯定应答反馈或者否定应答反馈;或者所述网络侧节点测量到所述通信链路的接收质量低于第二预设门限值;或者所述网络侧节点测量到所述通信链路的接收功率低于第三预设门限值;或者所述网络侧节点测量到所述通信链路的接收信噪比低于第四预设门限值;或者所述网络侧节点测量的所述通信链路的测量值的变化率达到第五预设门限值。
其中,上述通信链路异常的可以参见第二实施例中通信链路异常的实施方式,此处不作赘述,且可以达到相同或相似的有益效果。
可选的,上述网络侧节点确定与所述终端之间进行业务传输的高频波束的通信链路异常的步骤之后,所述网络侧节点向所述终端发送指示至少一个波束集合的触发信令的步骤之前,所述方法还包括:启动预设计数时长的计数器;则所述网络侧节点向所述终端发送指示至少一个波束集合的触发信令的步骤,包括:在所述计数器计数到达所述预设计数时长时,所述网络侧节点向所述终端发送指示至少一个波束集合的触发信令。
其中,上述预设计数时长可以是网络侧节点与终端预先约定的,也可以是网络侧节点配置的。另外,关于上述计数器的实施方式可以参见第二实施例中的相关说明,此处不作赘述,且可以达到相同或相似的有益效果。
可选的,所述网络侧节点确定与所述终端之间进行业务传输的高频波束的通信链路异常的步骤之后,所述网络侧节点向所述终端发送指示至少一个波束集合的触发信令的步骤之前,所述方法还包括:在所述网络侧节点与所述终端之间进行业务传输的高频波束的通信链路异常时,所述网络侧节点切换至宽波束、低频波束或者多个窄波束,并使用所述宽波束、低频波束或者多个窄波束与所述终端继续进行所述业务的数据传输;或者在所述网络侧节点与所述终端之间进行业务传输的高频波束的通信链路异常时,所述网络侧节点将所述业务挂起;其中,所述宽波束为所述终端与所述网络侧节点预先协商或者由所述网络侧节点通知的,且波瓣比所述高频波束的波瓣要宽并覆盖所述终端的波束;所述低频波束为所述终端与所述网络侧节点预先协商或者由所述网络侧节点通知的,且频率比所述高频波束的频率要低并覆盖所述终端的波束;所述窄波束为所述终端与所述网络侧节点预先协商或者由所述网络侧节点通知的,且波瓣与所述高频波束的波瓣的差值在预设范围内并覆盖所述终端的波束。
可选的,所述网络侧节点切换至宽波束、低频波束或者多个窄波束,并使用所述宽波束、低频波束或者多个窄波束与所述终端继续进行所述业务的数据传输的步骤,包括:所述网络侧节点切换至宽波束、低频波束或者多个窄波束,并使用所述宽波束、低频波束或者多个窄波束与所述终端以预设低调度编码方案或者预设小数据包方式继续进行所述业务的数据传输。
其中,关于上述继续上述业务的数据传输的实施方式可以参见第二实施例中的相关说明,此处不作赘述,且可以达到相同或相似的有益效果。
可选的,所述网络侧节点向所述终端发送指示至少一个波束集合的触发信令的步骤之前,所述方法还包括:所述网络侧节点接收所述终端通过宽波束或低频波束或多个窄波束发送的恢复机制通知消息;其中,所述宽波束为波瓣比所述高频波束的波瓣要宽的波束,所述低频波束为频率比所述高频波束的频率要低的波束,所述窄波束为波瓣与所述高频波束的波瓣的差值在预设范围内的波束。
其中,关于上述恢复机制通知消息的实施方式可以参见第二实施例中的相关说明,此处不作赘述,且可以达到相同或相似的有益效果。
可选的,所述方法还包括:在所述网络侧节点与所述终端通过所述目标波束恢复所述业务的数据传输后并在数据传输时,所述网络侧节点与所述终端通过波束训练过程,寻找切换波束;所述网络侧节点切换至所述切换波束,并使用所述切换波束与所述终端进行所述业务的数据传输。
本公开文本实施例提供的恢复数据传输的方法中,若网络侧节点与终端之间进行业务传输的高频波束的通信链路异常,所述网络侧节点向所述终端发送指示至少一个波束集合的触发信令;所述网络侧节点通过所述至少一个波束集合内的波束传输参考信号;所述网络侧节点通过所述至少一个波束集合中的目标波束恢复所述业务的数据传输;其中,所述目标波束为所述网络侧节点对所述参考信号进行测量而确定的目标波束或者所述目标波束为所述网络侧节点接收所述终端通知的目标波束。从而在通信链路异常时,不需要执行终端发起的RRC重建,直接可以使用上述目标波束恢复业务的数据传输,以降低通信链路出现异常后到恢复数据传输之间时延,提升用户体验。由于目标波束为所述终端或者所述网络侧节点通过对所述参考信号进行测量而确定的目标波束,从而可以提高恢复后数据传输的传输性能和质量。
第五实施例
参见图8,图8是本公开文本实施例提供的终端的结构图,能实现第一实施例至第二实施例中的恢复数据传输的方法的细节,并达到相同或相似的效果。如图8所示,终端800包括:触发信令接收模块801和第一数据传输恢复模块802,触发信令接收模块801和第一数据传输恢复模块802连接,其中:
触发信令接收模块801,用于若所述终端与网络侧节点之间进行业务传输的高频波束的通信链路异常,接收所述网络侧节点发送的指示至少一个波束集合的触发信令。
第一数据传输恢复模块802,用于通过所述至少一个波束集合中的目标波束恢复所述业务的数据传输;其中,所述目标波束为所述终端或者所述网络侧节点在所述至少一个波束集合中确定的目标波束。
可选的,如图9所示,终端800还包括:
第一参考信号传输模块803,用于通过所述至少一个波束集合内的波束 传输参考信号;其中,所述目标波束为所述终端对所述参考信号进行测量而确定的目标波束,或者所述目标波束为所述终端接收所述网络侧节点通知的目标波束。
可选的,如图10所示,第一参考信号传输模块803包括:
第一参考信号发送单元8031,用于在所述至少一个波束集合内的上行波束上向所述网络侧节点发送参考信号。
第一反馈信息接收单元8032,用于接收所述网络侧节点发送的指示所述目标波束的反馈信息,其中,所述目标波束为所述网络侧节点根据对所述终端发射的参考信号进行测量的测量结果确定的上行波束。
可选的,如图11所示,第一参考信号传输模块803包括:
第一参考信号接收单元8033,用于接收所述网络侧节点在所述至少一个波束集合内的下行波束上发送的参考信号。
第一测量单元8034,用于对所述网络侧节点发送的参考信号进行测量,获取测量结果。
第一确定单元8035,用于根据所述测量结果,在所述至少一个波束集合的下行波束中确定所述目标波束。
第一反馈信息发送单元8036,用于向所述网络侧节点发送指示所述目标波束的反馈信息。
可选的,第一确定单元8035用于根据所述测量结果,在所述至少一个波束集合的下行波束中确定传输质量最优的下行波束作为所述目标波束;或者所述第一确定单元8035用于若所述终端根据所述测量结果查找到在所述至少一个波束集合内存在传输质量高于第一预设门限的下行波束时,将所述传输质量高于预设门限的下行波束确定为所述目标波束。
可选的,所述传输质量包括接收功率、接收质量和信噪比中的至少一项。
可选的,所述触发信令包括参考信号的发送图样信息,或者上述触发信令用于指示所述终端与所述网络侧节点预先约定的参考信号的发送图样信息;其中,所述发送图样信息用于指示所述至少一个波束集合,以及指示所述终端与所述网络侧节点之间在所述至少一个波束集合内发送参考信号的次序。
可选的,所述发送参考信号的次序,包括:优先发送所述至少一个波束集合内的高频波束的次序。
可选的,所述至少一个波束集合包括所述终端预先维护的包括所述高频波束在内的原波束集合,则所述发送参考信号的次序,包括:在所述原波束集合内,以所述高频波束为中心按照空间方位由近到远的发送次序;或者在所述原波束集合内,以所述高频波束为中心按照空间方位远近交替的发送次序;或者在所述原波束集合内,以所述高频波束为中心按照空间方位由远到近的发送次序。
可选的,所述至少一个波束集合包括所述终端预先维护的包括所述高频波束在内的原波束集合,以及至少一个目标波束集合,则所述发送参考信号的次序,包括:在所述原波束集合和所述至少一个目标波束集合内的波束混合发送次序;或者若只包括一个目标波束集合,则优先发送所述目标波束集合内的波束的次序;或者若包括多个目标波束集合,则优先发送所述多个目标波束集合内的波束,且所述多个目标波束集合之间按集合交替发送的次序;或者若包括多个目标波束集合,则优先发送所述多个目标波束集合内的波束,且所述多个目标波束集合之间按集合顺序发送的次序。
可选的,如图12所示,终端800还包括:
第一异常确定模块804,用于确定与所述网络侧节点之间进行业务传输的高频波束的通信链路异常。
通知消息发送模块805,用于向所述网络侧节点发送恢复机制通知消息。
可选的,所述通信链路异常,包括:
所述终端在预定的位置没有收到来自所述网络侧节点发送的肯定应答反馈或者否定应答反馈;或者所述终端测量到所述通信链路的接收质量低于第二预设门限值;或者所述终端测量到所述通信链路的接收功率低于第三预设门限值;或者所述终端测量到所述通信链路的接收信噪比低于第四预设门限值;或者所述终端测量的所述通信链路的测量值的变化率达到第五预设门限值。
可选的,所述通知消息发送模块805用于通过宽波束或低频波束或多个窄波束向所述网络侧节点发送恢复机制通知消息;其中,所述宽波束为波瓣 比所述高频波束的波瓣要宽的波束,所述低频波束为频率比所述高频波束的频率要低的波束,所述窄波束为波瓣与所述高频波束的波瓣的差值在预设范围内的波束。
可选的,如图13所示,终端800还包括:
第一计数器启动模块806,用于启动预设计数时长的计数器;则所述通知消息发送模块805用于在所述计数器计数到达所述预设计数时长时,向所述网络侧节点发送恢复机制通知消息。
可选的,如图14A所示,终端800还包括:
第一数据传输模块807,用于在所述终端与所述网络侧节点之间进行业务传输的高频波束的通信链路异常时,所述终端切换至宽波束、低频波束或者多个窄波束,并使用所述宽波束、低频波束或者多个窄波束与所述网络侧节点继续进行所述业务的数据传输;或者
可选的,如图14B所示,终端800还包括:
第一业务挂起模块808,用于在所述终端与所述网络侧节点之间进行业务传输的高频波束的通信链路异常时,将所述业务挂起;
其中,所述宽波束为所述终端与所述网络侧节点预先协商或者由所述网络侧节点通知的,且波瓣比所述高频波束的波瓣要宽并覆盖所述终端的波束;
所述低频波束为所述终端与所述网络侧节点预先协商或者由所述网络侧节点通知的,且频率比所述高频波束的频率要低并覆盖所述终端的波束;
所述窄波束为所述终端与所述网络侧节点预先协商或者由所述网络侧节点通知的,且波瓣与所述高频波束的波瓣的差值在预设范围内并覆盖所述终端的波束。
可选的,第一数据传输模块807用于切换至宽波束、低频波束或者多个窄波束,并使用所述宽波束、低频波束或者多个窄波束与所述网络侧节点以预设低调度编码方案或者预设小数据包方式继续进行所述业务的数据传输。
可选的,触发信令接收模块801用于在宽波束或低频波束或多个窄波束接收所述网络侧节点通过物理层下行控制信息发送的指示至少一个波束集合的触发信令;其中,所述宽波束为所述终端与所述网络侧节点预先协商或者由所述网络侧节点通知的,且波瓣比所述高频波束的波瓣要宽并覆盖所述终 端的波束;所述低频波束为所述终端与所述网络侧节点预先协商或者由所述网络侧节点通知的,且频率比所述高频波束的频率要低并覆盖所述终端的波束;所述窄波束为所述终端与所述网络侧节点预先协商或者由所述网络侧节点通知的,且波瓣与所述高频波束的波瓣的差值在预设范围内并覆盖所述终端的波束。
可选的,如图15所示,终端800还包括:
第一寻找模块809,用于在所述终端与所述网络侧节点通过所述目标波束恢复所述业务的数据传输后并在数据传输时,与所述网络侧节点通过波束训练过程,寻找切换波束。
第一切换模块8010,用于切换至所述切换波束,并使用所述切换波束与所述网络侧节点进行所述业务的数据传输。
本公开文本实施例提供的终端中,若终端与网络侧节点之间进行业务传输的高频波束的通信链路异常,所述终端接收所述网络侧节点发送的指示至少一个波束集合的触发信令;所述终端通过所述至少一个波束集合中的目标波束恢复所述业务的数据传输;其中,所述目标波束为所述终端或者所述网络侧节点在所述至少一个波束集合中确定的目标波束。从而在通信链路异常时,不需要发起RRC重建,直接可以使用上述目标波束恢复业务的数据传输,以降低通信链路出现异常后到恢复数据传输之间时延,提升用户体验。
第六实施例
参见图16,图16是本公开文本实施例提供的网络侧节点的结构图,能实现第三实施例至第四实施例中的恢复数据传输的方法的细节,并达到相同或相似的效果。如图16所示,网络侧节点1600包括:触发信令发送模块1601和第二数据传输恢复模块1602,触发信令发送模块1601和第二数据传输恢复模块1602连接,其中:
触发信令发送模块1601,用于若所述网络侧节点与终端之间进行业务传输的高频波束的通信链路异常,向所述终端发送指示至少一个波束集合的触发信令。
第二数据传输恢复模块1602,用于通过所述至少一个波束集合中的目标波束恢复所述业务的数据传输;其中,所述目标波束为所述终端或者所述网 络侧节点在所述至少一个波束集合中确定的目标波束。
可选的,如图17所示,所述网络侧节点1600还包括:
第二参考信号传输模块1603,用于通过所述至少一个波束集合内的波束与所述终端传输参考信号;其中,所述目标波束为所述网络侧节点对所述参考信号进行测量而确定的目标波束或者所述目标波束为所述网络侧节点接收所述终端通知的目标波束。
可选的,如图18所示,第二参考信号传输模块1603包括:
第二参考信号发送单元16031,用于在所述至少一个波束集合内的下行波束上向所述终端发送参考信号。
第二反馈信息接收单元16032,用于接收所述终端发送的指示所述目标波束的反馈信息,其中,所述目标波束为所述终端根据对所述网络侧节点发射的参考信号进行测量的测量结果确定的下行波束。
可选的,如图19所示,第二参考信号传输模块1603包括:
第二参考信号接收单元16033,用于接收所述终端在所述至少一个波束集合内的上行波束上发送的参考信号。
第二测量单元16034,用于对所述终端发送的参考信号进行测量,获取测量结果。
第二确定单元16035,用于根据所述测量结果,在所述至少一个波束集合的上行波束中确定所述目标波束。
第二反馈信息发送单元16036,用于向所述终端发送指示所述目标波束的反馈信息。
可选的,第二确定单元16035用于根据所述测量结果,在所述至少一个波束集合的上行波束中确定传输质量最优的上行波束作为所述目标波束;或者
所述第二确定单元16035用于若所述网络侧节点根据所述测量结果查找到在所述至少一个波束集合内存在传输质量高于第一预设门限的上行波束时,将所述传输质量高于预设门限的上行波束确定为所述目标波束。
可选的,所述传输质量包括接收功率、接收质量和信噪比中的至少一项。
可选的,所述触发信令包括参考信号的发送图样信息,或者上述触发信 令用于指示所述终端与所述网络侧节点预先约定的参考信号的发送图样信息;其中,所述发送图样信息用于指示所述至少一个波束集合,以及指示所述终端与所述网络侧节点之间在所述至少一个波束集合内发送参考信号的次序。
可选的,所述发送参考信号的次序,包括:优先发送所述至少一个波束集合内的高频波束的次序。
可选的,所述至少一个波束集合包括所述终端预先维护的包括所述高频波束在内的原波束集合,则所述发送参考信号的次序,包括:在所述原波束集合内,以所述高频波束为中心按照空间方位由近到远的发送次序;或者在所述原波束集合内,以所述高频波束为中心按照空间方位远近交替的发送次序;或者在所述原波束集合内,以所述高频波束为中心按照空间方位由远到近的发送次序。
可选的,所述至少一个波束集合包括所述终端预先维护的包括所述高频波束在内的原波束集合,以及至少一个目标波束集合,则所述发送参考信号的次序,包括:在所述原波束集合和所述至少一个目标波束集合内的波束混合发送次序;或者若只包括一个目标波束集合,则优先发送所述目标波束集合内的波束的次序;或者若包括多个目标波束集合,则优先发送所述多个目标波束集合内的波束,且所述多个目标波束集合之间按集合交替发送的次序;或者若包括多个目标波束集合,则优先发送所述多个目标波束集合内的波束,且所述多个目标波束集合之间按集合顺序发送的次序。
可选的,如图20所示,网络侧节点1600还包括:
第二异常确定模块1604,用于所述网络侧节点确定与所述终端之间进行业务传输的高频波束的通信链路异常。
可选的,所述通信链路异常,包括:所述网络侧节点在预定的位置没有收到来自所述终端发送的肯定应答反馈或者否定应答反馈;或者所述网络侧节点测量到所述通信链路的接收质量低于第二预设门限值;或者所述网络侧节点测量到所述通信链路的接收功率低于第三预设门限值;或者所述网络侧节点测量到所述通信链路的接收信噪比低于第四预设门限值;或者所述网络侧节点测量的所述通信链路的测量值的变化率达到第五预设门限值。
可选的,如图21所示,所述网络侧节点1600还包括:
第二计数器启动模块1605,用于启动预设计数时长的计数器;
则所述触发信令发送模块1601用于在所述计数器计数到达所述预设计数时长时,向所述终端发送指示至少一个波束集合的触发信令。
可选的,如图22A所示,所述网络侧节点1600还包括:
第二数据传输模块1606,第二数据传输模块,用于在所述网络侧节点与所述终端之间进行业务传输的高频波束的通信链路异常时,所述网络侧节点切换至宽波束、低频波束或者多个窄波束,并使用所述宽波束、低频波束或者多个窄波束与所述终端继续进行所述业务的数据传输;或者
可选的,如图22B所示,所述网络侧节点1600还包括:
第二业务挂起模块1607,用于在所述网络侧节点与所述终端之间进行业务传输的高频波束的通信链路异常时,所述网络侧节点将所述业务挂起;
其中,所述宽波束为所述终端与所述网络侧节点预先协商或者由所述网络侧节点通知的,且波瓣比所述高频波束的波瓣要宽并覆盖所述终端的波束;
所述低频波束为所述终端与所述网络侧节点预先协商或者由所述网络侧节点通知的,且频率比所述高频波束的频率要低并覆盖所述终端的波束;
所述窄波束为所述终端与所述网络侧节点预先协商或者由所述网络侧节点通知的,且波瓣与所述高频波束的波瓣的差值在预设范围内并覆盖所述终端的波束。
可选的,所述第二数据传输模块1606用于切换至宽波束、低频波束或者多个窄波束,并使用所述宽波束、低频波束或者多个窄波束与所述终端以预设低调度编码方案或者预设小数据包方式继续进行所述业务的数据传输。
可选的,如图23所示,所述网络侧节点1600还包括:
通知消息接收模块1608,用于所述网络侧节点接收所述终端通过宽波束或低频波束或多个窄波束发送的恢复机制通知消息;其中,所述宽波束为波瓣比所述高频波束的波瓣要宽的波束,所述低频波束为频率比所述高频波束的频率要低的波束,所述窄波束为波瓣与所述高频波束的波瓣的差值在预设范围内的波束。
可选的,触发信令发送模块1601用于在宽波束或低频波束或多个窄波束 通过物理层下行控制信息向所述终端发送指示至少一个波束集合的触发信令;其中,所述宽波束为所述终端与所述网络侧节点预先协商或者由所述网络侧节点通知的,且波瓣比所述高频波束的波瓣要宽并覆盖所述终端的波束;所述低频波束为所述终端与所述网络侧节点预先协商或者由所述网络侧节点通知的,且频率比所述高频波束的频率要低并覆盖所述终端的波束;所述窄波束为所述终端与所述网络侧节点预先协商或者由所述网络侧节点通知的,且波瓣与所述高频波束的波瓣的差值在预设范围内并覆盖所述终端的波束。
可选的,如图24所示,所述网络侧节点1600还包括:
第二寻找模块1609,用于在所述网络侧节点与所述终端通过所述目标波束恢复所述业务的数据传输后并在数据传输时,与所述终端通过波束训练过程,寻找切换波束;
第二切换模块16010,用于所述网络侧节点切换至所述切换波束,并使用所述切换波束与所述终端进行所述业务的数据传输。
本公开文本实施例提供的网络侧节点中,若网络侧节点与终端之间进行业务传输的高频波束的通信链路异常,所述网络侧节点向所述终端发送指示至少一个波束集合的触发信令;网络侧节点与所述终端通过所述至少一个波束集合中的目标波束恢复所述业务的数据传输。从而在通信链路异常时,不需要网络侧节点不执行终端发起的RRC重建过程,直接可以使用上述目标波束恢复业务的数据传输,以降低通信链路出现异常后到恢复数据传输之间时延,提升用户体验。
第七实施例
参见图25,图25是本公开文本实施例应用的终端的结构图,能够实现第一实施例至第二实施例中的恢复数据传输的方法的细节,并达到相同的效果。如图25所示,终端2500包括:至少一个处理器2501、存储器2502、至少一个网络接口2504和用户接口2503。终端2500中的各个组件通过总线系统2505耦合在一起。可理解,总线系统2505用于实现这些组件之间的连接通信。总线系统2505除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图25中将各种总线都标为总线系统2505。
其中,用户接口2503可以包括显示器、键盘或者点击设备(例如,鼠标,轨迹球(track ball)、触感板或者触摸屏等。
可以理解,本公开文本实施例中的存储器2502可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本文描述的系统和方法的存储器2502旨在包括但不限于这些和任意其它适合类型的存储器。
在一些实施方式中,存储器2502存储了如下的元素,可执行模块或者数据结构,或者他们的子集,或者他们的扩展集:操作系统25021和应用程序25022。
其中,操作系统25021,包含各种系统程序,例如框架层、核心库层、驱动层等,用于实现各种基础业务以及处理基于硬件的任务。应用程序25022,包含各种应用程序,例如媒体播放器(Media Player)、浏览器(Browser)等,用于实现各种应用业务。实现本公开文本实施例方法的程序可以包含在应用程序25022中。
在本公开文本实施例中,通过调用存储器2502存储的程序或指令,具体的,可以是应用程序25022中存储的程序或指令,处理器2501用于:若终端与网络侧节点之间进行业务传输的高频波束的通信链路异常,接收所述网络侧节点发送的指示至少一个波束集合的触发信令;通过所述至少一个波束集 合中的目标波束恢复所述业务的数据传输;其中,所述目标波束为所述终端或者所述网络侧节点在所述至少一个波束集合中确定的目标波束。
上述本公开文本实施例揭示的方法可以应用于处理器2501中,或者由处理器2501实现。处理器2501可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器2501中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器2501可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable GateArray,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本公开文本实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本公开文本实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器2502,处理器2501读取存储器2502中的信息,结合其硬件完成上述方法的步骤。
可以理解的是,本文描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,处理单元可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本申请所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本文所述功能的模块(例如过程、函数等)来实现本文所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
可选的,处理器2501还用于:通过所述至少一个波束集合内的波束传输参考信号;其中,所述目标波束为所述终端对所述参考信号进行测量而确定 的目标波束,或者所述目标波束为所述终端接收所述网络侧节点通知的目标波束。
可选的,处理器2501还用于:在所述至少一个波束集合内的上行波束上向所述网络侧节点发送参考信号;接收所述网络侧节点发送的指示所述目标波束的反馈信息,其中,所述目标波束为所述网络侧节点根据对所述终端发射的参考信号进行测量的测量结果确定的上行波束。
可选的,处理器2501还用于:接收所述网络侧节点在所述至少一个波束集合内的下行波束上发送的参考信号;对所述网络侧节点发送的参考信号进行测量,获取测量结果;根据所述测量结果,在所述至少一个波束集合的下行波束中确定所述目标波束;向所述网络侧节点发送指示所述目标波束的反馈信息。
可选的,处理器2501还用于:根据所述测量结果,在所述至少一个波束集合的下行波束中确定传输质量最优的下行波束作为所述目标波束;或者若所述终端根据所述测量结果查找到在所述至少一个波束集合内存在传输质量高于第一预设门限的下行波束时,将所述传输质量高于预设门限的下行波束确定为所述目标波束。
可选的,所述传输质量包括接收功率、接收质量和信噪比中的至少一项。
可选的,所述触发信令包括参考信号的发送图样信息,或者上述触发信令用于指示所述终端与所述网络侧节点预先约定的参考信号的发送图样信息;其中,所述发送图样信息用于指示所述至少一个波束集合,以及指示所述终端与所述网络侧节点之间在所述至少一个波束集合内发送参考信号的次序。
可选的,所述发送参考信号的次序,包括:优先发送所述至少一个波束集合内的高频波束的次序。
可选的,所述至少一个波束集合包括所述终端预先维护的包括所述高频波束在内的原波束集合,则所述发送参考信号的次序,包括:在所述原波束集合内,以所述高频波束为中心按照空间方位由近到远的发送次序;或者在所述原波束集合内,以所述高频波束为中心按照空间方位远近交替的发送次序;或者在所述原波束集合内,以所述高频波束为中心按照空间方位由远到 近的发送次序。
可选的,所述至少一个波束集合包括所述终端预先维护的包括所述高频波束在内的原波束集合,以及至少一个目标波束集合,则所述发送参考信号的次序,包括:在所述原波束集合和所述至少一个目标波束集合内的波束混合发送次序;或者若只包括一个目标波束集合,则优先发送所述目标波束集合内的波束的次序;或者若包括多个目标波束集合,则优先发送所述多个目标波束集合内的波束,且所述多个目标波束集合之间按集合交替发送的次序;或者若包括多个目标波束集合,则优先发送所述多个目标波束集合内的波束,且所述多个目标波束集合之间按集合顺序发送的次序。
可选的,处理器2501还用于:确定与所述网络侧节点之间进行业务传输的高频波束的通信链路异常;向所述网络侧节点发送恢复机制通知消息。
可选的,处理器2501还用于:在预定的位置没有收到来自所述网络侧节点发送的肯定应答反馈或者否定应答反馈;或者测量到所述通信链路的接收质量低于第二预设门限值;或者所述终端测量到所述通信链路的接收功率低于第三预设门限值;或者所述终端测量到所述通信链路的接收信噪比低于第四预设门限值;或者测量的所述通信链路的测量值的变化率达到第五预设门限值。
可选的,处理器2501还用于:通过宽波束或低频波束或多个窄波束向所述网络侧节点发送恢复机制通知消息;其中,所述宽波束为波瓣比所述高频波束的波瓣要宽的波束,所述低频波束为频率比所述高频波束的频率要低的波束,所述窄波束为波瓣与所述高频波束的波瓣的差值在预设范围内的波束。
可选的,处理器2501还用于:启动预设计数时长的计数器;在所述计数器计数到达所述预设计数时长时,向所述网络侧节点发送恢复机制通知消息。
可选的,处理器2501还用于:在所述终端与所述网络侧节点之间进行业务传输的高频波束的通信链路异常时,切换至宽波束、低频波束或者多个窄波束,并使用所述宽波束、低频波束或者多个窄波束与所述网络侧节点继续进行所述业务的数据传输;或者在所述终端与所述网络侧节点之间进行业务传输的高频波束的通信链路异常时,将所述业务挂起;
其中,所述宽波束为所述终端与所述网络侧节点预先协商或者由所述网 络侧节点通知的,且波瓣比所述高频波束的波瓣要宽并覆盖所述终端的波束;
所述低频波束为所述终端与所述网络侧节点预先协商或者由所述网络侧节点通知的,且频率比所述高频波束的频率要低并覆盖所述终端的波束;
所述窄波束为所述终端与所述网络侧节点预先协商或者由所述网络侧节点通知的,且波瓣与所述高频波束的波瓣的差值在预设范围内并覆盖所述终端的波束。
可选的,处理器2501还用于:在所述终端与所述网络侧节点之间进行业务传输的高频波束的通信链路异常时,切换至宽波束、低频波束或者多个窄波束,并使用所述宽波束、低频波束或者多个窄波束与所述网络侧节点以预设低调度编码方案或者预设小数据包方式继续进行所述业务的数据传输。
可选的,处理器2501还用于:在宽波束或低频波束或多个窄波束接收所述网络侧节点通过物理层下行控制信息发送的指示至少一个波束集合的触发信令;其中,所述宽波束为所述终端与所述网络侧节点预先协商或者由所述网络侧节点通知的,且波瓣比所述高频波束的波瓣要宽并覆盖所述终端的波束;所述低频波束为所述终端与所述网络侧节点预先协商或者由所述网络侧节点通知的,且频率比所述高频波束的频率要低并覆盖所述终端的波束;所述窄波束为所述终端与所述网络侧节点预先协商或者由所述网络侧节点通知的,且波瓣与所述高频波束的波瓣的差值在预设范围内并覆盖所述终端的波束。
可选的,处理器2501还用于:在所述终端与所述网络侧节点通过所述目标波束恢复所述业务的数据传输后并在数据传输时,与所述网络侧节点通过波束训练过程,寻找切换波束;切换至所述切换波束,并使用所述切换波束与所述网络侧节点进行所述业务的数据传输。
本公开文本实施例提供的终端中,若终端与网络侧节点之间进行业务传输的高频波束的通信链路异常,所述终端接收所述网络侧节点发送的指示至少一个波束集合的触发信令;所述终端通过所述至少一个波束集合中的目标波束恢复所述业务的数据传输;其中,所述目标波束为所述终端或者所述网络侧节点在所述至少一个波束集合中确定的目标波束。从而在通信链路异常时,不需要发起RRC重建,直接可以使用上述目标波束恢复业务的数据传输, 以降低通信链路出现异常后到恢复数据传输之间时延,提升用户体验。
第八实施例
请参阅图26,图26是本公开文本实施例应用的终端的结构图,能够实现第一实施例至第二实施例中的恢复数据传输的方法的细节,并达到相同的效果。如图26所示,终端2600包括射频(Radio Frequency,RF)电路2610、存储器2620、输入单元2630、显示单元2640、处理器2650、音频电路2660、通信模块2670、和电源2680。
其中,输入单元2630可用于接收用户输入的数字或字符信息,以及产生与移动终端2600的用户设置以及功能控制有关的信号输入。具体地,本公开文本实施例中,该输入单元2630可以包括触控面板2631。触控面板2631,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板2631上的操作),并根据预先设定的程式驱动相应的连接装置。可选的,触控面板2631可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给该处理器2650,并能接收处理器2650发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板2631。除了触控面板2631,输入单元2630还可以包括其他输入设备2632,其他输入设备2632可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆等中的一种或多种。
其中,显示单元2640可用于显示由用户输入的信息或提供给用户的信息以及移动终端2600的各种菜单界面。显示单元2640可包括显示面板2641,可选的,可以采用LCD或有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板2641。
应注意,触控面板2631可以覆盖显示面板2641,形成触摸显示屏,当该触摸显示屏检测到在其上或附近的触摸操作后,传送给处理器2650以确定触摸事件的类型,随后处理器2650根据触摸事件的类型在触摸显示屏上提供相应的视觉输出。
触摸显示屏包括应用程序界面显示区及常用控件显示区。该应用程序界面显示区及该常用控件显示区的排列方式并不限定,可以为上下排列、左右排列等可以区分两个显示区的排列方式。该应用程序界面显示区可以用于显示应用程序的界面。每一个界面可以包含至少一个应用程序的图标和/或widget桌面控件等界面元素。该应用程序界面显示区也可以为不包含任何内容的空界面。该常用控件显示区用于显示使用率较高的控件,例如,设置按钮、界面编号、滚动条、电话本图标等应用程序图标等。
其中处理器2650是移动终端2600的控制中心,利用各种接口和线路连接整个手机的各个部分,通过运行或执行存储在第一存储器2621内的软件程序和/或模块,以及调用存储在第二存储器2622内的数据,执行移动终端2600的各种功能和处理数据,从而对移动终端2600进行整体监控。可选的,处理器2650可包括一个或多个处理单元。
在本公开文本实施例中,通过调用存储该第一存储器2621内的软件程序和/或模块和/或该第二存储器2622内的数据,处理器2650用于:若终端与网络侧节点之间进行业务传输的高频波束的通信链路异常,接收所述网络侧节点发送的指示至少一个波束集合的触发信令;通过所述至少一个波束集合中的目标波束恢复所述业务的数据传输;其中,所述目标波束为所述终端或者所述网络侧节点在所述至少一个波束集合中确定的目标波束。
可选的,处理器2650还用于:通过所述至少一个波束集合内的波束传输参考信号;其中,所述目标波束为所述终端对所述参考信号进行测量而确定的目标波束,或者所述目标波束为所述终端接收所述网络侧节点通知的目标波束。
可选的,处理器2650还用于:在所述至少一个波束集合内的上行波束上向所述网络侧节点发送参考信号;接收所述网络侧节点发送的指示所述目标波束的反馈信息,其中,所述目标波束为所述网络侧节点根据对所述终端发射的参考信号进行测量的测量结果确定的上行波束。
可选的,处理器2650还用于:接收所述网络侧节点在所述至少一个波束集合内的下行波束上发送的参考信号;对所述网络侧节点发送的参考信号进行测量,获取测量结果;根据所述测量结果,在所述至少一个波束集合的下 行波束中确定所述目标波束;向所述网络侧节点发送指示所述目标波束的反馈信息。
可选的,处理器2650还用于:根据所述测量结果,在所述至少一个波束集合的下行波束中确定传输质量最优的下行波束作为所述目标波束;或者若所述终端根据所述测量结果查找到在所述至少一个波束集合内存在传输质量高于第一预设门限的下行波束时,将所述传输质量高于预设门限的下行波束确定为所述目标波束。
可选的,所述传输质量包括接收功率、接收质量和信噪比中的至少一项。
可选的,所述触发信令包括参考信号的发送图样信息,或者上述触发信令用于指示所述终端与所述网络侧节点预先约定的参考信号的发送图样信息;其中,所述发送图样信息用于指示所述至少一个波束集合,以及指示所述终端与所述网络侧节点之间在所述至少一个波束集合内发送参考信号的次序。
可选的,所述发送参考信号的次序,包括:优先发送所述至少一个波束集合内的高频波束的次序。
可选的,所述至少一个波束集合包括所述终端预先维护的包括所述高频波束在内的原波束集合,则所述发送参考信号的次序,包括:在所述原波束集合内,以所述高频波束为中心按照空间方位由近到远的发送次序;或者在所述原波束集合内,以所述高频波束为中心按照空间方位远近交替的发送次序;或者在所述原波束集合内,以所述高频波束为中心按照空间方位由远到近的发送次序。
可选的,所述至少一个波束集合包括所述终端预先维护的包括所述高频波束在内的原波束集合,以及至少一个目标波束集合,则所述发送参考信号的次序,包括:在所述原波束集合和所述至少一个目标波束集合内的波束混合发送次序;或者若只包括一个目标波束集合,则优先发送所述目标波束集合内的波束的次序;或者若包括多个目标波束集合,则优先发送所述多个目标波束集合内的波束,且所述多个目标波束集合之间按集合交替发送的次序;或者若包括多个目标波束集合,则优先发送所述多个目标波束集合内的波束,且所述多个目标波束集合之间按集合顺序发送的次序。
可选的,处理器2650还用于:确定与所述网络侧节点之间进行业务传输的高频波束的通信链路异常;向所述网络侧节点发送恢复机制通知消息。
可选的,处理器2650还用于:在预定的位置没有收到来自所述网络侧节点发送的肯定应答反馈或者否定应答反馈;或者测量到所述通信链路的接收质量低于第二预设门限值;或者所述终端测量到所述通信链路的接收功率低于第三预设门限值;或者所述终端测量到所述通信链路的接收信噪比低于第四预设门限值;或者测量的所述通信链路的测量值的变化率达到第五预设门限值。
可选的,处理器2650还用于:通过宽波束或低频波束或多个窄波束向所述网络侧节点发送恢复机制通知消息;其中,所述宽波束为波瓣比所述高频波束的波瓣要宽的波束,所述低频波束为频率比所述高频波束的频率要低的波束,所述窄波束为波瓣与所述高频波束的波瓣的差值在预设范围内的波束。
可选的,处理器2650还用于:启动预设计数时长的计数器;在所述计数器计数到达所述预设计数时长时,向所述网络侧节点发送恢复机制通知消息。
可选的,处理器2650还用于:在所述终端与所述网络侧节点之间进行业务传输的高频波束的通信链路异常时,切换至宽波束、低频波束或者多个窄波束,并使用所述宽波束、低频波束或者多个窄波束与所述网络侧节点继续进行所述业务的数据传输;或者在所述终端与所述网络侧节点之间进行业务传输的高频波束的通信链路异常时,将所述业务挂起;
其中,所述宽波束为所述终端与所述网络侧节点预先协商或者由所述网络侧节点通知的,且波瓣比所述高频波束的波瓣要宽并覆盖所述终端的波束;
所述低频波束为所述终端与所述网络侧节点预先协商或者由所述网络侧节点通知的,且频率比所述高频波束的频率要低并覆盖所述终端的波束;
所述窄波束为所述终端与所述网络侧节点预先协商或者由所述网络侧节点通知的,且波瓣与所述高频波束的波瓣的差值在预设范围内并覆盖所述终端的波束。
可选的,处理器2650还用于:在所述终端与所述网络侧节点之间进行业务传输的高频波束的通信链路异常时,切换至宽波束、低频波束或者多个窄波束,并使用所述宽波束、低频波束或者多个窄波束与所述网络侧节点以预 设低调度编码方案或者预设小数据包方式继续进行所述业务的数据传输。
可选的,处理器2650还用于:在宽波束或低频波束或多个窄波束接收所述网络侧节点通过物理层下行控制信息发送的指示至少一个波束集合的触发信令;其中,所述宽波束为所述终端与所述网络侧节点预先协商或者由所述网络侧节点通知的,且波瓣比所述高频波束的波瓣要宽并覆盖所述终端的波束;所述低频波束为所述终端与所述网络侧节点预先协商或者由所述网络侧节点通知的,且频率比所述高频波束的频率要低并覆盖所述终端的波束;所述窄波束为所述终端与所述网络侧节点预先协商或者由所述网络侧节点通知的,且波瓣与所述高频波束的波瓣的差值在预设范围内并覆盖所述终端的波束。
可选的,处理器2650还用于:在所述终端与所述网络侧节点通过所述目标波束恢复所述业务的数据传输后并在数据传输时,与所述网络侧节点通过波束训练过程,寻找切换波束;切换至所述切换波束,并使用所述切换波束与所述网络侧节点进行所述业务的数据传输。
本公开文本实施例提供的终端中,若终端与网络侧节点之间进行业务传输的高频波束的通信链路异常,所述终端接收所述网络侧节点发送的指示至少一个波束集合的触发信令;所述终端通过所述至少一个波束集合中的目标波束恢复所述业务的数据传输;其中,所述目标波束为所述终端或者所述网络侧节点在所述至少一个波束集合中确定的目标波束。从而在通信链路异常时,不需要发起RRC重建,直接可以使用上述目标波束恢复业务的数据传输,以降低通信链路出现异常后到恢复数据传输之间时延,提升用户体验。
第九实施例
参见图27,图27是本公开文本实施例应用的网络侧节点的结构图,能够实现第三实施例至第四实施例中的恢复数据传输的方法的细节,并达到相同的效果。如图27所示,该网络侧节点2700包括:处理器2701、收发机2702、存储器2703、用户接口2704和总线接口,其中:
处理器2701,用于读取存储器2703中的程序,执行下列过程:
若网络侧节点与终端之间进行业务传输的高频波束的通信链路异常,通过收发机2702向所述终端发送指示至少一个波束集合的触发信令;通过所述 至少一个波束集合中的目标波束恢复所述业务的数据传输;其中,所述目标波束为所述终端或者所述网络侧节点在所述至少一个波束集合中确定的目标波束。
其中,收发机2702,用于在处理器2701的控制下接收和发送数据。
在图27中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器2701代表的一个或多个处理器和存储器2703代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机2702可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口2704还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器2701负责管理总线架构和通常的处理,存储器2703可以存储处理器2701在执行操作时所使用的数据。
可选的,处理器2701还用于:通过所述至少一个波束集合内的波束传输参考信号;其中,所述目标波束为所述网络侧节点对所述参考信号进行测量而确定的目标波束或者所述目标波束为所述网络侧节点接收所述终端通知的目标波束。
可选的,处理器2701还用于:在所述至少一个波束集合内的下行波束上向所述终端发送参考信号;接收所述终端发送的指示所述目标波束的反馈信息,其中,所述目标波束为所述终端根据对所述网络侧节点发射的参考信号进行测量的测量结果确定的下行波束。
可选的,处理器2701还用于:接收所述终端在所述至少一个波束集合内的上行波束上发送的参考信号;对所述终端发送的参考信号进行测量,获取测量结果;根据所述测量结果,在所述至少一个波束集合的上行波束中确定所述目标波束;向所述终端发送指示所述目标波束的反馈信息。
可选的,处理器2701还用于:根据所述测量结果,在所述至少一个波束集合的上行波束中确定传输质量最优的上行波束作为所述目标波束;或者若所述网络侧节点根据所述测量结果查找到在所述至少一个波束集合内存在传 输质量高于第一预设门限的上行波束时,将所述传输质量高于预设门限的上行波束确定为所述目标波束。
可选的,所述传输质量包括接收功率、接收质量和信噪比中的至少一项。
可选的,所述触发信令包括参考信号的发送图样信息,或者上述触发信令用于指示所述终端与所述网络侧节点预先约定的参考信号的发送图样信息;其中,所述发送图样信息用于指示所述至少一个波束集合,以及指示所述终端与所述网络侧节点之间在所述至少一个波束集合内发送参考信号的次序。
可选的,所述发送参考信号的次序,包括:优先发送所述至少一个波束集合内的高频波束的次序。
可选的,所述至少一个波束集合包括所述终端预先维护的包括所述高频波束在内的原波束集合,则所述发送参考信号的次序,包括:在所述原波束集合内,以所述高频波束为中心按照空间方位由近到远的发送次序;或者在所述原波束集合内,以所述高频波束为中心按照空间方位远近交替的发送次序;或者在所述原波束集合内,以所述高频波束为中心按照空间方位由远到近的发送次序。
可选的,所述至少一个波束集合包括所述终端预先维护的包括所述高频波束在内的原波束集合,以及至少一个目标波束集合,则所述发送参考信号的次序,包括:在所述原波束集合和所述至少一个目标波束集合内的波束混合发送次序;或者若只包括一个目标波束集合,则优先发送所述目标波束集合内的波束的次序;或者若包括多个目标波束集合,则优先发送所述多个目标波束集合内的波束,且所述多个目标波束集合之间按集合交替发送的次序;或者若包括多个目标波束集合,则优先发送所述多个目标波束集合内的波束,且所述多个目标波束集合之间按集合顺序发送的次序。
可选的,处理器2701还用于:确定与所述终端之间进行业务传输的高频波束的通信链路异常。
可选的,所述通信链路异常,包括:所述网络侧节点在预定的位置没有收到来自所述终端发送的肯定应答反馈或者否定应答反馈;或者所述网络侧节点测量到所述通信链路的接收质量低于第二预设门限值;或者所述网络侧 节点测量到所述通信链路的接收功率低于第三预设门限值;或者所述网络侧节点测量到所述通信链路的接收信噪比低于第四预设门限值;或者所述网络侧节点测量的所述通信链路的测量值的变化率达到第五预设门限值。
可选的,处理器2701还用于:启动预设计数时长的计数器;在所述计数器计数到达所述预设计数时长时,向所述终端发送指示至少一个波束集合的触发信令。
可选的,处理器2701还用于:在所述网络侧节点与所述终端之间进行业务传输的高频波束的通信链路异常时,所述网络侧节点切换至宽波束、低频波束或者多个窄波束,并使用所述宽波束、低频波束或者多个窄波束与所述终端继续进行所述业务的数据传输;或者在所述网络侧节点与所述终端之间进行业务传输的高频波束的通信链路异常时,将所述业务挂起;
其中,所述宽波束为所述终端与所述网络侧节点预先协商或者由所述网络侧节点通知的,且波瓣比所述高频波束的波瓣要宽并覆盖所述终端的波束;
所述低频波束为所述终端与所述网络侧节点预先协商或者由所述网络侧节点通知的,且频率比所述高频波束的频率要低并覆盖所述终端的波束;
所述窄波束为所述终端与所述网络侧节点预先协商或者由所述网络侧节点通知的,且波瓣与所述高频波束的波瓣的差值在预设范围内并覆盖所述终端的波束。
可选的,处理器2701还用于:在所述网络侧节点与所述终端之间进行业务传输的高频波束的通信链路异常时,切换至宽波束、低频波束或者多个窄波束,并使用所述宽波束、低频波束或者多个窄波束与所述终端以预设低调度编码方案或者预设小数据包方式继续进行所述业务的数据传输。
可选的,处理器2701还用于:接收所述终端通过宽波束或低频波束或多个窄波束发送的恢复机制通知消息;其中,所述宽波束为波瓣比所述高频波束的波瓣要宽的波束,所述低频波束为频率比所述高频波束的频率要低的波束,所述窄波束为波瓣与所述高频波束的波瓣的差值在预设范围内的波束。
可选的,处理器2701还用于:在宽波束或低频波束或多个窄波束通过物理层下行控制信息向所述终端发送指示至少一个波束集合的触发信令;
其中,所述宽波束为所述终端与所述网络侧节点预先协商或者由所述网 络侧节点通知的,且波瓣比所述高频波束的波瓣要宽并覆盖所述终端的波束;
所述低频波束为所述终端与所述网络侧节点预先协商或者由所述网络侧节点通知的,且频率比所述高频波束的频率要低并覆盖所述终端的波束;
所述窄波束为所述终端与所述网络侧节点预先协商或者由所述网络侧节点通知的,且波瓣与所述高频波束的波瓣的差值在预设范围内并覆盖所述终端的波束。
可选的,处理器2701还用于:在所述网络侧节点与所述终端通过所述目标波束恢复所述业务的数据传输后并在数据传输时,与所述终端通过波束训练过程,寻找切换波束;所述网络侧节点切换至所述切换波束,并使用所述切换波束与所述终端进行所述业务的数据传输。
本公开文本实施例提供的网络侧节点中,若网络侧节点与终端之间进行业务传输的高频波束的通信链路异常,所述网络侧节点向所述终端发送指示至少一个波束集合的触发信令;网络侧节点通过所述至少一个波束集合中的目标波束恢复所述业务的数据传输。从而在通信链路异常时,不需要网络侧节点不执行终端发起的RRC重建过程,直接可以使用上述目标波束恢复业务的数据传输,以降低通信链路出现异常后到恢复数据传输之间时延,提升用户体验。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开文本的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一 些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本公开文本实施例方案的目的。
另外,在本公开文本各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开文本的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开文本各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本公开文本的具体实施方式,但本公开文本的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开文本揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开文本的保护范围之内。因此,本公开文本的保护范围应以权利要求的保护范围为准。

Claims (76)

  1. 一种恢复数据传输的方法,包括:
    若终端与网络侧节点之间进行业务传输的高频波束的通信链路异常,所述终端接收所述网络侧节点发送的指示至少一个波束集合的触发信令;以及
    所述终端通过所述至少一个波束集合中的目标波束恢复所述业务的数据传输;
    其中,所述目标波束为所述终端或者所述网络侧节点在所述至少一个波束集合中确定的目标波束。
  2. 根据权利要求1所述的方法,其中,所述终端接收所述网络侧节点发送的指示至少一个波束集合的触发信令的步骤之后,所述终端通过所述至少一个波束集合中的目标波束恢复所述业务的数据传输的步骤之前,所述方法还包括:
    所述终端通过所述至少一个波束集合内的波束传输参考信号;
    其中,所述目标波束为所述终端对所述参考信号进行测量而确定的目标波束,或者所述目标波束为所述终端接收所述网络侧节点通知的目标波束。
  3. 根据权利要求2所述的方法,其中,所述终端通过所述至少一个波束集合内的波束传输参考信号的步骤,包括:
    所述终端在所述至少一个波束集合内的上行波束上向所述网络侧节点发送参考信号;以及
    所述终端接收所述网络侧节点发送的指示所述目标波束的反馈信息,其中,所述目标波束为所述网络侧节点根据对所述终端发射的参考信号进行测量的测量结果确定的上行波束。
  4. 根据权利要求2所述的方法,其中,所述终端通过所述至少一个波束集合内的波束传输参考信号的步骤,包括:
    所述终端接收所述网络侧节点在所述至少一个波束集合内的下行波束上发送的参考信号;
    所述终端对所述网络侧节点发送的参考信号进行测量,获取测量结果;
    所述终端根据所述测量结果,在所述至少一个波束集合的下行波束中确 定所述目标波束;以及
    所述终端向所述网络侧节点发送指示所述目标波束的反馈信息。
  5. 根据权利要求4所述的方法,其中,所述终端根据所述测量结果在所述至少一个波束集合的下行波束中确定所述目标波束的步骤,包括:
    所述终端根据所述测量结果,在所述至少一个波束集合的下行波束中确定传输质量最优的下行波束作为所述目标波束;或者
    若所述终端根据所述测量结果查找到在所述至少一个波束集合内存在传输质量高于第一预设门限的下行波束时,将所述传输质量高于预设门限的下行波束确定为所述目标波束。
  6. 根据权利要求5所述的方法,其中,所述传输质量包括接收功率、接收质量和信噪比中的至少一项。
  7. 根据权利要求2所述的方法,其中,所述触发信令包括参考信号的发送图样信息,或者上述触发信令用于指示所述终端与所述网络侧节点预先约定的参考信号的发送图样信息;
    其中,所述发送图样信息用于指示所述至少一个波束集合,以及指示所述终端与所述网络侧节点之间在所述至少一个波束集合内发送参考信号的次序。
  8. 根据权利要求7所述的方法,其中,所述发送参考信号的次序,包括:
    优先发送所述至少一个波束集合内的高频波束的次序。
  9. 根据权利要求7所述的方法,其中,所述至少一个波束集合包括所述终端预先维护的包括所述高频波束在内的原波束集合,则所述发送参考信号的次序,包括:
    在所述原波束集合内,以所述高频波束为中心按照空间方位由近到远的发送次序;或者
    在所述原波束集合内,以所述高频波束为中心按照空间方位远近交替的发送次序;或者
    在所述原波束集合内,以所述高频波束为中心按照空间方位由远到近的发送次序。
  10. 根据权利要求7所述的方法,其中,所述至少一个波束集合包括所 述终端预先维护的包括所述高频波束在内的原波束集合,以及至少一个目标波束集合,则所述发送参考信号的次序,包括:
    在所述原波束集合和所述至少一个目标波束集合内的波束混合发送次序;或者
    若只包括一个目标波束集合,则优先发送所述目标波束集合内的波束的次序;或者
    若包括多个目标波束集合,则优先发送所述多个目标波束集合内的波束,且所述多个目标波束集合之间按集合交替发送的次序;或者
    若包括多个目标波束集合,则优先发送所述多个目标波束集合内的波束,且所述多个目标波束集合之间按集合顺序发送的次序。
  11. 根据权利要求1至10中任一项所述的方法,其中,所述终端接收所述网络侧节点发送的指示至少一个波束集合的触发信令的步骤之前,所述方法还包括:
    所述终端确定与所述网络侧节点之间进行业务传输的高频波束的通信链路异常;以及
    所述终端向所述网络侧节点发送恢复机制通知消息。
  12. 根据权利要求11所述的方法,其中,所述通信链路异常,包括:
    所述终端在预定的位置没有收到来自所述网络侧节点发送的肯定应答反馈或者否定应答反馈;或者
    所述终端测量到所述通信链路的接收质量低于第二预设门限值;或者
    所述终端测量到所述通信链路的接收功率低于第三预设门限值;或者
    所述终端测量到所述通信链路的接收信噪比低于第四预设门限值;或者
    所述终端测量的所述通信链路的测量值的变化率达到第五预设门限值。
  13. 根据权利要求11所述的方法,其中,所述终端向所述网络侧节点发送恢复机制通知消息的步骤,包括:
    所述终端通过宽波束或低频波束或多个窄波束向所述网络侧节点发送恢复机制通知消息;
    其中,所述宽波束为波瓣比所述高频波束的波瓣要宽的波束,所述低频波束为频率比所述高频波束的频率要低的波束,所述窄波束为波瓣与所述高 频波束的波瓣的差值在预设范围内的波束。
  14. 根据权利要求11所述的方法,其中,所述终端确定与所述网络侧节点之间进行业务传输的高频波束的通信链路异常的步骤之后,所述终端向所述网络侧节点发送恢复机制通知消息的步骤之前,所述方法还包括:
    启动预设计数时长的计数器;
    则所述终端向所述网络侧节点发送恢复机制通知消息的步骤,包括:
    在所述计数器计数到达所述预设计数时长时,终端向所述网络侧节点发送恢复机制通知消息。
  15. 根据权利要求11所述的方法,其中,所述终端确定与所述网络侧节点之间进行业务传输的高频波束的通信链路异常的步骤之后,所述终端接收所述网络侧节点发送的指示至少一个波束集合的触发信令的步骤之前,所述方法还包括:
    在所述终端与所述网络侧节点之间进行业务传输的高频波束的通信链路异常时,所述终端切换至宽波束、低频波束或者多个窄波束,并使用所述宽波束、低频波束或者多个窄波束与所述网络侧节点继续进行所述业务的数据传输;或者
    在所述终端与所述网络侧节点之间进行业务传输的高频波束的通信链路异常时,所述终端将所述业务挂起;
    其中,所述宽波束为所述终端与所述网络侧节点预先协商或者由所述网络侧节点通知的,且波瓣比所述高频波束的波瓣要宽并覆盖所述终端的波束;
    所述低频波束为所述终端与所述网络侧节点预先协商或者由所述网络侧节点通知的,且频率比所述高频波束的频率要低并覆盖所述终端的波束;
    所述窄波束为所述终端与所述网络侧节点预先协商或者由所述网络侧节点通知的,且波瓣与所述高频波束的波瓣的差值在预设范围内并覆盖所述终端的波束。
  16. 根据权利要求15所述的方法,其中,所述终端切换至宽波束、低频波束或者多个窄波束,并使用所述宽波束、低频波束或者多个窄波束与所述网络侧节点继续进行所述业务的数据传输的步骤,包括:
    所述终端切换至宽波束、低频波束或者多个窄波束,并使用所述宽波束、 低频波束或者多个窄波束与所述网络侧节点以预设低调度编码方案或者预设小数据包方式继续进行所述业务的数据传输。
  17. 根据权利要求1至10中任一项所述的方法,其中,所述终端接收所述网络侧节点发送的指示至少一个波束集合的触发信令的步骤,包括:
    所述终端在宽波束或低频波束或多个窄波束接收所述网络侧节点通过物理层下行控制信息发送的指示至少一个波束集合的触发信令;
    其中,所述宽波束为所述终端与所述网络侧节点预先协商或者由所述网络侧节点通知的,且波瓣比所述高频波束的波瓣要宽并覆盖所述终端的波束;
    所述低频波束为所述终端与所述网络侧节点预先协商或者由所述网络侧节点通知的,且频率比所述高频波束的频率要低并覆盖所述终端的波束;
    所述窄波束为所述终端与所述网络侧节点预先协商或者由所述网络侧节点通知的,且波瓣与所述高频波束的波瓣的差值在预设范围内并覆盖所述终端的波束。
  18. 根据权利要求1至10中任一项所述的方法,其中,所述方法还包括:
    在所述终端与所述网络侧节点通过所述目标波束恢复所述业务的数据传输后并在数据传输时,所述终端与所述网络侧节点通过波束训练过程,寻找切换波束;以及
    所述终端切换至所述切换波束,并使用所述切换波束与所述网络侧节点进行所述业务的数据传输。
  19. 一种恢复数据传输的方法,包括:
    若网络侧节点与终端之间进行业务传输的高频波束的通信链路异常,所述网络侧节点向所述终端发送指示至少一个波束集合的触发信令;以及
    所述网络侧节点通过所述至少一个波束集合中的目标波束恢复所述业务的数据传输;
    其中,所述目标波束为所述终端或者所述网络侧节点在所述至少一个波束集合中确定的目标波束。
  20. 根据权利要求19所述的方法,其中,所述网络侧节点向所述终端发送指示至少一个波束集合的触发信令的步骤之后,所述网络侧节点通过所述至少一个波束集合中的目标波束恢复所述业务的数据传输的步骤之前,所述 方法还包括:
    所述网络侧节点通过所述至少一个波束集合内的波束传输参考信号;
    其中,所述目标波束为所述网络侧节点对所述参考信号进行测量而确定的目标波束或者所述目标波束为所述网络侧节点接收所述终端通知的目标波束。
  21. 根据权利要求20所述的方法,其中,所述网络侧节点通过所述至少一个波束集合内的波束传输参考信号的步骤,包括:
    所述网络侧节点在所述至少一个波束集合内的下行波束上向所述终端发送参考信号;以及
    所述网络侧节点接收所述终端发送的指示所述目标波束的反馈信息,其中,所述目标波束为所述终端根据对所述网络侧节点发射的参考信号进行测量的测量结果确定的下行波束。
  22. 根据权利要求20所述的方法,其中,所述网络侧节点通过所述至少一个波束集合内的波束传输参考信号的步骤,包括:
    所述网络侧节点接收所述终端在所述至少一个波束集合内的上行波束上发送的参考信号;
    所述网络侧节点对所述终端发送的参考信号进行测量,获取测量结果;
    所述网络侧节点根据所述测量结果,在所述至少一个波束集合的上行波束中确定所述目标波束;以及
    所述网络侧节点向所述终端发送指示所述目标波束的反馈信息。
  23. 根据权利要求22所述的方法,其中,所述网络侧节点根据所述测量结果,在所述至少一个波束集合的上行波束中确定所述目标波束的步骤,包括:
    所述网络侧节点根据所述测量结果,在所述至少一个波束集合的上行波束中确定传输质量最优的上行波束作为所述目标波束;或者
    若所述网络侧节点根据所述测量结果查找到在所述至少一个波束集合内存在传输质量高于第一预设门限的上行波束时,将所述传输质量高于预设门限的上行波束确定为所述目标波束。
  24. 根据权利要求23所述的方法,其中,所述传输质量包括接收功率、 接收质量和信噪比中的至少一项。
  25. 根据权利要求20所述的方法,其中,所述触发信令包括参考信号的发送图样信息,或者上述触发信令用于指示所述终端与所述网络侧节点预先约定的参考信号的发送图样信息;
    其中,所述发送图样信息用于指示所述至少一个波束集合,以及指示所述终端与所述网络侧节点之间在所述至少一个波束集合内发送参考信号的次序。
  26. 根据权利要求25所述的方法,其中,所述发送参考信号的次序,包括:
    优先发送所述至少一个波束集合内的高频波束的次序。
  27. 根据权利要求25所述的方法,其中,所述至少一个波束集合包括所述终端预先维护的包括所述高频波束在内的原波束集合,则所述发送参考信号的次序,包括:
    在所述原波束集合内,以所述高频波束为中心按照空间方位由近到远的发送次序;或者
    在所述原波束集合内,以所述高频波束为中心按照空间方位远近交替的发送次序;或者
    在所述原波束集合内,以所述高频波束为中心按照空间方位由远到近的发送次序。
  28. 根据权利要求25所述的方法,其中,所述至少一个波束集合包括所述终端预先维护的包括所述高频波束在内的原波束集合,以及至少一个目标波束集合,则所述发送参考信号的次序,包括:
    在所述原波束集合和所述至少一个目标波束集合内的波束混合发送次序;或者
    若只包括一个目标波束集合,则优先发送所述目标波束集合内的波束的次序;或者
    若包括多个目标波束集合,则优先发送所述多个目标波束集合内的波束,且所述多个目标波束集合之间按集合交替发送的次序;或者
    若包括多个目标波束集合,则优先发送所述多个目标波束集合内的波束, 且所述多个目标波束集合之间按集合顺序发送的次序。
  29. 根据权利要求19至28中任一项所述的方法,其中,所述网络侧节点向所述终端发送指示至少一个波束集合的触发信令的步骤之前,所述方法还包括:
    所述网络侧节点确定与所述终端之间进行业务传输的高频波束的通信链路异常。
  30. 根据权利要求29所述的方法,其中,所述通信链路异常,包括:
    所述网络侧节点在预定的位置没有收到来自所述终端发送的肯定应答反馈或者否定应答反馈;或者
    所述网络侧节点测量到所述通信链路的接收质量低于第二预设门限值;或者
    所述网络侧节点测量到所述通信链路的接收功率低于第三预设门限值;或者
    所述网络侧节点测量到所述通信链路的接收信噪比低于第四预设门限值;或者
    所述网络侧节点测量的所述通信链路的测量值的变化率达到第五预设门限值。
  31. 根据权利要求29所述的方法,其中,所述网络侧节点确定与所述终端之间进行业务传输的高频波束的通信链路异常的步骤之后,所述网络侧节点向所述终端发送指示至少一个波束集合的触发信令的步骤之前,所述方法还包括:
    启动预设计数时长的计数器;
    则所述网络侧节点向所述终端发送指示至少一个波束集合的触发信令的步骤,包括:
    在所述计数器计数到达所述预设计数时长时,所述网络侧节点向所述终端发送指示至少一个波束集合的触发信令。
  32. 根据权利要求29所述的方法,其中,所述网络侧节点确定与所述终端之间进行业务传输的高频波束的通信链路异常的步骤之后,所述网络侧节点向所述终端发送指示至少一个波束集合的触发信令的步骤之前,所述方法 还包括:
    在所述网络侧节点与所述终端之间进行业务传输的高频波束的通信链路异常时,所述网络侧节点切换至宽波束、低频波束或者多个窄波束,并使用所述宽波束、低频波束或者多个窄波束与所述终端继续进行所述业务的数据传输;或者
    在所述网络侧节点与所述终端之间进行业务传输的高频波束的通信链路异常时,所述网络侧节点将所述业务挂起;
    其中,所述宽波束为所述终端与所述网络侧节点预先协商或者由所述网络侧节点通知的,且波瓣比所述高频波束的波瓣要宽并覆盖所述终端的波束;
    所述低频波束为所述终端与所述网络侧节点预先协商或者由所述网络侧节点通知的,且频率比所述高频波束的频率要低并覆盖所述终端的波束;
    所述窄波束为所述终端与所述网络侧节点预先协商或者由所述网络侧节点通知的,且波瓣与所述高频波束的波瓣的差值在预设范围内并覆盖所述终端的波束。
  33. 根据权利要求32所述的方法,其中,所述网络侧节点切换至宽波束、低频波束或者多个窄波束,并使用所述宽波束、低频波束或者多个窄波束与所述终端继续进行所述业务的数据传输的步骤,包括:
    所述网络侧节点切换至宽波束、低频波束或者多个窄波束,并使用所述宽波束、低频波束或者多个窄波束与所述终端以预设低调度编码方案或者预设小数据包方式继续进行所述业务的数据传输。
  34. 根据权利要求19至28中任一项所述的方法,其中,所述网络侧节点向所述终端发送指示至少一个波束集合的触发信令的步骤之前,所述方法还包括:
    所述网络侧节点接收所述终端通过宽波束或低频波束或多个窄波束发送的恢复机制通知消息;
    其中,所述宽波束为波瓣比所述高频波束的波瓣要宽的波束,所述低频波束为频率比所述高频波束的频率要低的波束,所述窄波束为波瓣与所述高频波束的波瓣的差值在预设范围内的波束。
  35. 根据权利要求19至28中任一项所述的方法,其中,所述网络侧节 点向所述终端发送指示至少一个波束集合的触发信令的步骤,包括:
    所述网络侧节点在宽波束或低频波束或多个窄波束通过物理层下行控制信息向所述终端发送指示至少一个波束集合的触发信令;
    其中,所述宽波束为所述终端与所述网络侧节点预先协商或者由所述网络侧节点通知的,且波瓣比所述高频波束的波瓣要宽并覆盖所述终端的波束;
    所述低频波束为所述终端与所述网络侧节点预先协商或者由所述网络侧节点通知的,且频率比所述高频波束的频率要低并覆盖所述终端的波束;
    所述窄波束为所述终端与所述网络侧节点预先协商或者由所述网络侧节点通知的,且波瓣与所述高频波束的波瓣的差值在预设范围内并覆盖所述终端的波束。
  36. 根据权利要求19至28中任一项所述的方法,其中,所述方法还包括:
    在所述网络侧节点与所述终端通过所述目标波束恢复所述业务的数据传输后并在数据传输时,所述网络侧节点与所述终端通过波束训练过程,寻找切换波束;以及
    所述网络侧节点切换至所述切换波束,并使用所述切换波束与所述终端进行所述业务的数据传输。
  37. 一种终端,包括:
    触发信令接收模块,用于若所述终端与网络侧节点之间进行业务传输的高频波束的通信链路异常,接收所述网络侧节点发送的指示至少一个波束集合的触发信令;以及
    第一数据传输恢复模块,用于通过所述至少一个波束集合中的目标波束恢复所述业务的数据传输;
    其中,所述目标波束为所述终端或者所述网络侧节点在所述至少一个波束集合中确定的目标波束。
  38. 根据权利要求37所述的终端,其中,所述终端还包括:
    第一参考信号传输模块,用于通过所述至少一个波束集合内的波束传输参考信号;
    其中,所述目标波束为所述终端对所述参考信号进行测量而确定的目标 波束,或者所述目标波束为所述终端接收所述网络侧节点通知的目标波束。
  39. 根据权利要求38所述的终端,其中,所述第一参考信号传输模块包括:
    第一参考信号发送单元,用于在所述至少一个波束集合内的上行波束上向所述网络侧节点发送参考信号;以及
    第一反馈信息接收单元,用于接收所述网络侧节点发送的指示所述目标波束的反馈信息,其中,所述目标波束为所述网络侧节点根据对所述终端发射的参考信号进行测量的测量结果确定的上行波束。
  40. 根据权利要求38所述的终端,其中,所述第一参考信号传输模块包括:
    第一参考信号接收单元,用于接收所述网络侧节点在所述至少一个波束集合内的下行波束上发送的参考信号;
    第一测量单元,用于对所述网络侧节点发送的参考信号进行测量,获取测量结果;
    第一确定单元,用于根据所述测量结果,在所述至少一个波束集合的下行波束中确定所述目标波束;以及
    第一反馈信息发送单元,用于向所述网络侧节点发送指示所述目标波束的反馈信息。
  41. 根据权利要求40所述的终端,其中,所述第一确定单元用于根据所述测量结果,在所述至少一个波束集合的下行波束中确定传输质量最优的下行波束作为所述目标波束;或者
    所述第一确定单元用于若所述终端根据所述测量结果查找到在所述至少一个波束集合内存在传输质量高于第一预设门限的下行波束时,将所述传输质量高于预设门限的下行波束确定为所述目标波束。
  42. 根据权利要求41所述的终端,其中,所述传输质量包括接收功率、接收质量和信噪比中的至少一项。
  43. 根据权利要求38所述的终端,其中,所述触发信令包括参考信号的发送图样信息,或者上述触发信令用于指示所述终端与所述网络侧节点预先约定的参考信号的发送图样信息;
    其中,所述发送图样信息用于指示所述至少一个波束集合,以及指示所述终端与所述网络侧节点之间在所述至少一个波束集合内发送参考信号的次序。
  44. 根据权利要求43所述的终端,其中,所述发送参考信号的次序,包括:
    优先发送所述至少一个波束集合内的高频波束的次序。
  45. 根据权利要求43所述的终端,其中,所述至少一个波束集合包括所述终端预先维护的包括所述高频波束在内的原波束集合,则所述发送参考信号的次序,包括:
    在所述原波束集合内,以所述高频波束为中心按照空间方位由近到远的发送次序;或者
    在所述原波束集合内,以所述高频波束为中心按照空间方位远近交替的发送次序;或者
    在所述原波束集合内,以所述高频波束为中心按照空间方位由远到近的发送次序。
  46. 根据权利要求43所述的终端,其中,所述至少一个波束集合包括所述终端预先维护的包括所述高频波束在内的原波束集合,以及至少一个目标波束集合,则所述发送参考信号的次序,包括:
    在所述原波束集合和所述至少一个目标波束集合内的波束混合发送次序;或者
    若只包括一个目标波束集合,则优先发送所述目标波束集合内的波束的次序;或者
    若包括多个目标波束集合,则优先发送所述多个目标波束集合内的波束,且所述多个目标波束集合之间按集合交替发送的次序;或者
    若包括多个目标波束集合,则优先发送所述多个目标波束集合内的波束,且所述多个目标波束集合之间按集合顺序发送的次序。
  47. 根据权利要求37至46中任一项所述的终端,其中,所述终端还包括:
    第一异常确定模块,用于确定与所述网络侧节点之间进行业务传输的高 频波束的通信链路异常;以及
    通知消息发送模块,用于向所述网络侧节点发送恢复机制通知消息。
  48. 根据权利要求47所述的终端,其中,所述通信链路异常,包括:
    所述终端在预定的位置没有收到来自所述网络侧节点发送的肯定应答反馈或者否定应答反馈;或者
    所述终端测量到所述通信链路的接收质量低于第二预设门限值;或者
    所述终端测量到所述通信链路的接收功率低于第三预设门限值;或者
    所述终端测量到所述通信链路的接收信噪比低于第四预设门限值;或者
    所述终端测量的所述通信链路的测量值的变化率达到第五预设门限值。
  49. 根据权利要求47所述的终端,其中,所述通知消息发送模块用于通过宽波束或低频波束或多个窄波束向所述网络侧节点发送恢复机制通知消息;
    其中,所述宽波束为波瓣比所述高频波束的波瓣要宽的波束,所述低频波束为频率比所述高频波束的频率要低的波束,所述窄波束为波瓣与所述高频波束的波瓣的差值在预设范围内的波束。
  50. 根据权利要求47所述的终端,其中,所述终端还包括:
    第一计数器启动模块,用于启动预设计数时长的计数器;
    则所述通知消息发送模块用于在所述计数器计数到达所述预设计数时长时,向所述网络侧节点发送恢复机制通知消息。
  51. 根据权利要求47所述的终端,其中,所述终端还包括:
    第一数据传输模块,用于在所述终端与所述网络侧节点之间进行业务传输的高频波束的通信链路异常时,所述终端切换至宽波束、低频波束或者多个窄波束,并使用所述宽波束、低频波束或者多个窄波束与所述网络侧节点继续进行所述业务的数据传输;或者
    第一业务挂起模块,用于在所述终端与所述网络侧节点之间进行业务传输的高频波束的通信链路异常时,将所述业务挂起;
    其中,所述宽波束为所述终端与所述网络侧节点预先协商或者由所述网络侧节点通知的,且波瓣比所述高频波束的波瓣要宽并覆盖所述终端的波束;
    所述低频波束为所述终端与所述网络侧节点预先协商或者由所述网络侧 节点通知的,且频率比所述高频波束的频率要低并覆盖所述终端的波束;
    所述窄波束为所述终端与所述网络侧节点预先协商或者由所述网络侧节点通知的,且波瓣与所述高频波束的波瓣的差值在预设范围内并覆盖所述终端的波束。
  52. 根据权利要求51所述的终端,其中,所述第一数据传输模块用于切换至宽波束、低频波束或者多个窄波束,并使用所述宽波束、低频波束或者多个窄波束与所述网络侧节点以预设低调度编码方案或者预设小数据包方式继续进行所述业务的数据传输。
  53. 根据权利要求37至46中任一项所述的终端,其中,所述触发信令接收模块用于在宽波束或低频波束或多个窄波束接收所述网络侧节点通过物理层下行控制信息发送的指示至少一个波束集合的触发信令;
    其中,所述宽波束为所述终端与所述网络侧节点预先协商或者由所述网络侧节点通知的,且波瓣比所述高频波束的波瓣要宽并覆盖所述终端的波束;
    所述低频波束为所述终端与所述网络侧节点预先协商或者由所述网络侧节点通知的,且频率比所述高频波束的频率要低并覆盖所述终端的波束;
    所述窄波束为所述终端与所述网络侧节点预先协商或者由所述网络侧节点通知的,且波瓣与所述高频波束的波瓣的差值在预设范围内并覆盖所述终端的波束。
  54. 根据权利要求37至46中任一项所述的终端,其中,所述终端还包括:
    第一寻找模块,用于在所述终端与所述网络侧节点通过所述目标波束恢复所述业务的数据传输后并在数据传输时,与所述网络侧节点通过波束训练过程,寻找切换波束;以及
    第一切换模块,用于切换至所述切换波束,并使用所述切换波束与所述网络侧节点进行所述业务的数据传输。
  55. 一种网络侧节点,包括:
    触发信令发送模块,用于若所述网络侧节点与终端之间进行业务传输的高频波束的通信链路异常,向所述终端发送指示至少一个波束集合的触发信令;以及
    第二数据传输恢复模块,用于通过所述至少一个波束集合中的目标波束恢复所述业务的数据传输;
    其中,所述目标波束为所述终端或者所述网络侧节点在所述至少一个波束集合中确定的目标波束。
  56. 根据权利要求55所述的网络侧节点,其中,所述网络侧节点还包括:
    第二参考信号传输模块,用于通过所述至少一个波束集合内的波束传输参考信号;
    其中,所述目标波束为所述网络侧节点对所述参考信号进行测量而确定的目标波束或者所述目标波束为所述网络侧节点接收所述终端通知的目标波束。
  57. 根据权利要求56所述的网络侧节点,其中,所述第二参考信号传输模块包括:
    第二参考信号发送单元,用于在所述至少一个波束集合内的下行波束上向所述终端发送参考信号;以及
    第二反馈信息接收单元,用于接收所述终端发送的指示所述目标波束的反馈信息,其中,所述目标波束为所述终端根据对所述网络侧节点发射的参考信号进行测量的测量结果确定的下行波束。
  58. 根据权利要求56所述的网络侧节点,其中,所述第二参考信号传输模块包括:
    第二参考信号接收单元,用于接收所述终端在所述至少一个波束集合内的上行波束上发送的参考信号;
    第二测量单元,用于对所述终端发送的参考信号进行测量,获取测量结果;
    第二确定单元,用于根据所述测量结果,在所述至少一个波束集合的上行波束中确定所述目标波束;以及
    第二反馈信息发送单元,用于向所述终端发送指示所述目标波束的反馈信息。
  59. 根据权利要求58所述的网络侧节点,其中,所述第二确定单元用于根据所述测量结果,在所述至少一个波束集合的上行波束中确定传输质量最 优的上行波束作为所述目标波束;或者
    所述第二确定单元用于若所述网络侧节点根据所述测量结果查找到在所述至少一个波束集合内存在传输质量高于第一预设门限的上行波束时,将所述传输质量高于预设门限的上行波束确定为所述目标波束。
  60. 根据权利要求59所述的网络侧节点,其中,所述传输质量包括接收功率、接收质量和信噪比中的至少一项。
  61. 根据权利要求56所述的网络侧节点,其中,所述触发信令包括参考信号的发送图样信息,或者上述触发信令用于指示所述终端与所述网络侧节点预先约定的参考信号的发送图样信息;
    其中,所述发送图样信息用于指示所述至少一个波束集合,以及指示所述终端与所述网络侧节点之间在所述至少一个波束集合内发送参考信号的次序。
  62. 根据权利要求61所述的网络侧节点,其中,所述发送参考信号的次序,包括:
    优先发送所述至少一个波束集合内的高频波束的次序。
  63. 根据权利要求61所述的网络侧节点,其中,所述至少一个波束集合包括所述终端预先维护的包括所述高频波束在内的原波束集合,则所述发送参考信号的次序,包括:
    在所述原波束集合内,以所述高频波束为中心按照空间方位由近到远的发送次序;或者
    在所述原波束集合内,以所述高频波束为中心按照空间方位远近交替的发送次序;或者
    在所述原波束集合内,以所述高频波束为中心按照空间方位由远到近的发送次序。
  64. 根据权利要求61所述的网络侧节点,其中,所述至少一个波束集合包括所述终端预先维护的包括所述高频波束在内的原波束集合,以及至少一个目标波束集合,则所述发送参考信号的次序,包括:
    在所述原波束集合和所述至少一个目标波束集合内的波束混合发送次序;或者
    若只包括一个目标波束集合,则优先发送所述目标波束集合内的波束的次序;或者
    若包括多个目标波束集合,则优先发送所述多个目标波束集合内的波束,且所述多个目标波束集合之间按集合交替发送的次序;或者
    若包括多个目标波束集合,则优先发送所述多个目标波束集合内的波束,且所述多个目标波束集合之间按集合顺序发送的次序。
  65. 根据权利要求55至64中任一项所述的网络侧节点,其中,所述网络侧节点还包括:
    第二异常确定模块,用于所述网络侧节点确定与所述终端之间进行业务传输的高频波束的通信链路异常。
  66. 根据权利要求65所述的网络侧节点,其中,所述通信链路异常,包括:
    所述网络侧节点在预定的位置没有收到来自所述终端发送的肯定应答反馈或者否定应答反馈;或者
    所述网络侧节点测量到所述通信链路的接收质量低于第二预设门限值;或者
    所述网络侧节点测量到所述通信链路的接收功率低于第三预设门限值;或者
    所述网络侧节点测量到所述通信链路的接收信噪比低于第四预设门限值;或者
    所述网络侧节点测量的所述通信链路的测量值的变化率达到第五预设门限值。
  67. 根据权利要求65所述的网络侧节点,其中,所述网络侧节点还包括:
    第二计数器启动模块,用于启动预设计数时长的计数器;
    则所述触发信令发送模块,用于在所述计数器计数到达所述预设计数时长时,向所述终端发送指示至少一个波束集合的触发信令。
  68. 根据权利要求65所述的网络侧节点,其中,所述网络侧节点还包括:
    第二数据传输模块,用于在所述网络侧节点与所述终端之间进行业务传输的高频波束的通信链路异常时,所述网络侧节点切换至宽波束、低频波束 或者多个窄波束,并使用所述宽波束、低频波束或者多个窄波束与所述终端继续进行所述业务的数据传输;或者
    第二业务挂起模块,用于在所述网络侧节点与所述终端之间进行业务传输的高频波束的通信链路异常时,所述网络侧节点将所述业务挂起;
    其中,所述宽波束为所述终端与所述网络侧节点预先协商或者由所述网络侧节点通知的,且波瓣比所述高频波束的波瓣要宽并覆盖所述终端的波束;
    所述低频波束为所述终端与所述网络侧节点预先协商或者由所述网络侧节点通知的,且频率比所述高频波束的频率要低并覆盖所述终端的波束;
    所述窄波束为所述终端与所述网络侧节点预先协商或者由所述网络侧节点通知的,且波瓣与所述高频波束的波瓣的差值在预设范围内并覆盖所述终端的波束。
  69. 根据权利要求68所述的网络侧节点,其中,所述第二数据传输模块用于切换至宽波束、低频波束或者多个窄波束,并使用所述宽波束、低频波束或者多个窄波束与所述终端以预设低调度编码方案或者预设小数据包方式继续进行所述业务的数据传输。
  70. 根据权利要求55至64中任一项所述的网络侧节点,其中,所述网络侧节点还包括:
    通知消息接收模块,用于所述网络侧节点接收所述终端通过宽波束或低频波束或多个窄波束发送的恢复机制通知消息;
    其中,所述宽波束为波瓣比所述高频波束的波瓣要宽的波束,所述低频波束为频率比所述高频波束的频率要低的波束,所述窄波束为波瓣与所述高频波束的波瓣的差值在预设范围内的波束。
  71. 根据权利要求55至64中任一项所述的网络侧节点,其中,所述触发信令发送模块用于在宽波束或低频波束或多个窄波束通过物理层下行控制信息向所述终端发送指示至少一个波束集合的触发信令;
    其中,所述宽波束为所述终端与所述网络侧节点预先协商或者由所述网络侧节点通知的,且波瓣比所述高频波束的波瓣要宽并覆盖所述终端的波束;
    所述低频波束为所述终端与所述网络侧节点预先协商或者由所述网络侧节点通知的,且频率比所述高频波束的频率要低并覆盖所述终端的波束;
    所述窄波束为所述终端与所述网络侧节点预先协商或者由所述网络侧节点通知的,且波瓣与所述高频波束的波瓣的差值在预设范围内并覆盖所述终端的波束。
  72. 根据权利要求55至64中任一项所述的网络侧节点,其中,所述网络侧节点还包括:
    第二寻找模块,用于在所述网络侧节点与所述终端通过所述目标波束恢复所述业务的数据传输后并在数据传输时,与所述终端通过波束训练过程,寻找切换波束;以及
    第二切换模块,用于所述网络侧节点切换至所述切换波束,并使用所述切换波束与所述终端进行所述业务的数据传输。
  73. 一种终端,包括:处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至18中任一项所述的恢复数据传输的方法中的步骤。
  74. 一种网络侧节点,包括:处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求19至36中任一项所述的恢复数据传输的方法中的步骤。
  75. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至18中任一项所述的恢复数据传输的方法中的步骤。
  76. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求19至36中任一项所述的恢复数据传输的方法中的步骤。
PCT/CN2017/111155 2016-11-24 2017-11-15 一种恢复数据传输的方法、终端和网络侧节点 WO2018095257A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611052077.9 2016-11-24
CN201611052077.9A CN108377554B (zh) 2016-11-24 2016-11-24 一种恢复数据传输的方法、终端和网络侧节点

Publications (1)

Publication Number Publication Date
WO2018095257A1 true WO2018095257A1 (zh) 2018-05-31

Family

ID=62194813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/111155 WO2018095257A1 (zh) 2016-11-24 2017-11-15 一种恢复数据传输的方法、终端和网络侧节点

Country Status (2)

Country Link
CN (1) CN108377554B (zh)
WO (1) WO2018095257A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114666905A (zh) 2018-12-28 2022-06-24 维沃移动通信有限公司 上行信号发送方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008151325A1 (en) * 2007-06-07 2008-12-11 Qualcomm Incorporated Forward handover under radio link failure
CN101411228A (zh) * 2006-03-28 2009-04-15 京瓷株式会社 移动台和基站
CN103442397A (zh) * 2013-08-01 2013-12-11 西安交通大学 Lte-a中继系统及其基于辅助载波的协作切换方法
WO2016095688A1 (zh) * 2014-12-18 2016-06-23 华为技术有限公司 网络侧设备、用户设备及盲区管理方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104301067B (zh) * 2013-07-19 2018-09-21 华为技术有限公司 Dm-rs图样指示方法和装置
CN104767592B (zh) * 2014-01-02 2019-01-01 中国移动通信集团公司 一种csi-rs的端口配置、csi-rs传输的方法和设备
CN104869649B (zh) * 2015-06-16 2018-02-13 江苏省邮电规划设计院有限责任公司 一种lte系统中多点协作传输多小区测量导频配置方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101411228A (zh) * 2006-03-28 2009-04-15 京瓷株式会社 移动台和基站
WO2008151325A1 (en) * 2007-06-07 2008-12-11 Qualcomm Incorporated Forward handover under radio link failure
CN103442397A (zh) * 2013-08-01 2013-12-11 西安交通大学 Lte-a中继系统及其基于辅助载波的协作切换方法
WO2016095688A1 (zh) * 2014-12-18 2016-06-23 华为技术有限公司 网络侧设备、用户设备及盲区管理方法

Also Published As

Publication number Publication date
CN108377554B (zh) 2021-01-08
CN108377554A (zh) 2018-08-07

Similar Documents

Publication Publication Date Title
WO2018196851A1 (zh) 波束失败恢复方法和终端
WO2018141238A1 (zh) 一种波束恢复处理方法、网络侧设备及移动终端
JP7349444B2 (ja) ビーム障害処理方法、端末及びネットワーク機器
WO2018196855A1 (zh) 波束恢复处理方法和终端
WO2018137485A1 (zh) 上行数据的发送方法和接收方法、用户终端和网络侧设备
JP7313474B2 (ja) アンテナパネルの応用方法、装置及び記憶媒体
WO2018171669A1 (zh) 一种波束的测量上报方法、终端侧设备及网络侧设备
WO2019184690A1 (zh) 确定波束失败检测参考信号bfd rs资源的方法和设备
EP3768019B1 (en) Communication method and communication device
WO2018224013A1 (zh) 波束失败处理方法、终端及网络设备
WO2019029609A1 (zh) 波束切换方法、移动终端及计算机可读存储介质
WO2018145296A1 (zh) 一种数据传输的方法、相关设备以及系统
BR112021014382A2 (pt) Método para recuperação de falha de feixe, método para tratamento de falha de feixe, terminal e dispositivo do lado da rede.
WO2018113593A1 (zh) 一种波束管理信息的配置、处理方法、终端及基站
JP7074884B2 (ja) ビーム失敗検出方法、情報配置方法、端末及びネットワーク機器
JP2020501404A (ja) ビームリカバリをトリガするシステム及び方法
US20140120921A1 (en) Methods, apparatuses and computer program products for providing an optimized handover preparation and execution operation
WO2018082435A1 (zh) 终端设备移动性的处理方法、终端设备和基站
WO2018228360A1 (zh) 通信方法、移动终端、基站及计算机可读存储介质
WO2019192473A1 (zh) 波束失败恢复方法、终端及网络设备
WO2019029562A1 (zh) 波束失败恢复方法和用户终端
WO2019154318A1 (zh) 波束失败恢复的处理方法及终端设备
WO2018095257A1 (zh) 一种恢复数据传输的方法、终端和网络侧节点
WO2019153156A1 (zh) 无线通信方法和设备
WO2019062529A1 (zh) 小区测量值上报方法、小区测量值接收方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17872969

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17872969

Country of ref document: EP

Kind code of ref document: A1