WO2019184690A1 - 确定波束失败检测参考信号bfd rs资源的方法和设备 - Google Patents

确定波束失败检测参考信号bfd rs资源的方法和设备 Download PDF

Info

Publication number
WO2019184690A1
WO2019184690A1 PCT/CN2019/077652 CN2019077652W WO2019184690A1 WO 2019184690 A1 WO2019184690 A1 WO 2019184690A1 CN 2019077652 W CN2019077652 W CN 2019077652W WO 2019184690 A1 WO2019184690 A1 WO 2019184690A1
Authority
WO
WIPO (PCT)
Prior art keywords
bfd
resource
determining
reference signal
index
Prior art date
Application number
PCT/CN2019/077652
Other languages
English (en)
French (fr)
Inventor
杨宇
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2019184690A1 publication Critical patent/WO2019184690A1/zh
Priority to US17/030,381 priority Critical patent/US11546106B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies

Definitions

  • the present disclosure relates to the field of communications, and in particular, to a method and apparatus for determining a beam failure detection reference signal BFD RS resource.
  • the network side device configures a beam failure detection reference signal (BFD RS) resource for the user equipment (UE), and the UE measures the BFD RS according to the configured BFD RS resource. After the beam failure event is determined, the beam failure recovery request is reported to the network side device to facilitate beam failure recovery.
  • BFD RS beam failure detection reference signal
  • the BFD RS resource is configured by the network side device. However, if the network side device does not configure the BFD RS resource for the UE, how does the UE determine that the BFD RS resource has not been resolved.
  • the purpose of the embodiments of the present disclosure is to provide a method and a device for determining a BFD RS resource of a beam failure detection reference signal, which is applied to a user side device, and is used to determine a BFD RS resource without being configured with BFD RS resources.
  • an embodiment of the present disclosure provides a method for determining a BFD RS resource of a beam failure detection reference signal, which is applied to a user side device, including:
  • the TCI state is determined according to the transmission configuration of the control resource set CORESET, and the BFD RS resource is determined.
  • an embodiment of the present disclosure provides a user side device, including:
  • a resource determining unit configured to determine the BFD RS resource according to a TCI state of the transmission configuration of the control resource set CORESET when the BFD RS resource that is not configured to perform the beam failure detection reference signal BFD RS measurement is used.
  • an embodiment of the present disclosure provides a user side device, including: a memory, a processor, and a computer program stored on the memory and executable on the processor, where the computer program is processed The steps of the method as described in the first aspect above are implemented when executed.
  • an embodiment of the present disclosure provides a computer readable storage medium, where the computer readable storage medium stores a computer program, and when the computer program is executed by a processor, implementing the method according to the first aspect described above A step of.
  • the BFD RS resource can be determined according to the TCI state of the CORESET, so that the user side device can perform beam failure detection and beam failure recovery when the BFD RS resource is not configured for the BFD RS measurement.
  • the delay required for the user side equipment to recover the data transmission is reduced, and the data transmission performance of the communication system is improved.
  • FIG. 1 is a schematic flowchart of a method for determining a BFD RS resource according to an embodiment of the present disclosure
  • FIG. 2 is a schematic flowchart of a beam failure recovery method according to an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of a module of a user side device according to an embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram of a user side device according to an embodiment of the present disclosure.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution advanced
  • New Radio, NR New Radio
  • the UE may also be referred to as a client, a mobile terminal, a mobile user device, or the like.
  • the UE may communicate with one or more core networks via a radio access network, such as a Radio Access Network (RAN).
  • RAN Radio Access Network
  • the user side device may be a mobile terminal such as a mobile phone (or "cellular" phone) and a computer having a mobile terminal, for example, a portable, pocket, handheld, computer built-in or in-vehicle mobile device,
  • the wireless access network exchanges languages and/or data.
  • the network side device is configured to communicate with the user side device, and may be a Base Transceiver Station (BTS) in GSM or CDMA, or a base station (NodeB) in WCDMA, or an evolved base station in LTE (evolutional)
  • BTS Base Transceiver Station
  • NodeB base station
  • LTE evolutional
  • a method and a device for determining a beam failure detection reference signal BFD RS resource are provided in the following embodiments. The following describes the method and device for determining a beam failure detection reference signal BFD RS resource.
  • Control Resource Set (CORESET);
  • TCI Transmission Configuration Indication
  • QCL Quasi-Colocation
  • BWP Bandwidth Part
  • CSI-RS Channel State Information-Reference Signal
  • Radio Resource Control (RRC);
  • PDCCH Physical Downlink Control Channel
  • MAC Media Access Control
  • PRACH Physical Random Access Channel
  • BFD Beam Failure Detection
  • Azimuth angle of Arrival (AoA)
  • Azimuth angle of Departure (AoD)
  • RSRP Reference Signal Receiving Power
  • FIG. 1 is a schematic flowchart of a method for determining a BFD RS resource according to an embodiment of the present disclosure. As shown in FIG. 1 , the method includes:
  • Step 102 Determine the BFD RS resource according to the TCI state of the CORESET when the BFD RS resource for the BFD RS measurement is not configured.
  • the BFD RS resource can be determined according to the TCI state of the CORESET, so that the user side device can perform beam failure detection and beam failure recovery when the BFD RS resource is not configured for the BFD RS measurement.
  • the delay required for the user side equipment to recover the data transmission is reduced, and the data transmission performance of the communication system is improved.
  • the TCI state is used to indicate the RS set.
  • the BFD RS resource is determined according to the TCI state of the CORESET. Specifically, the BFD RS resource is determined according to the RS set indicated by the TCI state.
  • the RS set includes at least one RS index and a QCL type corresponding to the RS index.
  • the BFD RS resource is determined according to the RS set indicated by the TCI status, specifically:
  • Table 1 is a schematic diagram of the correspondence between the TCI state and the RS set according to an embodiment of the present disclosure. As shown in Table 1, different TCI states correspond to different RS sets.
  • the TCI state in the embodiment of the present disclosure may indicate one or more RS sets, which are not limited herein.
  • Table 2 is a schematic table of specific content included in an RS set according to an embodiment of the present disclosure. As shown in Table 2, the RS set includes at least one RS index and a QCL type corresponding to the RS index.
  • the number of RS indexes included in the RS set is at least one, and the upper limit of the number is not limited in this embodiment.
  • the RS index of the specified QCL type is determined as a BFD RS resource index, and then the BFD RS resource is determined according to the BFD RS resource index.
  • the specified QCL type includes: Type D, that is, type D, and in Table 2 of Table 1, the CSI-RS resource index 2 is determined as a BFD RS resource index. Then, according to the BFD RS resource index, the BFD RS resource is determined.
  • the QCL parameter corresponding to the specified QCL type is also determined as the QCL parameter of the BFD RS resource.
  • the specified QCL type includes: Type D
  • the QCL parameter corresponding to the specified QCL type includes: a Spatial Rx parameter. Therefore, the QCL parameters of the BFD RS resource include spatial reception parameters.
  • the spatial reception parameter includes at least one of the following:
  • AoA Dominant AoA, average AoA, AoA Power Angular Spectrum of AoA, PAS of AoA, average AoD (AoD), AoD power angle spectrum (Power Angular Spectrum of AoD, PAS of AoD), transmit channel correlation, receive channel correlation, transmit beamforming, receive beamforming, spatial channel correlation (spatial channel) Correlation).
  • the specified QCL type is set to the type D
  • the beneficial effects include: determining the spatial receiving parameter of the BFD RS resource according to the RS index of the QCL type QCL type D in the RS set, and determining the spatial receiving parameter of the BFD RS resource, the UE The receiving beam is adjusted according to the spatial receiving parameter, so that the receiving beam is aligned with the transmitting direction of the BFD RS resource, so that the quality of the BFD RS resource can be accurately measured, and whether a beam failure event occurs is determined according to the measurement result.
  • the TCI state of the CORESET includes the TCI state of the CORESET of the current BWP of the current cell.
  • the network side device configures and indicates the TCI status of the CORESET for each CORESET of the current BWP of the current cell where the UE is located by using RRC signaling, and the TCI status of the CORESET indicates the QCL parameter for monitoring the PDCCH on the CORESET, and is transmitted on the CORESET.
  • the TCI status of each PDCCH is the same.
  • Table 2 in Table 1 above is an example.
  • the parameters of the QCL type A corresponding to the CSI-RS resource index 1 are used, including Doppler frequency shift, Doppler spread, and average. Delay, delay spread (Doppler shift, Doppler spread, average delay, delay spread), etc., and parameters of the QCL type D corresponding to the CSI-RS resource index 2, including a spatial Rx parameter.
  • the UE determines that the BFD RS resource index is the CSI-RS resource index 2
  • the UE determines the BFD RS resource according to the BFD RS resource index, and detects the quality of the beam where the BFD RS resource is located.
  • the TCI state of the CORESET is set to include the TCI state of the CORESET of the current BWP of the current cell
  • the UE may be configured to determine the BFD RS resource of the current BWP of the current cell according to the TCI state, thereby determining the current BFD RS resource according to the measurement result of the BFD RS resource. Whether a beam failure event occurs on the current BWP of the cell, and the current BWP is the current active BWP (active BWP).
  • the BFD RS includes at least one of a periodic CSI-RS and an SSB.
  • FIG. 2 is a schematic flowchart of a beam failure recovery method according to an embodiment of the present disclosure.
  • the method may be applied to a user side device, and is performed by a user side device. As shown in FIG. 2, the method includes:
  • Step 202 Determine whether a BFD RS resource is configured.
  • step 206 If yes, go to step 206, otherwise, go to step 204.
  • Step 204 Determine a BFD RS resource and its QCL parameter according to a TCI state of the CORESET.
  • This step is the same as the method in Figure 1, and is not repeated.
  • Step 206 Detect whether a beam failure event occurs on the current BWP of the current cell according to the BFD RS resource and its QCL parameter.
  • the UE measures the BFD RS according to the BFD RS resource and its QCL parameter at the physical layer, and determines whether a beam failure event occurs according to the measurement result. If so, step 208 is performed, otherwise, the process ends.
  • Step 208 searching for a candidate beam.
  • the UE measures a candidate beam reference signal at the physical layer to find a new candidate beam.
  • the measurement result that meets the preset condition is reported to the upper layer of the UE, and the high layer of the UE selects the candidate beam based on the reporting of the physical layer.
  • the upper layer of the UE may be a MAC layer, and the preset condition is met: the measurement quality of the candidate beam reference signal exceeds a preset threshold, and the reported content includes a candidate beam reference signal index and its quality (such as RSRP).
  • Step 210 Send a beam failure recovery request to the network side device according to the found candidate beam to perform beam failure recovery.
  • the UE high layer determines a PRACH resource according to the selected candidate beam. If the UE determines that the trigger condition of the beam failure recovery request is met, the UE sends a beam failure recovery request to the network side device on the determined PRACH resource. The UE needs to send a beam failure recovery request according to the number of request transmissions configured by the network side device and/or the request transmission time to perform beam failure recovery.
  • the UE may determine the BFD RS resource and its QCL parameter according to the TCI state of the CORESET, so that when the UE does not configure the BFD RS resource on the network side device,
  • the beam failure detection and recovery mechanism can still be performed, and the failure and reconstruction of the radio link need not be performed due to the failure of beam failure detection and beam failure recovery, thereby reducing the delay required for recovering data transmission and improving the data transmission performance of the communication system.
  • this embodiment provides a user-side device, and the user-side device provided by the embodiment of the present disclosure may implement various processes implemented by the user-side device in the foregoing embodiment.
  • FIG. 3 is a schematic structural diagram of a module of a user-side device according to an embodiment of the present disclosure. As shown in FIG. 3, the user-side device includes:
  • the resource determining unit 31 is configured to determine the BFD RS resource according to the TCI state of the transmission configuration of the control resource set CORESET when the BFD RS resource for the beam failure detection reference signal BFD RS measurement is not configured.
  • the TCI state is used to indicate a reference signal RS set
  • the resource determining unit 31 is specifically configured to:
  • the RS set includes at least one RS index and a quasi co-location QCL type corresponding to the RS index;
  • the resource determining unit 31 is specifically configured to:
  • the specified QCL type includes: type D.
  • the user side device further includes:
  • a parameter determining unit configured to determine a QCL parameter corresponding to the specified QCL type as a QCL parameter of the BFD RS resource.
  • the QCL parameter corresponding to the specified QCL type includes: a spatial receiving parameter.
  • the TCI state of the CORESET includes: a TCI state of a CORESET of a current bandwidth portion BWP of the current cell.
  • the beam failure detection reference signal BFD RS includes at least one of a periodic channel state information reference signal CSI-RS and a synchronization signal block SSB.
  • the BFD RS resource can be determined according to the TCI state of the CORESET, so that the user side device can perform beam failure detection and beam failure recovery when the BFD RS resource is not configured for the BFD RS measurement.
  • the delay required for the user side equipment to recover the data transmission is reduced, and the data transmission performance of the communication system is improved.
  • this embodiment provides a user-side device, and the user-side device provided by the embodiment of the present disclosure may implement various processes implemented by the user-side device in the foregoing embodiment.
  • FIG. 4 is a schematic structural diagram of a user-side device according to an embodiment of the present disclosure.
  • the user-side device 1300 includes: at least one processor 1301, a memory 1302, at least one network interface 1304, and a user interface 1303.
  • the various components in the user side device 1300 are coupled together by a bus system 1305.
  • the bus system 1305 is used to implement connection communication between these components.
  • the bus system 1305 includes a power bus, a control bus, and a status signal bus in addition to the data bus.
  • various buses are labeled as bus system 1305 in FIG.
  • the user interface 1303 may include a display, a keyboard, or a pointing device (eg, a mouse, a trackball, a touchpad, or a touch screen, etc.).
  • a pointing device eg, a mouse, a trackball, a touchpad, or a touch screen, etc.
  • the memory 1302 in the embodiments of the present disclosure may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (PROM), an erasable programmable read only memory (Erasable PROM, EPROM), or an electric Erase programmable read only memory (EEPROM) or flash memory.
  • the volatile memory can be a Random Access Memory (RAM) that acts as an external cache.
  • RAM Random Access Memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous DRAM).
  • SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • DDRSDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • SDRAM Synchronous Connection Dynamic Random Access Memory
  • DRRAM direct memory bus random access memory
  • the memory 1302 stores elements, executable modules or data structures, or a subset thereof, or their extended set: an operating system 13021 and an application 13022.
  • the operating system 13021 includes various system programs, such as a framework layer, a core library layer, a driver layer, and the like, for implementing various basic services and processing hardware-based tasks.
  • the application 13022 includes various applications, such as a media player (Media Player), a browser (Browser), etc., for implementing various application services.
  • a program implementing the method of the embodiments of the present disclosure may be included in the application 13022.
  • the user side device 1300 further includes: a memory 1302, a processor 1301, and a computer program stored on the memory 1302 and executable on the processor 1301.
  • a computer program stored on the memory 1302 and executable on the processor 1301.
  • the TCI state is determined according to the transmission configuration of the control resource set CORESET, and the BFD RS resource is determined.
  • the method disclosed in the above embodiments of the present disclosure may be applied to the processor 1301 or implemented by the processor 1301.
  • the processor 1301 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 1301 or an instruction in a form of software.
  • the processor 1301 may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), or the like. Programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • the methods, steps, and logic blocks disclosed in the embodiments of the present disclosure may be implemented or carried out.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in connection with the embodiments of the present disclosure may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software modules can be located in a conventional computer readable storage medium of the art, such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the computer readable storage medium is located in a memory 1302, and the processor 1301 reads the information in the memory 1302 and performs the steps of the above method in combination with its hardware.
  • the computer readable storage medium stores a computer program, and when the computer program is executed by the processor 1301, the steps in the above embodiments are implemented.
  • the embodiments described in the embodiments of the present disclosure may be implemented in hardware, software, firmware, middleware, microcode, or a combination thereof.
  • the processing unit can be implemented in one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processing (DSP), Digital Signal Processing Equipment (DSP Device, DSPD), programmable Programmable Logic Device (PLD), Field-Programmable Gate Array (FPGA), general purpose processor, controller, microcontroller, microprocessor, other for performing the functions described in this disclosure In an electronic unit or a combination thereof.
  • ASICs Application Specific Integrated Circuits
  • DSP Digital Signal Processing
  • DSP Device Digital Signal Processing Equipment
  • PLD programmable Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • the techniques described in the embodiments of the present disclosure may be implemented by modules (eg, procedures, functions, etc.) that perform the functions described in the embodiments of the present disclosure.
  • the software code can be stored in memory and executed by the processor.
  • the memory can be implemented in the processor or external to the processor.
  • the TCI state is used to indicate a reference signal RS set
  • the determining, according to the transmission configuration of the control resource set CORESET, the TCI status, determining the BFD RS resource including:
  • the RS set when the computer program is executed by the processor 1301, the RS set includes at least one RS index and a quasi co-location QCL type corresponding to the RS index;
  • the determining, according to the RS set indicated by the TCI status, the BFD RS resource including:
  • the specified QCL type includes: type D.
  • the method further includes:
  • the QCL parameter corresponding to the specified QCL type includes: a spatial receiving parameter.
  • the TCI state of the CORESET includes: a TCI state of the CORESET of the current bandwidth portion BWP of the current cell.
  • the beam failure detection reference signal BFD RS includes at least one of a periodic channel state information reference signal CSI-RS and a synchronization signal block SSB.
  • the BFD RS resource can be determined according to the TCI state of the CORESET, so that the user side device can perform beam failure detection and beam failure recovery when the BFD RS resource is not configured for the BFD RS measurement.
  • the delay required for the user side equipment to recover the data transmission is reduced, and the data transmission performance of the communication system is improved.
  • the user side device 1300 can implement various processes implemented by the user side device in the foregoing embodiment. To avoid repetition, details are not described herein again.
  • the embodiment of the present disclosure further provides a computer readable storage medium, where the computer readable storage medium stores a computer program, and when the computer program is executed by the processor, the following process is implemented:
  • the TCI state is determined according to the transmission configuration of the control resource set CORESET, and the BFD RS resource is determined.
  • the TCI state is used to indicate a reference signal RS set
  • the determining, according to the transmission configuration of the control resource set CORESET, the TCI status, determining the BFD RS resource including:
  • the RS set when the computer program is executed by the processor, includes at least one RS index and a quasi co-location QCL type corresponding to the RS index;
  • the determining, according to the RS set indicated by the TCI status, the BFD RS resource including:
  • the specified QCL type includes: type D.
  • the method further includes:
  • the QCL parameter corresponding to the specified QCL type includes: a spatial receiving parameter.
  • the TCI state of the CORESET includes: a TCI state of the CORESET of the current bandwidth portion BWP of the current cell.
  • the beam failure detection reference signal BFD RS includes at least one of a periodic channel state information reference signal CSI-RS and a synchronization signal block SSB.
  • the BFD RS resource can be determined according to the TCI state of the CORESET, so that the user side device can perform beam failure detection and beam failure recovery when the BFD RS resource is not configured for the BFD RS measurement.
  • the delay required for the user side equipment to recover the data transmission is reduced, and the data transmission performance of the communication system is improved.
  • the computer readable storage medium such as a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the embodiments of the present disclosure may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product. Based on such understanding, the technical solution of the embodiments of the present disclosure, or the part contributing to the related art, or the part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the presently disclosed embodiments.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a mobile hard disk, a read only memory, a random access memory, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例提供了一种确定波束失败检测参考信号BFD RS资源的方法和设备,应用于用户侧设备,其中所述方法包括:在未被配置用于进行波束失败检测参考信号BFD RS测量的BFD RS资源时,根据控制资源集CORESET的传输配置指示TCI状态,确定所述BFD RS资源。

Description

确定波束失败检测参考信号BFD RS资源的方法和设备
相关申请的交叉引用
本申请主张在2018年3月27日在中国提交的中国专利申请No.201810260590.X的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信领域,尤其涉及一种确定波束失败检测参考信号BFD RS资源的方法和设备。
背景技术
在高频段通信系统中,由于无线信号的波长较短,较容易发生信号传播被阻挡等情况,导致信号传播中断,因此目前在波束赋形的波束测量机制上引入波束失败恢复机制。波束失败恢复机制中,网络侧设备为用户侧设备(User Equipment,UE)配置波束失败检测参考信号(Beam Failure Detection Reference Signal,BFD RS)资源,UE根据配置的BFD RS资源对BFD RS进行测量,并在确定发生波束失败事件后,向网络侧设备上报波束失败恢复请求,以便于进行波束失败恢复。
相关技术中,BFD RS资源由网络侧设备进行配置,然而,在网络侧设备没有为UE配置BFD RS资源的情况下,UE如何确定BFD RS资源还没有得到解决。
发明内容
本公开实施例的目的是提供一种确定波束失败检测参考信号BFD RS资源的方法和设备,应用于用户侧设备,用于在未被配置BFD RS资源的情况下确定BFD RS资源。
为达到上述目的,第一方面,本公开实施例提供了一种确定波束失败检测参考信号BFD RS资源的方法,应用于用户侧设备,包括:
在未被配置用于进行波束失败检测参考信号BFD RS测量的BFD RS资 源时,根据控制资源集CORESET的传输配置指示TCI状态,确定所述BFD RS资源。
第二方面,本公开实施例提供了一种用户侧设备,包括:
资源确定单元,用于在未被配置用于进行波束失败检测参考信号BFD RS测量的BFD RS资源时,根据控制资源集CORESET的传输配置指示TCI状态,确定所述BFD RS资源。
第三方面,本公开实施例提供了一种用户侧设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如上述第一方面所述的方法的步骤。
第四方面,本公开实施例提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如上述第一方面所述的方法的步骤。
通过本公开实施例,用户侧设备在未被配置用于进行BFD RS测量的BFD RS资源时,可以根据CORESET的TCI状态,确定BFD RS资源,从而便于用户侧设备进行波束失败检测以及波束失败恢复,避免用户侧设备因无法进行波束失败检测和波束失败恢复而需要执行无线链路失败与重建过程的问题,减少用户侧设备恢复数据传输所需的时延,提升通信系统的数据传输性能。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本公开的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1为本公开一实施例提供的确定BFD RS资源的方法的流程示意图;
图2为本公开一实施例提供的波束失败恢复方法的流程示意图;
图3为本公开一实施例提供的用户侧设备的模块组成示意图;
图4为本公开一实施例提供的用户侧设备的结构示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。说明书以及权利要求中使用“和/或”表示连接对象至少其中之一。
本公开的技术方案,可以应用于各种通信系统,例如:全球移动通讯系统(Global System of Mobile communication,GSM)、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)、增强长期演进(Long Term Evolution advanced,LTE-A)、新空口(New Radio,NR)等。
UE,也可称之为用户端、移动终端(Mobile Terminal)、移动用户设备等。UE可以经无线接入网,例如无线电接入网(Radio Access Network,RAN),与一个或多个核心网进行通信。用户侧设备可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。
网络侧设备,用于与用户侧设备通信,可以是GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB),还可以是LTE中的演进型基站(evolutional Node B,eNB或e-NodeB)及5G基站(gNB),本公开实施例并不限定,但为描述方便,下述实施例以gNB为例进行说明。
考虑到网络侧设备没有为UE配置BFD RS资源的情况,本公开实施例提供了一种确定波束失败检测参考信号BFD RS资源的方法和设备,下面通过实施例进行详细描述。
本公开各个实施例中涉及的英文缩写注释如下。
控制资源集(Control Resource Set,CORESET);
传输配置指示(Transmission Configuration Indication,TCI);
参考信号(Reference Signal,RS);
准共址(Quasi-Colocation,QCL);
带宽部分(Bandwidth Part,BWP)
信道状态信息参考信号(Channel State Information-Reference Signal,CSI-RS);
同步信号块(Synchronization Signal Block,SSB);
无线资源控制(Radio Resource Control,RRC);
物理下行控制信道(Physical Downlink Control Channel,PDCCH);
媒体访问控制(Media Access Control,MAC);
物理随机接入信道(Physical Random Access Channel,PRACH);
波束失败检测(Beam Failure Detection,BFD);
到达角(Azimuth angle of Arrival,AoA);
出发角(Azimuth angle of Departure,AoD);
参考信号接收功率(Reference Signal Receiving Power,RSRP)。
本公开一实施例提供了一种确定BFD RS资源的方法,该方法应用于UE,可以由UE执行。图1为本公开一实施例提供的确定BFD RS资源的方法的流程示意图,如图1所示,该方法包括:
步骤102,在未被配置用于进行BFD RS测量的BFD RS资源时,根据CORESET的TCI状态,确定BFD RS资源。
通过本公开实施例,用户侧设备在未被配置用于进行BFD RS测量的BFD RS资源时,可以根据CORESET的TCI状态,确定BFD RS资源,从而便于用户侧设备进行波束失败检测以及波束失败恢复,避免用户侧设备因无法进行波束失败检测和波束失败恢复而需要执行无线链路失败与重建过程的问题,减少用户侧设备恢复数据传输所需的时延,提升通信系统的数据传输性能。
本实施例中,TCI状态用于指示RS集合,相应地,上述步骤102中,根据CORESET的TCI状态,确定BFD RS资源,具体为:根据TCI状态指示的RS集合,确定BFD RS资源。
本实施例中,RS集合包括至少一个RS索引和该RS索引对应的QCL类型,相应地,上述根据TCI状态指示的RS集合,确定BFD RS资源,具体 为:
(1)将RS集合中对应的QCL类型为指定QCL类型的RS索引,确定为BFD RS资源索引;
(2)根据BFD RS资源索引,确定BFD RS资源。
表1为本公开一实施例提供的TCI状态与RS集合的对应关系示意表,如表1所示,不同的TCI状态对应有不同的RS集合。本公开实施例中TCI状态可以指示一个或多个RS集合,这里不做限制。
表1
TCI状态 RS集合
状态1 集合A
状态2 集合B
表2为本公开一实施例提供的RS集合所包括的具体内容的示意表,如表2所示,RS集合中包括至少一个RS索引和该RS索引对应的QCL类型。
表2
Figure PCTCN2019077652-appb-000001
RS集合中包含的RS索引的数量为至少一个,其数量上限本实施例不做限定。
以表1表2为例,本实施例中,在RS集合中,将对应的QCL类型为指定QCL类型的RS索引,确定为BFD RS资源索引,然后根据BFD RS资源索引,确定BFD RS资源。
一个具体的实施方式中,指定QCL类型包括:类型D,也即type D,则上述表1表2中,将CSI-RS资源索引2(CSI-RS resource index 2)确定为BFD RS资源索引,然后根据BFD RS资源索引,确定BFD RS资源。
进一步地,本实施例中,在确定BFD RS资源后,还将上述指定QCL类型对应的QCL参数,确定为BFD RS资源的QCL参数。
一个实施例中,上述指定QCL类型包括:类型D,则上述指定QCL类型对应的QCL参数包括:空间接收参数(Spatial Rx parameter)。因此,BFD  RS资源的QCL参数包括空间接收参数。
一个实施例中,空间接收参数至少包括以下一项:
AoA、主导AoA(Dominant AoA)、平均AoA(average AoA)、AoA的功率角度谱(Power Angular Spectrum of AoA,PAS of AoA)、平均AoD(average AoD)、AoD的功率角度谱(Power Angular Spectrum of AoD,PAS of AoD)、发射信道相关性(transmit channel correlation)、接收信道相关性(receive channel correlation)、发射波束成形(transmit beamforming)、接收波束成形(receive beamforming)、空间信道相关性(spatial channel correlation)等。
本实施例中,设置指定QCL类型为类型D,其有益效果包括:根据RS集合中QCL类型为QCL type D的RS索引确定BFD RS资源时,还可以确定出BFD RS资源的空间接收参数,UE根据该空间接收参数调整接收波束,使接收波束对准gNB发射BFD RS资源的发射方向,从而可以准确地测量BFD RS资源的质量,并根据测量结果判断是否发生波束失败事件。
一个实施例中,CORESET的TCI状态包括:当前小区当前BWP的CORESET的TCI状态。
具体地,网络侧设备通过RRC信令为UE所在的当前小区当前BWP的每个CORESET配置和指示CORESET的TCI状态,CORESET的TCI状态指示用于监听CORESET上的PDCCH的QCL参数,CORESET上传输的每个PDCCH的TCI状态均相同。
以上表1表2为例,UE监听PDCCH时采用与CSI-RS资源索引1(CSI-RS resource index 1)相对应的QCL type A的参数,包括多普勒频移,多普勒扩展、平均时延、时延扩展(Doppler shift,Doppler spread,average delay,delay spread)等,以及采用与CSI-RS resource index 2相对应的QCL type D的参数,包括空间接收参数(Spatial Rx parameter)。当UE确定BFD RS资源索引为CSI-RS resource index 2时,则UE根据该BFD RS资源索引确定BFD RS资源,检测该BFD RS资源所在波束的质量。
本实施例中,设置CORESET的TCI状态包括当前小区当前BWP的CORESET的TCI状态,可以使得UE根据所述TCI状态确定当前小区当前BWP的BFD RS资源,从而根据对BFD RS资源的测量结果判断当前小区当 前BWP上是否发生波束失败事件,所述当前BWP即为当前激活BWP(active BWP)。
本实施例中,BFD RS包括:周期CSI-RS、SSB中的至少一项。
图2为本公开一实施例提供的波束失败恢复方法的流程示意图,该方法可以应用于用户侧设备,由用户侧设备执行,如图2所示,该方法包括:
步骤202,判断是否被配置BFD RS资源;
若是,执行步骤206,否则,执行步骤204。
步骤204,根据CORESET的TCI状态,确定BFD RS资源及其QCL参数。
该步骤同图1中的方法,具体不在重复。
步骤206,根据BFD RS资源及其QCL参数,检测在当前小区当前BWP上是否发生波束失败事件。
具体地,UE在物理层根据BFD RS资源及其QCL参数,对BFD RS进行测量,并根据测量结果来判断是否发生波束失败事件。若发生,执行步骤208,否则,结束流程。
步骤208,查找候选波束。
具体地,UE在物理层测量候选波束参考信号(candidate beam RS),寻找新的候选波束。当UE物理层收到来自UE高层的请求或指示或通知时,将满足预设条件的测量结果上报给UE高层,UE高层基于物理层的上报,来选择候选波束。其中,UE高层可以为MAC层,满足预设条件包括:对候选波束参考信号的测量质量超过预设门限,上报内容包括候选波束参考信号索引及其质量(如RSRP)。
步骤210,根据查找到的候选波束向网络侧设备发送波束失败恢复请求,以进行波束失败恢复。
UE高层根据所选的候选波束来确定PRACH资源(PRACH resource)。如果UE判断满足波束失败恢复请求的触发条件,则UE在所确定的PRACH资源上向网络侧设备发送波束失败恢复请求。UE需要根据网络侧设备配置的请求发送次数和/或请求发送时间来发送波束失败恢复请求,以进行波束失败恢复。
通过图2中的方法,当网络侧设备没有为UE配置BFD RS资源时,UE可以根据CORESET的TCI状态,确定BFD RS资源及其QCL参数,使得UE在网络侧设备没有配置BFD RS资源时,仍然可以执行波束失败检测与恢复机制,不会因无法进行波束失败检测和波束失败恢复而需要执行无线链路失败与重建过程,减少恢复数据传输所需的时延,提升通信系统的数据传输性能。
对应上述实施例提供的确定BFD RS资源的方法,本实施例提供了一种用户侧设备,本公开实施例提供的用户侧设备可以实现上述实施例中用户侧设备实现的各个过程。
图3为本公开一实施例提供的用户侧设备的模块组成示意图,如图3所示,该用户侧设备包括:
资源确定单元31,用于在未被配置用于进行波束失败检测参考信号BFD RS测量的BFD RS资源时,根据控制资源集CORESET的传输配置指示TCI状态,确定所述BFD RS资源。
可选地,所述TCI状态用于指示参考信号RS集合;
其中,所述资源确定单元31具体用于:
根据所述TCI状态指示的RS集合,确定所述BFD RS资源。
可选地,所述RS集合包括至少一个RS索引和所述RS索引对应的准共址QCL类型;
其中,所述资源确定单元31具体用于:
将所述RS集合中对应的QCL类型为指定QCL类型的RS索引,确定为BFD RS资源索引;
根据所述BFD RS资源索引,确定所述BFD RS资源。
可选地,所述指定QCL类型包括:类型D。
可选地,该用户侧设备还包括:
参数确定单元,用于将所述指定QCL类型对应的QCL参数,确定为所述BFD RS资源的QCL参数。
可选地,所述指定QCL类型对应的QCL参数包括:空间接收参数。
可选地,所述CORESET的TCI状态包括:当前小区当前带宽部分BWP 的CORESET的TCI状态。
可选地,所述波束失败检测参考信号BFD RS包括:周期信道状态信息参考信号CSI-RS、同步信号块SSB中的至少一项。
通过本公开实施例,用户侧设备在未被配置用于进行BFD RS测量的BFD RS资源时,可以根据CORESET的TCI状态,确定BFD RS资源,从而便于用户侧设备进行波束失败检测以及波束失败恢复,避免用户侧设备因无法进行波束失败检测和波束失败恢复而需要执行无线链路失败与重建过程的问题,减少用户侧设备恢复数据传输所需的时延,提升通信系统的数据传输性能。
对应上述实施例提供的确定BFD RS资源的方法,本实施例提供了一种用户侧设备,本公开实施例提供的用户侧设备可以实现上述实施例中用户侧设备实现的各个过程。
图4为本公开一实施例提供的用户侧设备的结构示意图,如图4所示,该用户侧设备1300包括:至少一个处理器1301、存储器1302、至少一个网络接口1304和用户接口1303。用户侧设备1300中的各个组件通过总线系统1305耦合在一起。可理解,总线系统1305用于实现这些组件之间的连接通信。总线系统1305除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图4中将各种总线都标为总线系统1305。
其中,用户接口1303可以包括显示器、键盘或者点击设备(例如,鼠标,轨迹球(trackball)、触感板或者触摸屏等。
可以理解,本公开实施例中的存储器1302可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器 (Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本公开实施例描述的系统和方法的存储器1302旨在包括但不限于这些和任意其它适合类型的存储器。
在一些实施方式中,存储器1302存储了如下的元素,可执行模块或者数据结构,或者他们的子集,或者他们的扩展集:操作系统13021和应用程序13022。
其中,操作系统13021,包含各种系统程序,例如框架层、核心库层、驱动层等,用于实现各种基础业务以及处理基于硬件的任务。应用程序13022,包含各种应用程序,例如媒体播放器(Media Player)、浏览器(Browser)等,用于实现各种应用业务。实现本公开实施例方法的程序可以包含在应用程序13022中。
在本公开实施例中,用户侧设备1300还包括:存储器1302、处理器1301、存储在存储器上1302并可在处理器1301上运行的计算机程序,计算机程序被处理器1301执行时实现如下步骤:
在未被配置用于进行波束失败检测参考信号BFD RS测量的BFD RS资源时,根据控制资源集CORESET的传输配置指示TCI状态,确定所述BFD RS资源。
上述本公开实施例揭示的方法可以应用于处理器1301中,或者由处理器1301实现。处理器1301可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器1301中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器1301可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本公开实施例中的公开的各方法、步骤及 逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本公开实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的计算机可读存储介质中。该计算机可读存储介质位于存储器1302,处理器1301读取存储器1302中的信息,结合其硬件完成上述方法的步骤。具体地,该计算机可读存储介质上存储有计算机程序,计算机程序被处理器1301执行时实现如上述实施例中的各步骤。
可以理解的是,本公开实施例描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,处理单元可以实现在一个或多个专用集成电路(Application Specific Integrated Circuit,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本公开所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本公开实施例所述功能的模块(例如过程、函数等)来实现本公开实施例所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
可选地,计算机程序被处理器1301执行时,所述TCI状态用于指示参考信号RS集合;
其中,所述根据控制资源集CORESET的传输配置指示TCI状态,确定所述BFD RS资源,包括:
根据所述TCI状态指示的RS集合,确定所述BFD RS资源。
可选地,计算机程序被处理器1301执行时,所述RS集合包括至少一个RS索引和所述RS索引对应的准共址QCL类型;
其中,所述根据所述TCI状态指示的RS集合,确定所述BFD RS资源,包括:
将所述RS集合中对应的QCL类型为指定QCL类型的RS索引,确定为 BFD RS资源索引;
根据所述BFD RS资源索引,确定所述BFD RS资源。
可选地,计算机程序被处理器1301执行时,所述指定QCL类型包括:类型D。
可选地,计算机程序被处理器1301执行时,还包括:
将所述指定QCL类型对应的QCL参数,确定为所述BFD RS资源的QCL参数。
可选地,计算机程序被处理器1301执行时,所述指定QCL类型对应的QCL参数包括:空间接收参数。
可选地,计算机程序被处理器1301执行时,所述CORESET的TCI状态包括:当前小区当前带宽部分BWP的CORESET的TCI状态。
可选地,计算机程序被处理器1301执行时,所述波束失败检测参考信号BFD RS包括:周期信道状态信息参考信号CSI-RS、同步信号块SSB中的至少一项。
通过本公开实施例,用户侧设备在未被配置用于进行BFD RS测量的BFD RS资源时,可以根据CORESET的TCI状态,确定BFD RS资源,从而便于用户侧设备进行波束失败检测以及波束失败恢复,避免用户侧设备因无法进行波束失败检测和波束失败恢复而需要执行无线链路失败与重建过程的问题,减少用户侧设备恢复数据传输所需的时延,提升通信系统的数据传输性能。
用户侧设备1300可以实现前述实施例中用户侧设备实现的各个过程,为避免重复,这里不再赘述。
本公开实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现以下流程:
在未被配置用于进行波束失败检测参考信号BFD RS测量的BFD RS资源时,根据控制资源集CORESET的传输配置指示TCI状态,确定所述BFD RS资源。
可选地,该计算机程序被处理器执行时,所述TCI状态用于指示参考信号RS集合;
其中,所述根据控制资源集CORESET的传输配置指示TCI状态,确定所述BFD RS资源,包括:
根据所述TCI状态指示的RS集合,确定所述BFD RS资源。
可选地,该计算机程序被处理器执行时,所述RS集合包括至少一个RS索引和所述RS索引对应的准共址QCL类型;
其中,所述根据所述TCI状态指示的RS集合,确定所述BFD RS资源,包括:
将所述RS集合中对应的QCL类型为指定QCL类型的RS索引,确定为BFD RS资源索引;
根据所述BFD RS资源索引,确定所述BFD RS资源。
可选地,该计算机程序被处理器执行时,所述指定QCL类型包括:类型D。
可选地,该计算机程序被处理器执行时,还包括:
将所述指定QCL类型对应的QCL参数,确定为所述BFD RS资源的QCL参数。
可选地,该计算机程序被处理器执行时,所述指定QCL类型对应的QCL参数包括:空间接收参数。
可选地,该计算机程序被处理器执行时,所述CORESET的TCI状态包括:当前小区当前带宽部分BWP的CORESET的TCI状态。
可选地,该计算机程序被处理器执行时,所述波束失败检测参考信号BFD RS包括:周期信道状态信息参考信号CSI-RS、同步信号块SSB中的至少一项。
通过本公开实施例,用户侧设备在未被配置用于进行BFD RS测量的BFD RS资源时,可以根据CORESET的TCI状态,确定BFD RS资源,从而便于用户侧设备进行波束失败检测以及波束失败恢复,避免用户侧设备因无法进行波束失败检测和波束失败恢复而需要执行无线链路失败与重建过程的问题,减少用户侧设备恢复数据传输所需的时延,提升通信系统的数据传输性能。
上述计算机程序被处理器执行时可以实现上述确定BFD RS资源的方法 实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,可以以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开实施例的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本公开实施例所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本公开实施例各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开实施例的技术方案本质上或者说对相关技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介 质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开实施例各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本公开实施例的具体实施方式,但本公开实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开实施例的保护范围之内。因此,本公开实施例的保护范围应所述以权利要求的保护范围为准。

Claims (18)

  1. 一种确定波束失败检测参考信号BFD RS资源的方法,应用于用户侧设备,其中,所述方法包括:
    在未被配置用于进行波束失败检测参考信号BFD RS测量的BFD RS资源时,根据控制资源集CORESET的传输配置指示TCI状态,确定所述BFD RS资源。
  2. 根据权利要求1所述的方法,其中,所述TCI状态用于指示参考信号RS集合;
    其中,所述根据控制资源集CORESET的传输配置指示TCI状态,确定所述BFD RS资源,包括:
    根据所述TCI状态指示的RS集合,确定所述BFD RS资源。
  3. 根据权利要求2所述的方法,其中,所述RS集合包括至少一个RS索引和所述RS索引对应的准共址QCL类型;
    其中,所述根据所述TCI状态指示的RS集合,确定所述BFD RS资源,包括:
    将所述RS集合中对应的QCL类型为指定QCL类型的RS索引,确定为BFD RS资源索引;
    根据所述BFD RS资源索引,确定所述BFD RS资源。
  4. 根据权利要求3所述的方法,其中,所述指定QCL类型包括:类型D。
  5. 根据权利要求3所述的方法,还包括:
    将所述指定QCL类型对应的QCL参数,确定为所述BFD RS资源的QCL参数。
  6. 根据权利要求5所述的方法,其中,所述指定QCL类型对应的QCL参数包括:空间接收参数。
  7. 根据权利要求1所述的方法,其中,所述CORESET的TCI状态包括:当前小区当前带宽部分BWP的CORESET的TCI状态。
  8. 根据权利要求1至7任一项所述的方法,其中,所述波束失败检测参 考信号BFD RS包括:周期信道状态信息参考信号CSI-RS、同步信号块SSB中的至少一项。
  9. 一种用户侧设备,包括:
    资源确定单元,用于在未被配置用于进行波束失败检测参考信号BFD RS测量的BFD RS资源时,根据控制资源集CORESET的传输配置指示TCI状态,确定所述BFD RS资源。
  10. 根据权利要求9所述的设备,其中,所述TCI状态用于指示参考信号RS集合;
    其中,所述资源确定单元具体用于:
    根据所述TCI状态指示的RS集合,确定所述BFD RS资源。
  11. 根据权利要求10所述的设备,其中,所述RS集合包括至少一个RS索引和所述RS索引对应的准共址QCL类型;
    其中,所述资源确定单元具体用于:
    将所述RS集合中对应的QCL类型为指定QCL类型的RS索引,确定为BFD RS资源索引;
    根据所述BFD RS资源索引,确定所述BFD RS资源。
  12. 根据权利要求11所述的设备,其中,所述指定QCL类型包括:类型D。
  13. 根据权利要求11所述的设备,还包括:
    参数确定单元,用于将所述指定QCL类型对应的QCL参数,确定为所述BFD RS资源的QCL参数。
  14. 根据权利要求13所述的设备,其中,所述指定QCL类型对应的QCL参数包括:空间接收参数。
  15. 根据权利要求9所述的设备,其中,所述CORESET的TCI状态包括:当前小区当前带宽部分BWP的CORESET的TCI状态。
  16. 根据权利要求9至15任一项所述的设备,其中,所述波束失败检测参考信号BFD RS包括:周期信道状态信息参考信号CSI-RS、同步信号块SSB中的至少一项。
  17. 一种用户侧设备,包括:存储器、处理器及存储在所述存储器上并 可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至8中任一项所述的方法的步骤。
  18. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至8中任一项所述的方法的步骤。
PCT/CN2019/077652 2018-03-27 2019-03-11 确定波束失败检测参考信号bfd rs资源的方法和设备 WO2019184690A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/030,381 US11546106B2 (en) 2018-03-27 2020-09-24 Method and device for determining beam failure detection reference signal resource

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810260590.X 2018-03-27
CN201810260590.XA CN110312276B (zh) 2018-03-27 2018-03-27 确定波束失败检测参考信号bfd rs资源的方法和设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/030,381 Continuation US11546106B2 (en) 2018-03-27 2020-09-24 Method and device for determining beam failure detection reference signal resource

Publications (1)

Publication Number Publication Date
WO2019184690A1 true WO2019184690A1 (zh) 2019-10-03

Family

ID=68060930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/077652 WO2019184690A1 (zh) 2018-03-27 2019-03-11 确定波束失败检测参考信号bfd rs资源的方法和设备

Country Status (3)

Country Link
US (1) US11546106B2 (zh)
CN (1) CN110312276B (zh)
WO (1) WO2019184690A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI797792B (zh) * 2020-10-23 2023-04-01 大陸商大唐移動通信設備有限公司 波束失敗處理方法、終端及網路設備
EP4195561A4 (en) * 2020-08-07 2024-01-24 Datang Mobile Communications Equipment Co., Ltd. METHOD AND DEVICE FOR RECOVERING A TRANSMISSION ERROR, DEVICE AND STORAGE MEDIUM
EP4223002A4 (en) * 2020-09-30 2024-09-04 Lenovo Beijing Ltd METHOD AND APPARATUS FOR BEAM FAILURE RECOVERY IN MULTIPLE DCI BASED ON MULTIPLE TRPs
US12132558B2 (en) 2019-11-06 2024-10-29 Beijing Xiaomi Mobile Software Co., Ltd. Method and device for allocating beam failure detection resources

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210105060A1 (en) * 2019-10-04 2021-04-08 Qualcomm Incorporated Joint failure of component carrier (cc) groups
WO2021088042A1 (zh) * 2019-11-08 2021-05-14 华为技术有限公司 一种通信方法及装置
CN112867048B (zh) * 2019-11-12 2022-09-20 维沃移动通信有限公司 测量方法、终端设备和网络设备
CN112910615B (zh) * 2019-11-19 2022-06-21 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
WO2021168241A1 (en) * 2020-02-21 2021-08-26 Qualcomm Incorporated Radio link monitoring (rlm)/beam failure detection (bfd) reference signal (rs) for coresets with multiple active transmission configuration indicator (tci) states
EP4085679A4 (en) * 2020-04-21 2023-05-03 Nokia Technologies Oy DETERMINATION OF BEAM FAILURE DETECTION REFERENCE SIGNALS AT A MULTI-TRANSMISSION RECEIVING POINT OF MULTI-DOWNLINK INTER-CELL CONTROL INFORMATION
EP4162637A4 (en) * 2020-07-06 2023-08-02 ZTE Corporation DETERMINATION OF CHANNEL STATUS INFORMATION IN SYSTEMS WITH MULTIPLE TRANSMISSION POINTS
CN113949421B (zh) * 2020-07-17 2023-02-24 维沃移动通信有限公司 确定波束信息的方法、装置及电子设备
WO2022047034A1 (en) 2020-08-28 2022-03-03 Cirik Ali Cagatay Radio link monitoring in control channel repetition
US11671163B2 (en) * 2020-11-30 2023-06-06 Qualcomm Incorporated Beam failure detection when control resource set beam is updated
US20240080147A1 (en) * 2021-01-04 2024-03-07 Beijing Xiaomi Mobile Software Co., Ltd. Method for determining beam failure detection (bfd) resource, communication device, and storage medium
CN114765492A (zh) * 2021-01-13 2022-07-19 展讯半导体(南京)有限公司 传输配置指示状态确定方法及装置、可读存储介质
US20240196333A1 (en) * 2021-04-02 2024-06-13 Beijing Xiaomi Mobile Software Co., Ltd. Method for relaxation measurement, terminal and storage medium
WO2022227045A1 (en) * 2021-04-30 2022-11-03 Qualcomm Incorporated Beam failure detection for a physical downlink control channel monitoring operation corresponding to at least two transmission configuration indicator states
WO2023010274A1 (en) * 2021-08-03 2023-02-09 Lenovo (Beijing) Limited Methods and apparatus of determining trp-specific beam failure detection reference signal set
WO2023016374A1 (zh) * 2021-08-08 2023-02-16 上海朗帛通信技术有限公司 被用于无线通信的通信节点中的方法和装置
CN118542038A (zh) * 2022-10-28 2024-08-23 北京小米移动软件有限公司 波束失败检测参考信号资源的确定方法、装置及存储介质
WO2024097582A2 (en) * 2022-11-06 2024-05-10 Qualcomm Incorporated Measurement and scheduling of intra-frequency and inter-frequency reference signals

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017024516A1 (en) * 2015-08-11 2017-02-16 Telefonaktiebolaget Lm Ericsson (Publ) Recovery from beam failure

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102573235B1 (ko) * 2017-08-11 2023-09-01 한국전자통신연구원 하향링크 제어 채널의 송수신 방법 및 이를 이용하는 장치
US10602549B2 (en) * 2018-03-05 2020-03-24 Asustek Computer Inc. Method and apparatus of handling beam failure recovery in a wireless communication system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017024516A1 (en) * 2015-08-11 2017-02-16 Telefonaktiebolaget Lm Ericsson (Publ) Recovery from beam failure

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Physical Layer Procedures for Data (Release 15)", 3GPP TS 38.214, V15.0.0., 3 January 2018 (2018-01-03), XP055637794 *
VIVO: "Remaining Issues on Mechanism to Recover from Beam Failure", 3GPP TSG RAN WGI MEETING #92BIS R1-1803818, 6 April 2018 (2018-04-06), XP051413000 *
ZTE ET AL.: "Remaining Details on Beam Recovery", 3GPP TSG RAN WGI MEETING #92 R1-1801582, 16 February 2018 (2018-02-16), XP051396950 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12132558B2 (en) 2019-11-06 2024-10-29 Beijing Xiaomi Mobile Software Co., Ltd. Method and device for allocating beam failure detection resources
EP4195561A4 (en) * 2020-08-07 2024-01-24 Datang Mobile Communications Equipment Co., Ltd. METHOD AND DEVICE FOR RECOVERING A TRANSMISSION ERROR, DEVICE AND STORAGE MEDIUM
EP4223002A4 (en) * 2020-09-30 2024-09-04 Lenovo Beijing Ltd METHOD AND APPARATUS FOR BEAM FAILURE RECOVERY IN MULTIPLE DCI BASED ON MULTIPLE TRPs
TWI797792B (zh) * 2020-10-23 2023-04-01 大陸商大唐移動通信設備有限公司 波束失敗處理方法、終端及網路設備

Also Published As

Publication number Publication date
CN110312276A (zh) 2019-10-08
CN110312276B (zh) 2021-01-08
US20210014022A1 (en) 2021-01-14
US11546106B2 (en) 2023-01-03

Similar Documents

Publication Publication Date Title
WO2019184690A1 (zh) 确定波束失败检测参考信号bfd rs资源的方法和设备
JP7009471B2 (ja) ビームリカバリをトリガするシステム及び方法
US20210274482A1 (en) Method for Transmitting Downlink Control Information, Terminal Device and Network Device
US10693548B2 (en) Two reference signal beam reporting and identification
US11395267B2 (en) Wireless communication method, terminal device, and network device
WO2018059456A1 (zh) 通信方法、基站和终端设备
EP2878156B1 (en) Identifying coverage holes using inter-rat handover measurements
WO2019137346A1 (zh) 监控信道质量的方法和终端设备
US20200178038A1 (en) Positioning method and apparatus
WO2018223972A1 (zh) 一种信道质量信息的上报方法及装置
WO2020253881A1 (zh) 波束上报方法、装置及通信设备
RU2725174C1 (ru) Способ передачи данных, оконечное устройство и сетевое устройство
WO2019029562A1 (zh) 波束失败恢复方法和用户终端
WO2019134668A1 (zh) 信号接收方法、发送方法、用户设备和网络设备
EP3614608A1 (en) Method and device for notification of reference signal
WO2019214395A1 (zh) 数据传输方法和设备
WO2022028153A1 (zh) 用于定位的测量方法、装置和存储介质
BR112019026784A2 (pt) método e aparelho de processamento de sinal
WO2019090623A1 (zh) 配置测量间隔的方法、网络设备和终端设备
WO2019084799A1 (zh) 上报频谱的方法、终端设备和网络设备
WO2019095159A1 (zh) 确定非竞争随机接入资源的方法、网络设备和终端设备
WO2018195777A1 (zh) 处理信号的方法和设备
WO2018059399A1 (zh) 随机接入方法、装置、系统、终端和基站
WO2021082985A1 (zh) 接入网络设备的方法和装置
WO2019047191A1 (zh) 用于测量的方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19775669

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19775669

Country of ref document: EP

Kind code of ref document: A1