WO2018195777A1 - 处理信号的方法和设备 - Google Patents

处理信号的方法和设备 Download PDF

Info

Publication number
WO2018195777A1
WO2018195777A1 PCT/CN2017/081860 CN2017081860W WO2018195777A1 WO 2018195777 A1 WO2018195777 A1 WO 2018195777A1 CN 2017081860 W CN2017081860 W CN 2017081860W WO 2018195777 A1 WO2018195777 A1 WO 2018195777A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
downlink signal
downlink
channel
port set
Prior art date
Application number
PCT/CN2017/081860
Other languages
English (en)
French (fr)
Inventor
唐海
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to PCT/CN2017/081860 priority Critical patent/WO2018195777A1/zh
Priority to JP2019557550A priority patent/JP2020518180A/ja
Priority to CN201780089967.3A priority patent/CN110547012B/zh
Priority to CN201911295874.3A priority patent/CN111106918B/zh
Priority to BR112019022136-0A priority patent/BR112019022136A2/pt
Priority to CA3061160A priority patent/CA3061160C/en
Priority to EP17907401.8A priority patent/EP3609255B1/en
Priority to KR1020197032767A priority patent/KR20190139928A/ko
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to SG11201909953P priority patent/SG11201909953PA/en
Priority to RU2019137546A priority patent/RU2732078C1/ru
Priority to AU2017411184A priority patent/AU2017411184A1/en
Priority to KR1020217038417A priority patent/KR102432517B1/ko
Priority to MX2019012730A priority patent/MX2019012730A/es
Priority to TW107113657A priority patent/TWI754043B/zh
Publication of WO2018195777A1 publication Critical patent/WO2018195777A1/zh
Priority to PH12019502393A priority patent/PH12019502393A1/en
Priority to US16/662,780 priority patent/US11172476B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/373Predicting channel quality or other radio frequency [RF] parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/391Modelling the propagation channel
    • H04B17/3911Fading models or fading generators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/02Channels characterised by the type of signal
    • H04L5/06Channels characterised by the type of signal the signals being represented by different frequencies
    • H04L5/10Channels characterised by the type of signal the signals being represented by different frequencies with dynamo-electric generation of carriers; with mechanical filters or demodulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers

Definitions

  • the present application relates to the field of communications and, more particularly, to a method and apparatus for processing signals.
  • the concept of Quasi-Co-Location is introduced. If the two downlink signals are QCL, one of the downlink signals can be used according to one of the downlink signals.
  • the downlink signal is processed. For example, the channel for transmitting another downlink signal may be channel-estimated according to a large-scale parameter obtained by performing channel estimation on a channel for transmitting one of the downlink signals, thereby improving channel estimation performance of another downlink signal.
  • An embodiment of the present application provides a method and a device for processing a signal, where a second reference signal that is quasi-addressed with a first downlink signal is found by using a QCI identifier ID, so that the first The signal on the first port set of the downstream signal is processed.
  • the first aspect provides a method for processing a signal, including: determining, by a terminal device, a quasi-co-located QCL identification ID corresponding to a first port set of the first downlink signal; and determining, by the terminal device, the location and the location according to the QCL ID Determining, by the first port of the first downlink signal, a second downlink signal that is quasi-co-located; and the first port set of the first downlink signal by the terminal device according to the QCL information obtained from the second downlink signal The signal on it is processed.
  • the quasi-co-located port can be configured to correspond to the same QCL ID, and the quasi-same port and other ports respectively correspond to different QCL IDs.
  • the terminal device can determine which ports are quasi-co-located according to the QCL ID.
  • the DMRS may be a data channel.
  • the DMRS that is, the DMRS can be used for correlation demodulation of a data channel, or can also be a DMRS of a control channel, that is, the DMRS can be used for correlation demodulation of a control channel.
  • the QCL ID is a cell ID, or a beam ID, or a time index of a synchronization signal block, or an RS ID used to generate a sequence of downlink RSs.
  • the first set of ports includes a portion or all of the ports of the first downlink signal.
  • the QCL ID is a cell ID
  • the terminal device determines, according to the QCL ID, that the first port set of the first downlink signal is identical
  • the second downlink signal of the address includes:
  • the terminal device determines a synchronization signal block carrying the cell ID or a signal in the synchronization signal block, and determining the second downlink signal that is quasi-addressed with the first port of the first downlink signal.
  • the QCL ID is a time index of a synchronization signal block
  • the terminal device determines, according to the QCL ID, a first with the first downlink signal.
  • the second downlink signal of the port set quasi-co-location includes:
  • the terminal device determines a synchronization signal block carrying the time index or a signal in the synchronization signal block, and determining the second downlink signal that is quasi-addressed with the first port of the first downlink signal.
  • the QCL ID is a beam ID
  • the terminal device determines, according to the QCL ID, that the first port set of the first downlink signal is identical
  • the second downlink signal of the address includes:
  • the terminal device determines a synchronization signal block or a downlink reference signal RS that carries the beam ID, and determines the second downlink signal that is quasi-addressed with the first port of the first downlink signal.
  • the QCL ID is an RS ID used to generate a sequence of downlink RSs
  • the terminal device determines, according to the QCL ID, the first downlink
  • the second downlink signal of the first port of the signal is quasi-co-located, including:
  • the terminal device determines, in the pre-configured RS set, the downlink RS that generates the RS sequence by using the RS ID, and determines the second downlink signal that is quasi-addressed with the first port of the first downlink signal.
  • the first port set of the first downlink signal and the second downlink signal quasi-same address include:
  • the terminal device is configured to determine, according to a beam used to send or receive the second downlink signal, a beam used to transmit or receive a signal on the first port set of the first downlink signal.
  • the large-scale parameter of the channel corresponding to the first port set for transmitting the first downlink signal and the large-scale parameter of the channel for transmitting the second downlink signal are similar or identical; or send or receive
  • the signal on the first port set of the first downlink signal uses a beam similar to or the same as the beam direction of the beam used to transmit or receive the second downlink signal.
  • the second downlink signal is a synchronization signal block
  • the terminal device is configured to determine the large-scale parameter of the channel that transmits the second downlink signal.
  • the large-scale parameters of the channel corresponding to the first port set of the first downlink signal including:
  • the terminal device is capable of determining a large-scale parameter of a channel for demodulating the reference signal DMRS according to the synchronization signal SS or the physical broadcast channel PBCH in the synchronization signal block, and determining, according to the first port set for transmitting the first downlink signal, Large scale parameters of the channel.
  • the second downlink signal is a synchronization signal block
  • the terminal device is configured to determine whether to send or receive according to a beam used to send or receive the second downlink signal.
  • a beam used by the signal on the first port set of the first downlink signal including:
  • the terminal device is capable of determining, according to a beam used by the synchronization signal SS or the PBCH in the transmitting or receiving the synchronization signal block, a beam used for transmitting or receiving a signal on the first port set of the first downlink signal.
  • the QCL information comprises a large-scale parameter or beam information of a channel.
  • the terminal device performs, according to QCL information obtained from the second downlink signal, a signal on a first port set of the first downlink signal.
  • the processing includes: obtaining, by the terminal device, a large-scale parameter of a channel for transmitting the second downlink signal; and using, by using a large-scale parameter of the channel for transmitting the second downlink signal, a first port of the first downlink signal The corresponding channel is aggregated for channel estimation.
  • the terminal device processes the signal of the first port set of the first downlink signal according to the QCL information obtained from the second downlink signal Including: the terminal device will receive the beam used by the second downlink signal, Determining, as a target beam, a signal on a first port set of the first downlink signal; and receiving, by the target beam, a signal on a first port set of the first downlink signal.
  • the terminal device may perform cell synchronization according to the first downlink signal;
  • the first downlink signal is a DMRS, and the terminal device may perform channel estimation on a channel corresponding to the first port set of the first downlink signal according to a large-scale parameter of a channel for transmitting the second downlink signal, and further And performing data demodulation on the signal transmitted on the first port set according to the result of the channel estimation; or if the first downlink signal is a CSI-RS, the terminal device may perform, according to the second downlink signal,
  • the channel-scaled parameter is used to perform channel estimation on the channel corresponding to the first port set of the first downlink signal.
  • the large scale parameter of the channel comprises at least one of the following:
  • Delay spread Doppler spread, Doppler shift, average gain, average delay, exit angle, angle of arrival, receive correlation, and transmit correlation.
  • the first downlink signal is a DMRS, or a channel state information reference signal CSI-RS, or a synchronization signal block, or a synchronization signal, or a synchronization channel.
  • the second downlink signal is a CSI-RS, or a synchronization signal block, or a synchronization signal, or a synchronization channel, or a phase tracking reference signal PT-RS.
  • an apparatus for processing a signal comprising means for performing the method of the first aspect or various implementations thereof.
  • an apparatus for processing a signal comprising: a memory for storing a program, the processor for executing a program, and when the program is executed, the processor is based on The transceiver performs the method of the first aspect.
  • a computer readable medium storing program code for execution by a terminal device, the program code comprising instructions for performing the method of the first aspect.
  • FIG. 1 is a schematic diagram of a wireless communication system in accordance with an embodiment of the present application.
  • FIG. 2 is a schematic flow chart of a method of processing a signal according to an embodiment of the present application.
  • FIG. 3 is a schematic block diagram of an apparatus for processing a signal according to an embodiment of the present application.
  • FIG. 4 is a schematic block diagram of an apparatus for processing a signal according to another embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced long-term Advanced long term evolution
  • UMTS Universal Mobile Telecommunication System
  • FIG. 1 illustrates a wireless communication system 100 suitable for use with embodiments of the present invention.
  • the wireless communication system 100 can include at least one network device, such as the first network device 110 and the second network device 120 shown in FIG. Both the first network device 110 and the second network device 120 can communicate with the terminal device 130 through a wireless air interface.
  • the first network device 110 and the second network device 120 can provide communication coverage for a particular geographic area and can communicate with terminal devices located within the coverage area.
  • the first network device 110 or the second network device 120 may be a base station (Base Transceiver Station, abbreviated as "BTS”) in a GSM system or a CDMA system, or may be a base station (NodeB) in a WCDMA system, or may be an LTE system.
  • BTS Base Transceiver Station
  • eNB Evolved Node B
  • eNodeB Evolved Node B
  • TRP Transmission Reception Point
  • base station a base station
  • small base station device etc.
  • This embodiment of the present invention is not particularly limited.
  • the wireless communication system 100 further includes one or more User Equipment (“UE”) 130 located within the coverage of the first network device 110 and the second network device 120.
  • the terminal device 130 can be mobile or fixed. Terminal device 130 can pass through a wireless access network (Radio Access Network, referred to as "RAN") communicates with one or more core networks.
  • the terminal devices may be called access terminals, terminal devices, subscriber units, subscriber stations, mobile stations, mobile stations, and remote stations. , a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, a user agent, or a user device.
  • the terminal device may be a cellular phone, a cordless phone, a Session Initiation Protocol ("SIP”) phone, a Wireless Local Loop (WLL) station, or a personal digital assistant (Personal Digital Assistant). "PDA”), a handheld device with wireless communication capabilities, a computing device or other processing device connected to a wireless modem, an in-vehicle device, a wearable device, and a terminal device in a future 5G network.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • FIG. 2 is a schematic flowchart of a method 200 for processing a signal according to an embodiment of the present application.
  • the method 200 may be performed by a terminal device in the wireless communication system shown in FIG. 1.
  • the method 200 includes :
  • the terminal device determines a quasi-co-located QCL identification ID corresponding to the first port set of the first downlink signal.
  • the first downlink signal is a Demodulation Reference Signal (DMRS) DMRS for demodulating a Physical Broadcast Channel (PBCH), or a channel state information reference signal ( The Channel State Information-Reference Signal (CSI-RS), or a synchronization signal block, or a synchronization signal, or a synchronization channel, or other downlink signals, is not limited in this embodiment of the present application.
  • DMRS Demodulation Reference Signal
  • PBCH Physical Broadcast Channel
  • CSI-RS Channel State Information-Reference Signal
  • CSI-RS Channel State Information-Reference Signal
  • the DMRS may be a DMRS of a data channel, that is, the DMRS may be used for correlation demodulation of a data channel, or may also be a DMRS of a control channel, that is, The DMRS can be used for correlation demodulation of the control channel.
  • the first port set of the first downlink signal is quasi-co-located, and the first port set includes part or all ports for transmitting the first downlink signal.
  • the first downlink signal is a DMRS
  • the antenna port for transmitting the DMRS includes port 5, port 6, port 7, and port 8
  • the first port set of the DMRS may include port 5, port. 6, some or all of port 7 and port 8.
  • the first downlink signal is a CSI-RS
  • the antenna port for transmitting the CSI-RS includes the port 0 to the port 3
  • the first port set of the CSI-RS includes some or all of the ports 0 to 3. .
  • the first port set may be configured to correspond to the same QCL ID, and the first port set and the other ports respectively correspond to different QCL IDs.
  • the first downlink signal is The DMRS
  • the antenna port for transmitting the DMRS includes port 5, port 6, port 7 and port 8.
  • the first port set includes port 5 and port 6, that is, port 5 and port 6 are co-located, port 7 and port 8 Quasi-same, then port 5 and port 6 can be set for the same QCL ID, port 7 and port 8 for another QCL ID, so that the terminal device can determine which ports are quasi-co-located according to the QCL ID.
  • the first port set of the first downlink signal and the second port set of the second downlink signal are quasi-co-located
  • the first port set of the first downlink signal and the second downlink signal can correspond to the same QCL ID
  • the terminal device can determine which ports are quasi-co-located according to the QCL ID, and the QCL ID can be used by multiple downlink signals, and therefore can be indicated by the QCL ID.
  • DCI downlink control information
  • the index information of the downlink signal of the same address reduces the signaling overhead and increases the flexibility of the QCL indication mode.
  • the QCL ID may be a Cell ID, a beam ID, or a time index of a synchronization signal block, or an RS ID, that is, the QCL ID may be a synchronization signal or a synchronization signal block.
  • the carried ID, or the QCL ID may also be a beam ID of a beam used for transmitting or receiving a downlink signal, where the QCL ID is an RS ID used to generate an RS sequence, and of course, the QCL ID may also be another identifier.
  • the information in this embodiment of the present application does not limit the specific identification manner of the QCL ID.
  • the terminal device determines, according to the QCL ID, a second downlink signal that is quasi-co-located with the first port set of the first downlink signal.
  • a Synchronization Signal Block (SS block) is introduced for downlink synchronization, and an SS block includes a synchronization signal, a PBCH, and a DMRS for demodulating the PBCH.
  • the SS block may also be a downlink signal that is quasi-addressed with the first downlink signal. Therefore, the first downlink signal may be processed according to the SS block. For example, the first downlink signal channel may be estimated according to the SS block. Thereby improving the channel estimation performance of the first downlink signal.
  • the second downlink signal may be a CSI-RS, or a synchronization signal block, or a synchronization signal, or a synchronization channel, or a Phase Tracking Reference Signal (PT-RS).
  • PT-RS Phase Tracking Reference Signal
  • the first port set of the first downlink signal and the second downlink signal are the same
  • the address may be that the first port set of the first downlink signal is quasi-co-located with the second port set of the second downlink signal, or the first port set and the second downlink signal of the first downlink signal are The same address may be regarded as an omitted expression manner in which the first port set of the first signal is quasi-co-located with all ports of the second signal, or the first port set and the second downlink of the first downlink signal
  • the signal quasi-co-location may also be expressed as the first downlink signal and the second downlink signal quasi-co-located.
  • the first port set of the first downlink signal and the second downlink signal quasi-same address may specifically include:
  • the terminal device is configured to determine a large-scale parameter of a channel corresponding to the first port set of the first downlink signal according to a large-scale parameter of a channel for transmitting the second downlink signal;
  • the large-scale parameter of the channel corresponding to the first port set for transmitting the first downlink signal and the large-scale parameter of the channel for transmitting the second downlink signal are similar or identical.
  • Example, large-scale parameters can refer to the Third Generation Partnership Project (3 rd Generation Partnership Project, referred to as "3GPP") is defined in the standard, can also be set based on actual system requirements in the present application.
  • 3GPP Third Generation Partnership Project
  • the large-scale parameter may include at least one of the following: Delay Spread, Doppler Spread, Doppler Shift, Average Gain, and Average Time Average Delay, Departure Of Angle, Arrival Of Angle, Correlation of Receiving, and Correlation of Transmitting.
  • Delay Spread Doppler Spread
  • Doppler Shift Average Gain
  • Average Time Average Delay Departure Of Angle
  • Arrival Of Angle Correlation of Receiving
  • Correlation of Transmitting may include at least one of the following: Delay Spread, Doppler Spread, Doppler Shift, Average Gain, and Average Time Average Delay, Departure Of Angle, Arrival Of Angle, Correlation of Receiving, and Correlation of Transmitting.
  • the first port set of the first downlink signal and the second downlink signal quasi-same address may further include:
  • the terminal device is configured to determine, according to a beam used to send or receive the second downlink signal, a beam used to transmit or receive a signal on the first port set of the first downlink signal.
  • the signal used by the signal on the first port set that sends or receives the first downlink signal is similar to or the same as the beam direction of the beam used to transmit or receive the second downlink signal.
  • the second downlink signal is a synchronization signal block
  • the terminal device is configured to determine, according to a large-scale parameter of a channel that transmits the second downlink signal, the first downlink signal.
  • the large-scale parameter of the channel corresponding to the first port set may include:
  • the terminal device is capable of determining a large-scale parameter of a channel for demodulating the reference signal DMRS according to the synchronization signal SS or the physical broadcast channel PBCH in the synchronization signal block, and determining, according to the first port set for transmitting the first downlink signal, Large scale parameters of the channel.
  • the second downlink signal is a synchronization signal block
  • the terminal device is configured to determine to send or receive the first downlink according to a beam used by sending or receiving the second downlink signal.
  • the beam used by the signal on the first port set of the signal including:
  • the terminal device is capable of determining, according to a beam used by the synchronization signal SS or the PBCH in the transmitting or receiving the synchronization signal block, a beam used for transmitting or receiving a signal on the first port set of the first downlink signal.
  • the QCL ID may be a Cell ID, or a beam ID, or a time index of a synchronization signal block, or an RS ID. Therefore, the terminal device may Determining, according to the Cell ID, or the beam ID, or the time index of the synchronization signal block, or the RS ID, the second downlink signal that is quasi-co-located with the first port set of the first downlink signal.
  • the QCL ID is a cell ID
  • the S220 further includes:
  • the terminal device determines a synchronization signal block carrying the cell ID or a signal in the synchronization signal block, and determining the second downlink signal that is quasi-addressed with the first port of the first downlink signal.
  • the terminal device may receive the synchronization signal block sent by the at least one cell, and the synchronization signal block of each cell may include a Cell ID corresponding to each of the cells.
  • the Cell ID may be carried by a Secondary Synchronization Signal (SSS) in the synchronization signal block.
  • SSS Secondary Synchronization Signal
  • the Cell ID may also be carried by other synchronization signals in the synchronization signal block, or the synchronization signal.
  • Each of the signals in the block can carry the Cell ID.
  • the terminal device may use the Cell ID as a target Cell ID, and determine in the synchronization signal block sent by the at least one cell. Carrying a synchronization signal block of the target Cell ID or a signal in the synchronization signal block, and carrying a synchronization signal block of the target Cell ID or a signal in the synchronization signal block, determining that the first The first port of the downlink signal is set to be quasi-co-located with the second downlink signal.
  • the terminal device may perform channel estimation on a channel corresponding to the first port set that transmits the first downlink signal according to a large-scale parameter of a channel that transmits the synchronization signal block, That is, channel estimation is performed on a channel experienced by the first port set transmitting the first downlink signal, thereby improving channel estimation performance of the first downlink signal.
  • the QCL ID is a time index of a synchronization signal block
  • the terminal device determines, according to the QCL ID, that the first port set of the first downlink signal is co-located.
  • the second downlink signal includes:
  • the terminal device determines a synchronization signal block carrying the time index or a signal in the synchronization signal block, and determining the second downlink signal that is quasi-addressed with the first port of the first downlink signal.
  • the terminal device may receive the synchronization signal block sent by the at least one cell, and the synchronization signal block of each cell may include a time index.
  • the time index may be carried by a PBCH in a synchronization signal block.
  • the time index may also be carried by other synchronization signals in the synchronization signal block, or each signal in the synchronization signal block may be carried. The time index.
  • the terminal device may use the time index as a target time index, and the synchronization signal sent in the at least one cell Determining, in the block, a synchronization signal block carrying the target time index or a signal in the synchronization signal block, and determining a synchronization signal block carrying the target time index or a signal in the synchronization signal block, and determining The first port of the first downlink signal is set to be quasi-co-located with the second downlink signal.
  • the QCL ID is a beam ID
  • the terminal device determines, according to the QCL ID, a second downlink signal that is quasi-co-located with the first port set of the first downlink signal.
  • the terminal device determines a synchronization signal block or a downlink reference signal that carries the beam ID, and determines the second downlink signal that is quasi-addressed with the first port of the first downlink signal.
  • the terminal device may receive the synchronization signal block sent by the at least one cell, and the synchronization signal block of each cell may include a beam ID for transmitting or receiving the synchronization signal block.
  • the beam ID may be carried by any signal in the synchronization signal block, for example, the beam ID may be carried by the SSS in the synchronization signal block, or may also be carried by other synchronization signals in the synchronization signal block, or
  • Each of the synchronization signal blocks can carry the beam ID.
  • the terminal device may use the beam ID as a target beam ID, and determine in the synchronization signal block sent by the at least one cell.
  • the synchronization signal block carrying the target beam ID will carry the station
  • the synchronization signal block of the target beam ID is determined to be the second downlink signal that is quasi-addressed with the first port set of the first downlink signal.
  • the terminal device may also determine, according to the beam ID, a downlink reference signal that is quasi-addressed with the first port of the first downlink signal, and then determine the downlink reference signal as the second downlink. signal.
  • the terminal device may perform channel estimation on a channel corresponding to the first port set that transmits the first downlink signal according to a large-scale parameter of a channel that transmits the synchronization signal block or the downlink reference signal, that is, Channel estimation is performed on a channel experienced by the first port set transmitting the first downlink signal, thereby improving channel estimation performance of the first downlink signal.
  • the QCL ID is an RS ID used to generate a sequence of the downlink RS.
  • the S220 further includes:
  • the terminal device determines, in the pre-configured RS set, the downlink RS that generates the RS sequence by using the RS ID, and determines the second downlink signal that is quasi-addressed with the first port of the first downlink signal.
  • the network device may pre-configure the RS set to the terminal device, and the sequence of each RS in the RS set is generated by using the RS ID.
  • the terminal device may record the RS ID as a target RS ID, and determine which one in the RS set according to the target RS ID.
  • the sequence of the RS is generated by using the target RS ID, so as to determine that the second downlink signal is quasi-addressed with the first port set of the first downlink signal RS.
  • the terminal device may perform channel estimation on a channel corresponding to the first port set of the first downlink signal according to a large-scale parameter of a channel for transmitting the second downlink signal, thereby improving the first Channel estimation performance of the line signal.
  • the terminal device processes the signal on the first port set of the first downlink signal according to the QCL information obtained from the second downlink signal.
  • the second downlink signal may include at least one downlink signal, for example, the second downlink signal may include at least one of the foregoing second downlink signals, that is, And the terminal device may process the signal on the first port set of the first downlink signal according to the QCL information obtained from the at least one downlink signal.
  • the QCL information may include large-scale information or beam information of the channel.
  • the QCL information of the second downlink signal may include A large-scale parameter of a channel of the downlink signal, or a beam information of a beam used to transmit or receive the second downlink signal.
  • the first downlink signal is a DMRS
  • the signal transmitted on the first port set of the first downlink signal is a DMRS
  • the terminal device may use the QCL information obtained from the second downlink signal, Performing channel estimation on a channel corresponding to the first port set of the first downlink signal, and performing data demodulation on the signal on the first port set according to a result of channel estimation.
  • the first downlink signal is a CSI-RS
  • the signal transmitted on the first port set of the first downlink signal is a CSI-RS
  • the terminal device may be based on the second downlink signal.
  • the first downlink signal is a synchronization signal
  • the signal transmitted on the first port set of the first downlink signal is a synchronization signal
  • the terminal device may be obtained according to the second downlink signal.
  • the QCL information receives the signal on the first port set of the first downlink signal, and further acquires synchronization information according to the synchronization signal.
  • S230 may further include:
  • the terminal device acquires a large-scale parameter of a channel for transmitting the second downlink signal
  • the large-scale parameter of the channel corresponding to the first port set for transmitting the first downlink signal is The large-scale parameters of the channels used to transmit the second downlink signal are similar or identical. Therefore, the terminal device may perform channel estimation on a channel corresponding to the first port set of the first downlink signal according to a large-scale parameter of a channel for transmitting the second downlink signal.
  • the first downlink signal is a DMRS of a data channel
  • the second downlink signal is a CSI-RS
  • the terminal device may perform delay estimation according to channel estimation on a channel for transmitting the CSI-RS.
  • a large-scale parameter such as Doppler spread performs channel estimation on a channel corresponding to the first port set of the DMRS of the data channel. Further, the terminal device may perform data demodulation on the first port set by using the channel estimation result.
  • the first downlink signal is a CSI-RS
  • the second downlink signal is a PT-RS
  • the terminal device may perform delay estimation according to channel estimation on a channel for transmitting the PT-RS.
  • a large-scale parameter such as Doppler spread performs channel estimation on a channel corresponding to the first port set of the CSI-RS.
  • the terminal device may perform CSI measurement according to a result of channel estimation.
  • the terminal device may only need to receive the first port set of the first downlink signal. a synchronization signal block, or a synchronization signal, or a synchronization channel, and then performing cell signal synchronization according to the synchronization signal block, or the synchronization signal, or the synchronization channel on the first port set of the received first downlink signal, without Perform channel estimation related operations.
  • the terminal device may perform cell synchronization according to the first downlink signal;
  • the first downlink signal is a DMRS, and the terminal device may perform channel estimation on a channel corresponding to the first port set of the first downlink signal according to a large-scale parameter of a channel for transmitting the second downlink signal, and further And performing data demodulation on the first port set according to the result of the channel estimation; or if the first downlink signal is a CSI-RS, the terminal device may be configured according to a channel that transmits the second downlink signal.
  • the channel parameter performs channel estimation on the channel corresponding to the first port set of the first downlink signal,
  • S230 may further include:
  • the terminal device determines, by the terminal device, a beam that is used by the second downlink signal to determine a target beam that is a signal on a first port set that receives the first downlink signal;
  • the terminal device may determine a beam for receiving the second downlink signal as a target beam that receives a signal on a first port set of the first downlink signal, and then adopt the target beam receiving station.
  • a signal on a first set of ports of the first downlink signal may be determined.
  • the first downlink signal is a DMRS of a data channel
  • the second downlink signal is a CSI-RS
  • the terminal device may determine a beam that receives the CSI-RS as a DMRS that receives the data channel.
  • a target beam of a signal on the first set of ports, the target beam is used to receive a signal on a first set of ports of the DMRS of the data channel.
  • the terminal device may be based on a QCL ID. Determining, according to the second downlink signal, a signal on the first port set of the first downlink signal, for example, according to the yes And a second downlink signal, performing channel estimation on the signal on the first port set of the first downlink signal, thereby improving channel estimation performance of the first downlink signal.
  • FIG. 3 is a schematic block diagram of an apparatus for processing a signal according to an embodiment of the present application.
  • the device 300 of Figure 3 includes:
  • the determining module 310 is configured to determine a quasi-co-located QCL identifier ID corresponding to the first port set of the first downlink signal, and determine, according to the QCL ID, a quasi-co-location with the first port set of the first downlink signal.
  • the processing module 320 is configured to process the signal on the first port set of the first downlink signal according to the QCL information obtained from the second downlink signal.
  • the QCL ID is a cell ID, or a beam ID, or a time index of a synchronization signal block, or an RS ID used to generate a sequence of downlink RSs.
  • the first set of ports includes some or all of the ports of the first downlink signal.
  • the QCL ID is a cell ID
  • the determining module 310 is specifically configured to:
  • the synchronization signal block carrying the cell ID or the signal in the synchronization signal block is determined as the second downlink signal that is quasi-addressed with the first port set of the first downlink signal.
  • the QCL ID is a time index of a synchronization signal block
  • the determining module 310 is specifically configured to:
  • the QCL ID is a beam ID
  • the determining module 310 is specifically configured to:
  • the synchronization signal block or the downlink reference signal RS carrying the beam ID is determined as the second downlink signal that is quasi-addressed with the first port of the first downlink signal.
  • the QCL ID is a sequence for generating a downlink RS.
  • the RS ID, the determining module 310 is specifically configured to:
  • the first port set of the first downlink signal and the second downlink signal quasi-same address include:
  • the determining module 310 is configured to determine a large-scale parameter of a channel corresponding to the first port set of the first downlink signal according to a large-scale parameter of a channel for transmitting the second downlink signal;
  • the determining module 310 is configured to determine, according to a beam used to send or receive the second downlink signal, a beam used to transmit or receive a signal on the first port set of the first downlink signal.
  • the second downlink signal is a synchronization signal block
  • the determining module 310 is configured to determine the first downlink signal according to a large-scale parameter of a channel that transmits the second downlink signal.
  • the large-scale parameters of the channel corresponding to the first port set include:
  • the determining module 310 is configured to determine, according to the large-scale parameter of the channel for transmitting the synchronization signal SS or the physical broadcast channel PBCH of the synchronization signal block, the reference port DMRS, and determine the first port set for transmitting the first downlink signal. Large-scale parameters of the channel.
  • the second downlink signal is a synchronization signal block
  • the determining module 310 is configured to determine to send or receive the first downlink according to a beam that is sent or received by the second downlink signal.
  • the beam used by the signal on the first port set of the row signal including:
  • the determining module 310 is configured to determine, according to a beam used by the synchronization signal SS or the PBCH in the sending or receiving the synchronization signal block, a beam used to transmit or receive a signal on the first port set of the first downlink signal.
  • the QCL information includes a large scale parameter or beam information of the channel.
  • the processing module 320 is specifically configured to:
  • the processing module 320 is specifically configured to:
  • the device 300 further includes:
  • a communication module configured to receive, by using the target beam, a signal on a first port set of the first downlink signal.
  • the large scale parameter of the channel comprises at least one of the following:
  • Delay spread Doppler spread, Doppler shift, average gain, average delay, exit angle, angle of arrival, receive correlation, and transmit correlation.
  • the first downlink signal is a DMRS, or a channel state information reference signal CSI-RS, or a synchronization signal block, or a synchronization signal, or a synchronization channel.
  • the second downlink signal is a CSI-RS, or a synchronization signal block, or a synchronization signal, or a synchronization channel, or a phase tracking reference signal PT-RS.
  • the device 300 may correspond to (for example, may be configured or be itself) the terminal device described in the foregoing method 200, and each module or unit in the device 300 is used to execute the terminal device in the foregoing method 200, respectively.
  • Each of the operations or processes performed is omitted here for the sake of avoiding redundancy.
  • the embodiment of the present application further provides a device 400 for processing a signal, which may be the device 300 in FIG. 3, which can be used to execute a terminal device corresponding to the method 200 in FIG. content.
  • the device 400 includes an input interface 410, an output interface 420, a processor 430, and a memory 440, and the input interface 410, the output interface 420, the processor 430, and the memory 440 can be connected by a bus system.
  • the memory 440 is used to store programs, instructions or code.
  • the processor 430 is configured to execute a program, an instruction or a code in the memory 440 to control the input interface 410 to receive a signal, control the output interface 420 to send a signal, and complete the operations in the foregoing method embodiments.
  • the processor 430 may be a central processing unit (“CPU"), and the processor 430 may also be other general-purpose processors, digital signal processors ( DSP), application specific integrated circuit (ASIC), off-the-shelf programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, and the like.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 440 can include read only memory and random access memory and provides instructions and data to the processor 430. A portion of the memory 440 may also include a non-volatile random access memory. For example, the memory 440 can also store information of the device type.
  • the contents of the above methods may be integrated by hardware in the processor 430.
  • the logic circuit or the instruction in the form of software is completed.
  • the content of the method disclosed in the embodiments of the present application may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 440, and the processor 430 reads the information in the memory 440 and completes the contents of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the determining module 310 and the processing module 320 included in the device 300 in FIG. 3, and the obtaining module may be implemented by the processor 430 of FIG. 4, and the communication module included in the device 300 in FIG.
  • the input interface 410 and the output interface 420 are implemented.
  • the embodiment of the present application further provides a computer readable storage medium storing one or more programs, the one or more programs including instructions, when the portable electronic device is included in a plurality of applications When executed, the portable electronic device can be caused to perform the method of the embodiment shown in FIG. 2.
  • the embodiment of the present application also proposes a computer program comprising instructions which, when executed by a computer, cause the computer to execute the corresponding flow of the method of the embodiment shown in FIG. 2.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product. Based on such understanding, the technical solution of the present application, which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product stored in a storage medium. A number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Abstract

本申请实施例提供了一种处理信号的方法和设备,能够通过QCI标识ID找到与第一下行信号准同址的第二下行信号,从而根据所述第二下行信号,对所述第一下行信号进行处理。所述方法包括:终端设备确定第一下行信号的第一端口集合对应的准同址QCL标识ID;所述终端设备根据所述QCL ID,确定与所述第一下行信号的第一端口集合准同址的第二下行信号;所述终端设备根据从所述第二下行信号获得的QCL信息,对所述第一下行信号的第一端口集合上的信号进行处理。

Description

处理信号的方法和设备 技术领域
本申请涉及通信领域,并且更具体地,涉及一种处理信号的方法和设备。
背景技术
在长期演进(Long Term Evolution,LTE)系统中,引入了准同址(Quasi-Co-Location,QCL)的概念,如果两个下行信号是QCL的,则可以根据其中一个下行信号,对另一个下行信号进行处理,例如,可以根据对传输其中一个下行信号的信道进行信道估计获得的大尺度参数,对传输另一下行信号的信道进行信道估计,从而提高另一个下行信号的信道估计性能。
因此,如何找到与一个下行信号准同址的其他下行信号,从而根据其他下行信号,对所述一个下行信号的第一端口集合上的信号进行处理是一项值得研究的问题。
发明内容
本申请实施例提供了一种处理信号的方法和设备,能够通过QCI标识ID找到与第一下行信号准同址的第二参考信号,从而根据所述第二下行信号,对所述第一下行信号的第一端口集合上的信号进行处理。
第一方面,提供了一种处理信号的方法,包括:终端设备确定第一下行信号的第一端口集合对应的准同址QCL标识ID;所述终端设备根据所述QCL ID,确定与所述第一下行信号的第一端口集合准同址的第二下行信号;所述终端设备根据从所述第二下行信号获得的QCL信息,对所述第一下行信号的第一端口集合上的信号进行处理。
在具体实现时,可以设置准同址的端口对应相同的QCL ID,准同址的端口和其他端口分别对应不同的QCL ID。
例如,若所述第一下行信号的第一端口集合和第二下行信号的第二端口集合准同址,所述第一下行信号的第一端口集合和所述第二下行信号的第二端口集合对应相同的QCL ID,那么所述终端设备可以根据QCL ID确定哪些端口是准同址的。
可选地,若所述第一下行信号为DMRS,所述DMRS可以为数据信道 的DMRS,即所述DMRS可以用于数据信道的相关解调,或者也可以为控制信道的DMRS,即所述DMRS可以用于控制信道的相关解调。
结合第一方面,在第一方面的某些实现方式中,所述QCL ID为小区ID,或波束ID,或同步信号块的时间索引,或用于生成下行RS的序列的RS ID。
结合第一方面,在第一方面的某些实现方式中,所述第一端口集合包括所述第一下行信号的部分或全部端口。
结合第一方面,在第一方面的某些实现方式中,所述QCL ID为小区ID,所述终端设备根据所述QCL ID,确定与所述第一下行信号的第一端口集合准同址的第二下行信号,包括:
所述终端设备将携带所述小区ID的同步信号块或所述同步信号块中的信号,确定为与所述第一下行信号的第一端口集合准同址的所述第二下行信号。
结合第一方面,在第一方面的某些实现方式中,所述QCL ID为同步信号块的时间索引,所述终端设备根据所述QCL ID,确定与所述第一下行信号的第一端口集合准同址的第二下行信号,包括:
所述终端设备将携带所述时间索引的同步信号块或所述同步信号块中的信号,确定为与所述第一下行信号的第一端口集合准同址的所述第二下行信号。
结合第一方面,在第一方面的某些实现方式中,所述QCL ID为波束ID,所述终端设备根据所述QCL ID,确定与所述第一下行信号的第一端口集合准同址的第二下行信号,包括:
所述终端设备将携带所述波束ID的同步信号块或者下行参考信号RS,确定为与所述第一下行信号的第一端口集合准同址的所述第二下行信号。
结合第一方面,在第一方面的某些实现方式中,所述QCL ID为用于生成下行RS的序列的RS ID,所述终端设备根据所述QCL ID,确定与所述第一下行信号的第一端口集合准同址的第二下行信号,包括:
所述终端设备将预配置的RS集合中采用所述RS ID生成RS序列的下行RS,确定为与所述第一下行信号的第一端口集合准同址的所述第二下行信号。
结合第一方面,在第一方面的某些实现方式中,所述第一下行信号的第一端口集合与所述第二下行信号准同址包括:
所述终端设备能够根据传输所述第二下行信号的信道的大尺度参数,确定所述第一下行信号的第一端口集合对应的信道的大尺度参数;或
所述终端设备能够根据发送或接收所述第二下行信号采用的波束,确定发送或接收所述第一下行信号的第一端口集合上的信号采用的波束。
也就是说,用于传输所述第一下行信号的第一端口集合对应的信道的大尺度参数和用于传输所述第二下行信号的信道的大尺度参数相似或相同;或者发送或接收所述第一下行信号的第一端口集合上的信号采用的波束,与发送或接收所述第二下行信号采用的波束的波束方向相似或相同。
结合第一方面,在第一方面的某些实现方式中,所述第二下行信号为同步信号块,所述终端设备能够根据传输所述第二下行信号的信道的大尺度参数,确定所述第一下行信号的第一端口集合对应的信道的大尺度参数,包括:
所述终端设备能够根据传输所述同步信号块中的同步信号SS或物理广播信道PBCH解调参考信号DMRS的信道的大尺度参数,确定传输所述第一下行信号的第一端口集合对应的信道的大尺度参数。
结合第一方面,在第一方面的某些实现方式中,所述第二下行信号为同步信号块,所述终端设备能够根据发送或接收所述第二下行信号采用的波束,确定发送或接收所述第一下行信号的第一端口集合上的信号采用的波束,包括:
所述终端设备能够根据发送或接收所述同步信号块中的同步信号SS或PBCH采用的波束,确定发送或接收所述第一下行信号的第一端口集合上的信号采用的波束。
结合第一方面,在第一方面的某些实现方式中,所述QCL信息包括信道的大尺度参数或者波束信息。
结合第一方面,在第一方面的某些实现方式中,所述终端设备根据从所述第二下行信号获得的QCL信息,对所述第一下行信号的第一端口集合上的信号进行处理,包括:所述终端设备获取传输所述第二下行信号的信道的大尺度参数;根据传输所述第二下行信号的信道的大尺度参数,对所述第一下行信号的第一端口集合对应的信道进行信道估计。
结合第一方面,在第一方面的某些实现方式中,所述终端设备根据从所述第二下行信号获得的QCL信息,对所述第一下行信号的第一端口集合的信号进行处理,包括:所述终端设备将接收所述第二下行信号采用的波束, 确定为接收所述第一下行信号的第一端口集合上的信号的目标波束;采用所述目标波束接收所述第一下行信号的第一端口集合上的信号。
也就是说,所述终端设备确定与所述第一下行信号的第一端口集合准同址的第二下行信号后,可以根据所述第一下行信号的信号类型,执行相应的操作,例如,若所述第一下行信号为同步信号块,或者同步信号,或者同步信道等用于小区同步的信号,所述终端设备可以根据所述第一下行信号进行小区同步;或者若所述第一下行信号为DMRS,所述终端设备可以根据传输所述第二下行信号的信道的大尺度参数,对所述第一下行信号的第一端口集合对应的信道进行信道估计,进一步还可以根据信道估计的结果,对第一端口集合上传输的信号进行数据解调;或者若所述第一下行信号为CSI-RS,所述终端设备可以根据传输所述第二下行信号的信道的大尺度参数,对所述第一下行信号的第一端口集合对应的信道进行信道估计,进一步还可以根据信道估计的结果,进行CSI测量。
结合第一方面,在第一方面的某些实现方式中,信道的大尺度参数包括以下中的至少一项:
时延扩展、多普勒扩展、多普勒频移、平均增益、平均时延、离开角、到达角、接收相关性和发送相关性。
结合第一方面,在第一方面的某些实现方式中,所述第一下行信号为DMRS,或信道状态信息参考信号CSI-RS,或者同步信号块,或者同步信号,或者同步信道。
结合第一方面,在第一方面的某些实现方式中,所述第二下行信号为CSI-RS,或同步信号块,或同步信号,或同步信道,或相位跟踪参考信号PT-RS。
第二方面,提供了一种处理信号的设备,包括用于执行第一方面或其各种实现方式中的方法的单元。
第三方面,提供一种处理信号的设备,包括存储器、处理器和收发器,所述存储器用于存储程序,所述处理器用于执行程序,当所述程序被执行时,所述处理器基于所述收发器执行第一方面中的方法。
第四方面,提供一种计算机可读介质,所述计算机可读介质存储用于终端设备执行的程序代码,所述程序代码包括用于执行第一方面中的方法的指令。
附图说明
图1是根据本申请实施例的无线通信系统的示意性图。
图2是根据本申请实施例的处理信号的方法的示意性流程图。
图3是根据本申请实施例的处理信号的设备的示意性框图。
图4是根据本申请另一实施例的处理信号的设备的示意性框图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
应理解,本发明的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,简称“GSM”)系统、码分多址(Code Division Multiple Access,简称“CDMA”)系统、宽带码分多址(Wideband Code Division Multiple Access,“WCDMA”)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,简称“LTE”)系统、先进的长期演进(Advanced long term evolution,简称“LTE-A”)系统、通用移动通信系统(Universal Mobile Telecommunication System,简称“UMTS”)、5G等。
图1示出了适用于本发明实施例的无线通信系统100。该无线通信系统100可以包括至少一个网络设备,例如,图1所示的第一网络设备110和第二网络设备120。第一网络设备110和第二网络设备120均可以与终端设备130通过无线空口进行通信。第一网络设备110和第二网络设备120可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。该第一网络设备110或第二网络设备120可以是GSM系统或CDMA系统中的基站(Base Transceiver Station,简称“BTS”),也可以是WCDMA系统中的基站(NodeB),还可以是LTE系统中的演进型基站(Evolutional Node B,简称“eNB”或“eNodeB”),或者是未来5G网络中的网络设备,如传输点(Transmission Reception Point,简称“TRP”)、基站、小基站设备等,本发明实施例对此并未特别限定。
该无线通信系统100还包括位于第一网络设备110和第二网络设备120覆盖范围内的一个或多个终端设备(User Equipment,简称“UE”)130。该终端设备130可以是移动的或固定的。终端设备130可以经无线接入网 (Radio Access Network,简称“RAN”)与一个或多个核心网(Core Network)进行通信,终端设备可称为接入终端、终端设备、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,简称“SIP”)电话、无线本地环路(Wireless Local Loop,简称“WLL”)站、个人数字处理(Personal Digital Assistant,简称“PDA”)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及未来5G网络中的终端设备等。
图2是本申请实施例提出的处理信号的方法200的示意性流程图,所述方法200可以由图1所示的无线通信系统中的终端设备执行,如图2所示,该方法200包括:
S210,终端设备确定第一下行信号的第一端口集合对应的准同址QCL标识ID;
在本申请实施例中,所述第一下行信号为用于解调物理广播信道(Physical Broadcast Channel,PBCH)的解调参考信号(Demodulation Reference Signal,DMRS)DMRS,或信道状态信息参考信号(Channel State Information-Reference Signal,CSI-RS),或同步信号块,或同步信号,或同步信道,或其他下行信号,本申请实施例对此不作限定。
可选地,若所述第一下行信号为DMRS,所述DMRS可以为数据信道的DMRS,即所述DMRS可以用于数据信道的相关解调,或者也可以为控制信道的DMRS,即所述DMRS可以用于控制信道的相关解调。
在本申请实施例中,所述第一下行信号的第一端口集合之间是准同址的,所述第一端口集合包括用于传输所述第一下行信号的部分或全部端口。例如,若所述第一下行信号为DMRS,用于传输所述DMRS的天线端口包括端口5,端口6,端口7和端口8,那么所述DMRS的第一端口集合可以包括端口5,端口6,端口7和端口8中的部分或全部。或者若所述第一下行信号为CSI-RS,用于传输CSI-RS的天线端口包括端口0~端口3,那么CSI-RS的第一端口集合包括端口0~端口3中的部分或全部。
在具体实现时,可以设置第一端口集合对应相同的QCL ID,第一端口集合和其他端口分别对应不同的QCL ID。例如,所述第一下行信号为 DMRS,用于传输所述DMRS的天线端口包括端口5,端口6,端口7和端口8,第一端口集合包括端口5和端口6,即端口5和端口6准同址,端口7和端口8准同址,那么可以设置端口5和端口6对于相同的QCL ID,端口7和端口8对于另一个QCL ID,从而终端设备可以根据QCL ID确定哪些端口是准同址的。
可选的,若所述第一下行信号的第一端口集合和第二下行信号的第二端口集合准同址,所述第一下行信号的第一端口集合和所述第二下行信号的第二端口集合可以对应相同的QCL ID,那么所述终端设备可以根据QCL ID即可确定哪些端口是准同址的,QCL ID可以由多个下行信号共同使用,因此,可以通过QCL ID指示与所述第一下行信号准同址的多个下行信号,因此,相较于网络设备通过高层信令或下行控制信息(Down Control Information,DCI)给终端设备配置与第一下行信号准同址的下行信号的索引(Index)信息,降低了信令开销,增加了QCL指示方式的灵活性。
在本申请实施例中,作为示例而非限定,所述QCL ID可以为Cell ID,波束ID,或同步信号块的时间索引,或者RS ID,即所述QCL ID可以为同步信号或同步信号块携带的Cell ID,或者所述QCL ID也可以为发送或接收下行信号采用的波束的波束ID,所述QCL ID为用于生成RS序列的RS ID,当然,所述QCL ID也可以为其他标识信息,本申请实施例对于QCL ID的具体标识方式不作限定。
S220,所述终端设备根据所述QCL ID,确定与所述第一下行信号的第一端口集合准同址的第二下行信号。
在新无线(New Radio,NR)系统中,引入了同步信号块(Synchronization Signal block,SS block)用于进行下行同步,一个SS block包括同步信号,PBCH和用于解调PBCH的DMRS。SS block也可以为与第一下行信号准同址的下行信号,因此,可以根据SS block对第一下行信号进行处理,例如,可以根据所述SS block对第一下行信号信道估计,从而提高第一下行信号的信道估计性能。
因此,在本申请实施例中,所述第二下行信号可以为CSI-RS,或同步信号块,或同步信号,或同步信道,或相位跟踪参考信号(Phase Tracking Reference Signal,PT-RS),或其他下行信号,本申请实施例对此不作限定。
在本申请实施例中,第一下行信号的第一端口集合和第二下行信号准同 址可以指所述第一下行信号的第一端口集合与所述第二下行信号的第二端口集合准同址,或者所述第一下行信号的第一端口集合和第二下行信号准同址可以认为是所述第一信号的第一端口集合与所述第二信号的所有端口准同址的省略的表达方式,或者所述第一下行信号的第一端口集合和第二下行信号准同址也可以表达为所述第一下行信号和所述第二下行信号准同址。
在本申请实施例中,第一下行信号的第一端口集合和第二下行信号准同址具体可以包括:
所述终端设备能够根据传输所述第二下行信号的信道的大尺度参数,确定所述第一下行信号的第一端口集合对应的信道的大尺度参数;
或者说,用于传输所述第一下行信号的第一端口集合对应的信道的大尺度参数和用于传输所述第二下行信号的信道的大尺度参数相似或相同。
在本申请实施例中,大尺度参数可以参考第三代合作伙伴计划(3rdGeneration Partnership Project,简称“3GPP”)标准中的定义,也可以依据实际系统需求进行设定。
例如,大尺度参数可以包括以下中的至少一项:时延扩展(Delay Spread)、多普勒扩展(Doppler Spread)、多普勒频移(Doppler Shift)、平均增益(Average Gain)、平均时延(Average Delay)、离开角(Departure Of Angle)、到达角(Arrival Of Angle)、接收相关性(Correlation of Receiving)和发送相关性(Correlation of Transmitting)。但应理解,这里所列举的大尺度参数所包括的具体内容仅为示例性说明,不应对本发明构成任何限定,本发明不排除在未来的标准中对大尺度参数所包括的内容进行修改或扩展的可能。
在本申请实施例中,第一下行信号的第一端口集合和第二下行信号准同址还可以包括:
所述终端设备能够根据发送或接收所述第二下行信号采用的波束,确定发送或接收所述第一下行信号的第一端口集合上的信号采用的波束。
或者说,发送或接收所述第一下行信号的第一端口集合上的信号采用的波束,与发送或接收所述第二下行信号采用的波束的波束方向相似或相同。
可选的,在一些实施例中,所述第二下行信号为同步信号块,所述终端设备能够根据传输所述第二下行信号的信道的大尺度参数,确定所述第一下行信号的第一端口集合对应的信道的大尺度参数,具体可以包括:
所述终端设备能够根据传输所述同步信号块中的同步信号SS或物理广播信道PBCH解调参考信号DMRS的信道的大尺度参数,确定传输所述第一下行信号的第一端口集合对应的信道的大尺度参数。
可选的,在一些实施例中,所述第二下行信号为同步信号块,所述终端设备能够根据发送或接收所述第二下行信号采用的波束,确定发送或接收所述第一下行信号的第一端口集合上的信号采用的波束,包括:
所述终端设备能够根据发送或接收所述同步信号块中的同步信号SS或PBCH采用的波束,确定发送或接收所述第一下行信号的第一端口集合上的信号采用的波束。如前面所述,由于准同址的下行信号对应相同的QCL ID,所述QCL ID可以为Cell ID,或波束ID,或同步信号块的时间索引,或者RS ID,因此,所述终端设备可以根据Cell ID,或波束ID,或同步信号块的时间索引,或者RS ID,确定与所述第一下行信号的第一端口集合准同址的所述第二下行信号。
可选地,作为一个实施例,所述QCL ID为小区ID,此情况下,所述S220进一步包括:
所述终端设备将携带所述小区ID的同步信号块或所述同步信号块中的信号,确定为与所述第一下行信号的第一端口集合准同址的所述第二下行信号。
具体地,终端设备可以接收至少一个小区发送的同步信号块,每个小区的同步信号块可以包括对应所述每个小区的Cell ID。例如,所述Cell ID可以通过同步信号块中的辅同步信号(Secondary Synchronization Signal,SSS)来携带,当然,所述Cell ID也可以通过同步信号块中的其他同步信号携带,或者所述同步信号块中的每个信号都可以携带所述Cell ID。
若所述第一下行信号的第一端口集合对应的QCL ID为Cell ID,那么所述终端设备可以将这个Cell ID作为目标Cell ID,在所述至少一个小区发送的同步信号块中,确定携带所述目标Cell ID的同步信号块或所述同步信号块中的信号,,将携带所述目标Cell ID的同步信号块或所述同步信号块中的信号,,确定为与所述第一下行信号的第一端口集合准同址的所述第二下行信号。
进一步的,所述终端设备可以根据传输所述同步信号块的信道的大尺度参数,对传输所述第一下行信号的第一端口集合对应的信道进行信道估计, 即对传输所述第一下行信号的第一端口集合经历的信道进行信道估计,从而提高所述第一下行信号的信道估计性能。
可选地,在一些实施例中,所述QCL ID为同步信号块的时间索引,所述终端设备根据所述QCL ID,确定与所述第一下行信号的第一端口集合准同址的第二下行信号,包括:
所述终端设备将携带所述时间索引的同步信号块或所述同步信号块中的信号,确定为与所述第一下行信号的第一端口集合准同址的所述第二下行信号。
具体地,终端设备可以接收至少一个小区发送的同步信号块,每个小区的同步信号块可以包括时间索引。例如,所述时间索引可以通过同步信号块中的PBCH来携带,当然,所述时间索引也可以通过同步信号块中的其他同步信号携带,或者所述同步信号块中的每个信号都可以携带所述时间索引。
若所述第一下行信号的第一端口集合对应的QCL ID为同步信号块的时间索引,那么所述终端设备可以将这个时间索引作为目标时间索引,在所述至少一个小区发送的同步信号块中,确定携带所述目标时间索引的同步信号块或所述同步信号块中的信号,将携带所述目标时间索引的同步信号块或所述同步信号块中的信号,确定为与所述第一下行信号的第一端口集合准同址的所述第二下行信号。
可选地,作为另一个实施例,所述QCL ID为波束ID,所述终端设备根据所述QCL ID,确定与所述第一下行信号的第一端口集合准同址的第二下行信号,包括:
所述终端设备将携带所述波束ID的同步信号块或者下行参考信号,确定为与所述第一下行信号的第一端口集合准同址的所述第二下行信号。
具体地,终端设备可以接收至少一个小区发送的同步信号块,每个小区的同步信号块可以包括用于发送或接收同步信号块的波束ID。例如,所述波束ID可以通过同步信号块中的任意信号携带,例如,所述波束ID可以通过所述同步信号块中的SSS携带,或者也可以通过同步信号块中的其他同步信号携带,或者所述同步信号块中的每个信号都可以携带所述波束ID。
若所述第一下行信号的第一端口集合对应的QCL ID为波束ID,那么所述终端设备可以将这个波束ID作为目标波束ID,在所述至少一个小区发送的同步信号块中,确定携带所述目标波束ID的同步信号块,将携带所 述目标波束ID的同步信号块,确定为与所述第一下行信号的第一端口集合准同址的所述第二下行信号。
所述终端设备也可以采用类似的方式根据波束ID确定为与所述第一下行信号的第一端口集合准同址的下行参考信号,然后将所述下行参考信号确定为所述第二下行信号。
进一步的,所述终端设备可以根据传输所述同步信号块或所述下行参考信号的信道的大尺度参数,对传输所述第一下行信号的第一端口集合对应的信道进行信道估计,即对传输所述第一下行信号的第一端口集合经历的信道进行信道估计,从而提高所述第一下行信号的信道估计性能。
可选地,作为再一个实施例,所述QCL ID为用于生成所述下行RS的序列的RS ID,此情况下,S220进一步包括:
所述终端设备将预配置的RS集合中采用所述RS ID生成RS序列的下行RS,确定为与所述第一下行信号的第一端口集合准同址的所述第二下行信号。
具体地,网络设备可以给终端设备预配置RS集合,所述RS集合中的每个RS的序列是采用RS ID生成的。若所述QCL ID为用于生成所述下行RS的序列的RS ID,所述终端设备可以将所述RS ID记为目标RS ID,根据所述目标RS ID,在所述RS集合中确定哪个RS的序列是采用所述目标RS ID生成的,从而将其确定为与所述第一下行信号RS的第一端口集合准同址所述第二下行信号。
进一步地,所述终端设备可以根据传输所述第二下行信号的信道的大尺度参数,对所述第一下行信号的第一端口集合对应的信道进行信道估计,从而提高所述第一下行信号的信道估计性能。
S230,所述终端设备根据从所述第二下行信号获得的QCL信息,对所述第一下行信号的第一端口集合上的信号进行处理。
应理解,在本申请实施例中,所述第二下行信号可以包括至少一个下行信号,例如,所述第二下行信号可以包括前述的所述第二下行信号中的至少一种,也就是说,所述终端设备可以根据从至少一个下行信号获得的QCL信息,对所述第一下行信号的第一端口集合上的信号进行处理。
在本申请实施例中,所述QCL信息可以包括信道的大尺度信息或波束信息,具体的,所述第二下行信号的QCL信息可以包括用于传输所述第二 下行信号的信道的大尺度参数,或发送或接收所述第二下行信号采用的波束的波束信息。
例如,所述第一下行信号为DMRS,所述第一下行信号的第一端口集合上传输的信号为DMRS,那么所述终端设备可以根据从所述第二下行信号获得的QCL信息,对所述第一下行信号的第一端口集合对应的信道进行信道估计,根据信道估计的结果对所述第一端口集合上的信号进行数据解调。又如,所述第一下行信号为CSI-RS,所述第一下行信号的第一端口集合上传输的信号为CSI-RS,那么所述终端设备可以根据从所述第二下行信号获得的QCL信息,对所述第一下行信号的第一端口集合上的信道进行信道估计,根据信道估计的结果进行CSI测量。再如,所述第一下行信号为同步信号,所述第一下行信号的第一端口集合上传输的信号为同步信号,那么所述终端设备可以根据从所述第二下行信号获得的QCL信息,接收所述第一下行信号的第一端口集合上的信号,进一步可以根据所述同步信号获取同步信息。
可选地,作为一个实施例,S230进一步可以包括:
所述终端设备获取传输所述第二下行信号的信道的大尺度参数;
根据传输所述第二下行信号的信道的大尺度参数,对所述第一下行信号的第一端口集合对应的信道进行信道估计。
如前面所述,第一下行信号的第一端口集合和第二下行信号准同址的情况下,用于传输所述第一下行信号的第一端口集合对应的信道的大尺度参数和用于传输所述第二下行信号的信道的大尺度参数相似或相同。因此,所述终端设备可以根据传输所述第二下行信号的信道的大尺度参数,对所述第一下行信号的第一端口集合对应的信道进行信道估计。
例如,所述第一下行信号为数据信道的DMRS,所述第二下行信号为CSI-RS,所述终端设备可以根据对传输所述CSI-RS的信道进行信道估计得到的时延扩展和多普勒扩展等大尺度参数,对数据信道的DMRS的第一端口集合对应的信道进行信道估计。进一步地,所述终端设备可以所述信道估计的结果,进行第一端口集合上的数据解调。
又如,所述第一下行信号为CSI-RS,所述第二下行信号为PT-RS,所述终端设备可以根据对传输所述PT-RS的信道进行信道估计得到的时延扩展和多普勒扩展等大尺度参数,对CSI-RS的第一端口集合对应的信道进行信道估计。进一步地,所述终端设备可以根据信道估计的结果,进行CSI测量。
在本申请实施例中,若所述第一下行信号为同步信号块,或者同步信号,或者同步信道,则所述终端设备可以只需接收所述第一下行信号的第一端口集合上的同步信号块,或者同步信号,或者同步信道,然后根据接收到的所述第一下行信号的第一端口集合上的同步信号块,或者同步信号,或者同步信道进行小区信号同步,而无须执行信道估计相关的操作。
也就是说,所述终端设备确定与所述第一下行信号的第一端口集合准同址的第二下行信号后,可以根据所述第一下行信号的信号类型,执行相应的操作,例如,若所述第一下行信号为同步信号块,或者同步信号,或者同步信道等用于小区同步的信号,所述终端设备可以根据所述第一下行信号进行小区同步;或者若所述第一下行信号为DMRS,所述终端设备可以根据传输所述第二下行信号的信道的大尺度参数,对所述第一下行信号的第一端口集合对应的信道进行信道估计,进一步还可以根据信道估计的结果,进行第一端口集合上的数据解调;或者若所述第一下行信号为CSI-RS,所述终端设备可以根据传输所述第二下行信号的信道的大尺度参数,对所述第一下行信号的第一端口集合对应的信道进行信道估计,进一步还可以根据信道估计的结果,进行CSI测量。
可选的,作为另一个实施例,S230进一步可以包括:
所述终端设备将接收所述第二下行信号采用的波束,确定为接收所述第一下行信号的第一端口集合上的信号的目标波束;
采用所述目标波束接收所述第一下行信号的第一端口集合上的信号。
如前面所述,第一下行信号的第一端口集合和第二下行信号准同址的情况下,发送或接收所述第一下行信号的第一端口集合上的信号采用的波束,与发送或接收所述第二下行信号采用的波束的波束方向相似或相同。因此,所述终端设备可以将用于接收所述第二下行信号的波束,确定为接收所述第一下行信号的第一端口集合上的信号的目标波束,然后采用所述目标波束接收所述第一下行信号的第一端口集合上的信号。
例如,所述第一下行信号为数据信道的DMRS,所述第二下行信号为CSI-RS,所述终端设备可以将接收所述CSI-RS的波束,确定为接收所述数据信道的DMRS的第一端口集合上的信号的目标波束,采用所述目标波束接收所述数据信道的DMRS的第一端口集合上的信号。
因此,本申请实施例的处理信号的方法,所述终端设备可以根据QCL ID 确定与第一下行信号准同址的第二下行信号,从而可以根据所述第二下行信号,对所述第一下行信号的第一端口集合上的信号进行处理,例如,可以根据是第二下行信号,对所述第一下行信号的第一端口集合上的信号进行信道估计,从而提高所述第一下行信号的信道估计性能。
上文结合图2,详细描述了本申请的方法实施例,下文结合图3和图4,详细描述本申请的装置实施例,应理解,装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例。
图3是根据本申请实施例的处理信号的设备的示意性框图。图3的设备300包括:
确定模块310,用于确定第一下行信号的第一端口集合对应的准同址QCL标识ID,根据所述QCL ID,确定与所述第一下行信号的第一端口集合准同址的第二下行信号;
处理模块320,用于根据从所述第二下行信号获得的QCL信息,对所述第一下行信号的第一端口集合上的信号进行处理。
可选地,在一些实施例中,所述QCL ID为小区ID,或波束ID,或同步信号块的时间索引,或用于生成下行RS的序列的RS ID。
可选地,在一些实施例中,所述第一端口集合包括所述第一下行信号的部分或全部端口。
可选地,在一些实施例中,所述QCL ID为小区ID,所述确定模块310具体用于:
将携带所述小区ID的同步信号块或所述同步信号块中的信号,确定为与所述第一下行信号的第一端口集合准同址的所述第二下行信号。
可选地,在一些实施例中,所述QCL ID为同步信号块的时间索引,所述确定模块310具体用于:
将携带所述时间索引的同步信号块或所述同步信号块中的信号,确定为与所述第一下行信号的第一端口集合准同址的所述第二下行信号。
可选地,在一些实施例中,所述QCL ID为波束ID,所述确定模块310具体用于:
将携带所述波束ID的同步信号块或者下行参考信号RS,确定为与所述第一下行信号的第一端口集合准同址的所述第二下行信号。
可选地,在一些实施例中,所述QCL ID为用于生成下行RS的序列的 RS ID,所述确定模块310具体用于:
将预配置的RS集合中采用所述RS ID生成RS序列的下行RS,确定为与所述第一下行信号的第一端口集合准同址的所述第二下行信号。
可选地,在一些实施例中,所述第一下行信号的第一端口集合与所述第二下行信号准同址包括:
所述确定模块310能够根据传输所述第二下行信号的信道的大尺度参数,确定所述第一下行信号的第一端口集合对应的信道的大尺度参数;或
所述确定模块310能够根据发送或接收所述第二下行信号采用的波束,确定发送或接收所述第一下行信号的第一端口集合上的信号采用的波束。
可选地,在一些实施例中,所述第二下行信号为同步信号块,所述确定模块310能够根据传输所述第二下行信号的信道的大尺度参数,确定所述第一下行信号的第一端口集合对应的信道的大尺度参数,包括:
所述确定模块310能够根据传输所述同步信号块中的同步信号SS或物理广播信道PBCH解调参考信号DMRS的信道的大尺度参数,确定传输所述第一下行信号的第一端口集合对应的信道的大尺度参数。
可选地,在一些实施例中,所述第二下行信号为同步信号块,所述确定模块310能够根据发送或接收所述第二下行信号采用的波束,确定发送或接收所述第一下行信号的第一端口集合上的信号采用的波束,包括:
所述确定模块310能够根据发送或接收所述同步信号块中的同步信号SS或PBCH采用的波束,确定发送或接收所述第一下行信号的第一端口集合上的信号采用的波束。
可选地,在一些实施例中,所述QCL信息包括信道的大尺度参数或者波束信息。
可选地,在一些实施例中,所述处理模块320具体用于:
获取传输所述第二下行信号的信道的大尺度参数;
根据传输所述第二下行信号的信道的大尺度参数,接收所述第一下行信号的第一端口集合上的信号。
可选地,在一些实施例中,所述处理模块320具体用于:
将接收所述第二下行信号采用的波束,确定为接收所述第一下行信号的第一端口集合上的信号的目标波束;
所述设备300还包括:
通信模块,用于采用所述目标波束接收所述第一下行信号的第一端口集合上的信号。
可选地,在一些实施例中,信道的大尺度参数包括以下中的至少一项:
时延扩展、多普勒扩展、多普勒频移、平均增益、平均时延、离开角、到达角、接收相关性和发送相关性。
可选地,在一些实施例中,所述第一下行信号为DMRS,或信道状态信息参考信号CSI-RS,或者同步信号块,或者同步信号,或者同步信道。
可选地,在一些实施例中,所述第二下行信号为CSI-RS,或同步信号块,或同步信号,或同步信道,或相位跟踪参考信号PT-RS。
具体地,该设备300可以对应(例如,可以配置于或本身即为)上述方法200中描述的终端设备,并且,该设备300中的各模块或单元分别用于执行上述方法200中终端设备所执行的各动作或处理过程,这里,为了避免赘述,省略其详细说明。
如图4所示,本申请实施例还提供了一种处理信号的设备400,所述设备400可以为图3中的设备300,其能够用于执行与图2中方法200对应的终端设备的内容。所述设备400包括:输入接口410、输出接口420、处理器430以及存储器440,所述输入接口410、输出接口420、处理器430和存储器440可以通过总线系统相连。所述存储器440用于存储包括程序、指令或代码。所述处理器430,用于执行所述存储器440中的程序、指令或代码,以控制输入接口410接收信号、控制输出接口420发送信号以及完成前述方法实施例中的操作。
应理解,在本申请实施例中,所述处理器430可以是中央处理单元(Central Processing Unit,简称为“CPU”),所述处理器430还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者所述处理器也可以是任何常规的处理器等。
所述存储器440可以包括只读存储器和随机存取存储器,并向处理器430提供指令和数据。存储器440的一部分还可以包括非易失性随机存取存储器。例如,存储器440还可以存储设备类型的信息。
在实现过程中,上述方法的各内容可以通过处理器430中的硬件的集成 逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的内容可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。所述存储介质位于存储器440,处理器430读取存储器440中的信息,结合其硬件完成上述方法的内容。为避免重复,这里不再详细描述。
一个具体的实施方式中,图3中设备300包括的确定模块310和处理模块320,以及获取模块可以用图4的处理器430实现,图3中设备300包括的通信模块,可以用图4的所述输入接口410和所述输出接口420实现。
本申请实施例还提出了一种计算机可读存储介质,该计算机可读存储介质存储一个或多个程序,该一个或多个程序包括指令,该指令当被包括多个应用程序的便携式电子设备执行时,能够使该便携式电子设备执行图2所示实施例的方法。
本申请实施例还提出了一种计算机程序,该计算机程序包括指令,当该计算机程序被计算机执行时,使得计算机可以执行图2所示实施例的方法的相应流程。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应所述理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者所述技术方案的部分可以以软件产品的形式体现出来,所述计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (32)

  1. 一种处理信号的方法,其特征在于,包括:
    终端设备确定第一下行信号的第一端口集合对应的准同址QCL标识ID;
    所述终端设备根据所述QCL ID,确定与所述第一下行信号的第一端口集合准同址的第二下行信号;
    所述终端设备根据从所述第二下行信号获得的QCL信息,对所述第一下行信号的第一端口集合上的信号进行处理。
  2. 根据权利要求1所述的方法,其特征在于,所述QCL ID为小区ID,或波束ID,或同步信号块的时间索引,或用于生成下行RS的序列的RS ID。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一端口集合包括所述第一下行信号的部分或全部端口。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述QCL ID为小区ID,所述终端设备根据所述QCL ID,确定与所述第一下行信号的第一端口集合准同址的第二下行信号,包括:
    所述终端设备将携带所述小区ID的同步信号块或所述同步信号块中的信号,确定为与所述第一下行信号的第一端口集合准同址的所述第二下行信号。
  5. 根据权利要求1至3中任一项所述的方法,其特征在于,所述QCL ID为同步信号块的时间索引,所述终端设备根据所述QCL ID,确定与所述第一下行信号的第一端口集合准同址的第二下行信号,包括:
    所述终端设备将携带所述时间索引的同步信号块或所述同步信号块中的信号,确定为与所述第一下行信号的第一端口集合准同址的所述第二下行信号。
  6. 根据权利要求1至3中任一项所述的方法,其特征在于,所述QCL ID为波束ID,所述终端设备根据所述QCL ID,确定与所述第一下行信号的第一端口集合准同址的第二下行信号,包括:
    所述终端设备将携带所述波束ID的同步信号块或者下行参考信号RS,确定为与所述第一下行信号的第一端口集合准同址的所述第二下行信号。
  7. 根据权利要求1至3中任一项所述的方法,其特征在于,所述QCL ID为用于生成下行RS的序列的RS ID,所述终端设备根据所述QCL ID,确定 与所述第一下行信号的第一端口集合准同址的第二下行信号,包括:
    所述终端设备将预配置的RS集合中采用所述RS ID生成RS序列的下行RS,确定为与所述第一下行信号的第一端口集合准同址的所述第二下行信号。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述第一下行信号的第一端口集合与所述第二下行信号准同址包括:
    所述终端设备能够根据传输所述第二下行信号的信道的大尺度参数,确定所述第一下行信号的第一端口集合对应的信道的大尺度参数;或
    所述终端设备能够根据发送或接收所述第二下行信号采用的波束,确定发送或接收所述第一下行信号的第一端口集合上的信号采用的波束。
  9. 根据权利要求8所述的方法,其特征在于,所述第二下行信号为同步信号块,所述终端设备能够根据传输所述第二下行信号的信道的大尺度参数,确定所述第一下行信号的第一端口集合对应的信道的大尺度参数,包括:
    所述终端设备能够根据传输所述同步信号块中的同步信号SS或物理广播信道PBCH解调参考信号DMRS的信道的大尺度参数,确定传输所述第一下行信号的第一端口集合对应的信道的大尺度参数。
  10. 根据权利要求8所述的方法,其特征在于,所述第二下行信号为同步信号块,所述终端设备能够根据发送或接收所述第二下行信号采用的波束,确定发送或接收所述第一下行信号的第一端口集合上的信号采用的波束,包括:
    所述终端设备能够根据发送或接收所述同步信号块中的同步信号SS或PBCH采用的波束,确定发送或接收所述第一下行信号的第一端口集合上的信号采用的波束。
  11. 根据权利要求1至10中任一项所述的方法,其特征在于,所述QCL信息包括信道的大尺度参数或者波束信息。
  12. 根据权利要求11所述的方法,其特征在于,所述终端设备根据从所述第二下行信号获得的QCL信息,对所述第一下行信号的第一端口集合上的信号进行处理,包括:
    所述终端设备获取传输所述第二下行信号的信道的大尺度参数;
    根据传输所述第二下行信号的信道的大尺度参数,对所述第一下行信号的第一端口集合对应的信道进行信道估计。
  13. 根据权利要求11所述的方法,其特征在于,所述终端设备根据从所述第二下行信号获得的QCL信息,对所述第一下行信号的第一端口集合的信号进行处理,包括:
    所述终端设备将接收所述第二下行信号采用的波束,确定为接收所述第一下行信号的第一端口集合上的信号的目标波束;
    采用所述目标波束接收所述第一下行信号的第一端口集合上的信号。
  14. 根据权利要求1至13中任一项所述的方法,其特征在于,信道的大尺度参数包括以下中的至少一项:
    时延扩展、多普勒扩展、多普勒频移、平均增益、平均时延、离开角、到达角、接收相关性和发送相关性。
  15. 根据权利要求1至14中任一项所述的方法,其特征在于,所述第一下行信号为DMRS,或信道状态信息参考信号CSI-RS,或者同步信号块,或者同步信号,或者同步信道。
  16. 根据权利要求1至15中任一项所述的方法,其特征在于,所述第二下行信号为CSI-RS,或同步信号块,或同步信号,或同步信道,或相位跟踪参考信号PT-RS。
  17. 一种处理信号的设备,其特征在于,包括:
    确定模块,用于确定第一下行信号的第一端口集合对应的准同址QCL标识ID,根据所述QCL ID,确定与所述第一下行信号的第一端口集合准同址的第二下行信号;
    处理模块,用于根据从所述第二下行信号获得的QCL信息,对所述第一下行信号的第一端口集合上的信号进行处理。
  18. 根据权利要求17所述的设备,其特征在于,所述QCL ID为小区ID,或波束ID,或同步信号块的时间索引,或用于生成下行RS的序列的RS ID。
  19. 根据权利要求17或18所述的设备,其特征在于,所述第一端口集合包括所述第一下行信号的部分或全部端口。
  20. 根据权利要求17至19中任一项所述的设备,其特征在于,所述QCL ID为小区ID,所述确定模块具体用于:
    将携带所述小区ID的同步信号块或所述同步信号块中的信号,确定为与所述第一下行信号的第一端口集合准同址的所述第二下行信号。
  21. 根据权利要求17至19中任一项所述的设备,其特征在于,所述QCL ID为同步信号块的时间索引,所述确定模块具体用于:
    将携带所述时间索引的同步信号块或所述同步信号块中的信号,确定为与所述第一下行信号的第一端口集合准同址的所述第二下行信号。
  22. 根据权利要求17至19中任一项所述的设备,其特征在于,所述QCL ID为波束ID,所述确定模块具体用于:
    将携带所述波束ID的同步信号块或者下行参考信号RS,确定为与所述第一下行信号的第一端口集合准同址的所述第二下行信号。
  23. 根据权利要求17至19中任一项所述的设备,其特征在于,所述QCL ID为用于生成下行RS的序列的RS ID,所述确定模块具体用于:
    将预配置的RS集合中采用所述RS ID生成RS序列的下行RS,确定为与所述第一下行信号的第一端口集合准同址的所述第二下行信号。
  24. 根据权利要求17至23中任一项所述的设备,其特征在于,所述第一下行信号的第一端口集合与所述第二下行信号准同址包括:
    所述确定模块能够根据传输所述第二下行信号的信道的大尺度参数,确定所述第一下行信号的第一端口集合对应的信道的大尺度参数;或
    所述确定模块能够根据发送或接收所述第二下行信号采用的波束,确定发送或接收所述第一下行信号的第一端口集合上的信号采用的波束。
  25. 根据权利要求24所述的设备,其特征在于,所述第二下行信号为同步信号块,所述确定模块能够根据传输所述第二下行信号的信道的大尺度参数,确定所述第一下行信号的第一端口集合对应的信道的大尺度参数,包括:
    所述确定模块能够根据传输所述同步信号块中的同步信号SS或物理广播信道PBCH解调参考信号DMRS的信道的大尺度参数,确定传输所述第一下行信号的第一端口集合对应的信道的大尺度参数。
  26. 根据权利要求24所述的设备,其特征在于,所述第二下行信号为同步信号块,所述确定模块能够根据发送或接收所述第二下行信号采用的波束,确定发送或接收所述第一下行信号的第一端口集合上的信号采用的波束,包括:
    所述确定模块能够根据发送或接收所述同步信号块中的同步信号SS或PBCH采用的波束,确定发送或接收所述第一下行信号的第一端口集合上的 信号采用的波束。
  27. 根据权利要求17至26中任一项所述的设备,其特征在于,所述QCL信息包括信道的大尺度参数或者波束信息。
  28. 根据权利要求27所述的设备,其特征在于,所述处理模块具体用于:
    获取传输所述第二下行信号的信道的大尺度参数;
    根据传输所述第二下行信号的信道的大尺度参数,对所述第一下行信号的第一端口集合对应的信道进行信道估计。
  29. 根据权利要求27所述的设备,其特征在于,所述处理模块具体用于:
    将接收所述第二下行信号采用的波束,确定为接收所述第一下行信号的第一端口集合上的信号的目标波束;
    所述设备还包括:
    通信模块,用于采用所述目标波束接收所述第一下行信号的第一端口集合上的信号。
  30. 根据权利要求17至29中任一项所述的设备,其特征在于,信道的大尺度参数包括以下中的至少一项:
    时延扩展、多普勒扩展、多普勒频移、平均增益、平均时延、离开角、到达角、接收相关性和发送相关性。
  31. 根据权利要求17至30中任一项所述的设备,其特征在于,所述第一下行信号为DMRS,或信道状态信息参考信号CSI-RS,或者同步信号块,或者同步信号,或者同步信道。
  32. 根据权利要求17至31中任一项所述的设备,其特征在于,所述第二下行信号为CSI-RS,或同步信号块,或同步信号,或同步信道,或相位跟踪参考信号PT-RS。
PCT/CN2017/081860 2017-04-25 2017-04-25 处理信号的方法和设备 WO2018195777A1 (zh)

Priority Applications (16)

Application Number Priority Date Filing Date Title
SG11201909953P SG11201909953PA (en) 2017-04-25 2017-04-25 Signal processing method and apparatus
JP2019557550A JP2020518180A (ja) 2017-04-25 2017-04-25 信号処理の方法及び装置
RU2019137546A RU2732078C1 (ru) 2017-04-25 2017-04-25 Способ и устройство обработки сигналов
BR112019022136-0A BR112019022136A2 (pt) 2017-04-25 2017-04-25 Método e aparelho de processamento de sinais
CA3061160A CA3061160C (en) 2017-04-25 2017-04-25 Signal processing method and apparatus
EP17907401.8A EP3609255B1 (en) 2017-04-25 2017-04-25 Signal processing method and apparatus
KR1020197032767A KR20190139928A (ko) 2017-04-25 2017-04-25 신호 처리 방법 및 기기
PCT/CN2017/081860 WO2018195777A1 (zh) 2017-04-25 2017-04-25 处理信号的方法和设备
CN201780089967.3A CN110547012B (zh) 2017-04-25 2017-04-25 处理信号的方法和设备
CN201911295874.3A CN111106918B (zh) 2017-04-25 2017-04-25 处理信号的方法和设备
AU2017411184A AU2017411184A1 (en) 2017-04-25 2017-04-25 Signal processing method and apparatus
KR1020217038417A KR102432517B1 (ko) 2017-04-25 2017-04-25 신호 처리 방법 및 기기
MX2019012730A MX2019012730A (es) 2017-04-25 2017-04-25 Metodo de procesamiento de se?al y aparato.
TW107113657A TWI754043B (zh) 2017-04-25 2018-04-23 處理信號的方法和設備
PH12019502393A PH12019502393A1 (en) 2017-04-25 2019-10-23 Signal processing method and apparatus
US16/662,780 US11172476B2 (en) 2017-04-25 2019-10-24 Signal processing method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/081860 WO2018195777A1 (zh) 2017-04-25 2017-04-25 处理信号的方法和设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/662,780 Continuation US11172476B2 (en) 2017-04-25 2019-10-24 Signal processing method and apparatus

Publications (1)

Publication Number Publication Date
WO2018195777A1 true WO2018195777A1 (zh) 2018-11-01

Family

ID=63919352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/081860 WO2018195777A1 (zh) 2017-04-25 2017-04-25 处理信号的方法和设备

Country Status (14)

Country Link
US (1) US11172476B2 (zh)
EP (1) EP3609255B1 (zh)
JP (1) JP2020518180A (zh)
KR (2) KR20190139928A (zh)
CN (2) CN111106918B (zh)
AU (1) AU2017411184A1 (zh)
BR (1) BR112019022136A2 (zh)
CA (1) CA3061160C (zh)
MX (1) MX2019012730A (zh)
PH (1) PH12019502393A1 (zh)
RU (1) RU2732078C1 (zh)
SG (1) SG11201909953PA (zh)
TW (1) TWI754043B (zh)
WO (1) WO2018195777A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021103006A1 (zh) * 2019-11-29 2021-06-03 华为技术有限公司 一种跟踪参考信号的接收方法、发送方法及通信装置
CN113316267A (zh) * 2019-03-01 2021-08-27 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备
JP2022511660A (ja) * 2018-11-02 2022-02-01 維沃移動通信有限公司 情報伝送方法及び通信機器

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150257130A1 (en) * 2012-09-21 2015-09-10 Lg Electronics Inc. Method and device for transmitting and receiving downlink signal in wireless communication system
CN106559879A (zh) * 2015-09-25 2017-04-05 中兴通讯股份有限公司 信息发送及确定、关系确定的方法及装置

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013119073A1 (ko) * 2012-02-11 2013-08-15 엘지전자 주식회사 채널상태정보를 보고하기 위한 방법, 이를 지원하기 위한 방법 및 이들을 위한 장치
AU2013250063B2 (en) 2012-04-19 2017-11-02 Samsung Electronics Co., Ltd. Method and apparatus for quasi co-location identification of reference symbol ports for coordinated multi-point communication systems
CN103684676B (zh) * 2012-09-26 2018-05-15 中兴通讯股份有限公司 天线端口位置关系的通知和确定方法、系统及装置
RU2604639C1 (ru) * 2012-10-30 2016-12-10 Хуавэй Текнолоджиз Ко., Лтд. Способ обработки улучшенного физического канала управления нисходящей линии связи, устройство на стороне сети и пользовательское оборудование
CN104813602B (zh) * 2013-01-03 2018-08-07 英特尔公司 新载波类型(nct)无线网络中用于跨载波准同位信令的装置和方法
US9531448B2 (en) * 2013-01-17 2016-12-27 Telefonaktiebolaget Lm Ericsson (Publ) Autonomous quasi co-location status redefinition by receiver in coordinated multipoint downlink
WO2014175919A1 (en) * 2013-04-26 2014-10-30 Intel IP Corporation Shared spectrum reassignment in a spectrum sharing context
WO2015174731A1 (ko) * 2014-05-15 2015-11-19 엘지전자(주) 무선 통신 시스템에서 디스커버리 신호 검출 방법 및 이를 위한 장치
US10225054B2 (en) * 2014-11-07 2019-03-05 Electronics And Telecommunications Research Institute Method and apparatus for transmitting reference signal, method and apparatus for measuring and reporting channel state information, and method for configuring the same
US10348458B2 (en) * 2015-03-13 2019-07-09 Samsung Electronics Co., Ltd. Methods and apparatus for LTE coordinated transmission on unlicensed spectrum
WO2017078464A1 (ko) * 2015-11-04 2017-05-11 엘지전자(주) 무선 통신 시스템에서 하향링크 데이터 송수신 방법 및 이를 위한 장치
US11038557B2 (en) * 2016-03-31 2021-06-15 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving reference signals in wireless communication
CN107306177B (zh) * 2016-04-22 2023-11-10 华为技术有限公司 传输数据的方法、用户设备和网络侧设备
US10039076B2 (en) * 2016-08-22 2018-07-31 Qualcomm Incorporated Declaring quasi co-location among multiple antenna ports
CN110944348B (zh) * 2016-11-04 2021-06-29 华为技术有限公司 一种无线通信方法、装置及其计算机可读存储介质
WO2018097582A1 (en) * 2016-11-22 2018-05-31 Samsung Electronics Co., Ltd. Method and apparatus for channel estimation and data decoding in wireless communication system
US10470191B2 (en) * 2016-12-09 2019-11-05 Samsung Electronics Co., Ltd. Method and apparatus of broadcast signals and channels for system information transmission
EP4210269A1 (en) * 2017-01-06 2023-07-12 LG Electronics Inc. Method for transmitting reference signal in wireless communication system and apparatus therefor
WO2018127145A1 (zh) * 2017-01-06 2018-07-12 华为技术有限公司 通信方法、装置和系统
US10505773B2 (en) * 2017-01-17 2019-12-10 Qualcomm Incorporated Association between synchronization signal beams and reference signal beams
CN108347778B (zh) * 2017-01-25 2022-01-14 华为技术有限公司 通信方法及装置
WO2018137198A1 (zh) * 2017-01-25 2018-08-02 华为技术有限公司 通信方法、网络侧设备和终端设备
US11258499B2 (en) * 2017-02-02 2022-02-22 Lg Electronics Inc. Method for reporting channel state information in wireless communication system and apparatus for same
KR20190118568A (ko) * 2017-02-03 2019-10-18 아이디에이씨 홀딩스, 인크. 방송 채널 변속 및 복원
CN110249555B (zh) * 2017-02-03 2022-04-29 Idac控股公司 新无线电内的同步信号突发、信号设计及系统帧获取
WO2018143760A1 (ko) * 2017-02-06 2018-08-09 엘지전자 주식회사 측정 수행 방법 및 사용자기기
US10568102B2 (en) * 2017-02-23 2020-02-18 Qualcomm Incorporated Usage of synchronization signal block index in new radio
US10708028B2 (en) * 2017-03-08 2020-07-07 Samsung Electronics Co., Ltd. Method and apparatus for reference signals in wireless system
US11082105B2 (en) * 2017-03-17 2021-08-03 Qualcomm Incorporated RLM monitoring using signaled dynamic parameter
US10454755B2 (en) * 2017-03-22 2019-10-22 Qualcomm Incorporated Beam failure identification and recovery techniques
US10841818B2 (en) * 2017-03-23 2020-11-17 Samsung Electronics Co., Ltd. Method, apparatus, and system for terminal for measurement configuration of different reference signals and cell measurement report mechanism
US10701580B2 (en) * 2017-03-23 2020-06-30 Samsung Electronics Co., Ltd. Method of allocating CSI-RS for beam management
CN110603747B (zh) * 2017-05-05 2023-07-04 苹果公司 新空口(nr)中用于天线端口的准共址(qcl)
US11070320B2 (en) * 2017-06-16 2021-07-20 Apple Inc. Resource element (RE) mapping in new radio (NR)
JP6810793B2 (ja) * 2017-08-11 2021-01-06 エルジー エレクトロニクス インコーポレイティド Coresetにおいて制御チャンネルを受信/送信するための方法及び装置
US10707923B2 (en) * 2017-10-13 2020-07-07 Qualcomm Incorporated Dynamic transmission configuration indication state updating
US10651917B2 (en) * 2018-01-12 2020-05-12 Qualcomm Incorporated Transmission configuration indication based beam switching
US10797774B2 (en) * 2018-05-11 2020-10-06 Qualcomm Incorporated Ultra-reliable low latency communication with multiple transmission-reception points
US10790892B2 (en) * 2018-08-06 2020-09-29 Qualcomm Incorporated Rate matching of reference signal resources in multiple transmit receive point (TRP) scenarios

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150257130A1 (en) * 2012-09-21 2015-09-10 Lg Electronics Inc. Method and device for transmitting and receiving downlink signal in wireless communication system
CN106559879A (zh) * 2015-09-25 2017-04-05 中兴通讯股份有限公司 信息发送及确定、关系确定的方法及装置

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Rl-1705909, On QCL for DL RS", 3GPP TSG-RAN WG1 #88BIS, 7 April 2017 (2017-04-07), XP051244020 *
HUAWEI ET AL.: "R1-1704239, Details of QCL Assumptions and Related RS Design Considerations", 3GPP TSG RAN WG1 MEETING #88BIS, 7 April 2017 (2017-04-07), XP051242391 *
HUAWEI ET AL.: "Rl-1700405, QCL Indication of Downlink Control Channel and Beam Management Reference Signals", 3GPP TSG RAN WG1 NR AD HOC MEETING, 20 January 2017 (2017-01-20), XP055528259 *
NOKIA: "Rl-1706797, Summary of AI 8.1.2.4.5 QCL", 3GPPTSG RAN WG1 88BIS, 7 April 2017 (2017-04-07), XP051253006 *
SAMSUNG: "Rl-1700934, On QCL for NR", 3GPPTSG RAN WG1-NR, 20 January 2017 (2017-01-20), XP051208450 *
See also references of EP3609255A4 *
SHARP: "R1-125242, DCI Signalling in DCI Format 2D and Fallback Operation in TM10", 3GPPTSG RAN WG1 MEETING #71, 16 November 2012 (2012-11-16), XP050663100 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022511660A (ja) * 2018-11-02 2022-02-01 維沃移動通信有限公司 情報伝送方法及び通信機器
JP7278374B2 (ja) 2018-11-02 2023-05-19 維沃移動通信有限公司 情報伝送方法及び通信機器
CN113316267A (zh) * 2019-03-01 2021-08-27 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备
CN113316267B (zh) * 2019-03-01 2023-01-13 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备
WO2021103006A1 (zh) * 2019-11-29 2021-06-03 华为技术有限公司 一种跟踪参考信号的接收方法、发送方法及通信装置

Also Published As

Publication number Publication date
BR112019022136A2 (pt) 2020-05-12
US11172476B2 (en) 2021-11-09
CA3061160A1 (en) 2019-10-23
CN111106918A (zh) 2020-05-05
EP3609255A1 (en) 2020-02-12
KR20210148392A (ko) 2021-12-07
TWI754043B (zh) 2022-02-01
CA3061160C (en) 2022-11-08
SG11201909953PA (en) 2019-11-28
EP3609255B1 (en) 2022-06-22
CN110547012B (zh) 2024-03-15
RU2732078C1 (ru) 2020-09-11
JP2020518180A (ja) 2020-06-18
KR20190139928A (ko) 2019-12-18
MX2019012730A (es) 2019-12-05
TW201840225A (zh) 2018-11-01
AU2017411184A1 (en) 2019-12-12
CN111106918B (zh) 2021-03-05
KR102432517B1 (ko) 2022-08-12
US20200059913A1 (en) 2020-02-20
CN110547012A (zh) 2019-12-06
EP3609255A4 (en) 2020-04-15
PH12019502393A1 (en) 2020-12-07

Similar Documents

Publication Publication Date Title
US20220321293A1 (en) Signal communication method and device
WO2018059210A1 (zh) 一种用于数据传输的方法和装置
JP7040617B2 (ja) シグナリング指示及び受信方法、装置及び通信システム
US11388550B2 (en) Positioning method and apparatus
WO2018127115A1 (zh) 无线通信的方法、终端设备和网络设备
US11071135B2 (en) Uplink transmission method based on uplink reference signal, terminal, and network device
WO2019080120A1 (zh) 无线通信方法和设备
US11309949B2 (en) Signal processing method and apparatus
WO2020107411A1 (en) Method and network device for terminal device positioning with integrated access backhaul
US11172476B2 (en) Signal processing method and apparatus
WO2017132806A1 (zh) 配置导频信号的方法及第一设备
WO2018000439A1 (zh) 无线通信的方法和装置
WO2019084842A1 (zh) 无线通信方法和设备
WO2018120172A1 (zh) 用于传输信号的方法和网络设备
EP3614703B1 (en) Method for transmitting reference signal, terminal and network device
CN115104349A (zh) 用于信令发送波束角信息以用于基于ue的定位的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17907401

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019557550

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019022136

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20197032767

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017907401

Country of ref document: EP

Effective date: 20191105

ENP Entry into the national phase

Ref document number: 2017411184

Country of ref document: AU

Date of ref document: 20170425

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112019022136

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20191022