WO2015174731A1 - 무선 통신 시스템에서 디스커버리 신호 검출 방법 및 이를 위한 장치 - Google Patents

무선 통신 시스템에서 디스커버리 신호 검출 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2015174731A1
WO2015174731A1 PCT/KR2015/004790 KR2015004790W WO2015174731A1 WO 2015174731 A1 WO2015174731 A1 WO 2015174731A1 KR 2015004790 W KR2015004790 W KR 2015004790W WO 2015174731 A1 WO2015174731 A1 WO 2015174731A1
Authority
WO
WIPO (PCT)
Prior art keywords
qcl
csi
discovery
cell
antenna port
Prior art date
Application number
PCT/KR2015/004790
Other languages
English (en)
French (fr)
Inventor
박종현
이윤정
김봉회
김기준
Original Assignee
엘지전자(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자(주) filed Critical 엘지전자(주)
Priority to US15/311,498 priority Critical patent/US9930515B2/en
Publication of WO2015174731A1 publication Critical patent/WO2015174731A1/ko

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/005Discovery of network devices, e.g. terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/045Public Land Mobile systems, e.g. cellular systems using private Base Stations, e.g. femto Base Stations, home Node B

Definitions

  • the present invention relates to a wireless communication system, and more particularly, to a method for receiving a discovery signal in a wireless communication system and an apparatus supporting the same.
  • Mobile communication systems have been developed to provide voice services while ensuring user activity.
  • the mobile communication system has expanded not only voice but also data service.
  • the explosive increase in traffic causes resource shortages and users demand faster services. Therefore, more advanced mobile communication systems are required. have.
  • Dual connectivity to it Dual Connectivity
  • a large multi-input julryeok Massive MIMO: Massive Multiple Input Multiple Output
  • full duplex In-band Full Duplex
  • NOMA Non-Orthogonal Multiple Access
  • Ultra-wideband Super wideband
  • Small cell enhancement technology supports small cell onf mechanisms to reduce the energy saving of small cells and interference to adjacent cells.
  • the small cell periodically broadcasts a discovery signal regardless of the on / of f state so that the small cell can be identified or the state of the small cell can be determined by the terminal.
  • a QCL Quadrature Co-Location
  • a synchronization signal transmitted from a small cell and / or a cell-specific reference signal needs to be applied, but is currently defined. It is not.
  • An object of the present invention is to set up a Quasi Co-Location (QCL) relationship between a synchronization signal and / or a cell-specific reference signal and a discovery signal in order to solve the above-mentioned problem, and Accordingly, a method of detecting a discovery signal is proposed.
  • QCL Quasi Co-Location
  • Technical problems to be achieved in the present invention are not limited to the technical problems mentioned above, and other technical problems not mentioned above are clearly understood by those skilled in the art from the following description. could be.
  • a method for receiving a discovery signal by a terminal in a wireless communication system the discovery QCL (Quasi) Receiving discovery QCL type configuration information for setting a Co-Located type, detecting a synchronization signal to obtain a first scrambling identity (SCID), and based on the set discovery QCL type And detecting the discovery signal using the first SCID, wherein the antenna port for the discovery signal and the synchronization signal for the discovery signal are related to a large-scale channel property according to the discovery QCL type.
  • QCL relationships between antenna ports can be established.
  • Another aspect of the present invention is a terminal for receiving a discovery signal (discovery signal) in a wireless communication system, comprising a radio frequency (RF) unit for transmitting and receiving a radio signal and a processor for controlling the terminal, the processor Receives discovery QCL type setting information for setting a discovery QCL (Quasi Co-Located) type, detects a synchronization signal to obtain a first scrambling identity (SCID), and sets the discovery QCL Detect the discovery signal using the first SCID based on a type, and determine an antenna port for the discovery signal and the synchronization signal with respect to a large-scale channel property according to the discovery QCL type.
  • QCL relationship between the antenna ports can be set.
  • the terminal and the antenna port for the discovery signal generated with a second SCID that is the same or one-to-one mapping with the first SCID; It can be assumed that the antenna port for the sync signal is QCLed.
  • the terminal may detect a discovery signal generated with a second SCID that is the same as or one-to-one mapped with the first SCID.
  • the wide channel characteristic is ⁇ Doppler shif t, average delay ⁇ or ⁇ delay spread, Doppler spread, Doppler shif t, average delay (average delay) ⁇ .
  • the terminal is assumed to be QCL for the Doppler shift and the average delay between the antenna port for the synchronization signal and the antenna port for the cell-specific reference signal. Can be.
  • the terminal includes an antenna port for a cell-specific reference signal, an antenna port for a demodulation reference signal, and a channel state information reference signal. It can be assumed that all are QCLed between the antenna ports.
  • the terminal may include an antenna port for a discovery signal generated by at least one second SCID mapped to the first SCID and the synchronization signal. It can be assumed that the antenna port is QCLed.
  • the terminal may detect a discovery signal generated with at least one second SCID mapped to the first SCID.
  • the mapping of the first SCID and the second SCID may be implicitly determined by a function or a table set up from a network or predefined.
  • the wide channel characteristics are defined as ⁇ average delay ⁇ , ⁇ (average delay, Doppler shift) and ⁇ average delay, Doppler shift, Doppler Doppler spread ⁇ .
  • the terminal may assume that QCL is applied for Doppler shift and average delay between the antenna port for the synchronization signal and the antenna port for the cell-specific reference signal. have.
  • the terminal when the terminal supports CoMP (Coordinated Multi-Point Transmission and Reception) operation, the terminal is demodulated with an antenna port for a Channel State Information Reference Signal indicated by a higher layer parameter. It may be assumed that QCL is performed between antenna ports for a reference signal.
  • CoMP Coordinated Multi-Point Transmission and Reception
  • the terminal when the terminal is configured with a Demodulation Reference Signal (DMRS) based PDSCH (Physical Downlink Shared Channel) transmission mode, the terminal is an antenna port for a Channel State Information Reference Signal (Channel State Information Reference Signal) And it can be assumed that the antenna port for the DMRS is QCL.
  • the terminal when the terminal is configured with a cell-specific reference signal (CRS) -based physical downlink shared channel (PDSCH) transmission mode, the terminal includes an antenna port and a channel state information reference signal (CRS) for the CRS. It may be assumed that the antenna ports for the Channel State Information Reference Signal and the Demodulation Reference Signal are not QCLed.
  • DMRS Demodulation Reference Signal
  • PDSCH Physical Downlink Shared Channel
  • the detection performance of the discovery signal of the terminal can be improved by setting a QCL relationship related to the discovery signal in the wireless communication system.
  • the UE can smoothly receive the downlink data channel more quickly.
  • FIG. 1 illustrates a structure of a radio frame in a wireless communication system to which the present invention can be applied.
  • FIG. 2 is a diagram illustrating a resource grid for one downlink slot in a wireless communication system to which the present invention can be applied.
  • FIG. 3 shows a structure of a downlink subframe in a wireless communication system to which the present invention can be applied.
  • FIG. 4 shows a structure of an uplink subframe in a wireless communication system to which the present invention can be applied.
  • 5 is a configuration diagram of a general multiple input / output antenna (MIMO) communication system.
  • 6 is a diagram illustrating a channel from a plurality of transmit antennas to one receive antenna.
  • MIMO multiple input / output antenna
  • FIG. 7 shows an example of a component carrier and carrier aggregation in a wireless communication system to which the present invention can be applied.
  • FIG. 8 is a diagram illustrating a downlink HARQ process in an LTE FDD system to which the present invention can be applied.
  • FIG. 9 is a diagram illustrating an uplink HARQ process in an LTE FDD system to which the present invention can be applied.
  • FIG. 10 illustrates a radio frame structure for transmission of a synchronization signal in a wireless communication system to which the present invention can be applied.
  • 11 is a diagram illustrating a secondary synchronization signal structure in a wireless communication system to which the present invention can be applied.
  • 12 illustrates a reference signal pattern mapped to a downlink resource block pair in a wireless communication system to which the present invention can be applied.
  • FIG. 13 illustrates a periodic CSI-RS transmission scheme in a wireless communication system to which the present invention can be applied.
  • FIG. 14 illustrates a transmission scheme of aperiodic CS I-RS in a wireless communication system to which the present invention can be applied.
  • 15 is a diagram illustrating a CSI-RS configuration in a wireless communication system to which the present invention can be applied.
  • 16 is a diagram illustrating a small cell cluster / group to which the present invention can be applied.
  • 17 is a diagram illustrating a discovery signal detection method according to an embodiment of the present invention.
  • FIG. 18 illustrates a block diagram of a wireless communication device according to an embodiment of the present invention.
  • a base station has a meaning as a terminal node of a network that directly communicates with a terminal. Certain operations described as being performed by the base station in this document may be performed by an upper node of the base station in some cases. That is, it is apparent that various operations performed for communication with a terminal in a network including a plurality of network nodes including a base station may be performed by the base station or other network nodes other than the base station.
  • a base station (BS), a base station (BS), may be replaced by terms such as a fixed station (Node B), an evolved-NodeB (eNB), a base transceiver system (BTS), an access point (AP), and the like. .
  • a 'terminal' may be fixed or mobile, and may include a user equipment (UE), a mobile station (MS), a user terminal (UT), a mobile subscriber station (MSS), a subscriber station (SS), and an AMS ( It can be replaced with terms such as Advanced Mobile Station (T), Wireless Terminal (T), Machine-Type Communication (MTC) device, Machine-to-Machine (M2M) device, and Device-to-Device (D2D) device.
  • UE user equipment
  • MS mobile station
  • UT user terminal
  • MSS mobile subscriber station
  • SS subscriber station
  • AMS It can be replaced with terms such as Advanced Mobile Station (T), Wireless Terminal (T), Machine-Type Communication (MTC) device, Machine-to-Machine (M2M) device, and Device-to-Device (D2D) device.
  • MTC Machine-Type Communication
  • M2M Machine-to-Machine
  • D2D Device-to-Device
  • downlink means communication from a base station to a terminal
  • uplink means communication from a terminal to a base station.
  • DL downlink
  • UL uplink
  • a transmitter may be part of a base station
  • a receiver may be part of a terminal
  • uplink a transmitter may be part of a terminal and a receiver may be part of a base station.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • GSM global system for mobile communications
  • GPRS general packet radio service
  • EDGE enhanced data rates for GSM evolution
  • OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (iMAX), IEEE 802-20, e-UTRA (evolved UTRA), and the like.
  • UTRA is part of a universal mobile telecommunications system (UMTS).
  • 3rd generation partnership project (3GPP) long term evolution (LTE) is a part of E-UMTS (evolved UMTS) that uses E-UTRA, and employs OFDMA in downlink and SC-FDMA in uplink.
  • LTE-A (advanced) is the evolution of 3GPP LTE.
  • Embodiments of the present invention may be supported by standard documents disclosed in at least one of the wireless access systems IEEE 802, 3GPP and 3GPP2. That is, the embodiments of the present invention have not been described in order to clearly reveal the technical spirit of the present invention. Steps or portions may be supported by the documents. In addition, all terms disclosed in the present document can be described by the above standard document.
  • FIG. 1 illustrates a structure of a radio frame in a wireless communication system to which the present invention can be applied.
  • 3GPP LTE / LTE-A supports a type 1 radio frame structure applicable to FDD (frequency division duplex) and a type 2 radio frame structure applicable to time division duplex (TDD).
  • FDD frequency division duplex
  • TDD time division duplex
  • a radio frame consists of 10 subframes.
  • One subframe consists of two slots in the time domain.
  • the time taken to transmit one subframe is called a transmission time interval (TTI).
  • TTI transmission time interval
  • one subframe may have a length of 1ms and one slot may have a length of 0.5tns.
  • One slot includes a plurality of orthogonal frequency division multiplexing (OFDM) symbols in a time domain and includes a plurality of resource blocks (RBs) in the frequency domain. Since 3GPP LTE uses OFDMA in downlink, an OFDM symbol is used to represent one symbol period. An OFDM symbol is one SC-FDMA symbol or symbol It can be called a section.
  • a resource block is a resource allocation unit and includes a plurality of consecutive subcarriers in one slot.
  • FIG. 1B illustrates a frame structure type 2.
  • Type 2 radio frames consist of two half frames, each of which is composed of five subframes, a downlink pilot time slot (DwPTS), a guard period (GP), and an uplink pilot time slot (UpPTS).
  • DwPTS downlink pilot time slot
  • GP guard period
  • UpPTS uplink pilot time slot
  • One subframe consists of two slots.
  • DwPTS is used for initial cell search, synchronization or channel estimation at the terminal.
  • UpPTS is used for channel estimation at the base station and synchronization of uplink transmission of the terminal.
  • the guard period is a period for removing interference generated in the uplink due to the multipath delay of the downlink signal between the uplink and the downlink.
  • uplink-downlink configuration is a rule indicating whether uplink and downlink are allocated (or reserved) for all subframes.
  • Table 1 shows an uplink-downlink configuration.
  • D su UUDSUUD Referring to Table 1, for each subframe of a radio frame, 'D' represents a subframe for downlink transmission, 'U' represents a subframe for uplink transmission, and 'S' represents DwPTS, GP, UpPTS Indicates a special subframe consisting of three fields.
  • the uplink-downlink configuration can be classified into seven types, and the location and / or number of downlink subframes, special subframes, and uplink subframes are different for each configuration.
  • Switch-point periodicity refers to a period in which an uplink subframe and a downlink subframe are repeatedly switched in the same manner, and 5 ms or 10 ms are supported.
  • the special subframe S exists in every half-frame, and in case of having a period of 5ms downlink-uplink switching time, it exists only in the first half-frame.
  • subframes 0 and 5 and DwPTS are sections for downlink transmission only.
  • the subframe immediately following the UpPTS and the subframe subframe is always an interval for uplink transmission.
  • the uplink-downlink configuration may be known to both the base station and the terminal as system information.
  • the base station transmits only an index of the configuration information to inform the terminal of the change of the uplink-downlink allocation state of the C radio frame.
  • the configuration information is a kind of downlink control information and can be transmitted through PDCCH (Physical Downlink Control Channel) like other scheduling information. It may be transmitted in common to all terminals in a cell through a broadcast channel.
  • the structure of the radio frame is only one example, and the number of subcarriers included in the radio frame or the number of slots included in the subframe and the number of OFDM symbols included in the slot may be variously changed.
  • FIG. 2 is a diagram illustrating a resource grid for one downlink slot in a wireless communication system to which the present invention can be applied.
  • one downlink slot includes a plurality of OFDM symbols in the time domain.
  • one downlink slot includes seven OFDM symbols, and one resource block includes 12 subcarriers in a frequency domain, but is not limited thereto.
  • Each element on the resource grid is a resource element, and one resource block (RB: resource block) includes 12 ⁇ 7 resource elements.
  • RB resource block
  • the number of resource blocks included in the downlink slot! ⁇ depends on the downlink transmission bandwidth.
  • the structure of the uplink slot may be the same as the structure of the downlink slot.
  • FIG. 3 shows a structure of a downlink subframe in a wireless communication system to which the present invention can be applied.
  • up to three OFDM symbols in the first slot in a subframe are control regions to which control channels are allocated, and the remaining OFDM symbols are physical downlink shared channels (PDSCH).
  • PDSCH physical downlink shared channels
  • Downlink Control Used in 3GPP LTE Examples of the channel include a physical control format indicator channel (PCFICH), a physical downlink control channel (PDCCH), a physical hybrid-ARQ indicator channel (PHICH), and the like.
  • PCFICH physical control format indicator channel
  • PDCCH physical downlink control channel
  • PHICH physical hybrid-ARQ indicator channel
  • the PCFICH is transmitted in the first OFDM symbol of a subframe and carries information about the number of OFDM symbols (ie, the size of the control region) used for transmission of control channels within the subframe.
  • PHICH is a male answer channel for the uplink, and a PHICH for the HARQ (Hybrid Automatic Repeat Request)
  • the downlink control information includes uplink resource allocation information, downlink resource allocation information or an uplink transmission (Tx) power control command for a certain terminal group.
  • the PDCCH is a resource allocation and transmission format of DL-SCH (Downlink Shared Channel) (also called a downlink grant), resource allocation information of UL-SCH (Uplink Shared Channel) (also called an uplink grant), and a PCH ( Resource allocation for upper-layer control messages, such as paging information on paging channels, DL—entry-system information on SCHs, random access responses transmitted on PDSCH, random Carry a set of transmit power control commands, activation of Voice over IP (VoIP), etc. for the individual terminals in the terminal group of.
  • the plurality of PDCCHs may be transmitted in the control region, and the terminal may monitor the plurality of PDCCHs.
  • the PDCCH consists of one or a plurality of consecutive CCEs.
  • CCE is a logical allocation unit used to provide a PDCCH with a coding rate according to the state of a radio channel.
  • the CCE corresponds to a plurality of resource element groups.
  • Catcher 1 3 ⁇ 4 ⁇ , and bit of the PDCCH possible for the PDCCH are determined according to the correlation between the coding rate provided by the number of CCE and CCE.
  • the base station determines the PDCCH format according to the DCI to be transmitted to the terminal, and attaches a CRC (Cyclic Redundancy Check) to the control information.
  • the CRC is masked with a unique identifier (referred to as RNTI (Radio Network Temporary Identifier)) according to the owner or purpose of the PDCCH.
  • RNTI Radio Network Temporary Identifier
  • a unique identifier of the terminal for example, C-RNTI (Cell-RNTI) may be masked to the CRC.
  • a paging indication identifier for example, P-RNTI (Paging-RNTI) may be masked to the CRC.
  • system information more specifically, PDCCH for a system information block (SIB), a system information identifier and a system information RNTI (SI-RNTI) may be masked to the CRC.
  • SI-RNTI Random Access-RNTI
  • RA-RNTI Random Access-RNTI
  • FIG. 4 shows a structure of an uplink subframe in a wireless communication system to which the present invention can be applied.
  • an uplink subframe may be divided into a control region and a data region in the frequency domain.
  • a physical uplink control channel (PUCCH) carrying uplink control information is allocated to the control region.
  • the data area is A PUSCH (Physical Uplink Shared Channel) carrying user data is allocated.
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • a PUCCH for one UE is allocated a resource block (RB) pair in a subframe.
  • RBs belonging to the RB pair occupy different subcarriers in each of the two slots.
  • This RB pair allocated to the PUCCH is said to be frequency hopping at the slot boundary 1 (slot boundary).
  • MIMO Multi-Input Multi -Output
  • MIMO technology generally uses multiple transmit (Tx) antennas and multiple receive (Rx) antennas away from the ones that typically use one transmit antenna and one receive antenna.
  • the MIMO technology is a technique for increasing capacity or individualizing performance by using multiple input / output antennas at a transmitting end or a receiving end of a wireless communication system.
  • will be referred to as a multi-input / output antenna.
  • the multi-input / output antenna technology does not rely on one antenna path to receive one total message, but collects a plurality of pieces of data received through several antennas to complete complete data.
  • multiple input / output antenna technology can increase the data rate within a specific system range, and can also increase the system range through a specific data rate.
  • Next-generation mobile communication has a much higher data rate than conventional mobile communication. It is expected that efficient multi-input / output antenna technology will be required. In such a situation, MIMO communication technology is the next generation mobile communication technology that can be widely used in mobile communication terminals and repeaters, and attracts attention as a technology that can overcome the transmission limit of other mobile communication depending on the limit situation due to the expansion of data communication. have.
  • MIMO multiple input / output antenna
  • FIG. 5 is a configuration diagram of a general multiple input / output antenna (MIMO) communication system.
  • MIMO multiple input / output antenna
  • a transmission rate four times higher than a single antenna system may be theoretically obtained.
  • the technique of the ⁇ I / O antenna is a spatial diversity scheme that improves transmission reliability by using symbols that pass through various channel paths, and transmits a plurality of data symbols simultaneously by using a plurality of transmit antennas to improve transmission rate. It can be divided into spatial multiplexing method which improves. In addition, researches on how to appropriately combine these two methods to obtain the advantages of each are being studied in recent years.
  • the spatial diversity gain can be obtained by a product (N T XN R ) of the number of transmit antennas (N T ) and the number of receive antennas (11 ⁇ 2).
  • the spatial multiplexing technique is a method of transmitting different data strings at each transmitting antenna, and at the receiver, mutual interference occurs between data transmitted simultaneously from the transmitter.
  • the receiver removes the interference using an appropriate signal processing technique and receives it.
  • the noise cancellation scheme used here is a maximum likelihood detection (MLD) receiver, a zero-forcing (ZF) receiver, a minimum mean square error (SE) receiver, a Diagonal-Bell Laboratories Layered Space-Time (D-BLAST) receiver, and a V- Vertical-Bell Laboratories Layered Space-Time (BLAST)
  • MLD maximum likelihood detection
  • ZF zero-forcing
  • SE minimum mean square error
  • D-BLAST Diagonal-Bell Laboratories Layered Space-Time
  • BLAST V- Vertical-Bell Laboratories Layered Space-Time
  • the maximum transmittable information is ⁇ ⁇ , so this can be represented by the following vector.
  • the transmission power can be different, where each transmission power is P l7 P 2 ,. . . , P NT , the transmission information whose transmission power is adjusted can be represented by the following vector.
  • the information vector s of which the transmission power is adjusted is then multiplied by the weight matrix W to constitute ⁇ ⁇ transmission signals Xl , ⁇ 2 ⁇ ⁇ which are actually transmitted.
  • the weight matrix plays a role of appropriately distributing transmission information to each antenna according to a transmission channel situation.
  • Such transmission signal Xl , x 2 ⁇ is vector
  • Wij represents a weight between the i th transmit antenna and the j th transmission information
  • W represents this in a matrix.
  • W is called a weight matrix or a precoding matrix.
  • the above-described transmission signal (X) can be considered divided into the case of using the spatial diversity and the case of using the spatial multiplexing.
  • multiplexed signals can be sent Therefore, the elements of the information vector S all have different values, whereas when spatial diversity is used, the elements of the information vector S all have the same value because the same signal is transmitted through several channel paths.
  • a method of combining spatial multiplexing and spatial diversity is also conceivable. That is, for example, a case may be considered in which the same signal is transmitted using spatial diversity through three transmission antennas, and the remaining signals are spatially multiplexed from each other.
  • the received signals are received signals yi , y 2 ,. .
  • y NR be the vector y as
  • each channel can be classified according to the transmit / receive antenna index, and a channel passing through the receive antenna i from the transmit antenna j is denoted by. .
  • the order of the index of hij is the receive antenna index first, and the index of the transmit antenna is later.
  • These channels can be grouped together and displayed in vector and matrix form.
  • An example of the vector display is described below.
  • FIG. 6 is a diagram illustrating a channel from a plurality of transmit antennas to one receive antenna.
  • a channel arriving from the total N T antennas to the reception antenna i may be expressed as follows. 3
  • the white noise ⁇ , n 2 , and nNR added to each of the N R receiving antennas is expressed as a vector.
  • each of the multiple input / output antenna communication systems may be represented through the following relationship.
  • the number of rows and columns of the channel matrix ⁇ representing the state of the channel is determined by the number of transmit and receive antennas.
  • the number of rows becomes equal to the number of receiving antennas 3 ⁇ 4 and the number of columns equals the number of transmitting antennas N R.
  • the channel matrix H becomes an N R XN R matrix.
  • the rank of a matrix is defined as the minimum number of rows or columns that are independent of each other.
  • the tank of the matrix cannot be larger than the number of rows or columns.
  • the rank (H) of the channel matrix H is limited as follows.
  • the rank may be defined as the number of nonzero eigenvalues among eigen values.
  • a tank is singular value decomposition (SVD), it can be defined as the number of non-zero singular values. Therefore, the physical meaning of the tank in the channel matrix is the maximum number that can send different information in a given channel.
  • 'tank' for MIMO transmission represents the number of paths that can independently transmit a signal at a specific time point and a specific frequency resource.
  • 'Number of layers' represents the number of signal streams transmitted through each path.
  • the transmitting end is a rank otherwise noted, because of the number of transmission layers Daewoong the rank i can be used for signal transmission have the same meaning as the layer number.
  • the communication environment considered in the embodiments of the present invention includes both multi-carrier support environments. That is, a multi-carrier system or a carrier aggregation (CA) system used in the present invention refers to at least one having a bandwidth smaller than a target band when configuring a target broadband to support broadband. A system that aggregates and uses a component carrier (CC).
  • CA carrier aggregation
  • the multi-carrier means the aggregation of carriers (or carrier aggregation), wherein the aggregation of carriers means not only merging between contiguous carriers but also merging between non-contiguous carriers.
  • the number of component carriers aggregated between downlink and uplink may be set differently.
  • the case where the number of downlink component carriers (hereinafter, referred to as 'DL CC') and the number of uplink component carriers (hereinafter, referred to as 'UL CC') is the same is called symmetric aggregation. This is called asymmetric aggregation.
  • Such carrier aggregation may be commonly used with terms such as carrier aggregation, bandwidth aggregation, spectrum aggregation, and the like.
  • Carrier aggregation in which two or more component carriers are combined, aims to support up to 100MHZ bandwidth in LTE-A system.
  • the bandwidth of the combining carrier may be limited to the bandwidth used by the existing system in order to maintain backward compatibility with the existing IMT system.
  • the carrier aggregation system used in the present invention may support carrier aggregation by defining a new bandwidth regardless of the bandwidth used in the existing system.
  • the LTE-A system uses the concept of a cell to manage radio resources.
  • the carrier aggregation environment described above may be referred to as a multiple cell environment.
  • a cell is defined as a combination of a downlink resource (DL CC) and an uplink resource (UL CC), but the uplink resource is not an essential element. Therefore, the sal may be configured with only downlink resources, or with downlink resources and uplink resources.
  • DL CC downlink resource
  • UL CC uplink resource
  • the DL CC and the UL CC may be configured on the contrary. That is, when a specific UE has a plurality of configured serving cells, the carrier has more UL CCs than the number of DL CCs Merge environments can also be supported. That is, carrier aggregation may be understood as a merge of two or more cells, each having a different carrier frequency (center frequency of a cell).
  • carrier aggregation may be understood as a merge of two or more cells, each having a different carrier frequency (center frequency of a cell).
  • the term 'cell' should be distinguished from the 'cell' as an area covered by a commonly used base station.
  • Cells used in the LTE-A system include a primary cell (PCell) and a secondary cell (SCell).
  • PCell primary cell
  • SCell secondary cell
  • P cell and S cell may be used as a serving cell.
  • RRC If the UE is in the CONNECTED state but carrier aggregation is not configured or carrier aggregation is not supported, there is only one serving cell configured with a PCell. On the other hand, in case of a UE in RRC ⁇ CONNECTED state and carrier aggregation is configured, one or more serving cells may exist, and the entire serving cell includes a PCell and one or more SCells.
  • Serving cells may be configured through RRC parameters.
  • PhysCellld is the cell's physical layer identifier and has an integer from 0 to 503.
  • SCelllndex is a short identifier used to identify an SCell and has an integer value from 1 to 7.
  • ServCelllndex is a short identifier used to identify a serving cell (P cell or S cell) and has an integer value from 0 to 7.
  • a value of 0 is applied to the P cell, and SCelllndex is pre-assigned to apply to the S cell. That is, a cell having the smallest cell ID (or cell index) in ServCelllndex becomes a P cell.
  • the terminal may be used to perform an initial connection establishment process or to perform a connection re-establishment process. It may also refer to a cell indicated in the process.
  • the P cell refers to a cell serving as a center of control-related communication among serving cells configured in a carrier aggregation environment. That is, the terminal may receive and transmit a PUCCH only in its own Pcell, and may use only the Pcell to acquire system information or change a monitoring procedure.
  • E-UTRAN Evolved Universal Terrestrial Radio Access
  • the S cell may refer to a cell operating on a secondary frequency (or, secondary CC). Only one PCell may be allocated to a specific UE, and one or more SCells may be allocated.
  • the SCell is configurable after the RRC connection is established and can be used to provide additional radio resources.
  • PUCCH does not exist in the remaining cells except the pcell, that is, the scell, among the serving cells configured in the carrier aggregation environment.
  • the UTRAN may provide all system information related to the operation of the related cell in the RRC_CONNECTED state through a dedicated signal.
  • the change of the system information may be controlled by the release and addition of the related SCell, and at this time, an RRC connection reset message of a higher layer may be used.
  • E—UTRA can perform dedicated signaling with different parameters for each terminal, rather than broadcasting in the associated Scell.
  • the E-UTRAN will configure a network that contains one or more cells in addition to the PCell initially configured during connection establishment. Can be.
  • the Pcell and the SCell may operate as respective component carriers.
  • the primary component carrier (PCC) may be used in the same sense as the PCell
  • SCC secondary component carrier
  • FIG. 7 shows an example of a component carrier and carrier aggregation in a wireless communication system to which the present invention can be applied.
  • Component carriers include a DL CC and an UL CC.
  • One component carrier may have a frequency range of 20 MHz.
  • FIG. 7 (b) shows a carrier aggregation structure used in the LTE_A system.
  • three component carriers having a frequency size of 20 MHz are combined.
  • the number of DL CCs and UL CCs is not limited.
  • the UE may simultaneously monitor three CCs, receive downlink signals / data, and transmit uplink signals / data.
  • the network may allocate M (M ⁇ N) DL CCs to the UE.
  • the UE may monitor only M limited DL CCs and receive a DL signal.
  • the network may assign L (L ⁇ M ⁇ N) DL CCs to allocate a main DL CC to the UE, in which case the UE must monitor the L DL CCs. This method can be equally applied to uplink transmission.
  • Carrier Frequency (or DL CC) of Downlink Resource and Carrier of Uplink Resource may be indicated by higher layer messages or system information, such as RRC messages.
  • a combination of DL resources and UL resources may be configured by a linkage defined by SIB2 (System Information Block Type2).
  • SIB2 System Information Block Type2
  • the linkage may mean a mapping relationship between a DL CC on which a PDCCH carrying an UL grant is transmitted and a UL CC using the UL grant, and a DL CC (or UL CC) and HARQ ACK on which data for HARQ is transmitted. It may mean a mapping relationship between UL CCs (or DL CCs) through which a / NACK signal is transmitted.
  • the network may activate or deactivate configured SCell (s).
  • the PCell is always active.
  • the network activates or deactivates the SCell (s) by sending an Activation / Deactivation MAC control element.
  • the active / inactive MAC control element has a fixed size and consists of a single octet comprising seven C-fields and one R-field.
  • the C field is configured for each SCelllndex and indicates an active / inactive state of the SCell. When the C field value is set to '1', it indicates that the S cell having the corresponding Scell index is activated, and when set to '0', it indicates that the S cell having the corresponding S cell index is deactivated.
  • the terminal maintains a timer (sCellDeactivationTimer) for each configured SCell, and deactivates the associated SCell when the timer expires.
  • the same initial timer value is obtained for each instance of the timer (sCellDeactivationTimer) 1 Apply, and is set by RRC signaling.
  • the terminal performs the following operation for each set Scell (s) in each TT industry.
  • the UE When the terminal receives the active / inactive MAC control element for activating the SCell in a specific TTI (subframe n), the UE activates the SCell in a TTI (subframe n + 8 or later) corresponding to a predetermined timing , (Re) start the timer related to the SCell.
  • the UE activating the SCell means that the UE transmits a Sounding Reference Signal (SRS) on the SCell, a Channel Quality Indicator (CQI) / Precoding Matrix Indicator (PMI) / Rank (Rank Indication) / Precoding Type Indicator (STI) for the SCell.
  • SRS Sounding Reference Signal
  • CQI Channel Quality Indicator
  • PMI Precoding Matrix Indicator
  • STI Precoding Type Indicator
  • the UE When the UE receives an active / inactive MAC control element for deactivating an SCell at a specific TTI (subframe n) or when a timer associated with a SCell activated for a specific TTI (subframe n) expires, the UE corresponds to a predetermined timing. Deactivate the Scell at the TTI (subframe n + 8 or later), stop the timer of the Scell, and flush all HARQ buffers associated with the Scell.
  • An uplink grant for an S cell whose PDCCH on an active S cell indicates an uplink grant or downlink assignment, or on which a PDCCH on a serving cell scheduling an activated S cell is activated ( uplink grant or downlink assignment If instructed, the terminal restarts the timer associated with the SCell.
  • the UE When the SCell is deactivated, the UE does not transmit the SRS on the SCell, does not report CQI / PMI / RI / PTI for the SCell, does not transmit the UL—SCH on the SCell, and transmits the PDCCH on the SCell. Do not monitor.
  • CoMP refers to a method in which two or more eNBs, an access point, or a cell cooperate with each other to communicate with a UE in order to facilitate communication between a specific UE and an eNB, an access point, or a cell.
  • CoMP is also called co-MIMO, collaborative MIMO, network MIO, etc.
  • CoMP is expected to improve the performance of the terminal located at the cell boundary, and improve the efficiency (throughput) of the average cell (sector).
  • eNB (Access) Point
  • Cell Cell
  • inter-cell interference reduces performance and average cell (sector) efficiency of a terminal located at a cell boundary in a multi-cell environment having a frequency reuse index of 1.
  • a simple passive method such as fractional frequency reuse (FFR) is applied in the LTE system so that a terminal located at a cell boundary has an appropriate performance efficiency in an interference-limited environment. It became.
  • FFR fractional frequency reuse
  • a method of reusing inter-cell interference or mitigating inter-cell interference as a desired signal that the terminal should receive is more advantageous.
  • CoMP transmission scheme may be applied to achieve the above object.
  • CoMP schemes that can be applied to downlink can be classified into JP (Joint Processing) and CS / CB (Coordinated Scheduling / Beamf orming).
  • data from each eNB that performs COMP to the UE is simultaneously transmitted to the UE, and the UE combines signals from each eNB to improve reception performance.
  • data to one UE is instantaneously transmitted through one eNB, and scheduling or beamforming is performed so that the UE minimizes interference to another eNB.
  • data can be used at each point (base station) in CoMP units.
  • CoMP unit means a set of base stations used in the COMP scheme.
  • the JP method can be further classified into a j oint transmission method and a dynamic cell selection method.
  • the associated transmission scheme refers to a scheme in which signals are simultaneously transmitted through a PDSCH from a plurality of points, which are all or part of a CoMP unit. That is, data transmitted to a single terminal may be simultaneously transmitted from a plurality of transmission points. Through such a cooperative transmission scheme, it is possible to increase the quality of a signal transmitted to a terminal regardless of whether coherently or non-coherently, and actively remove interference with another terminal. .
  • the dynamic cell selection scheme uses PDSCH from a single point in CoM p units. It means the way the signal is transmitted. That is, data transmitted to a single terminal at a specific time is transmitted from a single point, and data is not transmitted to the terminal at another point in the CoMP unit.
  • the point for transmitting data to the terminal may be dynamically selected.
  • the COMP unit cooperates for data transmission to a single terminal to perform the bump forming. That is, although only the serving cell transmits data to the terminal, user scheduling / bumping may be determined through cooperation between a plurality of cells in a CoMP unit.
  • COMP reception means receiving a signal transmitted by cooperation between a plurality of geographically separated points.
  • CoMP schemes applicable to uplink may be classified into a Joint Reception (JR) scheme and a Coordinated Scheduling / Beamforming (CS / CB) scheme.
  • JR Joint Reception
  • CS / CB Coordinated Scheduling / Beamforming
  • the JR method refers to a method in which a plurality of points, which are all or part of a COMP unit, receive a signal transmitted through a PDSCH.
  • a plurality of points which are all or part of a COMP unit.
  • receive a signal transmitted through a PDSCH In the CS / CB scheme, only a single point receives a signal transmitted through the PDSCH, but user scheduling / bumping may be determined through cooperation between a plurality of cells in a COMP unit.
  • the LTE physical layer supports HARQ in PDSCH and PUSCH, and transmits an associated acknowledgment (ACK) feedback in a separate control channel.
  • ACK acknowledgment
  • FIG. 8 is a diagram illustrating a downlink HARQ process in an LTE FDD system to which the present invention can be applied
  • FIG. 9 is a diagram illustrating an uplink HARQ process in an LTE FDD system to which the present invention can be applied.
  • Each HARQ process is defined by a unique 3-bit HARQ process identifier (HARQ ID: HARQ process IDentif ier), the data retransmitted at the receiving end (ie, UE in the downlink HARQ process, eNodeB in the uplink HARQ process) Separate soft buffer allocations are needed for the combination of.
  • HARQ ID HARQ process IDentif ier
  • NDI new data indicator
  • RV redundancy version
  • MCS modulation and coding scheme
  • the downlink HARQ process of the LTE system is an adaptive asynchronous scheme. Therefore, for every downlink transmission, downlink control information for the HARQ process is explicitly accompanied.
  • the uplink HARQ process of the LTE system is a synchronous method, and can be both directional or non-adaptive. Since the uplink non-target HARQ scheme does not involve the signaling of explicit control information, a predetermined RV sequence for continuous packet transmission (eg, 0, 2, 3, 1, 0, 2, 3, 1,... I) are required. On the other hand, in the uplink descriptive HARQ scheme, the RV is explicitly signaled. In order to minimize control signaling, an uplink mode in which an RV (or MCS) is combined with other control information is also supported. Limited Buffer Rate Matching (LBRM)
  • LBRM Limited Buffer Rate Matching
  • the complexity of the UE implementation is increased due to the total memory (over all HARQ processes), ie, the UE HARQ soft buffer size, required for Log-Likelihood Ratio (LLR) storage to support HARQ operation.
  • LLR Log-Likelihood Ratio
  • Limited Buffer Rate Matching is to reduce the UE HARQ soft buffer size while maintaining peak data rates and minimizing the impact on system performance.
  • LBRM shortens the length of the virtual circular buffer of code block segments for transport blocks (TB) larger than a predetermined size.
  • the mother code rate for TB is a function of the TB size and the UE soft buffer size allocated for TB. For example, FDD operations and the lowest category
  • the restriction on the buffer is transparent. That is, LBRM does not result in shortening of the soft buffer.
  • the soft buffer size is 503 ⁇ 4, which corresponds to 8 HARQ processes and 2/3 mother code rate for maximum TB. It is calculated assuming a buffer reduction of N. Since the eNB knows the soft buffer capacity of the UE, it will be stored in the HARQ soft buffer of the UE for all (re) transmissions given TB. It transmits its code bits in a virtual circular buffer (VCB). Synchronization Signal (SS)
  • an initial cell search process such as obtaining time and frequency synchronization with the cell and detecting a physical cell identity of the cell (procedure)
  • the UE receives a synchronization signal, for example, a primary synchronization signal (PSS) and a secondary synchronization signal (SSS) from the eNB, synchronizes with the eNB, and receives a cell identifier (ID). information such as identity can be obtained.
  • a synchronization signal for example, a primary synchronization signal (PSS) and a secondary synchronization signal (SSS) from the eNB
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • ID cell identifier
  • FIG. 10 illustrates a radio frame structure for transmission of a synchronization signal (SS) in a wireless communication system to which the present invention can be applied.
  • FIG. 10 illustrates a radio frame structure for transmission of a synchronization signal and a PBCH in a frequency division duplex (FDD)
  • FIG. 10 (a) illustrates the SS and PBCH in a radio frame configured with a normal cyclic prefix (CP).
  • CP normal cyclic prefix
  • 10 illustrates a transmission position
  • FIG. 10B illustrates a transmission position of an SS and a PBCH in a radio frame configured as an extended CP.
  • PSS is used to obtain time domain synchronization and / or frequency domain synchronization such as OFDM symbol synchronization, slot synchronization, etc.
  • SSS is used for frame synchronization, cell group ID and / or CP configuration of a cell (i.e., use of general CP or extended CP). Information).
  • the PSS and the SSS are divided into two of every radio frame. Each is transmitted in an OFDM symbol.
  • the SS has a global system for mobile communication (GSM) frame length of 4 for easy inter-RAT measurement.
  • GSM global system for mobile communication
  • the first slot of subframe 0 and the first slot of subframe 5 are transmitted.
  • the PSS is transmitted in the last OFDM symbol of the first slot of subframe 0 and the last OFDM symbol of the first slot of subframe 5, respectively
  • the SSS is the second to second OFDM symbols and subs of the first slot of subframe 0, respectively. Each is transmitted in the second to second OFDM symbol of the first slot of frame 5.
  • the boundary of the radio frame can be detected through the SSS.
  • the PSS is transmitted in the last OFDM symbol of the slot and the SSS is transmitted in the OFDM symbol immediately before the PSS.
  • the transmission diversity scheme of the SS uses only a single antenna port and is not defined in the standard. That is, a single antenna port transmission or a transparent transmission scheme (eg, Precoding Vector Switching (PVS), Time Switched Diversity (TSTD), and Cyclic Delay Diversity (CDD) 0 ] SS may be used for transmit diversity. have.
  • PVS Precoding Vector Switching
  • TSTD Time Switched Diversity
  • CDD Cyclic Delay Diversity
  • the UE Since the PSS is transmitted every 5 ms, the UE detects the PSS to know that the corresponding subframe is one of the subframe 0 and the subframe 5, but the subframe may not know what the subframe 0 and the subframe 5 specifically. . Therefore, the UE does not recognize the boundary of the radio frame only by the PSS. That is, frame synchronization cannot be obtained only by PSS.
  • the UE detects the boundary of the radio frame by detecting the SSS transmitted twice in one radio frame but transmitted in different sequences. In the gg frequency domain, the PSS and SSS are mapped to six RBs located at the center of the downlink system bandwidth.
  • the total number of RBs may consist of a number of different RBs (eg, 6 RBs to 110 RBs) according to the system bandwidth, but the PSSs and SSSs are located in six RBs located at the center of the downlink system bandwidth. Since it is mapped, the UE can detect the PSS and the SSS in the same manner regardless of the downlink system bandwidth.
  • PSS and SSS both consist of 62 lengths.
  • the sixty RBs are mapped to 62 subcarriers in the middle located next to the DC subcarriers, and the DC subcarriers and five subcarriers respectively located at both ends are not used.
  • the UE may obtain a physical layer cell ID by a specific sequence of PSS and SSS. That is, the SS may represent a total of 504 unique physical layer cell identifiers (PCIDs) through a combination of three PSSs and 168 SSSs.
  • PCIDs physical layer cell identifiers
  • the physical layer cell: EDs are 168 physical-layer cell-identifiers, where each group contains three unique identifiers, even though each physical layer cell ID is only part of one physical-layer cell-identifier group.
  • a physical layer cell identifier Ncell ID 3N (1) ID + N (2) ID is a number N (l) ID in the range of 0 to 167 representing a physical-layer cell-identifier group and the physical-layer cell- It is uniquely defined by a number N (2) ID from 0 to 2 representing the physical-layer identifier in the identifier group.
  • the UE may detect the PSS and know one of three unique physical-layer identifiers, and the 168 physical layer cells associated with the physical-layer identifier by detecting the SSS.
  • One of the IDs can be identified.
  • the PSS is generated based on a ZDoff-Chu (ZC) sequence of length 63 defined in the frequency domain.
  • ZC ZDoff-Chu
  • N zc 63.
  • SSS is generated based on M-sequence.
  • Each SSS sequence is It is generated by interleaving a concatenation of two SSC 1 sequences and SSC 2 sequences of length 31 in the frequency domain. The two sequences are combined to transmit 168 cell group IDs.
  • m-Siences is robust in frequency-selective environment and can reduce the computation amount by fast m-sequence transformation using fast Hadamard transform.
  • configuring the SSS with two short codes has been proposed to reduce the amount of computation of the UE.
  • FIG. 11 is a diagram illustrating a secondary synchronization signal structure in a wireless communication system to which the present invention can be applied.
  • FIG. 11 illustrates a structure in which two sequences for generating a secondary synchronization signal are interleaved and mapped in a physical domain.
  • SSS 1 and SSS 2 When two m-sequences used for generating SSS codes are defined as SSS 1 and SSS 2, respectively, if the SSS of subframe 0 transmits a cell group identifier in two combinations (SSS 1 and SSS 2), subframe 5
  • the SSS of SSS can be distinguished by transmitting 10 ms frame boundaries by swapping to (SSS 2 and SSS 1).
  • the SSS code used is a generation polynomial of ⁇ + ⁇ + l, and a total of 31 codes can be generated through different cyclic shifts.
  • two different PSS-based sequences are defined and scrambled in SSS, but scrambled in SSS 1 and SSS 2 by different sequences.
  • an SSS 1-based scrambling code is defined, and scrambling is performed on SSS 2.
  • the sign of the SSS is exchanged in units of 5nis, but the PSS-based scrambling code is not exchanged.
  • PSS The scrambling code based on SSS 1 based scrambling code is defined by the PSS index in the m sequence generated from the generated polynomial of x 5 + x 3 + l, and the scrambling code based on SSS 1 is x 5 + x 4 + x 2 +
  • Reference Signal (RS) Reference Signal
  • the signal Since data is transmitted over a wireless channel in a wireless communication system, the signal may be distorted during transmission. In order to correctly receive the distorted signal at the receiving end, the distortion of the received signal must be corrected using the channel information.
  • a signal transmission method known to both a transmitting side and a receiving side and a method of detecting channel information using a distorted degree when a signal is transmitted through a channel are mainly used.
  • the above-mentioned signal is called a pilot signal or a reference signal (RS).
  • RS can be classified into two types according to its purpose. There are RSs for channel information acquisition and RSs used for data demodulation.
  • the former is for the purpose for the UE to acquire channel information to the downlink, It should be transmitted over broadband, and even a UE that does not receive downlink data in a particular subframe should be able to receive and measure its RS. It is also used for measurements such as handover.
  • the latter is an RS that the base station sends along with the corresponding resource when the base station transmits the downlink, and the UE can estimate the channel by receiving the RS, and thus can demodulate the data. This RS should be transmitted in the area where data is transmitted.
  • the downlink reference signal is one common reference signal (CRS: common RS) for acquiring information on channel states shared by all terminals in a cell, measurement of handover, etc. and a dedicated reference used for data demodulation only for a specific terminal.
  • CRS common reference signal
  • DRS dedicated RS
  • Such reference signals may be used to provide information for demodulation and channel measurement 3 ⁇ 4r. That is, DRS is used only for data demodulation, and CRS is used both for channel information acquisition and data demodulation.
  • the receiving side measures the channel state from the CRS and transmits an indicator related to the channel quality such as the channel quality indicator (CQI), the precoding matrix index ( ⁇ ) and / or the rank indicator (RI). Feedback to the base station).
  • CRS is also called cell-specific RS.
  • a reference signal related to feedback of channel state information (CSI) may be defined as a CSI-RS.
  • the DRS may be transmitted through resource elements when data demodulation on the PDSCH is needed.
  • the UE may receive the presence or absence of a DRS through a higher layer, and is valid only when the PDSCH is mapped.
  • UE-specific reference signal DRS (UE- ⁇ ⁇
  • DMRS demodulation RS
  • FIG. 12 illustrates a reference signal pattern mapped to a downlink resource block pair in a wireless communication system to which the present invention can be applied.
  • a downlink resource block pair may be represented by 12 subcarriers in one subframe X frequency domain in a time domain in which a reference signal is embedded. That is, one resource block pair on the time axis (X axis) has a length of 14 OFDM symbols in case of normal cyclic prefix (normal CP) (in case of FIG. 12 (a)), and an extended cyclic prefix ( extended CP: extended Cyclic Prefix) has a length of 12 OFDM symbols (in case of FIG. 12 (b)).
  • normal CP normal cyclic prefix
  • extended CP extended Cyclic Prefix
  • Resource elements (RES) described as '0', '2' and '3' in the resource block grid refer to the positions of the CRSs of the antenna port indexes '0', '1', '2' and '3', respectively.
  • the CRS is used to estimate a channel of a physical antenna and is distributed in the entire frequency band as a reference signal that can be commonly received to all terminals located in a cell. That is, this CRS is a cell-specific signal and is transmitted every subframe for the wideband.
  • CRS may be used for channel quality information (CSI) and data demodulation.
  • CSI channel quality information
  • CRS is defined in various formats depending on the antenna arrangement at the transmitting side (base station).
  • RSs for up to four antenna ports are transmitted according to the number of transmit antennas of a base station.
  • the downlink signal transmitter has a single transmit antenna, two transmit antennas, and four transmit antennas. Like an antenna, it has three types of antenna arrays. For example, if the number of transmitting antennas of the base station is two, CRSs for antenna ports 0 and 1 are transmitted, and four CRSs for antenna ports 0 to 3 are transmitted. If the base station has four transmit antennas, the CRS pattern in one RB is shown in FIG.
  • the reference signal for the single antenna port is arranged.
  • the reference signal for two transmit antenna ports are time division multiplexed: is arranged by using a (T a VI Time Division Multiplexing) and / or frequency division multiplexing (FDM Frequency Division Multiplexing) scheme . That is, the reference signals for the two antenna ports are assigned different time resources and / or different frequency resources so that each is distinguished.
  • the base station uses four transmit antennas, reference signals for the four transmit antenna ports are arranged using the TDM and / or FDM scheme.
  • the channel information measured by the receiving side (terminal) of the downlink signal may be transmitted by a single transmit antenna, transmit diversity, closed-loop spatial multiplexing, open-loop spatial multiplexing, or Can be used to demodulate data transmitted using a transmission scheme such as Multi-User MIMO.
  • a transmission scheme such as Multi-User MIMO.
  • mapping CRSs to resource blocks are defined as follows.
  • Equation 14 k and 1 denote subcarrier indexes and symbol indexes, respectively, and p denotes an antenna port.
  • n s represents a slot index and D represents a cell ID.
  • mod represents a modulo operation.
  • the position of the reference signal depends on the ft value in the frequency domain. Since ft is dependent on the cell ID (ie, the physical layer cell ID), the position of the reference signal has various frequency shift values depending on the cell. More specifically, the position of the CRS in order to improve the channel estimation performance through the CRS can be shifted in the frequency domain according to a cell.
  • the reference signals are located at intervals of three subcarriers, the reference signals in one cell are 3k Is assigned to the first subcarrier, and a reference signal from another cell is assigned to the 3k + 1th subcarrier.
  • the reference signals are arranged at six resource element intervals in the frequency domain, and are separated at three resource element intervals from the reference signal allocated to another antenna port.
  • reference signals are arranged at constant intervals starting from symbol index 0 of each slot.
  • the time interval is defined differently depending on the cyclic prefix length.
  • the reference signal In the case of general cyclic prefix, the reference signal is located at symbol indexes 0 and 4 of the slot, and in the case of extended cyclic prefix, the reference signal is located at symbol indexes 0 and 3 of the slot.
  • the reference signal for the antenna port having the maximum of two antenna ports is defined in one OFDM symbol.
  • the reference signals for reference signal antenna ports 0 and 1 are located at symbol indices 0 and 4 (symbol indices 0 and 3 for extended cyclic prefix) of slots,
  • the reference signal for is located in symbol index 1 of the slot.
  • the positions in the frequency domain of the reference signals for antenna ports 2 and 3 are swapped with each other in the second slot.
  • DRS is used to demodulate data. Precoding weights used for a specific terminal in multiple I / O antenna transmission are used without change to estimate the corresponding channel by combining with the transmission channel transmitted from each transmission antenna when the terminal receives the reference signal.
  • the 3GPP LTE system (eg, Release-8) supports up to four transmit antennas, and DRS for tank 1 beamforming is defined.
  • Rank 1 The DRS for beamforming also indicates a reference signal for antenna port index 5.
  • the rule for mapping the DRS to a resource block is defined as follows. Equation 15 shows a case of a general cyclic prefix, and Equation 16 shows a case of an extended cyclic prefix.
  • Equations 15 and IS k and 1 represent subcarrier indexes and symbol indexes, respectively, and p represents antenna ports. Denotes the resource block size in the frequency domain and is expressed as the number of subcarriers. Is the number of physical resource blocks Indicates. N represents the frequency band of the resource block for p DS CH transmission. n s represents a slot index and s represents a cell ID. mod stands for modulo operation.
  • the position of the reference signal depends on the v shift value in the frequency domain. Since ift depends on the cell ID (ie, physical layer cell ID), the position of the reference signal has various frequency shift values (f requency shif t) depending on the cell.
  • LTE system evolution In the advanced LTE-A system, it should be designed to support up to eight transmit antennas in the downlink of the base station. Therefore, RS for up to eight transmit antennas must also be supported. Since the downlink RS in the LTE system defines only RSs for up to four antenna ports, if the base station has four or more up to eight downlink transmit antennas in the LTE-A system, RSs for these antenna ports are additionally defined. Must be designed. RS for up to eight transmit antenna ports must be designed for both the RS for channel measurement and the RS for data demodulation described above.
  • an RS for an additional up to eight transmit antenna ports should be additionally defined in the time-frequency domain in which CRS defined in LTE is transmitted in every subframe over the entire band.
  • the RS overhead becomes excessively large.
  • RS for channel measurement purpose
  • CSI-RS Channel State Infation-RS, Channel State Indication-RS
  • RS Data Demodulat ion-RS
  • CSI-RS for channel measurement purpose has a feature that is designed for channel measurement-oriented purpose, unlike the conventional CRS is used for data demodulation at the same time as the channel measurement, handover, and the like. Of course, this may also be used for the purpose of measuring handover and the like. Since the CSI-RS is transmitted only for obtaining channel state information, unlike the CRS, the CSI-RS does not need to be transmitted every subframe. In order to reduce the overhead of the CSI-RS, the CSI-RS is transmitted intermittently on the time axis.
  • the DM RS is transmitted to the UE scheduled in the corresponding time-frequency domain for data demodulation. That is, the DMRS of a specific UE is transmitted only in a region where the UE is scheduled, that is, a time-frequency region in which data is received.
  • the eNB In the LTE-A system, the eNB must transmit CSI-RS for all antenna ports. It is a CSI- RS for up to eight transmit antennas ports transmitted every sub-frame because there is too big disadvantage, overhead, CSI- RS is the overhead must be intermittently sent to the time axis is not transmitted every sub-frame Can be reduced. That is, the CSI-RS may be periodically transmitted with an integer multiple of one subframe or may be transmitted in a specific transmission pattern. At this time, CSI-RS The period or pattern to be transmitted may be set by the eNB.
  • the UE In order to measure the CSI-RS, the UE must transmit the CSI-RS transmission subframe index of each CSI-RS antenna port of the cell to which it belongs, and the CSI-RS resource element (RE) time-frequency position within the transmission subframe. , And information about CSI-RS sequences.
  • RE resource element
  • the eNB should transmit CSI-RS for up to eight antenna ports, respectively.
  • Resources used for CSI-RS transmission of different antenna ports should be orthogonal to each other.
  • the CSI-RS for each antenna port may be mapped to different REs so that these resources may be orthogonally allocated in the FDM / TDM manner.
  • the CSI-RSs for different antenna ports may be transmitted in a CDM scheme that maps to orthogonal codes.
  • the eNB When the eNB informs its cell UE of the information about the CSI-RS, it should first inform the information about the time-frequency to which the CSI-RS for each antenna port is mapped. Specifically, the subframe numbers through which the CSI-RS is transmitted, or the period during which the CSI-RS is transmitted, the CSI—the subframe offset through which the RS is transmitted, the OFDM symbol number where the CSI-RS RE of a specific antenna is transmitted, and the frequency interval (spacing), the RE offset or shift value on the frequency axis.
  • FIG. 13 illustrates a periodic CSI-RS transmission scheme in a wireless communication system to which the present invention can be applied.
  • a transmission period of the CSI-RS of the eNB is 10 (ms or a subframe), and the CSI-RS transmission offset is 3 (subframe).
  • the offset value may have a different value for each eNB so that CSI-RSs of several cells may be evenly distributed in time.
  • the UE measures the CSI-RS of the eNB at the corresponding location using the value and reports information such as CQI / PMI / RI to the eNB.
  • the above information related to CSI-RS is all cell-specific information.
  • FIG. 14 illustrates a transmission scheme of aperiodic CSI-RS in a wireless communication system to which the present invention can be applied.
  • the CSI-RS transmission pattern consists of 10 subframes, and specifies whether to transmit CSI-RS in each subframe as a 1-bit indicator.
  • the following two methods are considered as a method of informing a UE of a CSI-RS configuration.
  • DBCH dynamic BCH
  • the first equation is a method of broadcasting information about the CSI-RS configuration to eNB
  • the LTE system notifies UEs about system information 1
  • the information is usually transmitted to a broadcasting channel (BCH).
  • BCH broadcasting channel
  • the contents are too many to transmit to the BCH, transmit them in the same manner as general data, but transmit the PDCCH of the corresponding data to a specific UE ID (for example, the CRC is masked and sent using SI-RNTI (System Information RNTI) rather than C-RNTI).
  • SI-RNTI System Information RNTI
  • DBCH Dynamic BCH
  • PBCH Physical BCH
  • System information broadcast in the LTE system can be divided into two categories. That is, a Master Information Block (MIB) transmitted to the PBCH and a System Information Block (SIB) transmitted to the PDSCH and multiplexed with general unicast data. Since information transmitted to SIB type 1 to SIB type 8 (SIB 1 to SIB 8) is already defined in the LTE system, CSI-RS configuration ⁇ is transmitted to SIB 9 and SIB 10 newly introduced in the LTE-A system. .
  • MIB Master Information Block
  • SIB System Information Block
  • Equation 12 is a method of informing the information on the CSI-RS configuration eNB7]-each UE using dedicated RRC signaling. While the UE is connected to the e NB through initial access or handover, the eNB informs the UE of the CSI-RS configuration through RRC signaling. Alternatively, the UE may inform the CSI-RS configuration through an RRC signaling message requesting channel state feedback based on the CSI-RS measurement.
  • Table 2 is a table illustrating the CSI-RS-Config IE. Table 2
  • the ⁇ antennaPortsCount 'field indicates the number of antenna ports used for transmission of the CSI-RS.
  • the resourceConf ig 'field indicates a CSI-RS configuration.
  • the x Subf rameConf ig 'field and the x zeroTxPowerSubf rameConf ig' field indicate the subframe configuration ( 7csi—RS) through which the CSI-RS is transmitted.
  • the zeroTxPowerResourceConf igList 'field indicates the configuration of the zero-power (ZP: zero-power) CS ⁇ -RS.
  • the CSI-RS configuration that is set to 1 in the 16-bit bitmap constituting the zeroTxPowerResourceConf igList, field may be set to ZP CSI-RS.
  • the X p C 'field indicates a parameter assumed to be a ratio of PDSCH EPRE (Energy Per Resource Element) CSI-RS EPRE. 5 g
  • CSI—RS is transmitted through one, two, four, or eight antenna ports.
  • the CSI-RS sequence may be generated using Equation 17 below.
  • OFDM symbol number, N means the maximum number of RBs of the downlink bandwidth, respectively.
  • a pseudo-randotn sequence generator is initialized at the beginning of every OFDM symbol as shown in Equation 18 below.
  • N m represents a cell ID
  • N CP 1 for a general CP
  • N CP 0 for an extended CP
  • the CSI—RS sequence generated by Equation 17 is a complex used as a reference symbol on each antenna port p as shown in Equation 1 9 below. Modulation symbol (complex-a (p)
  • Equation 19 k '' (where k, is a subcarrier index in a resource block and 1 'represents an OFDM symbol index in a slot.) And "s are CSI- as shown in Table 3 or Table 4 below. Determined according to the RS configuration Table 3 illustrates the mapping of ',' from CSI-RS configuration in a generic CP.
  • Table 4 illustrates the mapping of ', ⁇ ') from the CSI-RS configuration in the extended CP.
  • CCI-RS inter-cell interference
  • HetNet heterogeneous network
  • the CSI-RS configuration is different depending on the number of antenna ports and CPs in the sal, and adjacent cells may have different configurations as much as possible.
  • the CSI-RS configuration may be divided into a case of applying to both the FDD frame and the TDD frame and the case of applying only to the TDD frame according to the frame structure. Based on Tables 3 and 4, ' ' and "s are determined according to the CSI-RS configuration, and when applied to Equation 19, the time-frequency resources used by each CSI-RS antenna port for CSI-RS transmission are determined.
  • Figure 15 is a diagram illustrating a CSI-RS configuration in a wireless communication system to which the present invention can be applied, in particular, Figure 15 shows a CSI-RS configuration (ie, a general CP case) according to Equation 19 and Table 3.
  • Figure 15 (a) shows the 20 CSI-RS configurations available for CSI-RS transmission by one or two CSI-RS antenna ports,
  • FIG. 15 (c) shows five CSI-RS available for CSI-RS transmission by eight CSI-RS antenna ports. The configurations are shown.
  • the radio resources (i.e., RE pair) to which the CSI-RS is transmitted are determined according to each CSI-RS configuration.
  • CSI-RS is performed on a radio resource according to the CSI-RS configuration that is increased by the 10 CSI-RS configurations shown in FIG. Is transmitted.
  • CSI-RS is performed on a radio resource according to the configured CSI-RS configuration among the five CSI-RS configurations shown in FIG. Is sent.
  • the CSI—RS for each antenna port is CDMed and transmitted on the same radio resource. do.
  • the respective CSI-RS complex symbols for antenna ports 15 and 16 are the same, but different orthogonal codes (e.g., Walsh codes) are multiplied to the same radio resource.
  • the complex symbol of CSI-RS for antenna port 15 is multiplied by [1, 1]
  • the complex symbol of CSI-RS for antenna port 16 is multiplied by [1 -1] and mapped to the same radio resource.
  • the UE can detect the CSI-RS for a particular antenna port by multiplying the transmitted multiplied code. That is, the multiplied code [1 1] is multiplied to detect the CSI-RS for the antenna port 15, and the multiplied code [1 -1] is multiplied to detect the CSI-RS for the antenna port 16.
  • the radio resources according to the CSI-RS configuration having a small number of CSI-RS antenna ports It includes radio resources.
  • the radio resource for the number of eight antenna ports includes both the radio resource for the number of four antenna ports and the radio resource for the number of one or two antenna ports.
  • Non-zero power (NZP) CSI-RS is used with zero or one CSI-RS configuration, and zero power (ZP) CSI-RS is zero or multiple CSI-RS. Configuration can be used.
  • the UE For each bit set to 1 in ZP CSI-RS, a 16-bit bitmap set by the upper layer, the UE corresponds to the four CSI-RS columns of Tables 3 and 4 above. Assume zero transmit power in the REs (except in the case of overlapping with the RE assuming NZP CSI-RS set by the upper layer). Most Significant Bit (MSB) corresponds to the lowest CSI-RS configuration index, and the next bits in the bitmap correspond to the next CSI-RS configuration index.
  • MSB Most Significant Bit
  • CSI-RS is a downlink that satisfies the condition of "s mod2 in Table 3 and Table 4 above. It is transmitted only in subframes that satisfy the slot and CSI-RS subframe configuration.
  • TDD For frame structure type 2 (TDD), CSI—RS in a special subframe, a synchronization signal (SS), a PBCH, or a SB1 (SysteralformationBlockTypel) destina- tion transmission and a subframe configured for scrambled subframe or paging message transmission. Is not sent.
  • SS synchronization signal
  • PBCH PBCH
  • SB1 SynsteralformationBlockTypel
  • the CSI-RS is not configured to be transmitted every subframe, but is configured to be transmitted at a predetermined transmission period corresponding to a plurality of subframes. In this case, the CSI-RS transmission overhead may be much lower than when the CSI-RS is transmitted every subframe.
  • Subframe periods (hereinafter, referred to as 'CSI transmission period,') ( r csi-RS) and subframe offset ( A ) for CSI-RS transmission are shown in Table 5 below.
  • Table 5 illustrates a CSI-RS subframe configuration
  • the CSI-RS transmission period ( ⁇ CSI-RS) and the subframe offset ( a CSI-RS) are determined according to the CSI-RS subframe configuration ( ⁇ sws).
  • the CSI-RS subframe configuration of Table 5 may be set to any one of the 'SubframeConfig' field and the ⁇ zeroTxPowerSubf rameConf ig 'field of Table 2 above.
  • the CSI-RS subframe configuration may be separately configured for the NZP CSI-RS and the ZP CSI-RS.
  • the subframe including the CSI-RS satisfies Equation 20 below.
  • r csi-RS is a CSI-RS transmission period
  • a CSI-RS is a subframe offset value
  • f means system frame number, and slot number.
  • one UE may configure one CSI-RS resource configuration.
  • the UE may be configured with one or more CSI-RS resource configuration (s).
  • a parameter for each CSI-RS resource configuration is set as follows through higher layer signaling.
  • CSI subframe sets C cs i , o and Ccs '.' For the CSI process. 7 ⁇ If set by the higher layer, P c is set for each CSI subframe set of the CSI process. -Pseudo-rnadom sequence generator parameter ("ID")
  • QCL scrambling identifier qcl-Scramblingldentity-rll
  • CRS port count crs-PortsCount— rll
  • MBSFN Multicast-broadcast single-frequency for quasiCo-Located (QCL) type B UE assumption network
  • Higher layer parameter 'qcl-CRS-Info-rll'
  • subframe configuration list mbsfn- SubframeConfigList-rll
  • P c is assumed as the ratio of the PDSCH EPRE to the CSI-RS EPRE.
  • the EPRE corresponds to a symbol with a ratio of PDSCH EPRE to CRS EPRE.
  • the CSI-RS and the PMCH are not configured together. If the frame structure type 2 four CRS antenna port set, UE in the case of the normal CP case of [20-31] Set (see Table 3) or an extended CP belonging to [IS- 27] set (Table 4) The CSI-RS configuration index is not set.
  • the UE has a CSI-RS antenna port in the CSI-RS resource configuration with delay spread, Doppler spread, Doppler shift, average gain and average delay. Can be assumed to have a QCL relationship.
  • a UE configured with transmission mode 10 and QCL type B has antenna ports 0-3 corresponding to CSI-RS resource configuration and antenna ports 15-227 ⁇ corresponding to CSI-RS resource configuration, Doppler spread and Doppler shift. can be assumed to be a QCL relationship.
  • one or more channel-state information-interference measurement (CSI-IM) resource configurations may be configured for a serving cell.
  • CSI-IM channel-state information-interference measurement
  • the following parameters for configuring each CSI-IM resource may be configured through higher layer signaling.
  • the CSI-IM resource configuration is the same as any one of the configured ZP CSI-RS resource configurations.
  • the CSI-IM resource and the PMCH in the same subframe of the serving cell are not configured at the same time.
  • one UE may configure one ZP CSI-RS resource configuration for a serving cell.
  • one or more ZP CSI-RS resource configurations may be configured for the serving cell.
  • the following parameters for ZP CSI-RS resource configuration may be configured through higher layer signaling.
  • the 3GPP LTE / LTE-A system defines a downlink data channel transmission mode.
  • the following transmission modes are set to the UE through RRC signaling (eg, an RRC Connection Setup message, an RRC Connection Reconf iguration message, or an RRC Connection Reestablishraent message).
  • RRC signaling eg, an RRC Connection Setup message, an RRC Connection Reconf iguration message, or an RRC Connection Reestablishraent message.
  • Table 6 exemplifies a transmission mode when the type of the RNTI masked on the PDCCH is C-RNTI.
  • DCI for 1 2A delay CDD (cyclic delay diversity) or transmit diversity
  • DCI format 1A port, port 0 is used; otherwise, transmission mode 8 diversity
  • port 7 or 8 Or single antenna port, port 7 or 8
  • Non— MBSFN (Non-MBSFN) subframe If the number of PBCH antenna ports is 1, a single antenna port,
  • DCI format 1A port 0 is used, otherwise transmit mode 9 diversity
  • Multi-layer transport up to 8-layer transport, port 7— 14
  • port 7 or 8 Or single antenna port, port 7 or 8
  • Non-MBSFN (Non— MBSFN) subframe If the number of PBCH antenna ports is 1, a single antenna port,
  • DCI format 1A port 0 is used, otherwise transmit mode 10 diversity
  • MBSFN Subframe Single antenna port, port 7
  • Table 7 illustrates the transmission mode when the type of RNT masked on the PDCCH is SPS C—RNTI.
  • DCI format 2D single antenna port, port 7 or 8 Referring to Table 6 and Table 7, in the 3GPP LTE / LTE-A standard, the downlink control information (DCI) format is defined according to the type of RNT masked). In particular, in the case of C-RNTI and SPS C-RNTI, a transmission mode and a corresponding DCI format, that is, a transmission mode based DCI format, are defined. In addition, DCI format 1A is defined that can be applied irrespective of each transmission mode, that is, a fall back mode.
  • DCI format 1A is defined that can be applied irrespective of each transmission mode, that is, a fall back mode.
  • the transmission mode 10 means a downlink data channel transmission mode of the CoMP transmission scheme.
  • the UE blindly decodes the PDCCH masked with C-RNTI and detects DCI format 2D, the PDSCH is assumed to be transmitted using a multilayer transmission scheme based on antenna ports 7 to 14, that is, DMRS.
  • the PDSCH is decoded on the assumption that the PDSCH is transmitted in a single antenna transmission scheme based on the DMRS antenna ports 7 or 8.
  • the corresponding subframe is transmitted depending on whether the subframe is an MBSFN subframe. The mode is different. For example, if the corresponding subframe is a non-MBSFN subframe, the PDSCH is decoded based on the assumption that the PDSCH is transmitted using a single antenna transmission or a CRS based transmission diversity scheme based on the CRS of antenna port 0.
  • the PDSCH may decode under the assumption that a single antenna transmission based on the DMRS of the antenna port 7 is performed. QCL (quasi co-located) between antenna ports
  • the QCL relationship for example, a large-scale property of a radio channel in which one symbol is transmitted through one antenna port may be changed between two antenna ports. If it can be implied from the transmitted radio channel, it can be said that the two antenna ports are in QCL relationship (black is QCL).
  • the broad characteristics include at least one of delay spread, Doppler spread, Doppler shif t, average gain, and average delay.
  • the two antenna ports in QCL relationship means that the broad characteristics of the radio channel from one antenna port are the same as those of the radio channel from the other antenna port.
  • the broad characteristics of the radio channel from one antenna port may be obtained from another antenna port. It could be replaced by the broad nature of the wireless channel.
  • the UE cannot assume the same broad characteristics between non-QCL antenna ports between radio channels from the corresponding antenna ports. That is, in this case, the terminal should perform independent processing for each set non-QCL antenna port for timing acquisition and tracking frequency offset estimation and compensation, delay estimation, and Doppler estimation.
  • the UE can perform the following operations:
  • the UE can determine the power-delay profile, delay spreading and Doppler spectrum, and Doppler spreading estimation results for a wireless channel from any one antenna port. The same applies to the Wiener filter used for channel estimation for the wireless channel from another antenna port.
  • the terminal may perform time and frequency synchronization for one antenna port and then apply the same synchronization to demodulation of another antenna port.
  • the UE may average RSRP instantiation for two or more antenna ports.
  • the UE estimates a wide range of radio channels estimated from its CRS antenna port when estimating the channel through the corresponding DMRS antenna port.
  • DMRS-based downlink data channel reception performance can be improved by applying the same characteristics (large-scale properties). Because the CRS is a reference signal broadcast with a relatively high density (density) throughout every subframe and the entire band, the estimation of the broad characteristics can be obtained more stably from the CRS.
  • the DMRS is UE-specifically transmitted for a specific scheduled RB, and also the effective channel received by the UE because the precoding resource block group (PRG) unit may change the precoding matrix 7 ⁇ used by the base station for transmission. May vary in units of PRGs, even when multiple PRGs are scheduled, performance degradation may occur when DMRS is used to estimate the wide characteristics of a wireless channel over a wide band.
  • the CSI-RS can have a transmission period of several to several tens of ms, and has a low density of 1 resource element per antenna port on average per resource block, the CSI-RS can also be used to estimate the wide characteristics of a radio channel. Performance degradation may occur.
  • the terminal may utilize the detection / reception of a downlink reference signal, channel estimation, and channel state reporting.
  • the UE reports the result of cell measurement to the base station (or network) for one or several of the methods (handover, random access, cell search, etc.) for ensuring the mobility of the UE. .
  • a cell specific reference signal (CRS) is transmitted through the 0, 4, 7, 11th OFDM symbols in each subframe on the time axis, which is basically used for cell measurement *. do.
  • the terminal is serving Cell measurement is performed using CRSs received from a serving cell and a neighbor cell, respectively.
  • Radio Link Monitoring for evaluating radio link failure by measuring RRM (Radio resource management) such as RSRQ (Reference signal received quality) and link quality with serving cell This is a concept that includes measurement.
  • RSRP is the linear average of the power distribution of the REs over which the CRS is transmitted within the measurement frequency band.
  • CRS (RO) corresponding to antenna port '0' may be used.
  • CRS (Rl) corresponding to antenna port '1' may be additionally used.
  • the number of REs used in the measurement frequency band and the measurement interval used by the UE to determine the RSRP may be determined by the UE to the extent that the corresponding measurement accuracy requirements 7 ⁇ are satisfied.
  • the power per RE may be determined from the energy received within the remainder of the symbol except for the cyclic prefix (CP).
  • CP cyclic prefix
  • RSS is a co-channel serving cell and non-serving cell adjacent to OFDM symbols including RS corresponding to antenna port 0 'within the measurement band.
  • the RSSI is measured through all OFDM symbols in the indicated subframes.
  • RSRQ is derived from NxRSRP / RSSI.
  • N means the number of RBs of the RSSI measurement bandwidth.
  • the measurement of the numerator and denominator in the above equation can be obtained from the same set of RBs.
  • the base station may transmit configuration information for measurement to the UE through higher layer signaling (eg, an RRC connection reconfiguration message).
  • higher layer signaling eg, an RRC connection reconfiguration message
  • the RRC connection reconfiguration message includes a radio resource configuration dedicated ('radioResourceConf igDedicated') information element (IE) and a measurement configuration ('measConf ig') IE.
  • IE radio resource configuration dedicated
  • IE measurement configuration
  • ⁇ raeasConfig 'IE specifies the measurements that must be performed by the UE, configures the measurement gap, as well as intra-frequency mobility, inter-frequency mobility, inter-RAT ( inter—RAT) Contains configuration information for mobility.
  • the 'measConf ig' IE includes 'measObj ectToRemoveList' representing the list of measurement objects ('measObject') to be removed from the measurement, and 'measObjectToAddModList' representing the list to be newly added or modified.
  • 'measConf ig' IE includes 'measObj ectToRemoveList' representing the list of measurement objects ('measObject') to be removed from the measurement, and 'measObjectToAddModList' representing the list to be newly added or modified.
  • 'RadioResourceConf igDedicated 1 IE allows you to setup / modify / release (Radio Bearer), change MAC main configuration, change Semi-Persistent Scheduling (SPS) settings, and Used to change the dedicated physical configuration.
  • the 'RadioResourceConf igDedicated' IE includes a measSubf ramePattern-Serv 1 field indicating a time domain measurement resource restriction pattern for serving cell measurement.
  • the IE indicates a neighbor cell to be measured by the UE .
  • a time domain measurement resource restriction pattern set for a measurement cell may indicate at least one subframe per radio frame for performing RSRQ measurement.
  • RSRQ measurement is not performed except for the subframe indicated by the time domain measurement resource restriction pattern configured for the measurement cell.
  • the UE eg, 3GPP Rel-10 is configured by a subframe pattern ('measSubf ramePattern—Serv') for serving cell measurement and a subframe pattern ('measSubf ramePattern-Neigh') for neighbor cell measurement.
  • RSRQ shall be measured only in the set interval.
  • RSRP is not limited to measurements within these patterns, but for accuracy requirements it is only measured within these patterns. It is preferable. How to receive a discovery signal
  • Small cell enhancement technology for small cells to cover relatively small areas using less power than conventional macro cells to accommodate explosive growth of data traffic. Research is actively being conducted.
  • Small cell enhancement involves spectral efficiency per unit area by densely placing small cells within macro cell coverage (or without macro cell coverage in buildings, etc.) and by close collaboration between macro cell eNBs and small cell eNBs or between small cell eNBs. It refers to a technique for dramatically increasing Spectrum Efficiency to enable efficient mobility management while accommodating exploding traffic.
  • a particular area such as a so-called hot spot inside a cell
  • the reception sensitivity of radio waves may be reduced.
  • Sma ii cells can be used in communication shadow areas that are not covered by macro cells alone, or in areas with high data service demands such as hot spots.
  • the macro cell eNB may be referred to as a macro eNB (MeNB), and the small cell eNB may be referred to as a small eNB and a secondary eNB (SeNB).
  • MeNB macro eNB
  • SeNB secondary eNB
  • Small cell enhancement is a method in which a UE exists in small cell coverage to reduce energy saving and small interference to neighbor cells. Only the small cell on-state is maintained, otherwise the small cell on-off mechanism is supported.
  • UE mobility management eg, handover, etc.
  • the frequency of the macro cell ie, (component) carrier, cell
  • the small cell is part of the off-state, Does not disconnect completely.
  • a discovery procedure is needed so that the small cell can determine the on / off-state in the terminal.
  • the small cell is defined to always transmit (ie, broadcast) a discovery signal (or discovery reference signal (DRS)) regardless of the on / off-state.
  • a discovery signal or discovery reference signal (DRS)
  • DRS the 'discovery signal'
  • the DRS is broadcast with a certain period.
  • the constant period may be referred to as a measurement period, and for example, 40 ms, 80 ms, 160 ms, or the like may correspond.
  • the small sal may maintain an on-state broadcasting DRS for a predetermined time (for example, 1 to 5 subframes).
  • the DRS may be broadcast while maintaining the on-state for 6ms and the off-state for the remaining 34ms.
  • the interval for transmitting the DRS may be referred to as a measurement window or a discovery signal occasion. That is, the discovery signal time point may be configured as a section of consecutive subframes (for example, 1 to 5 consecutive subframe sections), and one discovery signal 7 time points may exist once within each measurement cycle.
  • the terminal performs a measurement based on the DRS received from the small cell, and transmits a measurement report to the base station (or network).
  • the terminal always measures the DRS transmitted from the small cell and reports it to the base station (or network) regardless of whether the small cell is on / of f.
  • the base station (network) has the most efficiency around the terminal. Good small sals can be identified. For example, when the base station (network) reports the measurement result from the terminal, when the small cell of f-state or the DRS reception power of the terminal is large, the base station may switch the small cell on-state. .
  • a terminal is connected to an overlapped macro cell, and the small cell may be used for data offloading.
  • the UE it is desirable for the UE to discover many cells within the communication range, and the overlapped macro layer selects the best cell in consideration of other information as well as loading information.
  • the best cell for data offloading may not be the cell selected based on RSRP / RSRQ / RSS. Rather, in terms of overall cell management, cells with low loading or many users may be more desirable. Thus, an advanced discovery procedure may be considered to search for more cells than existing mechanisms.
  • DRS-PSS / SSS DRS-CRS, DRS-CSI-RS, and DRS-PRS are used.
  • the discovery signal is expected to be used for coarse time / frequency tracking, measurement, and quasiCo—located (if needed). Considering several goals, the design of the discovery signal must satisfy the following requirements.
  • the discovery signal shall support approximate time synchronization under the assumption of very high initial timing error (eg ⁇ 2.5 ms).
  • PSS and / or SSS can be transmitted.
  • the period of the advanced discovery signal is limited to Conditions may be considered.
  • Multiple measuring gap periods for example, 40 msec, 80 msec, 160 msec or 320 msec (if a new measurement gap period is set, a plurality of new measurement gap periods may be considered.)
  • the period of the discovery signal is 5 msec so that the PSS / SSS transmitted for the advanced discovery signal can be replaced by the PSS / SSS transmitted in the on-state. It can be a multiple of. If the discovery signal is not sent in the on state, this constraint may be excluded.
  • a different period from the PSS / SSS may be considered. That is, the PSS / SSS may be transmitted during the on state, and the additional PSS / SSS may be transmitted for the discovery signal transmission. If the DRS—PSS and DRS-SSS are additionally transmitted separately from the PSS / SSS transmitted in the on state, the cell ID obtained from the DRS-PSS / DRS-SSS may be different from the cell ID obtained from the PSS / SSS.
  • 16 is a diagram illustrating a small cell cluster / group to which the present invention can be applied.
  • the “shared cell ID scenario” refers to a plurality of transmission points (TPs) within a specific (small cell) cluster / group as shown in FIG. 16.
  • point refers to a scenario using the same physical cell identifier (PCID).
  • PCID physical cell identifier
  • each cluster (Cluster A and Cluster B) uses a different PCID.
  • the PCID means a cell-specific identifier (Cell-Specific ID) used for PSS / SSS and CRS transmission as in the current LTE system, or a separate cluster / group commonly used within a specific cluster / group. It can also be an ID (cluster / group ID).
  • a common signal ie, PSS / SSS, CRS, etc. scrambled with the same PCID
  • a plurality of ⁇ may transmit the same signal together in the same resource, thereby improving the reception signal quality and eliminating the shadow area.
  • the terminal since the terminal recognizes that one signal is transmitted from one TP, cell rescanning or handover of the terminal is not performed in the same cluster / group, so that control signaling may be reduced.
  • TPID Transmission Point ID
  • each TPID is a sequence scrambling initialization parameter of the CSI-RS transmitted by the corresponding TP. It can be used for other TP-specific RS transmissions.
  • DRS Discovery RS
  • the DRS transmits a long-term period (eg, 80ms, 160ms, etc.) even when a specific (small) cell is in an off-state so that the UE detects it and reports an RRM measurement such as RSRP. Can be set / sent for the purpose of performing.
  • a long-term period eg, 80ms, 160ms, etc.
  • the DRS transmitted by each TP is CSI-RS, but the present invention is not limited thereto. That is, the CSI-RS may be used as the DRS, and a TP specific DRS other than the CSI-RS may be defined and used in the present invention.
  • the TPID is used as a scrambling ID (SCID) of the DRS for convenience of description. If the SCIDs of the TPID and the DRS are different, it is assumed that the TPID and the SCID can be linked through higher layer signaling (eg, RRC signaling) for the relationship.
  • SCID scrambling ID
  • CSI-RS up to 11 standards The use of CSI-RS up to 11 standards is for the UE to perform CSI measurement and to perform CSI feedback reporting.
  • the CSI-RS transmitted for this purpose will be described below for convenience of explanation.
  • FB-CSI-RS if the CSI-RS is transmitted as a TP-specific DRS, it will be referred to as "DRS-CSI-RS" for convenience to distinguish it from the FB-CSI-RS.
  • small cells may be distributed within a particular macro cell coverage and may consider the case of operating at a different frequency than the macro cell (ie, component carrier (CC) or carrier / cell) (eg, small cell scenario 2).
  • a frequency of a macro cell to which a specific terminal is connected to a primary cell (PCell) is CC1
  • the frequency is CC2 of adjacent small cells that the terminal is to find.
  • the UE may access the small cell (s) through a process of detecting a specific discovery signal (DRS) intermittently transmitted by the corresponding small cells and reporting an RRM.
  • DRS specific discovery signal
  • each small cell is a secondary cell.
  • the UE may be configured in the UE in the form of carrier aggregation.
  • the terminal has an effect of being connected to one cell having large coverage.
  • the overhead and the number of handovers to be performed by the UE can be considerably reduced, and the interference generated from the CRS can be significantly reduced.
  • ideal backhaul and strict scheduling coordination must be satisfied for such an operation.
  • this operation cannot always be assumed, and this operation can be used only if the network can set it up.
  • data may be transmitted only in one cell from the terminal's point of view. The reason for this assumption is that data is transmitted in only one cell because, when many TPs are distributed, the energy savings and spatial reuse used by all TPs are transmitted. To gain.
  • an enhanced PDCCH EPCCH
  • SCell SCell
  • the UE does not need to receive a common search space (CSS) and thus may not consider PDCCH transmission.
  • SCS common search space
  • An exemplary terminal operation considered in the present invention is as follows.
  • the terminal detects a specific small cell / TP (s) in CC2 (by a small cell search procedure) and then in a CA form by adding a SCell. I want to get access by connecting.
  • the UE may receive a measurement object (eg, MeasObj ectEUTRA IE) for RRM measurement in CC2 by RRC signaling (eg, RRC connection reconfiguration message) from the .PCell. .
  • RRC signaling eg, RRC connection reconfiguration message
  • PCID set information for PSS / SSS may be provided, but other PSS / SSS is also detected as a measurement report object.
  • the terminal attempts to detect the PSS / SSS in CC2 .
  • the terminal succeeds in detecting a specific PSS / SSS in CC2, and acquires the corresponding PCI based on the detected PSS / SSS.
  • a total of 504 unique PCIDs may be represented through a combination of three PSSs and 168 SSSs, and the terminal may acquire the PCID by a specific sequence of the PSS and the SSS.
  • Scenario 1 Non-shared cell-ID scenario ('non-shared cell-ID scenario') with one TP transmitting the PSS / SSS.
  • the TP may additionally transmit DRS-CRS and / or DRS-CSI_RS.
  • the corresponding DRS-CRS and / or DRS-CSI-RS may be set equally to the PC (ie, the DRS CRS and / or DRS-CSI-RS are scrambled to PCim).
  • the QRS relationship with the DRS-CRS and / or DRS-CSI—RS and PSS / SSS is also established.
  • Scenario 2 Cell ID Sharing Scenario ('shared cell-ID scenario') with two or more TPs that transmitted the PSS / SSS.
  • two or more TPs transmitting the PSS / SSS generated by the PCIDl means that one or more TP sets are bundled together. That is, a cell in which a corresponding PSS / SSS generated by PCI is transmitted is actually composed of a plurality of TPs.
  • the PSS / SSS and the control channel can be transmitted in common by the TP set, but data transmission is By performing each TP separately, cell-splitting gain can be obtained.
  • each TP can additionally transmit a separate DRS (eg, DRS-CSI-RS).
  • the SCIDs of the corresponding DRS for each TP may be independent (different from each other).
  • each TP can transmit a separate DRS generated with a (different) SCID independent of the PCI.
  • pss generated by the DRS and the pci transmitted by each TP to support the terminal to detect the DRS transmitted by each TP in the cell (ie, the set of TPs) to which the detected PCI transmits. It should be known to the UE in advance that there is a specific QCL relationship between / sss or be pre-defined in a specific form.
  • a DRS eg, DRS-CRS and / or DRS-CSI-RS
  • a 'D-QCL type' a discovery QCL type that can be assumed by the terminal and setting some of the defined types to the terminal.
  • the proposed scheme will be described based on the 3GPP LTE system. However, the scope of the system to which the proposed scheme is applied can be extended to other systems in addition to the 3GPP LTE system.
  • the term 'base station' described in the present invention hereinafter refers to a remote radio head (RRH), a transmission point (TP), a reception point (RP), a relay, an eNB ( MeNB, SeNB, Micro eNB, Pico eNB, Femto eNB, etc.).
  • RRH remote radio head
  • TP transmission point
  • RP reception point
  • eNB MeNB, SeNB, Micro eNB, Pico eNB, Femto eNB, etc.
  • the number of antenna ports to which the DRS-CSI-RS is transmitted is 201 to 208.
  • QCL wide channel characteristics relationship is set: examine the (LSCP large-scale channel properties) control 1 ".
  • a terminal configured with D-QCL type A has an antenna port for (DRS-) PSS / SSS (and antenna port 0- for (DRS-) CRS) generated with the same SCID at a frequency (ie, component carrier or cell / carrier). 3) and antenna port 201 for DRS-CSI-RS can be assumed to be a QCL relationship with respect to the widespread nature of the radio channel (LSCP) between (201 + P-1) (A UE may assume the antenna port for the (DRS-) primary / secondary synchronization signals (and the antenna ports 0-3) and 201-(201 + Pl) of a frequency- carrier which are all generated with the same scrambling ID are quasi co-located with respect to some large-scale channel properties (LSCP)).
  • LSCP radio channel
  • the UE when the SCID obtained by using the (DRS-) PSS / SSS (and (DRS-) CRS) detected by the UE is 'A', the UE is scrambled with the same SCID 'A'. If RS exists, it can be assumed to be a QCL relationship with the (DRS-) PSS / SSS.
  • the LSCP for which QCL assumption is possible may be as follows.
  • PSS / SSS and DRS-CRS
  • DRS—CSI-RS may both be transmitted in the same cell / TP under the non-shared cell-ID environment when set / indicated by the D-QCL type.
  • PSS / SSS and DRS-CRS can be defined to the UE as a QCL assumption only for “Doppler shift, average delay”. Can be set. This is because the purpose of obtaining DRS-CRS may be cell identification / verification, so it may not be necessary to assume QCL up to the LSCP information.
  • the LSCP capable of QCL assumption in the above-described D-QCL type A is just one example, and the present invention is not limited thereto. That is, in the above example, a specific LSCP may be excluded or another LSCP may be added.
  • P means the number of antenna ports of the DRS-CSI—RS.
  • the antenna port numbers of the DRS-CSI-RS are 201, 202,... Although it is assumed that the form, the number of this antenna port may have a different value (for example, 15, 16, ..., etc., the same as the CSI-RS).
  • the antenna ports 0-3 may be the antenna port numbers of the DRS-CRS, and the antenna port numbers may have other values, and the number of antenna ports of the DRS-CRS may be limited to 1 or the like. .
  • QCL may be assumed between antenna ports of the DRS-CSI-RS generated with the same SCID value as the specific SCID (for example, PCID1) that generated the (DRS-) PSS / SSS (and the DRS-CRS). Can be.
  • the present invention is not necessarily limited to allowing QCL assumption between antenna ports that follow the same SCID (eg, PCID1). Do not. That is, the same SCID is not necessarily limited to the same physical value, but may be defined / configured so that the QCL link can be established according to a one-to-one relationship between specific SCIDs defined in advance.
  • the measurement RS i.e., DRS-CRS and / or DRS-CSI-RS
  • the measurement RS is determined by a specific function or table previously defined / set for this.
  • a one-to-one relationship between the specific ID2 and PCID1 generated may be established.
  • the one-to-one relationship may mean that a unique pair form of ⁇ PCID1, Engineering D2 ⁇ may be defined.
  • the ID mapped with the PCI may be restricted to be other than ID2, and conversely, the ID mapped with the ID2 may be limited to not be other than the PCI. Preferably all of the same PCI is matched as described above.
  • a terminal configured with D-QCL type B can be configured with DRS-CSI—an antenna port 201- (210 + P—) generated with a specific SCID (eg, individual TPID) of a frequency (ie, component carrier or cell / carrier). 1) and the corresponding antenna port for (DRS-) PSS / SSS (and antenna ports 0-3 for (DRS-) CRS) generated with a reference SCID (e.g., PCID).
  • SCID e.g, individual TPID
  • SCID e.g., PCID
  • a UE may assume the antenna ports 201-(201 + Pl) with a scrambling ID of a carrier and the antenna port for the (DRS-) primary / secondary synchronization signals (and the antenna ports 0-3) with the corresponding reference scrambling ID are quasi co-located wi h respect to some large-scale channel properties (LSCP)).
  • LSCP radio channel
  • the UE measures the scrambled RS (that is, the DRS) with the SCID 'B' that interacts with the reference SCID. If -CRS and / or DRS-CSI-RS) exist, it can be assumed to be a QCL relationship with (DRS-) PSS / SSS.
  • the LSCP for which QCL assumption is possible may be as follows.
  • DRS-CSI-RS is a TP-specific RS that transmits only specific TPs
  • PSS / SSS (and CRS) is a signal that multiple TPs transmit together (e.g., cell-specific) Signal). Therefore, LSCP (eg delay spread, Doppler spread, Doppler shift) other than average delay between these RS / signals does not make QCL assumptions. This is because setting and making an independent estimation by the DRS-CSI-RS alone may be preferable in terms of performance.
  • the PSS / SSS (and CRS) is transmitted together from a plurality of TPs and the DRS-CSI-RS transmits only a specific TP. Even if the estimated average delays are only within the CP interval of the OFDM symbol, there is no problem so that it can be helped to meet the timing synchronization through the QCL assumption.
  • the Doppler shift estimate also helps in detecting and measuring DRS-CSI-RS through QCL assumptions. To receive it. This makes it possible to apply the QCL assumption about the Doppler shift estimated from PSS / SSS (and DRS-CRS) because the CSI-RS characteristic itself is relatively more vulnerable to frequency synchronization than time synchronization.
  • PSS / SSS (and DRS-CRS) can be transmitted in TP-shared (TP-shared) form, but the purpose of DRS-CSI-RS itself is TP detection. Limited to RRM measurements, which can help improve performance.
  • Doppler spread estimates along with average delay and Doppler shift, also assist in detecting and measuring DRS-CSI-RS through QCL assumptions. This is subject to the constraint that the frequency synchronization between the TPs must be tighter in the network, but under these circumstances the QCL assumption about the Doppler spread estimated from the PSS / SSS (and DRS-CRS) Can be applied to DRS—CSI—RS, resulting in further performance improvement.
  • the PSS / SSS and the DRS-CRS may be set / defined to the UE as a QCL assumption is possible with respect to “Doppler shift, average delay”.
  • the PSS / SSS and the DRS-CRS capable of QCL assumption may have a constraint (for example, all PCID1) in which the sequence SCIDs should be the same.
  • the LSCP capable of QCL assumption in D-QCL Type B described above is just one example, and the present invention is not limited thereto. That is, in the above example, a specific LSCP may be excluded or another LSCP may be added.
  • P means the number of antenna ports of the DRS-CSI-RS.
  • the antenna port number of the DRS-CSI-RS is assumed to be 201, 202, ⁇ , but the number of these antenna ports is different value (for example, the same as CSI—RS, 15, 16,. ... etc.).
  • the antenna ports 0-3 are antenna port numbers of the DRS-CRS, and the antenna port numbers may have other values.
  • the number of antenna ports of the DRS—CRS may also be limited to one.
  • the specific SCID eg, PCID1
  • PCID1 that generated the (DRS-) PSS / SSS corresponds to one reference SCID.
  • the PCID1 is referenced so that the QCL hypothesis can be applied to each other between the antenna port of a specific DRS-CSI-RS (for example, ID2) and the PSS / SSS (and DRS-CRS antenna port) generated by the corresponding PCIID1.
  • SCID may be explicitly or implicitly indicated.
  • the mapping between the SCID and the reference SCID for the DRS-CSI-RS may be explicitly indicated by higher layer signaling (eg, RRC signaling), or implicitly indicated so that the UE can directly derive the mapping. Can be.
  • mod means a modulo operator.
  • the D-QCL type B is configured in the terminal to enable the terminal to detect a specific cell and one or more TP (s) belonging to the cell in the shared cell-ID scenario.
  • the D-QCL type is largely divided into two types, such as D-QCL type A and D-QCL type B.
  • (3) perhaps.
  • Detailed embodiments such as a detailed modified example (eg, LSCP classification) may be further divided into separate D-QCL types and configured to be set to the UE.
  • (2) is D-QCL type C
  • (3) is D-QCL type D in the LSCP example where QCL assumption is possible in D-QCL type B.
  • the S-QCL type can be further refined.
  • D-QCL type A such as D-QCL type A, ⁇ , ..., etc.
  • DRS measurement-related higher layer configuration eg, RRC signaling
  • 17 is a diagram illustrating a discovery signal detection method according to an embodiment of the present invention.
  • the CSI-RS may be used as the discovery signal, or a TP specific DRS other than the CSIC-RS may be defined and used.
  • a UE Q is a discovery QCL for setting a discovery QCL type (ie, D-QCL type) for each frequency (ie, component carrier (CC) or carrier / cell) from the serving eNB TP 1.
  • Receive type setting information S1701.
  • the DRS eg, DRS—CRS and / or DRS-CSI-RS
  • the DRS may be established in relation to the wide channel characteristics (LSCP) of the antenna port for the PSI.
  • the terminal is equal to SCID1 (eg, PCID) of the PSS / SSS (ie, PCID). It may be assumed that antenna ports for DRS and antenna ports for PSS / SSS, which are generated with SCID2 or one-to-one mapping, are QCLed to each other.
  • the UE may assume that the antenna port for the DRS and the antenna port for the PSS / SSS generated by one or more SCID2 mapped to the SCID1 (for example, the PCID) of the PSS / SSS are QCLed. have.
  • TP 1, TP 2 If more than one TP shares the same frequency, the same D-QCL type configuration information may be applied. In contrast, the respective TPs (TP 1, TP 2)
  • TP n uses different frequencies (ie, component carriers), discovery QCL type (D-QCL type) configuration information for each TP may be transmitted.
  • D-QCL type discovery QCL type
  • the discovery QCL type configuration information may be transmitted through higher layer signaling (eg, RRC signaling).
  • RRC signaling e.g, RRC signaling
  • the UE may be configured with a single DRS measurement timing configuration (DMTC) ° 1 for each frequency, and the DTC configuration information may be included in the DMTC configuration.
  • DMTC DRS measurement timing configuration
  • the D-QCL type configuration information may be transmitted to the terminal 1 through an RRC Connection Reconf iguration message.
  • the DMTC uses the DRS transmission period (for example, 40ms, 80ms, 160ms, etc.) and offset information (for example, subframe index, etc.). It may include.
  • the reference timing with respect to the offset in the secondary cell may follow the timing of the primary cell.
  • the DMTC can also assume the measurement frequency band (which can be assumed to be the same as the system band), the measurement interval (i.e. discovery signal occasion) (5 ms or so unless otherwise set). Can be assumed to be 6 ms), the number of DRS antenna ports (can be assumed to be 1 unless otherwise set), and D-QCL type indication information (i.e., PSS / SSS (and CRS) and measurement RS (e.g., DRS — QCL relationship with the CSI-RS) (eg, indication information indicating whether the D-QCL type A or the D-QCL type B).
  • the measurement frequency band which can be assumed to be the same as the system band
  • the measurement interval i.e. discovery signal occasion
  • the number of DRS antenna ports can be assumed to be 1 unless otherwise set
  • D-QCL type indication information i.e., PSS / SSS (and CRS) and measurement RS (e.g., DRS — QCL relationship
  • the DMTC when the DMTC is set for each frequency, for example, whether the D-QCL type is A or the D-QCL type is B for each frequency.
  • mapping information between the SCID for the DRS eg, ID2
  • the reference SCID for the PSS / SSS and the DRS-CRS antenna port
  • the D-QCL type is set by RRC signaling for DMTC configuration is illustrated, but the present invention is not limited thereto, and the D-QCL type may be indicated by other RRC signaling other than DMTC. .
  • Each of the TPs TP 1, TP 2, and TP ⁇ transmits (ie, broadcasts) a synchronization signal (PSS / SSS) (and a Sal specific reference signal (CRS)) (S1702).
  • the terminal detects the synchronization signal (PSS / SSS) (and CRS) transmitted from each TP to obtain the SCID of the synchronization signal (PSS / SSS) (and CRS) (S1703).
  • Each of the TPs TP 1, TP 2,..., TP n transmits (ie, broadcasts) a DRS (eg, DRS-CRS and / or DRS-CSI-RS) (S1704).
  • the terminal detects the DRS using the SCID obtained in step S1703 based on the set D-QCL type (S1705). That is, the UE may detect the DRS by applying the LSCP parameter obtained through the PSS / SSS (and the CRS) using the QCL relationship.
  • the UE may detect a DRS generated with an SCI of PSS / SSS being the same or one-to-one mapped SCI.
  • the UE is one or more SCID2 mapped (connected) with SCID1 (ie, reference SCID) You can reduce the number of DRSs created.
  • the operation of the terminal according to the D-QCL type set in the terminal ie, steps S1703 and S1705) will be described in more detail.
  • D-QCL type A is indicated in the corresponding frequency (for example, non-shared cell-ID scenario)
  • UE operation is as follows.
  • the terminal detects the PSS / SSS transmitted by a specific cell according to the DMTC period / offset / interval indicated at the corresponding frequency. If the terminal succeeds in detecting a specific PSS / SSS (and DRS-CRS), and the corresponding SCID is detected as PCKO, the terminal attempts to detect the DRS-CSI-RS generated by PCID1.
  • the UE performs RRM measurement and cell / TP classification based on the detected DRS-CSI-RS.
  • the terminal may attempt to detect DRS—CSI-RS generated with a specific ID2 defined in pairs with PCI according to a predefined / configured one-to-one mapping relationship to perform RRM measurement and cell / TP identification.
  • D-QCL tapping A may be intended to support operation under a 'non-shared cell-ID scenario', it should be recognized that similar modifications for this purpose are included in the spirit of the present invention.
  • QCL type B is indicated in the corresponding frequency (for example, it may be a shared cell-ID scenario)
  • UE operation is as follows.
  • the terminal detects the PSS / SSS transmitted by the specific cell according to the DMTC period / offset / interval indicated at the corresponding frequency. If the terminal detects a particular PSS / SSS (and DRS-CRS) and the corresponding SCID is detected as PCI, then the terminal may be connected to P CD1 one-to-many with one-to-many connection according to the explicitly or implicitly indicated mapping relationship. Try to detect the DRS-CSI-RS (s). The UE performs RRM measurement and cell / TP identification based on the detected DRS-CSI-RS.
  • D-QCL type B may be for supporting the operation under the 'shared cell-ID scenario', it should be recognized that similar modified operations for this purpose are included in the spirit of the present invention.
  • the present invention proposes a method for supporting a PDSCH related QCL assumption.
  • the PDSCH-related QCL assumption defined in 3GPP Rel-11 Prior to describing a method of supporting the PDSCH-related QCL assumption according to the present invention, the PDSCH-related QCL assumption defined in 3GPP Rel-11 will first be described.
  • 3GPP Rel-11 supports PDSCH-related QCL assumptions as shown in Table 8 below as a technique for CoMP operation (see 3GPP TS 36.213).
  • the UE configured for transmission mode 8-10 for the serving cell may include antenna port 7- of the serving cell. 14 may be assumed to be QCL with respect to delay spread, Doppler spread, Doppler shift, average gain, and average delay in a given subframe (A UE configured in transmission mode 8-10 for a serving cell may assume the antenna ports 7 14 of the serving cell are quasi co- located for a given subframe with respect to delay spread, Doppler spread, Doppler shift, average gain, and average delay).
  • a UE configured with transmission modes 1-9 for a serving cell may assume that antenna ports 0-3, 5, and 7-22 of the serving cell are QCL with respect to Doppler shift, Doppler spread, average delay, and delay spread (A UE configured in transmission mode 1-9 for a serving cell may assume the antenna ports 0 ⁇ 3, 5, 7-22 of the serving cell are quasi co- located with respect to Doppler shift, Doppler spread, average delay, and delay spread .
  • a UE having a transmission mode of 10 for a serving cell is configured with one of two QCL types for a serving cell by a higher layer parameter 'qcl-operation' to decode the PDSCH according to a transmission scheme associated with the antenna ports 7-14.
  • a UE configured in transmission mode 10 for a serving cell is configured with one of two quasi co-location types for the serving cell by higher layer parameter qcl -Operation to decode PDSCH according to transmission scheme associated with antenna ports 7-14
  • Type A The UE may assume that antenna ports 0-3 and 7-22 of the serving cell are QCL with respect to delay spread, Doppler spread, Doppler shift and average delay (The UE may assume the antenna ports 0 ⁇ ). 3, 7-22 of a serving cell are quasi co-located with respect to delay- spread, Doppler spread, Doppler shift, and average delay).
  • Type B UE is antenna port 15-22 corresponding to CSI-RS resource configuration identified by layer parameter 'qcl— CSI-RS— Conf igNZPIdllll' above 1 ” and antenna port 7-14 associated with PDSCH.
  • the UE may assume the antenna ports 15-22 corresponding to the CSI-RS resource configuration identified by the higher layer parameter qcl- CSI- RS- Conf igNZPId-ll (defined in clause 7.1.9) and the antenna ports 7-14 associated with the PDSCH are quasi co- located with respect to Doppler shift, Doppler spread, average delay, and delay spread).
  • PDSCH-related QCL types A and B shown in Table 8 are referred to as PDSCH-QCL type A and B to distinguish them from D-QCL type A and B according to the present invention.
  • PDSCH-QCL types A and B are supported only in transmission mode (TM) 10, and the UE has an RRC layer in which PDSCH_QCL type A or B is for a specific frequency (ie, component carrier, cell / carrier). It can be set by. If the terminal is set to PDSCH-QCL type A, the terminal may be antenna ports 0-3 (ie, antenna ports for CRS) and antenna ports 7-22 (ie, antenna ports for CSI-RS and DMRS) of the serving cell. In either case, the QCL assumption can be applied. This means non-CoMP operation.
  • the terminal when the terminal is set to PDSCH-QCL type B, the terminal is a specific antenna indicated by antenna ports 7-14 (ie, antenna ports for DMRS) and higher layer parameter 'qcl-CSI-RS-ConfigNZPId—rll'.
  • the QCL hypothesis can be applied only between ports 15 ⁇ 22 (ie antenna ports for specific CSI-RSs). This means that CoMP operation is possible.
  • the PDSCH-QCL type may be determined according to the D-QCL type.
  • the UE when a UE is set to D-QCL type A at a corresponding frequency by a specific higher layer signaling such as DMTC, for example, when a specific PSS / SSS (and DRS—CRS) generated by PC is detected, the UE (TM 10) If this is set), the PDSCH-QCL type to be applied to the cell (for example, when the cell is ON-state, etc.) may be set to PDSCH—QCL type A by default. Accordingly, the UE makes QCL assumptions according to the basic configuration of PDSCH-QCL type A and receives data from the corresponding cell, unless it is reset to PDSCH-QCL type B later by higher layer signaling (eg, RRC signaling). Do this. That is, a non-CoMP operation is performed in TM 10.
  • higher layer signaling eg, RRC signaling
  • the terminal is set to D-QCL type B at the corresponding frequency through a specific higher layer configuration such as DMTC, for example, a specific PSS / SSS generated by PCI (and
  • the PDSCH-QCL type is a PDSCH—QCL type to which the UE (when TM 10 is set) applies to the cell (for example, when the cell is ON-state). It can be set to B. Accordingly, the UE makes QCL assumptions according to the basic configuration of PDSCH-QCL Type B and receives data from the corresponding cell, unless it is later reset to PDSCH-QCL Type A by higher layer signaling (eg, RRC signaling). Do this. That is, the CoMP operation is performed in TM 10.
  • higher layer signaling eg, RRC signaling
  • multiple NZP CSI-RS configurations, CSI-IM configurations, CSI processing configuration, etc. for supporting CoMP operation may be set by RRC signaling when a corresponding cell is added as an SCell.
  • PDSCH-QCL type A was always set as a default, but as described above, PDSCH-QCL type B is set as a default for the UE so that CoMP operation can be quickly performed without resetting from PDSCH-QCL type A to PDSCH-QCL type B.
  • the advantage is that it can be supported.
  • UEs in which transmission mode 1-9 is set for a serving cell include antenna ports 0-3, 5, and 7-22 of a serving cell indicating Doppler shift, Doppler spread, and average. It can be assumed that QCL is related to delay and delay spread.
  • the QCL hypothesis may be set as shown in Table 9 below for the UE in which transmission modes 1-9 are set.
  • PDSCH-QCL type for the terminal to which TM 1-9 is set is described.
  • PDSCH-TM1-9-QCL types A and B are referred to to distinguish them from the foregoing PDSCH-QCL type.
  • this is only one example and may be defined by integrating with the PDSCH-QCL types A and B. That is, PDSCH—QCL types for TM 1-9 and TM 10 may be integrated and defined.
  • the UE in which transmission mode 1-9 is set for the serving cell may use the serving cell by higher layer parameter 'qcl-OperationTMl-9' to decode the PDSCH according to a transmission scheme related to antenna ports 0-3, 5, or 7-14.
  • a UE configured in transmission mode 1-9 for a serving cell is configured with one of two PDSCH- TM1-9— QCL types for the serving cell by higher layer parameter qcl-OperationTMl-9 to decode PDSCH according to transmission scheme associated with antenna ports 0 ⁇ 3, 5, or 7-14).
  • PDSCH-TM1- 9 -QCL Type A UE can be assumed to be QCL with respect to Doppler shift, Doppler spreading, average delay and delay spreading antenna ports 0-3, 5, 7, 227 ⁇ of the serving cell ( The UE may assume the antenna ports 0 ⁇ 3, 5, 7-22 of the serving cell are quasi co- located with respect to Doppler shift, Doppler spread, average delay, and delay spread).
  • DMRS based PDSCH transmission mode eg, TM 9> Ports 15–22 (corresponding to DRS-CSI-RS antenna ports 201-208 with the same SCID) and DMRS related antenna ports associated with the PDSCH (eg, 7-14) doppler shift, Doppler spread, average delay and delay
  • the UE can be assumed to be QCL with respect to spreading (The UE configured with DMRS-based PDSCH transmission mode (eg, TM9) may assume the antenna ports 15-22).
  • the UE may assume that CSI-RS / DMRS antenna ports different from antenna ports 0-3 are not QCLed due to a cell ID sharing scenario (UE shall not assume the antenna ports 0-3 and other CSI-RS / DMRS antenna ports are quasi co-located, due to the shared cell-ID scenario).
  • UE configured with CRS-based PDSCH transmission mode (eg, TM 4) has different CSI-RS (corresponding to DRS-CSI-RS having the same SCID) / DMRS antenna different from antenna ports 0-3 due to cell ID sharing scenario It can be assumed that the port is not QCL (The UE configured with CRS-based PDSCH transmission mode (eg, TM4) shall not assume the antenna ports 0-3 and other CSI-RS / DMRS antenna ports, due to the shared cell- ID
  • the PDSCH-TM1-9-QCL type may be determined according to the D-QCL type.
  • a UE when a UE is set to D-QCL type A at a corresponding frequency through a specific higher layer signaling such as DMTC, for example, when a specific PSS / SSS (and DRS-CRS) generated by PCID1 is detected, the UE (TM 1- The PDSCH— TM1-9— QCL type defaults to the PDSCH-TM1- 9-QCL type (if 9 is set) for the cell to apply (for example, when the cell is ON-state). It can be set to A.
  • the UE makes a QCL assumption according to the PDSCH-TM1-9-QCL type A, which is a basic configuration, unless it is later reset to PDSCH-TM1-9-QCL type B by higher layer signaling (eg, RRC signaling). Perform an operation such as receiving data from the cell.
  • higher layer signaling eg, RRC signaling
  • the terminal is set to D-QCL type B at the corresponding frequency through a specific higher layer signaling such as DMTC, for example, if a specific PSS / SSS (and DRS-CRS) generated by PCI is detected, the terminal (TM 1- PDSCH-TM1-9-QCL type is set to PDSCH-TM1-9-QCL type B by default (if 9 is set) to apply to the cell (for example, if the cell is ON-state). Can be.
  • DMTC a specific higher layer signaling
  • the UE makes a QCL assumption according to the PDSCH-TM1-9-QCL type B, which is a basic configuration, unless it is later reset to PDSCH-TM1— 9-QCL type A by higher layer signaling (eg, RRC signaling). Perform an operation such as receiving data from a sal.
  • a cell transmitting PSS / SSS generated by PCI detected at a frequency set in D-QCL type A for example, non-shared cell-ID scenario
  • Even if the terminal is set to TM 1-9 the conventional QCL operation can be applied. That is, the 3GPP Rel-11 is the same as the QCL assumption for the terminal is set TM 1-9.
  • TP-specific feedback transmitted in the ON-state with an explicit or implicit mapping relationship with the corresponding DRS-CSI-RS from the TP in case of a UE that detects a DRS—CSI—RS transmitted by each
  • the CSI (cell-specific, shared TP (s)) transmitted by the CSI-RS and the corresponding cell is intended to set this correctly to the terminal since the QCL assumption should not be established.
  • the PDSCH-TM1-9-QCL type B exemplified above is applied to the corresponding UE, thereby enabling TP-specific operation.
  • the basic QCL operation is set / defined as the basic PDSCH-TM1-9-QCL type A when the D-QCL type is A and the basic PDSCH-TM1-9-QCL type is B as the B when the D-QCL type is B.
  • the expected behavior is defined as a base type so that the service can be started without a separate reset (eg, by RRC signaling).
  • the effect of the device to which the present invention can be applied is general
  • FIG. 18 illustrates a block diagram of a wireless communication device according to an embodiment of the present invention.
  • a wireless communication system includes a base station 1810 and a plurality of terminals 1820 located in an area of a base station 1810.
  • the base station 1810 includes a processor 1811, a memory 1812, and a radio frequency unit 1813.
  • the processor 1811 implements the functions, processes, and / or methods proposed in FIGS. 1 to 17. Layers of the air interface protocol may be implemented by the processor 1811.
  • the memory 1812 is connected to the processor 1811 and stores various information for driving the processor 1811.
  • the RF unit 1813 is connected to the processor 1811 to transmit and / or receive a radio signal.
  • the terminal 1820 includes a processor 1821, a memory 1822, and an RF unit 1823.
  • the processor 1821 implements the functions, processes, and / or methods proposed in FIGS. 1 to 17. Layers of the air interface protocol may be implemented by the processor 1821.
  • the memory 1822 is connected to the processor 1821 and stores various information for driving the processor 1821.
  • the RF unit 1823 is connected to the processor 1821 to transmit and / or receive a radio signal.
  • Memory 1812, 1822 may be internal or external to the processor 1811, 1821 And may be connected to the processors 1811 and 1821 by various well-known means.
  • the base station 1810 and / or the terminal 1820 may have a single antenna or multiple antennas.
  • each component or feature is to be considered optional unless stated otherwise.
  • Each component or feature may be embodied in a form that is not combined with other components or features. It is also possible to combine some of the components and / or features to form an embodiment of the invention. The order of the operations described in the embodiments of the present invention may be changed. Some configurations or features of one embodiment may be included in another embodiment, or may be substituted for any other configuration or feature of another embodiment. It is of course possible to combine the claims which are not expressly cited in the claims to form an embodiment or to incorporate a new claim by post-application correction.
  • Embodiments according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
  • one embodiment of the invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), and FPGAs. (f ield programmable gate arrays), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • an embodiment of the present invention is It may be implemented in the form of modules, procedures, functions, etc. that perform the described functions or operations.
  • the software code may be stored in memory and driven by the processor.
  • the memory may be located inside or outside the processor, and may exchange data with the processor by various known means.
  • the discovery signal reception method has been described with reference to an example applied to the 3GPP LTE / LTE-A system.
  • the discovery signal reception method may be applied to various wireless communication systems in addition to the 3GPP LTE / LTE-A system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

무선 통신 시스템에서 디스커버리 신호 검출 방법 및 이를 위한 장치가 개시된다. 구체적으로, 무선 통신 시스템에서 단말이 디스커버리 신호(discovery signal)를 수신하는 방법에 있어서, 디스커버리 QCL(Quasi Co-Located) 타입을 설정하기 위한 디스커버리 QCL 타입 설정 정보를 수신하는 단계, 동기 신호(synchronization signal)을 검출하여 제1 스크램블링 식별자(SCID: Scrambling Identity)를 획득하는 단계 및 상기 설정된 디스커버리 QCL 타입을 기반으로 상기 제1 SCID를 이용하여 상기 디스커버리 신호를 검출하는 단계를 포함하고, 상기 디스커버리 QCL 타입에 따라 광범위 채널 특성(large-scale channel property)과 관련하여 디스커버리 신호를 위한 안테나 포트와 상기 동기 신호를 위한 안테나 포트 간의 QCL 관계가 설정될 수 있다.

Description

【명세서]
【발명의 명칭]
무선 통신 시스템에서 디스커버리 신호 검출 방법 및 이를 위한 장치 【기술분야】
본 발명은 무선 통신 시스템에 관한 것으로서, 보다 상세하게 무선 통신 시스템에서 디스커버리 신호 (discovery signal )을 수신하는 방법 및 이를 지원하는 장치에 관한 것이다.
【배경기술】
이동 통신 시스템은 사용자의 활동성을 보장하면서 음성 서비스를 제공하기 위해 개발되었다. 그러나 이동통신 시스템은 음성뿐 아니라 데이터 서비스까지 영역을 확장하였으며, 현재에는 폭발적인 트래픽의 증가로 인하여 자원의 부족 현상이 야기되고 사용자들이 보다 고속의 서비스에 대한 요구하므로 , 보다 발전된 이동 통신 시스템이 요구되고 있다.
차세대 이동 통신 시스템의 요구 조건은 크게 폭발적인 데이터 트래픽의 수용, 사용자 당 전송률의 획기적인 증가, 대폭 증가된 연결 디바이스 개수의 수용, 매우 낮은 단대단 지연 (End— to-End Latency) , 고에너지 효율을 지원할 수 있어야 한다. 이를 위하여 이중 연결성 (Dual Connectivity) , 대규모 다중 입줄력 (Massive MIMO: Massive Multiple Input Multiple Output ) , 전이중 ( In-band Full Duplex) , 비직교 ' 다중접속 (NOMA : Non-Orthogonal Multiple Access ) , 초광대역 ( Super wideband) 지원, 단말 네트워킹 (Device Networking) 등 다양한 기술들이 연구되고 있다.
【발명의 상세한 설명】 【기술적 과제】
스몰 셀 향 ( small cell enhancement ) 기술에서는 스몰 샐의 에너지 절감 ( saving) 및 인접 셀로의 간섭을 감소시키기 위하여 스몰 셀 온 ( on)八 프 (of f ) 메커니즘을 지원한다. 스몰 샐을 식별할 수 있도록 또는 스몰 셀의 상태를 단말에서 판단할 수 있도록 스몰 셀은 on/of f 상태와 무관하게 디스커버리 신호를 주기적으로 브로드캐스트한다. 다만, 단말에서 디스커버리 신호를 검출하기 위하여 스몰 셀에서 전송되는 동기 신호 및 /또는 셀 특정 참조 신호 ( Cell— specif ic Reference Signal )과의 QCL (Quasi Co- Location) 관계가 적용될 필요가 있으나, 현재 정의되어 있지 않다.
본 발명의 목적은 상술한 문제점을 해결하기 위하여, 단말에서 동기 신호 및 /또는 셀 특정 참조 신호 ( Cell— specif ic Reference Signal )과 디스커버리 신호와의 QCL ( Quasi Co-Location) 관계를 설정하는 방법 및 이에 따른 디스커버리 신호를 검출하는 방법을 제안한다.
또한, 본 발명의 목적은 디스커버리 신호와 관련되어 설정된 QCL 관계를 기반으로 하향링크 데이터 채널과 관련된 QCL 관계를 설정하는 방법을 제안한다. 본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술작 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
【기술적 해결방법】
본 발명의 일 양상은, 무선 통신 시스템에서 단말이 디스커버리ᅳ 신호 (discovery signal )를 수신하는 방법에 있어서 , 디스커버리 QCL (Quasi Co-Located) 타입을 설정하기 위한 디스커버리 QCL 타입 설정 정보를 수신하는 단계 , 동기 신호 ( synchronization signal )을 검출하여 제 1 스크램블링 식별자 ( SCID : Scrambling Identity)를 획득하는 단계 및 상기 설정된 디스커버리 QCL 타입을 기반으로 상기 제 1 SCID를 이용하여 상기 디스커버리 신호를 검출하는 단계를 포함하고, 상기 디스커버리 QCL 타입에 따라 광범위 채널 특성 ( large - scale channel property)과 관련하여 디스커버리 신호를 위한 안테나 포트와 상기 동기 신호를 위한 안테나 포트 간의 QCL 관계가 설정될 수 있다.
본 발명의 다른 일 양상은, 무선 통신 시스템에서 디스커버리 신호 ( discovery signal )를 수신하는 단말에 있어서, 무선 신호를 송수신하기 위한 RF (Radio Frequency) 유닛 및 상기 단말을 제어하는 프로세서를 포함하고, 상기 프로세서는 디스커버리 QCL (Quasi Co-Located) 타입을 설정하기 위한 디스커버리 QCL 타입 설정 정보를 수신하고, 동기 신호 ( synchronization signal )을 검출하여 제 1 스크램블링 식별자 ( SCID : Scrambling Identity)를 획득하고, 상기 설정된 디스커버리 QCL 타입을 기반으로 상기 제 1 SCID를 이용하여 상기 디스커버리 신호를 검출하도록 구성되고, 상기 디스커버리 QCL 타입에 따라 광범위 채널 특성 ( large - scale channel property)과 관련하여 디스커버리 신호를 위한 안테나 포트와 상기 동기 신호를 위한 안테나포트 간의 QCL 관계가 설정될 수 있다.
바람직하게 , 상기 디스커버리 QCL 타입 설정 정보에 의해 제 1 디스커버리 QCL 타입이 설정된 경우, 상기 단말은 상기 제 1 SCID와 동일하거나 또는 일대일 매핑되는 제 2 SCID로 생성되는 디스커버리 신호를 위한 안테나 포트와 상기 동기 신호를 위한 안테나 포트가 QCL된다고 가정할 수 있다.
바람직하게, 상기 단말은 상기 제 1 SCID와 동일하거나 또는 일대일 매핑되는 제 2 SCID로 생성되는 디스커버리 신호를 검출할 수 있다.
바람직하게 , 상기 광범위 채널 특성은 {도플러 쉬프트 (Doppler shif t ) , 평균 지연 (average delay) } 또는 {지연 확산 (delay spread) , 도플러 확산 (Doppler spread) , 도플러 쉬프트 (Doppler shif t ) , 평균 지연 (average delay) } 중 어느 하나일 수 있다.
바람직하게, 상기 단말은 상기 동기 신호를 위한 안테나 포트와 샐 특정 참조 신호 ( Cell - specif ic Reference Signal )를 위한 안테나 포트 간에 도플러 쉬프트 (Doppler shift ) , 평균 지연 ( average delay)에 대해서 QCL된다고 가정할 수 있다.
바람직하게, 상기 단말은 셀 특정 참조 신호 ( Cell - specif ic Reference Signal )를 위한 안테나 포트와 복조 참조 신호 (Demodulation Reference Signal )를 위한 안테나 포트, 채널 상태 정보 참조 신호 ( Channel State Information Reference Signal )를 위한 안테나 포트 간에 모두 QCL된다고 가정할 수 있다.
바람직하게 , 상기 디스커버리 QCL 타입 설정 정보에 의해 제 2 디스커버리 QCL 타입이 설정된 경우, 상기 단말은 상기 제 1 SCID와 매핑되는 하나 이상의 제 2 SCID로 생성되는 디스커버리 신호를 위한 안테나 포트와 상기 동기 신호를 위한 안테나 포트가 QCL된다고 가정할 수 있다.
바람직하게, 상기 단말은 상기 제 1 SCID와 매핑되는 하나 이상의 제 2 SCID로 생성되는 디스커버리 신호를 검출할 수 있다. 바람직하게, 상기 제 1 SCID와 상기 제 2 SCID와의 매핑은 네트워크로부터 설정되거나 미리 정의된 함수 또는 테이블에 의해 암묵적 (implicit)으로 결정될 수 있다.
바람직하게 , 상기 광범위 채널 특성은 {평균 지연 (average delay) } , { (평균 지연 (average delay) , 도플러 쉬프트 (Doppler shift) } 및 {평균 지연 (average delay) , 도플러 쉬프트 (Doppler shift) , 도플러 확산 (Doppler spread) } 중 어느 하나일 수 있다.
바람직하게, 상기 단말은 상기 동기 신호를 위한 안테나 포트와 샐 특정 참조 신호 (Cell— specific Reference Signal)를 위한 안테나 포트 간에 도플러 쉬프트 (Doppler shift) , 평균 지연 (average delay)에 대해서 QCL된다고 가정할 수 있다.
바람직하게 , 상기 단말이 CoMP (Coordinated Multi-Point Transmission and Reception) 동작을 지원하는 경우, 상기 단말은 상위 계층 파라미터에 의해 지시된 채널 상태 정보 참조 신호 (Channel State Information Reference Signal)를 위한 안테나 포트와 복조 참조 신호 (Demodulation Reference Signal)를 위한 안테나 포트 간에 QCL된다고 가정할 수 있다.
바람직하거 1, 상기 단말이 복조 참조 신호 (DMRS: Demodulation Reference Signal) 기반 PDSCH (Physical Downlink Shared Channel) 전송 모드가 설정된 경우, 상기 단말은 채널 상태 정보 참조 신호 (Channel State Information Reference Signal)를 위한 안테나 포트와 상기 DMRS를 위한 안테나 포트가 QCL된다고 가정할 수 있다. 바람직하게, 상기 단말이 셀 특정 참조 신호 ( CRS : Cell - specif ic Reference Signal ) 기반 PDSCH ( Physical Downlink Shared Channel ) 전송 모드가 설정된 경우, 상기 단말은 상기 CRS를 위한 안테나 포트와 채널 상태 정보 참조 신호 ( Channel State Information Reference Signal ) , 복조 참조 신호 (Demodulation Reference Signal )를 위한 안테나 포트가 QCL되지 않는다고 가정할 수 있다.
【유리한 효과】
본 발명의 실시예에 따르면, 무선 통신 시스템에서 디스커버리 신호와 관련된 QCL 관계를 설정함으로써 단말의 디스커버리 신호의 검출 성능을 향상시킬 수 있다.
또한, 무선 통신 시스템에서 디스커버리 신호와 관련된 QCL 관계를 설정함으로써 단말의 디스커버리 신호를 기반 측정 정확도를 향상시킬 수 있다. 또한, 무선 통신 시스템에서 디스커버리 신호와 관련된 QCL 관계를 기반으로 하향링크 데이터 채널과 관련된 QCL 관계를 설정함으로써 단말에서 보다 신속하게 하향링크 데이터 채널을 원활하게 수신할 수 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과로 제한되지 않으며 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
【도면의 간단한 설명】
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 특징을 설명한다. 도 1은 본 발명이 적용될 수 있는 무선 통신 시스템에서 무선 프레임의 구조를 나타낸다.
도 2는 본 발명이 적용될 수 있는 무선 통신 시스템에서 하나의 하향링크 슬롯에 대한 자원 그리드 ( resource grid)를 예시한 도면이다.
도 3은 본 발명이 적용될 수 있는 무선 통신 시스템에서 하향링크 서브 프레임의 구조를 나타낸다.
도 4는 본 발명이 적용될 수 있는 무선 통신 시스템에서 상향링크 서브 프레임의 구조를 나타낸다.
도 5는 일반적인 다중 입출력 안테나 (MIMO) 통신 시스템의 구성도이다. 도 6은 다수의 송신 안테나에서 하나의 수신 안테나로의 채널을 나타낸 도이다.
도 7은 본 발명이 적용될 수 있는 무선 통신 시스템에서 컴포넌트 캐리어 및 캐리어 병합의 일례를 나타낸다.
도 8은 본 발명이 적용될 수 있는 LTE FDD 시스템에서 하향링크 HARQ 프로세스를 도시하는 도면이다.
도 9는 본 발명이 적용될 수 있는 LTE FDD 시스템에서 상향링크 HARQ 프로세스를 도시하는 도면이다.
도 10은 본 발명이 적용될 수 있는 무선 통신 시스템에서 동기 신호 ( Synchronization Signal )의 전송을 위한 무선 프레임 구조를 예시한 것이다.
도 11은 본 발명이 적용될 수 있는 무선 통신 시스템에서 세컨더리 동기 신호 구조를 예시하는 도면이다. 도 12는 본 발명이 적용될 수 있는 무선 통신 시스템에서 하향링크 자원 블록 쌍에 매핑된 참조 신호 패턴을 예시한다 .
도 13은 본 발명이 적용될 수 있는 무선 통신 시스템에서 주기적인 CSI - RS의 전송 방식을 예시한다 .
도 14는 본 발명이 적용될 수 있는 무선 통신 시스템에서 비주기적인 CS I - RS의 전송 방식을 예시한다 .
도 15는 본 발명이 적용될 수 있는 무선 통신 시스템에서 CSI - RS 구성을 예시하는 도면이다.
도 16은 본 발명이 적용될 수 있는 스몰 셀 클러스터 /그룹을 예시하는 도면이다.
도 17은 본 발명의 일 실시예에 따른 디스커버리 신호 검출 방법을 예시하는 도면이다.
도 18은 본 발명의 일 실시예에 따른 무선 통신 장치의 블록 구성도를 예시한다 .
【발명의 실시를 위한 형태】
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블톡도 형식으로 도시될 수 있다.
본 명세서에서 기지국은 단말과 직접적으로 통신을 수행하는 네트워크의 종단 노드 (terminal node)로서의 의미를 갖는다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드 (upper node)에 의해 수행될 수도 있다. 즉, 기지국을 포함하는 다수의 네트워크 노드들 (network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. '기지국 (BS: Base Station),은 고정국 (fixed station) , Node B, eNB (evolved-NodeB) , BTS (base transceiver system) , 액세스 포인트 (AP: Access Point) 등의 용어에 의해 대체될 수 있다. 또한, '단말 (Terminal) '은 고정되거나 이동성을 가질 수 있으며 , UE (User Equipment) , MS (Mobile Station) , UT(user terminal) , MSS (Mobile Subscriber Station) , SS (Subscriber Station) , AMS (Advanced Mobile Station) , T (Wireless terminal) , MTC (Machine -Type Communication) 장치, M2M (Machine- to-Machine) 장치 , D2D (Device- to— Device) 장치 등의 용어로 대체될 수 있다.
이하에서 , 하향링크 (DL: downlink)는 기지국에서 단말로의 통신을 의미하며 , 상향링크 (UL: uplink)는 단말에서 기지국으로의 통신을 의미한다 . 하향링크에서 송신기는 기지국의 일부이고, 수신기는 단말의 일부일 수 있다. 상향링크에서 송신기는 단말의 일부이고, 수신기는 기지국의 일부일 수 있다. 이하의 설명에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
이하의 기술은 CDMA (code division multiple access) , FDMA ( frequency division multiple access) , TDMA ( time division multiple access) , OFDMA (orthogonal frequency division multiple access) , SC- FDMA (single carrier frequency division multiple access) , NOMA (non- orthogonal multiple access) 등과 같은 다양한 무선 접속 시스템에 이용될 수 있다. CDMA는 UTRA (universal terrestrial radio access)나 CDMA2000과 같은 무선 기술 (radio technology)≤. 구현될 수 있다. TDMA는 GSM (global system for mobile communications) /GPRS (general packet radio service) /EDGE (enhanced data rates for GSM evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi) , IEEE 802.16 ( iMAX) , IEEE 802-20, E- UTRA (evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS (universal mobile telecommunications system)의 일부이다. 3GPP (3rd generation partnership project) LTE (long term evolution)은 E-UTRA를 사용하는 E— UMTS (evolved UMTS)의 일부로써 , 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다 . LTE-A (advanced)는 3GPP LTE의 진화이다 .
본 발명의 실시예들은 무선 접속 시스템들인 IEEE 802, 3GPP 및 3GPP2 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시예들 중 본 발명의 기술적 사상을 명확히 드러내기 위해 설명하지 않은 단계들 또는 부분들은 상기 문서들에 의해 뒷받침될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.
설명을 명확하게 하기 위해 , 3GPP LTE/LTE-A를 위주로 기술하지만 본 발명의 기술적 특징이 이에 제한되는 것은 아니다. 본발명이 적용될 수 있는무선 통신 시스템 일반
도 1은 본 발명이 적용될 수 있는 무선 통신 시스템에서 무선 프레임의 구조를 나타낸다.
3GPP LTE/LTE-A에서는 FDD ( Frequency Division Duplex)에 적용 가능한 타입 1 무선 프레임 (radio frame) 구조와 TDD (Time Division Duplex)에 적용 가능한 타입 2의 무선 프레임 구조를 지원한다.
도 1의 (a)는 타입 1 무선 프레임의 구조를 예시한다. 무선 프레임 (radio frame)은 10개의 서브프레임 (subf rame)으로 구성된다. 하나의 서브프레임은 시간 영역 (time domain)에서 2개의 슬롯 (slot)으로 구성된다. 하나의 서브프레임을 전송하는데 걸리는 시간을 TTI (transmission time interval)이라 한다. 예를 들어 , 하나의 서브 프레임은 길이는 1ms이고, 하나의 슬롯의 길이는 0.5tns일 수 있다.
하나의 슬롯은 시간 영역어】서 복수의 OFDM (orthogonal frequency division multiplexing) 심볼을 포함하고, 주파수 영역에서 다수의 자원블특 (RB: Resource Block)을 포함한다. 3GPP LTE는 하향링크에서 OFDMA를 사용하므로 OFDM 심블은 하나의 심볼 구간 (symbol period)을 표현하기 위한 것이다. OFDM 심볼은 하나의 SC-FDMA 심볼 또는 심볼 구간이라고 할 수 있다. 자원 블톡 ( resource block)은 자원 할당 단위이고, 하나의 슬롯에서 복수의 연속적인 부 반송파 ( subcarrier)를 포함한다.
도 1의 (b)는 타입 2 프레임 구조 ( frame structure type 2 )를 나타낸다. 타입 2 무선 프레임은 2개의 하프 프레임 (half frame )으로 구성되며 , 각 하프 프레임은 5개의 서브프레임과 DwPTS (Downlink Pilot Time Slot ) , 보호구간 (GP : Guard Period) , UpPTS (Uplink Pilot Time Slot )로 구성되며 , 이 중 1개의 서브프레임은 2개의 슬롯으로 구성된다. DwPTS는 단말에서의 초기 셀 탐색, 동기화 또는 채널 추정에 사용된다. UpPTS는 기지국에서의 채널 추정과 단말의 상향링크 전송 동기를 맞추는 데 사용된다. 보호구간은 상향링크와 하향링크 사이에 하향링크 신호의 다중경로 지연으로 인해 상향링크에서 생기는 간섭을 제거하기 위한 구간이다.
TDD 시스템의 타입 2 프레임 구조에서 상향링크-하향링크 구성 (uplink - downlink conf iguration)은 모든 서브프레임에 대하여 상향링크와 하향링크가 할당 (또는 예약)되는지 나타내는 규칙이다. 표 1은 상향링크- 하향링크 구성을 나타낸다.
【표 1】
Uplink- Downlink— Su frame number
Downlink to-Uplink
conf igurat Switch- ion point 0 1 2 3 4 5 6 7 8 9 periodicity
0 5ms D s u U U D S U U U
1 5ms D s u U D D S U U D
2 5ms D s u D D D S U D D
3 10ms D s u U U D D D D D
4 10ms D s u U D D D D D D
5 10ms D s u D D D D D D D
6 5ms D s u U U D S U U D 표 1을 참조하면 , 무선 프레임의 각 서브프레임 별로, ' D '는 하향링크 전송을 위한 서브프레임을 나타내고, ' U '는 상향링크 전송을 위한 서브프레임을 나타내며, ' S '는 DwPTS , GP , UpPTS 3가지의 필드로 구성되는 스페셜 서브프레임 ( special subframe )을 나타낸다. 상향링크-하향링크 구성은 7가지로 구분될 수 있으며, 각 구성 별로 하향링크 서브프레임, 스페셜 서브프레임, 상향링크 서브프레임의 위치 및 /또는 개수가 다르다.
하향링크에서 상향링크로 변경되는 시점 또는 상향링크에서 하향링크로 전환되는 시점을 전환 시점 ( switching point )이라 한다. 전환 시점의 주기성 (Switch— point periodicity)은 상향링크 서브프레임과 하향링크 서브프레임이 전환되는 양상이 동일하게 반복되는 주기를 의미하며, 5ms 또는 10ms가 모두 지원된다. 5ms 하향링크-상향링크 전환 시점의 주기를 가지는 경우에는 스페셜 서브프레임 ( S )은 하프-프레임 마다 존재하고, 5ms 하향링크- 상향링크 전환 시점의 주기를 가지는 경우에는 첫번째 하프 -프레임에만 존재한다. 모든 구성에 있어서, 0번, 5번 서브프레임 및 DwPTS는 하향링크 전송만을 위한 구간이다. UpPTS 및 서브프레임 서브프레임에 바로 이어지는 서브프레임은 항상 상향링크 전송을 위한 구간이다.
이러한, 상향링크-하향링크 구성은 시스템 정보로써 기지국과 단말이 모두 알고 있을 수 있다. 기지국은 상향링크-하향링크 구성 정보가 바뀔 때마다 구성 정보의 인덱스만을 전송함으로씨 무선 프레임의 상향링크-하향링크 할당상태의 변경을 단말에 알려줄 수 있다. 또한, 구성 정보는 일종의 하향링크 제어정보로서 다른 스케줄링 정보와 마찬가지로 PDCCH ( Physical Downlink Control Channel )를 통해 전송될 수 있으며 , 방송 정보로서 브로드캐스트 채널 (broadcast channel )을 통해 셀 내의 모든 단말에 공통으로 전송될 수도 있다.
무선 프레임의 구조는 하나의 예시에 불과하며, 무선 프레임에 포함되는 부 반송파의 수 또는 서브 프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 OFDM 심볼의 수는 다양하게 변경될 수 있다.
도 2는 본 발명이 적용될 수 있는 무선 통신 시스템에서 하나의 하향링크 슬롯에 대한 자원 그리드 ( resource grid)를 예시한 도면이다.
도 2를 참조하면 , 하나의 하향링크 슬롯은 시간 영역에서 복수의 OFDM 심볼을 포함한다. 여기서, 하나의 하향링크 슬롯은 7개의 OFDM 심볼을 포함하고, 하나의 자원 블록은 주파수 영역에서 12개의 부 반송파를 포함하는 것을 예시적으로 기술하나, 이에 한정되는 것은 아니다.
자원 그리드 상에서 각 요소 ( element )를 자원 요소 ( resource element )하고, 하나의 자원 블톡 ( RB : resource block)은 12 X 7 개의 자원 요소를 포함한다. 하향링크 슬롯에 포함되는 자원 블록들의 수 !^ 은 하향링크 전송 대역폭 ( bandwidth)에 종속한다.
상향링크 슬롯의 구조는 하향링크 슬롯의 구조와 동일할 수 있다.
도 3은 본 발명이 적용될 수 있는 무선 통신 시스템에서 하향링크 서브 프레임의 구조를 나타낸다.
도 3을 참조하면, 서브 프레임내의 첫번째 슬롯에서 앞의 최대 3개의 OFDM 심볼들이 제어 채널들이 할당되는 제어 영역 ( control region)이고, 나머지 OFDM 심볼들은 PDSCH ( Phys ical Downlink Shared Channel ) °] 할당되는 데이터 영역 ( data region)이다. 3GPP LTE에서 사용되는 하향링크 제어 채널의 일례로 PCFICH ( Physical Control Format Indicator Channel ) , PDCCH ( Physical Downlink Control Channel ) , PHICH ( Physical Hybrid-ARQ Indicator Channel ) 등이 있다.
PCFICH는 서브 프레임의 첫번째 OFDM 심볼에서 전송되고, 서브 프레임 내에 제어 채널들의 전송을 위하여 사용되는 OFDM 심볼들의 수 (즉, 제어 영역의 크기 )에 관한 정보를 나른다. PHICH는 상향 링크에 대한 웅답 채널이고, HARQ (Hybrid Automatic Repeat Request )에 대한
ACK (Acknowledgement ) /NACK (Not - Acknowledgement ) 신호를 나른다. PDCCH를 통해 전송되는 제어 정보를 하향링크 제어정보 (DCI : downlink control information)라고 한다. 하향링크 제어정보는 상향링크 자원 할당 정보, 하향링크 자원 할당 정보 또는 임의의 단말 그룹에 대한 상향링크 전송 (Tx) 파워 제어 명령을 포함한다.
PDCCH는 DL- SCH (Downlink Shared Channel )의 자원 할당 및 전송 포맷 (이를 하향링크 그랜트라고도 한다. ) , UL- SCH (Uplink Shared Channel )의 자원 할당 정보 (이를 상향링크 그랜트라고도 한다. ) , PCH ( Paging Channel )에서의 페이징 (paging) 정보, DL— SCH에서의 入 1스템 정보, PDSCH에서 전송되는 랜덤 액세스 응답 ( random access response )과 같은 상위 레이어 (upper- layer) 제어 메시지에 대한 자원 할당, 임의의 단말 그룹 내 개별 단말들에 대한 전송 파워 제어 명령들의 집합, VoIP (Voice over IP)의 활성화 등을 나를 수 있다. 복수의 PDCCH들은 제어 영역 내에서 전송될 수 있으며 , 단말은 복수의 PDCCH들을 모니터링할 수 있다. PDCCH는 하나 또는 복수의 연속적인 CCE ( control channel elements ) 집합으로 구성된다 . CCE는 무선 채널의 상태에 따른 부호화율 (coding rate)을 PDCCH에 제공하기 위하여 사용되는 논리적 할당 단위이다. CCE는 복수의 자원 요소 그룹 (resource element group)들에 대응된다 . PDCCH의 포1 ¾ 및 }·용 가능한 PDCCH의 비트 수는 CCE들의 수와 CCE들에 의해 제공되는 부호화율 간의 연관 관계에 따라 결정된다.
기지국은 단말에게 전송하려는 DCI에 따라 PDCCH 포맷을 결정하고 , 제어 정보에 CRC(Cyclic Redundancy Check)를 붙인다 . CRC에는 PDCCH의 소유자 (owner )나 용도에 따라 고유한 식별자 (이를 RNTI (Radio Network Temporary Identifier)라고 한다.)가 마스킹된다. 특정의 단말을 위한 PDCCH라면 단말의 고유한 식별자, 예를 들어 C-RNTI (Cell-RNTI)가 CRC에 마스킹될 수 있다. 또는 페이징 메시지를 위한 PDCCH라면 페이징 지시 식별자 , 예를 들어 P- RNTI (Paging -RNTI)가 CRC에 마스킹될 수 있다. 시스템 정보, 더욱 구체적으로 시스템 정보 블톡 (SIB: system information block)를 위한 PDCCH라면 시스템 정보 식별자, SI-RNTI (system information RNTI)가 CRC에 마스킹될 수 있다. 단말의 랜덤 액세스 프리앰블의 전송에 대한 웅답인 랜덤 액세스 웅답을 지시하기 위하여 , RA- RNTI (random access- RNTI)가 CRC에 마스킹될 수 있다 .
도 4는 본 발명이 적용될 수 있는 무선 통신 시스템에서 상향링크 서브 프레임의 구조를 나타낸다.
도 4를 참조하면, 상향링크 서브 프레임은 주파수 영역에서 제어 영역과 데이터 영역으로 나눌 수 있다. 제어 영역에는 상향링크 제어 정보를 나르는 PUCCH (Physical Uplink Control Channel)이 할당된다. 데이터 영역은 사용자 데이터를 나르는 PUSCH ( Physical Uplink Shared Channel )이 할당된다. 단일 반송파 특성을 유지하기 위해 하나의 단말은 PUCCH와 PUSCH을 동시에 전송하지 않는다.
하나의 단말에 대한 PUCCH에는 서브 프레임 내에 자원 블록 (RB : Resource Block) 쌍이 할당된다. RB 쌍에 속하는 RB들은 2개의 슬롯들의 각각에서 서로 다른 부 반송파를 차지한다 . 이를 PUCCH에 할당된 RB 쌍은 슬롯 경겨 1 ( slot boundary)에서 주파수 도약 ( frequency hopping)된다고 한다.
MIMO (Multi - Input Multi -Output)
MIMO 기술은 지금까지 일반적으로 한 개의 송신안테나와 한 개의 수신안테나를 사용했던 것에서 탈피하여 , 다증 송신 ( Tx) 안테나와 다중 수신 (Rx) 안테나를 사용한다. 다시 말해서 , MIMO 기술은 무선 통신 시스템의 송신단 또는 수신단에서 다중 입출력 안테나를 사용하여 용량 증대 또는 성능 개성을 꾀하기 위한 기술이다. 이하에서는 ' ΜΙΜΟ '를 、다중 입출력 안테나 '라 칭하기로 한다 .
더 구체적으로, 다중 입출력 안테나 기술은 하나의 완전한 메시지 ( total message )를 수신하기 위하여 한 개의 안테나 경로에 의존하지 않으며 , 여러 개의 안테나를 통해 수신한 복수의 데이터 조각을 수집하여 완전한 데이터를 완성시킨다. 결과적으로, 다중 입출력 안테나 기술은 특정 시스템 범위 내에서 데이터 전송율을 증가시킬 수 있으며, 또한 특정 데이터 전송율을 통해 시스템 범위를 증가시킬 수 있다.
차세대 이동통신은 기존 이동통신에 비해 훨씬 높은 데이터 전송률을 요구하므로 효율적인 다중 입출력 안테나 기술이 반드시 필요할 것으로 예상된다. 이와 같은 상황에서 MIMO 통신 기술은 이동통신 단말과 중계기 등에 폭넓게 사용할 수 있는 차세대 이동통신 기술이며, 데이터 통신 확대 등으로 인해 한계 상황에 따라 다른 이동통신의 전송량 한계를 극복할 수 있는 기술로서 관심을 모으고 있다.
한편, 현재 연구되고 있는 다양한 전송효율 향상 기술 중 다중 입출력 안테나 (MIMO) 기술은 추가적인 주파수 할당이나 전력증가 없이도 통신 용량 및 송수신 성능을 획기적으로 향상시킬 수 있는 방법으로서 현재 가장 큰 주목을 받고 있다.
도 5는 일반적인 다중 입출력 안테나 (MIMO) 통신 시스템의 구성도이다. 도 5를 참조하면, 송신 안테나의 수를 NT개로, 수신 안테나의 수를 NR개로 동시에 늘리게 되면, 송신기나 수신기에서만 다수의 안테나를 사용하게 되는 경우와 달리 안테나 수에 비례하여 이론적인 채널 전송 용량이 증가하므로 , 전송 레이트 ( transfer rate )를 향상시키고, 주파수 효율을 획기적으로 향상시킬 수 있다. 이 경우, 채널 전송 용량의 증가에 따른 전송 레이트는 하나의 안테나를 이용하는 경우의 최대 전송 레이트 (R0)에 다음과 같은 레이트 증가율 ( )이 곱해진 만큼으로 이론적으로 증가할 수 있다.
【수학식 1】
R,. = min(NT , NR )
즉, 예를 들어, 4개의 송신 안테나와 4개의 수신 안테나를 이용하는 MIMO 통신 시스템에서는 단일 안테나 시스템에 비해 이론상 4배의 전송 레이트를 획득할 수 있다. 이와 같은 ^중 입출력 안테나의 기술은 다양한 채널 경로를 통과한 심볼들을 이용하여 전송 신뢰도를 높이는 공간 다이버시티 (spatial diversity) 방식과, 다수의 송신 안테나를 이용하여 다수의 데이터 심볼을 동시에 송신하여 전송률을 향상시키는 공간 멀티플렉싱 (spatial multiplexing) 방식으로 나눌 수 있다. 또한 이러한 두 가지 방식을 적절히 결합하여 각각의 장점을 적절히 얻고자 하는 방식에 대한 연구도 최근 많이 연구되고 있는 분야이다.
각각의 방식에 대해 좀더 구체적으로 살펴보면 다음과 같다.
첫째로, 공간 다이버시티 방식의 경우에는 시공간 블록 부호 계열과, 다이버시티 이득과 부호화 이득을 동시에 이용하는 시공간 트텔리스 (Trelis) 부호 계열 방식이 있다. 일반적으로 비트 오류율 개선 성능과 부호 생성 자유도는 트렐리스 부호 방식이 우수하지만, 연산 복잡도는 시공간 블록 부호가 간단하다. 이와 같은 공간 다이버서티 이득은 송신 안테나 수 (NT)와 수신 안테나 수 (1½)의 곱 (NT X NR)에 해당되는 양을 얻을 수 있다.
둘째로, 공간 멀티플렉싱 기법은 각 송신 안테나에서 서로 다른 데이터 열을 송신하는 방법인데, 이때 수신기에서는 송신기로부터 동시에 전송된 데이터 사이에 상호 간섭이 발생하게 된다. 수신기에서는 이 간섭올 적절한 신호처리 기법을 이용하여 제거한 후 수신한다. 여기에 사용되는 잡음 제거 방식은 MLD (maximum likelihood detection) 수신기 , ZF ( zero- forcing) 수신기 匪 SE (minimum mean square error) 수신 기, D- BLAST (Diagonal -Bell Laboratories Layered Space-Time) , V- BLAST (Vertical-Bell Laboratories Layered Space-Time) 등이 있으며 특히 송신단에서 채널 정보를 알 수 있는 경우에는 SVD (singular value decomposition) 방식 등을 사용할 수 있다.
셋째로, 공간 다이버시티와 공간 멀티플렉싱의 결합된 기법을 들 수 있다. 공간 다이버시티 이득만을 얻을 경우 다이버시티 차수의 증가에 따른 성능개선 이득이 점차 포화되며, 공간 멀티플렉싱 이득만을 취하면 무선 채널에서 전송 신뢰도가 떨어진다. 이를 해결하면서 두 가지 이득을 모두 얻는 방식들이 연구되어 왔으며, 이 중 시공간 블록 부호 ( Double -STTD) , 시공간 BICM(STBICM) 등의 방식이 있다.
상술한 바와 같은 다중 입출력 안테나 시스템에 있어서의 통신 방법을 보다 구체적인 방법으로 설명하기 위해 이를 수학적으로 모델링하는 경우 다음과 같이 나타낼 수 있다.
먼저, 도 5에 도시된 바와 같이 Ντ개의 송신 안테나와 NR개의 수신 안테나가 존재하는 것을 가정한다 .
먼저, 송신 신호에 대해 살펴보면, 이와 같이 Ντ개의 송신 안테나가 있는 경우 최대 전송 가능한 정보는 ΝΤ개 이므로, 이를 다음과 같은 백터로 나타낼 수 있다.
【수학식 2】
_ Γ lr
S = Sj , S2 , · ' · , SNT _
^편, 각각의 전송 정보 Sl, s2 SNT에 있어 전송 전력을 달리 할 수 있으며, 이때 각각의 전송 전력을 Pl7 P2, . . . , PNT라 하면, 전송 전력이 조정된 전송 정보는 다음과 같은 백터로 나타낼 수 있다.
【수학식 3】
Figure imgf000023_0001
또한, 를 전송 전력의 대각 행렬 P로 다음과 같이 나타낼 수 있다.
【수학식 4】
Figure imgf000023_0002
한편, 전송 전력이 조정된 정보 백터 s는 그 후 가중치 행렬 W가 곱해져 실제 전송되는 Ντ개의 전송 신호 Xl, χ 乂 를 구성한다. 여기서, 가중치 행렬은 전송 채널 상황 등에 따라 전송 정보를 각 안테나에 적절히 분배해 주는 역할을 수행한다. 이와 같은 전송 신호 Xl, x2 乂 를 백터
X를 이용하여 다음과 같이 나타낼 수 있다.
【수학식 5】
Figure imgf000023_0003
여기서 , Wij는 i번째 송신 안테나와 j번째 전송 정보간의 가중치를 나타내며, W는 이를 행렬로 나타낸 것이다. 이와 같은 행렬 W를 가중치 행렬 (Weight Matrix) 또는 프리코딩 행렬 (Precoding Matrix)라 부른다. 한편 , 상술한 바와 같은 전송 신호 (X)는 공간 다이버시티를 사용하는 경우와 공간 멀티플렉성을 사용하는 경우로 나누어 생각해 볼 수 있다.
공간 멀티플택싱을 사용하는 경우는 서로 다른 신호를 다중화하여 보내게 되므로, 정보 백터 S의 원소들이 모두 다른 값을 가지게 되는 반면, 공간 다이버시티를 사용하게 되면 같은 신호를 여러 채널 경로를 통하여 보내게 되므로 정보 백터 S의 원소들이 모두 같은 값을 갖게 된다.
물론, 공간 멀티플랙싱과 공간 다이버시티를 흔합하는 방법도 고려 가능하다. 즉, 예를 들어 3 개의 송신 안테나를 통하여 같은 신호를 공간 다이버시티를 이용하여 전송하고, 나머지는 각각 다른 신호를 공간 멀티플택싱하여 보내는 경우도 고려할 수 있다.
다음으로, 수신신호는 NR개의 수신 안테나가 있는 경우, 각 안테나의 수신신호 yi , y2 , · . . , yNR을 백터 y로 다음과 같이 나타내기로 한다ᅳ
【수학식 6】 한편, 다중 입출력 안테나 통신 시스템에 있어서의 채널을 모델링하는 경우, 각각의 채널은 송수신 안테나 인덱스에 따라 구분할 수 있으며, 송신 안테나 j로부터 수신 안테나 i를 거치는 채널을 로 표시하기로 한다. 여기서, hij의 인덱스의 순서가 수신 안테나 인덱스가 먼저, 송신안테나의 인덱스가 나중임에 유의한다.
이러한 채널은 여러 개를 한데 묶어서 백터 및 행렬 형태로도 표시 가능하다. 백터 표시의 예를 들어 설명하면 다음과 같다.
도 6은 다수의 송신 안테나에서 하나의 수신 안테나로의 채널을 나타낸 도이다.
도 6에 도시된 바와 같이 총 Ντ개의 송신 안테나로부터 수신안테나 i로 도착하는 채널은 다음과 같이 표현 가능하다. 3
【수학식 7】
Figure imgf000025_0001
또한, 상기 수학식 7과 같은 행렬 표현을 통해 ΝΤ개의 송신 안테나로부터
NR개의 수신 안테나를 거치는 채널을 모두 나타내는 경우 다음과 같이 나타낼 수 있다.
【수학식 8】
Figure imgf000025_0002
한편, 실제 채널은 위와 같은 채널 행렬 H를 거친 후에 백색 잡음 (AWGN: Additive White Gaussian Noise)가 더해지게 되므로, NR개의 수신 안테나 각각에 더해지는 백색 잡음 ηι, n2, nNR을 백터로 표현하면 다음과 같다.
【수학식 9】
η = [ηι2,···,ηΝιι
상술한 바와 같은 전송 신호, 수신 신호, 채널, 및 백색 잡음의 모델링을 통해 다중 입출력 안테나 통신 시스템에서의 각각은 다음과 같은 관계를 통해 나타낼 수 있다.
【수학식 10】
Figure imgf000026_0001
한편, 채널의 상태를 나타내는 채널 행렬 Η의 행과 열의 수는 송수신 안테나 수에 의해서 결정된다. 채널 행렬 Η는 앞서 살펴본 바와 같이 행의 수는 수신 안테나의 수 ¾과 같아지고, 열의 수는 송신 안테나의 수 NR와 같아 지게 된다. 즉, 채널 행렬 H는 NRXNR 행렬이 된다.
일반적으로, 행렬의 랭크 (rank)는 서로 독립인 (independent) 행 또는 열의 개수 중에서 최소 개수로 정의된다. 따라서, 행렬의 탱크는 행 또는 열의 개수보다 클 수 없게 된다. 수식적으로 예를 들면, 채널 행렬 H의 랭크 (rank (H) )는 다음과 같이 제한된다 .
【수학식 11】
rank (H ) < min (NT , NR )
또한, 행렬을 고유치 분해 (Eigen value decomposition)를 하였을 때 , 랭크는 고유치 (eigen value)들 중에서 0이 아닌 고유치들의 개수로 정의할 수 있다. 비슷한 방법으로, 탱크를 SVD (singular value decomposition) 했을 때 0이 아닌 특이값 (singular value)들의 개수로 정의할 수 있다. 따라서 , 채널 행렬에서 탱크의 물리적인 의미는 주어진 채널에서 서로 다른 정보를 보낼 수 있는 최대 수라고 할 수 있다.
본 명세서에 있어, MIMO 전송에 대한 '탱크 (Rank) '는 특정 시점 및 특정 주파수 자원에서 독립적으로 신호를 전송할 수 있는 경로의 수를 나타내며, '레이어 (layer)의 개수 '는 각 경로를 통해 전송되는 신호 스트림의 개수를 나타낸다. 일반적으로 송신단은 신호 전송에 이용되는 랭크 수에 대웅하는 개수의 레이어를 전송하기 때문에 특별한 언급이 없는 한 랭크는 레이어 개수와 동일한 의미를 가진다. 캐리어 병합 (Carrier Aggregation)
본 발명의 실시예들에서 고려하는 통신 환경은 멀티 캐리어 (Multi- carrier) 지원 환경을 모두 포함한다. 즉, 본 발명에서 사용되는 멀티 캐리어 시스템 또는 캐리어 병합 (CA: Carrier Aggregation) 시스템이라 함은 광대역을 지원하기 위해서, 목표로 하는 광대역을 구성할 때 목표 대역보다 작은 대역폭 (bandwidth)을 가지는 1개 이상의 컴포넌트 캐리어 (CC: Component Carrier)를 병합 (aggregation)하여 사용하는 시스템을 말한다.
본 발명에서 멀티 캐리어는 캐리어의 병합 (또는, 반송파 집성 )을 의미하며 , 이때 캐리어의 병합은 인접한 (contiguous) 캐리어 간의 병합뿐 아니라 비 인접한 (non-contiguous) 캐리어 간의 병합을 모두 의미한다. 또한, 하향링크와 상향링크 간에 집성되는 컴포넌트 캐리어들의 수는 다르게 설정될 수 있다. 하향링크 컴포넌트 캐리어 (이하, 'DL CC'라 한다. ) 수와 상향링크 컴포넌트 캐리어 (이하, 'UL CC'라 한다. ) 수가 동일한 경우를 대칭적 (symmetric) 집성이라고 하고, 그 수가 다른 경우를 비대칭적 (asymmetric) 집성이라고 한다. 이와 같은 캐리어 병합은 반송파 집성 , 대역폭 집성 (bandwidth aggregation) , 스펙트럼 집성 (spectrum aggregation) 등과 같은 용어와 흔용되어 사용될 수 있다. 두 개 이상의 컴포넌트 캐리어가 결합되어 구성되는 캐리어 병합은 LTE-A 시스템에서는 100MHZ 대역폭까지 지원하는 것을 목표로 한다. 목표 대역보다 작은 대역폭을 가지는 1개 이상의 캐리어를 결합할 때, 결합하는 캐리어의 대역폭은 기존 IMT 시스템과의 호환성 (backward compatibility) 유지를 위해서 기존 시스템에서 사용하는 대역폭으로 제한할 수 있다. 예를 들어서 기존의 3GPP LTE 시스템에서는 { 1 . 4 , 3 , 5 , 10 , 15 , 20 } MHz 대역폭을 지원하며 , 3GPP LTE- advanced 시스템 (즉, LTE-A)에서는 기존 시스템과의 호환을 위해 상기의 대역폭들만을 이용하여 20MHz보다 큰 대역폭을 지원하도록 할 수 있다. 또한, 본 발명에서 사용되는 캐리어 병합 시스템은 기존 시스템에서 사용하는 대역폭과 상관없이 새로운 대역폭을 정의하여 캐리어 병합을 지원하도록 할 수도 있다.
LTE-A 시스템은 무선 자원을 관리하기 위해 셀 ( cell )의 개념을 사용한다. 상술한 캐리어 병합 환경은 다중 샐 (multiple cells ) 환경으로 일컬을 수 있다 . 셀은 하향링크 자원 (DL CC)과 상향링크 자원 (UL CC) 한 쌍의 조합으로 정의되나, 상향링크 자원은 필수 요소는 아니다. 따라서 , 샐은 하향링크 자원 단독, 또는 하향링크 자원과 상향링크 자원으로 구성될 수 있다. 특정 단말이 단 하나의 설정된 서빙 셀 ( conf igured serving cell )을 가지는 경우 1개의 DL CC와 1개의 UL CC를 가질 수 있으나, 특정 단말이 2개 이상의 설정된 서빙 셀을 가지는 경우에는 셀의 수만큼의 DL CC를 가지며 UL CC의 수는 그와 같거나 그보다 작을 수 있다.
또는, 그 반대로 DL CC와 UL CC가 구성될 수도 있다. 즉, 특정 단말이 다수의 설정된 서빙 셀을 가지는 경우 DL CC의 수보다 UL CC가 더 많은 캐리어 병합 환경도 지원될 수 있다. 즉, 캐리어 병합 (carrier aggregation)은 각각 캐리어 주파수 (셀의 중심 주파수)가 서로 다른 둘 이상의 셀들의 병합으로 이해될 수 있다. 여기서, 말하는 '셀 (Cell) '은 일반적으로 사용되는 기지국이 커버하는 영역으로서의 '셀'과는 구분되어야 한다.
LTE-A 시스템에서 사용되는 셀은 프라이머리 셀 (PCell: Primary Cell) 및 세컨더리 셀 (SCell: Secondary Cell)을 포함한다 . P셀과 S셀은 서빙 셀 (Serving Cell)로 사용될 수 있다. RRC— CONNECTED 상태에 있지만 캐리어 병합이 설정되지 않았거나 캐리어 병합을 지원하지 않는 단말의 경우, P셀로만 구성된 서빙 샐이 단 하나 존재한다 . 반면 , RRCᅳ CONNECTED 상태에 있고 캐리어 병합이 설정된 단말의 경우 하나 이상의 서빙 셀이 존재할 수 있으며, 전체 서빙 셀에는 P셀과 하나 이상의 S셀이 포함된다.
서빙 셀 (P셀과 S셀)은 RRC 파라미터를 통해 설정될 수 있다. PhysCellld는 셀의 물리 계층 식별자로 0부터 503까지의 정수값을 가진다 . SCelllndex는 S셀을 식별하기 위하여 사용되는 간략한 (short) 식별자로 1부터 7까지의 정수값을 가진다. ServCelllndex는 서빙 셀 (P셀 또는 S셀)을 식별하기 위하여 사용되는 간략한 (short) 식별자로 0부터 7까지의 정수값을 가진다. 0값은 P셀에 적용되며, SCelllndex는 S셀에 적용하기 위하여 미리 부여된다. 즉, ServCelllndex에서 가장 작은 샐 ID (또는 셀 인덱스)을 가지는 셀이 P셀이 된다.
P셀은 프라이머리 주파수 (또는, primary CC) 상에서 동작하는 셀을 의미한다. 단말이 초기 연결 설정 (initial connection establishment) 과정을 수행하거나 연결 재 -설정 과정을 수행하는데 사용될 수 있으며 , 핸드오버 과정에서 지시된 셀을 지칭할 수도 있다. 또한, P셀은 캐리어 병합 환경에서 설정된 서빙 셀 중 제어관련 통신의 중심이 되는 샐을 의미한다. 즉, 단말은 자신의 P셀에서만 PUCCH를 할당 받아 전송할 수 있으며, 시스템 정보를 획득하거나 모니터링 절차를 변경하는데 P셀만을 이용할 수 있다. E- UTRAN ( Evolved Universal Terrestrial Radio Access )은 캐리어 병합 환경을 지원하는 단말에게 이동성 제어 정보 (mobilityControlInfo)를 포함하는 상위 계층의 RRC 연결 재설정 (RRCConnectionReconf igutaion) 메시지를 이용하여 핸드오버 절차를 위해 P샐만을 변경할 수도 있다.
S셀은 세컨더리 주파수 (또는, Secondary CC) 상에서 동작하는 셀을 의미할 수 있다. 특정 단말에 P셀은 하나만 할당되며, S셀은 하나 이상 할당될 수 있다. S셀은 RRC 연결이 설정이 이루어진 이후에 구성 가능하고 추가적인 무선 자원을 제공하는데 사용될 수 있다. 캐리어 병합 환경에서 설정된 서빙 셀 중에서 p셀을 제외한 나머지 샐들, 즉 s셀에는 PUCCH가 존재하지 않는다. E-
UTRAN은 S셀을 캐리어 병합 환경을 지원하는 단말에게 추가할 때, RRC_CONNECTED 상태에 있는 관련된 셀의 동작과 관련된 모든 시스템 정보를 특정 시그널 ( dedicated signal )을 통해 제공할 수 있다. 시스템 정보의 변경은 관련된 S셀의 해제 및 추가에 의하여 제어될 수 있으며, 이 때 상위 계층의 RRC 연결 재설정 (RRCConnectionReconf igutaion) 메入 1지를 이용할 수 있다. E— UTRA 은 관련된 S셀 안에서 브로드캐스트하기 보다는 단말 별로 상이한 파라미터를 가지는 특정 시그널링 ( dedicated signaling) 할 수 있다. 초기 보안 활성화 과정이 시작된 이후에, E-UTRAN은 연결 설정 과정에서 초기에 구성되는 P셀에 부가하여 하나 이상의 S샐을 포함하는 네트워크를 구성할 수 있다. 캐리어 병합 환경에서 P셀 및 S셀은 각각의 컴포넌트 캐리어로서 동작할 수 있다. 이하의 실시 예에서는 프라이머리 컴포넌트 캐리어 ( PCC)는 P셀과 동일한 의미로 사용될 수 있으며 , 세컨더리 컴포넌트 캐리어 ( SCC)는 s셀과 동일한 의미로 사용될 수 있다.
도 7은 본 발명이 적용될 수 있는 무선 통신 시스템에서 컴포넌트 캐리어 및 캐리어 병합의 일례를 나타낸다.
도 7의 ( a )는 LTE 시스템에서 사용되는 단일 캐리어 구조를 나타낸다. 컴포넌트 캐리어에는 DL CC와 UL CC가 있다. 하나의 컴포넌트 캐리어는 20MHz의 주파수 범위를 가질 수 있다.
도 7의 ( b)는 LTE_A 시스템에서 사용되는 캐리어 병합 구조를 나타낸다. 도 7의 (b )의 경우에 20MHZ의 주파수 크기를 갖는 3 개의 컴포넌트 캐리어가 결합된 경우를 나타낸다. DL CC와 UL CC가 각각 3 개씩 있으나, DL CC와 UL CC의 개수에 제한이 있는 것은 아니다. 캐리어 병합의 경우 단말은 3개의 CC를 동시에 모니터링할 수 있고, 하향링크 신호 /데이터를 수신할 수 있고 상향링크 신호 /데이터를 송신할 수 있다.
만약, 특정 셀에서 N개의 DL CC가 관리되는 경우에는, 네트워크는 단말에 M (M≤N)개의 DL CC를 할당할 수 있다. 이때 , 단말은 M 개의 제한된 DL CC 만을 모니터링하고 DL 신호를 수신할 수 있다. 또한, 네트워크는 L ( L≤M≤N)개의 DL CC에 우선순위를 주어 주된 DL CC를 단말에 할당할 수 있으며, 이러한 경우 UE는 L 개의 DL CC는 반드시 모니터링해야 한다. 이러한 방식은 상향링크 전송에도 똑같이 적용될 수 있다.
하향링크 자원의 반송파 주파수 (또는 DL CC )와 상향링크 자원의 반송파 주파수 (또는, UL CC) 사이의 링키지 (linkage)는 RRC 메시지와 같은 상위계층 메시지나 시스템 정보에 의해 지시될 수 있다. 예를 들어 , SIB2 (System information Block Type2)에 의해서 정의되는 링키지에 의해서 DL 자원과 UL 자원의 조합이 구성될 수 있다. 구체적으로, 링키지는 UL 그랜트를 나르는 PDCCH가 전송되는 DL CC와 상기 UL 그랜트를 사용하는 UL CC간의 맵핑 관계를 의미할 수 있으며 , HARQ를 위한 데이터가 전송되는 DL CC (또는 UL CC)와 HARQ ACK/NACK 신호가 전송되는 UL CC (또는 DL CC)간의 맵핑 관계를 의미할 수도 있다.
단말이 하나 이상의 S셀이 설정되면 , 네트워크는 설정된 S셀 (들)을 활성화 (activate) 또는 비활성화 (deactivate)할 수 있다. P셀은 항상 활성화된다. 네트워크는 활성 /비활성 (Activation/Deactivation) MAC 게어 요소 (MAC control element)를 전송함으로써 S셀 (들)을 활성화 또는 비활성화한다.
활성 /비활성 MAC 제어 요소는 고정된 크기를 가지고, 7개의 C 필드 (C- field)와 1개의 R 필드 (R-field)를 포함하는 단일의 옥렛 (octet)으로 구성된다. C 필드는 각 S셀 인덱스 (SCelllndex) 별로 구성되고, S셀의 활성 /비활성 상태를 지시한다. C 필드 값이 '1'로 셋팅되면 해당 S샐 인덱스를 가지는 S셀의 활성화되는 것을 지시하고, '0'으로 셋팅되면 해당 S셀 인텍스를 가지는 S셀의 비활성화되는 것을 지시한다 .
또한, 단말은 설정된 S셀 별로 타이머 (sCellDeactivationTimer)를 유지하고, 타이머가 만료될 때 관련된 S샐을 비활성화한다. 동일한 초기 타이머 값이 타이머 (sCellDeactivationTimer)의 각 인스턴스 ( instance)어 1 적용되며 , RRC 시그널링에 의해 설정된다. S샐 (들)이 추가될 때 또는 핸드오버 이후, 초기 S셀 (들)은 비활성화 상태이다.
단말은 각 TT工에서 각각의 설정된 S셀 (들)에 대하여 아래와 같은 동작을 수행한다 .
- 단말이 특정 TTI (서브프레임 n)에서 S셀을 활성화하는 활성 /비활성 MAC 제어 요소를 수신하면 , 단말은 정해진 타이밍에 해당하는 TTI (서브프레임 n+8 또는 그 이후)에서 S셀을 활성화하고, 해당 S셀과 관련된 타이머를 (재)시작시킨다. 단말이 S셀을 활성화한다는 것은 단말이 S셀 상에서 SRS ( Sounding Reference Signal ) 전송, S셀을 위한 CQI ( Channel Quality Indicator) /PMI ( Precoding Matrix Indicator) /RI (Rank Indication) /PTI ( Precoding Type Indicator) 보고, S셀 상에서 PDCCH 모니터링, S셀을 위한 PDCCH 모니터링과 같은 일반 S셀 동작을 적용한다는 것을 의미한다.
- 단말이 특정 TTI (서브프레임 n)에서 S셀을 비활성화하는 활성 /비활성 MAC 제어 요소를 수신하거나 또는 특정 TTI (서브프레임 n) 활성화된 S셀과 관련된 타이머가 만료되면, 단말은 정해진 타이밍에 해당하는 TTI (서브프레임 n+8 또는 그 이후)에서 S샐을 비활성화하고, 해당 S셀의 타이머를 중단하며 , 해당 S셀과 관련된 모든 HARQ 버퍼를 비운다 ( f lush) .
- 활성화된 S셀 상의 PDCCH가 상향링크 그랜트 (uplink grant ) 또는 하향링크 승인 (downlink assignment )을 지시하거나, 또는 활성화된 S셀을 스케줄링하는 서빙 셀 상의 PDCCH가 활성화된 S셀을 위한 상향링크 그랜트 (uplink grant ) 또는 하향링크 승인 ( downlink assignment )을 지시하면 , 단말은 해당 S셀과 관련된 타이머를 재시작한다 .
- S셀이 비활성화되면, 단말은 S셀 상에서 SRS를 전송하지 않고, S셀을 위한 CQI/PMI/RI/PTI를 보고하지 않으며, S셀 상에서 UL— SCH를 전송하지 않으며 , S셀 상에서 PDCCH를 모니터하지 않는다 .
CoMP (Coordinated Multi-Point Transmission and Reception)
LTE- advanced의 요구에 발맞춰, 시스템의 성능 향상올 위하여 CoMP 전송이 제안되었다 .
CoMP는 특정 UE와 eNB, (Access) Point 혹은 셀 (Cell) 간의 통신을 보다 원활히 하기 위해 2개 이상의 eNB, (Access) Point 혹은 셀이 서로 협력하여 UE와 통신하는 방식을 가리킨다. CoMP는 co-MIMO, collaborative MIMO, network MI O 등으로도 불린다. CoMP는 셀 경계에 위치한 단말의 성능을 향상시키고, 평균 셀 (섹터 )의 효율 (throughput)을 향상시킬 것으로 예상된다.
본 명세서에서는 ,eNB, (Access) Point, 혹은 Cell을 같은 의미로 사용한다.
일반적으로, 셀 간 간섭 (Inter-Cell Interference)은 주파수 재사용 지수가 1 인 다중-셀 환경에서 셀 경계에 위치한 단말의 성능 및 평균 셀 (섹터) 효율을 떨어뜨린다. 셀 간 간섭을 완화시키기 위해, 간섭 게한적인 (interference -limited) 환경에서 샐 경계에 위치한 단말이 적정한 성능 효율을 가지도록 LTE 시스템에서는 부분 주파수 재사용 (FFR: Fractional Frequency Reuse) 같은 단순한 수동적인 방법이 적용되었다 . 그러나, 각 샐 당 주파수 자원의 사용을 감소시키는 대신, 단말이 수신해야 하는 신호 ( desired signal )로써 셀 간 간섭을 재 사용하거나 셀 간 간섭을 완화시키는 방법이 보다 이익이 된다. 상술한 목적을 달성하기 위하여 CoMP 전송 방식이 적용될 수 있다.
하향링크에 적용될 수 있는 CoMP 방식은 JP ( Joint Processing) 방식과 CS/CB ( Coordinated Scheduling/Beamf orming) 방식으로 분류할 수 있다.
JP 방식의 경우, COMP를 수행하는 각 eNB로부터 UE로의 데이터가 순간적으로 동시에 UE로 전송되며 UE는 각 eNB로부터의 신호를 결합하여 수신 성능을 향상시키게 된다 . 반면 , CS/CB의 경우, 하나의 UE로의 데이터는 순간적으로 하나의 eNB을 통해서 전송되며 UE가 다른 eNB로의 간섭이 최소가 되도록 스케줄링 ( Scheduling) 혹은 빔포밍 (Beamforming)이 이루어진다. jp 방식에서 , 데이터는 CoMP 단위의 각 포인트 (기지국)에서 사용될 수 있다 . CoMP 단위는 COMP 방식에서 이용되는 기지국들의 집합을 의미한다 . JP 방식은 다시 연합 전송 ( j oint transmission) 방식과 동적 셀 선택 ( dynamic cell selection) 방식으로 분류할 수 있다.
연합 전송 방식은 CoMP 단위에서 전체 또는 일부분인 복수의 포인트로부터 PDSCH를 통해 신호가 동시에 전송되는 방식을 의미한다 . 즉 , 단일의 단말에 전송되는 데이터는 복수의 전송 포인트로부터 동시에 전송될 수 있다. 이와 같은 연합 전송 방식을 통해 가간섭적 ( coherently) 내지 비간섭적 (non- coherently)이든 무관하게 단말에 전송되는 신호의 품질을 높일 수 있으며 , 또 다른 단말과의 간섭을 적극적으로 제거할 수 있다.
동적 셀 선택 방식은 CoMp 단위에서 단일의 포인트로부터 PDSCH를 통해 신호가 전송되는 방식을 의미한다. 즉, 특정 시간에 단일의 단말에 전송되는 데이터는 단일의 포인트로부터 전송되고, CoMP 단위 내 다른 포인트에서는 상기 단말로 데이터를 전송하지 않는다. 단말로 데이터를 전송하는 포인트는 동적으로 선택될 수 있다.
CS/CB 방식에 따르면, COMP 단위는 단일의 단말로의 데이터 전송을 위하여 협력하여 범포밍을 수행하게 된다. 즉, 서빙 셀에서만 단말로 데이터를 전송하지만, 사용자 스케줄링 /범포밍은 CoMP 단위 내의 복수의 셀 간의 협력을 통해 결정될 수 있다.
상향링크의 경우, COMP 수신은 지리적으로 분리된 복수의 포인트 간의 협력에 의하여 전송된 신호를 수신하는 것을 의미한다. 상향링크에 적용될 수 있는 CoMP 방식은 JR (Joint Reception) 방식과 CS/CB ( Coordinated Scheduling/Beamforming) 방식으로 분류할 수 있다.
JR 방식은 COMP 단위에서 전체 또는 일부분인 복수의 포인트가 PDSCH를 통해 전송된 신호를 수신하는 방식을 의미한다 . CS/CB 방식은 단일의 포인트에서만 PDSCH를 통해 전송된 신호를 수신하게 되나, 사용자 스케줄링 /범포밍은 COMP 단위 내의 복수의 셀 간의 협력을 통해 결정될 수 있다.
HARQ (Hybrid - Automatic Repeat and request)
LTE 물리 계층은 PDSCH 및 PUSCH에서 HARQ를 지원하며, 별도의 제어 채널에서 연관된 수신 웅답 (ACK : acknowledgment ) 피드백을 전송한다.
LTE FDD 시스템에서는, 8 개의 SAW ( Stop- And -
Wait ) HARQ 프로세스가 8 ms의 일정한 RTT (Round- Trip Time )으로 상향링크 및 하향링크 모두에서 지원된다.
도 8은 본 발명이 적용될 수 있는 LTE FDD 시스템에서 하향링크 HARQ 프로세스를 도시하는 도면이고, 도 9는 본 발명이 적용될 수 있는 LTE FDD 시스템에서 상향링크 HARQ 프로세스를 도시하는 도면이다.
각각의 HARQ 프로세스들은 3 비트 크기의 고유의 HARQ 프로세스 식별자 (HARQ ID : HARQ process IDentif ier)에 의하여 정의되고, 수신단 (즉, 하향링크 HARQ 프로세스에서는 UE , 상향링크 HARQ 프로세스에서는 eNodeB)에서는 재전송된 데이터의 결합을 위한 개별적인 소프트 버퍼 할당이 필요하다.
또한, HARQ 동작을 위하여 하향링크 제어 정보 내에 새로운 데이터 지시자 (NDI : New Data Indicator) , 리던던시 버전 (RV : Redundancy Version) 및 변조 및 코딩 기법 (MCS : modulation and coding scheme ) 필드가 정의된다 . NDI 필드는 새로운 패킷 전송이 시작될 때마다 토글 ( toggled)된다. RV 필드는 전송 또는 재전송을 위해 선택된 RV를 지시한다 . MCS 필드는 변조 및 코딩 기법 레벨을 지시한다 .
LTE 시스템의 하향링크 HARQ 프로세스는 적웅적 (adaptive ) 비동기 (asynchronous ) 방식이다. 따라서 , 매 하향링크 전송 마다, HARQ 프로세스를 위한 하향링크 제어 정보가 명시적으로 수반된다.
LTE 시스템의 상향링크 HARQ 프로세스는 동기 ( synchronous ) 방식으로서 , 적웅적 또는 비적웅적 (non- adaptive ) 방식 모두가 가능하다. 상향링크 비적웅적 HARQ 기법은, 명시적인 제어 정보의 시그널링이 수반되지 않기 때문에, 연속적인 패킷 전송을 위하여 기 설정된 RV 시퀀스 (예를 들어 , 0 , 2 , 3 , 1 , 0, 2, 3, 1, ..ᅳ)가 요구된다. 반면, 상향링크 적웅적 HARQ 기법은 RV가 명시적으로 시그널링된다. 제어 시그널링을 최소화하기 위하여 RV (또는 MCS)가 다른 제어 정보와 결합되는 상향링크 모드 또한 지원된다. 제한된 버퍼 레이트 매칭 (LBRM: Limited Buffer Rate Matching)
HARQ 동작을 지원하기 위해 LLR (Log-Likelihood Ratio) 저장에 요구되는 전체 메모리 (모든 HARQ 프로세스에 걸쳐) , 즉 UE HARQ 소프트 버퍼 크기로 인하여 UE 구현의 복잡도가 증대된다.
LBRM (Limited Buffer Rate Matching)의 목적은 피크 데이터 레이트 (peak data rates)를 유지하고 시스템 성능 (performance)에 미치는 영향을 최소화하면서, UE HARQ 소프트 버퍼 크기를 감소시키기 위함이다. LBRM는 소정 크기보다 더 큰 전송 블록 (TB)올 위한 코드 블록 세그먼트들의 가상 원형 버퍼의 길이를 단축시킨다. LBRM으로, TB에 대한 모 코드 레이트 (mother code rate)은 TB 크기 및 TB에 대하여 할당된 UE 소프트 버퍼 크기의 함수가 된다. 예를 들어, FDD 운영 및 가장 낮은 카테고리의
UE (즉, 공간 다중화 (spatial multiplexing)를 지원하지 않는 UE ^"테고리 1 및 2)를 위하여 , 버퍼에 대한 제한은 트랜스패런트 (transparent)하다. 즉, LBRM는 소프트 버퍼의 단축을 초래하지 않는다 . 높은 카테고리의 UE (즉 , UE 카테고리 3, 4 및 5)의 경우, 소프트 버퍼의 크기는 8 개의 HARQ 프로세스와 최대 TB에 대한 2/3의 모 코드 레이트 (mother code rate)에 해당하는 50¾의 버퍼 감소를 가정하여 계산된다. eNB는 UE의 소프트 버퍼 용량을 알고 있기 때문에 , 주어진 TB 모든 (재)송신에 대하여 UE의 HARQ 소프트 버퍼에 저장 될 수 있는 가상의 원형 버퍼 (VCB)에서 그 코드 비트를 전송한다. 동기 신호 (SS: Synchronization Signal)
UE는 전원이 켜지거나 새로이 셀에 진입한 경우 상기 셀과의 시간 및 주파수 동기를 획득하고 상기 셀의 물리 셀 식별자 (physical cell identity)를 검출 (detect)하는 등의 샐 탐색 (initial cell search) 과정 (procedure)을 수행한다. 이를 위해 , UE는 eNB로부터 동기신호, 예를 들어 , 1차 동기신호 (PSS: Primary Synchronization Signal) 및 2차 동기신호 (SSS: Secondary Synchronization Signal)를 수신하여 eNB와 동기를 맞추고, 셀 식별자 (ID: identity) 등의 정보를 획득할 수 있다.
도 10은 본 발명이 적용될 수 있는 무선 통신 시스템에서 동기 신호 (SS: Synchronization Signal)의 전송을 위한 무선 프레임 구조를 예시한 것이다. 특히 , 도 10은 주파수 분할 듀플렉스 (FDD)에서 동기 신호 및 PBCH의 전송을 위한 무선 프레임 구조를 예시한 것으로서 , 도 10 (a)는 일반 CP (normal cyclic prefix)로써 구성된 무선 프레임에서 SS 및 PBCH의 전송 위치를 도시한 것이고 도 10(b)는 확장 CP (extended CP)로써 구성된 무선 프레임에서 SS 및 PBCH의 전송 위치를 도시한 것이다.
SS는 PSS와 SSS로 구분된다. PSS는 OFDM 심볼 동기, 슬롯 동기 등의 시간 도메인 동기 및 /또는 주파수 도메인 동기를 얻기 위해 사용되며, SSS는 프레임 동기, 셀 그룹 ID 및 /또는 셀의 CP 구성 (즉, 일반 CP 또는 확장 CP의 사용 정보)를 얻기 위해 사용된다.
도 10을 참조하면 , 시간 영역에서 PSS와 SSS는 매 무선 프레임의 2개의 OFDM 심볼에서 각각 전송된다. 구체적으로 SS는 인터 -RAT ( inter radio access technology) 측정의 용이함을 위해 GSM ( Global System for Mobile communication) 프레임 길이인 4 . 6 ms를 고려하여 서브프레임 0의 첫 번째 슬롯과 서브프레임 5의 첫 번째 슬롯에서 각각 전송된다. 특히, PSS는 서브프레임 0의 첫 번째 슬롯의 마지막 OFDM 심볼과 서브프레임 5의 첫 번째 슬롯의 마지막 OFDM 심볼에서 각각 전송되고, SSS는 서브프레임 0의 첫 번째 슬롯의 마지막에서 두 번째 OFDM 심볼과 서브프레임 5의 첫 번째 슬롯의 마지막에서 두 번째 OFDM 심볼에서 각각 전송된다.
해당 무선 프레임의 경계는 SSS를 통해 검출될 수 있다. PSS는 해당 슬롯의 맨 마지막 OFDM 심볼에서 전송되고 SSS는 PSS 바로 앞 OFDM 심볼에서 전송된다. SS의 전송 다이버시티 ( diversity) 방식은 단일 안테나 '포트 ( single antenna port )만을 사용하며 표준에서는 따로 정의하고 있지 않다. 즉, 단일 안테나 포트 전송 혹은 UE에 투명한 ( transparent ) 전송 방식 (예, PVS ( Precoding Vector Switching) , TSTD (Time Switched Diversity) , CDD ( cyclic delay diversity) ) 0] SS의 전송 다이버시티를 위해 사용될 수 있다.
PSS는 5ms마다 전송되므로 UE는 PSS를 검출함으로써 해당 서브프레임이 서브프레임 0와 서브프레임 5 중 하나임을 알 수 있으나, 해당 서브프레임이 서브프레임 0와 서브프레임 5 중 구체적으로 무엇인지는 알 수 없다. 따라서, UE는 PSS만으로는 무선 프레임의 경계를 인지하지 못한다. 즉, PSS만으로는 프레임 동기가 획득될 수 없다. UE는 일 무선 프레임 내에서 두 번 전송되되 서로 다른 시퀀스로서 전송되는 SSS를 검출하여 무선 프레임의 경계를 검출한다 . gg 주파수 영역에서 PSS 및 SSS는 하향링크 시스템 대역폭 ( system bandwidth)의 중심에 위치하는 6개 RB에 맵핑된다 . 하향링크에서 전체 RB의 개수는 시스템 대역폭에 따라 상이한 RB의 개수 (예를 들어 , 6 RB 내지 110 RB )로 구성될 수 있으나 , PSS와 SSS는 하향링크 시스템 대역폭의 중심에 위치하는 6개의 RB에 매핑되므로, 하향링크 시스템 대역폭과 무관하게 UE는 동일한 방법으로 PSS와 SSS를 검출할 수 있다.
PSS와 SSS는 모두 길이 62의 시뭔스로 구성된다 . 따라서 , 6 RB 중 DC 서브캐리어 양 옆에 위치하는 가운데의 62개의 서브캐리어에 매핑되고, DC 서브캐리어와 양 쪽 끝에 위치하는 각각 5개의 서브캐리어는 사용되지 않는다.
PSS와 SSS의 특정 시퀀스에 의하여 UE는 물리 계층 셀 ID를 획득할 수 있다. 즉, SS는 3개의 PSS와 168개의 SSS의 조합을 통해 총 504개의 고유한 물리 계층 셀 식별자 ( PCID : physical layer cell Identity)를 나타낼 수 있다.
다시 말해, 상기 물리 계층 셀 : ED들은 각 물리 계층 셀 ID가 오직 하나의 물리 -계층 셀-식별자 그룹의 부분이 되도특 각 그룹이 3개의 고유한 식별자들을 포함하는 168개의 물리 -계층 셀-식별자 그룹들로 그룹핑된다. 따라서 , 물리 계층 셀 식별자 Ncell ID = 3N ( 1 ) ID + N ( 2 ) ID는 물리 -계층 셀-식별자 그룹을 나타내는 0부터 167까지의 범위 내 번호 N ( l ) ID와 상기 물리 -계층 셀-식별자 그룹 내 상기 물리 -계층 식별자를 나타내는 0부터 2까지의 번호 N ( 2 ) ID에 의해 고유하게 정의된다.
UE는 PSS를 검출하여 3개의 고유한 물리 -계층 식별자들 중 하나를 알 수 있고, SSS를 검출하여 상기 물리 -계층 식별자에 연관된 168개의 물리 계층 셀 A ^
40
ID들 중 하나를 식별할 수 있다.
PSS는 주파수 영역에서 정의된 길이 63의 ZC(Zadoff-Chu) 시뭔스를 기반하여 생성된다 .
【수학식 12】 du (n) = e J Nzc
ZC 시뭔스는 수학식 12에 의해 정의되며, DC 서브캐리어에 해당되는 시뭔스 요소 (element) , n=31은 천공 (puncturing)한다. 수학식 12에서 Nzc=63이다.
시스템 대역폭의 가운데 부분의 6RB ( = 72 서브캐리어) 중 9개의 남는 서브캐리어는 항상 0의 값으로 전송하며, 동기 수행을 위한 필터 설계에 용이함을 가져다 준다.
총 3개의 P-SS를 정의하기 위해 수학식 12에서 u=25, 29, 그리고 34의 값을 사용한다. 이 때 , 29와 34는 결레대칭 (conjugate symmetry) 관계를 가지고 있어서 , 2개의 상관 (correlation)을 동시에 수행할 수가 있다. 여기서 , 켤레대칭은 다음 수학식 13의 관계를 의미하며 이 특성을 이용하여 u=29와 34에 대한 원샷 상관기 (one -shot correlator)의 구현이 가능하여 , 전체적인 연산량을 약 33.3% 감소시킬 수 있다.
【수학식 13】
du n) = (-1)" {dNzc- (^)), when Nzc is even number,
^u {n) ~{^Nzc→ { )), when N7C is odd number.
SSS는 M 시뭔스 (M-sequence)에 기반하여 생성된다. 각 SSS 시퀀스는 주파수 영역에서 길이가 31인 두 개의 SSC 1 시뭔스와 SSC 2 시퀀스를 인터리빙된 접합을 하여 생성된다. 두 개의 시퀀스를 조합하여 168 셀 그룹 식별자 (cell group ID)를 전송한다. SSS의 시퀀스로서 m-시원스는 주파수 선택적 환경에서 강건하고, 고속 하다마드 변환 (Fast Hadamard Transform)을 이용한 고속 m-시퀀스 변환으로 연산량을 줄일 수가 있다. 또한 두 개의 짧은 부호 (short code)로 SSS를 구성하는 것은 단말의 연산량을 줄이기 위해 제안되었다.
도 11은 본 발명이 적용될 수 있는 무선 통신 시스템에서 세컨더리 동기 신호 구조를 예시하는 도면이다.
도 11에서는 세컨더리 동기 신호를 생성하기 위한 두 개의 시뭔스가 물리 영역에서 인터리빙되어 매핑되는 구조를 예시한다.
SSS 부호 생성을 위해 사용되는 두 개의 m—시퀀스를 각각 SSS 1, SSS 2라고 정의할 때, 서브프레임 0의 SSS가 (SSS 1, SSS 2) 두 조합으로 셀 그룹 식별자를 전송한다면 , 서브프레임 5의 SSS는 (SSS 2, SSS 1)으로 교환 (swapping)하여 전송함으로써, 10ms 프레임 경계를 구분할 수 있게 된다. 이 때, 사용되는 SSS 부호는 ^+^+l의 생성다항식을 사용하며 , 서로 다른 순환 천이 (circular shift)를 통해 총 31개의 부호를 생성할 수가 있다. 수신 성능을 향상시키기 위하여 , PSS 기반 (PSS-based)의 서로 다른 두 개의 시뭔스를 정의하여 SSS에 스크램블링 하되, SSS 1과 SSS 2에 서로 다른 시뭔스로 스크램블링 한다. 그 후, SSS 1 기반 (SSS 1-based)의 스크램블링 부호를 정의하여, SSS 2에 스크램블링을 수행한다. 이 때, SSS의 부호는 5nis 단위로 교환되지만 PSS 기반의 스크램블링 부호는 교환되지 않는다. PSS 기반의 스크램블링 부호는 x5 + x3 + l의 생성 다항식으로부터 생성된 m 시퀀스에서 PSS 인덱스에 따라 6 개의 순환 천이 버전으로 정의하고, SSS 1 기반의 스크램블링 부호는 x5 + x4 + x2 + + l 의 다항식으로부터 생성된 스에서 SSS 1의 인덱스에 따라 8 개의 순환 천이 버전으로 정의한다. 참조신호 (RS : Reference Signal )
무선 통신 시스템에서 데이터는 무선 채널을 통해 전송되기 때문에, 신호는 전송 중에 왜곡될 수 있다. 수신단에서 왜곡된 신호를 정확하게 수신하기 위하여, 수신된 신호의 왜곡은 채널 정보를 이용하여 보정되어야 한다. 채널 정보를 검출하기 위하여 송신측과 수신측 모두 알고 있는 신호 전송 방법과 신호가 채널을 통해 전송될 때 왜곡된 정도를 이용하여 채널 정보를 검출하는 방법을 주로 이용한다. 상술한 신호를 파일럿 신호 또는 참조 신호 (RS : reference signal )라고 한다.
또한 최근 대부분의 이동통신 시스템에서 패킷을 전송할 때, 지금까지 한 개의 송신안테나와 한 개의 수신안테나를 사용했던 것에서 탈피, 다중송신안테나와 다중수신안테나를 채택해 송수신 데이터 효율을 향상시킬 수 있는 방법을 사용한다. 다중 입출력 안테나를 이용하여 데이터를 송수신할 때, 신호를 정확하게 수신하기 위하여 송신 안테나와 수신 안테나 간의 채널 상태가 검출되어야 한다. 따라서 각 송신 안테나는 개별적인 참조 신호를 가져야 한다. 이동 통신 시스템에서 RS는 그 목적에 따라 크게 두 가지로 구분될 수 있다. 채널 정보 획득을 위한 목적의 RS와 데이터 복조를 위해 사용되는 RS가 있다. 전자는 UE가 하향 링크로의 채널 정보를 획득하는데 그 목적이 있으므로, 광대역으로 전송되어야 하고, 특정 서브 프레임에서 하향 링크 데이터를 수신하지 않는 UE라도 그 RS를 수신하고 측정할 수 있어야 한다. 또한 이는 핸드 오버 등의 측정 등을 위해서도 사용된다. 후자는 기지국이 하향링크를 보낼 때 해당 리소스에 함께 보내는 RS로서, UE는 해당 RS를 수신함으로써 채널 추정을 할 수 있고, 따라서 데이터를 복조할 수 있게 된다. 이 RS는 데이터가 전송되는 영역에 전송되어야 한다.
하향 참조 신호는 셀 내 모든 단말이 공유하는 채널 상태에 대한 정보 획득 및 핸드오버 등의 측정 등을 위한 하나의 공통 참조 신호 (CRS: common RS)와 특정 단말만을 위하여 데이터 복조를 위해 사용되는 전용 참조 신호 (DRS: dedicated RS)가 있다. 이와 같은 참조 신호들을 이용하여 복조 (demodulation)와 채널 측정 (channel measurement) ¾r 위한 정보를 제공할 수 있다. 즉, DRS는 데이터 복조용으로만 사용되며 CRS는 채널 정보 획득 및 데이터 복조의 두 가지 목적으로 다사용된다.
수신 측 (즉, 단말)은 CRS로부터 채널 상태를 측정하고 , CQI (Channel Quality Indicator) , ΡΜΙ (Precoding Matrix Index) 및 /또는 RI (Rank Indicator)와 같은 채널 품질과 관련된 지시자를 송신 측 (즉, 기지국)으로 피드백한다. CRS는 샐 특정 기준신호 (cell-specific RS)라고도 한다. 반면, 채널 상태 정보 (CSI: Channel State Information)의 피드백과 관련된 참조 신호를 CSI-RS라고 정의할 수 있다.
DRS는 PDSCH 상의 데이터 복조가 필요한 경우 자원 요소들을 통해 전송될 수 있다. 단말은 상위 계층을 통하여 DRS의 존재 여부를 수신할 수 있으며, 상웅하는 PDSCH가 매핑되었을 때만 유효하다 . DRS를 단말 특정 참조 신호 (UE- Λ Λ
44 specific RS) 또는 복조 참조 신호 (DMRS: Demodulation RS)라고 할 수 있다.
도 12는 본 발명이 적용될 수 있는 무선 통신 시스템에서 하향링크 자원 블록 쌍에 매핑된 참조 신호 패턴을 예시한다.
도 12를 참조하면, 참조 신호가 매큉되는 단위로 하향링크 자원 블록 쌍은 시간 영역에서 하나의 서브 프레임 X 주파수 영역에서 12개의 부 반송파로 나타낼 수 있다. 즉, 시간 축 (X축) 상에서 하나의 자원 블록 쌍은 일반 순환 전치 (normal CP: normal Cyclic Prefix) 인 경우 14개의 OFDM 심볼의 길이를 가지고 (도 12(a)의 경우) , 확장 순환 전치 (extended CP: extended Cyclic Prefix)인 경우 12개의 OFDM 심볼의 길이를 가진다 (도 12 (b)의 경우) . 자원 블록 격자에서 '0' , '2' 및 '3'으로 기재된 자원 요소들 (RES)은 각각 안테나 포트 인텍스 '0' , '1' , '2' 및 '3'의 CRS의 위치를 의미하며, 로 기재된 자원 요소들은 DRS의 위치를 의미한다.
이하 CRS에 대하여 좀 더 상세하게 기술하면, CRS는 물리적 안테나의 채널을 추정하기 위해 사용되고, 셀 내에 위치한 모든 단말에 공통적으로 수신될 수 있는 참조 신호로써 전체 주파수 대역에 분포된다. 즉, 이 CRS는 cell- specific한 시그널로, 광대역에 대해서 매 서브 프레임마다 전송된다. 또한, CRS는 채널 품질 정보 (CSI) 및 데이터 복조를 위해 이용될 수 있다.
CRS는 전송 측 (기지국)에서의 안테나 배열에 따라 다양한 포맷으로 정의된다. 3GPP LTE 시스템 (예를 들어 , 릴리즈 -8)에서는 기지국의 전송 안테나 개수에 따라서 최대 4개의 안테나 포트에 대한 RS가 전송된다. 하향링크 신호 송신 측은 단일의 송신 안테나, 2개의 송신 안테나 및 4개의 송신 안테나와 같이 3 종류의 안테나 배열을 가진다. 예를 들어 기지국의 송신 안테나의 개수가 두 개일 경우, 0번과 1번 안테나 포트에 대한 CRS가 전송되고, 네 개인 경우 0 ~3 번 안테나 포트에 대한 CRS가 각각 전송된다 . 기지국의 송신 안테나가 4개일 경우 한 RB 에서의 CRS 패턴은 도 11과 같다.
기지국이 단일의 송신 안테나를 사용하는 경우, 단일 안테나 포트를 위한 참조 신호가 배열된다.
기지국이 2개의 송신 안테나를 사용하는 경우, 2개의 송신 안테나 포트를 위한 참조 신호는 시분할 다중화 (T이 VI: Time Division Multiplexing) 및 /또는 주파수 분할 다중화 ( FDM Frequency Division Multiplexing) 방식을 이용하여 배열된다. 즉, 2개의 안테나 포트를 위한 참조 신호는 각각이 구별되기 위해 서로 다른 시간 자원 및 /또는 서로 다른 주파수 자원이 할당된다. 게다가, 기지국이 4개의 송신 안테나를 사용하는 경우, 4개의 송신 안테나 포트를 위한 참조 신호는 TDM 및 /또는 FDM 방식을 이용하여 배열된다. 하향링크 신호의 수신 측 (단말)에 의하여 측정된 채널 정보는 단일의 송신 안테나 전송, 송신 다이버시티 , 폐쇄 루프 공간 다중화 ( closed- loop spatial multiplexing) , 개방 루프 공간 다중화 ( open— loop spatial multiplexing) 또는 다중 시"용자—다중 입출력 안테나 (Multi -User MIMO)와 같은 전송 방식을 이용하여 전송된 데이터를 복조하기 위하여 사용될 수 있다. 다중 입출력 안테나가 지원되는 경우 참조 신호가 특정의 안테나 포트로부터 전송될 때, 상기 참조 신호는 참조 신호의 패턴에 따라 특정된 자원 요소들의 위치에 전송되며, 다른 안테나 포트를 위해 특정된 자원 요소들의 위치에 전송되지 않는다. 즉, 서로 다른 안테나 사이의 참조 신호는 서로 겹치지 않는다.
자원 블록에 CRS를 맵핑하는 규칙은 다음과 같이 정의된다.
【수학식 14] k = 6m + (v + vshift)mod6
Figure imgf000048_0001
m = 0,l,...,2-N^L -1
m' = m + N^-DL -N^
0 if = 0 and / = 0
3 if = 0 and /≠ 0
3 if = land/ = 0
v =
0 if /? = land/≠0
3(«s mod 2) if = 2
3 + 3(«s mod 2) if ^ = 3 vsMt=N^mod6 수학식 14에서, k 및 1 은 각각 부반송파 인덱스 및 심볼 인덱스를 나타내고, p 는 안테나 포트를 나타낸다 . 은 하나의 하향링크 슬롯에서의
OFDM 심볼의 수를 나타내고, 은 하향링크에 할당된 무선 자원의 수를 나타낸다. ns 는 슬롯 인덱스를 나타내고, D 은 셀 ID를 나타낸다. mod 모들로 (modulo) 연산을 나타낸다. 참조 신호의 위치는 주파수 영역에서 ft 값에 따라 달라진다. ft 는 샐 ID (즉, 물리 계층 셀 ID)에 종속되므로, 참조 신호의 위치는 셀에 따라 다양한 주파수 편이 (frequency shift) 값을 가진다. 보다 구체적으로, CRS를 통해 채널 추정 성능을 향상시키기 위해 CRS의 위치는 셀에 따라 주파수 영역에서 편이될 수 있다. 예를 들어, 참조 신호가 3개의 부 반송파의 간격으로 위치하는 경우, 하나의 셀에서의 참조 신호들은 3k 번째 부반송파에 할당되고, 다른 셀에서의 참조 신호는 3k+l 번째 부반송파에 할당된다. 하나의 안테나 포트의 관점에서 참조 신호들은 주파수 영역에서 6개의 자원 요소 간격으로 배열되고, 또 다른 안테나 포트에 할당된 참조 신호와는 3개의 자원 요소 간격으로 분리된다.
시간 영역에서 참조 신호는 각 슬롯의 심볼 인텍스 0 에서부터 시작하여 동일 간격 ( constant interval )으로 배열된다. 시간 간격은 순환 전치 길이에 따라 다르게 정의된다. 일반 순환 전치의 경우 참조 신호는 슬롯의 심볼 인덱스 0 과 4에 위치하고, 확장 순환 전치의 경우 참조 신호는 슬롯의 심볼 인덱스 0 과 3에 위치한다 . 2개의 안테나 포트 중 최대값을 가지는 안테나 포트를 위한 참조 신호는 하나의 OFDM 심볼 내에 정의된다 . 따라서 , 4개의 송신 안테나 전송의 경우, 참조 신호 안테나 포트 0 과 1을 위한 참조 신호는 슬롯의 심볼 인덱스 0 과 4 (확장 순환 전치의 경우 심볼 인덱스 0 과 3 )에 위치하고, 안테나 포트 2 와 3을 위한 참조 신호는 슬롯의 심볼 인텍스 1에 위치한다. 안테나 포트 2 와 3을 위한 참조 신호의 주파수 영역에서의 위치는 2번째 슬롯에서 서로 맞바꿔진다 .
이하 DRS에 대하여 좀 더 상세하게 기술하면 , DRS는 데이터를 복조하기 위하여 사용된다. 다중 입출력 안테나 전송에서 특정의 단말을 위해 사용되는 선행 부호화 (precoding) 가중치는 단말이 참조 신호를 수신하였을 때 각 송신 안테나에서 전송된 전송 채널과 결합되어 상응하는 채널을 추정하기 위하여 변경 없이 사용된다.
3GPP LTE 시스템 (예를 들어 , 릴리즈 - 8 )은 최대로 4개의 전송 안테나를 지원하고, 탱크 1 빔포밍 (beamforming)을 위한 DRS가 정의된다. 랭크 1 빔포밍을 위한 DRS는 또한 안테나 포트 인덱스 5 를 위한 참조 신호를 나타낸다 자원 블록에 DRS를 맵핑하는 규칙은 다음과 같이 정의된다 . 수학식 15는 일반 순환 전치인 경우를 나타내고, 수학식 16은 확장 순환 전치인 경우를 나타낸다.
【수학식 15】
( )modNX "PRB
Figure imgf000050_0001
「0,1 if n mod 2 0
[2,3 if ns mod 2 :1
w'=0,l ..,3N^SCH -1 vshift =N[ c D e)1 mod 3
【수학식 16] k = (k') odN^ +NS
ᅳ 3w'+vshift if/ = 4
k' =
3m'+(2 + vshift)mod3 if / = 1
/ = |4 'e{0,2}
~ [l l' = l
^ j O if ns mod 2 = 0
|l,2 if «s mod 2 = 1
m'= 0,1,...,4N™SCH -1 vshifl = mod 3 수학식 15 및 IS에서, k 및 1 은 각각 부반송파 인덱스 및 심볼 인덱스를 나타내고, p 는 안테나 포트를 나타낸다 . 은 주파수 영역에서 자원 블록 크기를 나타내고, 부반송파의 수로써 표현된다. 은 물리 자원 블록의 수를 나타낸다. N 은 pDS CH 전송을 위한 자원 블록의 주파수 대역을 나타낸다. ns 는 슬롯 인텍스를 나타내고, 는 셀 ID를 나타낸다. mod 는 모들로 (modulo) 연산을 나타낸다. 참조 신호의 위치는 주파수 영역에서 vshift 값에 따라 달라진다. ift는 셀 ID (즉, 물리 계층 샐 ID)에 종속되므로, 참조 신호의 위치는 셀에 따라 다양한 주파수 편이 ( f requency shif t ) 값을 가진다.
LTE 시스템의 진화 발전된 형태의 LTE-A 시스템에서 기지국의 하향 링크로 최대 8개의 송신 안테나를 지원할 수 있도록 디자인되어야 한다. 따라서 최대 8개 송신 안테나에 대한 RS 역시 지원되어야 한다. LTE 시스템에서 하향 링크 RS는 최대 4개의 안테나 포트에 대한 RS만 정의되어 있으므로, LTE -A 시스템에서 기지국이 4개 이상 최대 8개의 하향 링크 송신 안테나를 가질 경우 이들 안테나 포트에 대한 RS가 추가적으로 정의되고 디자인되어야 한다. 최대 8개의 송신 안테나 포트에 대한 RS는 위에서 설명한 채널 측정을 위한 RS와 데이터 복조를 위한 RS 두 가지가 모두 디자인되어야 한다.
LTE-A 시스템을 디자인 함에 있어서 중요한 고려 사항 중 하나는 backward compatibility , 즉 LTE 단말이 LTE -A 시스템에서도 아무 무리 없이 잘 동작해야 하고, 시스템 또한 이를 지원해야 한다는 것이다. RS 전송 관점에서 보았을 때 , LTE에서 정의되어 있는 CRS가 전 대역으로 매 서브 프레임마다 전송되는 시간-주파수 영역에서 추가적으로 최대 8개의 송신 안테나 포트에 대한 RS가 추가적으로 정의되어야 한다. LTE-A 시스템에서 기존 LTE의 CRS와 같은 방식으로 최대 8개의 송신 안테나에 대한 RS 패턴을 매 서브 프레임마다 전 대역에 추가하게 되면 RS 오버헤드가지나치게 커지게 된다. 따라서 LTE-A 시스템에서 새로이 디자인되는 RS는 크게 두 가지 분류로 나누게 되는데, MCS , PMI 등의 선택을 위한 채널 측정 목적의 RS ( CSI -RS : Channel State Inf ormation-RS , Channel State 工 ndication-RS 등)와 8개의 전송 안테나로 전송되는 데이터 복조를 위한 RS (DMRS : Data Demodulat ion-RS )이다.
채널 측정 목적의 CSI -RS는 기존의 CRS가 채널 측정, 핸드 오버 등의 측정 등의 목적과 동시에 데이터 복조를 위해 사용되는 것과 달리 채널 측정 위주의 목적을 위해서 디자인되는 특징이 있다. 물론 이 또한 핸드 오버 등의 측정 등의 목적으로도 사용될 수도 있다. CSI-RS가 채널 상태에 대한 정보를 얻는 목적으로만 전송되므로 CRS와 달리 매 서브 프레임마다 전송되지 않아도 된다 . CSI -RS의 오버헤드를 줄이기 위하여 CSI -RS는 시간 축 상에서 간헐적으로 전송된다.
데이터 복조를 위해서 해당 시간-주파수 영역에서 스케줄링 된 UE에게 전용적 (dedicated)으로 DM RS가 전송된다. 즉, 특정 UE의 DMRS는 해당 UE가 스케줄링 된 영역, 즉 데이터를 수신 받는 시간-주파수 영역에만 전송되는 것이다.
LTE-A 시스템에서 eNB는 모든 안테나 포트에 대한 CSI -RS를 전송해야 한다 . 최대 8개의 송신 안테나 포트에 대한 CSI— RS를 매 서브 프레임마다 전송하는 것은 '오버헤드가 너무 큰 단점이 있으므로 , CSI— RS는 매 서브 프레임마다 전송되지 않고 시간 축에서 간헐적으로 전송되어야 그 오버헤드를 줄일 수 있다. 즉, CSI -RS는 한 서브 프레임의 정수 배의 주기를 가지고 주기적으로 전송되거나 특정 전송 패턴으로 전송될 수 있다. 이 때 CSI -RS가 전송되는 주기나 패턴은 eNB가 설정할 수 있다.
CSI-RS를 측정하기 위해서 UE는 반드시 자신이 속한 샐의 각각의 CSI-RS 안테나 포트에 대한 CSI-RS의 전송 서브 프레임 인덱스, 전송 서브 프레임 내에서 CSI-RS 자원 요소 (RE) 시간-주파수 위치 , 그리고 CSI-RS 시뭔스 등에 대한 정보를 알고 있어야 한다.
LTE-A 시스템에 eNB는 CSI-RS를 최대 8개의 안테나 포트에 대해서 각각 전송해야 한다. 서로 다른 안테나 포트의 CSI-RS 전송을 위해 사용되는 자원은 서로 직교 (orthogonal)해야 한다 . 한 eNB가 서로 다른 안테나 포트에 대한 CSI— RS를 전송할 때 각각의 안테나 포트에 대한 CSI-RS를 서로 다른 RE에 맵핑함으로써 FDM/TDM방식으로 이들 자원을 orthogonal하게 할당할 수 있다. 또는 서로 다른 안테나 포트에 대한 CSI-RS를 서로 orthogonal한 코드에 맵핑시키는 CDM방식으로 전송할 수 있다 .
CSI-RS에 관한 정보를 eNB가 자기 셀 UE에게 알려즐 때, 먼저 각 안테나 포트에 대한 CSI-RS가 매핑되는 시간-주파수에 대한 정보를 알려줘야 한다. 구체적으로, CSI-RS가 전송되는 서브 프레임 번호들, 또는 CSI-RS가 전송되는 주기, CSI— RS가 전송되는 서브 프레임 오프셋이며, 특정 안테나의 CSI-RS RE가 전송되는 OFDM 심볼 번호, 주파수 간격 (spacing) , 주파수 축에서의 RE의 오프셋 또는 쉬프트 값 등이 있다.
도 13은 본 발명이 적용될 수 있는 무선 통신 시스템에서 주기적인 CSI- RS의 전송 방식올 예시한다 .
도 13과 같이, CSI-RS를 전송하는 eNB의 경우, 해당 eNB의 CSI-RS의 전송 주기는 10 (ms 또는 서브프레임) 이고, CSI-RS 전송 오프셋은 3 (서브프레임)이다. 여러 샐들의 CSI-RS가 시간 상에서 고르게 분포할 수 있도록 오프셋 값은 eNB마다 각각 다른 값을 가질 수 있도톡 한다. 10ms의 주기로 CSI-RS가 전송되는 eNB의 경우, 가질 수 있는 오프셋은 0~9의 10개의 값이 있다. 이 오프셋 값은 특정 주기를 가지는 eNB가 실제로 CSI-RS 전송을 시작하는 서브 프레임의 값을 나타낸다. eNB가 CSI-RS의 주기와 오프셋 값을 알려주면 , UE는 그 값을 이용하여 해당 위치에서 eNB의 CSI-RS를 측정하여 CQI/PMI/RI 등의 정보를 eNB에게 보고한다. CSI-RS에 관련된 위 정보들은 모두 셀 특정 (cell-specific)한 정보이다.
도 14는 본 발명이 적용될 수 있는 무선 통신 시스템에서 비주기적인 CSI- RS의 전송 방식을 예시한다 .
도 14에서는 CSI-RS가 전송 서브프레임 패턴을 가지고 전송되는 방식을 예시한다. CSI-RS 전송 패턴은 10 서브 프레임으로 구성되며, 각각의 서브 프레임에서 CSI-RS 전송 여부를 1 비트 지시자로 지정한다 .
일반적으로 eNB7]", UE에게 CSI-RS 구성 ( configuration)을 알려주는 방식으로 다음 두 가지 방식이 고려된다 .
먼저, DBCH(Dynamic BCH) 시그널링을 이용하는 제 1 방식이 고려될 수 있다.
제 1 식은 CSI-RS configuration에 관한 정보를 eNB |- UE들에게 브로드캐스팅하는 방식이다. LTE 시스템에서 시스템 정보에 대한 내용을 UE들에거 1 알려줄 때 보통 BCH (Broadcasting Channel)에 해당 정보를 전송한다. 그런데 그 내용이 많아서 BCH에 다 전송할 수 없는 경우, 일반 데이터와 같은 방식으로 전송하되 해당 데이터의 PDCCH를 특정 UE ID (예를 들어 , C-RNTI) 7} 아닌 SI-RNTI (System information RNTI)를 이용하여 CRC를 마스킹 (masking)하여 보낸다. 그리고 실제 시스템 정보는 일반 유니캐스트 데이터와 같이 PDSCH영역에 전송된다. 그러면 셀 안의 모든 ϋΕ는 SI-RNTI를 이용하여 PDCCH를 디코딩 한 후 해당 PDCCH가 가리키는 PDSCH를 디코딩하여 시스템 정보를 획득한다. 이와 같은 방식의 브로드캐스팅 방식을 일반적인 브로드 캐스팅 방식인 PBCH(Physical BCH)와 구분하여 DBCH (Dynamic BCH) 라고 불리우기도 한다.
LTE 시스템에서 브로드캐스팅 되는 시스템 정보는 크게 두 가지로 나눌 수 있다. 즉, PBCH에 전송되는 마스터 정보 블록 (MIB: Master Information Block)와 PDSCH에 전송되어 일반 유니캐스트 데이터와 다증화되어 전송되는 시스템 정보 블톡 (SIB: System Information Block) 이다. LTE 시스템에서 SIB 타입 1 ~ SIB 타입 8 (SIB 1 ~ SIB 8) 에 전송되는 정보들은 이미 정의되어 있으므로 LTE-A 시스템에서 새로이 도입되는 SIB 9, SIB 10 등에 CSI-RS configuration^: 전송하는 방식이다.
다음으로, RRC 시그널링을 이용하는 제 2 방식이 고려될 수 있다.
거 12 식은 CSI-RS configuration에 관한 정보를 eNB7]- 각각의 UE에게 전용 RRC 시그널링 (dedicated RRC signaling)을 사용하여 알려주는 방식이다. UE가 최초 접속이나 핸드오버를 통해 eNB에 연결이 이루어지는 과정에서 eNB는 해당 UE에게 RRC 시그널링을 통해 CSI-RS configuration을 알려 주도록 한다. 또는 UE에게 CSI-RS 측정에 기반한 채널 상태 피드백을 요구하는 RRC 시그널링 메시지를 통해 CSI-RS configuration을 알려 주도록 하는 방식이다. CSI-RS— C이 if ig 정보 요소 (IE: Information Element)는 configuration을 특정하기 위하여 사용된다. 표 2는 CSI-RS-Conf ig IE를 예시하는 표이다. 【표 2】
- ASN1 START
CSI-RS-Conf ig-rlO : := SEQUENCE {
csi-RS-rlO CHOICE {
release NULL,
setup SEQUENCE
antennaPortsCount-rlO ENUMERATED {anl, an2 , an4 , an 8 } ,
resourceConf ig-rlO INTEGER (0..31) '
subf rameConf ig-rlO INTEGER (0..154) ,
p-C-rlO INTEGER (-8..15)
OPTIONAL,
Need ON
zeroTxPowerCSI- S-rlO CHOICE {
release NULL,
setup SEQUENCE {
zeroTxPowerResourceConf igList-rlO BIT STRING (SIZE (16) )
zeroTxPo erSubf rameConf ig- rlO INTEGER {0..154)
}
} OPTIONAL
Need ON
ASN1STOP
표 2를 참조하면 , λ antennaPortsCount ' 필드는 CSI-RS의 전송을 위하여 사용되는 안테나 포트들의 개수를 지시한다 . 、 resourceConf ig' 필드는 CSI-RS configuration을 지시한다. xSubf rameConf ig' 필드 및 x zeroTxPowerSubf rameConf ig' 필드는 CSI-RS가 전송되는 서브프레임 구성 (7csi— RS )을 지시한다,
、 zeroTxPowerResourceConf igList ' 필드는 제로 전력 (ZP: zero- power) CS工 -RS의 구성을 지시한다 . 、 zeroTxPowerResourceConf igList, 필드를 구성하는 16비트의 비트맵 (bitmap)에서 1로 설정된 비트에 대웅되는 CSI-RS 구성이 ZP CSI-RS로 설정될 수 있다.
Xp C'필드는 PDSCH EPRE (Energy Per Resource Element) CSI- RS EPRE의 비로 가정되는 파라미터 를 나타낸다 . 5g
CSI— RS는 1개, 2개, 4개 또는 8개의 안테나 포트를 통해 전송된다. 이때 사용되는 안테나 포트는 각각 Ρ = 15 , Ρ = ^,16 , ? = 15 18 , ? = 15^22
CSI— RS는 서브캐리어 간격 = l5kHZ에 대해서만 정의될 수 있다. CSI-RS 시퀀스는 다음 수학식 17을 이용하여 생성될 수 있다.
【수학식 17】 η (m) --^,(1- 2-c(2m)) + j^=(l-2- c{2m + 1)), m = 0,1,...,N ^ - 1 여기서 , (비은 생성되는 CSI-RS 시퀀스, c(/)는 의사랜덤 (pseudorandom) 시퀀스, "s는 무선 프레임 내에서의 슬롯 넘버 , /은 슬롯 내에서의
-maxJDL
OFDM 심볼 번호, N 은 하향링크 대역폭의 최대 RB 개수를 각각 의미한다. 의사랜덤 (pseudo-randotn) 시¾스 발생기는 아래 수학식 18과 같이 매 OFDM 심볼 시작에서 초기화된다.
【수학식 18】
cinit = 210 - (7 - ("s +1)+/ + 1)·(2· +ΐ)+2· ' + NCp
ΆΓ cell
수학식 18에서, Nm 는 셀 ID를 나타내고, 일반 CP의 경우 NCP=1이고, 확장 CP의 경우 NCP=0이다.
CSI-RS 전송을 위해 설정된 서브프레임 내에서, 수학식 17을 통해 생성되는 CSI— RS 시퀀스 ^" 는 아래 수학식 19와 같이 각 안테나 포트 (p) 상의 참조 심볼 (reference symbol)로서 이용되는 복소 변조 심볼 (complex- a(p)
valued modulation symbol ) k 어 j 매핑된다.
【수학식 19】
a (P) -0 for p G {l 5,16}, normal cyclic prefix
-6 for p e {l 7,18}, normal cyclic prefix
ᅳ 1 for p G {l 9,20}, normal cyclic prefix
-7 for p e {21,22}, normal cyclic prefix
k = k'+\2 +
-0 for p e {l 5,16}, extended cyclic prefix
ᅳ 3 for p G {l 7,18}, extended cyclic prefix
-6 for p e {l9,20}, extended cyclic prefix
-9 for p e {21,22}, extended cyclic prefix
'/" CSI reference signal configurations 0-19, normal cyclic prefix
1 = /'+· 21" CSI reference signal configurations 20-31, normal cyclic prefix
Γ CSI reference signal configurations 0 - 27, extended cyclic prefix
Figure imgf000058_0001
0,1
Figure imgf000058_0002
상기 수학식 19에서, k'' (여기서, k,는 자원 블록 내 부반송파 인덱스이고, 1'는 슬롯 내 OFDM 심볼 인덱스를 나타낸다. ) 및 " s의 조건은 아래 표 3 또는 표 4와 같은 CSI-RS 설정 (configuration)에 따라 결정된다. 표 3은 일반 CP에서 CSI-RS 구성으로부터 ', ')의 매핑을 예시한다.
【표 3】
Figure imgf000058_0003
Figure imgf000059_0002
표 4는 확장 CP에서 CSI-RS 구성으로부터 ', Ζ')의 매핑을 예시한다.
【표 4】
Figure imgf000059_0001
20 (4,1) 1 (4,1) 1
21 (3,1) 1 (3,1) 1
22 (8,1) 1
23 (7,1) 1
24 (6,1) 1
25 (2,1) 1
26 (1,1) 1
27 (0,1) 1
표 3 및 표 4를 참조하면, CSI-RS의 전송에 있어서, 이종 네트워크 (HetNet: heterogeneous network) 환경을 포함하여 멀티 셀 환경에서 셀간 간섭 (ICI: inter-cell interference)을 줄이기 위하여 최대 32개 (일반 CP 경우) 또는 최대 28개 (확장 CP 경우)의 서로 다른 구성 (configuration)이 정의된다.
CSI-RS 구성은 샐 내의 안테나 포트의 개수 및 CP에 따라 서로 다르며, 인접한 샐은 최대한 서로 다른 구성을 가질 수 있다. 또한, CSI-RS 구성은 프레임 구조에 따라 FDD 프레임과 TDD 프레임에 모두 적용하는 경우와 TDD 프레임에만 적용하는 경우로 나눠질 수 있다. 표 3 및 4를 기반으로 CSI-RS 구성에 따라 '„ 및 "s 가 정해지고, 이를 상기 수학식 19에 적용하면, 각 CSI-RS 안테나 포트가 CSI-RS 전송에 이용하는 시간-주파수 자원이 결정된다 . 도 15는 본 발명이 적용될 수 있는 무선 통신 시스템에서 CSI-RS 구성을 예시하는 도면이다. 특히 , 도 15는 수학식 19 및 표 3에 따른 CSI-RS 구성 (즉, 일반 CP 경우)을 예시한다. 도 15 (a)는 1개 또는 2개의 CSI-RS 안테나 포트들에 의한 CSI-RS 전송에 사용 가능한 20가지 CSI-RS 구성들을 나타낸 것이고, 도 15(b)는 cn
59
4개의 CSI-RS 안테나 포트들에 의해 사용 가능한 10가지 CSI-RS 구성들을 나타낸 것이며 , 도 15(c)는 8개의 CSI-RS 안테나 포트들에 의해 CSI— RS 전송에 사용 가능한 5가지 CSI-RS 구성들을 나타낸 것이다.
이와 같이 , 각 CSI-RS 구성에 따라 CSI— RS가 전송되는 무선 자원 (즉, RE 쌍)이 결정된다 .
특정 셀에 대하여 CSI-RS 전송을 위해 1개 혹은 2개의 안테나 포트가 설정되면, 도 15 (a)에 도시된 20가지 CSI-RS 구성들 중 설정된 CSI-RS 구성에 따른 무선 자원 상에서 CSI-RS가 전송된다.
마찬가지로, 특정 셀에 대하여 CSI-RS 전송을 위해 4개의 안테나 포트가 설정되면, 도 15(b)에 도시된 10가지 CSI-RS 구성들 증 설정된 CSI-RS 구성에 따른 무선 자원 상에서 CSI-RS가 전송된다 . 또한, 특정 셀에 대하여 CSI-RS 전송을 위해 8개의 안테나 포트가 설정되면, 도 15(c)에 도시된 5가지 CSI-RS 구성들 중 설정된 CSI-RS 구성에 따른 무선 자원 상에서 CSI-RS가 전송된다.
2개의 안테나 포트 별 (즉, {15, 16} , {17, 18} , {19, 20} , {21, 22})로 각각의 안테나 포트에 대한 CSI— RS는 동일한 무선 자원에 CDM되어 전송된다. 안테나 포트 15 및 16를 예를 들면, 안테나 포트 15 및 16에 대한 각각의 CSI-RS 복소 심볼은 동일하나, 서로 다른 직교 코드 (예를 들어 , 왈시 코드 (walsh code)가 곱해져서 동일한 무선 자원에 매핑된다. 안테나 포트 15에 대한 CSI-RS의 복소 심볼에는 [1, 1]이 곱해지고, 안테나 포트 16에 대한 CSI-RS의 복소 심볼에는 [1 -1]이 곱해져서 동일한 무선 자원에 매핑된다. 이는 안테나 포트 {17,18} , {19,20}, {21, 22}도 마찬가지이다. UE는 전송된 심볼에 곱해진 코드를 곱하여 특정 안테나 포트에 대한 CSI- RS를 검출할 수 있다. 즉, 안테나 포트 15에 대한 CSI-RS를 검출하기 위해서 곱해진 코드 [1 1]을 곱하고, 안테나 포트 16에 대한 CSI— RS를 검출하기 위해서 곱해진 코드 [1 -1]올 곱한다.
도 15(a) 내지 (C)를 참조하면 , 동일한 CSI-RS 구성 인덱스에 해당하게 되면, 안테나 포트 수가 많은 CSI-RS 구성에 따른 무선 자원은 CSI-RS 안테나 포트 수가 적은 CSI-RS 구성에 따른 무선 자원을 포함한다. 예를 들어, CSI- RS 구성 0의 경우, 8개 안테나 포트 수에 대한 무선 자원은 4개 안테나 포트 수에 대한 무선 자원과 1 또는 2개의 안테나 포트 수에 대한 무선 자원을 모두 포함한다.
하나의 샐에서 복수의 CSI-RS 구성이 사용될 수 있다. 넌 -제로 전력 (NZP: non-zero power) CSI-RS는 0개 또는 1개 CSI-RS 구성만이 이용되고, 제로 전력 (ZP: zero power) CSI-RS는 0개 또는 여러 개의 CSI-RS 구성이 이용될 수 있다.
상위 계층에 의해 설정되는 16 비트의 비트맵인 ZP CSI- RS(ZeroPowerCSI-RS)에서 1로 설정된 각 비트 별로, UE는 위의 표 3 및 표 4의 4개의 CSI-RS 열 (column)에 해당하는 RE들에서 (상위 계층에 의해 설정된 NZP CSI-RS를 가정하는 RE와 중복되는 경우를 제외) 제로 전송 전력을 가정한다. 최상위 비트 (MSB: Most Significant Bit)는 가장 낮은 CSI-RS 구성 인덱스에 해당하고, 비트맵 내에서 그 다음의 비트는 순서대로 다음의 CSI-RS 구성 인덱스에 해당한다.
CSI-RS는 위의 표 3 및 표 4에서 "smod2의 조건을 만족하는 하향링크 슬롯 및 CSI-RS 서브프레임 구성을 만족하는 서브프레임에서만 전송된다.
프레임 구조 타입 2(TDD)의 경우, 스페셜 서브프레임 , 동기 신호 (SS) , PBCH 또는 SIB 1 (SysteralnformationBlockTypel) 데入 1지 전송과 층돌되는 서브프레임 또는 페이징 메시지 전송을 위해 설정된 서브프레임에서 CSI— RS는 전송되지 않는다.
또한, 안테나 포트 세트 S ( >S = {15} , 5 = {15 ' 161 , ^ = {17,18} t 5 = {19,20} 또는 S = {21'22} ) 내 속하는 어떠한 안테나 포트에 대한 cs工ᅳ RS가 전송되는 RE는 PDSCH또는 다른 안테나 포트의 CSI— RS 전송에 사용되지 않는다.
CSI-RS 전송에 사용되는 시간-주파수 자원들은 데이터 전송에 사용될 수 없으므로, CSI-RS 오버헤드가 증가할수록 데이터 처리량 (throughput)이 감소하게 된다 . 이를 고려하여 CSI-RS는 매 서브프레임마다 전송되도록 구성되지 않고, 다수의 서브프레임에 해당하는 소정의 전송 주기마다 전송되도록 구성된다. 이 경우, 매 서브프레임마다 CSI-RS가 전송되는 경우에 비하여 CSI- RS 전송 오버헤드가 많이 낮아질 수 있다 .
CSI-RS 전송을 위한 서브프레임 주기 (이하, 'CSI 전송 주기,로 지칭함) (rcsi-RS ) 및 서브프레임 오프셋 ( A )은 아래 표 5와 같다 .
표 5는 CSI-RS 서브프레임 구성을 예시한다.
표 5를 참조하면 , CSI-RS 서브프레임 구성 ( ^sws )에 따라 CSI-RS 전송 주기 ( ^CSI-RS ) 및 서브프레임 오프셋 ( aCSI-RS )이 결정된다.
표 5의 CSI-RS 서브프레임 구성은 앞서 표 2의 'SubframeConfig' 필드 및 λ zeroTxPowerSubf rameConf ig' 필드 중 어느 하나로 설정될 수 있다. CSI-RS 서브프레임 구성은 NZP CSI-RS 및 ZP CSI-RS에 대하여 개별적으로 (separately) 설정될 수 있다.
CSI-RS를 포함하는 서브프레임은 아래 수학식 20을 만족한다.
【수학식 20】
(10"f +|_ns/2j-ACSI_RS)modrCSI_RS =0
수학식 20에서 rcsi-RS는 CSI-RS 전송 주기 , ACSI-RS는 서브프레임 오프셋 값,
"f는 시스템 프레임 넘버 , 는 슬롯 넘버를 의미한다.
서빙 셀에 대해 전송 모드 9 (transmission mode 9)가 설정된 UE의 경우, UE는 하나의 CSI-RS 자원 구성이 설정될 수 있다. 서빙 셀에 대해 전송 모드 10 (transmission mode 10)이 설정된 UE의 경우, UE는 하나 또는 그 이상의 CSI-RS 자원 구성 (들)이 설정될 수 있다.
각 CSI-RS 자원 구성을 위한 아래와 같이 파라미터가 상위 계층 시그널링을 통해 설정된다.
- 전송 모드 10이 설정된 경우, CSI-RS 자원 구성 식별자
- CSI-RS 포트 개수
- CSI-RS 구성 (표 3 및 표 4 참조)
- CSI-RS 서브프레임 구성 ^CSI-RS) (표 5 참조)
- 전송 모드 9가 설정된 경우, CSI 피드백을 위한 전송 파워 - 전송 모드 10이 설정된 경우, 각 CSI 프로세스에 대하여 CSI 피드백을 위한 전송 파워 ( ^ ) . CSI 프로세스에 대하여 CSI 서브프레임 세트들 Ccsi,o 및 Ccs'.' 7} 상위 계층에 의해 설정되면, Pc는 CSI 프로세스의 각 CSI 서브프레임 세트 별로 설정된다. - 임의 랜덤 (pseudo-rnadom) 시뭔스 발생기 파라미터 ("ID)
- 전송 모드 10이 설정된 경우, QCL (QuasiCo-Located) 타입 B UE 가정을 위한 QCL 스크램블링 식별자 (qcl-Scramblingldentity-rll) , CRS 포트 카운트 (crs-PortsCount— rll) , MBSFN (Multicast-broadcast single -frequency network) 서브프레임 설정 리스트 (mbsfn- SubframeConfigList-rll) 파라미터를 포함하는 상위 계층 파라미터 ( 'qcl- CRS-Info-rll ' )
UE가 도출한 CSI 피드백 값이 [-8, 15] dB 범위 내의 값을 가질 때, Pc 는 CSI-RS EPRE에 대한 PDSCH EPRE의 비율로 가정된다 . 여기서 , PDSCH
EPRE는 CRS EPRE에 대한 PDSCH EPRE의 비율이 인 심볼에 해당한다 .
서빙 셀의 동일한 서브프레임에서 CSI-RS와 PMCH이 함께 설정되지 않는다. 프레임 구조 타입 2에서 4개의 CRS 안테나 포트가 설정된 경우, UE는 일반 CP의 경우 [20-31] 세트 (표 3 참조) 또는 확장 CP의 경우 [IS-27] 세트 (표 4 참조)에 속하는 CSI-RS 구성 인덱스가 설정되지 않는다 .
UE는 CSI-RS 자원 구성의 CSI-RS 안테나 포트가 지연 확산 (delay spread) , 도풀러 확산 (Doppler spread) , 도플러 쉬프트 (Doppler shift) , 평균 이득 (average gain) 및 평균 지연 (average delay)에 대하여 QCL 관계를 가진다고 가정할 수 있다. 전송 모드 10 그리고 QCL 타입 B가 설정된 UE는 CSI-RS 자원 구성에 해당하는 안테나 포트 0-3과 CSI-RS 자원 구성에 해당하는 안테나 포트 15- 227} 도플러 확산 (Doppler spread) , 도플러 쉬프트 (Doppler shift)에 대하여 QCL 관계라고 가정할 수 있다.
전송 모드 10이 설정된 UE의 경우, 서빙 셀에 대하여 하나 또는 그 이상의 CSI-IM (Channel -State Information - Interference Measurement) 자원 구성이 설정될 수 있다.
상위 계층 시그널링을 통해 각 CSI-IM 자원 구성을 위한 아래와 같은 파라미터가 설정될 수 있다.
- ZP CSI-RS 구성 (표 3 및 표 4 참조)
- ZP CSI RS 서브프레임 구성 (7csi— RS) (표 5 참조)
CSI-IM 자원 구성은 설정된 ZP CSI-RS 자원 구성 중 어느 하나와 동일하다.
서빙 셀의 동일한 서브프레임 내 CSI-IM 자원과 PMCH가 동시에 설정되지 않는다.
전송 모드 1-9가 설정된 UE의 경우, 서빙 셀에 대하여 UE는 하나의 ZP CSI-RS 자원 구성이 설정될 수 있다. 전송 모드 10이 설정된 UE의 경우, 서빙 셀에 대하여 UE는 하나 또는 그 이상의 ZP CSI-RS 자원 구성이 설정될 수 있다. 상위 계층 시그널링을 통해 ZP CSI-RS 자원 구성을 위한 아래와 같은 파라미터가 설정될 수 있다.
- ZP CSI-RS 구성 리스트 (표 3 및 표 4 참조)
- ZP CSI-RS 서브프레임 구성 ( 7CS[-RS) (표 5 참조) 서빙 샐의 동일한 서브프레임에서 ZP CSI -RS와 PMCH가 동시에 설정되지 않는다.
전송모드 (TM: Transmission Mode)
3GPP LTE/LTE-A 시스템에서는 하향링크 데이터 채널 전송 모드에 관하여 정의하고 있다. 아래와 같은 전송 모드는 RRC 시그널링 (예를 들어 , RRC 연결 설정 (RRC Connection Setup ) 메시지 , RRC 연결 재설정 (RRC Connection Reconf iguration) 메시지 또는 RRC 연결 재확립 (RRC Connection Reestablishraent ) 메시지 )을 통해 단말에게 설정된다. 표 6은 PDCCH에 마스킹된 RNTI의 종류가 C-RNTI인 경우의 전송 모드를 예시한다 .
【표 6 ]
처"소ᄋ 모 c DCI 포맷 PDCCH에 대웅되는 PDSCH의 전송 방식
DCI 포맷 1A 단일 안테나 포트, 포트 0
DCI 포맷 1 단일 안테나 포트, 포트 0
DC工 포맷 1Ά 전송 다이버시티 ( Transmit diversity) 모드 2
DCI 포맷 1 전송 다이버시티
DCI 포 1A 전송 다이버시티
큰 지연 ( large
모드 3
DCI 포1 2A delay) CDD ( cyclic delay diversity) 또는 전송 다이버시티
DCI 포맷 1A 전송 다이버시티
모드 4 폐투프 공간 다중화 ( Closed— loop spatial
DCI 포맷 2
multiplexing) 또는 전송 다이 시티
DCI 포맷 1A 전송 다이버시티
1 = 5
DCI 포맷 1D 다중 사용자 MIMO (Multi -user MIMO)
DCI 포맷 1A 전송 다이버시티
모드 6
DCI 포맷 1B 단일 전송 레이어를 이용한 폐루프 공간 다중화 PBCH 안테나 포트의 개수가 1이면, 단일 안테나 모 C η DCI 포맷 1A 포트, 포트 0가사용됨 , 그렇지 않은 경우 전송 다이버시티
DCI 포맷 1 단일 안테나 포트, 포트 5
PBCH 안테나 포트의 개수가 1이면, 단일 안테나
DCI 포맷 1A 포트, 포트 0가 사용됨 , 그렇지 않은 경우 전송 모드 8 다이버시티
이중 레이어 ( dual layer ) 전송, 포트 7 및 8
DCI 포1 2B
또는 단일 안테나 포트, 포트 7 또는 8
넌— MBSFN ( Non- MBSFN ) 서브프레임: PBCH 안테나 포트의 개수가 1이면, 단일 안테나 포트,
DCI 포맷 1A 포트 0가사용됨 , 그렇지 않은 경우 전송 모드 9 다이버시티
MBSFN서브프레임: 단일 안테나 포트, 포트 7
8 레이어 전송까지 다중 레이어 전송, 포트 7— 14
DCI 포맷 2 C
또는 단일 안테나 포트, 포트 7 또는 8
넌 -MBSFN ( Non— MBSFN ) 서브프레임: PBCH 안테나 포트의 개수가 1이면, 단일 안테나 포트,
DCI 포맷 1A 포트 0가사용됨 , 그렇지 않은 경우 전송 모드 10 다이버시티
MBSFN서브프레임 : 단일 안테나 포트, 포트 7
8 레이어 전송까지 다중 레이어 전송, 포트 7 14
DCI 포맷 2D
또는 단일 안테나 포트, 포트 7 또는 8 표 7은 PDCCH에 마스킹된 RNT工의 종류가 SPS C— RNTI인 경우의 전송 모드를 예시한다 .
【표 7】
송 rt t.: DCI 포맷 PDCCH에 대웅되는 PDSCH의 전송 방시ᄀ 모 t: 1 DCI 포1 1A 단일 안테나 포트, 포트 0
DCI 포맷 1 단일 안테나 포트, 포트 0
DCI 포맷 1A 전송 다이버시티 ( Transmi t divers i ty ) 모드 2
DCI 포맷 1 전송 다이버시티
DCI 포맷 1A 전송 다이버시티
모드 3
DCI 포맷 2A 전송 다이버시티
DCI 포맷 1A 전송 다이버시티
모드 4
DCI 포맷 2 전송 다이버시티
모드 5 DCI 포맷 1A 전송 다이버시티
모드 6 DCI 포맷 1A 전송 다이버시티
DCI 포맷 1A 단일 안테나 포트, 포트 0
모드 7
DCI 포맷 1 단일 안테나 포트, 포트 0
모드 8 DCI 포맷 1A 단일 안테나 포트, 포트 7 DCI 포맷 2B 단일 안테나 포트, 포트 7 또는 8
모 DCI
c 9 포맷 1A 단일 안테나 포트, 포트 7
DCI 포맷 2C 단일 안테나 포트, 포트 7 또는 8
DCI 포맷 1A 단일 안테나 포트, 포트 7
모드 10
DCI 포맷 2D 단일 안테나 포트, 포트 7 또는 8 표 6 및 표 7을 참조하면, 3GPP LTE/LTE -A 표준에서는 PDCCH어) 마스킹된 RNT工의 종류에 따른 하향링크 제어 정보 ( DCI ) 포맷이 정의되어 있으며, 특히 C- RNTI와 SPS C- RNTI의 경우, 전송 모드와 이에 대웅하는 DCI 포맷 , 즉 전송 모드 기반 DCI 포맷을 정의하고 있다 . 또한, 각각의 전송 모드와는 무관하게 적용될 수 있는, 즉 폴백 ( Fal l— back ) 모드를 위한 DCI 포맷 1A가 정의되어 있다. 전송 모드에 관한 동작의 예시로서, 단말이 표 6에서 C-RNTI로 마스킹된 PDCCH를, 블라인드 디코딩 ( bl ind decoding)한 결과, DCI 포맷 1B가 검출된다면, 단일 레이어를 이용한 폐루프 공간 다중화 기법으로 PDSCH가 전송되었다고 가정하여 PDSCH를 디코딩한다 . 또한, 표 6 및 표 7에서 전송 모드 10은 CoMP 전송 방식의 하향링크 데이터 채널 전송 모드를 의미한다 . 표 6을 예를 들면 , 단말이 C- RNTI로 마스킹된 PDCCH를 블라인드 디코딩한 결과 DCI 포맷 2D가 검출된다면 안테나 포트 7 내지 14 , 즉 DMRS에 기반하여 다중 레이어 전송 기법으로 PDSCH가 전송된다는 가정하에 PDSCH를 디코딩한다 . 또는 DMRS 안테나 포트 7 또는 8에 기반하여 단일 안테나 전송 기법으로 PDSCH가 전송된다는 가정하에 PDSCH를 디코딩한다 . 반면, C- RNTI로 마스킹된 PDCCH를 블라인드 디코딩한 결과, DCI 포맷 1A가 검출된다면 , 해당 서브프레임이 MBSFN 서브프레임인지 여부에 따라 전송 모드가 달라진다. 예를 들어, 해당 서브프레임이 Non-MBSFN 서브프레임인 경우 PDSCH는 안테나 포트 0의 CRS에 기반하여 단일 안테나 전송 또는 CRS 기반 전송 다이버시티 기법으로 전송되었다는 가정하에 디코딩한다. 또한, 해당 서브프레임이 MBSFN 서브프레임인 경우 PDSCH는 안테나 포트 7의 DMRS에 기반한 단일 안테나 전송이 이루어졌다는 가정하에 디코딩할 수 있다. 안테나포트 간 QCL (quasi co- located)
QCL 관계에 대하여 살펴보면, 두 개의 안테나 포트간에 대해서 예를 들면, 만약 하나의 안테나 포트를 통해 일 심볼이 전달되는 무선 채널의 광범위 특성 ( large— scale property)이 다른 하나의 안테나 포트를 통해 일 심볼이 전달되는 무선 채널로부터 암시 ( inf er)될 수 있다면, 상기 두 개의 안테나 포트들은 QCL 관계에 있다 (흑은 QCL 되었다)고 말할 수 있다 . 여기서 , 상기 광범위 특성은 지연 확산 (delay spread) , 도플러 확산 (Doppler spread) , 도플러 쉬프트 (Doppler shif t ) , 평균 이득 (average gain) 및 평균 지연 ( average delay) 중 하나 이상을 포함한다.
즉, 두 개의 안테나 포트들이 QCL 관계에 있다 함은, 하나의 안테나 포트로부터의 무선 채널의 광범위 특성이 나머지 하나의 안테나 포트로부터의 무선 채널의 광범위 특성과 같음을 의미한다 . RS가 전송되는 복수의 안테나 포트를 고려하면, 서로 다른 두 종류의 RS가 전송되는 안테나 포트들이 QCL 관계에 있으면, 한 종류의 안테나 포트로부터의 무선 채널의 광범위 특성을 다른 한 종류의 안테나 포트로부터의 무선 채널의 광범위 특성으로 대체할 수 있을 것이다. 상기 QCL의 개념에 따라, 단말은 비 -QCL (Non-QCL) 안테나 포트들에 대해서는 해당 안테나 포트들로부터의 무선 채널 간에 동일한 상기 광범위 특성을 가정할 수 없다. 즉, 이 경우 단말은 타이밍 획득 및 트랙킹 ( tracking) 주파수 오프셋 추정 및 보상, 지연 추정 및 도플러 추정 등에 대하여 각각의 설정된 비 -QCL 안테나 포트 별로 독립적인 프로세싱을 수행하여야 한다.
QCL을 가정할 수 있는 안테나 포트들간에 대해서, 단말은 다음과 같은 동작을 수행할 수 있다는 장점이 있다:
- 지연 확산 및 도플러 확산에 대하여, 단말은 어떤 하나의 안테나 포트로부터의 무선 채널에 대한 전력-지연-프로파일 (power- delay prof ile ) , 지연 확산 및 도플러 스펙트럼 (Doppler spectrum) , 도플러 확산 추정 결과를 다른 안테나 포트로부터의 무선 채널에 대한 채널 추정 시 사용되는 위너 필터 (Wiener f ilter) 등에 동일하게 적용할 수 있다.
- 주파수 쉬프트 ( shi f t ) 및 수신된 타이밍에 대하여 , 단말은 어떤 하나의 안테나 포트에 대한 시간 및 주파수 동기화 수행한 후, 동일한 동기화를 다른 안테나 포트의 복조에 적용할 수 있다.
- 평균 수신 전력에 대하여, 단말은 둘 이상의 안테나 포트들에 대하여 RSRP (Reference Signal Received Power) 즉정을 평균할 수 있다.
예를 들어, 단말이 하향링크 데이터 채널 복조를 위한 DMRS 안테나 포트가 서빙 셀의 CRS 안테나 포트와 QCL 되었다면, 단말은 해당 DMRS 안테나 포트를 통한 채널 추정 시 자신의 CRS 안테나 포트로부터 추정했던 무선 채널의 광범위 특성들 ( large - scale properties )을 동일하게 적용하여 DMRS 기반 하향링크 데이터 채널 수신 성능을 향상시킬 수 있다. 왜냐하면, CRS는 매 서브프레임 그리고 전체 대역에 걸쳐 상대적으로 높은 밀도 (density)로 브로드캐스팅되는 참조 신호이므로, 광범위 특성에 관한 추정치는 CRS로부터 보다 안정적으로 획득이 가능하기 때문이다. 반면 , DMRS는 특정 스케줄링된 RB에 대해서는 단말 특정하게 전송되며, 또한 PRG(precoding resource block group) 단위가 기지국이 전송에 사용하는 프리코딩 행렬 (precoding matrix) 7} 변할 수 있으므로 단말에게 수신되는 유효 채널은 PRG 단위로 달라질 수 있어 다수의 PRG를 스케줄링 받은 경우라고 하더라도 넓은 대역에 걸쳐 DMRS를 무선 채널의 광범위 특성 추정용으로 사용 시에 성능 열화가 발생할 수 있다. 또한, CSI-RS도 그 전송 주기가 수~수십 ms가 될 수 있고, 자원 블록 당 평균적으로 안테나 포트 당 1 자원 요소의 낮은 밀도를 가지므로 CSI-RS도 마찬가지로 무선 채널의 광범위 특성 추정용으로 사용할 경우 성능 열화가 발생할 수 있다.
즉, 안테나 포트 간의 QCL 가정을 함으로써 단말은 하향링크 참조 신호의 검출 /수신, 채널 추정, 채널 상태 보고 등에 활용할 수 있다. 샐 즉정 (Cell Measurement) /죽정 보고 (Measurement Report)
단말의 이동성 (mobility) 보장을 위한 여러 방법들 (핸드오버 , 랜덤 액세스, 셀 탐색 등) 중 하나 또는 그 여러 방법들을 위하여 UE는 셀 측정 (cell measurement)한 결과를 기지국 (혹은 네트워크)에 보고한다.
3GPP LTE/LTE-A 시스템에서 셀 특정 참조 신호 (CRS)는 시간 축으로 각 서브프레임 내의 0, 4, 7, 11 번째 OFDM 심볼을 통해 전송되고, 이는 샐 측정 (cell measurement)* 위해 기본적으로 사용된다. 즉, 단말은 서빙 셀 (serving cell)과 이웃 셀 (neighbor cell)로부터 각각 수신되는 CRS를 이용하여, 셀 측정을 수행한다.
셀 측정 (cell measurement)은 서빙 샐 및 이웃 셀의 신호 세기 혹은 총 수신 전력 대비 신호 세기 등을 측정하는 참조 신호 수신 전력 (RSRP: Reference signal receive power) , 수신 신호 강도 (RSSI: Received signal strength indicator) , 참조 신호 수신 품질 (RSRQ: Reference signal received quality) 등의 RRM (Radio resource management ) 측정과 서빙 셀과의 링크 품질을 측정하여 라디오 링크 실패 (radio link failure) 여부를 평가할 수 있는 RLM (Radio Link Monitoring) 측정을 포함하는 개념이다.
RSRP는 측정 주파수 대역 내에서 CRS가 전송되는 RE의 전력 분배의 선형 평균이다. RSRP 결정을 위해 , 안테나 포트 '0 '에 해당하는 CRS(RO)가 사용될 수 있다. 또한, RSRP 결정을 위해 , 안테나 포트 '1'에 해당하는 CRS(Rl)가 추가로 사용될 수도 있다 . RSRP를 결정하기 위하여 UE에 의해 이용되는 측정 주파수 대역 및 측정 구간 내에서 이용하는 RE들의 수는 해당 측정 정확도 요구 (accuracy requirements) 7} 만족되는 한도에서 UE가 결정할 수 있다. 또한, RE 당 전력은 순환 전치 (CP)를 제외한 심볼의 나머지 부분 내에서 수신한 에너지로부터 결정될 수 있다.
RSS工는 측정 대역 내에서 안테나 포트 ,0 '에 해당하는 RS를 포함하는 OFDM 심볼들에서 동일 채널 (co— channel)의 서빙 셀 (serving cell)과 년- 서빙 샐 (non-serving cell) , 인접 채널로부터의 간섭 , 열 잡음 (thermal noise) 등을 포함하는 해당 UE에 의해 모든 소스들로부터 감지된 총 수신 전력의 선형 평균으로 도출된다. 상위 계층 시그널링에 의하여 RSRQ 측정을 수행하기 위한 특정 서브프레임들이 지시되는 경우, RSSI는 지시된 서브프레임들 내의 모든 OFDM 심볼에 통해 측정된다 .
RSRQ는 NxRSRP/RSSI로 도출된다. 여기서 , N은 RSSI 측정 대역폭의 RB 개수를 의미한다. 또한, 위의 식에서 분자 및 분모의 측정은 동일한 RB의 세트에서 구해질 수 있다.
기지국은 상위 계층 시그널링 (예를 들어 , RRC 연결 재구성 (RRC Connection Reconfiguration) 메시지)을 통해 UE에게 측정 (measurement)을 위한 설정 정보를 전달할 수 있다.
RRC 연결 재구성 메시지는 무선 자원 구성 전용 ( ' radioResourceConf igDedicated' ) 정보 요소 (IE: Information Element)와, 측정 설정 ( ' measConf ig ' ) IE를 포함한다 .
raeasConfig' IE는 UE에 의해 수행되어야 하는 측정을 특정하고, 측정 갭 (measurement gap)의 구성 뿐만 아니라 인트라-주파수 (intra— frequency) 이동성, 인터—주파수 (inter-frequency) 이동성, 인터 -RAT (inter— RAT) 이동성을 위한 설정 정보를 포함한다.
특히, ' measConf ig' IE는 측정에서 제거될 측정 대상 ( 'measObject ' )의 리스트를 나타내는 ' measObj ectToRemoveList '와 새로이 추가되거나 수정될 리스트를 나타내는 'measObjectToAddModList'가 포함된다. 또한, 'measObject'에는 통신 기술에 따라
' MeasObj ectCDMA2000 ' , 1 MeasObj ctEUTRA ' , ' MeasObj ectGERAN ' 등이 포함된다. ' RadioResourceConf igDedicated 1 IE는 무선 베어러 (Radio Bearer)를 설정 /변경 /해제 ( setup/modify/release ) 하거나, MAC 메인 구성을 변경하거나, 반 정적 스케줄링 ( SPS : Semi - Persistent Scheduling) 설정을 변경하거나 및 전용 물리적 설정 ( dedicated physical conf iguration)을 변경하기 위하여 사용된다.
' RadioResourceConf igDedicated ' IE는 서빙 셀 측정을 위한 시간 영역 즉정 자원 제한 패턴 ( time domain measurement resource restriction pattern)을 지시하는 ' measSubf ramePattern- Serv 1 필드를 포함한다ᅳ 또한, UE에 의해 측정될 이웃 셀을 지시하는
' measSubf raraeCellList · 와 이웃 셀 측정을 위한 시간 영역 측정 자원 제한 패턴을 지시하는 ' measSubf ramePattern— Neigh '를 포함한다.
측정 셀 (서빙 샐 및 이웃 셀 포함)을 위해 설정된 시간 영역 측정 자원 제한 패턴 ( time domain measurement resource restriction pattern)은 RSRQ 측정을 수행하기 위한 무선 프레임 당 적어도 하나의 서브프레임을 지시할 수 있다. 측정 셀을 위해 설정된 시간 영역 측정 자원 제한 패턴에 의하여 지시된 서브프레임 이외에서는 RSRQ 측정이 수행되지 않는다. 이와 같이 , UE (예를 들어 , 3GPP Rel - 10 )는 서빙 셀 측정을 위한 서브프레임 패턴 ( ' measSubf ramePattern— Serv ' ) 및 이웃 셀 측정을 위한 서브프레임 패턴 ( ' measSubf ramePattern-Neigh ' )에 의해 설정된 구간에서만 RSRQ가 측정되어야 한다.
다만, RSRP는 이러한 패턴 내 측정이 제약되어 있지 않지만, 정확도 요구 (accuracy requirement )를 위해서는 이러한 패턴 내에서만 측정되는 것이 바람직하다. 디스커버리 신호 (discovery signal) 수신 방법
폭발적으로 증가하는 데이터 트래픽을 수용하기 위하여 기존의 매크로 샐 (macro cell)에 비하여 적은 전력 사용하여 상대적으로 매우 작은 지역을 커버하기 위한 스몰 셀 (small cell)에 대한 성능 향상 (small cell enhancement) 기술에 대한 연구가 활발히 진행되고 있다.
small cell enhancement는 macro cell 커버리지 내에 (또는 건물 내부 등의 경우에는 매크로 셀 커버리지 없이) small cell을 밀집 배치하고 macro cell eNB 및 small cell eNB 간 또는 small cell eNB 상호 간의 밀접한 협력을 통해 단위 면적당 스펙트럼 효율 (Spectrum Efficiency)를 극적으로 증대시켜 폭증하는 트래픽을 수용하면서 효율적인 이동성 관리를 가능하게 하기 위한 기술을 의미한다. 특히 , 셀 내부의 소위 핫스팟 (hot spot)과 같은 특정 지역에서는 특별히 많은 통신 수요가 발생하고, 셀 경계 (cell edge) 또는 커버리지 홀 (coverage hole)과 같은 특정 지역에서는 전파의 수신 감도가 떨어질 수 있어 smaii cell 은 매크로 샐만으로는 커버되지 않는 통신 음영 지역이나, 핫스팟 (hot spot)과 같은 데이터 서비스 요구가 많은 영역에 이용될 수 있다.
macro cell eNB는 macro eNB (MeNB)로 지칭할 수 있으며 , small cell eNB는 small eNB, secondary eNB (SeNB)로 지칭할 수 있다.
small cell enhancement는 스몰 셀의 에너지 절감 (saving) 및 인접 셀로의 간섭을 감소시키기 위하여 단말이 스몰 셀 커버리지 내 존재하는 경우에만 스몰 셀의 온 상태 (on-state)를 유지하고, 그렇지 않으면 스몰 셀의 오프 상태 (off -state)를 유지하는 스몰 셀 on/off 메커니즘을 지원한다.
단말 이동성 관리 (mobility management) (예를 들어 , 핸드오버 등)는 매크로 셀의 주파수 (즉, (컴포넌트) 캐리어 , 셀)를 기준으로 수행되므로 스몰 셀이 일부가 off-state라고 하더라도 단말의 네트워크와의 연결이 완전히 끊기지는 않는다.
단말에서 스몰 셀이 on/off -state를 판단할 수 있도록 디스커버리 절차 (discovery procedure)가 필요하다 .
이를 위해, on/off -state와 무관하게 스몰 셀은 항상 디스커버리 신호 (discovery signal) (또는 디스커버리 참조 신호 (DRS: discovery reference signal) )를 전송 (즉, 방송)하도록 정의된다.
이하, 본 명세서에서 '디스커버리 신호'를 간단히 DRS로 지칭한다.
다시 말해, 스몰 셀이 off -state인 경우에도 일정 주기를 가지고 DRS를 방송한다. 일정 주기를 측정 주기 (measurement period)라고 지칭할 수 있으며, 일례로 40ms, 80ms, 160ms 등이 해당될 수 있다. 이때, 스몰 샐은 DRS를 방송하는 on-state를 일정 시간 (예를 들어 , 1개 내지 5개 서브프레임 ) 유지할 수 있다. 예를 들어, 측정 주기가 40ms인 경우, 6ms 동안 on-state를 유지하면서 DRS를 방송하고, 나머지 34ms 동안 off -state를 유지할 수 있다. 이처럼 DRS를 전송하는 구간을 측정 원도우 (measurement window) 또는 디스커버리 신호 시점 (discovery signal occasion)라고 지칭할 수 있다. 즉, 디스커버리 신호 시점은 연속된 서브프레임의 구간 (예를 들어, 1개 내지 5개의 연속된 서브프레임 구간)으로 구성될 수 있으며 , 하나의 디스커버리 신호 7 시점은 매 측정 주기 내에서 한 번씩 존재할 수 있다.
단말은 스몰 셀로부터 수신한 DRS를 기반으로 측정 (measurement )를 수행하고, 기지국 (또는 네트워크)에게 측정 보고 (measurement report )를 전송한다. 이와 같이, 단말로 하여금 스몰 샐이 on/of f 상태인지와 무관하게 항상 스몰셀에서 전송되는 DRS를 측정하여 기지국 (또는 네트워크)에게 보고하도록 함으로써 , 기지국 (네트워크)은 해당 단말 주변에 가장 효율이 좋은 스몰 샐을 파악할 수 있다. 예를 들어 , 기지국 (네트워크)이 단말로부터 측정 결과를 보고 받은 결과, of f - state인 스몰 셀이나 단말에서의 DRS 수신 파워가 큰 경우에 기지국은 해당 스몰 셀을 on- state로 전환시킬 수 있다. 밀집된 스몰 셀 ( small cell ) 시나리오에서 , 중첩된 (overlaid) 매크로 셀에 단말이 연결되고, 스몰 샐은 데이터 오프로딩을 위해 이용될 수 있다. 이러한 경우에, 단말이 통신 범위 내에서 많은 셀을 디스커버리 ( discovery)하는 것이 바람직하고, 중첩된 매크로 계층은 로딩 ( loading) 정보뿐만 아니라 다른 정보를 고려하여 최선의 셀을 선택한다. 다시 말해, 데이터 오프로딩을 위한 최선의 샐이 RSRP/RSRQ/RSS工를 기반으로 선택된 셀이 아닐 수 있다 . 오히려, 전체적인 셀 관리 측면에서 낮은 로딩 또는 많은 사용자를 가지는 셀이 보다 바람직할 수 있다. 따라서, 기존의 메커니즘 보다 더 많은 셀들을 탐색할 수 있도록 진보된 디스커버리 절차 (advanced discovery procedure ) Ά 고려될 수 있다.
진보된 디스커버리 신호와 관련하여 아래와 같은 특징이 고려될 수 있다.
- 샐 탐색 기반 레가시 PSS/SSS/CRS 보다 더 많은 셀을 탐색 - 서브프레임 보다 더 짧은 시간에 샐을 탐색
- 서브프레임 보다 더 짧은 시간에 측정 수행
- 빠른 시간 스케일 온 /오프 (on/off) 동작을 위해 필요한 측정 지원 진보된 디스커버리 알고리즘을 위한 디스커버리 신호로 아래와 같은 몇 가지 후보가 고려될 수 있다.
(1) PSS/(SSS) + CRS
(2) PSS/ (SSS) + CSI— RS
(3) PSS/ (SSS) + PRS
(4) 또는, 앞서 (1) 내지 (3) 중에 하나 이상의 옵션의 조합
설명의 편의를 위해 본 명세서에서 PSS/SSS, CRS, CSI-RS 및 /또는 PRS가 디스커버리 신호로써 이용되는 경우, 각각 DRS-PSS/SSS, DRS-CRS, DRS-CSI-RS, DRS-PRS로 지칭한다 .
디스커버리 신호는 대략적인 (coarse) 시간 /주파수 트래킹 (tracking) , 측정 및 QCL(QuasiCo— Located) (필요한 경우) 사용될 것으로 예상된다. 몇 가지 목표를 고려하면, 디스커버리 신호의 설계는 아래와 같은 요구 사항을 만족하여야 한다.
(1) 매우 높은 초기 타이밍 에러 (예를 들어 , ±2.5ms)의 가정 하에 디스커버리 신호는 대략적인 시간 동기를 지원하여야 한다.
(2) 디스커버리 산호는 층분한 측정의 정확도를 지원하여야 한다.
(1) 및 /또는 (2)를 지원하기 위하여 , PSS 및 /또는 SSS가 전송될 수 있다고 가정할 수 있다.
단순한 설정을 위해, 진보된 디스커버리 신호의 주기는 아래와 같은 제약 조건이 고려될 수 있다.
(1) 복수의 측정 갭 주기: 예를 들어, 40msec, 80msec, 160msec 또는 320msec (새로운 측정 갭 주기가 설정되면, 복수의 새로운 측정 갭 주기가 고려될 수 있다.)
(2) DRX 사이클과 정렬: 10, 20, 32, 40, 64, 80, 128, 160, 256, 320, 512, 640, 1024, 1280, 2048, 2560 (단말이 서빙 샐을 위한 레가시 신호를 사용하여 측정할 수 있다면, 이 제약 조건은 제외될 수 있다.)
(3) PSS/SSS가 디스커버리 신호로써 전송된다면, 진보된 디스커버리 신호를 위해 전송되는 PSS/SSS가 온 상태 (on-state)에서 전송되는 PSS/SSS로 대체될 수 있도록, 디스커버리 신호의 주기는 5msec의 배수가 될 수 있다. 디스커버리 신호가 온 상태에서 전송되지 않는다면, 이 제약 조건은 제외될 수 있다.
또한, 레가시 단말에게 미치는 영향을 방지하기 위하여 , PSS/SSS와 서로 다른 주기가 고려될 수 있다. 즉, 온 상태 동안에 PSS/SSS가 전송될 수 있으며, 추가적인 PSS/SSS가 디스커버리 신호 전송을 위해 전송될 수 있다. 온 상태에서 전송되는 PSS/SSS와 별개로 DRS— PSS 및 DRS-SSS가 추가적으로 전송된다면, DRS-PSS/DRS-SSS로부터 획득되는 셀 ID는 PSS/SSS로부터 획득되는 셀 ID와 상이할 수 있다.
도 16은 본 발명이 적용될 수 있는 스몰 셀 클러스터 /그룹을 예시하는 도면이다.
"공유 셀 ID 시나리오 (shared cell -ID scenario) "란, 도 16과 같이 특정 (스몰 셀) 클러스터 /그룹 내에 복수의 전송 포인트 (TP: transmission point )가 동일한 물리 샐 식별자 ( PCID : Physical cell -工 D)를 사용하는 시나리오를 의미한다. 클러스터 /그룹 내 TP들이 동일한 PCID를 사용하더라도, 각각의 클러스터 ( Cluster A 및 Cluster B )는 서로 다른 PCID를 사용한다. 이때, PCID는 현재 LTE 시스템에서와 같이 PSS/SSS 및 CRS 전송을 위해 사용되는 셀 특정 식별자 ( Cell - specif ic ID)를 의미하거나, 혹은 특정 클러스터 /그룹 내에서 공통적으로 사용하는 별도의 클러스터 /그룹 ID ( cluster/group ID)일 수도 있다 .
동일한 클러스터 /그룹 내 속한 TP 들이 동일한 PCID를 공유하는 경우에, 동일 PCID를 갖는 모든 TP들로부터 동일한 자원을 통해 공통 신호 (즉, 동일한 PCID로 스크램블된 PSS/SSS , CRS 등)를 전송한다.
이처럼, 복수의 τρ들이 동일 자원에서 동일한 신호를 함께 전송함으로써 수신 신호 품질 향상 및 음영 지역을 해소할 수 있다. 또한, 단말 입장에서는 하나의 TP로부터 하나의 신호가 전송되는 것처럼 인식되므로, 동일한 클러스터 /그룹 내에서는 단말의 셀 재탐색 혹은 핸드오버가 수행되지 않아, 제어 시그널링이 감소될 수 있다.
이러한 클러스터 /그룹 내의 다수의 TP들 간에 추가적인 셀 분산 이득 ( cell - splitting gain) 등을 얻기 위하여 각 TP 별로 고유의 식별 정보가 부여될 수 있다 . 이를, TPID (Transmission Point ID)로 칭한다 . 즉 TP 특정 신호 (즉, TPID로 스크램블된 RS 등) 전송의 경우에는, 각 TP 들에서 개별적 전송이 가능하다.
일례로, 각 TPID는 해당 TP에서 전송하는 CSI -RS의 시퀀스 스크램블링 초기치 파라미터 ( sequence scrambling initialization parameter)로서 사용될 수 있으며 , 그 밖의 다른 TP 특정 RS (TP- specific RS) 전송올 위해 사용될 수도 있다.
이하, 본 발명에서는 각 TP가 고유의 TP 특정 디스커버리 신호 (이하, DRS (Discovery RS)로 지칭함)를 전송하는 상황을 고려한다 .
DRS는 특정 (스몰) 셀이 오프 상태 (off -state)에서도 긴 (long-term) 주기 (예를 들어 , 80ms, 160ms 등)로 전송을 함으로써 단말이 이를 검출 (detect)하고 RSRP 등 RRM 측정 보고를 수행하는 용도로 설정 /전송될 수 있다.
이하, 설명의 편의를 위해 각 TP가 전송하는 DRS가 CSI-RS인 것으로 가정하여 설명하나, 본 발명은 이에 한정되지 않는다 . 즉 , DRS로써 CSI-RS가 동일하게 이용될 수도 있으며, CSI-RS 이외의 TP 특정 DRS가 정의되어 본 발명에 이용될 수 있다.
또한, 설명의 편의를 위해 TPID가 DRS의 스크램블링 식별자 (SCID: scrambling ID)로 사용된다고 가정한다. 만약, TPID와 DRS의 SCID가 다르다면 , 관계에 대한 상위 계층 시그널링 (예를 들어 , RRC 시그널링 )을 통해 TPID와 SCID가 연계될 수 있다고 가정한다 .
3GPP LTE 릴리즈 (Release)—11 표준까지의 CSI-RS의 용도는 이를 통해 단말이 CSI 측정올 수행하고, CSI 피드백 보고를 수행하기 위한 것으로서, 이러한 용도로 전송되는 CSI-RS를 이하에서는 설명의 편의상 "FB-CSI-RS"로 지칭한다. 또한, TP 특정 DRS로서 CSI-RS가 전송된다면 , 이를 FB-CSI-RS 와 구별하여 편의상 "DRS-CSI-RS"로 지칭하기로 한다 . 일반적으로 스몰 셀들은 특정 매크로 샐 커버리지 내 분포하고, 매크로 셀과 상이한 주파수 (즉, 컴포넌트 캐리어 (CC) 또는 캐리어 /셀)에서 동작하는 경우를 고려할 수 있다 (예를 들어 , 스몰 셀 시나리오 2) . 예를 들어 , 특정 단말이 프라이머리 셀 (PCell)로 접속하고 있는 매크로 셀의 주파수가 CC1이라 하고 , 해당 단말이 찾고자 하는 인접 스몰 셀들의 주파수 CC2라고 가정한다 . 이 경우, 단말은 해당 스몰 셀들이 간헐적으로 전송하고 있는 특정 디스커버리 신호 (DRS)의 검출 및 RRM 보고 등의 과정을 통해 스몰 셀 (들)에게 접속할 수 있다ᅳ 또한, 이 경우 각 스몰 셀들이 세컨더리 셀 (SCell)로서 해당 단말에게 캐리어 병합 형태로 단말에 설정될 수 있다.
스몰 셀 계층에서 복수의 스몰 샐들이 동일한 PCID를 공유하고 있으면, 단말은 커버리지가 큰 하나의 셀에 접속되어 있는 효과를 가진다. 이러한 시나리오에서 단말이 수행해야 하는 핸드오버의 오버헤드 및 횟수가 상당히 줄어들 수 있으며, CRS로부터 발생되는 간섭이 감소될 수 있다는 점에서 상당한 장점을 가지고 있다. 하지만, 이러한 동작을 위해서 이상적인 백홀 (ideal backhaul) 및 엄격한 스케줄링 협력 (scheduling coordination)이 만족되어야 하는 단점이 있다.
따라서, 이러한 동작이 항상 가정될 수는 없으며, 네트워크가 설정할 수 있는 경우에만 이러한 동작이 사용될 수 있다. 실제로 다수의 스몰 셀이 하나의 가상 셀 커버리지를 유지하지만, 단말의 입장에서 데이터는 하나의 셀에서만 전송된다고 가정할 수 있다. 이처럼 데이터가 하나의 셀에서만 전송된다고 가정하는 이유는, 많은 TP들이 분포하고 있을 때, 모든 TP가 전송함으로서 사용되는 에너지 절감 (energy saving)과 공간 재사용 (spatial reuse) 이득을 얻기 위함이다.
이러한 시나리오에서 EPDCCH (enhanced PDCCH) 기반으로 제어 데이터를 스케줄링을 받는 것이 바람직할 수 있다. 또한, 이러한 셀을 S셀로 설정하는 경우, 단말은 공통 서치 스페이스 (CSS: common search space)를 수신하지 않아도 되므로 PDCCH 전송을 고려하지 않을 수도 있다.
이러한 동작이 가능하기 위해서는, 단말이 특정 PSS/SSS를 검출하였을 때, 이러한 PSS/SSS를 전송하는 특정 셀 /TP (들)가 전송하는 또 다른 DRS (예를 들어 , TP 식별을 위한 DRS-CRS, DRS-CSI— RS)를 검출하기 위해서 해당 동기 신호와 DRS 간의 특정 QCL (quasi co-location) 가정 정보가 필요할 수 있다. 그렇지 않다면, 예를 들어 상기 DRS-CSI-RS를 검출하기 위해 어떠한 검출된 PSS/SSS와의 QCL 관계를 적용할 수 없다면 DRS-CSI-RS 자체의 검출 성능 및 측정 정확도 측면에서 성능 열화가 발생할 수 있다.
본 발명에서 고려하는 단말 동작을 예시하면 다음과 같다.
특정 단말의 PCell이 CC1에서 동작하는 특정 매크로 셀이라고 가정할 때, 예를 들어 단말이 CC2에서 특정 스몰 셀 /TP (들)을 (스몰 셀 탐색 절차에 의해 ) 검출하여 SCell 추가에 의한 CA 형태로 접속하여 접속하여 서비스를 받고자 한다.
이를 위해, 단말은 .PCell로부터 RRC 시그널링 (예를 들어, RRC 연결 재설정 메시지 등)에 의해 CC2에서의 RRM 측정을 위한 측정 대상 (measurement object) (예를 들어, MeasObj ectEUTRA IE)를 설정 받을 수 있다. 이러한 설정 정보들을 토대로 (예를 들어 , PSS/SSS를 위한 PCID 세트 정보가 제공될 수도 있으나, 그 밖의 PSS/SSS도 검출되면 측정 보고 대상으로 고려해야 함) 단말은 CC2에서 PSS/SSS 검출을 시도한다.
위와 같은 상황에서, 단말이 CC2에서 특정 PSS/SSS를 검출에 성공하였고, 검출한 PSS/SSS를 기반으로 해당 PCI이을 획득하였다고 가정한다 . 앞서 설명한 바와 같이, 3개의 PSS와 168개의 SSS의 조합을 통해 총 504개의 고유한 PCID를 나타낼 수 있으며 , 단말은 PSS와 SSS의 특정 시뭔스에 의하여 단말은 PCID를 획득할 수 있다.
이때 , 네트워크 배치 (network deployment)에 따라서 다음과 같이 2 가지의 시나리오가 고려될 수 있다.
1) 시나리오 1: 해당 PSS/SSS를 전송한 TP가 1개인 셀 ID 비 공유 시나리오 ( 'non- shared cell-ID scenario' ) .
non- shared cell-ID scenario에서 PCIE)1로 생성된 해당 PSS/SSS를 전송하는 TP가 1개라는 의미는 해당 TP가 커버하고 있는 영역이 하나의 셀이 되므로 샐과 TP과 동일한 (즉, 셀 = TP)인 상황으로 이해될 수 있다. 따라서 , 인접한 다른 TP는 또 다른 PCID2로 별도의 PSS/SSS를 전송하는 시나리오로 볼 수 있다.
그리고 해당 TP는 추가적으로 DRS-CRS 및 /또는 DRS-CSI_RS를 전송할 수 있다. 이 경우, 해당 DRS-CRS 및 /또는 DRS— CSI— RS는 상기 PC工이로 동일하게 설정 (즉, DRS CRS 및 /또는 DRS-CSI-RS는 PCim으로 스크램블된다. )될 수도 있다. 이 경우, DRS-CRS 및 /또는 DRS-CSI— RS와 PSS/SSS와 QCL 관계도 성립한다.
또한, DRS-CRS 및 /또는 DRS— CSI-RS의 스크램블링 ID(SCID)와 PCI이이 다른 경우에도 해당 PCID1로 생성된 PSS/SSS와 DRS-CRS 및 /또는 DRS-CSI— RS 간에는 QCL 가정이 성립하고, 단말에게 이러한 QCL 가정이 설정될 수 있다.
2) 시나리오 2 : 해당 PSS/SSS를 전송한 TP가 2개 이상인 셀 ID 공유 시나리오 ('shared cell- ID scenario' ) .
shared cell-ID scenario에서 PCIDl로 생성된 해당 PSS/SSS를 전송하는 TP가 2개 이상이라는 의미는 해당 2개 이상의 TP 집합을 묶어서 하나의 셀로 볼 수 있는 의미이다. 즉, PCI이로 생성된 해당 PSS/SSS가 전송되고 있는 샐은 사실상 다수의 TP로 구성되어 있으며 , 상기 PSS/SSS 및 제어 채널 등은 상기 TP 집합이 공동 (common)으로 전송할 수 있지만, 데이터 전송은 각 TP가 별도로 수행함으로써 셀 분산 이득 (cell-splitting gain)을 얻을 수 있다.
그리고 각 TP는 별도의 DRS (예를 들어 , DRS-CSI-RS)를 추가적으로 전송할 수 있다. 이 경우, 각 TP 별로 해당 DRS의 SCID는 서로 독립적 (서로 상이 )일 수 있다. 따라서 , 각각의 TP는 상기 PCI이와도 독립적인 (상이한) SCID로 생성된 별도의 DRS를 전송할 수 있다. 따라서, 단말로 하여금 상기 검출된 PCI이를 전송하는 셀 (즉, TP의 집합) 내에서의 각 TP가 전송하는 DRS를 검출할 수 있도록 지원하기 위해 각 TP별로 전송하는 DRS와 상기 pci 으로 생성된 pss/sss 간의 특정 QCL 관계가 있음을 단말에게 사전에 알려주거나 특정 형태로 사전에 정의 (pre-defined)되어 있어야 한다.
본 발명에서는, 앞서 설명한 2가지 네트워크.배치 시나리오 등을 고려하여 , 단말이 상기 특정 PSS/SSS의 검출에 성공한 경우 계속해서 또 다른 DRS (예를 들어 , DRS-CRS 및 /또는 DRS-CSI-RS)를 검출 및 RRM 측정을 수행하도록 하기 위하여 단말이 가정할 수 있는 디스커버리 QCL 타입 (이하, 'D-QCL 타입 '으로 지칭함)을 정의하고, 정의된 타입 중 일부를 단말에게 설정하는 방법을 제안한다. 이하에서는 설명의 편의를 위해 3GPP LTE 시스템을 기반으로 제안 방식을 설명한다. 하지만, 제안 방식이 적용되는 시스템의 범위는 3GPP LTE 시스템 외에 다른 시스템으로도 확장 가능하다 .
특히 , 이하 본 발명에서 기술하는 '기지국 '의 용어는 원격 무선 헤드 (RRH: remote radio head) , 전송 포인트 (TP: transmission point) , 수신 포인트 (RP: reception point) , 중계기 (relay) , eNB (MeNB, SeNB, Micro eNB, Pico eNB, Femto eNB 등)을 포함하는 포괄적인 용어로 사용된다.
이하, 본 발명에 있어서, 설명의 편의를 위해 DRS-CSI-RS가 전송되는 안테나 포트의 번호는 201~208라고 가정하여 설명한다.
이하, 본 발명에 따른 D-QCL 타입 별로 QCL 관계가 설정되는 광범위 채널 특성 (LSCP: large-scale channel properties)어 1 대'하여 살펴본다.
A) D-QCL 타입 A
D-QCL 타입 A가 설정된 단말은 주파수 (즉, 컴포넌트 캐리어 또는 셀 /캐리어)에서 동일한 SCID로 생성되는 (DRS-)PSS/SSS를 위한 안테나 포트 (및 (DRS-)CRS를 위한 안테나 포트 0-3)와 DRS-CSI-RS를 위한 안테나 포트 201— (201+P-1) 간에 무선 채널의 광범위 특성 (LSCP)와 관련하여 QCL 관계라고 가정할 수 있다 (A UE may assume the antenna port for the (DRS- ) primary/ secondary synchronization signals (and the antenna ports 0 - 3 ) and 201 - (201 + P-l) of a frequency- carrier which are all generated with the same scrambling ID are quasi co-located with respect to some large-scale channel properties (LSCP) ) .
예를 들어 , 단말이 검출한 (DRS-)PSS/SSS (및 (DRS-)CRS)를 이용하여 획득한 SCID가 'A'인 경우, 단말은 동일한 SCID 'A'로 스크램블된 DRS-CSI- RS가 존재한다면, (DRS-) PSS/SSS와 QCL 관계로 가정할 수 있다.
D-QCL 타입 A에서 QCL 가정이 가능한 LSCP는 다음과 같을 수 있다.
(1) {지연 확산 (delay spread) , 도플러 확산 (Doppler spread) , 도플러 쉬프트 (Doppler shift) , 평균 지연 (average delay) }
지연 확산 (delay spread) , 도플러 확산 (Doppler spread) , 도플러 쉬프트 (Doppler shift) , 평균 지연 ( average delay)의 LSCP에 대하여 PSS/SSS (및 DRS— CRS)와 DRS-CSI-RS 간에 QCL 가정이 적용된다고 설정 (또는 정의 /지시 )될 수 있다 .
D-QCL 타입 Ά로 설정 /지시되는 경우 non-shared cell-ID 환경 하에서 PSS/SSS (및 DRS-CRS) 그리고 DRS— CSI-RS가 모두 동일 셀 /TP에서 전송되는 환경일 수 있기 때문이다.
또한, 해당 주파수에서 DRS— CRS도 함께 전송되는 경우, PSS/SSS와 DRS- CRS는 상호 간에 "도플러 쉬프트 (Doppler shift) , 평균 지연 (average delay) "에 대해서만 QCL 가정이 가능한 것으로 단말에게 정의 /설정될 수 있다. 왜냐하면, DRS— CRS를 통해 얻고자 하는 목적은 셀 식별 /확인 (verification)일 수 있으므로 그 이상의 LSCP 정보까지 QCL 가정하는 것은 불필요할 수 있기 때문이다.
(2) {도플러 쉬프트 (Doppler shift) , 평균 지연 (average delay) } DRS-CSI-RS의 경우에도 위의 PSS/SSS와 DRS-CRS 관계와 유사하게, 도플러 쉬프트 (Doppler shift) , 평균 지연 (average delay)의 LSCP에 대하여 PSS/SSS (및 DRS-CRS)와 DRS-CSI-RS 간에 QCL 가정이 적용된다고 설정 (또는 정의 /지시 )될 수 있다.
한편, 앞서 설명한 D-QCL 타입 A에서 QCL 가정이 가능한 LSCP는 하나의 예시에 불과하며, 본 발명이 이에 한정되는 것은 아니다. 즉, 앞선 예시에서 특정 LSCP이 제외되거나 또 다른 LSCP가 추가될 수도 있다.
앞서 설명에서, P는 DRS-CSI— RS의 안테나 포트 개수를 의미한다. 상술한 바와 같이 , DRS-CSI-RS의 안테나 포트의 번호는 201, 202, … 형태임을 가정하였으나, 이러한 안테나 포트의 번호는 다른 값 (예를 들어, CSI-RS와 동일하게 15, 16, ... 등)을 가질 수 있다.
'또한, 안테나 포트 개수만으로 안테나 포트 번호가 지시될 수 있다. 예를 들어, P=l이면, QCL이 가정되는 DRS— CSI-RS 안테나 포트는 2(〕1이고, P=2이면, QCL이 가정되는 DRS-CSI-RS 안테나 포트는 201, 202가 될 수 있다 이와 마찬가지로 상기 안테나 포트 0 - 3은 DRS-CRS의 안테나 포트의 번호이고, 이 안테나 포트의 번호도 다른 값올 가질 수 있다. 또한, DRS-CRS의 안테나포트의 개수도 1 등으로 제한될 수 있다.
상술한 바와 같이 (DRS-) PSS/SSS (및 DRS-CRS)를 생성한 특정 SCID (예를 들어 , PCID1)와 동일한 SCID 값으로 생성된 DRS-CSI-RS의 안테나 포트 간에 서로 QCL이 가정될 수 있다.
다만, 이는 하나의 예시에 불과하며 , 본 발명이 반드시 같은 SCID (예를 들어 , PCID1)를 따르는 안테나 포트 간에 QCL 가정이 가능하다고 한정되지 않는다. 즉, 앞서 동일한 SCID는 반드시 물리적으로 동일한 값으로 한정되는 것은 아니며, 사전에 정의된 특정 SCID 간의 일대일 관계에 따라 상기 QCL 링크가 성립될 수 있도록 정의 /설정될 수 있다.
예를 들어, 검출된 (DRS-)PSS/SSS의 SCID가 PCID1라면, 이에 대해 사전에 정의 /설정된 특정 함수 혹은 테이블에 의해 측정 RS (즉, DRS-CRS 및 /또는 DRS-CSI-RS)를 생성하는 특정 ID2와 PCID1 간의 일대일 관계가 성립될 수 있다.
이때, 일대일 관계라는 의미는 {PCID1, 工 D2}의 고유한 쌍 (unique pair) 형태로 정의되어 있을 수 있다는 것을 의미할 수 있다. 또한, PCI이과 매핑된 ID는 ID2 이외에는 없도록 제한될 수 있고, 반대로 ID2과 매핑된 ID는 PCI이이외에는 없도록 제한될 수 있다 . 바람직하게는 상기 설명과 같이 모두 동일한 PCI이로 일치시키는 것이 바람직하다.
위와 같이, D-QCL 타입 A7} 단말에게 설정됨으로써 non-shared cell- ID scenario에서 단말로 하여금 특정 셀 /TP (즉, 샐 = TP)를 검출할 수 있도록 한다.
B) D-QCL 타입 B
D-QCL 타입 B가 설정된 단말은 주파수 (즉, 컴포넌트 캐리어 또는 셀 /캐리어 )의 특정 SCID (예를 들어 , 개별 TPID)로 생성되는 DRS-CSI— RS를 위한 안테나 포트 201- (210+P— 1)와 이에 상응하는 참조 SCID (reference SCID) (예를 들어 , PCID)로 생성되는 (DRS-) PSS/SSS를 위한 안테나 포트 (및 (DRS-)CRS를 위한 안테나 포트 0-3) ) 간에 무선 채널의 광범위 특성 (LSCP)와 관련하여 QCL 관계라고 가정할 수 있다 (A UE may assume the antenna ports 201 - (201+P-l) with a scrambling ID of a carrier and the antenna port for the ( DRS - ) primary/ secondary synchronization signals (and the antenna ports 0 - 3 ) with the corresponding reference scrambling ID are quasi co-located wi h respect to some large-scale channel properties (LSCP) ) . 예를 들어 , 단말이 검출한 (DRS-) PSS/SSS를 이용하여 획득한 reference SCID가 'A'인 경우, 단말은 해당 reference SCID와 상웅하는 SCID 'B'로 스크램블된 측정 RS (즉, DRS-CRS 및 /또는 DRS-CSI— RS)가 존재한다면 , (DRS-) PSS/SSS와 QCL 관계로 가정할 수 있다.
D-QCL 타입 B에서 QCL 가정이 가능한 LSCP는 다음과 같을 수 있다.
(1) {평균 지연 (average delay) }
"평균 지연 (average delay) " 또는 타이밍 정보만을 QCL 가정을 할 수 있도록 정의 /설정될 수 있다.
DRS-CSI-RS은 특정 TP만 전송하는 TP 특정한 (TP— specif ic) RS이고, PSS/SSS (및 CRS)는 다수의 TP가 함께 전송하는 신호 (예를 들어 , 셀 특정 (cell-specific) 신호)일 수 있다. 따라서 , 이러한 RS/신호 간에 평균 지연 (average delay) 이외의 다른 LSCP (예를 들어, 지연 확산 (delay spread) , 도플러 확산 (Doppler spread) , 도플러 쉬프트 (Doppler shift) ) 등은 QCL 가정을 하지 않도록 설정하고 DRS-CSI-RS 자체만으로 독립적인 추정을 하는 것이 성능 측면에서 바람직할 수 있기 때문이다.
반면 , 평균 지연 (average delay)의 경우 상기 PSS/SSS (and CRS)가 다수의 TP로부터 함께 전송되고 DRS-CSI-RS는 특정 TP만 전송하는 경우라 하더라도, 각기 추정된 평균 지연 (average delay)가 OFDM 심볼의 CP 구간 내로만 속한다면 문제가 없기 때문에 QCL 가정을 통한 타이밍 동기 (timing synchronization)를 맞추기 위해 도움을 받을 수 있다 .
(2) {평균 지연 (average delay) , 도플러 쉬프트 (Doppler shift) } 평균 지연 (average delay)과 함께 도플러 쉬프트 (Doppler shift) 추정치도 QCL 가정을 통해 DRS-CSI-RS 검출 및 측정 시에 도움을 받을 수 있도록 한다. 이는 CSI-RS 특성 자체가 상대적으로 시간 동기보다 주파수 동기에 취약하기 때문에 PSS/SSS (및 DRS-CRS)로부터 추정된 도풀러 쉬프트 (Doppler shift)에 관해 QCL 가정을 적용할 수 있도록 한다. TP 특정 (TP-specific) DRS-CSI-RS에 비해 PSS/SSS (및 DRS-CRS)는 TP 공유된 (TP-shared) 형태로 전송될 수 있지만, DRS-CSI-RS의 목적 자체가 TP 검출 및 RRM 측정으로 한정되므로 성능 향상에 도움이 될 수 있다 .
(3) {평균 지연 (average delay) , 도플러 쉬프트 (Doppler shift) , 도플러 확산 (Doppler spread) }
평균 지연 (average delay) , 도플러 쉬프트 (Doppler shift)와 함께 도플러 확산 (Doppler spread) 추정치도 QCL 가정을 통해 DRS-CSI-RS 검출 및 측정 시에 도움을 받을 수 있도톡 한다. 이를 위해서는 네트워크에서 TP들 간의 주파수 동기를 보다 더 엄격 (tight)하게 맞춘 상태여야 한다는 제약이 따르지만, 이러한 환경 하에서는 PSS/SSS (및 DRS-CRS)로부터 추정된 도플러 확산 (Doppler spread)에 관한 QCL 가정을 DRS— CSI— RS에 적용할 수 있으므로 더 성능 향상을 가져을 수 있다.
또한, 이에 덧붙여, 해당 주파수에서 DRS-CRS도 함께 전송되는 경우, PSS/SSS와 DRS-CRS는 상호 간에 "도풀러 쉬프트 (Doppler shift) , 평균 지연 (average delay) "에 대해서 QCL 가정이 가능한 것으로 단말에게 설정 /정의될 수 있다. 상술한 바와 같이, 왜냐하면, DRS-CRS를 통해 얻고자 하는 목적은 셀 식별 /확인 (verification)일 수 있으므로 그 이상의 LSCP 정보까지 QCL 가정하는 것은 불필요할 수 있기 때문이다. 이때, QCL 가정이 가능한 PSS/SSS와 DRS-CRS는 서로 시퀀스 SCID가 동일해야 하는 제약 조건 (예를 들어 , 모두 PCID1)이 있을 수 있다.
한편, 앞서 설명한 D— QCL 타입 B에서 QCL 가정이 가능한 LSCP는 하나의 예시에 불과하며, 본 발명이 이에 한정되는 것은 아니다. 즉, 앞선 예시에서 특정 LSCP이 제외되거나 또 다른 LSCP가 추가될 수도 있다.
앞서 설명에서, P는 DRS-CSI-RS의 안테나 포트 개수를 의미한다. 상술한 바와 같이 , DRS-CSI-RS의 안테나 포트의 번호는 201, 202, ᅳ 형태임을 가정하였으나, 이러한 안테나 포트의 번호는 다른 값 (예를 들어, CSI— RS와 동일하게 15, 16, ... 등)을 가질 수 있다.
또한, 안테나 포트 개수만으로 안테나 포트 번호가 지시될 수 있다. 예를 들어 P=l이면, QCL이 가정되는 DRS-CSI-RS 안테나 포트는 2이이고, P=2이면 QCL이 가정되는 DRS-CSI-RS 안테나 포트는 201, 202가 된다.
이와 마찬가지로 상기 안테나 포트 0 - 3은 DRS-CRS의 안테나 포트의 번호이고, 이 안테나 포트의 번호도 다른 값을 가질 수 있다. 또한, DRS— CRS의 안테나 포트의 개수도 1 등으로 제한될 수 있다.
상술한 바와 같이 , (DRS-) PSS/SSS를 생성한 특정 SCID (예를 들어 , PCID1)가 하나의 reference SCID에 해당된다. 이는 이러한 reference SCID와 매핑 관계에 있는 또 다른 DRS-CSI-RS(S)가 하나 이상 존재할 수 있다는 의미이다. 즉, reference SCID와 매핑 관계에 있는 하나 이상의 SCID로 생성되는 DRS-CSI-RS (s)가 하나 이상 존재한다는 의미이다.
이때 , 특정 DRS-CSI-RS (예를 들어 , ID2를 가지는)의 안테나 포트와 해당 PCIID1으로 생성된 PSS/SSS (및 DRS-CRS 안테나 포트) 간에 서로 QCL 가정이 적용될 수 있도록, 상기 PCID1가 reference SCID라는 것이 명시적으로 (explicit) 혹은 암묵적으로 (implicit) 지시될 수 있다.
다入 1 말해, DRS-CSI-RS를 위한 SCID와 reference SCID 간의 매핑은 상위 계층 시그널링 (예를 들어 , RRC 시그널링 )에 의해 명시적으로 지시될 수도 있고, 단말이 직접 도출할 수 있도록 암묵적으로 지시될 수 있다. 암묵적으로 지入 1되는 경우의 일례로, ID2 (DRS— CSI-RS를 위한 SCID) = mod(PCIDl+d, X) 형태로 지시될 수 있도록 d 및 X 값 등이 사전에 정의될 수도 있다. 여기서, mod는 모듈러 (modulo) 연산자를 의미한다.
위와 같이, D-QCL 타입 B가 단말에게 설정됨으로써 shared cell-ID scenario에서 단말로 하여금 특정 셀 및 해당 셀에 속하는 하나 이상의 TP (들)를 검출할 수 있도록 한다.
앞서 설명한 실시예에서 D-QCL 타입이 크게 D-QCL 타입 A 및 D-QCL 타입 B와 같이 2가지로 구분하여 설명하였으나, 앞서 언급된 각 D-QCL 타입 별로 예시한 (1) , (2) , (3) ,„. 등 세부 변형 예시 (예를 들어 , LSCP 분류) 등을 추가로 별도의 D-QCL 타입으로 세분화하여 단말에게 설정할 수 있도록 하는 등의 확장된 실시예도 적용될 수 있다. 예를 들어, D-QCL 타입 B에서 QCL 가정이 가능한 LSCP 예시 중 (2)은 D-QCL 타입 C, (3)은 D-QCL 타입 D 등으로 S-QCL 타입을 보다 세분화할 수 있다.
앞서 설명한 D-QCL type A, Β,... 등과 같은 'D-QCL 타입 '은 DRS 측정 관련 상위 계층 설정 (예를 들어 , RRC 시그널링 )에 의해 단말에게 설정될 수 있다. 이에 대하여 아래 도면을 참조하여 설명한다.
도 17은 본 발명의 일 실시예에 따른 디스커버리 신호 검출 방법을 예시하는 도면이다.
도 17에서 디스커버리 신호는 앞서 설명한 바와 같이 CSI-RS가 동일하게 이용될 수도 있으며, CSIC-RS 이외의 TP 특정 DRS가 정의되어 이용될 수도 있다.
도 17을 참조하면 , 단말 (UE)은 서빙 eNB(TP 1)로부터 주파수 (즉, 컴포넌트 캐리어 (CC) 또는 캐리어 /셀) 별로 디스커버리 QCL 타입 (즉, D-QCL 타입 )을 설정하기 위한 디스커버리 QCL 타입 설정 정보를 수신한다 (S1701) . 앞서 D-QCL 타입 (즉, D-QCL 타입 A, B)에 대하여 설명한 바와 같이 , 단말에 설정되는 D-QCL 타입에 따라 DRS (예를 들어 , DRS— CRS 및 /또는 DRS- CSI-RS)를 위한 안테나 포트의 광범위 채널 특성 (LSCP)과 관련하여 동기 신호 (즉, PSS/SSS)를 위한 안테나 포트와의 QCL 관계가 설정될 수 있다.
예를 들어 , 디스커버리 QCL 타입 설정 정보에 의해 제 1 D— QCL 타입 (즉, D-QCL 타입 A)이 설정된 경우, 단말은 PSS/SSS의 SCID1 (예를 들어 , PCID)와 동일 (즉, PCID)하거나 또는 일대일 매핑되는 SCID2로 생성되는 DRS를 위한 안테나 포트와 PSS/SSS를 위한 안테나 포트가 상호 간에 QCL된다고 가정할 수 있다.
반면, 디스커버리 QCL 타입 설정 정보에 의해 제 2 D-QCL 타입 (즉, D- QCL 타입 B )이 설정된 경우, 단말은 PSS/SSS의 SCID1 (예를 들어 , PCID)와 매핑되는 하나 이상의 SCID2로 생성되는 DRS를 위한 안테나 포트와 PSS/SSS를 위한 안테나 포트가 QCL된다고 가정할 수 있다.
하나 이상의 TP가 동일한 주파수를 공유하여 사용한다면 동일한 D-QCL 타입 설정 정보가 적용될 수 있다. 이와 반대로, 각 TP들 (TP 1 , TP 2
TP n)이 서로 다른 주파수 (즉, 컴포넌트 캐리어 )를 이용한다면 각 TP 별 디스커버리 QCL 타입 (D-QCL 타입) 설정 정보가 전송될 수 있다.
여기서, 디스커버리 QCL 타입 설정 정보는 상위 계층 시그널링 (예를 들어, RRC 시그널링 )을 통해 전송될 수 있다.
예를 들어 , 단말은 주파수 별로 단일의 DRS 측정 타이밍 설정 (DMTC : DRS measurement timing conf iguration) °1 설정될 수 있으며 , DMTC 설정에 D-QCL 타입 설정 정보가 포함될 수 있다. 이처럼 DMTC 설정 내 D-QCL 타입 설정 정보가 포함되는 경우, D-QCL 타입 설정 정보는 RRC 연결 재설정 (RRC Connection Reconf iguration) 머 1시지를 통해 단말에거 1 전송될 수 있다.
DMTC 설정 내 으 QCL 타입 설정 정보가 포함되는 경우를 가정하여 보다 상세히 살펴보면, DMTC는 DRS 전송 주기 (예를 들어 , 40ms , 80ms , 160ms 등) 및 오프셋 정보 (예를 들어 , 서브프레임 인텍스 등)를 포함할 수 있다. CA가 설정된 단말의 경우, 세컨더리 셀에서 오프셋에 대한 참조 타이밍은 프라이머리 셀의 타이밍을 따를 수 있다.
또한, DRS 전송 주기 및 오프셋에 추가하여 DMTC는 측정 주파수 대역 (시스템 대역과 동일하다고 가정할 수 있음) , 측정 구간 (즉, 디스커버리 신호 시점 ( discovery signal occasion) ) (별도로 설정되지 않으면 5ms 또는 6ms로 가정할 수 있음) , DRS 안테나 포트 개수 (별도로 설정되지 않으면 1로 가정할 수 있음) 및 D-QCL 타입 지시 정보 (즉, PSS/SSS (및 CRS)와 측정 RS (예를 들어 , DRS— CSI-RS)와의 QCL 관계 ) (예를 들어 , D-QCL 타입 A 또는 D-QCL 타입 B 인지 지시하는 지시 정보)를 포함할 수 있다 .
위와 같이, DMTC가 주파수 별로 설정될 때, 예를 들어, 해당 주파수 별로 상기 D-QCL 타입이 A인지 또는 D-QCL 타입이 B인지 설정될 수 있다.
여기서 , D-QCL 타입 B가 설정되는 경우, 위의 정보에 추가하여 DRS를 위한 SCID (예를 들어 , ID2)와 PSS/SSS (및 DRS-CRS 안테나 포트)를 위한 reference SCID 간의 매핑 정보가 더 포함될 수 있다.
한편 , 위에서는 DMTC 설정을 위한 RRC 시그널링에 의해 D-QCL 타입이 설정되는 예를 예시하였으나, 본 발명이 이에 한정되는 것은 아니며, DMTC 이외의 다른 RRC 시그널링에 의해 D-QCL 타입이 지시될 수도 있다.
각 TP들 (TP 1, TP 2, TP η)은 동기 신호 (PSS/SSS) (및 샐 특정 참조 신호 (CRS) )를 전송 (즉, 방송)한다 (S1702) . 그리고, 단말은 각 TP들로부터 전송되는 동기 신호 (PSS/SSS) (및 CRS)를 검출하여 동기 신호 (PSS/SSS) (및 CRS)의 SCID를 획득한다 (S1703) .
각 TP들 (TP 1, TP 2, ... , TP n)은 DRS (예를 들어 , DRS-CRS 및 /또는 DRS-CSI-RS)를 전송 (즉, 방송)한다 (S1704) . 그리고, 단말은 설정된 D-QCL 타입을 기반으로 S1703 단계에서 획득한 SCID를 이용하여 DRS를 검출한다 (S1705) . 즉, 단말은 QCL 관계를 이용하여 PSS/SSS (및 CRS)를 통해 획득한 LSCP 파라미터를 적용하여 DRS를 검출할 수 있다 .
예를 들어, S1701 단계에서 디스커버리 QCL 타입 설정 정보에 의해 제 1 D-QCL 타입 (즉, D-QCL 타입 A)이 설정된 경우, 단말은 PSS/SSS의 SCI이과 동일하거나 또는 일대일 매핑되는 SCI이로 생성되는 DRS를 검출할 수 있다.
반면, S1701 단계에서 디스커버리 QCL 타입 설정 정보에 의해 제 2 D-QCL 타입 (즉, D-QCL 타입 B )이 설정된 경우, 단말은 SCID1 (즉, reference SCID)과 매핑 (연결)되는 하나 이상의 SCID2로 생성되는 DRS들 ¾줄할 宁 다. 이하, 단말에 설정된 D-QCL 타입에 따른 단말의 동작 (즉, S1703 및 S1705 단계)에 대하여 보다 상세하게 살펴본다.
A) 해당 주파수에 D-QCL 타입 A가 지시된 경우 (예를 들어 , non- shared cell - ID scenario) , 단말 동작은 다음과 같다.
단말은 해당 주파수에서 지시된 DMTC 주기 /오프셋 /구간에 따라 특정 샐이 전송하는 PSS/SSS를 검출한다. 만약, 단말이 만일 특정 PSS/SSS (및 DRS - CRS )를 검출 성공하였고 해당 SCID가 PC工이로서 검출되었다면 , 단말은 PCID1로 생성되는 DRS - CSI -RS를 검출 시도한다. 그리고, 단말은 검출한 DRS - CSI -RS를 기반으로 RRM 측정 및 셀 /TP 샥별 등을 수행한다 . ᅳ 또는, 단말은 사전에 정의 /설정된 일대일 매핑 관계에 따라 PCI이과 쌍으로 정의된 특정 ID2로 생성되는 DRS— CSI -RS를 검출 시도하여 RRM 측정 및 셀 /TP 식별 등을 수행할 수도 있다.
상기 D-QCL 타압 A는 ' non- shared cell - ID scenario ' 하에서의 동작을 지원하기 위함일 수 있으므로, 이를 목적으로 하는 유사한 변형 동작도 본 발명의 사상에 포함되는 것으로 인식되어야 한다.
B) 해당 주파수에 으 QCL 타입 B가 지시된 경우 (예를 들어 , shared cell - ID 시나리오일 수 있다. ) , 단말 동작은 다음과 같다. 단말은 해당 주파수에서 지시된 DMTC 주기 /오프셋 /구간에 따라 특정 셀이 전송하는 PSS/SSS를 검출한다 . 만약, 단말이 특정 PSS/SSS (및 DRS-CRS)를 검출 성공하였고 해당 SCID가 PCI이로서 검출되었다면, 단말은 명시적 또는 암묵적으로 지시된 매큉 관계에 따라 P CD1와 일대다로 연결될 수 있는 하나 이상의 DRS-CSI-RS (들)를 검출 시도한다. 그리고, 단말은 검출한 DRS-CSI- RS를 기반으로 RRM 측정 및 셀 /TP 식별 등을 수행한다 .
상기 D-QCL 타입 B는 'shared cell-ID 시나리오 '하에서의 동작을 지원하기 위함일 수 있으므로, 이를 목적으로 하는 유사한 변형 동작도 본 발명의 사상에 포함되는 것으로 인식되어야 한다.
앞서 설명한 DRS (예를 들어 , DRS-CRS 및 /또는 DRS-CSI-RS) 관련 QCL 가정을 지원하기 위한 방법에 더하여 , 본 발명에서는 PDSCH 관련 QCL 가정을 지원하는 방법에 대하여 제안한다.
본 발명에 따른 PDSCH 관련 QCL 가정을 지원하는 방법을 설명하기에 앞서, 우선 3GPP Rel-11에서 정의된 PDSCH 관련 QCL 가정을 살펴본다.
3GPP Rel— 11에서는 CoMP 동작을 위한 기술로서 아래 표 8과 같은 PDSCH 관련 QCL 가정을 지원한다 (3GPP TS 36.213 참조) .
【표 8】
PDSCH를 위한 안테나 포트 QCL (Antenna ports quasi co- location for
PDSCH)
서빙 셀에 대하여 전송 모드 8-10이 설정된 단말은 서빙 셀의 안테나 포트 7- 14은 주어진 서브프레임에서 지연 확산, 도플러 확산, 도플러 쉬프트, 평균 이득, 평균 지연과 관련하여 QCL 되었다고 가정할 수 있다 (A UE configured in transmission mode 8-10 for a serving cell may assume the antenna ports 7 - 14 of the serving cell are quasi co- located for a given subframe with respect to delay spread, Doppler spread, Doppler shift, average gain, and average delay) .
서빙 셀에 대하여 전송 모드 1-9가 설정된 단말은 서빙 셀의 안테나 포트 0-3, 5, 7-22는 도플러 쉬프트, 도플러 확산, 평균 지연, 지연 확산과 관련하여 QCL 되었다고 가정할 수 있다 (A UE configured in transmission mode 1-9 for a serving cell may assume the antenna ports 0 ᅳ 3, 5, 7 - 22 of the serving cell are quasi co- located with respect to Doppler shift, Doppler spread, average delay, and delay spread) .
서빙 셀에 대하여 전송 모드 10이 설정된 단말은 안테나 포트 7-14와 관련된 전송 방식에 따라 PDSCH를 디코딩하기 위하여 상위 계층 파라미터 'qcl- Operation,에 의해 서빙 샐을 위한 2개의 QCL 타입 중 하나가 설정된다 (A UE configured in transmission mode 10 for a serving cell is configured with one of two quasi co-location types for the serving cell by higher layer parameter qcl -Operation to decode PDSCH according to transmission scheme associated with antenna ports 7-14): 1) 타입 A: 단말은 서빙 셀의 안테나 포트 0-3, 7-22가 지연 확산, 도플러 확산, 도플러 쉬프트 및 평균 지연과 관련하여 QCL 되었다고 가정할 수 있다 (The UE may assume the antenna ports 0 ᅳ 3, 7 - 22 of a serving cell are quasi co-located with respect to delay- spread, Doppler spread, Doppler shift, and average delay) .
2) 타입 B: 단말은 1 "위 계층 파라미터 'qcl— CSI-RS— Conf igNZPId- rll'에 의해 식별된 CSI-RS 자원 구성에 해당하는 안테나 포트 15-22와 PDSCH와 관련된 안테나 포트 7-14는 도플러 쉬프트, 도플러 확산, 평균 지연 및 지연 확산과 관련하여 QCL 되었다고 가정할 수 있다 (The UE may assume the antenna ports 15 - 22 corresponding to the CSI-RS resource configuration identified by the higher layer parameter qcl- CSI-RS- Conf igNZPId- ll (defined in clause 7.1.9) and the antenna ports 7 - 14 associated with the PDSCH are quasi co- located with respect to Doppler shift, Doppler spread, average delay, and delay spread) .
이하, 설명의 편의상 표 8과 같은 PDSCH 관련 QCL 타입 A, B는 본 발명에 따른 D-QCL type A, B와 구별하기 위해 PDSCH-QCL type A, B로 지칭한다 .
표 8과 같이 , PDSCH-QCL 타입 A, B는 전송 모드 (TM: transmission) 10에서만 지원되는 것으로서 , 단말은 특정 주파수 (즉, 컴포넌트 캐리어 , 셀 /캐리어 )에 대해 PDSCH_QCL type A 또는 B가 RRC 계층에 의해 설정될 수 있다. 만일 단말이 PDSCH-QCL 타입 A로 설정된 경우, 단말은 서빙 셀의 안테나 포트 0-3 (즉, CRS를 위한 안테나 포트) , 안테나 포트 7 - 22 (즉, CSI-RS 및 DMRS를 위한 안테나 포트) 간에 모두 QCL 가정을 적용할 수 있다. 이는 비 CoMP 동작 (non-CoMP operation)을 의미한다 .
반면, 단말이 PDSCH-QCL 타입 B로 설정된 경우, 단말은 안테나 포트 7- 14 (즉, DMRS를 위한 안테나 포트)와 상위 계층 파라미터 'qcl-CSI-RS- ConfigNZPId— rll '에 의해 지시되는 특정 안테나 포트 15ᅳ 22 (즉, 특정 CSI- RS를 위한 안테나 포트) 간에만 QCL 가정을 적용할 수 있다. 이는 CoMP 동작이 가능함으로 의미한다 .
본 발명에 따르면, 앞서 D-QCL 타입에 따라 상기 PDSCH-QCL 타입이 정해질 수 있다.
먼저, DMTC 등 특정 상위 계층 시그널링에 의해 해당 주파수에서 단말이 D-QCL 타입 A로 설정된 경우, 예를 들어 PC工이로 생성된 특정 PSS/SSS (및 DRS— CRS)가 검출되면, 단말 (TM 10이 설정된 경우)이 해당 셀에 대하여 적용할 (예를 들어 , 해당 셀이 ON-state가 된 경우 등) PDSCH-QCL 타입은 기본 (default)으로 PDSCH— QCL 타입 A로 설정될 수 있다. 따라서 단말은 추후 상위 계층 시그널링 (예를 들어 , RRC 시그널링) 등에 의해 PDSCH-QCL 타입 B로 재설정되지 않는 한 기본 설정인 PDSCH-QCL 타입 A에 따른 QCL 가정을 하고 해당 셀로부터의 데이터 수신 등의 동작을 수행한다. 즉, TM 10에서 비 CoMP 동작을 수행한다 .
반면, DMTC 등 특정 상위 계층 설정을 통해 해당 주파수에서 단말이 D- QCL 타입 B로 설정된 경우, 예를 들어 PCI이로 생성된 특정 PSS/SSS (및 DRS-CRS)가 검출되면 , 단말 (TM 10이 설정된 경우)이 해당 셀에 대하여 적용할 (예를 들어 , 해당 셀이 ON-state가 된 경우 등) PDSCH-QCL 타입은 기본으로 PDSCH— QCL 타입 B로 설정될 수 있다. 따라서 단말은 추후 상위 계층 시그널링 (예를 들어 , RRC 시그널링) 등에 의해 PDSCH-QCL 타입 A로 재설정되지 않는 한 기본 설정인 PDSCH-QCL 타입 B에 따라 QCL 가정을 하고 해당 셀로부터의 데이터 수신 등의 동작을 수행한다. 즉, TM 10에서 CoMP 동작을 수행한다 .
이때, CoMP 동작을 지원하기 위한 다중의 NZP CSI-RS 구성들, CSI-IM 구성들, CSI 처리 구성 등은 해당 셀이 S셀로서 추가될 때 RRC 시그널링에 의해 설정될 수 있다.
기존에는 PDSCH-QCL 타입 A가 항상 기본으로 설정되었으나, 위와 같이 PDSCH-QCL 타입 B가 단말에 기본으로 설정됨으로써, PDSCH-QCL 타입 A에서 PDSCH-QCL 타입 B로 재설정되는 과정 없이 신속하게 CoMP 동작이 지원될 수 있다는 장점이 있다. 또한, 앞서 표 8을 다시 참조하면, 3GPP Rel-11에서는 서빙 셀에 대해 전송 모드 1-9가 설정된 단말은 서빙 셀의 안테나 포트 0-3, 5, 7-22는 도플러 쉬프트, 도플러 확산, 평균 지연, 지연 확산과 관련하여 QCL 되었다고 가정할 수 있다.
본 발명에 따르면, 전송 모드 1-9가 설정된 단말에 대하여 QCL 가정이 아래 표 9와 같이 설정될 수 있다.
이하, 설명의 편의 상 TM 1-9가 설정된 단말에 대한 PDSCH-QCL 타입을 앞선 PDSCH-QCL 타입과 구분하기 위하여 PDSCH-TM1-9-QCL 타입 A, B로 지칭현:다. 다만, 이는 하나의 예시에 불과하며 앞서 PDSCH-QCL 타입 A, B와 통합되어 정의될 수 있다. 즉, TM 1-9와 TM 10에 대한 PDSCH— QCL 타입이 통합되어 정의될 수 있다.
[표 9】
서빙 셀에 대하여 전송 모드 1-9가 설정된 단말은 안테나 포트 0 - 3, 5, 또는 7 - 14와 관련된 전송 방식에 따라 PDSCH를 디코딩하기 위하여 상위 계층 파라미터 'qcl-OperationTMl-9 '에 의해 서빙 셀을 위한 2개의 PDSCH - TM1 - 9 -QCL 타입 중 하나가 설정된다 (A UE configured in transmission mode 1-9 for a serving cell is configured with one of two PDSCH- TM1-9— QCL types for the serving cell by higher layer parameter qcl-OperationTMl- 9 to decode PDSCH according to transmission scheme associated with antenna ports 0 一 3, 5, or 7 - 14) .
1) PDSCH -TM1- 9 -QCL 타입 A: 단말은 서빙 셀의 안테나 포트 0 - 3, 5, 7 ᅳ 227} 도플러 쉬프트 , 도플러 확산, 평균 지연 및 지연 확산과 관련하여 QCL 되었다고 가정할 수 있다 (The UE may assume the antenna ports 0 一 3 , 5, 7 - 22 of the serving cell are quasi co- located with respect to Doppler shift, Doppler spread, average delay, and delay spread) .
2) PDSCH-TM1-9-QCL 타입 B:
- DMRS 기반 PDSCH 전송 모드 (예를 들어 , TM 9〉가 설정된 단말은 안테나 포트 15— 22 (동일한 SCID를 가지는 DRS-CSI-RS 안테나 포트 201-208에 해당)와 PDSCH와 관련된 DMRS 관련 안테나 포트 (예를 들어 , 7-14)가 도플러 쉬프트, 도플러 확산, 평균 지연 및 지연 확산과 관련하여 QCL 되었다고 가정할 수 있다 (The UE configured with DMRS -based PDSCH transmission mode (e.g. , TM9 ) may assume the antenna ports 15 - 22
( corresponding to the DRS-CSI-RS antenna ports 201 ᅳ 208 (with the same scrambling ID) ) and the DMRS -related antenna ports
(e.g. , 7 - 14) associated with the PDSCH are quasi co- located with respect to Doppler shift, Doppler spread, average delay, and delay spread) .
여기서, 단말은 셀 ID 공유 시나리오로 인하여, 안테나 포트 0-3과 다른 CSI- RS/DMRS 안테나 포트가 QCL 되지 않는다고 가정할 수 있다 (UE shall not assume the antenna ports 0 - 3 and other CSI-RS/DMRS antenna ports are quasi co-located, due to the shared cell-ID scenario) .
- CRS 기반 PDSCH 전송 모드 (예를 들어 , TM 4)가 설정된 단말은 셀 ID 공유 시나리오로 인하여 안테나 포트 0-3과 다른 CSI-RS (동일한 SCID를 가지는 DRS-CSI-RS에 해당) /DMRS 안테나 포트가 QCL 되지 않는다고 가정할 수 있다 (The UE configured with CRS-based PDSCH transmission mode (e.g. , TM4 ) shall not assume the antenna ports 0 - 3 and other CSI-RS/DMRS antenna ports , due to the shared cell -ID
Figure imgf000106_0001
본 발명에 따르면, 앞서 D-QCL 타입에 따라 상기 PDSCH-TM1-9-QCL 타입이 정해질 수 있다.
먼저, DMTC 등 특정 상위 계층 시그널링을 통해 해당 주파수에서 단말이 D-QCL 타입 A로 설정된 경우, 예를 들어 PCID1로 생성된 특정 PSS/SSS (및 DRS-CRS)가 검출되면 , 단말 (TM 1-9가 설정된 경우)이 해당 셀에 대하여 적용할 (예를 들어 , 해당 셀이 ON-state가 된 경우 등) PDSCH— TM1-9— QCL 타입은 기본 (default)으로 PDSCH-TM1- 9-QCL 타입 A로 설정될 수 있다. 따라서 , 단말은 추후 상위 계층 시그널링 (예를 들어, RRC 시그널링) 등에 의해 PDSCH-TM1-9-QCL 타입 B로 재설정되지 않는 한 기본 설정인 PDSCH-TM1-9- QCL 타입 A에 따라 QCL 가정을 하고 해당 셀로부터의 데이터 수신 등의 동작을 수행한다.
반면, DMTC 등 특정 상위 계층 시그널링을 통해 해당 주파수에서 단말이 D-QCL 타입 B로 설정된 경우, 예를 들어 PCI이로 생성된 특정 PSS/SSS (및 DRS-CRS)가 검출되면 , 단말 (TM 1-9가 설정된 경우)이 해당 셀에 대하여 적용할 (예를 들어 , 해당 샐이 ON-state가 된 경우 등) PDSCH-TM1-9-QCL 타입은 기본으로 PDSCH-TM1-9-QCL 타입 B로 설정될 수 있다. 따라서 단말은 추후 상위 계층 시그널링 (예를 들어 , RRC 시그널링) 등에 의해 PDSCH-TM1— 9- QCL 타입 A로 재설정되지 않는 한 기본 설정인 PDSCH-TM1-9-QCL 타입 B에 따라 QCL 가정을 하고 해당 샐로부터의 데이터 수신 등의 동작을 수행한다. 결국, D-QCL 타입 A (예를 들어 , non-shared cell-ID scenario)로 설정된 주파수에서 검출된 PCI이로 생성된 PSS/SSS 등을 전송하는 셀에서는 단말이 TM 1-9로 설정되어도 종래와 같은 QCL 동작을 적용할 수 있다. 즉, 3GPP Rel-11에서 TM 1— 9가 설정된 단말에 대한 QCL 가정과 동일하다.
그러나, D-QCL 타입 B (예를 들어 , shared cell-ID 시나리오)로 설정된 주파수에서 검출된 PCI이로 생성된 PSS/SSS 등을 전송하는 셀에서는 해당 셀에 존재하는 (다중의 ) TP (들)가 각각 전송하는 DRS— CSI— RS를 검출한 단말의 경우, 해당 TP로부터의 해당 DRS-CSI-RS와 명시적 또는 암묵적으로 매핑 관계를 가지고 ON— state에서 전송되는 피드백 용 TP 특정 (TP-specific CSI-RS와 해당 셀이 전송하는 CRS (셀 특정 (cell-specif ic) , 공유된 TP (들) )는 QCL 가정이 성립해서는 안되므로 이를 단말에게 을바르게 설정하기 위함이다.
다시 말해 , 본 발명에 따른 제안 기술이 적용되지 않는 경우, D-QCL 타입 B (예를 들어 , shared cell-ID scenario)로 설정된 주파수에서 검출된 셀 및 TP가 존재할 때, 해당 TP로부터의 TP-specific CSI-RS 및 DMRS에 의한 서비스를 받고자 하여도 종래 기술로는 항상 PDSCH QCL 타입 A와 유사하게 CRS/CSI-RS/DMRS의 모든 안테나 포트가 서로 QCL 관계가 가정되므로 단말의 데이터 수신에 문제가 발생할 수 있다.
따라서, 이 경우, 해당 단말에 앞서 예시한 PDSCH-TM1-9-QCL 타입 B가 적용되도록 설정함으로써, TP— specific 동작이 가능하도록 하는 효과가 있다. 또한, 기본 QCL 동작을 D-QCL 타입이 A이면 기본 PDSCH-TM1— 9-QCL 타입이 A 그리고 D-QCL 타입이 B이면 기본 PDSCH-TM1-9-QCL 타입이 B와 같이 설정 /정의되므로, 바람직하게 기대되는 동작이 기본 타입으로 정의됨으로써 별도의 재설정 (예를 들어 , RRC 시그널링에 의한) 없이도 서비스가 개시될 수 있도록 하는 효과가 본 발명이 적용될 수 있는 장치 일반
도 18은 본 발명의 일 실시예에 따른 무선 통신 장치의 블록 구성도를 예시한다 .
도 18을 참조하면 , 무선 통신 시스템은 기지국 (1810)과 기지국 (1810) 영역 내에 위치한 다수의 단말 (1820)을 포함한다.
기지국 (1810)은 프로세서 (processor, 1811) , 데모리 (memory, 1812) 및 RF부 (radio frequency unit, 1813)을 포함한다. 프로세서 (1811)는 앞서 도 1 내지 도 17에서 제안된 기능, 과정 및 /또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층들은 프로세서 (1811)에 의해 구현될 수 있다. 메모리 (1812)는 프로세서 (1811)와 연결되어 , 프로세서 (1811)를 구동하기 위한 다양한 정보를 저장한다. RF부 (1813)는 프로세서 (1811)와 연결되어 , 무선 신호를 송신 및 /또는 수신한다.
단말 (1820)은 프로세서 (1821) , 메모리 (1822) 및 RF부 (1823)을 포함한다. 프로세서 (1821)는 앞서 도 1 내지 도 17에서 제안된 기능, 과정 및 /또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층들은 프로세서 (1821)에 의해 구현될 수 있다. 메모리 (1822)는 프로세서 (1821)와 연결되어 , 프로세서 (1821)를 구동하기 위한 다양한 정보를 저장한다. RF부 (1823)는 프로세서 (1821)와 연결되어 , 무선 신호를 송신 및 /또는 수신한다.
메모리 (1812, 1822)는 프로세서 (1811, 1821) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서 ( 1811 , 1821 )와 연결될 수 있다. 또한, 기지국 ( 1810 ) 및 /또는 단말 ( 1820〉은 한 개의 안테나 ( single antenna) 또는 다중 안테나 (multiple antenna)를 가질 수 있다 .
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및 /또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대웅하는 구성 또는특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자땅하다.
본 발명에 따른 실시예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어 ( f irmware ) , 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시예는 하나 또는 그 이상의 ASICs (application specif ic integrated circuits ) , DSPs (digital signal processors ) , DSPDs (digital signal processing devices ) , PLDs (programmable logic devices ) , FPGAs ( f ield programmable gate arrays ) , 프로세서 , 콘트를러 , 마이크로 콘트를러 , 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리는 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상술한 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니 되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
【산업상 이용가능성】
본 발명의 무선 통신 시스템에서 디스커버리 신호 수신 방안은 3GPP LTE/LTE -A 시스템에 적용되는 예를 중심으로 설명하였으나, 3GPP LTE/LTE -A 시스템 이외에도 다양한 무선 통신 시스템에 적용하는 것이 가능하다 .

Claims

【청구의 범위】
【청구항 1】
무선 통신 시스템에서 단말이 디스커버리 신호 (discovery signal )를 수신하는 방법에 있어서,
디스커버리 QCL (Quasi Co-Located) 타입을 설정하기 위한 디스커버리 QCL 타입 설정 정보를 수신하는 단계;
동기 신호 ( synchronization signal )을 검출하여 제 1 스크램블링 식별只 SCID : Scrambling Identity)를 획득하는 단계 ; 및
상기 설정된 디스커버리 QCL 타입을 기반으로 상기 제 1 SCID를 이용하여 상기 디스커버리 신호를 검출하는 단계를 포함하고,
상기 디스커버리 QCL 타입에 따라 광범위 채널 특성 ( large - scale channel property)과 관련하여 디스커버리 신호를 위한 안테나 포트와 상기 동기 신호를 위한 안테나 포트 간의 QCL 관계가 설정되는 디스커버리 신호 검출 방법.
【청구항 2】
제 1항에 있어서,
상기 디스커버리 QCL 타입 설정 정보에 의해 제 1 디스커버리 QCL 타입이 설정된 경우,
상기 단말은 상기 제 1 SCID와 동일하거나 또는 일대일 매핑되는 제 2 SCID로 생성되는 디스커버리 신호를 위한 안테나 포트와 상기 동기 신호를 위한 안테나 포트가 QCL된다고 가정하는 디스커버리 신호 검출 방법 .
【청구항 3】 제 2항에 있어서,
상기 단말은 상기 제 1 SCID와 동일하거나 또는 일대일 매핑되는 제 2 SCID로 생성되는 디스커버리 신호를 검출하는 디스커버리 신호 검출 방법.
【청구항 4】
제 2항에 있어서,
상기 광범위 채널 특성은 {도플러 쉬프트 (Doppler shift) , 평균 지연 (average delay) } 또는 {지연 확산 (delay spread) , 도플러 확산 (Doppler spread) , 도플러 쉬프트 (Doppler shift) , 평균 지연 (average delay) } 중 어느 하나인 디스커버리 신호 검출 방법 .
【청구항 5]
저 12항에 있어서,
상기 단말은 상기 동기 신호를 위한 안테나 포트와 셀 특정 참조 신호 (Cell-specif ic Reference Signal)를 위한 안테나 포트 간에 도플러 쉬프트 (Doppler shift) , 평균 지연 (average delay)에 대해서 QCL된다고 가정하는 디스커버리 신호 검출 방법 .
【청구항 6】
제 2항에 있어서,
상기 단말은 셀 특정 참조 신호 (Cell-specific Reference Signal)를 위한 안테나 포트와 복조 참조 신호 (Demodulation Reference Signal)를 위한 안테나 포트, 채널 상태 정보 참조 신호 (Channel State Informatics Reference Signal)를 위한 안테나 포트 간에 모두 QCL된다고 가정하는 디스커버리 신호 검출 방법 .
【청구항 7】
제 1항에 있어서,
상기 디스커버리 QCL 타입 설정 정보에 의해 제 2 디스커버리 QCL 타입이 설정된 경우,
상기 단말은 상기 제 1 SCID와 매핑되는 하나 이상의 제 2 SCID로 생성되는 디스커버리 신호를 위한 안테나 포트와 상기 동기 신호를 위한 안테나 포트가 QCL된다고 가정하는 디스커버리 신호 검출 방법 .
【청구항 8】
제 7항에 있어서,
상기 단말은 상기 제 1 SCID와 매핑되는 하나 이상의 제 2 SCID로 생성되는 디스커버리 신호를 검출하는 디스커버리 신호 검출 방법.
【청구항 9】
제 8항에 있어서,
상기 제 1 SCID와 상기 제 2 SCID와의 매핑은 네트워크로부터 설정되거나 미리 정의된 함수 또는 테이블에 의해 암묵적 ( implicit )으로 결정되는 디스커버리 신호 검출 방법 .
【청구항 10 ]
제 7항에 있어서,
상기 광범위 채널 특성은 {평균 지연 ( average delay) } , { (평균 지연 (average delay) , 도플러 쉬프트 (Doppler shif t ) } 및 {평균 지연 ( average delay) , 도폴러 쉬프트 (Doppler shif t ) , 도플러 확산 (Doppler spread) } 중 어느 하나인 디스커버리 신호 검출 방법 .
【청구항 11]
제 7항에 있어서,
상기 단말은 상기 동기 신호를 위한 안테나 포트와 셀 특정 참조 신호 (Cell- specif ic Reference Signal)를 위한 안테나 포트 간에 도플러 쉬프트 (Doppler shift) , 평균 지연 (average delay)에 대해서 QCL된다고 가정하는 디스커버리 신호 검출 방법 .
【청구항 12】
제 7항에 있어서,
상기 단말이 Co P (Coordinated Multi-Point Transmission and Reception) 동작을 지원하는 경우, 상기 단말은 상위 계층 파라미터에 의해 지시된 채널 상태 정보 참조 신호 (Channel State Information Reference Signal)를 위한 안테나 포트와 복조 참조 신호 (Demodulation Reference Signal)를 위한 안테나 포트 간에 QCL된다고 가정하는 디스커버리 신호 검출 방법.
【청구항 13】
제 7항에 있어서,
상기 단말이 복조 참조 신호 (DMRS: Demodulation Reference Signal) 기반 PDSCH (Physical Downlink Shared Channel) 전송 모드가 설정된 경우, 상기 단말은 채널 상태 정보 참조 신호 (Channel State Information Reference Signal)를 위한 안테나 포트와 상기 DMRS를 위한 안테나 포트가 QCL된다고 가정하는 디스커버리 신호 검출 방법.
【청구항 14】 제 7항에 있어서,
상기 단말이 샐 특정 참조 신호 (CRS: Cell-specific Reference Signal) 기반 PDSCH ( Physical Downlink Shared Channel) 전송 모드가 설정된 경우, 상기 단말은 상기 CRS를 위한 안테나 포트와 채널 상태 정보 참조 신호 (Channel State Information Reference Signal) , 복조 참조 신호 (Demodulation Reference Signal)를 위한 안테나 포트가 QCL되지 않는다고 가정하는 디스커버리 신호 검출 방법 .
【청구항 15】
무선 통신 시스템에서 디스커버리 신호 (discovery signal)를 수신하는 단말에 있어서,
무선 신호를 송수신하기 위한 RF (Radio Frequency) 유닛 ; 및
상기 단말올 제어하는 프로세서를 포함하고,
상기 프로세서는 디스커버리 QCL (Quasi Co-Located) 타입을 설정하기 위한 디스커버리 QCL 타입 설정 정보를 수신하고,
동기 신호 (synchronization signal)을 검출하여 제 1 스크램블링 식별자 (SCID: . Scrambling Identity)를 획득하고,
상기 설정된 디스커버리 QCL 타입을 기반으로 상기 제 1 SCID를 이용하여 상기 디스커버리 신호를 검출하도록 구성되고,
상기 디스커버리 QCL 타입에 따라 광범위 채널 특성 (large— scale channel property) 관련하여 디스커버리 신호를 위한 안테나 포트와 상기 동기 신호를 위한 안테나포트 간의 QCL 관계가 설정되는 단말.
PCT/KR2015/004790 2014-05-15 2015-05-13 무선 통신 시스템에서 디스커버리 신호 검출 방법 및 이를 위한 장치 WO2015174731A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/311,498 US9930515B2 (en) 2014-05-15 2015-05-13 Method for detecting discovery signal in wireless communication system, and device for same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201461994103P 2014-05-15 2014-05-15
US61/994,103 2014-05-15

Publications (1)

Publication Number Publication Date
WO2015174731A1 true WO2015174731A1 (ko) 2015-11-19

Family

ID=54480212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/004790 WO2015174731A1 (ko) 2014-05-15 2015-05-13 무선 통신 시스템에서 디스커버리 신호 검출 방법 및 이를 위한 장치

Country Status (2)

Country Link
US (1) US9930515B2 (ko)
WO (1) WO2015174731A1 (ko)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018030947A1 (en) * 2016-08-12 2018-02-15 Telefonaktiebolaget Lm Ericsson (Publ) Reducing overhead in sidelink transmissions
WO2018059571A1 (zh) * 2016-09-30 2018-04-05 中兴通讯股份有限公司 表征准共位置参数配置的方法和装置、发射及接收设备
CN108024365A (zh) * 2016-11-03 2018-05-11 华为技术有限公司 一种信息传输方法及设备
RU2694006C1 (ru) * 2016-06-08 2019-07-08 Телефонактиеболагет Лм Эрикссон (Пабл) Конфигурация синхронизации измерений сигнала обнаружения для вторичных сот в асинхронных сетях
KR20190082779A (ko) * 2016-11-10 2019-07-10 퀄컴 인코포레이티드 제어 및 데이터 채널들 간의 빔형성 관계들의 시그널링
CN110268743A (zh) * 2017-02-13 2019-09-20 高通股份有限公司 基于初始接入信号质量来发起移动性参考信号
CN110417532A (zh) * 2016-09-30 2019-11-05 中兴通讯股份有限公司 表征准共位置参数配置的方法和装置、发射及接收设备
RU2726172C1 (ru) * 2016-07-01 2020-07-09 Гуандун Оппо Мобайл Телекоммьюникейшнз Корп., Лтд. Способ и устройство для обнаружения сигнала
US20210194765A1 (en) * 2019-10-03 2021-06-24 Qualcomm Incorporated Constraints on a source reference signal for quasi-collocation timing reference of a positioning reference signal
CN114245399A (zh) * 2017-09-08 2022-03-25 维沃移动通信有限公司 一种同步信号块测量方法、终端及网络设备
US11343783B2 (en) 2017-06-16 2022-05-24 Lg Electronics Inc. Method and apparatus for transmitting and receiving synchronization signal block

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015178720A1 (ko) * 2014-05-22 2015-11-26 엘지전자 주식회사 측정을 수행하는 방법 및 이를 이용한 기기
US10321448B2 (en) * 2014-06-17 2019-06-11 Lg Electronics Inc. Method and apparatus for performing D2D operation in non-activated carrier in wireless communication system
US10341970B2 (en) 2014-11-17 2019-07-02 Qualcomm Incorporated Techniques for transmitting synchronization signals in a shared radio frequency spectrum band
EP3059891B1 (en) 2015-02-17 2020-06-10 Samsung Electronics Co., Ltd Method and apparatus for communication using a plurality of cells in a wireless communication system
CN107294676B (zh) * 2016-03-31 2020-10-20 电信科学技术研究院 导频映射方法、导频信号传输方法及装置、基站和终端
US11038557B2 (en) * 2016-03-31 2021-06-15 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving reference signals in wireless communication
US10064174B2 (en) * 2016-06-08 2018-08-28 Telefonaktiebolaget Lm Ericsson (Publ) Discovery signal measurement timing configuration for SCells in asynchronous networks
EP4255053A3 (en) * 2016-08-09 2023-10-11 Samsung Electronics Co., Ltd. Method and device for channel transmission in wireless cellular communication system
US10644833B2 (en) * 2016-08-12 2020-05-05 Telefonaktiebolaget Lm Ericsson (Publ) Reducing overhead in sidelink transmissions
US10090893B2 (en) * 2016-12-22 2018-10-02 Futurewei Technologies, Inc. Frequency division multiple antenna distribution
RU2732078C1 (ru) * 2017-04-25 2020-09-11 Гуандун Оппо Мобайл Телекоммьюникейшнс Корп., Лтд. Способ и устройство обработки сигналов
US10326576B2 (en) * 2017-04-28 2019-06-18 Qualcomm Incorporated Reusing long-term evolution (LTE) reference signals for nested system operations
WO2018204882A1 (en) * 2017-05-05 2018-11-08 Intel IP Corporation Quasi co-location (qcl) for antenna ports in new radio (nr)
US10469298B2 (en) * 2017-05-12 2019-11-05 Qualcomm Incorporated Increasing reference signal density in wireless communications
CN109150447B (zh) * 2017-06-16 2022-09-27 中兴通讯股份有限公司 信息发送、数据解调方法及装置、通信节点、网络侧设备
US10965360B2 (en) * 2017-08-23 2021-03-30 Qualcomm Incorporated Methods and apparatus related to beam refinement
CN115225444A (zh) 2017-10-31 2022-10-21 瑞典爱立信有限公司 用于子载波间隔参数集的指示的方法和装置
CN111183665B (zh) 2017-11-13 2023-04-28 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN110536446B (zh) * 2017-11-17 2020-08-07 华为技术有限公司 信息指示的方法、相关设备及系统
JP2019118036A (ja) * 2017-12-27 2019-07-18 シャープ株式会社 基地局装置、端末装置および通信方法
CN110034798A (zh) 2018-01-11 2019-07-19 索尼公司 电子设备、无线通信方法和计算机可读存储介质
CN113055147A (zh) 2018-02-11 2021-06-29 华为技术有限公司 准共址信息的确定方法、装置及设备
KR102196727B1 (ko) * 2018-05-10 2020-12-30 엘지전자 주식회사 무선 통신 시스템에서 pucch 자원을 구성하는 방법 및 장치
CN110855329B (zh) * 2018-08-20 2022-01-04 大唐移动通信设备有限公司 一种确定码字映射方式的方法及装置
CN110912657B (zh) * 2018-09-14 2022-08-30 联发博动科技(北京)有限公司 基于共存通信系统的rs的rrm测量和信道估计方法及设备
KR20210009596A (ko) * 2019-07-17 2021-01-27 엘지전자 주식회사 지능적 음성 인식 방법, 음성 인식 장치 및 지능형 컴퓨팅 디바이스
KR20190096862A (ko) * 2019-07-30 2019-08-20 엘지전자 주식회사 인공지능 장치를 이용한 음성 인식 기반 사용자 인증 방법 및 이를 위한 장치
EP4042750A1 (en) * 2019-10-07 2022-08-17 Telefonaktiebolaget Lm Ericsson (Publ) Cell configurations in a cellular communication system
KR20210058152A (ko) * 2019-11-13 2021-05-24 엘지전자 주식회사 지능형 보안 디바이스를 제어하는 방법
CN113811002A (zh) 2020-06-16 2021-12-17 中国移动通信有限公司研究院 信息传输方法、装置、相关设备及存储设备
US20220338265A1 (en) * 2021-04-15 2022-10-20 Qualcomm Incorporated Random access response differentiation
US11950218B2 (en) 2021-05-14 2024-04-02 Cisco Technology, Inc. Auto-configuration of hybrid cells supporting shared cell and unique cell operating modes for user equipment in virtualized radio access network architectures
US11882611B2 (en) 2021-05-17 2024-01-23 Cisco Technology, Inc. Dual-connectivity support for user equipment in a hybrid cell virtualized radio access network architecture
US11871271B2 (en) 2021-05-17 2024-01-09 Cisco Technology, Inc. Dynamic switching for user equipment between unique cell and shared cell operating modes based on application traffic

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013129837A1 (ko) * 2012-02-29 2013-09-06 엘지전자 주식회사 무선 통신 시스템에서 단말이 하향링크 신호를 수신하는 방법 및 이를 위한 장치
US20140092826A1 (en) * 2012-09-28 2014-04-03 Telefonaktiebolaget L M Ericsson (Publ) Methods, Network Nodes and User Equipments in a Wireless Network for Communicating an EPDCCH
WO2014069937A1 (en) * 2012-11-01 2014-05-08 Samsung Electronics Co., Ltd. Transmission scheme and quasi co-location assumption of antenna ports for pdsch of transmission mode 10 for lte advanced

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9509469B2 (en) * 2013-04-04 2016-11-29 Futurewei Technologies, Inc. Device, network, and method for utilizing a downlink discovery reference signal
US9900872B2 (en) * 2013-04-17 2018-02-20 Futurewei Technologies, Inc. Systems and methods for adaptive transmissions in wireless network

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013129837A1 (ko) * 2012-02-29 2013-09-06 엘지전자 주식회사 무선 통신 시스템에서 단말이 하향링크 신호를 수신하는 방법 및 이를 위한 장치
US20140092826A1 (en) * 2012-09-28 2014-04-03 Telefonaktiebolaget L M Ericsson (Publ) Methods, Network Nodes and User Equipments in a Wireless Network for Communicating an EPDCCH
WO2014069937A1 (en) * 2012-11-01 2014-05-08 Samsung Electronics Co., Ltd. Transmission scheme and quasi co-location assumption of antenna ports for pdsch of transmission mode 10 for lte advanced

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "Discussions on small cell discovery signal design", 3GPP TSG RAN WG1 MEETING #76 R1-140319, 1 February 2014 (2014-02-01), Prague, Czech, XP055227247 *
NTT DOCOMO: "Views on discovery signal design for Rel-12 small cell enhancement", R1-140622, 3GPP TSG RAN WG1 MEETING #76, 1 February 2014 (2014-02-01), Prague, Czech, XP050736147 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2694006C1 (ru) * 2016-06-08 2019-07-08 Телефонактиеболагет Лм Эрикссон (Пабл) Конфигурация синхронизации измерений сигнала обнаружения для вторичных сот в асинхронных сетях
US11153836B2 (en) 2016-07-01 2021-10-19 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method and device for signal detection
US10813065B2 (en) 2016-07-01 2020-10-20 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method and device for signal detection
RU2726172C1 (ru) * 2016-07-01 2020-07-09 Гуандун Оппо Мобайл Телекоммьюникейшнз Корп., Лтд. Способ и устройство для обнаружения сигнала
WO2018030947A1 (en) * 2016-08-12 2018-02-15 Telefonaktiebolaget Lm Ericsson (Publ) Reducing overhead in sidelink transmissions
CN110417532A (zh) * 2016-09-30 2019-11-05 中兴通讯股份有限公司 表征准共位置参数配置的方法和装置、发射及接收设备
US11722268B2 (en) 2016-09-30 2023-08-08 Zte Corporation Method and device for representing quasi co-location parameter configuration, and transmitting and receiving apparatus
US11088792B2 (en) 2016-09-30 2021-08-10 Zte Corporation Method and device for representing quasi co-location parameter configuration, and transmitting and receiving apparatus
WO2018059571A1 (zh) * 2016-09-30 2018-04-05 中兴通讯股份有限公司 表征准共位置参数配置的方法和装置、发射及接收设备
CN108024365A (zh) * 2016-11-03 2018-05-11 华为技术有限公司 一种信息传输方法及设备
CN108024365B (zh) * 2016-11-03 2024-03-15 华为技术有限公司 一种信息传输方法及设备
KR20190082779A (ko) * 2016-11-10 2019-07-10 퀄컴 인코포레이티드 제어 및 데이터 채널들 간의 빔형성 관계들의 시그널링
KR102168597B1 (ko) 2016-11-10 2020-10-22 퀄컴 인코포레이티드 제어 및 데이터 채널들 간의 빔형성 관계들의 시그널링
US10951376B2 (en) 2016-11-10 2021-03-16 Qualcomm Incorporated Signaling beamforming relationships between control and data channels
CN110268743A (zh) * 2017-02-13 2019-09-20 高通股份有限公司 基于初始接入信号质量来发起移动性参考信号
US11272429B2 (en) 2017-02-13 2022-03-08 Qualcomm Incorporated Initiation of mobility reference signal based on quality of initial access signals
EP3580958B1 (en) * 2017-02-13 2023-11-01 Qualcomm Incorporated Initiation of mobility reference signal based on quality of initial access signals
US11343783B2 (en) 2017-06-16 2022-05-24 Lg Electronics Inc. Method and apparatus for transmitting and receiving synchronization signal block
CN114245399A (zh) * 2017-09-08 2022-03-25 维沃移动通信有限公司 一种同步信号块测量方法、终端及网络设备
US20210194765A1 (en) * 2019-10-03 2021-06-24 Qualcomm Incorporated Constraints on a source reference signal for quasi-collocation timing reference of a positioning reference signal

Also Published As

Publication number Publication date
US20170105112A1 (en) 2017-04-13
US9930515B2 (en) 2018-03-27

Similar Documents

Publication Publication Date Title
US10779176B2 (en) Method and apparatus for performing measurement using discovery reference signal (DRS) in wireless communication system
KR101989124B1 (ko) 무선 통신 시스템에서 측정 수행 방법 및 이를 위한 장치
US9930515B2 (en) Method for detecting discovery signal in wireless communication system, and device for same
US10694416B2 (en) Method for radio resource measurement in wireless access system supporting carrier aggregation, and apparatus supporting same
US10547427B2 (en) Method for transmitting demodulation reference signal in wireless communication system that supports narrow band IoT and apparatus for supporting the same
US10237862B2 (en) Method for receiving system information in wireless communication system that supports narrowband IOT and apparatus for the same
US10368363B2 (en) Uplink data transmission method in wireless communication system and device therefor
KR102214072B1 (ko) 단말간 직접 통신을 위한 동기 정보 수신 방법 및 이를 위한 장치
US9730240B2 (en) Communication method considering carrier type and apparatus for same
US9674886B2 (en) Method and apparatus for transmitting signals to a plurality of transmission points
US9603139B2 (en) Method and device for transmitting and receiving downlink signal in wireless communication system
WO2016108483A1 (ko) 무선 통신 시스템에서 채널 추정을 수행하기 위한 방법 및 이를 위한 장치
US20170118665A1 (en) Method for performing measurement in wireless communication system and apparatus therefor
KR102032850B1 (ko) 복수의 네트워크 노드로 구성된 셀을 포함하는 무선통신 시스템에서 채널품질상태를 측정하는 방법 및 이를 위한 장치
WO2016108482A1 (ko) 무선 통신 시스템에서 코드북을 이용하여 프리코딩을 수행하기 위한 방법 및 이를 위한 장치
WO2015111909A1 (ko) 단말 간 통신을 지원하는 무선 통신 시스템에서 단말 식별자를 결정하기 위한 방법 및 이를 위한 장치
WO2015080484A1 (ko) 무선 통신 시스템에서 디스커버리 메시지 송수신 방법 및 이를 위한 장치
KR20160040580A (ko) 무선 통신 시스템에서 신호 송수신방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15792011

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15311498

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 15792011

Country of ref document: EP

Kind code of ref document: A1