WO2018059571A1 - 表征准共位置参数配置的方法和装置、发射及接收设备 - Google Patents

表征准共位置参数配置的方法和装置、发射及接收设备 Download PDF

Info

Publication number
WO2018059571A1
WO2018059571A1 PCT/CN2017/104742 CN2017104742W WO2018059571A1 WO 2018059571 A1 WO2018059571 A1 WO 2018059571A1 CN 2017104742 W CN2017104742 W CN 2017104742W WO 2018059571 A1 WO2018059571 A1 WO 2018059571A1
Authority
WO
WIPO (PCT)
Prior art keywords
quasi
signal
location
feature parameter
parameter set
Prior art date
Application number
PCT/CN2017/104742
Other languages
English (en)
French (fr)
Inventor
张楠
陈艺戬
鲁照华
李儒岳
吴昊
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710298911.0A external-priority patent/CN107889150B/zh
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP23200761.7A priority Critical patent/EP4322422A3/en
Priority to CA3038857A priority patent/CA3038857C/en
Priority to KR1020197012526A priority patent/KR102324043B1/ko
Priority to ES17855021T priority patent/ES2963674T3/es
Priority to EP17855021.6A priority patent/EP3522427B1/en
Priority to FIEP17855021.6T priority patent/FI3522427T3/fi
Publication of WO2018059571A1 publication Critical patent/WO2018059571A1/zh
Priority to US16/370,872 priority patent/US11088792B2/en
Priority to US17/393,323 priority patent/US11722268B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path

Definitions

  • the quasi-common position configuration corresponding to these different reference signals/antenna ports is limited by a specific quasi-co-location parameter relationship, and cannot be configured according to the current channel state or the like in system transmission.
  • the similarity of channel characteristics and channel parameters corresponding to different reference signals/antenna ports in system transmission are compared in time, frequency domain and airspace. Large differences, the specific quasi-common position parameter configuration scheme can not flexibly deal with this phenomenon.
  • Embodiments of the present disclosure provide a method and apparatus for characterizing a quasi-co-location parameter configuration, a transmitting and receiving device, to at least solve the problem that the quasi-co-location information between different reference signals or between different antenna ports cannot be flexibly configured in the related art.
  • Technical problem .
  • a method for characterizing a quasi-co-location parameter configuration comprising: acquiring a second quasi-co-location feature parameter including some or all of the feature parameters of the first quasi-co-location feature parameter set And generating, by signaling, configuration information of the second quasi-co-location feature parameter set to the receiving end.
  • a method for characterizing a quasi-co-location parameter configuration comprising: dividing all transmit signals or antenna ports into X signal sets having a quasi-co-location relationship according to X feature parameter sets A group or an antenna port set group; indicating configuration information of the signal set group or the antenna port set group to the receiving end by signaling.
  • a method for characterizing a quasi-co-location parameter configuration comprising: dividing signals in a first type of signal into Q signal groups according to occupied transmission resources, where A type of signal includes a plurality of signals, Q being a positive integer; signaling indicates a second type of signal and/or a set of quasi-co-location feature parameters having a quasi-coordinated relationship with the signal group.
  • a method of characterizing a quasi-co-location parameter configuration includes: determining a quasi-co-location feature parameter set used in the current transmission by demodulating the signaling of the transmitting end; acquiring a transmission signal group and/or an antenna port group corresponding to the quasi-co-location characteristic parameter set, and transmitting the signal group and/or Or the antenna port group determines channel information corresponding to the current transmission signal and/or the current antenna port.
  • a method for characterizing a quasi-co-location parameter configuration comprising: determining, by using a signaling of a demodulation transmitter, a quasi-co-location feature parameter set used in a current transmission; obtaining and quasi-acquisition The transmission signal group and/or the antenna port group corresponding to the common location feature parameter set, and the channel information corresponding to the current transmission signal and/or the current antenna port is determined by the transmission signal group and/or the antenna port group.
  • a method for characterizing a quasi-co-location parameter configuration comprising: determining, by signaling of a demodulation transmitter, a grouping manner of a first type of signal and a Q signal of a first type of signal a quasi-co-location feature parameter set and/or a quasi-co-location signal set to which each signal group belongs in the group; determining, corresponding to the current transmission signal and/or the current antenna port, based on the quasi-co-location location feature parameter set and/or the quasi-co-location signal set Channel information.
  • an apparatus for characterizing a quasi-co-location parameter configuration comprising: a first acquisition unit configured to acquire some or all of the feature parameters including the first quasi-co-location feature parameter set The second quasi-common location feature parameter set; the first indication unit is configured to indicate, by signaling, configuration information of the second quasi-co-location feature parameter set to the receiving end.
  • an apparatus for characterizing a quasi-co-location parameter configuration comprising: a first processing unit configured to divide all transmit signals or antenna ports into X according to X feature parameter sets A signal set group or an antenna port set group having a quasi-co-location relationship; and a second indication unit configured to indicate configuration information of the signal set group or the antenna port set group to the receiving end by signaling.
  • an apparatus for characterizing a quasi-co-location parameter configuration comprising: a second processing unit configured to divide a signal in a first type of signal according to an occupied transmission resource Q signal groups, wherein the first type of signal comprises a plurality of signals, Q is a positive integer; and the third indication unit is configured to indicate, by signaling, a second type of signal and/or quasi-common with a quasi-co-positional relationship with the signal group A collection of location feature parameters.
  • an apparatus for characterizing a quasi-co-location parameter configuration comprising: a first determining unit configured to determine a quasi-common used in a current transmission by demodulating signaling of a transmitting end And a second determining unit, configured to acquire a transmission signal group and/or an antenna port group corresponding to the quasi-co-location parameter parameter set, and determine, by using the transmission signal group and/or the antenna port group, the current transmission signal and/or Or channel information corresponding to the current antenna port.
  • an apparatus for characterizing a quasi-co-location parameter configuration comprising: a third determining unit configured to determine a quasi-common used in a current transmission by demodulating signaling of a transmitting end a fourth set determining unit configured to acquire a transmission signal group and/or an antenna port group corresponding to the quasi-co-location characteristic parameter set, and determine the current transmission signal and/or by transmitting the signal group and/or the antenna port group Or channel information corresponding to the current antenna port.
  • an apparatus for characterizing a quasi-co-location parameter configuration comprising: a fifth determining unit configured to determine a grouping manner of a first type of signal by signaling of a demodulation transmitting end the first sort a quasi-co-location feature parameter set and/or a quasi-co-location signal set to which each of the Q signal groups of the signal belongs; a sixth determining unit configured to be based on the quasi-co-location feature parameter set and/or the quasi-co-location signal set Channel information corresponding to the current transmission signal and/or the current antenna port is determined.
  • a transmitting device comprising: a first processor; a first memory configured to store first processor executable instructions; and configured to be according to the first processor Controlling, by the first transmitting device that performs information transceiving communication; wherein the first processor is configured to: acquire a second quasi-co-location feature parameter set including some or all of the feature parameters in the first quasi-co-location feature parameter set; The signaling indicates configuration information of the second quasi-common location feature parameter set to the receiving end.
  • a receiving device comprising: a second processor; a second memory configured to store second processor executable instructions; and configured to be according to the second processor Controlling, by the second transmission device, the second transmission device, wherein the second processor is configured to: determine, by signaling of the demodulation sender, a quasi-co-location feature parameter set used in the current transmission; acquire and quasi-co-location features
  • the transmission signal group and/or the antenna port group corresponding to the parameter set, and the channel information corresponding to the current transmission signal and/or the current antenna port is determined by the transmission signal group and/or the antenna port group.
  • FIG. 1 is a schematic diagram of a computer terminal in accordance with an embodiment of the present disclosure.
  • FIG. 2 is a flow chart of a method of characterizing a quasi-co-location parameter configuration in accordance with an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of a quasi-common position parameter combination in accordance with an embodiment of the present disclosure
  • FIG. 4 is a flow chart of a method of characterizing a quasi-co-location parameter configuration in accordance with an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of a quasi-common position configuration state according to an embodiment of the present disclosure
  • FIG. 6 is a flowchart of a method of characterizing a quasi-common position parameter configuration in accordance with an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram showing a distribution of resources occupied by signals according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of a reference signal quasi-co-location configuration in accordance with an embodiment of the present disclosure
  • FIG. 9 is a schematic diagram showing a distribution of resources occupied by reference signals according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of an apparatus for characterizing a quasi-common position parameter configuration in accordance with an embodiment of the present disclosure
  • FIG. 11 is a schematic diagram of an apparatus for characterizing a quasi-co-location parameter configuration in accordance with an embodiment of the present disclosure
  • FIG. 12 is a schematic diagram of an apparatus for characterizing a quasi-common position parameter configuration in accordance with an embodiment of the present disclosure.
  • the method embodiment provided in Embodiment 1 of the present application can be executed in a mobile terminal (such as a wearable device), a computer terminal, or the like.
  • the mobile terminal may include one or more (only one shown) processor 101 (the processor 101 may include, but is not limited to, a microprocessor MCU or programmable A processing device such as a logic device FPGA, a memory 103 provided to store data, and a transmission device 105 provided as a communication function.
  • the structure shown in FIG. 1 is merely illustrative and does not limit the structure of the above electronic device.
  • the memory 103 can be set as a software program and a module for storing application software, such as program instructions/modules corresponding to the control method of the device in the embodiment of the present disclosure, and the processor 101 executes by executing a software program and a module stored in the memory 103.
  • application software such as program instructions/modules corresponding to the control method of the device in the embodiment of the present disclosure
  • the processor 101 executes by executing a software program and a module stored in the memory 103.
  • the memory may include high speed random access memory and may also include non-volatile memory such as one or more magnetic storage devices, flash memory or other non-volatile solid state memory.
  • the memory can include memory remotely located relative to the processor, which can be connected to the computer terminal over a network. Examples of such networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • the transmission device is arranged to receive or transmit data via a network.
  • Exemplary examples of the network described above may include a wireless network provided by a communication provider of a computer terminal.
  • the transmission device includes a Network Interface Controller (NIC) that can be connected to other network devices through a base station to communicate with the Internet.
  • the transmission device may be a Radio Frequency (RF) module configured to communicate with the Internet wirelessly.
  • NIC Network Interface Controller
  • RF Radio Frequency
  • the quasi-common position configuration used in the new generation of radio access networks needs to be able to flexibly reflect the quasi-co-location combinations existing between different reference signals/antenna ports.
  • an embodiment of a method of characterizing a quasi-co-location parameter configuration is provided, it being noted that the steps illustrated in the flowchart of the accompanying drawings may be performed in, for example, a group of computers.
  • the instructions are executed in a computer system, and although the logical order is shown in the flowcharts, in some cases the steps shown or described may be performed in a different order than the ones described herein.
  • FIG. 2 is a flow diagram of a method of characterizing a quasi-co-location parameter configuration, as shown in FIG. 2, including the following steps, in accordance with an embodiment of the present disclosure:
  • Step S201 Acquire a second quasi-co-joint including some or all of the feature parameters in the first quasi-co-location feature parameter set. A collection of location feature parameters.
  • Step S202 indicating configuration information of the second quasi-common location feature parameter set to the receiving end by signaling.
  • a transmitting or transmitting end such as a base station, a micro base station, a mobile base station, and the like.
  • the feature parameter is used to characterize a wireless propagation channel; the characteristic parameter includes at least one of an average delay, an average gain, a frequency offset, a frequency offset extension, a spatial parameter, and a delay spread.
  • the spatial parameter may be: an angle of arrival, an average angle of arrival, a spatial correlation, an emission angle, and an average emission angle.
  • the feature parameter is used to characterize a quasi-co-location mode between signals or between antenna ports.
  • step S201 acquiring a second quasi-co-location feature parameter set including some or all of the feature parameters in the first quasi-co-location feature parameter set includes: acquiring a second quasi-co-location feature parameter respectively configured for L signals or antenna ports The set, wherein each signal or each antenna port corresponds to at least one second quasi-co-location feature parameter set, L being a positive integer.
  • acquiring a second quasi-co-location feature parameter set including some or all of the feature parameters in the first quasi-co-location feature parameter set includes: acquiring, by using the N feature parameter groups in the first quasi-co-location feature parameter set a quasi-common position feature parameter set, wherein the first quasi-common position feature parameter set includes M feature parameter sets, N is a positive number greater than 0 and not greater than M, and M is a positive integer; according to the current transmission signal
  • the quasi-co-location mode selects the first feature parameter from the first quasi-co-location feature parameter set, and adds the selected first feature parameter to the second quasi-co-location feature parameter set; according to the transmission mode, the first quasi-common position feature parameter Selecting a second feature parameter in the set, and adding the selected second feature parameter to the second quasi-co-location feature parameter set; selecting the third feature parameter from the first quasi-common position feature parameter set according to the terminal feedback information, and The third feature parameter is added to the second quasi-co-location feature parameter set.
  • each feature parameter group includes a m-type feature parameter, and m is a positive integer.
  • step S202 indicating, by signaling, configuration information of the second quasi-co-location feature parameter set to the receiving end includes: transmitting high-level signaling for indicating a feature parameter or a feature parameter group included in the second quasi-co-location feature parameter set To the receiving end.
  • the signaling indicating the configuration information of the second quasi-co-location feature parameter set to the receiving end includes: indicating, by using preset signaling, a signal set having a quasi-co-location relationship applicable to the second quasi-co-location characteristic parameter set or An antenna port set, wherein the preset signaling includes high layer signaling and/or physical layer signaling.
  • a method for characterizing a quasi-common position parameter configuration includes: determining a current transmission by demodulating signaling of the transmitting end. a quasi-co-location feature parameter set used in the method; acquiring a transmission signal group and/or an antenna port group corresponding to the quasi-co-location parameter parameter set, and determining, by the transmission signal group and/or the antenna port group, the current transmission signal and/or Channel information corresponding to the current antenna port.
  • a receiving end that is, a receiving device, such as a user terminal, a mobile terminal, etc., such as a mobile phone, a tablet computer, or the like.
  • the feature parameters and channel information in the set of quasi-co-location feature parameters are used to characterize the wireless propagation channel.
  • the feature parameters include at least one of an average delay, an average gain, a frequency offset, a frequency offset extension, a spatial parameter, and a delay spread.
  • the spatial parameter may be: an angle of arrival, an average angle of arrival, a spatial correlation, an emission angle, and an average emission angle.
  • the signal type of the signal transmitted in the transmission signal group includes: a downlink synchronization signal, an uplink random access signal, a downlink data demodulation pilot signal, a downlink control demodulation pilot signal, a downlink measurement pilot signal, and an uplink data solution.
  • the pilot signal, the uplink control demodulation pilot signal, and the uplink measurement pilot signal are adjusted.
  • the antenna port group includes a port configured to send one of the following signals: a downlink synchronization signal, an uplink random access signal, a downlink data demodulation pilot signal, a downlink control demodulation pilot signal, a downlink measurement pilot signal, The uplink data demodulation pilot signal, the uplink control demodulation pilot signal, the uplink measurement pilot signal, the uplink user data, the downlink user data, the uplink user control information, and the downlink user control information.
  • a port configured to send one of the following signals: a downlink synchronization signal, an uplink random access signal, a downlink data demodulation pilot signal, a downlink control demodulation pilot signal, a downlink measurement pilot signal, The uplink data demodulation pilot signal, the uplink control demodulation pilot signal, the uplink measurement pilot signal, the uplink user data, the downlink user data, the uplink user control information, and the downlink user control information.
  • acquiring the transmission signal group and/or the antenna port group corresponding to the quasi-co-location feature parameter set includes: acquiring at least one transmission signal group and/or at least one antenna port group corresponding to the at least one quasi-co-location parameter feature parameter set.
  • Channel information is a code that specifies whether the transmission signal group and/or the antenna port group corresponding to the at least one quasi-co-location parameter feature parameter set.
  • the method further comprises: measuring the current transmission signal and/or channel information of the current antenna port; and feeding back the current transmission signal and/or the quasi-co-location characteristic parameter set of the current antenna port to the transmitting end.
  • the quasi-co-location parameter set used in the current transmission and the packet information of the signal and antenna port corresponding to the quasi-coordinate position relationship corresponding to each parameter set are characterized.
  • the system can configure the transmission signal and the port group with the flexible quasi-co-location feature, thereby improving the channel estimation accuracy in the system. Degree, optimized transmission performance.
  • the sending end may notify the terminal to use the quasi-common position parameter currently used by the terminal to combine the configuration information.
  • the system can arbitrarily combine N wireless channel characteristic parameters to form a set of quasi-common position parameter configurations available.
  • each quasi-common location feature parameter set may include i (1 ⁇ i ⁇ N) radio channel feature parameters, for example, for quasi-co-location location feature parameter set 1, including channel feature parameter 1;
  • the common location feature parameter set 2 includes a channel feature parameter 2 and a channel feature parameter i; and for the quasi-common position feature parameter set N-1, includes a channel feature parameter 2 and a channel feature parameter i.
  • FIG. 4 is a flowchart of a method of characterizing a quasi-co-location parameter configuration, as shown in FIG. 4, in accordance with an embodiment of the present disclosure, The method comprises the following steps:
  • Step S401 dividing all transmit signals or antenna ports into X signal set groups or antenna port set groups having quasi-co-location relationships according to X feature parameter groups, where X is a positive integer;
  • Step S402 indicating configuration information of the signal collection group or the antenna port aggregation group to the receiving end by signaling.
  • all the transmit signals or antenna ports are divided into X signal set groups or antenna port set groups having a quasi-co-location relationship according to the X feature parameter groups; the signal indication group or the antenna port set group configuration is indicated by signaling
  • the information is provided to the receiving end, thereby solving the technical problem that the quasi-co-location information between different reference signals or between different antenna ports cannot be flexibly configured in the related art, and the quasi-alignment between different reference signals or between different antenna ports is realized.
  • the technical effect of flexible configuration of the common location information is realized.
  • a transmitting or transmitting end such as a base station, a micro base station, a mobile base station, and the like.
  • the feature parameters in the feature parameter group include at least one of an average delay, an average gain, a frequency offset, a frequency offset extension, a spatial parameter, and a delay spread.
  • the spatial parameter may be: an angle of arrival, an average angle of arrival, a spatial correlation, an emission angle, and an average emission angle.
  • the configuration information of the second quasi-common location feature parameter set may be indicated to the receiving end by means of a manner agreed by the transmitting end and the receiving end:
  • the second quasi-co-location parameter set has a uniquely determined one-to-one mapping relationship with the signal set group or the antenna port set group.
  • the second quasi-co-location parameter set configuration condition corresponding to the transmission signal or the antenna port includes one of the following:
  • the second quasi-common position parameter set configured by the transmitter includes at least a frequency offset extension and a frequency offset, and does not include Extended extension and average delay;
  • the second quasi-common position parameter set configured by the transmitter includes at least a frequency offset extension, a frequency offset, a delay spread, and Average delay
  • the quasi-common position parameter configuration condition corresponding to the transmission signal includes one of the following:
  • the second quasi-common position parameter set configured by the transmitter includes at least a frequency offset and an average delay
  • the second quasi-common position parameter set configured by the transmitter includes at least a frequency offset.
  • the set of quasi-common position parameters (including some or all of the quasi-co-location parameters) listed in Table 1 can be used as a basis for dynamic configuration or quasi-co-location parameter selection in an agreed-based manner. Whether the spatial parameter is included in the quasi-common position parameter set is determined by the transmitting end according to the current transmission mode or the receiving end feedback result.
  • the transmitting end and/or the receiving end do not use the analog beamforming, the transmitting end does not activate the spatial parameter when performing the characteristic parameter grouping, and vice versa.
  • the transmitting end when the transmitting end does not receive the measurement result of the beam by the receiving end, the transmitting end does not activate the spatial parameter when performing the characteristic parameter grouping, and vice versa.
  • Quasi-common position parameter set Quasi-common position parameter Category 1 or 1’ [2]or[2][6] Category 2 or 2’ [2][4]or[2][4][6] Category 3 or 3’ [1][2]or[1][2][6] Category 4 or 4’ [1-4]or[1-4][6] Category 5 or 5’ [1-5]or[1-6] Category 6 [6]
  • the quasi-common position parameter [1] in Table 1 represents frequency offset extension, [2] represents frequency offset, [3] represents delay spread, [4] represents average delay, [5] represents average gain, [6] Represents a spatial parameter.
  • the parameter [6] can be activated when the QCL (Quasi co-location parameter) parameter set is configured.
  • the method further comprises: grouping the feature parameters according to the following manner: dividing all the feature parameters into X feature parameter groups according to the agreement with the receiving end; classifying all the feature parameters into X features according to the preset configuration saved locally; Parameter group; according to the feedback information of the receiving end, all the characteristic parameters are divided into X characteristic parameter groups; according to the transmission mode of the receiving end, all the characteristic parameters are divided into X characteristic parameter groups; according to the factors affecting the characteristic parameters, all the characteristic parameters are divided into X. Characteristic parameter group;
  • each of the quasi-co-location parameter sets includes spatial parameters can be determined according to a transmission mode adopted by the current receiving end.
  • the transmission mode includes, for example, whether the transmitter or the receiver uses module beamforming.
  • the system does not activate the spatial parameter when performing the characteristic parameter grouping, and vice versa.
  • the signal type of the transmitted signal includes: a downlink synchronization signal, an uplink random access signal, a downlink data demodulation pilot signal, a downlink control demodulation pilot signal, a downlink measurement pilot signal, and an uplink data demodulation pilot signal.
  • the uplink control demodulation pilot signal and the uplink measurement pilot signal includes: a downlink synchronization signal, an uplink random access signal, a downlink data demodulation pilot signal, a downlink control demodulation pilot signal, a downlink measurement pilot signal, and an uplink data demodulation pilot signal.
  • the signal set group comprises at least one of the following: a signal of the same type sent by different ports; a signal of the same type transmitted periodically and according to a non-period; a signal of the same type sent by the same signal port at different transmission time positions; Signals of the same type that are transmitted by signal ports at different transmit frequency domain locations; signals of different signal classes; different types of signals transmitted in periodic and non-periodic.
  • the signaling information indicating the configuration information of the signal set to the receiving end includes: indicating, by the one or more sets of instructions, the I signal set group to which the any type of signal belongs to the receiving end, where the I signal set group There are different quasi-coordinate position relationships, and I is a positive integer greater than 0 and not greater than X.
  • the correspondence between the feature parameter group and the transmission signal includes one of the following:
  • the transmitting end is used to measure phase noise measurement pilot and data demodulation pilot, or a port corresponding to the measurement pilot and data demodulation pilot for measuring phase noise is configured as a transmit signal or an antenna port combination with respect to the feature parameter set;
  • a transmitting end is used to measure the phase noise measurement pilot and the data demodulation pilot, or corresponding to the A port for measuring pilot noise and data demodulation pilots for measuring phase noise is configured as a transmit signal or antenna port combination for the set of characteristic parameters;
  • the transmitting end configures a downlink synchronization signal and a downlink measurement pilot, or a port corresponding to the downlink synchronization signal and the downlink measurement pilot as being related to the feature.
  • the transmitting end When a group of X feature parameter groups includes at least a frequency offset, the transmitting end will downlink synchronization signal and downlink measurement guide.
  • the frequency, or the port corresponding to the downlink synchronization signal and the downlink measurement pilot, is configured as a transmission signal or antenna port combination with respect to the feature parameter set.
  • the transmitting end can configure the quasi-co-location parameter relationship corresponding to the following signals or port sets by signaling:
  • Table 2 Example of quasi-common position parameter configuration corresponding to a signal or port set
  • the quasi-common position parameter [1] in Table 2 represents frequency offset extension, [2] represents frequency offset, [3] represents delay spread, [4] represents average delay, [5] represents average gain, [6] Represents a spatial parameter.
  • parameter [6] can be activated when configuring the QCL parameter set.
  • the antenna port includes a port configured to send one of the following signals: a downlink synchronization signal, an uplink random access signal, a downlink data demodulation pilot signal, a downlink control demodulation pilot signal, a downlink measurement pilot signal, and an uplink.
  • the antenna port set group includes at least one of: transmitting different ports of the same type of signal at different transmission time positions; transmitting different ports of the same type of signal at different transmission frequency domain positions; transmitting at different transmission time positions Different ports of different types of signals; different ports that transmit different types of signals at different transmission frequency domain locations.
  • indicating, by signaling, the configuration information of the antenna port set group to the receiving end includes: indicating, by using one or more sets of instructions, the J antenna port set groups to which the any type of signals belong to the receiving end, where, the J antennas Port collection group There are different quasi-co-location relationships, and J is a positive integer greater than 0 and not greater than X.
  • the method further includes: configuring resources for transmitting each signal in the first type of signal according to the quasi-common position signal set to which the first type of signal belongs and/or the corresponding quasi-common position feature parameter set.
  • a method for characterizing a quasi-co-location parameter configuration is provided correspondingly, which is applied to a receiving end, and the method includes: transmitting by demodulation The signaling of the terminal determines a quasi-co-location characteristic parameter set used in the current transmission; acquires a transmission signal group and/or an antenna port group corresponding to the quasi-co-location characteristic parameter set, and determines and is transmitted by the transmission signal group and/or the antenna port group. Current transmission signal and/or channel information corresponding to the current antenna port.
  • a receiving end that is, a receiving device, such as a user terminal, a mobile terminal, etc., such as a mobile phone, a tablet computer, or the like.
  • the feature parameters and channel information in the set of quasi-co-location feature parameters are used to characterize the wireless propagation channel.
  • the feature parameters include at least one of an average delay, an average gain, a frequency offset, a frequency offset extension, a spatial parameter, and a delay spread.
  • the spatial parameter may be: an angle of arrival, an average angle of arrival, a spatial correlation, an emission angle, and an average emission angle.
  • the signal type of the signal transmitted in the transmission signal group includes: a downlink synchronization signal, an uplink random access signal, a downlink data demodulation pilot signal, a downlink control demodulation pilot signal, a downlink measurement pilot signal, and an uplink data solution.
  • the pilot signal, the uplink control demodulation pilot signal, and the uplink measurement pilot signal are adjusted.
  • the antenna port group includes a port configured to send one of the following signals: a downlink synchronization signal, an uplink random access signal, a downlink data demodulation pilot signal, a downlink control demodulation pilot signal, a downlink measurement pilot signal, The uplink data demodulation pilot signal, the uplink control demodulation pilot signal, the uplink measurement pilot signal, the uplink user data, the downlink user data, the uplink user control information, and the downlink user control information.
  • a port configured to send one of the following signals: a downlink synchronization signal, an uplink random access signal, a downlink data demodulation pilot signal, a downlink control demodulation pilot signal, a downlink measurement pilot signal, The uplink data demodulation pilot signal, the uplink control demodulation pilot signal, the uplink measurement pilot signal, the uplink user data, the downlink user data, the uplink user control information, and the downlink user control information.
  • acquiring a transmission signal group and/or an antenna port group corresponding to the quasi-co-location parameter parameter set and determining, by using the transmission signal group and/or the antenna port group, channel information corresponding to the current transmission signal and/or the current antenna port, including Determining, by the quasi-co-location feature parameter set, characteristic parameters of the X quasi-co-location signals or antenna port groups to which the current transmission signal or the current antenna port belongs, wherein the characteristic parameters are used to determine the current transmission signal and/or the current antenna
  • the first characteristic parameter set includes an average delay and a frequency offset
  • the second characteristic parameter set includes a frequency offset extension and a delay spread
  • the first characteristic parameter set includes an average delay, a frequency offset, a frequency offset extension, and a delay spread.
  • the second set of characteristic parameters includes an average gain, or the first set of characteristic parameters includes an average delay and a delay spread, and the second characteristic parameter
  • the system specifies the signal group or port group in which the quasi-co-location relationship exists according to the currently used quasi-co-location parameters combined with the configuration mode.
  • a signal group may belong to one or more quasi-co-located signal groups, and all the signals in the group have channel characteristics included in the corresponding quasi-co-location parameter set, such as the second type of signals, respectively corresponding to the quasi-coordinate
  • the common location signal set 1 and the quasi-co-location signal set J have a corresponding relationship with the quasi-co-location characteristic parameter set 1 and the quasi-co-location characteristic parameter I;
  • one port group may belong to one or more quasi-co-located port groups, and groups All the ports in the port have the channel characteristics included in the corresponding quasi-co-location parameter set, such as the N-th port, corresponding to the quasi-common position signal set 2 and the quasi-common position signal set J, that is, the quasi-co-location position parameter set 2 and There is a corresponding relationship between the quasi-common position feature parameters I.
  • the system specifies the signal group or port group in which the quasi-co-location relationship exists according to the currently used quasi-co-location parameters combined with the configuration mode.
  • a signal group may belong to one or more quasi-co-located signal groups, and all the signals in the group have channel characteristics included in the corresponding quasi-co-location parameter set, such as the second type of signals, respectively corresponding to the quasi-coordinate
  • the common location signal set 1 and the quasi-co-location signal set J have a corresponding relationship with the quasi-co-location characteristic parameter set 1 and the quasi-co-location characteristic parameter I;
  • one port group may belong to one or more quasi-co-located port groups, and groups All the ports in the port have the channel characteristics included in the corresponding quasi-co-location parameter set, such as the N-th port, corresponding to the quasi-common position signal set 2 and the quasi-common position signal set J, that is, the quasi-co-location position parameter set 2 and There is a corresponding relationship between the quasi-common position feature parameters I.
  • FIG. 6 is a flowchart of a method of characterizing a quasi-co-location parameter configuration, as shown in FIG. 6, in accordance with an embodiment of the present disclosure, The method comprises the following steps:
  • Step S601 the signals in the first type of signals are divided into Q signal groups according to the occupied transmission resources, wherein the first type of signals includes multiple signals, and Q is a positive integer;
  • Step S602 signaling, by signaling, a second type of signal and/or a quasi-co-location feature parameter set having a quasi-co-position relationship with the signal group.
  • the signals in the first type of signals are divided into Q signal groups according to the occupied transmission resources, wherein the first type of signals includes multiple signals, and Q is a positive integer;
  • the second type of signal and/or the quasi-co-location characteristic parameter set of the quasi-co-location relationship solves the technical problem that the quasi-co-location information between different reference signals or between different antenna ports cannot be flexibly configured in the related art, and realizes The technical effect of flexible configuration of quasi-common position information between different reference signals or between different antenna ports.
  • a transmitting or transmitting end such as a base station, a micro base station, a mobile base station, and the like.
  • the first signaling needs to include a packet mode of the first type of signal and a quasi-co-location combination; after obtaining the information, the receiving end can jointly perform channel estimation by combining signals related to the current Q signals. Finally, the channel characteristics are obtained.
  • the transmission resource of the first type of signal includes at least one of the following: an antenna port, a frequency domain resource, and a time domain resource.
  • the first type of signal or the second type of signal includes at least one of the following: a downlink synchronization signal, an uplink random access signal, a downlink data demodulation pilot signal, a downlink control demodulation pilot signal, and a downlink measurement pilot signal.
  • the uplink data demodulation pilot signal, the uplink control demodulation pilot signal, and the uplink measurement pilot signal includes at least one of the following: a downlink synchronization signal, an uplink random access signal, a downlink data demodulation pilot signal, a downlink control demodulation pilot signal, and a downlink measurement pilot signal.
  • the quasi-common location feature parameter set includes at least one of the following: an average delay, an average gain, a frequency offset, a frequency offset extension, a spatial parameter, and a delay spread.
  • the spatial parameter may be: an angle of arrival, an average angle of arrival, a spatial correlation, an emission angle, and an average emission angle.
  • indicating, by signaling, a second type of signal and/or a quasi-co-location feature parameter set having a quasi-co-position relationship with the signal group indicating each by at least one set of high layer signaling or at least one set of physical layer signaling The quasi-common position signal set and/or the quasi-co-location position feature parameter set to which the group signal group belongs, wherein the quasi-common position signal set includes the second type of signal.
  • the signal is signaled to indicate a quasi-co-location relationship with each group of signal groups.
  • the transmitting end is configured to give a quasi-co-location parameter set represented by the reference signal quasi-co-location parameter set category 5.
  • the corresponding quasi-common position parameter may be characterized according to an agreed manner between the transmitting end and the receiving end, and the reference signal is not required to be signaled;
  • the same radio frequency device is used as the downlink measurement pilot set to measure the phase noise, but when the different analog beams are not used or used, the transmitting end is configured to the reference signal quasi-common position parameter.
  • the quasi-co-location parameter set category may be configured as 2' or 4 or 4 'The set of quasi-common position parameters.
  • the corresponding quasi-common position parameter may be characterized according to an agreed manner between the transmitting end and the receiving end, and no signaling indication is needed;
  • the transmitting end is configured to give the quasi-common position parameter set shown in category 1 of the quasi-common position parameter set of the signal;
  • the reference signal when the downlink synchronization pilot and the downlink measurement pilot are sent by the same radio frequency device or the transmitting node, the reference signal may be configured as a quasi-co-location parameter set class of 2, or 2' quasi-common A collection of location parameters.
  • the reference signal when the downlink synchronization pilot is sent to be similar to or the same as the analog beam used by the downlink measurement pilot, the reference signal may be configured as a quasi-common of the quasi-common position parameter set category of 4 or 4'. A collection of location parameters.
  • the corresponding quasi-common position parameter may be characterized according to an agreed manner between the transmitting end and the receiving end, and no signaling indication is needed.
  • a method for characterizing a quasi-co-location parameter configuration is provided correspondingly, which is applied to a receiving end, and the method includes: transmitting by demodulation
  • the signaling of the terminal determines the grouping manner of the first type of signal and the group of each of the Q signal groups of the first type of signal a set of quasi-common location feature parameters and/or a quasi-co-location signal set; determining channel information corresponding to the current transmission signal and/or the current antenna port based on the quasi-co-location location feature parameter set and/or the quasi-co-location signal set.
  • a receiving end that is, a receiving device, such as a user terminal, a mobile terminal, etc., such as a mobile phone, a tablet computer, or the like.
  • determining, according to the quasi-co-location feature parameter set and/or the quasi-co-location signal set, channel information corresponding to the current transmission signal and/or the current antenna port includes: a quasi-co-location feature parameter set to which the Q signal groups respectively belong Obtaining one or more channel parameters corresponding to the first type of signals in the and/or quasi-co-located position signal sets, and determining channel information of the current transmission signal and/or the current antenna port by one or more channel parameters.
  • the location of the occupied transmission resource of the reference signal may be configured by the system according to the quasi-common position signal set to which the reference signal belongs.
  • the first type of reference signal when the quasi-common position signal set to which the first type of reference signal belongs lacks a channel average delay and a delay spread characteristic that can be effectively estimated by the first type of reference signal, the first type of reference signal is in the frequency domain. For example, the location of the transmission resource occupied by the left side in FIG.
  • the quasi-common position signal set to which the first type of reference signal belongs includes a signal that can be effectively estimated by the first type of reference signal
  • the first type of reference signal may adopt, for example, a transmit resource position shown on the right side of FIG.
  • the resource density of the reference signal in the frequency domain or the air domain may also be independently or jointly adjusted according to a similar scheme.
  • the receiver when demodulating data, the receiver needs to know at least the frequency offset, time offset, frequency selective fading, and the like of the current channel according to the reference signal. Then we need to know the characteristics of frequency offset, time offset, and high frequency phase noise. These characteristics have different requirements for the density of RS in the time-frequency domain. For frequency offset and phase noise, it needs to have a large density in the time domain. Frequency, etc., requires RS to have a very high density in the frequency domain. Therefore, for a type of RS, such as DMRS (signal shown in FIG.
  • the vertical axis represents the subcarrier K
  • the horizontal axis represents the number L of symbols.
  • the base station may configure the distribution of the signal on different resources according to the quasi-common position signal set to which the current first type of signal belongs or the corresponding quasi-position parameter set.
  • the same type of reference signals at different resource locations may form a quasi-co-located reference signal group with different reference signals to obtain multiple parameters of the channel experienced by the reference signal.
  • the first type of reference signal can be divided into two subclasses (ie, the first group first type reference signal and the second group first type reference signal) by the difference in the frequency domain positions, wherein the first type The subclass (ie, Group 1) and the third type of reference signal belong to the same quasi-co-located reference signal group (ie, quasi-co-location group 2), the second sub-category (Group 2) and the second type of reference.
  • the signal belongs to the same group of quasi-co-located reference signals (ie, quasi-co-location group 3).
  • the two subclasses are also attributed to the same quasi-co-located reference signal group (ie quasi-co-location group 1).
  • the Doppler correlation feature of the channel experienced by the first type of reference signal can be effectively estimated by using the second quasi-common position reference group information, and the third quasi-co-located reference information can be used.
  • the delay-related characteristics of the channel experienced by the first type of reference signal are effectively estimated.
  • the first reference signal may also be grouped independently or in combination by different resource positions in the frequency domain or the air domain, and form a quasi-co-position relationship with other reference signals.
  • the base station may be configured with a corresponding quasi-co-located parameter set according to the channel measurement result according to the channel measurement result of the currently transmitted signal or the port participating in the transmission.
  • the terminal groups the currently transmitted signals or the ports participating in the transmission according to the measured channel characteristics, such as the angle of arrival, the transmission angle, or a combination of the two, and provides feedback.
  • the base station can be equipped with a corresponding quasi-co-located parameter set according to the feedback result, so that the signal or port finally participating in the transmission has a "quasi-common beam relationship".
  • the transmitting end may configure a quasi-common for the set of downlink measuring pilots.
  • the set of quasi-common position parameters of the position parameter category is 6. Since the beam and the radio frequency device used in the transmission of the reference signal are different at this time, the quasi-co-location parameter set only includes the spatial parameter.
  • the base station may configure different quasi-co-location parameter sets for the antenna ports participating in the transmission according to the transmission mode adopted by the terminal according to the current system.
  • the base station may configure different quasi-common position parameter sets for the antenna ports currently participating in the uplink and downlink transmission, such as (transceiver angle, average gain), and accordingly indicate that the discount ports have a quasi-co-location relationship.
  • the strength of these quasi-co-location relationships reflects the level of reciprocity between the uplink and downlink in the current system. That is, when the uplink and downlink channels of the system have complete reciprocity, the uplink and downlink ports may have a quasi-co-location relationship with respect to all quasi-co-location parameter sets; when the reciprocity calibration between the uplink and downlink channels of the system is incomplete, such as When different crystal oscillators or radio frequency links are used, the quasi-co-location relationship between the uplink and downlink ports may be related to the quasi-common position parameter set except the time offset and the Doppler frequency offset, such as when the uplink signal is sent. When the downlink signal is received by the same analog beam, the uplink and downlink signals and the ports may have a quasi-co-location relationship with respect to the spatial parameters.
  • the uplink and downlink ports may have a quasi-co-location relationship with respect to other quasi-co-location parameter sets other than the angle. Or other combinations; when there is no reciprocity between the uplink and downlink channels of the system, there is no quasi-co-location relationship between the uplink and downlink ports.
  • the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware, but in many cases, the former is A better implementation.
  • the technical solution of the present disclosure which is essential or contributes to the related art, may be embodied in the form of a software product stored in a storage medium. (e.g., ROM/RAM, disk, optical disk) includes instructions for causing a terminal device (which may be a cell phone, a computer, a server, or a network device, etc.) to perform the methods described in various embodiments of the present disclosure.
  • a terminal device which may be a cell phone, a computer, a server, or a network device, etc.
  • an apparatus for characterizing a quasi-common position parameter configuration is configured to implement the above-described embodiments and preferred embodiments, and the description thereof has been omitted.
  • the term "module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • the apparatus may include: a first obtaining unit 101 and a first indicating unit 102.
  • the first obtaining unit 101 is configured to acquire a second quasi-co-location feature parameter set including some or all of the feature parameters in the first quasi-co-location feature parameter set;
  • the first indication unit 102 is configured to indicate, by signaling, configuration information of the second quasi-common location feature parameter set to the receiving end.
  • the first obtaining unit acquires a second quasi-co-location feature parameter set including some or all of the feature parameters in the first quasi-co-location feature parameter set; the first indication unit indicates the second quasi-co-location feature parameter by signaling
  • the configuration information of the set is provided to the receiving end, thereby solving the technical problem that the related technologies cannot flexibly configure the quasi-co-location information between different reference signals or between different antenna ports, and realize the connection between different reference signals or different antenna ports.
  • the technical effect of flexible configuration between the quasi-common position information is provided to the receiving end, thereby solving the technical problem that the related technologies cannot flexibly configure the quasi-co-location information between different reference signals or between different antenna ports, and realize the connection between different reference signals or different antenna ports.
  • the foregoing apparatus for characterizing the quasi-co-location parameter configuration may be applied to a transmitting device or a transmitting device at the transmitting end, such as a base station, a micro base station, a mobile base station, and the like.
  • the feature parameter is used to characterize a wireless propagation channel; the characteristic parameter includes at least one of an average delay, an average gain, a frequency offset, a frequency offset extension, a spatial parameter, and a delay spread.
  • the spatial parameter may be: an angle of arrival, an average angle of arrival, a spatial correlation, an emission angle, and an average emission angle.
  • the feature parameter is used to characterize a quasi-co-location mode between signals or between antenna ports.
  • the first obtaining unit is further configured to: acquire a second quasi-co-location feature parameter set respectively configured for the L signals or the antenna ports, where each signal or each antenna port corresponds to at least one second quasi-common position feature parameter set, L is a positive integer.
  • the first acquiring unit is further configured to: acquire a second quasi-co-location feature parameter set including N feature parameter sets in the first quasi-co-location feature parameter set, where the first quasi-co-location feature parameter set includes M feature parameters Group, N is a positive number greater than 0 and not greater than M, and M is a positive integer; selecting the first characteristic parameter from the first quasi-common position feature parameter set to the second quasi-common according to the quasi-co-location mode between the current transmission signals a set of position feature parameters; selecting a second feature parameter from the first quasi-co-location feature parameter set according to the transmission mode to the second quasi-co-location feature parameter set; selecting the third from the first quasi-common position feature parameter set according to the terminal feedback information Feature parameter to second quasi-co-location feature A collection of parameters.
  • each feature parameter group includes a m-type feature parameter, and m is a positive integer.
  • the first indication unit is further configured to: indicate, by signaling, configuration information of the second quasi-co-location feature parameter set to the receiving end, including: sending a feature parameter or a feature parameter group included in the second quasi-co-location feature parameter set High-level signaling to the receiving end.
  • the first indication unit is further configured to: indicate, by signaling, configuration information of the second quasi-co-location feature parameter set to the receiving end, including: indicating, by using preset signaling, that the second quasi-co-location feature parameter set is applicable to a quasi-co-location relationship A set of signals or a set of antenna ports, wherein the preset signaling comprises higher layer signaling and/or physical layer signaling.
  • a device for characterizing a quasi-co-location parameter configuration is provided, which is applied to a receiving end, the device comprising: a first determining unit configured to determine a current transmission by demodulating signaling of the transmitting end a quasi-co-location feature parameter set used in the second determining unit, configured to acquire a transmission signal group and/or an antenna port group corresponding to the quasi-co-location parameter parameter set, and determine by transmitting a signal group and/or an antenna port group Channel information corresponding to the current transmission signal and/or the current antenna port.
  • a receiving end that is, a receiving device, such as a user terminal, a mobile terminal, etc., such as a mobile phone, a tablet computer, or the like.
  • the feature parameters and channel information in the set of quasi-co-location feature parameters are used to characterize the wireless propagation channel.
  • the feature parameters include at least one of an average delay, an average gain, a frequency offset, a frequency offset extension, a spatial parameter, and a delay spread.
  • the spatial parameter may be: an angle of arrival, an average angle of arrival, a spatial correlation, an emission angle, and an average emission angle.
  • the signal type of the signal transmitted in the transmission signal group includes: a downlink synchronization signal, an uplink random access signal, a downlink data demodulation pilot signal, a downlink control demodulation pilot signal, a downlink measurement pilot signal, and an uplink data solution.
  • the pilot signal, the uplink control demodulation pilot signal, and the uplink measurement pilot signal are adjusted.
  • the antenna port group includes a port for transmitting one of the following signals: a downlink synchronization signal, an uplink random access signal, a downlink data demodulation pilot signal, a downlink control demodulation pilot signal, a downlink measurement pilot signal, The uplink data demodulation pilot signal, the uplink control demodulation pilot signal, the uplink measurement pilot signal, the uplink user data, the downlink user data, the uplink user control information, and the downlink user control information.
  • the second determining unit is further configured to acquire channel information of the at least one transmission signal group and/or the at least one antenna port group corresponding to the at least one quasi-co-location position feature parameter set.
  • the apparatus further includes: a measuring unit configured to measure a current transmission signal and/or channel information of a current antenna port; and a feedback unit configured to feed back a current transmission signal and/or a quasi-co-location characteristic parameter set of the current antenna port To the sender.
  • a measuring unit configured to measure a current transmission signal and/or channel information of a current antenna port
  • a feedback unit configured to feed back a current transmission signal and/or a quasi-co-location characteristic parameter set of the current antenna port To the sender.
  • an apparatus for characterizing a quasi-common position parameter configuration is also provided in an embodiment of the present disclosure.
  • 11 is a schematic diagram of an apparatus for characterizing a quasi-common position parameter configuration in accordance with an embodiment of the present disclosure. As shown in FIG. 11, the apparatus may include: a first processing unit 111 and a second indication unit 112.
  • the first processing unit 111 is configured to divide all the transmit signals or antenna ports into X signal set groups or antenna port set groups having a quasi-co-location relationship according to the X feature parameter groups;
  • the second indication unit 112 is configured to indicate configuration information of the signal collection group or the antenna port collection group to the receiving end by signaling.
  • the above apparatus can be applied to a transmitting or transmitting end, such as a base station, a micro base station, a mobile base station, and the like.
  • the feature parameters in the feature parameter group include at least one of an average delay, an average gain, a frequency offset, a frequency offset extension, and a delay spread frequency offset extension, a spatial parameter, and a delay spread.
  • the spatial parameter may be: an angle of arrival, an average angle of arrival, a spatial correlation, an emission angle, and an average emission angle.
  • the feature parameters may be grouped according to the following manner: all the feature parameters are divided into X feature parameter groups according to the agreement with the receiving end; all the feature parameters are divided into X feature parameter groups according to the preset configuration saved locally; All feature parameters are divided into X feature parameter groups according to the feedback information of the receiving end.
  • the signal type of the transmitted signal includes: a downlink synchronization signal, an uplink random access signal, a downlink data demodulation pilot signal, a downlink control demodulation pilot signal, a downlink measurement pilot signal, and an uplink data demodulation pilot signal.
  • the uplink control demodulation pilot signal and the uplink measurement pilot signal includes: a downlink synchronization signal, an uplink random access signal, a downlink data demodulation pilot signal, a downlink control demodulation pilot signal, a downlink measurement pilot signal, and an uplink data demodulation pilot signal.
  • the signal set group comprises at least one of the following: a signal of the same type sent by different ports; a signal of the same type transmitted periodically and according to a non-period; a signal of the same type sent by the same signal port at different transmission time positions; Signals of the same type that are transmitted by signal ports at different transmit frequency domain locations; signals of different signal classes; different types of signals transmitted in periodic and non-periodic.
  • the second indication unit 112 is further configured to: indicate, by using one or more sets of instructions, one set of signal groups to which the signal of any type belongs to the receiving end, where the one signal set group has different quasi-common positions Relationship, I is a positive integer greater than 0 and not greater than X.
  • the antenna port includes a port configured to send one of the following signals: a downlink synchronization signal, an uplink random access signal, a downlink data demodulation pilot signal, a downlink control demodulation pilot signal, a downlink measurement pilot signal, and an uplink.
  • the antenna port set group includes at least one of: transmitting different ports of the same type of signal at different transmission time positions; transmitting different ports of the same type of signal at different transmission frequency domain positions; transmitting at different transmission time positions Different ports of different types of signals; different ports that transmit different types of signals at different transmission frequency domain locations.
  • the second indication unit 112 is further configured to: indicate, by using one or more sets of instructions, a set of J antenna ports to which the signal belongs to the receiving end, where the J antenna port set groups have different standards A common positional relationship, J is a positive integer greater than 0 and not greater than X.
  • the device further includes: a configuration unit configured to transmit each signal in the first type of signal according to the quasi-common position signal set and/or the corresponding quasi-co-location feature parameter set to which the first type of signal belongs resource of.
  • a configuration unit configured to transmit each signal in the first type of signal according to the quasi-common position signal set and/or the corresponding quasi-co-location feature parameter set to which the first type of signal belongs resource of.
  • an apparatus for characterizing a quasi-common position parameter configuration comprising: a third determining unit configured to determine by signaling of a demodulation transmitting end a set of quasi-co-location feature parameters used in current transmission; a fourth determining unit configured to acquire a transmission signal group and/or an antenna port group corresponding to the quasi-co-location characteristic parameter set, and transmit the signal group and/or the antenna port The group determines channel information corresponding to the current transmission signal and/or the current antenna port.
  • a receiving end that is, a receiving device, such as a user terminal, a mobile terminal, etc., such as a mobile phone, a tablet computer, or the like.
  • the feature parameters and channel information in the set of quasi-co-location feature parameters are used to characterize the wireless propagation channel.
  • the feature parameters include at least one of an average delay, an average gain, a frequency offset, a frequency offset extension, a spatial parameter, and a delay spread.
  • the spatial parameter may be: an angle of arrival, an average angle of arrival, a spatial correlation, an emission angle, and an average emission angle.
  • the signal type of the signal transmitted in the transmission signal group includes: a downlink synchronization signal, an uplink random access signal, a downlink data demodulation pilot signal, a downlink control demodulation pilot signal, a downlink measurement pilot signal, and an uplink data solution.
  • the pilot signal, the uplink control demodulation pilot signal, and the uplink measurement pilot signal are adjusted.
  • the antenna port group includes a port for transmitting one of the following signals: a downlink synchronization signal, an uplink random access signal, a downlink data demodulation pilot signal, a downlink control demodulation pilot signal, a downlink measurement pilot signal, The uplink data demodulation pilot signal, the uplink control demodulation pilot signal, the uplink measurement pilot signal, the uplink user data, the downlink user data, the uplink user control information, and the downlink user control information.
  • an apparatus for characterizing a quasi-common position parameter configuration is also provided in an embodiment of the present disclosure.
  • 12 is a schematic diagram of an apparatus for characterizing a quasi-common position parameter configuration in accordance with an embodiment of the present disclosure. As shown in FIG. 12, the apparatus may include: a second processing unit 121 and a third indication unit 122.
  • the second processing unit divides the signals in the first type of signals into Q signal groups according to the occupied transmission resources, the first type of signals includes multiple signals, and Q is a positive integer; the third indication unit passes the signal.
  • the second type of signal and/or the quasi-co-location characteristic parameter set indicating the quasi-co-position relationship with the signal group is used, thereby solving the problem that the quasi-co-location information between different reference signals or between different antenna ports cannot be flexibly disabled in the related art.
  • the technical problem of the configuration realizes the technical effect of flexibly configuring the quasi-co-location information between different reference signals or between different antenna ports.
  • the above apparatus can be applied to a transmitting or transmitting end, such as a base station, a micro base station, a mobile base station, and the like.
  • the transmission resource of the first type of signal includes at least one of the following: an antenna port, a frequency domain resource, and a time domain resource.
  • the first type of signal or the second type of signal includes at least one of the following: a downlink synchronization signal, an uplink random access signal, a downlink data demodulation pilot signal, a downlink control demodulation pilot signal, and a downlink measurement pilot signal.
  • the uplink data demodulation pilot signal, the uplink control demodulation pilot signal, and the uplink measurement pilot signal includes at least one of the following: a downlink synchronization signal, an uplink random access signal, a downlink data demodulation pilot signal, a downlink control demodulation pilot signal, and a downlink measurement pilot signal.
  • the quasi-common location feature parameter set includes at least one of the following: an average delay, an average gain, a frequency offset, a frequency offset extension, a spatial parameter, and a delay spread.
  • the spatial parameter may be: an angle of arrival, an average angle of arrival, a spatial correlation, an emission angle, and an average emission angle.
  • the third indication unit 122 is further configured to: indicate, by using at least one set of high layer signaling or at least one set of physical layer signaling, a quasi-co-located signal set and/or a quasi-co-location characteristic parameter to which each group of signal groups belongs The set, wherein the set of quasi-coherent signals comprises a second type of signal. The signal is signaled to indicate a quasi-co-location relationship with each group of signal groups.
  • an apparatus for characterizing a quasi-co-location parameter configuration comprising: a fifth determining unit, configured to determine by signaling of a demodulation transmitting end a grouping manner of the first type of signals and a quasi-co-location characteristic parameter set and/or a quasi-co-location signal set to which each of the Q signal groups of the first type of signals belongs; the sixth determining unit is set to be based on the quasi-common position
  • the set of feature parameters and/or the set of quasi-co-location signals determines channel information corresponding to the current transmit signal and/or the current antenna port.
  • a receiving end that is, a receiving device, such as a user terminal, a mobile terminal, etc., such as a mobile phone, a tablet computer, or the like.
  • the sixth determining unit is further configured to: obtain one or more channel parameters corresponding to the first type of signals from the quasi-common position feature parameter set and/or the quasi-co-location signal set to which the Q signal groups respectively belong, And determining channel information of the current transmission signal and/or the current antenna port by one or more channel parameters.
  • the location of the occupied transmission resource of the reference signal may be configured by the system according to the quasi-common position signal set to which the reference signal belongs.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the above modules are in any combination.
  • the forms are located in different processors.
  • a transmitting device comprising: a first processor; a first memory configured to store first processor executable instructions; and configured to be according to the first processor Controlling, by the first transmitting device that performs information transceiving communication; wherein the first processor is configured to: acquire a second quasi-co-location feature parameter set including some or all of the feature parameters in the first quasi-co-location feature parameter set; The signaling indicates configuration information of the second quasi-common location feature parameter set to the receiving end.
  • a receiving device comprising: a second processor; a second memory configured to store second processor executable instructions; and configured to be according to the second processor Controlling, by the second transmission device, the second transmission device, wherein the second processor is configured to: determine, by signaling of the demodulation sender, a quasi-co-location feature parameter set used in the current transmission; acquire and quasi-co-location features
  • the transmission signal group and/or the antenna port group corresponding to the parameter set, and the channel information corresponding to the current transmission signal and/or the current antenna port is determined by the transmission signal group and/or the antenna port group.
  • Embodiments of the present disclosure also provide a storage medium.
  • the storage medium may be configured to store program code set to perform the following steps:
  • the configuration information of the second quasi-co-location feature parameter set is indicated by signaling to the receiving end.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the configuration information of the signal collection group or the antenna port aggregation group is indicated by signaling to the receiving end.
  • the foregoing storage medium may include, but not limited to, a USB flash drive, a Read-Only Memory (ROM), a Random Access Memory (RAM), a mobile hard disk, and a magnetic memory.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • a mobile hard disk e.g., a hard disk
  • magnetic memory e.g., a hard disk
  • the processor performs, according to the stored program code in the storage medium, acquiring a second quasi-co-location feature parameter set including some or all of the feature parameters in the first quasi-co-location feature parameter set;
  • the signaling indicates configuration information of the second quasi-common location feature parameter set to the receiving end.
  • the processor performs, according to the stored program code in the storage medium, dividing all the transmitted signals or antenna ports into X signal set groups or antennas having a quasi-co-location relationship according to the X feature parameter groups.
  • a port collection group indicates, by signaling, configuration information of a signal collection group or an antenna port aggregation group to the receiving end.
  • the exemplary embodiments in this embodiment may refer to the examples described in the foregoing embodiments and the optional embodiments, and details are not described herein again.
  • modules or steps of the present disclosure described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module. As such, the disclosure is not limited to any specific combination of hardware and software.
  • a method for characterizing a quasi-co-location parameter configuration provided by an embodiment of the present disclosure, by acquiring a second quasi-co-location feature parameter set including some or all of the feature parameters in the first quasi-co-location feature parameter set;
  • the configuration information of the location feature parameter set is provided to the receiving end, and the technical problem that the quasi-co-location information between different reference signals or between different antenna ports cannot be flexibly configured in the related art is solved, and the different reference signals or different antennas are realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种表征准共位置参数配置的方法和装置、发射及接收设备。所述方法包括:获取包括第一准共位置特征参数集合中部分或全部特征参数的第二准共位置特征参数集合;通过信令指示第二准共位置特征参数集合的配置信息给接收端。本发明解决了现有技术中无法对不同参考信号之间或不同天线端口之间的准共位置信息进行灵活配置的技术问题。

Description

表征准共位置参数配置的方法和装置、发射及接收设备 技术领域
本公开涉及通信领域,具体而言,涉及一种表征准共位置参数配置的方法和装置、发射及接收设备。
背景技术
在LTE/LTE-A系统中,由于传输模式的更迭,需要配置不同类型的参考信号及其所对应的传输天线端口。在此基础上,为了更好的复用不同类型参考信号对于不同信道特征进行估计的能力,提升数据的解调准确度,引入了不同参考信号与天线端口(参考信号/天线端口)之间的准共位置配置(Quasi co-location,QCL)。
然而这些不同参考信号/天线端口所对应的准共位置配置受限于特定的准共位置参数关系,在系统传输中无法根据当前的信道状态等进行配置。在新一代无线接入网中,由于波束赋型技术的使用,使得在系统传输中不同的参考信号/天线端口所对应的信道特征以及信道参数的相似性在时间、频域、空域上有着比较大的差异,相关特定的准共位置参数配置方案无法灵活的应对这一现象。
针对相关技术中无法对不同参考信号之间或不同天线端口之间的准共位置信息进行灵活配置的技术问题,目前尚未提出有效的解决方案。
发明内容
本公开实施例提供了一种表征准共位置参数配置的方法和装置、发射及接收设备,以至少解决相关技术中无法对不同参考信号之间或不同天线端口之间的准共位置信息进行灵活配置的技术问题。
根据本公开实施例的一个方面,提供了一种表征准共位置参数配置的方法,该方法包括:获取包括第一准共位置特征参数集合中部分或全部特征参数的第二准共位置特征参数集合;通过信令指示第二准共位置特征参数集合的配置信息给接收端。
根据本公开实施例的一个方面,提供了一种表征准共位置参数配置的方法,该方法包括:按照X个特征参数组将所有发射信号或天线端口分成X个具有准共位置关系的信号集合组或天线端口集合组;通过信令指示信号集合组或天线端口集合组的配置信息给接收端。
根据本公开实施例的一个方面,提供了一种表征准共位置参数配置的方法,该方法包括:按照所占用的传输资源将第一类信号中的信号分为Q个信号组,其中,第一类信号包括多个信号,Q为正整数;通过信令指示与信号组具有准共位置关系的第二类信号和/或准共位置特征参数集合。
根据本公开实施例的一个方面,提供了一种表征准共位置参数配置的方法,该方法包 括:通过解调发送端的信令确定当前传输中所采用的准共位置特征参数集合;获取与准共位置特征参数集合对应的传输信号组和/或天线端口组,并通过传输信号组和/或天线端口组确定与当前传输信号和/或当前天线端口对应的信道信息。
根据本公开实施例的一个方面,提供了一种表征准共位置参数配置的方法,该方法包括:通过解调发送端的信令确定当前传输中所采用的准共位置特征参数集合;获取与准共位置特征参数集合对应的传输信号组和/或天线端口组,并通过传输信号组和/或天线端口组确定与当前传输信号和/或当前天线端口对应的信道信息。
根据本公开实施例的一个方面,提供了一种表征准共位置参数配置的方法,该方法包括:通过解调发送端的信令确定第一类信号的分组方式和第一类信号的Q个信号组中每个信号组所属的准共位置特征参数集合和/或准共位置信号集合;基于准共位置特征参数集合和/或准共位置信号集合确定与当前传输信号和/或当前天线端口对应的信道信息。
根据本公开实施例的另一个方面,提供了一种表征准共位置参数配置的装置,该装置包括:第一获取单元,设置为获取包括第一准共位置特征参数集合中部分或全部特征参数的第二准共位置特征参数集合;第一指示单元,设置为通过信令指示第二准共位置特征参数集合的配置信息给接收端。
根据本公开实施例的另一个方面,提供了一种表征准共位置参数配置的装置,该装置包括:第一处理单元,设置为按照X个特征参数组将所有发射信号或天线端口分成X个具有准共位置关系的信号集合组或天线端口集合组;第二指示单元,设置为通过信令指示信号集合组或天线端口集合组的配置信息给接收端。
根据本公开实施例的另一个方面,提供了一种表征准共位置参数配置的装置,该装置包括:第二处理单元,设置为按照所占用的传输资源将第一类信号中的信号分为Q个信号组,其中,第一类信号包括多个信号,Q为正整数;第三指示单元,设置为通过信令指示与信号组具有准共位置关系的第二类信号和/或准共位置特征参数集合。
根据本公开实施例的另一个方面,提供了一种表征准共位置参数配置的装置,该装置包括:第一确定单元,设置为通过解调发送端的信令确定当前传输中所采用的准共位置特征参数集合;第二确定单元,设置为获取与准共位置特征参数集合对应的传输信号组和/或天线端口组,并通过传输信号组和/或天线端口组确定与当前传输信号和/或当前天线端口对应的信道信息。
根据本公开实施例的另一个方面,提供了一种表征准共位置参数配置的装置,该装置包括:第三确定单元,设置为通过解调发送端的信令确定当前传输中所采用的准共位置特征参数集合;第四确定单元,设置为获取与准共位置特征参数集合对应的传输信号组和/或天线端口组,并通过传输信号组和/或天线端口组确定与当前传输信号和/或当前天线端口对应的信道信息。
根据本公开实施例的另一个方面,提供了一种表征准共位置参数配置的装置,该装置包括:第五确定单元,设置为通过解调发送端的信令确定第一类信号的分组方式和第一类 信号的Q个信号组中每个信号组所属的准共位置特征参数集合和/或准共位置信号集合;第六确定单元,设置为基于准共位置特征参数集合和/或准共位置信号集合确定与当前传输信号和/或当前天线端口对应的信道信息。
根据本公开实施例的另一个方面,提供了一种发射设备,该发射设备包括:第一处理器;设置为存储第一处理器可执行指令的第一存储器;设置为根据第一处理器的控制进行信息收发通信的第一传输装置;其中,第一处理器设置为执行以下操作:获取包括第一准共位置特征参数集合中部分或全部特征参数的第二准共位置特征参数集合;通过信令指示第二准共位置特征参数集合的配置信息给接收端。
根据本公开实施例的另一个方面,提供了一种接收设备,该接收设备包括:第二处理器;设置为存储第二处理器可执行指令的第二存储器;设置为根据第二处理器的控制进行信息收发通信的第二传输装置;其中,第二处理器设置为执行以下操作:通过解调发送端的信令确定当前传输中所采用的准共位置特征参数集合;获取与准共位置特征参数集合对应的传输信号组和/或天线端口组,并通过传输信号组和/或天线端口组确定与当前传输信号和/或当前天线端口对应的信道信息。
在本公开实施例中,获取包括第一准共位置特征参数集合中部分或全部特征参数的第二准共位置特征参数集合;通过信令指示第二准共位置特征参数集合的配置信息给接收端,从而解决了相关技术中无法对不同参考信号之间或不同天线端口之间的准共位置信息进行灵活配置的技术问题,实现了对不同参考信号之间或不同天线端口之间的准共位置信息进行灵活配置的技术效果。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本申请的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1是根据本公开实施例的计算机终端的示意图
图2是根据本公开实施例的表征准共位置参数配置的方法的流程图;
图3是根据本公开实施例的准共位置参数组合的示意图;
图4是根据本公开实施例的表征准共位置参数配置的方法的流程图;
图5是根据本公开实施例的准共位置配置状态的示意图;
图6是根据本公开实施例的表征准共位置参数配置的方法的流程图;
图7是根据本公开实施例的信号所占资源的分布示意图;
图8是根据本公开实施例的参考信号准共位置配置的示意图;
图9是根据本公开实施例的参考信号所占资源的分布示意图;
图10是根据本公开实施例的表征准共位置参数配置的装置的示意图;
图11是根据本公开实施例的表征准共位置参数配置的装置的示意图;
图12是根据本公开实施例的表征准共位置参数配置的装置的示意图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本公开。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
实施例1
本申请实施例一所提供的方法实施例可以在移动终端(如可穿戴设备)、计算机终端或者类似的运算装置中执行。以运行在移动终端上为例,如图1所示,移动终端可以包括一个或多个(图中仅示出一个)处理器101(处理器101可以包括但不限于微处理器MCU或可编程逻辑器件FPGA等的处理装置)、设置为存储数据的存储器103、以及设置为通信功能的传输装置105。本领域普通技术人员可以理解,图1所示的结构仅为示意,其并不对上述电子装置的结构造成限定。
存储器103可设置为存储应用软件的软件程序以及模块,如本公开实施例中的设备的控制方法对应的程序指令/模块,处理器101通过运行存储在存储器103内的软件程序以及模块,从而执行各种功能应用以及数据处理,即实现上述的方法。存储器可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存或者其他非易失性固态存储器。在一些实施例中,存储器可包括相对于处理器远程设置的存储器,这些远程存储器可以通过网络连接至计算机终端。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
传输装置设置为经由一个网络接收或者发送数据。上述的网络示例性实例可包括计算机终端的通信供应商提供的无线网络。在一个实施例中,传输装置包括一个网络适配器(Network Interface Controller,NIC),其可通过基站与其他网络设备相连从而可与互联网进行通讯。在一个实施例中,传输装置可以为射频(Radio Frequency,RF)模块,其设置为通过无线方式与互联网进行通讯。
为了打破这些限制,新一代无线接入网中采用的准共位置配置需要能够灵活地体现出不同参考信号/天线端口之间存在的准共位置组合。但就如何实现所需的准共位置参数配置和相关的信令配置等,目前还没有有效的解决方案。
为了解决上述问题,根据本公开实施例,提供了一种表征准共位置参数配置的方法的实施例,需要说明的是,在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行,并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
图2是根据本公开实施例的表征准共位置参数配置的方法的流程图,如图2所示,该方法包括如下步骤:
步骤S201,获取包括第一准共位置特征参数集合中部分或全部特征参数的第二准共 位置特征参数集合。
步骤S202,通过信令指示第二准共位置特征参数集合的配置信息给接收端。
通过上述实施例,获取包括第一准共位置特征参数集合中部分或全部特征参数的第二准共位置特征参数集合;通过信令指示第二准共位置特征参数集合的配置信息给接收端,从而解决了相关技术中无法对不同参考信号之间或不同天线端口之间的准共位置信息进行灵活配置的技术问题,实现了对不同参考信号之间或不同天线端口之间的准共位置信息进行灵活配置的技术效果。
上述步骤可以应用于发送或者发射端,如基站、微基站、移动基站等。
可选地,特征参数用于表征无线传播信道的特征;特征参数包括平均延迟、平均增益、频偏、频偏扩展,空间参数及延迟扩展中的至少之一。
可选的,所述空间参数可以为:到达角,平均到达角,空间相关性,发射角,平均发射角。
可选地,特征参数用于表征信号间或天线端口间的准共位置模式。
在步骤S201中,获取包括第一准共位置特征参数集合中部分或全部特征参数的第二准共位置特征参数集合包括:获取为L个信号或天线端口分别配置的第二准共位置特征参数集合,其中,每个信号或每个天线端口对应至少一个第二准共位置特征参数集合,L为正整数。
在步骤S201中,获取包括第一准共位置特征参数集合中部分或全部特征参数的第二准共位置特征参数集合包括:获取包括第一准共位置特征参数集合中N个特征参数组的第二准共位置特征参数集合,其中,第一准共位置特征参数集合中包括M个特征参数组,N为大于0且不大于M的正数,M为正整数;按照当前传输信号之间的准共位置模式从第一准共位置特征参数集合中选取第一特征参数,并将所选取的第一特征参数加入第二准共位置特征参数集合;按照传输模式从第一准共位置特征参数集合中选取第二特征参数,并将所选取的第二特征参数加入第二准共位置特征参数集合;按照终端反馈信息从第一准共位置特征参数集合中选取第三特征参数,并将所述第三特征参数加入第二准共位置特征参数集合。按照当前传输信号的功能从所述第一准共位置特征参数集合中选取第四特征参数,并将所述第四特征参数加入所述第二准共位置特征参数集合。按照与接收端的约定从所述第一准共位置特征参数集合中选取第五特征参数,并将所述第五特征参数加入所述第二准共位置特征参数集合。
可选地,在获取包括第一准共位置特征参数集合中N特征参数组的第二准共位置特征参数集合之前,按照与接收端的约定将第一准共位置特征参数集合分为M个特征参数组,其中,每个特征参数组包括m类特征参数,m为正整数。
在步骤S202中,通过信令指示第二准共位置特征参数集合的配置信息给接收端包括:发送用于指示第二准共位置特征参数集合所包括的特征参数或特征参数组的高层信令至接收端。
在步骤S202中,通过信令指示第二准共位置特征参数集合的配置信息给接收端包括:通过预设信令指示第二准共位置特征参数集合适用的具有准共位置关系的信号集合或天线端口集合,其中,预设信令包括高层信令和/或物理层信令。
针对上述发送端的方法,根据本公开实施例的一个方面,相应的提供了一种表征准共位置参数配置的方法,应设置为接收端,该方法包括:通过解调发送端的信令确定当前传输中所采用的准共位置特征参数集合;获取与准共位置特征参数集合对应的传输信号组和/或天线端口组,并通过传输信号组和/或天线端口组确定与当前传输信号和/或当前天线端口对应的信道信息。
上述的方法应用于接收端,即接收设备,如用户终端、移动终端等,例如手机、平板电脑等。
可选地,准共位置特征参数集合中的特征参数和信道信息用于表征无线传播信道的特征。
可选地,特征参数包括平均延迟、平均增益、频偏、频偏扩展,空间参数及延迟扩展中的至少之一。
可选的,所述空间参数可以为:到达角,平均到达角,空间相关性,发射角,平均发射角。
可选地,传输信号组中传输信号的信号类型包括:下行同步信号、上行随机接入信号、下行数据解调导频信号、下行控制解调导频信号、下行测量导频信号、上行数据解调导频信号、上行控制解调导频信号及上行测量导频信号。
可选地,天线端口组包括设置为发送以下信号之一的端口:下行同步信号、上行随机接入信号、下行数据解调导频信号、下行控制解调导频信号、下行测量导频信号、上行数据解调导频信号、上行控制解调导频信号、上行测量导频信号、上行用户数据、下行用户数据、上行用户控制信息以及下行用户控制信息。
可选地,获取与准共位置特征参数集合对应的传输信号组和/或天线端口组包括:获取与至少一个准共位置特征参数集合对应的至少一个传输信号组和/或至少一个天线端口组的信道信息。
可选地,该方法还包括:测量当前传输信号和/或当前天线端口的信道信息;反馈当前传输信号和/或当前天线端口的准共位置特征参数集合至发送端。
先测出来这些信道信息,即所有参数的值,然后判定这些信号或端口各自对应的值之间是否存在相等的现象,如果那些特征相等或近似,则反馈的时候就定义这些信号和端口关于这些相当或近似的特征参数存在准共位置关系,也就是这里所说的获知了准共位置特征参数集合。
在上述实施例中,表征当前传输中所采用的准共位置参数集合以及每个参数集合下所对应的具有准共位置关系的信号和天线端口的分组信息。借助于本申请的技术方案,使得系统能够配置具有灵活准共位置特征的传输信号和端口组,提升了系统中信道估计的准确 度,优化了传输性能。
在示例性实施过程中,发送端可以通过信令通知终端当前所采用的准共位置参数结合配置信息。
下面结合图3对上述方法进行描述:系统可将N个无线信道特征参数任意组合形成I组可用的准共位置参数配置方式。
如图3所示,每个准共位置特征参数集合里面可以包含i(1≤i≤N)个无线信道特征参数,例如,对于准共位置特征参数集合1,包括信道特征参数1;对于准共位置特征参数集合2,包括信道特征参数2、信道特征参数i;对于准共位置特征参数集合N-1,包括信道特征参数2、信道特征参数i。
根据本公开实施例,还提供了一种表征准共位置参数配置的方法的实施例,图4是根据本公开实施例的表征准共位置参数配置的方法的流程图,如图4所示,该方法包括如下步骤:
步骤S401,按照X个特征参数组将所有发射信号或天线端口分成X个具有准共位置关系的信号集合组或天线端口集合组,X为正整数;
步骤S402,通过信令指示信号集合组或天线端口集合组的配置信息给接收端。
通过上述实施例,按照X个特征参数组将所有发射信号或天线端口分成X个具有准共位置关系的信号集合组或天线端口集合组;通过信令指示信号集合组或天线端口集合组的配置信息给接收端,从而解决了相关技术中无法对不同参考信号之间或不同天线端口之间的准共位置信息进行灵活配置的技术问题,实现了对不同参考信号之间或不同天线端口之间的准共位置信息进行灵活配置的技术效果。
上述步骤可以应用于发送或者发射端,如基站、微基站、移动基站等。
当采用动态特征参数配置时,方法存在多种,其中一种是:将这些准共位置特征参数进行编号,然后指示信令中包含这些特征参数的标号信息。当采用约定等方式时:可以实现将这些准共位特征参数存在的组合情况进行穷举,然后对于这些组合进行编号,进而只需要通过信令通知当前所使用的组号即可。
可选地,特征参数组中的特征参数包括平均延迟、平均增益、频偏、频偏扩展,空间参数及延迟扩展中的至少之一。
可选的,所述空间参数可以为:到达角,平均到达角,空间相关性,发射角,平均发射角。
此外,在满足如下情况之一时,还可以通过发射端与接收端约定的方式指示所述第二准共位置特征参数集合的配置信息给接收端:
当信号集合组或天线端口集合组依照发射端和接收端约定具有唯一准共位置关系;
当信号集合组或天线端口集合组之间无准共位置关系;
当第二准共位置参数集合与信号集合组或天线端口集合组具有唯一确定的一一映射关系。
可选地,传输信号或天线端口间所对应的第二准共位置参数集合配置条件包含如下之一:
当信号或端口对应为用于测量相位噪声的测量导频和数据解调导频的组合时,发射端配置的第二准共位置参数集合中至少包含频偏扩展和频偏,且不包含时延扩展和平均时延;
当信号或端口对应为用于测量相位噪声的测量导频和数据解调导频的组合时,发射端配置的第二准共位置参数集合中至少包含频偏扩展,频偏,时延扩展和平均时延;
和/或,所述传输信号间所对应的准共位置参数配置条件包含如下之一:
当信号或端口对应为下行同步信号和下行测量导频的组合时,发射端配置的第二准共位置参数集合中至少包含频偏和平均时延;
当信号或端口对应为下行同步信号和下行测量导频的组合时,发射端配置的第二准共位置参数集合中至少包含频偏。
例如,在考虑到实际应用,表1中所罗列的准共位置参数集合(含部分或者全部准共位置参数)可以作为动态配置或者采用基于约定的方式下进行准共位置参数选择的基础。其中所述准共位置参数集合中是否包含空间参数由发射端依照当前的传输模式或者接收端反馈结果进行判定。
可选的当发射端和/或接收端没有使用模拟波束赋型时,则发射端在进行特征参数分组时不激活空间参数,反之则激活。
可选的当发射端没有收到接收端对于波束的测量结果时,则发射端在进行特征参数分组时不激活空间参数,反之则激活。
表1:准共位置参数集合示例
准共位置参数集合 准共位置参数
类别1 or 1’ [2]or[2][6]
类别2 or 2’ [2][4]or[2][4][6]
类别3 or 3’ [1][2]or[1][2][6]
类别4 or 4’ [1-4]or[1-4][6]
类别5 or 5’ [1-5]or[1-6]
类别6 [6]
所述表1中准共位置参数[1]表示频偏扩展,[2]表示频偏,[3]表示时延扩展,[4]表示平均时延,[5]表示平均增益,[6]表示空间参数。其中,当系统使用模拟波束时,参数[6]在配置QCL(Quasi co-location,准共位置参数)参数集合时可以被激活使用。
可选地,特征参数组中的特征参数按照如下方式进行分类:在X=1时,特征参数组包括平均延迟、平均增益、频偏、频偏扩展及延迟扩展;在X=2时,第一个特征参数组包括平均延迟和频偏,第二个特征参数组包括频偏扩展和延迟扩展,或,第一个特征参数组包括平均延迟、频偏、频偏扩展及延迟扩展,第二个特征参数组包括平均增益,或,第一个特征参数组包括平均延迟和延迟扩展,第二个特征参数组包括频偏和频偏扩展;在 X=3时,第一个特征参数组包括平均延迟和延迟扩展,第二个特征参数组包括频偏和频偏扩展,第三个特征参数组包括平均增益,或,第一个特征参数组包括平均延迟和频偏,第二个特征参数组包括延迟扩展和频偏扩展,第三个特征参数组包括平均增益。
可选地,该方法还包括按照以下方式对特征参数进行分组:按照与接收端的约定将所有特征参数分为X个特征参数组;按照本地保存的预设配置将所有特征参数分为X个特征参数组;按照接收端的反馈信息将所有特征参数分为X个特征参数组;按照接收端的传输模式将所有特征参数分为X个特征参数组;按照影响特征参数的因素将所有特征参数分为X个特征参数组;
例如基于上述分组准则,可获得如表1所示的6大类准共位置参数集合,其中所述每一类准共位置参数集合中是否包含空间参数可依据当前接收端采用的传输模式进行判定。所述传输模式例如包括发射端或接收端是否使用模块波束赋型。
可选的当发射端和/或接收端没有使用模拟波束赋型时,则系统在进行特征参数分组时不激活空间参数,反之则激活。
可选地,发射信号的信号类型包括:下行同步信号、上行随机接入信号、下行数据解调导频信号、下行控制解调导频信号、下行测量导频信号、上行数据解调导频信号、上行控制解调导频信号及上行测量导频信号。
可选地,信号集合组包括以下至少之一:不同端口发送的同一类信号;按照周期发送和按照非周期发送的同一类信号;同一信号端口在不同发送时间位置上发送的同一类信号;同一信号端口在不同发送频域位置上发送的同一类信号;不同信号类别的信号;按照周期发送和按照非周期发送的不同类信号。
可选地,通过信令指示信号集合组的配置信息给接收端包括:通过一套或多套指令指示任一类信号所归属的I个信号集合组给接收端,其中,I个信号集合组具有不同的准共位置关系,I为大于0且不大于X的正整数。
可选地,所述特征参数组与传输信号间的对应关系包含如下之一:
当X个特征参数组内有一组至少包含频偏扩展和频偏,但不包含时延扩展和平均时延时,发射端将用于测量相位噪声的测量导频和数据解调导频,或对应所述用于测量相位噪声的测量导频和数据解调导频的端口配置为关于该特征参数组的发射信号或天线端口组合;
当X个特征参数组内有一组至少包含频偏扩展,频偏,时延扩展和平均时延时,发射端将用于测量相位噪声的测量导频和数据解调导频,或对应所述用于测量相位噪声的测量导频和数据解调导频的端口配置为关于该特征参数组的发射信号或天线端口组合;
当X个特征参数组内有一组至少包含频偏和平均时延时,发射端将下行同步信号和下行测量导频,或对应所述下行同步信号和下行测量导频的端口配置为关于该特征参数组的发射信号或天线端口组合;
当X个特征参数组内有一组至少包含频偏时,发射端将下行同步信号和下行测量导 频,或对应所述下行同步信号和下行测量导频的端口配置为关于该特征参数组的发射信号或天线端口组合。
例如,基于表1所示的6大类准共位置参数集合,发射端可以通过信令配置下述信号或端口集合所对应的准共位置参数关系:
表2:信号或端口集合对应的准共位置参数配置实例
Figure PCTCN2017104742-appb-000001
所述表2中准共位置参数[1]表示频偏扩展,[2]表示频偏,[3]表示时延扩展,[4]表示平均时延,[5]表示平均增益,[6]表示空间参数。当系统使用模拟波束时,参数[6]在配置QCL参数集合时可以被激活使用。
可选地,天线端口包括设置为发送以下信号之一的端口:下行同步信号、上行随机接入信号、下行数据解调导频信号、下行控制解调导频信号、下行测量导频信号、上行数据解调导频信号、上行控制解调导频信号、上行测量导频信号、上行用户数据、下行用户数据、上行用户控制信息以及下行用户控制信息。
可选地,天线端口集合组包括以下至少之一:在不同发送时间位置上发送同一类信号的不同端口;在不同发送频域位置上发送同一类信号的不同端口;在不同发送时间位置上发送不同类信号的不同端口;在不同发送频域位置上发送不同类信号的不同端口。
可选地,通过信令指示天线端口集合组的配置信息给接收端包括:通过一套或多套指令指示任一类信号所归属的J个天线端口集合组给接收端,其中,J个天线端口集合组具 有不同的准共位置关系,J为大于0且不大于X的正整数。
可选地,该方法还包括:按照第一类信号所属的准共位置信号集合和/或所对应的准共位置特征参数集合,配置用于传输第一类信号中各个信号的资源。
针对上述发送端的方法(包括步骤S401和S402),根据本公开实施例的一个方面,相应的提供了一种表征准共位置参数配置的方法,应用于接收端,该方法包括:通过解调发送端的信令确定当前传输中所采用的准共位置特征参数集合;获取与准共位置特征参数集合对应的传输信号组和/或天线端口组,并通过传输信号组和/或天线端口组确定与当前传输信号和/或当前天线端口对应的信道信息。
上述的方法应用于接收端,即接收设备,如用户终端、移动终端等,例如手机、平板电脑等。
可选地,准共位置特征参数集合中的特征参数和信道信息用于表征无线传播信道的特征。
可选地,特征参数包括平均延迟、平均增益、频偏、频偏扩展,空间参数及延迟扩展中的至少之一。
可选的,所述空间参数可以为:到达角,平均到达角,空间相关性,发射角,平均发射角。
可选地,传输信号组中传输信号的信号类型包括:下行同步信号、上行随机接入信号、下行数据解调导频信号、下行控制解调导频信号、下行测量导频信号、上行数据解调导频信号、上行控制解调导频信号及上行测量导频信号。
可选地,天线端口组包括设置为发送以下信号之一的端口:下行同步信号、上行随机接入信号、下行数据解调导频信号、下行控制解调导频信号、下行测量导频信号、上行数据解调导频信号、上行控制解调导频信号、上行测量导频信号、上行用户数据、下行用户数据、上行用户控制信息以及下行用户控制信息。
可选地,获取与准共位置特征参数集合对应的传输信号组和/或天线端口组,通过传输信号组和/或天线端口组确定与当前传输信号和/或当前天线端口对应的信道信息包括:通过准共位置特征参数集合确定与当前传输信号或当前天线端口所归属的X个准共位置信号或天线端口组的特征参数,其中,特征参数用于确定与当前传输信号和/或当前天线端口对应的信道信息,特征参数组中的特征参数按照如下方式进行分类:在X=1时,特征参数组包括平均延迟、平均增益、频偏、频偏扩展及延迟扩展;在X=2时,第一个特征参数组包括平均延迟和频偏,第二个特征参数组包括频偏扩展和延迟扩展,或,第一个特征参数组包括平均延迟、频偏、频偏扩展及延迟扩展,第二个特征参数组包括平均增益,或,第一个特征参数组包括平均延迟和延迟扩展,第二个特征参数组包括频偏和频偏扩展;在X=3时,第一个特征参数组包括平均延迟和延迟扩展,第二个特征参数组包括频偏和频偏扩展,第三个特征参数组包括平均增益,或,第一个特征参数组包括平均延迟和频偏,第二个特征参数组包括延迟扩展和频偏扩展,第三个特征参数组包括平均增益。
系统依照当前所采用的准共位置参数结合配置方式,指定存在准共位置关系的信号组或端口组。
如图5所示,一个信号组可以属于一个或者多个准共位信号组,与组内所有信号拥有对应准共位置参数集合中所包含的信道特征,如第二类信号,分别对应于准共位置信号集1和准共位置信号集J,即与准共位置特征参数集1和准共位置特征参数I存在对应关系;一个端口组可以属于一个或者多个准共位端口组,与组内所有端口拥有对应准共位置参数集合中所包含的信道特征,如第N类端口,分别对应于准共位置信号集2和准共位置信号集J,即与准共位置特征参数集2和准共位置特征参数I存在对应关系。
系统依照当前所采用的准共位置参数结合配置方式,指定存在准共位置关系的信号组或端口组。
如图5所示,一个信号组可以属于一个或者多个准共位信号组,与组内所有信号拥有对应准共位置参数集合中所包含的信道特征,如第二类信号,分别对应于准共位置信号集1和准共位置信号集J,即与准共位置特征参数集1和准共位置特征参数I存在对应关系;一个端口组可以属于一个或者多个准共位端口组,与组内所有端口拥有对应准共位置参数集合中所包含的信道特征,如第N类端口,分别对应于准共位置信号集2和准共位置信号集J,即与准共位置特征参数集2和准共位置特征参数I存在对应关系。
根据本公开实施例,还提供了一种表征准共位置参数配置的方法的实施例,图6是根据本公开实施例的表征准共位置参数配置的方法的流程图,如图6所示,该方法包括如下步骤:
步骤S601,按照所占用的传输资源将第一类信号中的信号分为Q个信号组,其中,第一类信号包括多个信号,Q为正整数;
步骤S602,通过信令指示与信号组具有准共位置关系的第二类信号和/或准共位置特征参数集合。
通过上述实施例,按照所占用的传输资源将第一类信号中的信号分为Q个信号组,其中,第一类信号包括多个信号,Q为正整数;通过信令指示与信号组具有准共位置关系的第二类信号和/或准共位置特征参数集合,从而解决了相关技术中无法对不同参考信号之间或不同天线端口之间的准共位置信息进行灵活配置的技术问题,实现了对不同参考信号之间或不同天线端口之间的准共位置信息进行灵活配置的技术效果。
上述步骤可以应用于发送或者发射端,如基站、微基站、移动基站等。
可选地,首先信令中需要包括第一类信号的分组方式以及准共位组合;当得到这些信息之后,接收端就可以通过将与当前Q个信号有关系的信号联合用来进行信道估计,最终得到信道特征。
可选地,第一类信号的传输资源包括以下至少之一:天线端口、频域资源以及时域资源。
可选地,第一类信号或第二类信号包括以下至少之一:下行同步信号、上行随机接入信号、下行数据解调导频信号、下行控制解调导频信号、下行测量导频信号、上行数据解调导频信号、上行控制解调导频信号及上行测量导频信号。
可选地,准共位置特征参数集合中包括以下至少之一:平均延迟、平均增益、频偏、频偏扩展,空间参数及延迟扩展。
可选的,所述空间参数可以为:到达角,平均到达角,空间相关性,发射角,平均发射角。
可选地,通过信令指示与信号组具有准共位置关系的第二类信号和/或准共位置特征参数集合:通过至少一套高层信令或至少一套物理层信令,指示每一组信号组所属的准共位置信号集合和/或准共位置特征参数集合,其中,准共位置信号集合包括第二类信号。以使信令指示与每组信号组存在准共位置关系的信号。
例如表2中所示:
当一组下行数据解调导频在发送时使用相同的模拟波束和射频器件时,发射端则配置给该参考信号准共位置参数集合类别5所表示的准共位置参数集合。
在一实施例中,当上述信号或端口所对应的传输配置或资源唯一确定时,其所对应的准共位置参数可按照发射端与接收端约定方式表征,无需信令指示所述参考信号;
当发送下行数据解调导频时与设置为测量相位噪声的下行测量导频采用相同的射频器件,但不使用或者使用不同的模拟波束时,发射端则配置给所述参考信号准共位置参数集合类别2所示的准共位置参数集合;
当发送下行数据解调导频与设置为测量相位噪声的下行测量导频的射频器件相同,且使用的模拟波束相近或相同,则可以配置为准共位置参数集合类别为2’或4或4’的准共位置参数集合。
在一实施例中,当上述信号或端口所对应的传输配置或资源唯一确定时,其所对应的准共位置参数可按照发射端与接收端约定方式表征,无需信令指示;
当下行同步导频与下行测量导频由不同的射频器件或者发射节点发送时,发射端则配置给该信号准共位置参数集合类别1所示的准共位置参数集合;
在一实施例中,当下行同步导频与下行测量导频由同一射频器件或发射节点发送时,则可以给所述参考信号配置为准共位置参数集合类别为2,或2’的准共位置参数集合。
在一实施例中,当发送下行同步导频与下行测量导频所使用的模拟波束相近或相同时,则可以给所述参考信号配置为准共位置参数集合类别为4或4’的准共位置参数集合。
在一实施例中,当上述信号或端口所对应的传输配置或资源唯一确定时,其所对应的准共位置参数可按照发射端与接收端约定方式表征,无需信令指示。
针对上述发送端的方法(包括步骤S601和S602),根据本公开实施例的一个方面,相应的提供了一种表征准共位置参数配置的方法,应用于接收端,该方法包括:通过解调发送端的信令确定第一类信号的分组方式和第一类信号的Q个信号组中每个信号组所属 的准共位置特征参数集合和/或准共位置信号集合;基于准共位置特征参数集合和/或准共位置信号集合确定与当前传输信号和/或当前天线端口对应的信道信息。
上述的方法应用于接收端,即接收设备,如用户终端、移动终端等,例如手机、平板电脑等。
可选地,基于准共位置特征参数集合和/或准共位置信号集合确定与当前传输信号和/或当前天线端口对应的信道信息包括:从Q个信号组分别所属的准共位置特征参数集合和/或准共位置信号集合中获取与第一类信号对应的一个或者多个信道参数,并通过一个或者多个信道参数确定当前传输信号和/或当前天线端口的信道信息。
参考信号的所占发射资源位置可由系统依照该类参考信号所属的准共位置信号集合进行配置。
如图7所示:当第一类参考信号所属的准共位置信号集合中缺乏能够有效估计第一类参考信号所经历的信道平均延迟,时延扩展特征时,第一类参考信号在频域的采用例如图7中左侧所占发射资源位置。而当第一类参考信号所属的准共位置信号集合中包含能够有效估计第一类参考信号所经历的信号时,第一类参考信号可以采用例如图7中右侧所示发射资源位置。
此外,参考信号在频域或空域所占资源密度也可以依照类似的方案进行独立,或者联合调整。
需要说明的是,在图7中,接收机在解调数据时,需要依照参考信号至少获知当前信道的频偏,时偏,频率选择性衰落等信息。然后要获知频偏,时偏,以及高频相噪这些特征,这些特征对于RS在时频域的密度有不同的要求,对于频偏和相噪,则需要在时域有很大密度,时频等则需要RS在频域有很高密度。因此,对于一类RS,例如DMRS(图7所示的信号),当目前没有其他类参考信号跟DMRS关于频偏或者时频等具有准共位特征时,为了最后能够准确的估计信号,这时候DMRS在不同域的密度就要有所调整,需要额外的增加资源(采用类似于图7中左图所示更加密集的分布);当目前有其他信号跟DMRS之间关于频偏,时偏等有准共位置关系时,则DMRS可以复用其他RS信号测量的时频偏结果,就不用自己测量了,因此DMRS的密度就会降低(如图7中右侧所示的稀疏分布)。
在图7和图9中,纵轴表示子载波K,横轴表示符号数L。
可选地,基站可以依照当前第一类信号所属的准共位置信号集合或者其所对应的准位置参数集,配置该信号在不同资源上的分布。
处于不同资源位置的同一类参考信号可以与不同的参考信号构成准共位参考信号组,用以获取该参考信号所经历信道的多个参数。
如图8所示:第一类参考信号可以通过所占频域位置的不同被分为两个子类(即第1组第一类参考信号和第2组第一类参考信号),其中第一子类(即第1组)与第三类参考信号同属一个准共位参考信号组(即准共位置组2),第二子类(第2组)与第二类参考 信号同属一个准共位参考信号组(即准共位置组3)。在这种分配情况下,于此同时,这两个子类也归属于同一个准共位参考信号组(即准共位置组1)。
终端在该配置下,如图9所示,可以通过第二准共位置参考组信息有效估计出第一类参考信号所经历信道的多普勒相关特征,而通过第三准共位参考信息可以有效估计出第一类参考信号所经历信道的时延相关特征。
此外,第一参考信号也可以通过其在频域或空域所占资源位置不同进行独立或组合分组,并与其它参考信号构成准共位置关系。
可选地,基站可以根据终端依照信道测量结果对当前传输的信号或参与传输的端口的分类结果,为其配备相应的准共位参数集合。
例如,当在收发端均使用多波束的应用场景下,终端依照测量所得信道特征,如到达角、发射角、或二者组合将当前传输的信号或参与传输的端口分为一组,并反馈给基站,此时,基站可以根据反馈结果,为其配备相应的准共位参数集,使得最终参与传输的信号或端口之间具有“准共波束关系”。
例如表2中所示,当来自同一个或者不同发射端的一组下行测量导频在接收端被相同接收波束接收时,依照接收端的反馈结果,发射端可以对于这组下行测量导频配置准共位置参数类别为6的准共位置参数集合,由于此时这组参考信号发送时所采用的波束,射频器件等均不同,所以该准共位置参数集合中只包含空间参数。
可选地,基站可以根据终端依照当前系统所采用的传输模式,为参与传输的天线端口配置不同的准共位置参数集合。
例如,基站可以为当前参与上下行链路传输的天线端口配置不同的准共位置参数集合,如(收发角度,平均增益),并依此指示折现端口之间具有准共位置关系。
这些准共位置关系的强弱,即准共位置参数集合内包含的参数个数的多少,反映了当前系统中上下行链路之间互易性的层级。即,当系统上下行信道具有完全互易性时,上下行链路端口之间可以关于所有准共位置参数集合具有准共位置关系;当系统上下行信道之间互易性校准不完备,如使用不同晶振或射频链路时,则上下行链路端口之间可以关于除了时偏,多普勒频偏之外的其他准共位置参数集合具有准共位置关系,如上行信号发送时采用与下行信号接收时相同的模拟波束,则上下行信号、端口之间可以关于空间参数具有准共位置关系。
如,使用同一条射频链路,但不同的波束组合时,则上下行链路端口之间可以关于角度之外的其他准共位置参数集合具有准共位置关系。或者其他组合;当系统上下行信道之间无互易性时,则上下行链路端口不存在准共位置关系。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质 (如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本公开各个实施例所述的方法。
实施例2
本公开实施例中还提供了一种表征准共位置参数配置的装置。该装置设置为实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图10是根据本公开实施例的表征准共位置参数配置的装置的示意图。如图10所示,该装置可以包括:第一获取单元101和第一指示单元102。
第一获取单元101,设置为获取包括第一准共位置特征参数集合中部分或全部特征参数的第二准共位置特征参数集合;
第一指示单元102,设置为通过信令指示第二准共位置特征参数集合的配置信息给接收端。
通过上述实施例,第一获取单元获取包括第一准共位置特征参数集合中部分或全部特征参数的第二准共位置特征参数集合;第一指示单元通过信令指示第二准共位置特征参数集合的配置信息给接收端,从而解决了相关技术中无法对不同参考信号之间或不同天线端口之间的准共位置信息进行灵活配置的技术问题,实现了对不同参考信号之间或不同天线端口之间的准共位置信息进行灵活配置的技术效果。
可选地,上述的表征准共位置参数配置的装置可应用于发射端的发射设备或者发送设备,如基站、微基站、移动基站等。
可选地,特征参数用于表征无线传播信道的特征;特征参数包括平均延迟、平均增益、频偏、频偏扩展,空间参数及延迟扩展中的至少之一。
可选的,所述空间参数可以为:到达角,平均到达角,空间相关性,发射角,平均发射角。
可选地,特征参数用于表征信号间或天线端口间的准共位置模式。
第一获取单元还设置为:获取为L个信号或天线端口分别配置的第二准共位置特征参数集合,其中,每个信号或每个天线端口对应至少一个第二准共位置特征参数集合,L为正整数。
第一获取单元还设置为:获取包括第一准共位置特征参数集合中N个特征参数组的第二准共位置特征参数集合,其中,第一准共位置特征参数集合中包括M个特征参数组,N为大于0且不大于M的正数,M为正整数;按照当前传输信号之间的准共位置模式从第一准共位置特征参数集合中选取第一特征参数至第二准共位置特征参数集合;按照传输模式从第一准共位置特征参数集合中选取第二特征参数至第二准共位置特征参数集合;按照终端反馈信息从第一准共位置特征参数集合中选取第三特征参数至第二准共位置特征 参数集合。
可选地,在获取包括第一准共位置特征参数集合中N特征参数组的第二准共位置特征参数集合之前,按照与接收端的约定将第一准共位置特征参数集合分为M个特征参数组,其中,每个特征参数组包括m类特征参数,m为正整数。
第一指示单元还设置为:通过信令指示第二准共位置特征参数集合的配置信息给接收端包括:发送用于指示第二准共位置特征参数集合所包括的特征参数或特征参数组的高层信令至接收端。
第一指示单元还设置为:通过信令指示第二准共位置特征参数集合的配置信息给接收端包括:通过预设信令指示第二准共位置特征参数集合适用的具有准共位置关系的信号集合或天线端口集合,其中,预设信令包括高层信令和/或物理层信令。
根据本公开实施例的一个方面,相应的提供了一种表征准共位置参数配置的装置,应用于接收端,该装置包括:第一确定单元,设置为通过解调发送端的信令确定当前传输中所采用的准共位置特征参数集合;第二确定单元,设置为获取与准共位置特征参数集合对应的传输信号组和/或天线端口组,并通过传输信号组和/或天线端口组确定与当前传输信号和/或当前天线端口对应的信道信息。
上述的装置应用于接收端,即接收设备,如用户终端、移动终端等,例如手机、平板电脑等。
可选地,准共位置特征参数集合中的特征参数和信道信息用于表征无线传播信道的特征。
可选地,特征参数包括平均延迟、平均增益、频偏、频偏扩展,空间参数及延迟扩展中的至少之一。
可选的,所述空间参数可以为:到达角,平均到达角,空间相关性,发射角,平均发射角。
可选地,传输信号组中传输信号的信号类型包括:下行同步信号、上行随机接入信号、下行数据解调导频信号、下行控制解调导频信号、下行测量导频信号、上行数据解调导频信号、上行控制解调导频信号及上行测量导频信号。
可选地,天线端口组包括用于发送以下信号之一的端口:下行同步信号、上行随机接入信号、下行数据解调导频信号、下行控制解调导频信号、下行测量导频信号、上行数据解调导频信号、上行控制解调导频信号、上行测量导频信号、上行用户数据、下行用户数据、上行用户控制信息以及下行用户控制信息。
可选地,第二确定单元还设置为获取与至少一个准共位置特征参数集合对应的至少一个传输信号组和/或至少一个天线端口组的信道信息。
可选地,该装置还包括:测量单元,设置为测量当前传输信号和/或当前天线端口的信道信息;反馈单元,设置为反馈当前传输信号和/或当前天线端口的准共位置特征参数集合至发送端。
本公开实施例中还提供了一种表征准共位置参数配置的装置。图11是根据本公开实施例的表征准共位置参数配置的装置的示意图。如图11所示,该装置可以包括:第一处理单元111和第二指示单元112。
第一处理单元111,设置为按照X个特征参数组将所有发射信号或天线端口分成X个具有准共位置关系的信号集合组或天线端口集合组;
第二指示单元112,设置为通过信令指示信号集合组或天线端口集合组的配置信息给接收端。
上述装置可以应用于发送或者发射端,如基站、微基站、移动基站等。
当采用动态特征参数配置时,方法存在多种,其中一种是:将这些准共位置特征参数进行编号,然后指示信令中包含这些特征参数的标号信息。当采用约定等方式时:可以实现将这些准共位特征参数存在的组合情况进行穷举,然后对于这些组合进行编号,进而只需要通过信令通知当前所使用的组号即可。
可选地,特征参数组中的特征参数包括平均延迟、平均增益、频偏、频偏扩展及延迟扩展频偏扩展,空间参数及延迟扩展中的至少之一。
可选的,所述空间参数可以为:到达角,平均到达角,空间相关性,发射角,平均发射角。
可选地,特征参数组中的特征参数按照如下方式进行分类:在X=1时,特征参数组包括平均延迟、平均增益、频偏、频偏扩展及延迟扩展;在X=2时,第一个特征参数组包括平均延迟和频偏,第二个特征参数组包括频偏扩展和延迟扩展,或,第一个特征参数组包括平均延迟、频偏、频偏扩展及延迟扩展,第二个特征参数组包括平均增益,或,第一个特征参数组包括平均延迟和延迟扩展,第二个特征参数组包括频偏和频偏扩展;在X=3时,第一个特征参数组包括平均延迟和延迟扩展,第二个特征参数组包括频偏和频偏扩展,第三个特征参数组包括平均增益,或,第一个特征参数组包括平均延迟和频偏,第二个特征参数组包括延迟扩展和频偏扩展,第三个特征参数组包括平均增益。
可选地,可按照以下方式对特征参数进行分组:按照与接收端的约定将所有特征参数分为X个特征参数组;按照本地保存的预设配置将所有特征参数分为X个特征参数组;按照接收端的反馈信息将所有特征参数分为X个特征参数组。
可选地,发射信号的信号类型包括:下行同步信号、上行随机接入信号、下行数据解调导频信号、下行控制解调导频信号、下行测量导频信号、上行数据解调导频信号、上行控制解调导频信号及上行测量导频信号。
可选地,信号集合组包括以下至少之一:不同端口发送的同一类信号;按照周期发送和按照非周期发送的同一类信号;同一信号端口在不同发送时间位置上发送的同一类信号;同一信号端口在不同发送频域位置上发送的同一类信号;不同信号类别的信号;按照周期发送和按照非周期发送的不同类信号。
可选地,第二指示单元112还设置为:通过一套或多套指令指示任一类信号所归属的I个信号集合组给接收端,其中,I个信号集合组具有不同的准共位置关系,I为大于0且不大于X的正整数。
可选地,天线端口包括设置为发送以下信号之一的端口:下行同步信号、上行随机接入信号、下行数据解调导频信号、下行控制解调导频信号、下行测量导频信号、上行数据解调导频信号、上行控制解调导频信号、上行测量导频信号、上行用户数据、下行用户数据、上行用户控制信息以及下行用户控制信息。
可选地,天线端口集合组包括以下至少之一:在不同发送时间位置上发送同一类信号的不同端口;在不同发送频域位置上发送同一类信号的不同端口;在不同发送时间位置上发送不同类信号的不同端口;在不同发送频域位置上发送不同类信号的不同端口。
可选地,第二指示单元112还设置为:通过一套或多套指令指示任一类信号所归属的J个天线端口集合组给接收端,其中,J个天线端口集合组具有不同的准共位置关系,J为大于0且不大于X的正整数。
可选地,该装置还包括:配置单元,设置为按照第一类信号所属的准共位置信号集合和/或所对应的准共位置特征参数集合,配置用于传输第一类信号中各个信号的资源。
相应地,根据本公开实施例的另一个方面,提供了一种表征准共位置参数配置的装置,应用于接收端,该装置包括:第三确定单元,设置为通过解调发送端的信令确定当前传输中所采用的准共位置特征参数集合;第四确定单元,设置为获取与准共位置特征参数集合对应的传输信号组和/或天线端口组,并通过传输信号组和/或天线端口组确定与当前传输信号和/或当前天线端口对应的信道信息。
上述的装置应用于接收端,即接收设备,如用户终端、移动终端等,例如手机、平板电脑等。
可选地,准共位置特征参数集合中的特征参数和信道信息用于表征无线传播信道的特征。
可选地,特征参数包括平均延迟、平均增益、频偏、频偏扩展,空间参数及延迟扩展中的至少之一。
可选的,所述空间参数可以为:到达角,平均到达角,空间相关性,发射角,平均发射角。
可选地,传输信号组中传输信号的信号类型包括:下行同步信号、上行随机接入信号、下行数据解调导频信号、下行控制解调导频信号、下行测量导频信号、上行数据解调导频信号、上行控制解调导频信号及上行测量导频信号。
可选地,天线端口组包括用于发送以下信号之一的端口:下行同步信号、上行随机接入信号、下行数据解调导频信号、下行控制解调导频信号、下行测量导频信号、上行数据解调导频信号、上行控制解调导频信号、上行测量导频信号、上行用户数据、下行用户数据、上行用户控制信息以及下行用户控制信息。
可选地,第四确定单元还设置为:通过准共位置特征参数集合确定与当前传输信号或当前天线端口所归属的X个准共位置信号或天线端口组的特征参数,其中,特征参数用于确定与当前传输信号和/或当前天线端口对应的信道信息,特征参数组中的特征参数按照如下方式进行分类:在X=1时,特征参数组包括平均延迟、平均增益、频偏、频偏扩展及延迟扩展;在X=2时,第一个特征参数组包括平均延迟和频偏,第二个特征参数组包括频偏扩展和延迟扩展,或,第一个特征参数组包括平均延迟、频偏、频偏扩展及延迟扩展,第二个特征参数组包括平均增益,或,第一个特征参数组包括平均延迟和延迟扩展,第二个特征参数组包括频偏和频偏扩展;在X=3时,第一个特征参数组包括平均延迟和延迟扩展,第二个特征参数组包括频偏和频偏扩展,第三个特征参数组包括平均增益,或,第一个特征参数组包括平均延迟和频偏,第二个特征参数组包括延迟扩展和频偏扩展,第三个特征参数组包括平均增益。
本公开实施例中还提供了一种表征准共位置参数配置的装置。图12是根据本公开实施例的表征准共位置参数配置的装置的示意图。如图12所示,该装置可以包括:第二处理单元121和第三指示单元122。
第二处理单元121,设置为按照所占用的传输资源将第一类信号中的信号分为Q个信号组,其中,第一类信号包括多个信号,Q为正整数;
第三指示单元122,设置为通过信令指示与信号组具有准共位置关系的第二类信号和/或准共位置特征参数集合。
通过上述实施例,第二处理单元按照所占用的传输资源将第一类信号中的信号分为Q个信号组,第一类信号包括多个信号,Q为正整数;第三指示单元通过信令指示与信号组具有准共位置关系的第二类信号和/或准共位置特征参数集合,从而解决了相关技术中无法对不同参考信号之间或不同天线端口之间的准共位置信息进行灵活配置的技术问题,实现了对不同参考信号之间或不同天线端口之间的准共位置信息进行灵活配置的技术效果。
上述装置可以应用于发送或者发射端,如基站、微基站、移动基站等。
可选地,首先信令中需要包括第一类信号的分组方式以及准共位组合;当得到这些信息之后,接收端就可以通过将与当前Q个信号有关系的信号联合用来进行信道估计,最终得到信道特征。
可选地,第一类信号的传输资源包括以下至少之一:天线端口、频域资源以及时域资源。
可选地,第一类信号或第二类信号包括以下至少之一:下行同步信号、上行随机接入信号、下行数据解调导频信号、下行控制解调导频信号、下行测量导频信号、上行数据解调导频信号、上行控制解调导频信号及上行测量导频信号。
可选地,准共位置特征参数集合中包括以下至少之一:平均延迟、平均增益、频偏、频偏扩展,空间参数及延迟扩展。
可选的,所述空间参数可以为:到达角,平均到达角,空间相关性,发射角,平均发射角。
可选地,第三指示单元122还设置为:通过至少一套高层信令或至少一套物理层信令,指示每一组信号组所属的准共位信号集合和/或准共位置特征参数集合,其中,准共位信号集合包括第二类信号。以使信令指示与每组信号组存在准共位置关系的信号。
相应地,根据本公开实施例的另一个方面,提供了一种表征准共位置参数配置的装置,应用于接收端,该装置包括:第五确定单元,设置为通过解调发送端的信令确定第一类信号的分组方式和第一类信号的Q个信号组中每个信号组所属的准共位置特征参数集合和/或准共位置信号集合;第六确定单元,设置为基于准共位置特征参数集合和/或准共位置信号集合确定与当前传输信号和/或当前天线端口对应的信道信息。
上述的装置应用于接收端,即接收设备,如用户终端、移动终端等,例如手机、平板电脑等。
可选地,第六确定单元还设置为:从Q个信号组分别所属的准共位置特征参数集合和/或准共位置信号集合中获取与第一类信号对应的一个或者多个信道参数,并通过一个或者多个信道参数确定当前传输信号和/或当前天线端口的信道信息。
参考信号的所占发射资源位置可由系统依照该类参考信号所属的准共位置信号集合进行配置。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
实施例3
根据本公开实施例的另一个方面,提供了一种发射设备,该发射设备包括:第一处理器;设置为存储第一处理器可执行指令的第一存储器;设置为根据第一处理器的控制进行信息收发通信的第一传输装置;其中,第一处理器设置为执行以下操作:获取包括第一准共位置特征参数集合中部分或全部特征参数的第二准共位置特征参数集合;通过信令指示第二准共位置特征参数集合的配置信息给接收端。
根据本公开实施例的另一个方面,提供了一种接收设备,该接收设备包括:第二处理器;设置为存储第二处理器可执行指令的第二存储器;设置为根据第二处理器的控制进行信息收发通信的第二传输装置;其中,第二处理器设置为执行以下操作:通过解调发送端的信令确定当前传输中所采用的准共位置特征参数集合;获取与准共位置特征参数集合对应的传输信号组和/或天线端口组,并通过传输信号组和/或天线端口组确定与当前传输信号和/或当前天线端口对应的信道信息。
实施例4
本公开的实施例还提供了一种存储介质。可选地,在本实施例中,上述存储介质可以被设置为存储设置为执行以下步骤的程序代码:
S1,获取包括第一准共位置特征参数集合中部分或全部特征参数的第二准共位置特征参数集合;
S2,通过信令指示第二准共位置特征参数集合的配置信息给接收端。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:
S3,按照X个特征参数组将所有发射信号或天线端口分成X个具有准共位置关系的信号集合组或天线端口集合组;
S4,通过信令指示信号集合组或天线端口集合组的配置信息给接收端。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行:获取包括第一准共位置特征参数集合中部分或全部特征参数的第二准共位置特征参数集合;通过信令指示第二准共位置特征参数集合的配置信息给接收端。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行:按照X个特征参数组将所有发射信号或天线端口分成X个具有准共位置关系的信号集合组或天线端口集合组;通过信令指示信号集合组或天线端口集合组的配置信息给接收端。
可选地,本实施例中的示例性示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本公开的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本公开不限制于任何特定的硬件和软件结合。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。
工业实用性
本公开实施例提供的表征准共位置参数配置的方法,通过获取包括第一准共位置特征参数集合中部分或全部特征参数的第二准共位置特征参数集合;通过信令指示第二准共位置特征参数集合的配置信息给接收端,解决了相关技术中无法对不同参考信号之间或不同天线端口之间的准共位置信息进行灵活配置的技术问题,实现了对不同参考信号之间或不同天线端口之间的准共位置信息进行灵活配置的技术效果。

Claims (51)

  1. 一种表征准共位置参数配置的方法,其中,包括:
    获取包括第一准共位置特征参数集合中部分或全部特征参数的第二准共位置特征参数集合;
    通过信令指示所述第二准共位置特征参数集合的配置信息给接收端。
  2. 根据权利要求1所述的方法,其中,所述特征参数用于表征无线传播信道的特征,或所述特征参数用于表征信号间或天线端口间的准共位置模式,所述特征参数包括平均延迟、平均增益、频偏、频偏扩展、空间参数、及延迟扩展中的至少之一。
  3. 根据权利要求1所述的方法,其中,获取包括第一准共位置特征参数集合中部分或全部特征参数的第二准共位置特征参数集合包括:
    获取为L个信号或天线端口分别配置的所述第二准共位置特征参数集合,其中,每个信号或每个天线端口对应至少一个所述第二准共位置特征参数集合,L为正整数。
  4. 根据权利要求3所述的方法,其中,获取包括第一准共位置特征参数集合中部分或全部特征参数的第二准共位置特征参数集合包括:
    获取包括所述第一准共位置特征参数集合中N个特征参数组的所述第二准共位置特征参数集合,其中,所述第一准共位置特征参数集合中包括M个特征参数组,N为大于0且不大于M的正数,M为正整数;
    按照当前传输信号之间的准共位置模式从所述第一准共位置特征参数集合中选取第一特征参数,并将所选取的第一特征参数加入所述第二准共位置特征参数集合;
    按照传输模式从所述第一准共位置特征参数集合中选取第二特征参数,并将所选取的第二特征参数加入所述第二准共位置特征参数集合;
    按照终端反馈信息从所述第一准共位置特征参数集合中选取第三特征参数,并将所述第三特征参数加入所述第二准共位置特征参数集合;
    按照当前传输信号的功能从所述第一准共位置特征参数集合中选取第四特征参数,并将所述第四特征参数加入所述第二准共位置特征参数集合;
    按照与接收端的约定从所述第一准共位置特征参数集合中选取第五特征参数,并将所述第五特征参数加入所述第二准共位置特征参数集合。
  5. 根据权利要求4所述的方法,其中,在获取包括所述第一准共位置特征参数集合中N特征参数组的所述第二准共位置特征参数集合之前,所述方法还包括:
    按照与所述接收端的约定将所述第一准共位置特征参数集合分为所述M个特征参数组,其中,每个特征参数组包括m类特征参数,m为正整数。
  6. 根据权利要求1或4或5所述的方法,其中,传输信号或天线端口间所对应的第二准共位置参数集合配置条件包含如下之一:
    当信号或端口对应为用于测量相位噪声的测量导频和数据解调导频的组合时,发射端 配置的第二准共位置参数集合中至少包含频偏扩展和频偏,且不包含时延扩展和平均时延;
    当信号或端口对应为用于测量相位噪声的测量导频和数据解调导频的组合时,发射端配置的第二准共位置参数集合中至少包含频偏扩展,频偏,时延扩展和平均时延;
    和/或,所述传输信号或天线端口间所对应的第二准共位置参数集合配置条件包含如下之一:
    当信号或端口对应为下行同步信号和下行测量导频的组合时,发射端配置的第二准共位置参数集合中至少包含频偏和平均时延;
    当信号或端口对应为下行同步信号和下行测量导频的组合时,发射端配置的第二准共位置参数集合中至少包含频偏。
  7. 根据权利要求1所述的方法,其中,通过信令指示第二准共位置特征参数集合的配置信息给接收端包括:
    发送用于指示所述第二准共位置特征参数集合所包括的特征参数或特征参数组的高层信令至所述接收端。
  8. 根据权利要求1所述的方法,其中,通过信令指示第二准共位置特征参数集合的配置信息给接收端包括:
    通过预设信令指示所述第二准共位置特征参数集合适用的具有准共位置关系的信号集合或天线端口集合,其中,所述预设信令包括高层信令和/或物理层信令。
  9. 根据权利要求1或7或8所述的方法,其中,在满足如下情况之一时,通过发射端与接收端约定的方式指示所述第二准共位置特征参数集合的配置信息给接收端:
    当信号集合组或天线端口集合组依照发射端和接收端约定具有唯一准共位置关系;
    当信号集合组或天线端口集合组之间无准共位置关系;
    当第二准共位置参数集合与信号集合组或天线端口集合组具有唯一确定的一一映射关系。
  10. 一种表征准共位置参数配置的方法,其中,包括:
    按照X个特征参数组将所有发射信号或天线端口分成X个具有准共位置关系的信号集合组或天线端口集合组;
    通过信令指示所述信号集合组或所述天线端口集合组的配置信息给接收端。
  11. 根据权利要求10所述的方法,其中,所述特征参数组中的特征参数包括平均延迟、平均增益、频偏、频偏扩展、空间参数及延迟扩展中的至少之一。
  12. 根据权利要求10或11所述的方法,其中,所述特征参数组中的特征参数按照如下方式进行分类:
    在X=1时,特征参数组包括平均延迟、平均增益、频偏、频偏扩展及延迟扩展;
    在X=2时,第一个特征参数组包括所述平均延迟和所述频偏,第二个特征参数组包括所述频偏扩展和所述延迟扩展,或,第一个特征参数组包括所述平均延迟、所述频偏、所述频偏扩展及所述延迟扩展,第二个特征参数组包括所述平均增益,或,第一个特征参 数组包括所述平均延迟和所述延迟扩展,第二个特征参数组包括所述频偏和所述频偏扩展;
    在X=3时,第一个特征参数组包括所述平均延迟和所述延迟扩展,第二个特征参数组包括所述频偏和所述频偏扩展,第三个特征参数组包括所述平均增益,或,第一个特征参数组包括所述平均延迟和所述频偏,第二个特征参数组包括所述延迟扩展和所述频偏扩展,第三个特征参数组包括所述平均增益。
  13. 根据权利要求10所述的方法,其中,所述方法还包括按照以下方式之一对特征参数进行分组:
    按照与所述接收端的约定将所有特征参数分为X个特征参数组;
    按照本地保存的预设配置将所有特征参数分为X个特征参数组;
    按照接收端的反馈信息将所有特征参数分为X个特征参数组;
    按照发射端和接收端的传输模式将所有特征参数分为X个特征参数组;
    按照影响准共位置特征参数的因素将所有特征参数分为X个特征参数组。
  14. 根据权利要求10所述的方法,其中,所述发射信号的信号类型包括:下行同步信号、上行随机接入信号、下行数据解调导频信号、下行控制解调导频信号、下行测量导频信号、上行数据解调导频信号、上行控制解调导频信号及上行测量导频信号。
  15. 根据权利要求10所述的方法,其中,所述信号集合组包括以下至少之一:
    不同端口发送的同一类信号;
    按照周期发送和按照非周期发送的同一类信号;
    同一信号端口在不同发送时间位置上发送的同一类信号;
    同一信号端口在不同发送频域位置上发送的同一类信号;
    不同信号类别的信号;
    按照周期发送和按照非周期发送的不同类信号。
  16. 根据权利要求10或11所述的方法,其中,通过信令指示所述信号集合组的配置信息给接收端包括:
    通过一套或多套指令指示任一类信号所归属的I个所述信号集合组给所述接收端,其中,I个所述信号集合组具有不同的准共位置关系,I为大于0且不大于X的正整数。
  17. 根据权利要求12或13或16所述方法,其中,所述特征参数组与传输信号间的对应关系包含如下之一:
    当X个特征参数组内有一组至少包含频偏扩展和频偏,但不包含时延扩展和平均时延时,发射端将用于测量相位噪声的测量导频和数据解调导频,或对应所述用于测量相位噪声的测量导频和数据解调导频的端口配置为关于所述特征参数组的发射信号或天线端口组合;
    当X个特征参数组内有一组至少包含频偏扩展,频偏,时延扩展和平均时延时,发射端将用于测量相位噪声的测量导频和数据解调导频,或对应所述用于测量相位噪声的测量导频和数据解调导频的端口配置为关于所述特征参数组的发射信号或天线端口组合;
    当X个特征参数组内有一组至少包含频偏和平均时延时,发射端将下行同步信号和下行测量导频,或对应所述下行同步信号和下行测量导频的端口配置为关于该特征参数组的发射信号或天线端口组合;
    当X个特征参数组内有一组至少包含频偏时,发射端将下行同步信号和下行测量导频,或对应所述下行同步信号和下行测量导频的端口配置为关于该准共位置参数组的发射信号或天线端口组合。
  18. 根据权利要求10所述的方法,其中,所述天线端口包括设置为发送以下信号之一的端口:下行同步信号、上行随机接入信号、下行数据解调导频信号、下行控制解调导频信号、下行测量导频信号、上行数据解调导频信号、上行控制解调导频信号、上行测量导频信号、上行用户数据、下行用户数据、上行用户控制信息以及下行用户控制信息。
  19. 根据权利要求10所述的方法,其中,所述天线端口集合组包括以下至少之一:
    在不同发送时间位置上发送同一类信号的不同端口;
    在不同发送频域位置上发送同一类信号的不同端口;
    在不同发送时间位置上发送不同类信号的不同端口;
    在不同发送频域位置上发送不同类信号的不同端口。
  20. 根据权利要求10所述的方法,其中,通过信令指示所述天线端口集合组的配置信息给接收端包括:
    通过一套或多套指令指示任一类信号所归属的J个所述天线端口集合组给所述接收端,其中,J个所述天线端口集合组具有不同的准共位置关系,J为大于0且不大于X的正整数。
  21. 根据权利要求10所述的方法,其中,所述方法还包括:
    按照第一类信号所属的准共位置信号集合和/或所对应的准共位置特征参数集合,配置用于传输所述第一类信号中各个信号的资源。
  22. 一种表征准共位置参数配置的方法,其中,包括:
    按照所占用的传输资源将第一类信号中的信号分为Q个信号组,其中,所述第一类信号包括多个信号,Q为正整数;
    通过信令指示与所述信号组具有准共位置关系的第二类信号和/或准共位置特征参数集合。
  23. 根据权利要求22所述的方法,其中,所述第一类信号的传输资源包括以下至少之一:天线端口、频域资源以及时域资源。
  24. 根据权利要求22所述的方法,其中,所述第一类信号或所述第二类信号包括以下至少之一:下行同步信号、上行随机接入信号、下行数据解调导频信号、下行控制解调导频信号、下行测量导频信号、上行数据解调导频信号、上行控制解调导频信号及上行测量导频信号。
  25. 根据权利要求22所述的方法,其中,所述准共位置特征参数集合中包括以下至少 之一:平均延迟、平均增益、频偏、频偏扩展,空间参数及延迟扩展。
  26. 根据权利要求22所述的方法,其中,通过信令指示与所述信号组具有准共位置关系的第二类信号和/或准共位置特征参数集合:
    通过至少一套高层信令或至少一套物理层信令,指示每一组所述信号组所属的准共位信号集合和/或准共位置特征参数集合,其中,所述准共位信号集合包括所述第二类信号。
  27. 一种表征准共位置参数配置的方法,其中,包括:
    通过解调发送端的信令确定当前传输中所采用的准共位置特征参数集合;
    获取与所述准共位置特征参数集合对应的传输信号组和/或天线端口组,并通过所述传输信号组和/或所述天线端口组确定与当前传输信号和/或当前天线端口对应的信道信息。
  28. 根据权利要求27所述的方法,其中,所述准共位置特征参数集合中的特征参数和所述信道信息用于表征无线传播信道的特征,包括平均延迟、平均增益、频偏、频偏扩展,空间参数及延迟扩展中的至少之一。
  29. 根据权利要求28所述的方法,其中,所述传输信号组中传输信号的信号类型包括:下行同步信号、上行随机接入信号、下行数据解调导频信号、下行控制解调导频信号、下行测量导频信号、上行数据解调导频信号、上行控制解调导频信号及上行测量导频信号。
  30. 根据权利要求28所述的方法,其中,所述天线端口组包括设置为发送以下信号之一的端口:下行同步信号、上行随机接入信号、下行数据解调导频信号、下行控制解调导频信号、下行测量导频信号、上行数据解调导频信号、上行控制解调导频信号、上行测量导频信号、上行用户数据、下行用户数据、上行用户控制信息以及下行用户控制信息。
  31. 根据权利要求28所述的方法,其中,获取与所述准共位置特征参数集合对应的传输信号组和/或天线端口组包括:
    获取与至少一个所述准共位置特征参数集合对应的至少一个所述传输信号组和/或至少一个所述天线端口组的信道信息。
  32. 根据权利要求28所述的方法,其中,所述方法还包括:
    测量当前传输信号和/或当前天线端口的信道信息;
    反馈当前传输信号和/或当前天线端口的准共位置特征参数集合至发送端。
  33. 一种表征准共位置参数配置的方法,其中,包括:
    通过解调发送端的信令确定当前传输中所采用的准共位置特征参数集合;
    获取与所述准共位置特征参数集合对应的传输信号组和/或天线端口组,并通过所述传输信号组和/或所述天线端口组确定与当前传输信号和/或当前天线端口对应的信道信息。
  34. 根据权利要求33所述的方法,其中,所述准共位置特征参数集合中的特征参数和所述信道信息用于表征无线传播信道的特征,包括平均延迟、平均增益、频偏、频偏扩展,空间参数及延迟扩展中的至少之一。
  35. 根据权利要求33所述的方法,其中,所述传输信号组中传输信号的信号类型包括:下行同步信号、上行随机接入信号、下行数据解调导频信号、下行控制解调导频信号、下行测量导频信号、上行数据解调导频信号、上行控制解调导频信号及上行测量导频信号。
  36. 根据权利要求33所述的方法,其中,所述天线端口组包括设置为发送以下信号之一的端口:下行同步信号、上行随机接入信号、下行数据解调导频信号、下行控制解调导频信号、下行测量导频信号、上行数据解调导频信号、上行控制解调导频信号、上行测量导频信号、上行用户数据、下行用户数据、上行用户控制信息以及下行用户控制信息。
  37. 根据权利要求33所述的方法,其中,获取与所述准共位置特征参数集合对应的传输信号组和/或天线端口组,通过所述传输信号组和/或所述天线端口组确定与当前传输信号和/或当前天线端口对应的信道信息包括:
    通过所述准共位置特征参数集合确定与当前传输信号或当前天线端口所归属的X个准共位置信号或天线端口组的特征参数,其中,所述特征参数用于确定与当前传输信号和/或当前天线端口对应的信道信息,所述特征参数组中的特征参数按照如下方式进行分类:
    在X=1时,特征参数组包括平均延迟、平均增益、频偏、频偏扩展及延迟扩展;
    在X=2时,第一个特征参数组包括所述平均延迟和所述频偏,第二个特征参数组包括所述频偏扩展和所述延迟扩展,或,第一个特征参数组包括所述平均延迟、所述频偏、所述频偏扩展及所述延迟扩展,第二个特征参数组包括所述平均增益,或,第一个特征参数组包括所述平均延迟和所述延迟扩展,第二个特征参数组包括所述频偏和所述频偏扩展;
    在X=3时,第一个特征参数组包括所述平均延迟和所述延迟扩展,第二个特征参数组包括所述频偏和所述频偏扩展,第三个特征参数组包括所述平均增益,或,第一个特征参数组包括所述平均延迟和所述频偏,第二个特征参数组包括所述延迟扩展和所述频偏扩展,第三个特征参数组包括所述平均增益。
  38. 一种表征准共位置参数配置的方法,其中,包括:
    通过解调发送端的信令确定第一类信号的分组方式和所述第一类信号的Q个信号组中每个信号组所属的准共位置特征参数集合和/或准共位置信号集合;
    基于所述准共位置特征参数集合和/或所述准共位置信号集合确定与当前传输信号和/或当前天线端口对应的信道信息。
  39. 根据权利要求38所述的方法,其中,基于所述准共位置特征参数集合和/或所述准共位置信号集合确定与当前传输信号和/或当前天线端口对应的信道信息包括:
    从Q个所述信号组分别所属的所述准共位置特征参数集合和/或所述准共位置信号集合中获取与所述第一类信号对应的一个或者多个信道参数,并通过一个或者多个所述信道参数确定当前传输信号和/或当前天线端口的信道信息。
  40. 一种表征准共位置参数配置的装置,其中,包括:
    第一获取单元,设置为获取包括第一准共位置特征参数集合中部分或全部特征参数的第二准共位置特征参数集合;
    第一指示单元,设置为通过信令指示所述第二准共位置特征参数集合的配置信息给接收端。
  41. 根据权利要求40所述的装置,其中,所述特征参数用于表征无线传播信道的特征,所述特征参数包括平均延迟、平均增益、频偏、频偏扩展,空间参数及延迟扩展中的至少之一。
  42. 一种表征准共位置参数配置的装置,其中,包括:
    第一处理单元,设置为按照X个特征参数组将所有发射信号或天线端口分成X个具有准共位置关系的信号集合组或天线端口集合组;
    第二指示单元,设置为通过信令指示所述信号集合组或所述天线端口集合组的配置信息给接收端。
  43. 根据权利要求42所述的装置,其中,所述第二指示单元还设置为通过一套或多套指令指示任一类信号所归属的I个所述信号集合组给所述接收端,其中,I个所述信号集合组具有不同的准共位置关系,I为大于0且不大于X的正整数。
  44. 一种表征准共位置参数配置的装置,其中,包括:
    第二处理单元,设置为按照所占用的传输资源将第一类信号中的信号分为Q个信号组,其中,所述第一类信号包括多个信号,Q为正整数;
    第三指示单元,设置为通过信令指示与所述信号组具有准共位置关系的第二类信号和/或准共位置特征参数集合。
  45. 根据权利要求44所述的装置,其中,所述第三指示单元还设置为通过至少一套高层信令或至少一套物理层信令,指示每一组所述信号组所属的准共位信号集合和/或准共位置特征参数集合,其中,所述准共位信号集合包括所述第二类信号。
  46. 一种表征准共位置参数配置的装置,其中,包括:
    第一确定单元,设置为通过解调发送端的信令确定当前传输中所采用的准共位置特征参数集合;
    第二确定单元,设置为获取与所述准共位置特征参数集合对应的传输信号组和/或天线端口组,并通过所述传输信号组和/或所述天线端口组确定与当前传输信号和/或当前天线端口对应的信道信息。
  47. 根据权利要求46所述的装置,其中,所述第二确定单元还设置为获取与至少一个所述准共位置特征参数集合对应的至少一个所述传输信号组和/或至少一个所述天线端口组的信道信息。
  48. 一种表征准共位置参数配置的装置,其中,包括:
    第三确定单元,设置为通过解调发送端的信令确定当前传输中所采用的准共位置特征参数集合;
    第四确定单元,设置为获取与所述准共位置特征参数集合对应的传输信号组和/或天线端口组,并通过所述传输信号组和/或所述天线端口组确定与当前传输信号和/或当前天 线端口对应的信道信息。
  49. 一种表征准共位置参数配置的装置,其中,包括:
    第五确定单元,设置为通过解调发送端的信令确定第一类信号的分组方式和所述第一类信号的Q个信号组中每个信号组所属的准共位置特征参数集合和/或准共位置信号集合;
    第六确定单元,设置为基于所述准共位置特征参数集合和/或所述准共位置信号集合确定与当前传输信号和/或当前天线端口对应的信道信息。
  50. 一种发射设备,其中,包括:
    第一处理器;
    设置为存储所述第一处理器可执行指令的第一存储器;
    设置为根据所述第一处理器的控制进行信息收发通信的第一传输装置;
    其中,所述第一处理器设置为执行以下操作:获取包括第一准共位置特征参数集合中部分或全部特征参数的第二准共位置特征参数集合;通过信令指示所述第二准共位置特征参数集合的配置信息给接收端。
  51. 一种接收设备,其中,包括:
    第二处理器;
    设置为存储所述第二处理器可执行指令的第二存储器;
    设置为根据所述第二处理器的控制进行信息收发通信的第二传输装置;
    其中,所述第二处理器设置为执行以下操作:通过解调发送端的信令确定当前传输中所采用的准共位置特征参数集合;获取与所述准共位置特征参数集合对应的传输信号组和/或天线端口组,并通过所述传输信号组和/或所述天线端口组确定与当前传输信号和/或当前天线端口对应的信道信息。
PCT/CN2017/104742 2016-09-30 2017-09-30 表征准共位置参数配置的方法和装置、发射及接收设备 WO2018059571A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP23200761.7A EP4322422A3 (en) 2016-09-30 2017-09-30 Method and device for representing quasi co-location parameter configuration, and transmitting and receiving apparatus
CA3038857A CA3038857C (en) 2016-09-30 2017-09-30 Method and device for representing quasi co-location parameter configuration, and transmitting and receiving apparatus
KR1020197012526A KR102324043B1 (ko) 2016-09-30 2017-09-30 준 공동 위치 파라미터 구성을 나타내기 위한 방법 및 디바이스, 및 송신 및 수신 장치
ES17855021T ES2963674T3 (es) 2016-09-30 2017-09-30 Método y dispositivo para representar configuración de parámetros de cuasi coubicación, y aparato de transmisión y recepción
EP17855021.6A EP3522427B1 (en) 2016-09-30 2017-09-30 Methods and apparatuses for representing quasi co-location parameter configuration
FIEP17855021.6T FI3522427T3 (fi) 2016-09-30 2017-09-30 Menetelmät ja laitteet quasi-co-location-parametrikonfiguraation esittämiseksi
US16/370,872 US11088792B2 (en) 2016-09-30 2019-03-29 Method and device for representing quasi co-location parameter configuration, and transmitting and receiving apparatus
US17/393,323 US11722268B2 (en) 2016-09-30 2021-08-03 Method and device for representing quasi co-location parameter configuration, and transmitting and receiving apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201610879366.X 2016-09-30
CN201610879366 2016-09-30
CN201710298911.0A CN107889150B (zh) 2016-09-30 2017-04-28 表征准共位置参数配置的方法和装置、发射及接收设备
CN201710298911.0 2017-04-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/370,872 Continuation US11088792B2 (en) 2016-09-30 2019-03-29 Method and device for representing quasi co-location parameter configuration, and transmitting and receiving apparatus

Publications (1)

Publication Number Publication Date
WO2018059571A1 true WO2018059571A1 (zh) 2018-04-05

Family

ID=61763749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/104742 WO2018059571A1 (zh) 2016-09-30 2017-09-30 表征准共位置参数配置的方法和装置、发射及接收设备

Country Status (1)

Country Link
WO (1) WO2018059571A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015174731A1 (ko) * 2014-05-15 2015-11-19 엘지전자(주) 무선 통신 시스템에서 디스커버리 신호 검출 방법 및 이를 위한 장치
CN105144612A (zh) * 2013-02-21 2015-12-09 Lg电子株式会社 在无线通信系统中对于大规模mimo在天线端口之间配置qcl的方法和设备
CN105471559A (zh) * 2014-09-05 2016-04-06 中兴通讯股份有限公司 准共位置的配置、确定方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105144612A (zh) * 2013-02-21 2015-12-09 Lg电子株式会社 在无线通信系统中对于大规模mimo在天线端口之间配置qcl的方法和设备
WO2015174731A1 (ko) * 2014-05-15 2015-11-19 엘지전자(주) 무선 통신 시스템에서 디스커버리 신호 검출 방법 및 이를 위한 장치
CN105471559A (zh) * 2014-09-05 2016-04-06 中兴通讯股份有限公司 准共位置的配置、确定方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3522427A4 *

Similar Documents

Publication Publication Date Title
US11722268B2 (en) Method and device for representing quasi co-location parameter configuration, and transmitting and receiving apparatus
JP7270765B2 (ja) オンデマンド位置参照信号伝送の測定
KR102394302B1 (ko) 참조 신호를 구성하기 위한 방법 및 디바이스
WO2019096292A1 (zh) 参考信号信道特征配置方法和装置、及通信设备
JP7060617B2 (ja) リソースを配分するためのシステムおよび方法
WO2020220330A1 (zh) 无线通信的方法、终端设备和网络设备
TW202015465A (zh) 準同位框架之增強方法及使用者設備
US9780901B2 (en) Method and apparatus for reference signaling allocation and channel estimation in distributed antenna systems
WO2018137486A1 (zh) 一种码本反馈方法和装置
WO2018202098A1 (zh) 无线通信的方法、网络设备和终端设备
US11290240B2 (en) Signaling of measurement signals based on a tree structure
WO2018137397A1 (zh) 一种配置信息的方法、装置及系统
WO2018036451A1 (zh) 无线资源分配信息的配置方法及装置
WO2019100859A1 (zh) 数据传输方法及装置、计算机存储介质
CN103546262A (zh) 上报信道状态信息的方法和装置
JP2022058862A (ja) 端末、基地局、通信システム及び無線通信方法
WO2020143807A1 (zh) 准共址指示方法及装置
WO2019029290A1 (zh) 一种波束信息的指示、确定方法及装置、通信系统
WO2022017250A1 (zh) 用于波束训练的方法和装置
WO2022082775A1 (zh) 一种信道状态信息上报方法及装置
WO2018059571A1 (zh) 表征准共位置参数配置的方法和装置、发射及接收设备
WO2022012393A1 (zh) 一种csi测量上报方法、终端及网络侧设备
WO2023274182A1 (zh) 数据发送和接收方法及装置
WO2018027948A1 (zh) 资源映射方法、基站及终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17855021

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3038857

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197012526

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017855021

Country of ref document: EP

Effective date: 20190430