WO2020143807A1 - 准共址指示方法及装置 - Google Patents

准共址指示方法及装置 Download PDF

Info

Publication number
WO2020143807A1
WO2020143807A1 PCT/CN2020/071536 CN2020071536W WO2020143807A1 WO 2020143807 A1 WO2020143807 A1 WO 2020143807A1 CN 2020071536 W CN2020071536 W CN 2020071536W WO 2020143807 A1 WO2020143807 A1 WO 2020143807A1
Authority
WO
WIPO (PCT)
Prior art keywords
quasi
antenna port
location
reference signal
indication information
Prior art date
Application number
PCT/CN2020/071536
Other languages
English (en)
French (fr)
Inventor
纪刘榴
王潇涵
杭海存
葛士斌
毕晓艳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20738692.1A priority Critical patent/EP3902180A4/en
Publication of WO2020143807A1 publication Critical patent/WO2020143807A1/zh
Priority to US17/370,962 priority patent/US11705941B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • H04B7/0608Antenna selection according to transmission parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space

Definitions

  • This application relates to the field of communication technology, and in particular to a quasi co-location indication method and device.
  • CoMP Coordinated multi-point transmission
  • QCL antenna port quasi co-location
  • Antenna port QCL is a channel state assumption between antenna ports. If there is a QCL relationship between two antenna ports, the channel large-scale information of one antenna port can be inferred from the channel large-scale information of the other antenna port. Conversely, if there is no QCL relationship between the two antenna ports, the terminal should not assume that the channel large-scale information of one antenna port can be inferred from the channel large-scale information of the other antenna port.
  • TRP Transmission Reception Point
  • CSI-RS channel state information reference signal
  • the antenna ports in RS resources belong to different TRPs. That is to say, each TRP transmits a part of the antenna port in a CSI-RS resource, and signals transmitted by multiple TRPs jointly form a CSI-RS.
  • different TRPs may have different geographic locations, there is not necessarily a QCL relationship between antenna ports that belong to different TRPs in CSI-RS resources.
  • the terminal assumes that all antenna ports in a CSI-RS resource are QCL. In this way, the terminal may have a deviation when performing channel estimation according to CSI-RS. When performing channel measurement, the terminal will cause an error in the measurement result due to an inappropriate QCL assumption.
  • the present application provides a quasi-co-location indication method for solving the problem that the terminal makes an inappropriate QCL assumption on multiple antenna ports of a reference signal resource.
  • a quasi-co-location indication method including: a terminal receiving quasi-co-location indication information, where the quasi-co-location indication information is used to indicate M antenna port groups corresponding to the first reference signal resource, and M antenna port groups Each antenna port group contains one or more code division multiplexing (CDM) groups of the first reference signal resource, the CDM group contains multiple antenna ports, and any two antennas in the same antenna port group There is a quasi-co-location relationship between the ports, M is an integer greater than 1, and the terminal determines the quasi-co-location relationship between the multiple antenna ports of the first reference signal resource according to the quasi-co-location instruction information.
  • CDM code division multiplexing
  • the first reference signal resource may be a CSI-RS resource or other reference signal resources, such as a synchronization signal resource, a channel sounding signal (Sounding reference) signal resource, etc.
  • a CSI-RS resource or other reference signal resources, such as a synchronization signal resource, a channel sounding signal (Sounding reference) signal resource, etc.
  • the embodiments of the present application are not limited thereto.
  • the terminal determines M antenna port groups corresponding to the first reference signal resource through the quasi-co-location indication information. Therefore, for multiple antenna ports of the first reference signal resource, the terminal can determine whether the two antenna ports are quasi-co-located by determining whether the two antenna ports belong to the same antenna port group. By analogy, the terminal can learn the quasi-co-location relationship among multiple antenna ports in the first reference signal resource.
  • the antenna port group includes one or more CDM groups. In other words, multiple antenna ports in the same CDM group also belong to the same antenna port group.
  • multiple antenna port groups in the same CDM group have a quasi-co-location relationship, ensuring that signals sent by multiple antenna ports in the same CDM group experience the same channel, thereby ensuring that multiple antenna ports in the same CDM group send The orthogonality of the signal.
  • the quasi-co-location indication information includes information of M antenna port groups.
  • the information of the antenna port group includes identifiers of one or more CDM groups; or, the information of the antenna port group is used to indicate the number of CDM groups included in the antenna port group.
  • the information of the antenna port group may further include the number of the antenna port group, the identifier of the antenna port group, the number of antenna ports included in the antenna port group, and the antenna port group The included antenna port, etc.
  • the quasi-co-location indication information is also used to indicate the value of M.
  • the quasi-co-location indication information is also used to indicate the grouping mode of the CDM group.
  • the grouping mode includes at least one of a time-domain grouping mode and a frequency-domain grouping mode.
  • a quasi-co-location indication method including: a terminal receiving quasi-co-location indication information, where the quasi-co-location indication information is used to indicate M antenna port groups corresponding to the first reference signal resource, and M antenna port groups Each antenna port group contains one or more antenna ports of the first reference signal resource, and there is a quasi-co-location relationship between any two antenna ports in the same antenna port group, M is an integer greater than 1; Address indication information to determine the quasi-co-location relationship between multiple antenna ports of the first reference signal resource.
  • the terminal determines M antenna port groups corresponding to the first reference signal resource through the quasi-co-location indication information. Therefore, for multiple antenna ports of the first reference signal resource, the terminal can determine whether the two antenna ports are quasi-co-located by determining whether the two antenna ports belong to the same antenna port group. By analogy, the terminal can learn the quasi-co-location relationship among multiple antenna ports in the first reference signal resource.
  • the quasi-co-location indication information includes information of M antenna port groups.
  • the information of the antenna port group includes port numbers of multiple antenna ports; or, the information of the antenna port group is used to indicate the number of antenna ports included in the antenna port group.
  • the quasi-co-location indication information is also used to indicate the value of M.
  • a quasi-co-location indication method including: a terminal receiving quasi-co-location indication information corresponding to a first reference signal resource, where the quasi-co-location indication information is used to indicate multiple antenna ports of the first reference signal resource There is no quasi-co-location relationship between at least two antenna ports; the terminal divides the multiple antenna ports of the first reference signal resource into M antenna port groups according to the first quasi-co-location rule, where M is an integer greater than 1.
  • the terminal determines M antenna port groups corresponding to the first reference signal resource through the quasi-co-location indication information. Therefore, for multiple antenna ports of the first reference signal resource, the terminal can determine whether the two antenna ports are quasi-co-located by determining whether the two antenna ports belong to the same antenna port group. By analogy, the terminal can learn the quasi-co-location relationship among multiple antenna ports in the first reference signal resource.
  • the quasi-co-location indication information is used to indicate that the resources for channel measurement and the resources for interference measurement are both first reference signal resources.
  • the first reference signal resource is both a channel measurement resource and an interference measurement resource, it means that in the first reference signal resource, signals sent by some antenna ports interfere with signals sent by other antenna ports, This means that at least two antenna ports in the first reference signal resource do not have a quasi-co-location relationship.
  • the quasi-co-location information is configuration information of the first reference signal resource.
  • the configuration information of the first reference signal resource may be used to indicate the channel state measurement of the terminal, and/or, report the information.
  • the configuration information of the first reference signal resource includes resources for channel measurement and resources for interference measurement.
  • the resources used for channel measurement include the first reference signal resources; the resources used for interference measurement include the first reference signal resources.
  • the quasi-co-location indication information further includes an index of the first quasi-co-location rule.
  • the first quasi-co-location rule includes one of the following rules: (1) According to the order of the antenna port port numbers from small to large, divide the preset number of antenna ports into one antenna Port group. (2) Divide the preset number of antenna ports into an antenna port group according to the order of the antenna port port numbers from large to small.
  • a quasi-co-location indication method including: a terminal receiving quasi-co-location indication information corresponding to a first reference signal resource, where the quasi-co-location indication information is used to indicate multiple antenna ports of the first reference signal resource There is no quasi-co-location relationship between at least two antenna ports; after that, the terminal divides the multiple CDM groups of the first reference signal into M antenna port groups according to the second quasi-co-location rule, where M is an integer greater than 1.
  • the terminal determines M antenna port groups corresponding to the first reference signal resource through the quasi-co-location indication information. Therefore, for multiple antenna ports of the first reference signal resource, the terminal can determine whether the two antenna ports are quasi-co-located by determining whether the two antenna ports belong to the same antenna port group. By analogy, the terminal can learn the quasi-co-location relationship among multiple antenna ports in the first reference signal resource.
  • the quasi-co-location indication information is used to indicate that resources for channel measurement and resources for interference measurement are both first reference signal resources.
  • the quasi-co-location indication information further includes an index of the second quasi-co-location rule.
  • the second quasi-co-location rule includes one of the following rules: (1) According to the order of the IDs of the CDM groups, the preset number of CDM groups are divided into one antenna port group. (2) Divide the preset number of CDM groups into an antenna port group according to the order of the IDs of the CDM groups.
  • the terminal receives the first indication information; wherein the first indication information is used to indicate that the antenna port group of the first reference signal resource has quasi-co-location The antenna port group of the related second reference signal resource; or, the first indication information is used to indicate the antenna port of the second reference signal resource that has a quasi-co-location relationship with the antenna port of the first reference signal resource.
  • the terminal learns the antenna port (or antenna port group) of the second reference signal resource that has a quasi-co-location relationship with the antenna port (or antenna port group) of the first reference signal resource, so that the terminal
  • the channel large-scale information of the antenna port (or antenna port group) of the first reference signal resource having a quasi-co-location relationship can be inferred from the channel large-scale information of the antenna port (or antenna port group) of the second reference signal resource .
  • the terminal receives second indication information; wherein, the second indication information is used to indicate that the antenna port group of the second reference signal resource has quasi-co-location The antenna port group of the first reference signal resource in the relationship; or, the second indication information is used to indicate the antenna port of the first reference signal resource that has a quasi-co-location relationship with the antenna port of the second reference signal resource.
  • the terminal learns the antenna port (or antenna port group) of the first reference signal resource that has a quasi-co-location relationship with the antenna port (or antenna port group) of the second reference signal resource, so that the terminal
  • the channel large-scale information of the antenna port (or antenna port group) of the second reference signal resource having a quasi-co-location relationship can be inferred from the channel large-scale information of the antenna port (or antenna port group) of the first reference signal resource .
  • the terminal determines downlink channel state information according to a quasi-co-location relationship between multiple antenna ports of the first reference signal resource. It can be understood that the terminal makes an appropriate quasi-co-location assumption based on the quasi-co-location relationship between multiple antenna ports of the first reference signal resource, thereby ensuring the accuracy of the downlink channel state information.
  • a quasi-co-location indication method including: a network device generating quasi-co-location indication information, where the quasi-co-location indication information is used to indicate M antenna port groups and M antenna ports corresponding to a first reference signal resource Each antenna port group in the group contains one or more CDM groups of the first reference signal resource.
  • the CDM group contains multiple antenna ports. There is a quasi-co-location relationship between any two antenna ports in the same antenna port group.
  • M is An integer greater than 1; the network device sends the quasi-co-location indication information to the terminal.
  • the quasi-co-location indication information includes information of M antenna port groups.
  • the information of the antenna port group includes identifiers of one or more CDM groups; or, the information of the antenna port group is used to indicate the number of CDM groups included in the antenna port group.
  • the quasi-co-location indication information is also used to indicate the value of M.
  • the quasi-co-location indication information is also used to indicate the grouping mode of the CDM group.
  • the grouping mode includes at least one of a time-domain grouping mode and a frequency-domain grouping mode.
  • a quasi-co-location indication method including: a network device generating quasi-co-location indication information, where the quasi-co-location indication information is used to indicate M antenna port groups and M antenna ports corresponding to a first reference signal resource Each antenna port group in the group contains one or more antenna ports of the first reference signal resource. There is a quasi-co-location relationship between any two antenna ports in the same antenna port group, and M is an integer greater than 1. After that, the network device sends the quasi-co-location instruction information to the terminal.
  • the quasi-co-location indication information includes information of M antenna port groups.
  • the information of the antenna port group includes port numbers of multiple antenna ports; or, the information of the antenna port group is used to indicate the number of antenna ports included in the antenna port group.
  • the quasi-co-location indication information is also used to indicate the value of M.
  • a quasi-co-location indication method including: a network device generating quasi-co-location indication information corresponding to a first reference signal resource, the quasi-co-location indication information used to indicate N antenna ports of the first reference signal resource There is no quasi-co-location relationship between at least two antenna ports. After that, the network device sends the quasi-co-location instruction information to the terminal.
  • the quasi-co-location indication information is used to indicate that the resources for channel measurement and the resources for interference measurement are both first reference signal resources.
  • the quasi-co-location indication information further includes an index of the first quasi-co-location rule or an index of the second quasi-co-location rule.
  • the first quasi-co-location rule is used for the terminal to divide the multiple antenna ports of the first reference signal resource into M antenna port groups.
  • the second quasi-co-location rule is used for the terminal to divide the multiple CDM groups of the first reference signal resource into M antenna port groups.
  • M is an integer greater than 1.
  • the network device generates first indication information, where the first indication information is used to indicate that the antenna port group of the first reference signal resource has a quasi common The antenna port group of the second reference signal resource in the address relationship; or, the first indication information is used to indicate the antenna port of the second reference signal resource in a quasi-co-location relationship with the antenna port of the first reference signal resource. After that, the network device sends the first indication information to the terminal.
  • the network device generates second indication information, where the second indication information is used to indicate that the antenna port group of the second reference signal resource has a quasi common The antenna port group of the first reference signal resource in the address relationship; or, the second indication information is used to indicate the antenna port of the first reference signal resource in a quasi-co-location relationship with the antenna port of the second reference signal resource. After that, the network device sends second indication information to the terminal.
  • the network device receives downlink channel state information, the downlink channel according to a quasi-co-location relationship between multiple antenna ports of the first reference signal resource to make sure.
  • a terminal including: a communication module and a processing module.
  • the terminal is used to perform the quasi-co-location indication method described in any one of the first aspect to the fourth aspect.
  • a terminal including: a processor, configured to couple with a memory, read an instruction in the memory, and implement any one of the foregoing first to fourth aspects according to the instruction The quasi-co-location indication method described above.
  • a communication device for performing the quasi-co-location indication method described in any one of the first aspect to the fourth aspect.
  • the communication device is implemented by a processor and a communication interface.
  • the communication device is implemented by a logic circuit, an input interface, and an output interface.
  • a computer-readable storage medium in which instructions are stored in the computer-readable storage medium, which when executed on a terminal, enables the terminal to perform any one of the first to fourth aspects Quasi-co-location instruction method.
  • a computer program product containing instructions that, when run on a terminal, enable the terminal to perform the quasi-co-location indication method described in any one of the first aspect to the fourth aspect.
  • a chip system includes a processor for supporting a terminal to implement the functions according to any one of the first aspect to the fourth aspect.
  • the processor may be a dedicated processor or a general-purpose processor.
  • the chip system includes a memory for storing necessary program instructions and data of the terminal.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • a network device including: a processing module and a communication module.
  • the network device is configured to perform the quasi-co-location indication method described in any one of the fifth aspect to the seventh aspect.
  • a network device including: a processor, configured to couple with a memory, read an instruction in the memory, and implement any of the fifth aspect to the seventh aspect according to the instruction The quasi-co-location indication method described in the item.
  • a communication device for performing the quasi-co-location indication method according to any one of the fifth aspect to the seventh aspect.
  • the communication device is implemented by a processor and a communication interface.
  • the communication device is implemented by a logic circuit, an input interface, and an output interface.
  • a computer-readable storage medium in which instructions are stored in a computer-readable storage medium, which when executed on a network device, enables the network device to perform any one of the fifth aspect to the seventh aspect
  • the quasi-co-location indication method is provided.
  • a computer program product containing instructions that, when run on a network device, enable the network device to perform the quasi co-location indication method described in any one of the fifth aspect to the seventh aspect.
  • a chip system in a nineteenth aspect, includes a processor for supporting a network device to implement the functions according to any one of the fifth aspect to the seventh aspect.
  • the processor may be a dedicated processor or a general-purpose processor.
  • the chip system includes a memory for storing necessary program instructions and data of the network device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • a communication system includes a network device and a terminal.
  • the terminal is used to execute the quasi-co-location indication method described in any one of the first aspect to the fourth aspect.
  • the network device is used to perform the quasi-co-location indication method described in any one of the fifth aspect to the seventh aspect.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of another communication system provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a hardware structure of a terminal and a network device provided by an embodiment of the present application;
  • FIG. 5 is a schematic diagram of a grouping of CDM groups provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of another grouping of CDM groups provided by an embodiment of the present application.
  • FIG. 7 is a flowchart 2 of a quasi-co-location indication method provided by an embodiment of the present application.
  • FIG. 9 is a flowchart 4 of a quasi-co-location indication method provided by an embodiment of the present application.
  • FIG. 10 is a flowchart of a method for reporting downlink channel state information according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a terminal according to an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • the antenna port can be understood as a transmitting antenna that can be recognized by the receiving end device, or a transmitting antenna that can be distinguished in space.
  • the antenna port may be defined according to a reference signal (or pilot signal) associated with the antenna port.
  • An antenna port can be a physical antenna on the transmitter device or a weighted combination of multiple physical antennas on the transmitter device. In the embodiments of the present application, if no special explanation is made, one antenna port corresponds to one reference signal. In addition, it should be noted that one reference signal resource can be configured with multiple antenna ports.
  • the antenna port is used to carry a specific physical channel, at least one of physical signals. Signals sent through the same antenna port, regardless of whether these signals are sent through the same or different physical antennas, the channels corresponding to the paths that these signals undergo in the spatial transmission can be regarded as the same or related. That is to say, when the signal sent on the same antenna port is demodulated by the receiving end, the channel can be regarded as the same or related. That is, the antenna port defines the channel on a certain symbol. If the antenna ports of the two symbols are the same, the channel on one symbol can be inferred from the channel on the other symbol.
  • the antenna port is uniquely identified by the port number.
  • the port number may also have other names, such as port index, port identifier, etc.
  • the embodiments of the present application are not limited thereto.
  • the port number can also uniquely identify the port through a change in function. For example, to instruct the terminal to use the port number as the function input, and actually use the antenna port identifier as the function output.
  • the function has a one-to-one mapping relationship between input and output.
  • the function is a constant plus input as output.
  • the identifier that actually uses this antenna port can be used as the identifier that generates the signal of the antenna port.
  • generating the identification of the sequence of the antenna port may include the identification of the pseudo-random function initialization factor of the generated sequence.
  • the reference signal resource is the resource of the reference signal.
  • Reference signals include but are not limited to CSI-RS, demodulation reference signal (DMRS), tracking reference signal (TRS), sounding reference signal (SRS), etc. This application is implemented Examples are not limited to this.
  • the resources of the first reference signal are simply referred to as first reference signal resources, and the resources of the second reference signal are simply referred to as second reference signal resources.
  • the reference signal resource corresponds to at least one of the time domain resource, frequency domain resource, and code domain resource of the reference signal.
  • the configuration information of the reference signal resource is a data structure, including multiple parameters, used to encapsulate the related information of the reference signal, such as the type of the reference signal, the resource element (RE) carrying the reference signal, and the reference signal used for sending The number of antenna ports etc.
  • Each reference signal resource has a corresponding identifier, and the identifier of the reference signal resource may also be referred to as an index of the reference signal resource, etc.
  • the embodiments of the present application are not limited thereto.
  • the CDM group contains multiple antenna ports, multiple antenna ports in the same CDM group multiplex the same time-frequency resources, and multiple antenna ports in the same CDM group are distinguished in the form of code division, that is, in the same CDM
  • the code domain resources of the sequence of multiple antenna ports are different.
  • the code domain resource is usually an orthogonal code, such as an orthogonal cover code (Orthogonal Cover Code, OCC).
  • OCC orthogonal Cover Code
  • the OCC code can be used in time domain, frequency domain, space domain (beam domain), etc.
  • the number of CDM groups in the reference signal resource and the information of the CDM group may be pre-configured by the network device to the terminal, or may be defined in the protocol.
  • the number of CDM groups in the reference signal resource and the information of the CDM group are defined in the protocol, the number of CDM groups in the reference signal resource and the information of the CDM group are determined by the number of antenna ports of the reference signal resource.
  • the information of the above CDM group includes the index of the CDM group, the port number of the antenna port in the CDM group, and so on.
  • the number of CDM groups can be defined in the protocol as 2, and CDM group #0 contains antenna port #0 and antenna port #1, and CDM group #1 contains antennas Port #2 and antenna port #3.
  • the network device may send the resource pattern information of the CDM group to the terminal, so that the terminal learns the time-frequency resources corresponding to each CDM group.
  • the resource pattern information is used to indicate the time-frequency resources occupied by the antenna ports in the CDM group.
  • the resource pattern information of the CDM group can be shown in Table 1.
  • ports are used to indicate the number of antenna ports of reference signal resources.
  • Density density
  • RB resource block
  • the CDM type is used to indicate whether the CDM group is a CDM group in the time domain or a CDM group in the frequency domain.
  • (k, l) represents the time-frequency position of the first RE in the CDM group, k corresponds to the frequency domain position, and l corresponds to the time domain position.
  • k′ represents the frequency domain offset of the RE occupied by the CDM group relative to the first RE in the CDM group.
  • the density is 1, indicating that the number of REs occupied by one antenna port in one RB is 1.
  • the CDM-type is FD-CDM2, indicating that the CDM group is a CDM group in the frequency domain, and the CDM group includes 2 antenna ports.
  • the index of the CDM group is 0,1,2,3, indicating that the reference signal resource is configured with CDM group #0, CDM group #1, CDM group #2, and CDM group #3.
  • (k, l) is (k 0 , l 0 ), (k 1 , l 0 ), (k 2 , l 0 ), (k 3 , l 0 ), indicating the first RE occupied by CDM group #0
  • the time-frequency position is (k 0 , l 0 )
  • the time-frequency position of the first RE occupied by CDM group #1 is (k 1 , l 0 )
  • the frequency position is (k 2 , l 0 )
  • the time-frequency position of the first RE occupied by the CDM group #3 is (k 3 , l 0 ).
  • k′ is 0,1, indicating that the position of the RE occupied by the CDM group #0 is (k 0 , l 0 ) and (k 0 +1, l 0 ), and the position of the RE occupied by the CDM group #1 is (k 1 , l 0 ) and (k 1 +1, l 0 ), the positions of RE occupied by CDM group #2 are (k 2 , l 0 ) and (k 2 +1, l 0 ), the positions of RE occupied by CDM group #3 The positions are (k 3 , l 0 ) and (k 3 +1, l 0 ).
  • the QCL relationship is used to indicate that there are one or more communication features that are the same or similar between multiple antenna ports. For example, if two antenna ports have a quasi-co-location relationship, then the large-scale characteristics of the channel where one antenna port sends a signal can be inferred from the large-scale characteristics of the channel where the other antenna port sends a signal. For two antenna ports with a QCL relationship, the signals corresponding to the two antenna ports have the same parameters; or, the parameters of one antenna port can be used to determine the parameters of the other antenna port that has a QCL relationship with the antenna port; Or, the parameter difference between the two antenna ports is less than a preset threshold.
  • the above parameters may include one or more of the following channel large-scale parameters: delay spread (delay spread), Doppler spread (Doppler spread), Doppler frequency shift (Doppler shift), average delay (average delay) ), average gain, spatial reception parameters (spatial Rx parameters).
  • the spatial reception parameters can include the angle of launch (AOD), the main launch angle (dominant AoD), the average launch angle (mean AoD), the angle of arrival (angle ofofarrival, AOA), and the main angle of arrival (dominant AOA) , Average angle of arrival (average AoA), channel correlation matrix, power angle spread spectrum of angle of arrival, average trigger angle (average AoD), power angle spread spectrum of departure angle, transmit channel correlation, receive channel correlation, transmit beamforming , One or more of receive beamforming, spatial channel correlation, spatial filtering parameters, spatial receiving parameters, etc.
  • indication may include direct indication and indirect indication, and may also include explicit indication and implicit indication.
  • the information indicated by certain information is called to-be-indicated information.
  • the information to be indicated may be directly indicated, wherein the information to be indicated itself or an index of the information to be indicated, etc.
  • the information to be indicated may also be indirectly indicated by indicating other information, where there is an association relationship between the other information and the information to be indicated.
  • it may also indicate only a part of the information to be indicated, and other parts of the information to be indicated are known or agreed in advance.
  • it is also possible to realize the indication of the specific information by means of the arrangement order of the various information pre-agreed (for example, stipulated in the protocol), thereby reducing the indication overhead to a certain extent.
  • the network architecture and business scenarios described in the embodiments of the present application are intended to more clearly explain the technical solutions of the embodiments of the present application, and do not constitute a limitation on the technical solutions provided by the embodiments of the present application.
  • the technical solutions provided by the embodiments of the present application are also applicable to similar technical problems.
  • the technical solutions provided in the embodiments of the present application may be applied to various communication systems, for example, a new radio (NR) communication system using 5th generation (5G) communication technology, a future evolution system, or multiple communication fusion Systems, etc.
  • the technical solutions provided in this application can be applied to a variety of application scenarios, such as machine-to-machine (M2M), macro-micro communications, enhanced mobile Internet (enhanced mobile (eMBB), ultra-high reliability and ultra-low latency Communication (ultra-reliable & low latency communication, uRLLC) and massive IoT communication (massive machine type communication, mMTC) and other scenarios.
  • M2M machine-to-machine
  • eMBB enhanced mobile Internet
  • ultra-high reliability and ultra-low latency Communication ultra-reliable & low latency communication
  • uRLLC ultra-reliable & low latency communication
  • massive IoT communication massive machine type communication
  • These scenarios may include, but are not limited to: communication scenarios between communication devices and communication devices, communication scenarios between network devices and network devices, communication scenarios between network devices and communication devices, and so on.
  • the following descriptions are based on the application of the communication scenario between the network device and the terminal as an example.
  • FIG. 1 shows a schematic structural diagram of a communication system to which the technical solution provided by the present application is applicable.
  • the communication system may include one or more network devices (only two are shown in FIG. 1) and one or more terminals ( Only one is shown in Figure 1). Among them, multiple network devices can communicate with the same terminal using CoMP technology.
  • FIG. 2 shows a schematic architecture diagram of a communication system to which the technical solution provided by the present application is applicable.
  • the communication system may include one or more network devices (only one is shown in FIG. 2) and one or more terminals (Only one is shown in FIG. 2).
  • the network device is configured with multiple antenna panels, and the network device can use multiple antenna panels to communicate with the terminal. It can be understood that if multiple antenna panels configured by the network device have not undergone phase calibration, the multiple antenna panels can only be used for incoherent transmission. In other words, the antenna ports on different antenna panels are non-quasi-co-located.
  • FIGS. 1 and 2 are only schematic diagrams, and do not limit the applicable scenarios of the technical solution provided by the present application.
  • the network device may be a base station or a base station controller for wireless communication and the like.
  • the base station may include various types of base stations, such as micro base stations (also called small base stations), macro base stations, relay stations, access points, TRP, etc., which are not specifically limited in the embodiments of the present application.
  • the base station may be a global mobile communication system (global system for mobile communication, GSM), code division multiple access (code division multiple access, CDMA) base station (base transceiver station, BTS), broadband Base station (node B) in wideband code division multiple access (WCDMA), evolutionary base station (eNodeB B, eNB or e-NodeB) in LTE, Internet of Things (IoT) or narrowband
  • GSM global system for mobile communication
  • CDMA code division multiple access
  • BTS broadband Base station
  • node B in wideband code division multiple access
  • WCDMA wideband code division multiple access
  • eNodeB B, eNB or e-NodeB in LTE
  • IoT Internet of Things
  • the base station in the future 5G mobile communication network or the future evolved public land mobile network (PLMN)
  • PLMN public land mobile network
  • the terminal is used to provide users with voice and/or data connectivity services.
  • the terminal may have different names, such as user equipment (UE), access terminal, terminal unit, terminal station, mobile station, mobile station, remote station, remote terminal, mobile device, wireless communication device, terminal agent Or terminal devices, etc.
  • UE user equipment
  • the terminal may be various handheld devices with communication functions, vehicle-mounted devices, wearable devices, and computers, which are not limited in this embodiment of the present application.
  • the handheld device may be a smartphone.
  • the vehicle-mounted device may be a vehicle-mounted navigation system.
  • the wearable device may be a smart bracelet.
  • the computer can be a personal digital assistant (PDA) computer, a tablet computer, and a laptop computer.
  • PDA personal digital assistant
  • FIG. 3 is a schematic diagram of a hardware structure of a network device and a terminal provided by an embodiment of this application.
  • the terminal includes at least one processor 101 and at least one transceiver 103.
  • the terminal may further include an output device 104, an input device 105, and at least one memory 102.
  • the processor 101, the memory 102, and the transceiver 103 are connected by a bus.
  • the processor 101 may be a general-purpose central processing unit (central processing unit, CPU), microprocessor, application-specific integrated circuit (ASIC), or one or more used to control the execution of the program program of the application integrated circuit.
  • the processor 101 may also include multiple CPUs, and the processor 101 may be a single-core (single-CPU) processor or a multi-core (multi-CPU) processor.
  • the processor here may refer to one or more devices, circuits, or processing cores for processing data (eg, computer program instructions).
  • the memory 102 may be a read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM) or other types that can store information and instructions
  • the dynamic storage device can also be electrically erasable programmable read-only memory (electrically erasable programmable-read-only memory (EEPROM), read-only compact disc (compact disc read-only memory (CD-ROM) or other optical disc storage, optical disc storage (Including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be used by a computer Any other media accessed is not limited in the embodiments of the present application.
  • the memory 102 may exist independently, and is connected to the processor 101 through a bus.
  • the memory 102 may also be integrated with the processor 101.
  • the memory 102 is used to store application program codes for executing the solution of the present application, and the processor 101 controls the execution.
  • the processor 101 is used to execute the computer program code stored in the memory 102, so as to implement the method provided by the embodiments of the present application.
  • the transceiver 103 can use any transceiver-like device for communicating with other devices or communication networks, such as Ethernet, radio access network (RAN), wireless local area networks (WLAN), etc. .
  • the transceiver 103 includes a transmitter Tx and a receiver Rx.
  • the output device 104 communicates with the processor 101 and can display information in a variety of ways.
  • the output device 104 may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector. Wait.
  • the input device 105 communicates with the processor 101 and can receive user input in various ways.
  • the input device 105 may be a mouse, a keyboard, a touch screen device, or a sensing device.
  • the network device includes at least one processor 201, at least one memory 202, at least one transceiver 203, and at least one network interface 204.
  • the processor 201, the memory 202, the transceiver 203, and the network interface 204 are connected through a bus.
  • the network interface 204 is used to connect to the core network device through a link (such as an S1 interface), or to connect to a network interface of other network devices through a wired or wireless link (such as an X2 interface) (not shown in the figure), This embodiment of the present application does not specifically limit this.
  • this is a quasi-co-location indication method provided by an embodiment of the present application.
  • the method includes the following steps:
  • the network device generates quasi-co-location instruction information.
  • the quasi-co-location indication information is used to indicate M antenna port groups corresponding to the first reference signal resource, where M is an integer greater than 1. There is a quasi-co-location relationship between any two antenna ports in the same antenna port group, and there is no quasi-co-location relationship between antenna ports of different antenna port groups.
  • the first reference signal resource is the resource of the first reference signal.
  • the first reference signal is CSI-RS, and embodiments of the present application are not limited thereto.
  • each of the M antenna port groups includes one or more antenna ports of the first reference signal resource.
  • the quasi-co-location indication information includes at least one of the following situations:
  • the quasi-co-location indication information includes information of M antenna port groups, and the information of the antenna port group includes port numbers of multiple antenna ports.
  • the information of the antenna port group further includes an identifier of the antenna port group.
  • the terminal can determine that antenna port group 1 is ⁇ Antenna port #2, Antenna port #3 ⁇ , antenna port group 2 is ⁇ antenna port #0, antenna port #1 ⁇ .
  • the quasi-co-location indication information includes information of M antenna port groups, and the information of the antenna port group is used to indicate the number of antenna ports included in the antenna port group.
  • the terminal determines the antenna port included in each of the M antenna port groups according to the quasi-co-location indication information and the preset rule.
  • the foregoing preset rule is: according to the order of the port numbers of the antenna ports from small to large, divide the indicated number of antenna ports into corresponding antenna port groups.
  • the indicated number is the number of antenna ports included in the antenna port group indicated by the information of the antenna port group.
  • the terminal may determine that antenna port group 1 is ⁇ antenna port #0, antenna port #1 ⁇ , and antenna port group 2 is ⁇ antenna port #2, antenna port #3, antenna port #4 ⁇ .
  • the above-mentioned preset rule is: divide the indicated number of antenna ports into corresponding antenna port groups according to the order of the antenna port port numbers from large to small.
  • the quasi-co-location indication information includes information of antenna port group 1 and information of antenna port group 2, wherein antenna port group 1
  • the information is used to indicate that the antenna port group 1 contains two antenna ports
  • the information of the antenna port group 2 is used to indicate that the antenna port group 2 contains three antenna ports.
  • the terminal may determine that antenna port group 1 is ⁇ antenna port #3, antenna port #4 ⁇ , and antenna port group 2 is ⁇ antenna port #0, antenna port #1, antenna port #2 ⁇ .
  • the information of the M antenna port groups may be coded jointly or independently. It can be understood that, in the case of joint coding, the information of the M antenna port groups is associated with the indication information, so that the network device can indicate the information of at least two antenna port groups through one indication information.
  • the quasi-co-location indication information is also used to indicate the value of M.
  • the terminal determines the antenna port included in each antenna port group of the M antenna port groups according to the quasi-co-location indication information, the number of antenna ports of the first reference signal resource, and the preset correspondence relationship The port number.
  • the aforementioned preset correspondence relationship is used to indicate the port number of the antenna port included in each antenna port group in the M antenna port groups. It should be noted that the preset correspondence relationship may be pre-configured by the network device to the terminal, or defined in the protocol.
  • Table 2 for the above-mentioned preset correspondence. It should be noted that, in Table 2, P represents the number of antenna ports of the first reference signal resource. It can be understood that the number of antenna ports of the first reference signal resource is indicated by the configuration information of the first reference signal resource.
  • the terminal may determine that antenna port group 1 is ⁇ Antenna port #0, antenna port #1 ⁇ , antenna port group 2 is ⁇ antenna port #2, antenna port #3 ⁇ .
  • the terminal can determine that antenna port group 1 is ⁇ Antenna port#0, antenna port#1 ⁇ , antenna port group 2 is ⁇ antenna port#2, antenna port#3 ⁇ , antenna port group 3 is ⁇ antenna port#4, antenna port#5 ⁇ , antenna port 4 is ⁇ Antenna port #6, antenna port #7 ⁇ .
  • each of the M antenna port groups includes one or more CDM groups of the first reference signal resource.
  • the antenna port group is divided by the CDM group to ensure that all antenna ports in the CDM group belong to the same antenna port group, that is, to ensure that all antenna ports in the CDM group have a quasi-co-location relationship , To avoid affecting the orthogonality of the signals sent by different antenna ports in the CDM group.
  • the quasi-co-location indication information includes at least one of the following situations:
  • the quasi-co-location indication information includes information of M antenna port groups, and the information of the antenna port group includes identifiers of one or more CDM groups.
  • the first reference signal resource is configured with CDM group #1 to CDM group #3, where CDM group #1 is ⁇ antenna port #0, antenna port #1 ⁇ , and CDM group #2 is ⁇ Antenna port #2 , Antenna port #3 ⁇ , CDM group #3 is ⁇ antenna port #4, antenna port #5 ⁇ .
  • the quasi-co-location indication information includes information of 2 antenna port groups
  • information of antenna port group 1 includes the identification of CDM group #1 and CDM group #3
  • information of antenna port group 2 includes the identification of CDM group #2 .
  • the terminal can determine that antenna port group 1 includes CDM group #1 and CDM group #3, that is, antenna port group 1 is ⁇ antenna port #0, antenna port #1, antenna port #4, antenna port #5 ⁇ ;
  • the terminal may determine that the antenna port group 2 contains the CDM group #2, that is, the antenna port group 2 is ⁇ antenna port #2, antenna port #3 ⁇ .
  • the quasi-co-location indication information includes information of M antenna port groups, and the information of the antenna port group is used to indicate the number of CDM groups included in the antenna port group.
  • the terminal determines the CDM group included in each of the M antenna port groups according to the quasi-co-location indication information and the preset rule.
  • the above-mentioned preset rule is that the indicated number of CDM groups are divided into corresponding antenna port groups according to the order of the IDs of the CDM groups.
  • the indicated number is the number of CDM groups included in the antenna port group indicated by the antenna port group information.
  • the terminal may determine that the antenna port group 1 is ⁇ CDM group #0, CDM group #1 ⁇ , and the antenna port group 2 is ⁇ CDM group #2, CDM group #3, CDM group #4 ⁇ .
  • the above-mentioned preset rule is: divide the indicated number of CDM groups into corresponding antenna port groups according to the order of the IDs of the CDM groups.
  • the terminal may determine that the antenna port group 1 is ⁇ CDM group #3, CDM group #4 ⁇ , and the antenna port group 2 is ⁇ CDM group #0, CDM group #1, CDM group #2 ⁇ .
  • the quasi-co-location indication information is also used to indicate the value of M.
  • the terminal determines the CDM group included in each antenna port group of the M antenna port groups according to the quasi-co-location indication information, the number of antenna ports of the first reference signal resource, and the preset correspondence relationship logo.
  • the above-mentioned preset correspondence is used to indicate the identifier of the CDM group included in each of the M antenna port groups. It should be noted that the preset correspondence relationship may be pre-configured by the network device to the terminal, or defined in the protocol.
  • K represents the number of CDM groups of the first reference signal resource.
  • the number of CDM groups of the first reference signal resource is pre-configured by the network device or defined in the protocol.
  • the terminal can determine that antenna port group 1 includes CDM Group #0, antenna port group 2 contains CDM group #1.
  • the terminal can determine that the antenna port group 1 contains CDM group #0 and CDM group #1, antenna port group 2 contains CDM group #2 and CMD group #3, antenna port group 3 contains CDM group #4 and CDM group #5, antenna port group 4 contains CDM group #6 and CDM Group #7.
  • the quasi-co-location indication information is also used to indicate a grouping method of the CDM group, and the grouping method includes at least one of a time-domain grouping method and a frequency-domain grouping method.
  • the terminal determines the CDM group included in each of the M antenna port groups according to the resource pattern information of the CDM group in the first reference signal resource and the grouping manner.
  • the resource pattern information of the CDM group is used to indicate the time domain resources corresponding to the CDM groups of the first reference signal resources.
  • the quasi-co-location indication information may represent the grouping mode with at least one bit, for example, "0" indicates that the grouping mode is the time domain grouping mode, and "1" indicates that the grouping mode is the frequency domain grouping mode.
  • the time-domain grouping method refers to dividing the CDM group on the same time-domain resource into an antenna port group.
  • the time domain resource includes one or more orthogonal frequency division multiplexing (OFDM) symbols.
  • CDM group #1 and CDM group #2 are located on the same time domain resource
  • CDM group #3 and CDM group #4 are located on the same time domain resource. If the quasi-co-location indication information indicates that the grouping method of the CDM group is the time-domain grouping method, the terminal may determine that the CDM group #1 and the CDM group #2 belong to the antenna port group 1, and the CDM group #3 and the CDM group #4 belong to the antenna port group 2.
  • the frequency domain grouping method refers to dividing the CDM group on the same frequency domain resource into an antenna port group.
  • the frequency domain resource includes one or more subcarriers.
  • CDM group #1 and CDM group #3 are located on the same frequency domain resource
  • CDM group #2 and CDM group #4 are located on the same frequency domain resource. If the quasi-co-location indication information indicates that the grouping mode of the CDM group is the frequency domain grouping mode, the terminal may determine that the CDM group #1 and the CDM group #3 belong to the antenna port group 1, and the CDM group #2 and the CDM group #4 belong to the antenna port group 2.
  • time-frequency grouping method is to divide the CDM group on the same time-frequency resource into an antenna port group.
  • the time-frequency resource includes one or more REs.
  • the time-frequency grouping mode is applicable to a scenario where there are many antenna ports of the first reference signal resource, for example, the first reference signal resource includes 32 or more antenna ports.
  • the above cases (1-1) to (1-3), or the above cases (2-1) to (2-4) are only examples of quasi-co-location indication information, and the embodiments of the present application are not limited thereto.
  • the network device sends the quasi-co-location indication information to the terminal, so that the terminal receives the quasi-co-location indication information.
  • the quasi-co-location indication information is carried in radio resource control (radio resource control (RRC) signaling, media access control (MAC)-control element (CE) signaling, or downlink Control information (downlink control information, DCI).
  • RRC radio resource control
  • MAC media access control
  • CE control element
  • DCI downlink Control information
  • the quasi-co-location indication information may be carried in existing signaling or in new signaling. It can be understood that if the quasi-co-location indication information is carried in existing signaling, the existing signaling uses a new field to carry the quasi-co-location indication information, or the existing signaling multiplexing has been There are fields to carry the quasi-co-location indication information.
  • the quasi-co-location indication information may be carried in the CSI request field, SRS request field, transmission configuration indication (TCI), SRS in DCI At least one of a resource indication field and a rate matching indication field.
  • TCI transmission configuration indication
  • the new signaling may be included in configuration information of CSI-RS resources.
  • the terminal determines a quasi-co-location relationship among multiple antenna ports configured on the first reference signal resource according to the quasi-co-location indication information.
  • the terminal determining the quasi-co-location relationship between multiple antenna ports in the first reference signal resource means that the terminal determines which antenna ports in the first reference signal resource have a quasi-co-location relationship and which antenna ports There is no quasi-co-location relationship.
  • the network device sends the quasi-co-location indication information, so that the terminal knows the M antenna port groups corresponding to the first reference signal resource. Therefore, for multiple antenna ports of the first reference signal resource, the terminal can determine whether the two antenna ports are quasi-co-located by determining whether the two antenna ports belong to the same antenna port group. By analogy, the terminal can learn the quasi-co-location relationship among multiple antenna ports in the first reference signal resource.
  • another quasi-co-location indication method includes the following steps:
  • the network device generates quasi-co-location indication information corresponding to the first reference signal resource.
  • the quasi-co-location indication information is used to indicate that at least two antenna ports of the plurality of antenna ports of the first reference signal resource do not have a quasi-co-location relationship.
  • the quasi-co-location indication information is used to indicate that the resources for channel measurement and the resources for interference measurement are both the first reference signal resources. It can be understood that, since the first reference signal resource is used as a channel measurement resource and an interference measurement resource at the same time, among the multiple antenna ports of the first reference signal resource, a signal sent by a part of the antenna ports is for another part of the antenna ports Is an interference signal. Therefore, the terminal may determine that at least two antenna ports among the multiple antenna ports of the first reference signal resource do not have a quasi-co-location relationship.
  • step S202 Similar to step S102, for a detailed description, refer to step S102, and details are not described herein again.
  • Each of the M antenna port groups includes one or more antenna ports.
  • the value of M is defined by the protocol.
  • the protocol can directly define the value of M.
  • the protocol defines M as 2.
  • Manner 2 The protocol may define a correspondence between the value of M and the number of antenna ports of the first reference signal resource. Therefore, the terminal may determine the value of M according to the number of antenna ports of the first reference signal resource.
  • the correspondence between the value of M and the number of antenna ports of the first reference signal resource may be as shown in Table 4.
  • P represents the number of antenna ports of the first reference signal resource.
  • the number of antenna ports included in each antenna port group in the M antenna port groups is also defined by the protocol, or the number of antenna ports included in each antenna port group in the M antenna port groups is based on M Is determined by the value of and the number of antenna ports of the first reference signal resource.
  • the first quasi-co-location rule is pre-configured or defined in the protocol.
  • the foregoing quasi-co-location indication information further includes: information of the first quasi-co-location rule, and the information of the first quasi-co-location rule may be the first Index of quasi-co-location rules, identification of first quasi-co-location rules, etc.
  • the first quasi-co-location rule includes at least one of the following rules:
  • Rule 1 Divide the preset number of antenna ports into an antenna port group according to the order of the antenna port port numbers from small to large.
  • the terminal divides antenna port #0 and antenna port #1 into an antenna port group, and divides the antenna port #2 and antenna port #3 are divided into an antenna port group.
  • the terminal may determine that the first antenna port group is ⁇ antenna port #0, antenna port #1 ⁇ , and the second antenna port group is ⁇ antenna port #2, antenna port #3 ⁇ .
  • the terminal divides antenna port #7 and antenna port #6 into an antenna port group, and divides the antenna port #5 ⁇ Antenna port #4 is divided into an antenna port group, antenna port #3 and antenna port #2 are divided into an antenna port group, and antenna port #1 and antenna port #0 are divided into an antenna port group.
  • the terminal can determine that the first antenna port group is ⁇ antenna port #6, antenna port #7 ⁇ , the second antenna port group is ⁇ antenna port #4, antenna port #5 ⁇ , and the third antenna port The group is ⁇ antenna port #2, antenna port #3 ⁇ , and the fourth antenna port group is ⁇ antenna port #0, antenna port #1 ⁇ .
  • rule 1 and rule 2 are only examples of the first quasi-co-location rule, and the embodiments of the present application are not limited thereto.
  • the above first quasi-co-location rule can also be implemented in the form of a table.
  • P is the number of antenna ports of the first reference signal resource.
  • the terminal divides the multiple antenna ports of the first reference signal resource into M according to the first quasi-co-location rule and the number of antenna ports of the first reference signal resource Antenna port group.
  • step S203a may be replaced with step S203b.
  • each antenna port group in the M antenna port groups includes one or more CDM groups. Since the CDM group includes multiple antenna ports, each antenna port group in the M antenna port groups includes multiple Antenna port.
  • the second quasi-co-location rule is pre-configured or defined in the protocol.
  • the foregoing quasi-co-location indication information further includes: information of the second quasi-co-location rule, and the information of the second quasi-co-location rule may be the second Index of quasi-co-location rules, identification of second quasi-co-location rules, etc.
  • the second quasi-co-location rule includes at least one of the following rules:
  • Rule 1 Divide the preset number of CDM groups into an antenna port group according to the order of the IDs of the CDM groups.
  • the terminal divides CDM group #0 and CDM group #1 into an antenna port group, and divides the CDM group #2 and CDM group #3 are divided into an antenna port group.
  • the terminal may determine that the first antenna port group is ⁇ CDM group #0, CDM group #1 ⁇ , and the second antenna port group is ⁇ CDM group #2, CDM group #3 ⁇ .
  • Rule 2 Divide the preset number of CDM groups into an antenna port group according to the order of the IDs of the CDM groups.
  • the terminal divides CDM group #7 and CDM group #6 into an antenna port group, and divides the CDM group #5 and CDM group #4 are divided into an antenna port group, CDM group #3 and CDM group #2 are divided into an antenna port group, and CDM group #1 and CDM group #0 are divided into an antenna port group.
  • the terminal can determine that the first antenna port group is ⁇ CDM group #6, CDM group #7 ⁇ , the second antenna port group is ⁇ CDM group #4, CDM group #5 ⁇ , and the third antenna port The group is ⁇ CDM group #2, CDM group #3 ⁇ , and the fourth antenna port group is ⁇ CDM group #0, CDM group #1 ⁇ .
  • the above-mentioned second quasi-co-location rule can also be implemented in the form of a table.
  • K is the number of CDM groups of the first reference signal resource.
  • the terminal divides the multiple CDM groups of the first reference signal resource into M according to the second quasi-co-location rule and the number of CDM groups of the first reference signal resource Antenna port group.
  • the network device sends quasi-co-location indication information, so that the terminal learns that any two antennas in the multiple antenna ports of the first reference signal resource do not necessarily have a quasi-co-location relationship, so that the terminal is
  • the quasi-co-location rule determines M antenna port groups. Therefore, for multiple antenna ports of the first reference signal resource, the terminal can determine whether the two antenna ports are quasi-co-located by determining whether the two antenna ports belong to the same antenna port group. By analogy, the terminal can learn the quasi-co-location relationship between multiple antenna ports of the first reference signal resource.
  • FIG. 8 it is another quasi-co-location indication method provided by an embodiment of the present application.
  • the method includes the following steps:
  • the network device generates first indication information.
  • the first indication information is used to indicate an antenna port group of a second reference signal resource that has a quasi-co-location relationship with the antenna port group of the first reference signal resource. It can be understood that the two antenna port groups have a quasi-co-location relationship, indicating that the antenna ports included in the two antenna port groups have a quasi-co-location relationship.
  • the first indication information includes at least one of the following parameters: the index of the first reference signal resource, the identification of the antenna port group of the first reference signal resource, the index of the second reference signal resource, and the first 2. The identification of the antenna port group of the reference signal resource.
  • the first indication information is used to indicate an antenna port of a second reference signal resource that has a quasi-co-location relationship with an antenna port of the first reference signal resource.
  • the first indication information includes at least one of the following parameters: the index of the first reference signal resource, the port number of the antenna port of the first reference signal resource, the index of the second reference signal resource, and the first 2. The port number of the antenna port of the reference signal resource.
  • the first indication information may not include the identification of the antenna port group of the second reference signal resource (or the port number of the antenna port).
  • all antenna ports included in the second reference signal resource are The antenna port groups (or antenna ports) of the first reference signal resource corresponding to the first indication information all have a quasi-co-location relationship.
  • the second reference signal resource is the resource of the second reference signal.
  • the second reference signal is DMRS, TRS, CSI-RS, or SRS, etc.
  • the embodiments of the present application are not limited thereto.
  • the first reference signal resource and the second reference signal resource are not the same reference signal resource.
  • the type of the first reference signal resource is different from the type of the second reference signal resource.
  • the first reference signal resource is a DMRS resource
  • the second reference signal resource is a CSI-RS resource.
  • the index of the first reference signal resource is different from the index of the second reference signal resource.
  • the first reference signal resource is CSI-RS resource #1
  • the second reference signal resource is CSI-RS resource #2.
  • the first indication information may indicate different types of second reference signal resources for different antenna port groups (or antenna ports) in the first reference signal resources.
  • the first indication information indicates that the second reference signal resource corresponding to the antenna port group 1 is a DMRS resource, and the second reference signal resource corresponding to the antenna port group 2 is a TRS resource.
  • the first indication information may indicate second reference signal resources with different indexes for different antenna port groups (or antenna ports) in the first reference signal resources.
  • the first indication information indicates that the second reference signal resource corresponding to antenna port group 1 is DMRS resource #1, and the second reference signal resource corresponding to antenna port group 2 is DMRS resource #2.
  • the first indication information may be used as configuration information of the first reference signal resource.
  • the first indication information includes information of the second reference signal resource, such as the index of the second reference signal resource.
  • the first reference signal resource is a CSI-RS resource.
  • the configuration information of the CSI-RS resource includes first indication information.
  • the first indication information includes at least two indexes of second reference signal resources, for example, two CSI-RS resource indexes; or, the first indication information includes an index of one second reference signal resource, and the second reference
  • the signal resources include at least two sets of non-quasi-co-located antenna port groups.
  • the first indication information may be used as configuration information of the second reference signal resource.
  • the first indication information includes information of the first reference signal resource, such as the index of the first reference signal resource.
  • the first indication information further includes a quasi-co-location type, and the quasi-co-location type is used to indicate parameters included in the channel large-scale information.
  • quasi-co-location type 1 is used to indicate that the channel large-scale information includes Doppler shift and Doppler spread.
  • Quasi-co-location type 2 is used to indicate that the channel large-scale information includes average channel gain and average delay.
  • the parameters included in the channel large-scale information are defined by the protocol.
  • the network device sends the first indication information to the terminal, so that the terminal receives the first indication information.
  • the first indication information may be carried in one or a combination of at least two of RRC signaling, MAC signaling, and DCI.
  • the first indication information may be a TCI state.
  • the terminal learns the antenna port (or antenna port of the second reference signal resource that has a quasi-co-location relationship with the antenna port (or antenna port group) of the first reference signal resource according to the first indication information Group), so that the terminal can infer the antenna port (or antenna port group) of the first reference signal resource with a quasi-co-location relationship from the channel large-scale information of the antenna port (or antenna port group) of the second reference signal resource Large-scale information of the channel.
  • FIG. 9 it is another quasi-co-location indication method provided by an embodiment of the present application.
  • the method includes the following steps:
  • the network device generates second indication information.
  • the second indication information is used to indicate the antenna port group of the first reference signal resource that has a quasi-co-location relationship with the antenna port group of the second reference signal resource.
  • the second indication information includes at least one of the following parameters: the index of the first reference signal resource, the identification of the antenna port group of the first reference signal resource, the index of the second reference signal resource, and the first 2. The identification of the antenna port group of the reference signal resource.
  • the second indication information is used to indicate the antenna port of the first reference signal resource that has a quasi-co-location relationship with the antenna port of the second reference signal resource.
  • the second indication information includes at least one of the following parameters: the index of the first reference signal resource, the identification of the antenna port group of the first reference signal resource, the index of the second reference signal resource, and the first 2. The identification of the antenna port group of the reference signal resource.
  • the second indication information may indicate different types of first reference signal resources for different antenna port groups (or antenna ports) in the second reference signal resources.
  • the second indication information indicates that the first reference signal resource corresponding to antenna port group 1 is a DMRS resource, and the first reference signal resource corresponding to antenna port group 2 is a TRS resource.
  • the second indication information may indicate first reference signal resources with different indexes for different antenna port groups (or antenna ports) in the second reference signal resources.
  • the second indication information indicates that the first reference signal resource corresponding to antenna port group 1 is DMRS resource #1, and the first reference signal resource corresponding to antenna port group 2 is DMRS resource #2.
  • the second indication information may be used as configuration information of the second reference signal resource.
  • the second indication information includes information of the first reference signal resource, for example, an index of the first reference signal resource.
  • the first reference signal resource is a CSI-RS resource.
  • the second reference signal resource is a DMRS resource. Therefore, the configuration information for indicating the PDSCH received by the DMRS includes second indication information.
  • the second indication information is used to indicate the information of the CSI-RS resource that has a quasi-co-location relationship with the DMRS in the PDSCH.
  • the quasi-co-location relationship includes a quasi-co-location relationship between at least two DMRS antenna port groups and at least two CSI-RS antenna port groups in the PDSCH.
  • the at least two CSI-RS antenna port groups belong to this one CSI-RS resource. In this way, the terminal may receive the PDSCH according to the quasi-co-location relationship indicated by the second indication information.
  • the second indication information may be used as configuration information of the first reference signal resource.
  • the first indication information includes information of the second reference signal resource, such as the index of the second reference signal resource.
  • the second indication information further includes a quasi-co-location type, and the quasi-co-location type is used to indicate parameters included in the channel large-scale information.
  • the second indication information does not include the quasi-co-location type, the parameters included in the channel large-scale information are defined by the protocol.
  • the network device sends the second indication information to the terminal, so that the terminal receives the second indication information.
  • the second indication information may be carried in one or a combination of at least two of RRC signaling, MAC signaling, and DCI.
  • the second indication information may be TCI-state.
  • the terminal learns the antenna port (or antenna port of the first reference signal resource having a quasi-co-location relationship with the antenna port (or antenna port group) of the second reference signal resource according to the second indication information Group), so that the terminal can infer the antenna port (or antenna port group) of the second reference signal resource with quasi-co-location relationship from the channel large-scale information of the antenna port (or antenna port group) of the first reference signal resource Large-scale information of the channel.
  • FIG. 10 it is a method for reporting downlink channel state information provided by an embodiment of the present application.
  • the method includes the following steps:
  • the terminal determines downlink channel state information according to the quasi-co-location relationship between multiple antenna ports in the first reference signal resource.
  • the downlink channel state information includes at least one of the following parameters: precoding matrix indicator (precoding matrix indicator (PMI), rank indicator (RI), and channel quality indicator (channel quality indicator (CQI).
  • precoding matrix indicator precoding matrix indicator (PMI)
  • rank indicator rank indicator
  • CQI channel quality indicator
  • step S501 The following briefly introduces the idea of step S501.
  • each data stream can be transmitted using each antenna port of the P antenna ports, as shown in the following formula (1):
  • x (0) (i) to x (v-1) (i) is the data on layer 0 to layer v-1
  • y (3000) (i) to y (3000+p-1) (i ) Are the data on antenna port #3000 to antenna port #(3000+p-1).
  • v is the number of layers, which is equivalent to the number of data streams.
  • 0 to v-1 are all layer indexes.
  • 3000 to 3000+p-1 are the port numbers of the antenna ports. The index of the above layer and the port number of the antenna port are only examples, and do not limit the embodiment of the present application.
  • p [1,2,4,8,12,16,24,32].
  • p is the number of transmission antenna ports assumed by the network device when the network device expects the terminal to perform channel measurement, for example, the number of antenna ports of the CSI-RS.
  • W(i) may be called a weight matrix or a precoding matrix.
  • Each element w ij in W(i) reflects the weight coefficient carried when the data stream i is mapped to the antenna port #(3000+j).
  • w ij can be a complex number or a real number.
  • w ij reflects the adjustment of the phase and/or amplitude of the signal carried on antenna port #(3000+j).
  • W(i) may be a precoding matrix selected by the terminal, or may be a predefined precoding matrix.
  • the embodiments of the present application are not limited thereto.
  • the terminal can feed back the weight matrix to the network device.
  • the terminal uses a codebook to quantize the weight matrix and determine the codeword in the codebook that is closest to the weight matrix.
  • the terminal feeds back indication information to the network device, and the indication information is used to indicate the index of the codeword. It can be understood that the indication information is PMI.
  • multiple TRP/antenna panels if the antenna ports of multiple TRP/antenna panels are non-quasi-co-located, then multiple TRP/antenna panels can only be used for incoherent transmission. In this case, a TRP/antenna panel can only be used to transmit the data stream of the TRP/antenna panel. In other words, the data stream of one TRP/antenna panel will not be mapped to the antenna port of another TRP/antenna panel.
  • a TRP/antenna panel includes multiple quasi-co-located antenna ports.
  • the multiple quasi-co-located antenna ports are used to transmit the data stream of the TRP/antenna panel, but not to transmit other TRPs. /Data flow from the antenna panel.
  • the terminal can make the following data stream transmission assumption:
  • the weight coefficients corresponding to the antenna ports used to send the data stream can be non-zero elements
  • the weight coefficients corresponding to the antenna ports that are not used to send the data stream are all zero elements.
  • the corresponding relationship between the antenna port group and the data stream is used to indicate which data stream is specifically transmitted by the quasi-co-located multiple antenna ports.
  • the correspondence between the antenna port group and the data stream is determined by the terminal, or the network device configuration, or the protocol definition.
  • the terminal may assume the correspondence between the antenna port group and the data stream based on preset rules.
  • the preset rule is that a specific antenna port group number should be applied to a specific data stream.
  • the antenna port group with the lower number applies to the data stream transmitted by the DMRS group with the lower number; or, the antenna port group with the lower number applies to all data transmitted by the DMRS port group where the data stream with the lowest number is located flow.
  • the correspondence between the antenna port group and the data stream may also be reported by the terminal.
  • the terminal sends instruction information to the network device, so that the network device knows which CSI-RS antenna port group(s) the terminal assumes is transmitting which data stream(s).
  • the indication information may be reported jointly with the RI, or the indication information may be reported separately.
  • the indication information may be CSI-RS resource indication information.
  • the 8 antenna ports are divided into two antenna port groups, and the antenna port group 1 is ⁇ antenna port #3000, antenna port #3001, antenna port #3002, Antenna port #3003 ⁇ , the antenna port group 2 is ⁇ antenna port #3004, antenna port #3005, antenna port #3006, antenna port #3007 ⁇ . Assume that multiple antenna ports in antenna port group 1 are used to transmit data stream #0, and multiple antenna ports in antenna port group 2 are used to transmit data stream #1.
  • the terminal may determine w 10 corresponding to antenna port #3000, w 11 corresponding to antenna port #3001, w 12 corresponding to antenna port #3002, and the antenna The w 13 corresponding to port #3003 is 0.
  • the data stream # 0 corresponding weight factor w 00 to w 07 the terminal may determine an antenna port # 3004 corresponds to w 04, antenna port # 3005 corresponds to w 05, antenna port # 3006 corresponds to w 06, antenna The w 07 corresponding to port #3007 is 0. Therefore, the above formula (2) can be transformed into the following formula (3):
  • CSI-RS resources are divided into 2 antenna port groups, and antenna ports in different antenna port groups should not be assumed to be QCL.
  • the antenna ports in different antenna port groups should not be considered by the terminal to transmit the same data stream. That is to say, the weights of two antenna ports in different antenna port groups corresponding to the same data stream should not be non-zero values. Otherwise, it will cause the terminal's assumed behavior of sending data streams to be inconsistent with the network device's understanding, resulting in inaccurate reported channel state information and degraded system performance.
  • the terminal calculates the precoding matrix according to the quasi-co-location assumption of the correct antenna port and the transmission assumption of the data stream, determines the PMI, and then determines the CQI.
  • the terminal sends the downlink channel state information to the network device, so that the network device receives the downlink channel state information.
  • the terminal makes an appropriate quasi-co-location assumption based on the quasi-co-location relationship between multiple antenna ports in the first reference signal resource, and determines appropriate downlink channel state information to ensure the channel measurement result is correct.
  • each network element such as a network device and a terminal, includes a hardware structure and/or a software module corresponding to each function.
  • each network element such as a network device and a terminal
  • each network element includes a hardware structure and/or a software module corresponding to each function.
  • the present application can be implemented in hardware, or a combination of hardware and computer software. Whether a function is performed by hardware or computer software driven hardware depends on the specific application of the technical solution and design constraints. Professional technicians can use different methods to implement the described functions for each specific application, but such implementation should not be considered beyond the scope of this application.
  • the embodiments of the present application may divide the function modules of the network device and the terminal according to the above method example, for example, each function module may be divided corresponding to each function, or two or more functions may be integrated into one processing module .
  • the above integrated modules can be implemented in the form of hardware or software function modules. It should be noted that the division of the modules in the embodiments of the present application is schematic, and is only a division of logical functions. In actual implementation, there may be another division manner. The following uses an example of dividing each function module corresponding to each function as an example:
  • FIG. 11 is a schematic structural diagram of a terminal according to an embodiment of the present application. As shown in FIG. 11, the terminal includes: a communication module 301 and a processing module 302. The above terminal can perform any of the following actions:
  • the communication module 301 is configured to receive quasi-co-location indication information corresponding to the first reference signal resource.
  • the quasi-co-location indication information is used to indicate M antenna port groups.
  • Each antenna port group in the M antenna port groups includes A code division multiplexing (CDM) group of one or more first reference signal resources.
  • the CDM group contains multiple antenna ports. There is a quasi-co-location relationship between any two antenna ports in the same antenna port group.
  • M is an integer greater than 1.
  • the processing module 302 is configured to determine a quasi-co-location relationship between multiple antenna ports in the first reference signal resource according to the quasi-co-location indication information.
  • the quasi-co-location indication information includes information of M antenna port groups.
  • the information of the antenna port group includes identifiers of one or more CDM groups; or, the information of the antenna port group is used to indicate the number of CDM groups included in the antenna port group.
  • the quasi-co-location indication information is also used to indicate the value of M.
  • the quasi-co-location indication information is also used to indicate the grouping manner of the CDM group, and the grouping manner includes at least one of a time-domain grouping manner and a frequency-domain grouping manner.
  • the communication module 301 is configured to receive quasi-co-location indication information corresponding to the first reference signal resource.
  • the quasi-co-location indication information is used to indicate M antenna port groups.
  • Each antenna port group in the M antenna port groups includes For one or more antenna ports of the first reference signal resource, there is a quasi-co-location relationship between any two antenna ports in the same antenna port group, and M is an integer greater than 1.
  • the processing module 302 is configured to determine a quasi-co-location relationship between multiple antenna ports in the first reference signal resource according to the quasi-co-location indication information.
  • the quasi-co-location indication information includes information of M antenna port groups.
  • the information of the antenna port group includes port numbers of multiple antenna ports; or, the information of the antenna port group is used to indicate the number of antenna ports included in the antenna port group.
  • the quasi-co-location indication information is also used to indicate the value of M.
  • the communication module 301 is configured to receive quasi-co-location indication information corresponding to the first reference signal resource, and the quasi-co-location indication information is used to indicate between at least two antenna ports of the plurality of antenna ports of the first reference signal resource There is no quasi-co-location relationship.
  • the processing module 302 is configured to divide the multiple antenna ports of the first reference signal resource into M antenna port groups according to the first quasi-co-location rule, where M is an integer greater than 1.
  • the quasi-co-location indication information is used to indicate that the resources for channel measurement and the resources for interference measurement are both first reference signal resources.
  • the quasi-co-location indication information further includes an index of the first quasi-co-location rule.
  • the first quasi-co-location rule includes one of the following rules: (1) According to the order of the port number of the antenna port from small to large, divide the preset number of antenna ports into one antenna Port group. (2) Divide the preset number of antenna ports into an antenna port group according to the order of the antenna port port numbers from large to small.
  • the communication module 301 is configured to receive quasi-co-location indication information corresponding to the first reference signal resource, and the quasi-co-location indication information is used to indicate between at least two antenna ports of the plurality of antenna ports of the first reference signal resource There is no quasi-co-location relationship.
  • the processing module 302 is configured to divide the multiple CDM groups of the first reference signal into M antenna port groups according to the second quasi-co-location rule, where M is an integer greater than 1.
  • the quasi-co-location indication information is used to indicate that the resources for channel measurement and the resources for interference measurement are both first reference signal resources.
  • the quasi-co-location indication information further includes an index of the second quasi-co-location rule.
  • the second quasi-co-location rule includes one of the following rules: (1) According to the order of the CDM group ID from small to large, divide the preset number of CDM groups into one antenna port group. (2) Divide the preset number of CDM groups into an antenna port group according to the order of the IDs of the CDM groups.
  • the communication module 301 is further configured to receive first indication information; wherein, the first indication information is used to indicate that the antenna port group of the first reference signal resource has a quasi-share The antenna port group of the second reference signal resource in the address relationship; or, the first indication information is used to indicate the antenna port of the second reference signal resource in a quasi-co-location relationship with the antenna port of the first reference signal resource.
  • the communication module 301 is further configured to receive second indication information; wherein, the second indication information is used to indicate that the antenna port group of the second reference signal resource has a quasi common The antenna port group of the first reference signal resource in the address relationship; or, the second indication information is used to indicate the antenna port of the first reference signal resource in a quasi-co-location relationship with the antenna port of the second reference signal resource.
  • the processing module 302 is further configured to determine the downlink channel state information according to the quasi-co-location relationship between multiple antenna ports of the first reference signal resource.
  • the communication module 301 is also used to send downlink channel state information to the network device.
  • the communication module 301 in FIG. 11 may be implemented by the transceiver 103 in FIG. 3, and the processing module 302 in FIG. 11 may be implemented by the processor 101 in FIG. 3.
  • the embodiments of the present application do not limit this.
  • Embodiments of the present application also provide a computer-readable storage medium that stores computer instructions; when the computer-readable storage medium runs on the terminal shown in FIG. 3, the terminal is allowed to execute As shown in Figure 4, Figure 7 to Figure 10.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, computer, server or data center Transmission to another website, computer, server or data center via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • wired such as coaxial cable, optical fiber, digital subscriber line (DSL)
  • wireless such as infrared, wireless, microwave, etc.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device including one or more servers and data centers that can be integrated with the medium.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium, or a semiconductor medium (for example, a solid state disk (SSD)) or the like.
  • An embodiment of the present application further provides a chip including a processing module and a communication interface, the communication interface is used to transmit the received code instruction to the processing module, the code instruction may be from the internal memory of the chip, or may be from the chip In an external memory or other device, the processing is used to execute code instructions to support the terminal to execute the method shown in FIG. 4, FIG. 7 to FIG. 10.
  • the processing module is a processor or microprocessor or integrated circuit integrated on the chip.
  • the communication interface may be an input/output circuit or a transceiver pin.
  • Embodiments of the present application also provide a computer program product containing computer instructions, which when run on the terminal shown in FIG. 3, enables the terminal to execute the methods shown in FIGS. 4, 7 to 10.
  • the terminal, computer storage medium, chip, and computer program product provided in the above embodiments of the present application are all used to execute the method provided above, therefore, for the beneficial effects that can be achieved, refer to the beneficial effects corresponding to the method provided above And will not be repeated here.
  • the network device includes: a communication module 401 and a processing module 402.
  • the above network device may also perform any of the following actions:
  • the processing module 402 is used to generate quasi-co-location indication information, which is used to indicate M antenna port groups, and each antenna port group in the M antenna port groups includes one or more first references A CDM group of signal resources.
  • the CDM group contains multiple antenna ports. There is a quasi-co-location relationship between any two antenna ports in the same antenna port group. M is an integer greater than 1.
  • the communication module 401 is used to send the quasi-co-location indication information to the terminal.
  • the quasi-co-location indication information includes information of M antenna port groups.
  • the information of the antenna port group includes identifiers of one or more CDM groups; or, the information of the antenna port group is used to indicate the number of CDM groups included in the antenna port group.
  • the quasi-co-location indication information is also used to indicate the value of M.
  • the quasi-co-location indication information is also used to indicate the grouping manner of the CDM group, and the grouping manner includes at least one of a time-domain grouping manner and a frequency-domain grouping manner.
  • the processing module 402 is used to generate quasi-co-location indication information, and the quasi-co-location indication information is used to indicate M antenna port groups, and each antenna port group in the M antenna port groups includes one or more first references For antenna ports of signal resources, there is a quasi-co-location relationship between any two antenna ports in the same antenna port group, and M is an integer greater than 1.
  • the communication module 401 is used to send the quasi-co-location indication information to the terminal.
  • the quasi-co-location indication information includes information of M antenna port groups.
  • the information of the antenna port group includes port numbers of multiple antenna ports; or, the information of the antenna port group is used to indicate the number of antenna ports included in the antenna port group.
  • the quasi-co-location indication information is also used to indicate the value of M.
  • the processing module 402 is configured to generate quasi-co-location indication information corresponding to the first reference signal resource, and the quasi-co-location indication information is used to indicate between at least two antenna ports of the N antenna ports of the first reference signal resource There is no quasi-co-location relationship.
  • the communication module 401 is used to send the quasi-co-location indication information to the terminal.
  • the quasi-co-location indication information is used to indicate that the resources for channel measurement and the resources for interference measurement are both first reference signal resources.
  • the quasi-co-location indication information further includes an index of the first quasi-co-location rule or an index of the second quasi-co-location rule.
  • the first quasi-co-location rule is used for the terminal to divide the multiple antenna ports of the first reference signal resource into M antenna port groups.
  • the second quasi-co-location rule is used for the terminal to divide the multiple CDM groups of the first reference signal resource into M antenna port groups.
  • M is an integer greater than 1.
  • the processing module 402 is further configured to generate first indication information, where the first indication information is used to indicate that the antenna port group of the first reference signal resource has a quasi common The antenna port group of the second reference signal resource in the address relationship; or, the first indication information is used to indicate the antenna port of the second reference signal resource in a quasi-co-location relationship with the antenna port of the first reference signal resource.
  • the communication module 401 is also used to send the first indication information to the terminal.
  • the processing module 402 is further configured to generate second indication information, where the second indication information is used to indicate that the antenna port group of the second reference signal resource has a quasi common The antenna port group of the first reference signal resource in the address relationship; or, the second indication information is used to indicate the antenna port of the first reference signal resource in a quasi-co-location relationship with the antenna port of the second reference signal resource.
  • the communication module 401 is also used to send second indication information to the terminal.
  • the communication module 401 is further configured to receive downlink channel state information sent by the terminal, and the downlink channel state information is based on multiple antenna ports in the first reference signal resource.
  • the quasi-co-location relationship is determined.
  • the communication module 401 in FIG. 12 may be implemented by the transceiver 203 in FIG. 3, and the processing module 402 in FIG. 12 may be implemented by the processor 201 in FIG. In this embodiment of the present application, there is no limitation on this.
  • Embodiments of the present application also provide a computer-readable storage medium that stores computer instructions; when the computer-readable storage medium runs on the network device shown in FIG. 3, the network The device executes the methods shown in Figure 4, Figure 7 to Figure 8.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, computer, server or data center Transmission to another website, computer, server or data center via wired (such as coaxial cable, optical fiber, digital subscriber line) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device including one or more servers and data centers that can be integrated with the medium.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, or a magnetic tape), an optical medium, or a semiconductor medium (for example, a solid-state hard disk).
  • An embodiment of the present application further provides a chip including a processing module and a communication interface, the communication interface is used to transmit the received code instruction to the processing module, the code instruction may be from the internal memory of the chip, or may be from the chip In an external memory or other device, the processing is used to execute code instructions to support the network device to execute the method shown in FIG. 4, FIG. 7 to FIG. 10.
  • the processing module is a processor or microprocessor or integrated circuit integrated on the chip.
  • the communication interface may be an input/output circuit or a transceiver pin.
  • Embodiments of the present application also provide a computer program product containing computer instructions, which when run on the network device shown in FIG. 3, enables the network device to execute the methods shown in FIG. 4, FIG. 7 to FIG. 10.
  • the network devices, computer storage media, chips, and computer program products provided in the above embodiments of the present application are all used to execute the method provided above. Therefore, for the beneficial effects that can be achieved, refer to the corresponding benefits provided by the methods provided above The effect will not be repeated here.
  • An embodiment of the present application further provides a communication system, the communication system includes a terminal and a network device, and the terminal and the network device are used to perform the methods shown in FIGS. 4, 7 to 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种准共址指示方法及装置,涉及通信技术领域,用于使终端获知第一参考信号资源的多个天线端口之间的准共址关系。该方法包括:终端接收准共址指示信息,该准共址指示信息用于指示第一参考信号资源对应的M个天线端口组,所述M个天线端口组中每一个天线端口组包含一个或多个所述第一参考信号资源配置的CDM组,所述CDM组包含多个天线端口,同一天线端口组中的任意两个天线端口之间存在准共址关系;之后,终端根据该准共址指示信息,确定第一参考信号资源的多个天线端口之间的准共址关系。

Description

准共址指示方法及装置
本申请要求于2019年01月11日提交国家知识产权局、申请号为201910028367.7、申请名称为“准共址指示方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及准共址指示方法及装置。
背景技术
协作多点传输(Coordinated Multi-point transmission,CoMP)是一种用于解决小区间干扰问题并提升小区边缘用户吞吐量的技术。为了支持CoMP,协议中引入了天线端口准共址(Qussi-Co-Location,QCL)这一概念。天线端口QCL是一种天线端口之间的信道状态假设。如果两个天线端口之间存在QCL关系,则其中一个天线端口的信道大尺度信息能够从另外一个天线端口的信道大尺度信息中推测出来。相反地,如果两个天线端口之间不存在QCL关系,则终端不应当假设其中一个天线端口的信道大尺度信息可以从另一个天线端口的信道大尺度信息推测出来。
当前,在时频资源紧张的情况下,多个传输接收点(Transmission Reception Point,TRP)可以联合为终端发送一个信道状态信息参考信号(channel state information reference signal,CSI-RS)资源,该CSI-RS资源中的天线端口分属于不同的TRP。也就是说,各个TRP传输一个CSI-RS资源中的部分天线端口,多个TRP传输的信号联合形成一个CSI-RS。由于不同TRP所处的地理位置可能不同,因此CSI-RS资源中分属于不同TRP的天线端口之间不一定存在QCL关系。但是,在终端未知晓传输设定时,终端会假设一个CSI-RS资源中所有的天线端口是QCL的。这样一来,终端在根据CSI-RS进行信道估计的时候可能会存在偏差。在进行信道测量时,终端会因为不恰当的QCL假设,导致测量结果出现错误。
发明内容
本申请提供一种准共址指示方法,用于解决终端对一个参考信号资源的多个天线端口做出不恰当QCL假设的问题。
为达到上述目的,本申请采用如下技术方案:
第一方面,提供一种准共址指示方法,包括:终端接收准共址指示信息,该准共址指示信息用于指示第一参考信号资源对应的M个天线端口组,M个天线端口组中每一个天线端口组包含一个或多个第一参考信号资源的码分复用(code division multiplexing,CDM)组,所述CDM组包含多个天线端口,同一天线端口组中的任意两个天线端口之间存在准共址关系,M为大于1的整数;终端根据准共址指示信息,确定第一参考信号资源的多个天线端口之间的准共址关系。
可以理解的是,上述第一参考信号资源可以是CSI-RS资源,也可以是其他参考信号资源,例如同步信号资源、信道探测信号(Sounding reference signal)资源等,本申请实施例不限于此。
基于上述技术方案,终端通过准共址指示信息,确定第一参考信号资源对应的M个天线端口组。从而对于第一参考信号资源的多个天线端口来说,终端可以通过判断两个天线端口是否属于同一天线端口组,确定这两个天线端口是否是准共址的。以此类推,终端可以获知第一参考信号资源中多个天线端口之间的准共址关系。另外,天线端口组包含一个或多个CDM组,换而言之,同一CDM组中的多个天线端口同样属于同一天线端口组。这样一来,同一CDM组中的多个天线端口组之间具有准共址关系,保证同一CDM组中多个天线端口发送的信号经历相同的信道,从而保证同一CDM组中多个天线端口发送的信号的正交性。
结合第一方面,一种可能的设计中,准共址指示信息包括M个天线端口组的信息。其中,天线端口组的信息包括一个或多个CDM组的标识;或者,天线端口组的信息用于指示天线端口组包含的CDM组的数目。
可选的,所述天线端口组的信息还可以包括所述天线端口组的个数、所述天线端口组的标识、所述天线端口组内包含的天线端口的个数、所述天线端口组内包含的天线端口等。
结合第一方面,一种可能的设计中,准共址指示信息还用于指示M的取值。
结合第一方面,一种可能的设计中,准共址指示信息还用于指示CDM组的分组方式,分组方式包括时域分组方式和频域分组方式中的至少一种。
第二方面,提供一种准共址指示方法,包括:终端接收准共址指示信息,该准共址指示信息用于指示第一参考信号资源对应的M个天线端口组,M个天线端口组中每一个天线端口组包含一个或多个第一参考信号资源的天线端口,同一天线端口组中的任意两个天线端口之间存在准共址关系,M为大于1的整数;终端根据准共址指示信息,确定第一参考信号资源的多个天线端口之间的准共址关系。
基于上述技术方案,终端通过准共址指示信息,确定第一参考信号资源对应的M个天线端口组。从而对于第一参考信号资源的多个天线端口来说,终端可以通过判断两个天线端口是否属于同一天线端口组,确定这两个天线端口是否是准共址的。以此类推,终端可以获知第一参考信号资源中多个天线端口之间的准共址关系。
结合第二方面,一种可能的设计中,准共址指示信息包括M个天线端口组的信息。其中,天线端口组的信息包括多个天线端口的端口号;或者,天线端口组的信息用于指示天线端口组所包含的天线端口的数目。
结合第二方面,一种可能的设计中,准共址指示信息还用于指示M的取值。
第三方面,提供一种准共址指示方法,包括:终端接收第一参考信号资源对应的准共址指示信息,该准共址指示信息用于指示第一参考信号资源的多个天线端口中至少两个天线端口之间不具有准共址关系;终端根据第一准共址规则,将第一参考信号资源的多个天线端口划分为M个天线端口组,M为大于1的整数。
基于上述技术方案,终端通过准共址指示信息,确定第一参考信号资源对应的M个天线端口组。从而对于第一参考信号资源的多个天线端口来说,终端可以通过判断两个天线端口是否属于同一天线端口组,确定这两个天线端口是否是准共址的。以此类推,终端可以获知第一参考信号资源中多个天线端口之间的准共址关系。
结合第三方面,一种可能的设计中,准共址指示信息用于指示信道测量的资源和 干扰测量的资源均为第一参考信号资源。这样一来,由于第一参考信号资源即为信道测量的资源,又为干扰测量的资源,说明在第一参考信号资源中,一些天线端口发送的信号对另一些天线端口发送的信号产生干扰,从而说明第一参考信号资源中至少两个天线端口不具有准共址关系。
可选的,准共址信息为第一参考信号资源的配置信息。其中第一参考信号资源的配置信息可以用于指示终端的信道状态测量,和/或,上报信息。第一参考信号资源的配置信息包括用于信道测量的资源和用于干扰测量的资源。其中,用于信道测量的资源包括第一参考信号资源;用于干扰测量的资源包括第一参考信号资源。
结合第三方面,一种可能的设计中,准共址指示信息还包括第一准共址规则的索引。
结合第三方面,一种可能的设计中,第一准共址规则包括以下规则之一:(1)按照天线端口的端口号从小到大的顺序,将预设数目的天线端口划分为一个天线端口组。(2)按照天线端口的端口号从大到小的顺序,将预设数目的天线端口划分为一个天线端口组。
第四方面,提供一种准共址指示方法,包括:终端接收第一参考信号资源对应的准共址指示信息,该准共址指示信息用于指示第一参考信号资源的多个天线端口中至少两个天线端口之间不具有准共址关系;之后,终端根据第二准共址规则,将第一参考信号的多个CDM组划分为M个天线端口组,M为大于1的整数。
基于上述技术方案,终端通过准共址指示信息,确定第一参考信号资源对应的M个天线端口组。从而对于第一参考信号资源的多个天线端口来说,终端可以通过判断两个天线端口是否属于同一天线端口组,确定这两个天线端口是否是准共址的。以此类推,终端可以获知第一参考信号资源中多个天线端口之间的准共址关系。
结合第四方面,一种可能的设计中,准共址指示信息用于指示信道测量的资源和干扰测量的资源均为第一参考信号资源。
结合第四方面,一种可能的设计中,准共址指示信息还包括第二准共址规则的索引。
结合第四方面,一种可能的设计中,第二准共址规则包括以下规则之一:(1)按照CDM组的标识从小到大的顺序,将预设数目的CDM组划分为一个天线端口组。(2)按照CDM组的标识从大到小的顺序,将预设数目的CDM组划分为一个天线端口组。
结合第一方面至第四方面中任一方面,一种可能的设计中,终端接收第一指示信息;其中,第一指示信息用于指示与第一参考信号资源的天线端口组具有准共址关系的第二参考信号资源的天线端口组;或者,第一指示信息用于指示与第一参考信号资源的天线端口具有准共址关系的第二参考信号资源的天线端口。这样一来,终端根据第一指示信息,获知与第一参考信号资源的天线端口(或者天线端口组)具有准共址关系的第二参考信号资源的天线端口(或者天线端口组),从而终端可以从该第二参考信号资源的天线端口(或者天线端口组)的信道大尺度信息,推测出具有准共址关系的第一参考信号资源的天线端口(或者天线端口组)的信道大尺度信息。
结合第一方面至第四方面中任一方面,一种可能的设计中,终端接收第二指示信息;其中,第二指示信息用于指示与第二参考信号资源的天线端口组具有准共址关系 的第一参考信号资源的天线端口组;或者,第二指示信息用于指示与第二参考信号资源的天线端口具有准共址关系的第一参考信号资源的天线端口。这样一来,终端根据第二指示信息,获知与第二参考信号资源的天线端口(或者天线端口组)具有准共址关系的第一参考信号资源的天线端口(或者天线端口组),从而终端可以从该第一参考信号资源的天线端口(或者天线端口组)的信道大尺度信息,推测出具有准共址关系的第二参考信号资源的天线端口(或者天线端口组)的信道大尺度信息。
结合第一方面至第四方面中任一方面,一种可能的设计中,终端根据第一参考信号资源的多个天线端口之间的准共址关系,确定下行信道状态信息。可以理解的是,终端根据第一参考信号资源的多个天线端口之间的准共址关系,作出恰当的准共址假设,从而保证下行信道状态信息的准确性。
第五方面,提供一种准共址指示方法,包括:网络设备生成准共址指示信息,该准共址指示信息用于指示第一参考信号资源对应的M个天线端口组,M个天线端口组中每一个天线端口组包含一个或多个第一参考信号资源的CDM组,CDM组包含多个天线端口,同一天线端口组中的任意两个天线端口之间存在准共址关系,M为大于1的整数;网络设备向终端发送该准共址指示信息。
结合第五方面,一种可能的设计中,准共址指示信息包括M个天线端口组的信息。其中,天线端口组的信息包括一个或多个CDM组的标识;或者,天线端口组的信息用于指示天线端口组包含的CDM组的数目。
结合第五方面,一种可能的设计中,准共址指示信息还用于指示M的取值。
结合第五方面,一种可能的设计中,准共址指示信息还用于指示CDM组的分组方式,分组方式包括时域分组方式和频域分组方式中的至少一项。
第六方面,提供一种准共址指示方法,包括:网络设备生成准共址指示信息,该准共址指示信息用于指示第一参考信号资源对应的M个天线端口组,M个天线端口组中每一个天线端口组包含一个或多个第一参考信号资源的天线端口,同一天线端口组中的任意两个天线端口之间存在准共址关系,M为大于1的整数。之后,网络设备向终端发送该准共址指示信息。
结合第六方面,一种可能的设计中,准共址指示信息包括M个天线端口组的信息。其中,天线端口组的信息包括多个天线端口的端口号;或者,天线端口组的信息用于指示天线端口组所包含的天线端口的数目。
结合第六方面,一种可能的设计中,准共址指示信息还用于指示M的取值。
第七方面,提供一种准共址指示方法,包括:网络设备生成第一参考信号资源对应的准共址指示信息,该准共址指示信息用于指示第一参考信号资源的N个天线端口中至少两个天线端口之间不具有准共址关系。之后,网络设备向终端发送该准共址指示信息。
结合第七方面,一种可能的设计中,准共址指示信息用于指示信道测量的资源和干扰测量的资源均为第一参考信号资源。
结合第七方面,一种可能的设计中,该准共址指示信息还包括第一准共址规则的索引或者第二准共址规则的索引。其中,第一准共址规则用于使终端将第一参考信号资源的多个天线端口划分为M个天线端口组。第二准共址规则用于使终端将第一参考 信号资源的多个CDM组划分为M个天线端口组。M为大于1的整数。
结合第五方面至第七方面中任一方面,一种可能的设计中,网络设备生成第一指示信息,其中,第一指示信息用于指示与第一参考信号资源的天线端口组具有准共址关系的第二参考信号资源的天线端口组;或者,第一指示信息用于指示与第一参考信号资源的天线端口具有准共址关系的第二参考信号资源的天线端口。之后,网络设备向终端发送第一指示信息。
结合第五方面至第七方面中任一方面,一种可能的设计中,网络设备生成第二指示信息,其中,第二指示信息用于指示与第二参考信号资源的天线端口组具有准共址关系的第一参考信号资源的天线端口组;或者,第二指示信息用于指示与第二参考信号资源的天线端口具有准共址关系的第一参考信号资源的天线端口。之后,网络设备向终端发送第二指示信息。
结合第五方面至第七方面中任一方面,一种可能的设计中,网络设备接收下行信道状态信息,所述下行信道根据第一参考信号资源的多个天线端口之间的准共址关系来确定。
第八方面,提供一种终端,包括:通信模块和处理模块。所述终端用于执行上述第一方面至第四方面任一项所述的准共址指示方法。
第九方面,提供一种终端,包括:处理器,所述处理器用于与存储器耦合,并读取存储器中的指令,并根据所述指令实现如上述第一方面至第四方面任一项所述的准共址指示方法。
第十方面,提供一种通信装置,用于执行上述第一方面至第四方面任一项所述的准共址指示方法。作为一种可能的产品形态,该通信装置由处理器和通信接口来实现。作为另一种可能的产品形态,该通信装置由逻辑电路、输入接口和输出接口来实现。
第十一方面,提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在终端上运行时,使得终端可以执行上述第一方面至第四方面任一项所述的准共址指示方法。
第十二方面,提供一种包含指令的计算机程序产品,当其在终端上运行时,使得终端可以执行上述第一方面至第四方面任一项所述的准共址指示方法。
第十三方面,提供一种芯片系统,该芯片系统包括处理器,用于支持终端实现上述第一方面至第四方面任一项所涉及的功能。需要说明的是,该处理器可以是专用处理器,也可以是通用处理器。在一种可能的设计中,该芯片系统包括存储器,该存储器用于保存终端必要的程序指令和数据。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
其中,上述第八方面至第十三方面中任一种设计方式所带来的技术效果可参见第一方面至第四方面中不同设计方式所带来的技术效果,此处不再赘述。
第十四方面,提供一种网络设备,包括:处理模块和通信模块。所述网络设备用于执行上述第五方面至第七方面中任一项所述的准共址指示方法。
第十五方面,提供一种网络设备,包括:处理器,所述处理器用于与存储器耦合,并读取存储器中的指令,并根据所述指令实现如上述第五方面至第七方面任一项所述的准共址指示方法。
第十六方面,提供一种通信装置,用于执行上述第五方面至第七方面任一项所述的准共址指示方法。作为一种可能的产品形态,该通信装置由处理器和通信接口来实现。作为另一种可能的产品形态,该通信装置由逻辑电路、输入接口和输出接口来实现。
第十七方面,提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在网络设备上运行时,使得网络设备可以执行上述第五方面至第七方面任一项所述的准共址指示方法。
第十八方面,提供一种包含指令的计算机程序产品,当其在网络设备上运行时,使得网络设备可以执行上述第五方面至第七方面任一项所述的准共址指示方法。
第十九方面,提供一种芯片系统,该芯片系统包括处理器,用于支持网络设备实现上述第五方面至第七方面任一项所涉及的功能。需要说明的是,该处理器可以是专用处理器,也可以是通用处理器。在一种可能的设计中,该芯片系统包括存储器,该存储器用于保存网络设备必要的程序指令和数据。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
其中,上述第十四方面至第十九方面中任一种设计方式所带来的技术效果可参见第五方面至第七方面中不同设计方式所带来的技术效果,此处不再赘述。
第二十方面,提供一种通信系统,该通信系统包括网络设备和终端。该终端用于执行上述第一方面至第四方面任一项所述的准共址指示方法。该网络设备用于执行上述第五方面至第七方面任一项所述的准共址指示方法。
附图说明
图1为本申请实施例提供的一种通信系统的架构示意图;
图2为本申请实施例提供的另一种通信系统的架构示意图;
图3为本申请实施例提供的一种终端与网络设备的硬件结构示意图;
图4为本申请实施例提供的一种准共址指示方法的流程图一;
图5为本申请实施例提供的一种CDM组的分组示意图;
图6为本申请实施例提供的另一种CDM组的分组示意图;
图7为本申请实施例提供的一种准共址指示方法的流程图二;
图8为本申请实施例提供的一种准共址指示方法的流程图三;
图9为本申请实施例提供的一种准共址指示方法的流程图四;
图10为本申请实施例提供的一种下行信道状态信息的上报方法的流程图;
图11为本申请实施例提供的一种终端的结构示意图;
图12为本申请实施例提供的一种网络设备的结构示意图。
具体实施方式
为了便于理解本申请的技术方案,下面先对本申请涉及的一些术语进行简单介绍。
1、天线端口
天线端口可以理解为,可以被接收端设备所识别的发射天线,或者在空间上可以区分的发射天线。天线端口可以根据与该天线端口相关联的参考信号(或者说,导频信号)进行定义。一个天线端口可以是发射端设备上的一根物理天线,也可以是发射端设备上多根物理天线的加权组合。在本申请实施例中,在未作出特别说明的情况下,一 个天线端口对应一个参考信号。另外,需要说明的是,一个参考信号资源可以配置多个天线端口。
天线端口用于承载具体的物理信道,物理信号中至少一种。通过相同天线端口所发送的信号,无论这些信号是否是通过相同或不同的物理天线发送,这些信号在空间传输所经历的路径所对应的信道可视为相同或者相关。也就是说,在相同的天线端口所发送的信号,接收端在解调时可以认为其信道相同或者相关。也就是说,天线端口定义了在某个符号上的信道。若两个符号的天线端口一样,则在一个符号上的信道可以通过另一个符号上的信道推知。
在本申请实施例中,以端口号来唯一标识天线端口。端口号还可以有其他名称,例如端口索引、端口标识等,本申请实施例不限于此。在以端口号唯一标识天线端口的情况下,端口号还可以经过函数的变化来唯一识别端口。例如,指示终端使用的端口号作为函数的输入,实际使用此天线端口的标识作为函数的输出。所述函数具有输入输出一一映射的关系。例如,所述函数为一个常数加上输入作为输出。所述实际使用此天线端口的标识可以作为生成该天线端口的信号的标识。例如,生成该天线端口的序列的标识,其中可以包括生成序列的伪随机函数初始化因子的标识。
2、参考信号资源
参考信号资源即为参考信号的资源。其中,参考信号包括但不限于CSI-RS、解调参考信号(demodulation reference signal,DMRS)、跟踪参考信号(tracking reference signal,TRS)、探测参考信号(sounding reference signal,SRS)等,本申请实施例不限于此。另外,下文中为了便于描述,将第一参考信号的资源简称为第一参考信号资源,将第二参考信号的资源简称为第二参考信号资源。
参考信号资源对应了参考信号的时域资源、频域资源、码域资源中的至少一个。参考信号资源的配置信息是一种数据结构,包括多个参数,用于封装参考信号的相关信息,例如参考信号的类型、承载参考信号的资源粒(resource element,RE)、发送参考信号所采用的天线端口的数目等。每一个参考信号资源具有对应的标识,参考信号资源的标识又可以称为参考信号资源的索引等,本申请实施例不限于此。
3、CDM组
CDM组包含多个天线端口,同一CDM组中的多个天线端口复用相同的时频资源,并且同一CDM组中的多个天线端口之间以码分的形式来区分,也即同一CDM中多个天线端口的序列的码域资源是不同的。所述码域资源通常是正交的码,例如正交覆盖码(Orthogonal Cover Code,OCC)等。所述OCC码可用于时域、频域、空域(波束域)等。
参考信号资源中CDM组的数目以及CDM组的信息可以是网络设备预先配置给终端的,也可以是协议中定义的。
可选的,若参考信号资源中CDM组的数目以及CDM组的信息是协议中定义的,则参考信号资源中CDM组的数目以及CDM组的信息由参考信号资源的天线端口的数目来确定。上述CDM组的信息包括CDM组的索引,CDM组中天线端口的端口号等。
以参考信号资源包含天线端口#0~天线端口#3为例,协议中可以定义CDM组的数目为2,并且CDM组#0包含天线端口#0和天线端口#1,CDM组#1包含天线端口#2 和天线端口#3。
另外,网络设备可以向终端发送CDM组的资源图样(pattern)信息,使得终端获知每一个CDM组对应的时频资源。或者说,所述资源图样信息用于指示CDM组中天线端口所占用的时频资源。
示例性的,CDM组的资源图样信息可如表1所示。在表1中,ports用于指示参考信号资源的天线端口的数目。密度(density)用于指示一个天线端口在一个资源块(resource block,RB)内所占的RE的个数。CDM类型(type)用于指示CDM组是时域的CDM组,还是频域的CDM组。(k,l)表示CDM组内第一个RE的时频位置,k对应频域位置,l对应时域位置。k′表示CDM组所占的RE相对于CDM组内第一个RE的频域偏移。l′表示CDM组所占的RE相对于CDM组内第一个RE的时域偏移。
表1
Figure PCTCN2020071536-appb-000001
结合表1进行说明,以索引为6的资源图样为例,ports为8,说明参考信号资源配置了8个天线端口。density为1,说明每一个天线端口在一个RB中所占的RE的数目为1。CDM-type为FD-CDM2,说明CDM组为频域的CDM组,并且CDM组包括2个天线端口。CDM组的索引为0,1,2,3,说明参考信号资源配置了CDM组#0、CDM组#1、CDM组#2、以及CDM组#3。(k,l)为(k 0,l 0),(k 1,l 0),(k 2,l 0),(k 3,l 0),说明CDM组#0所占的第一个RE的时频位置为(k 0,l 0),CDM组#1所占的第一个RE的时频位置为(k 1,l 0),CDM组#2所占的第一个RE的时频位置为(k 2,l 0),CDM组#3所占的第一个RE的时频位置为(k 3,l 0)。k′为0,1,说明CDM组#0所占RE的位置为(k 0,l 0)和(k 0+1,l 0),CDM组#1所占RE的位置为(k 1,l 0)和(k 1+1,l 0),CDM组#2所占RE的位置为(k 2,l 0)和(k 2+1,l 0),CDM组#3所占RE的位置为(k 3,l 0)和(k 3+1,l 0)。
4、准共址关系
QCL关系用于表示多个天线端口之间具有一个或多个相同或者相类似的通信特征。例如,如果两个天线端口具有准共址关系,那么一个天线端口发送一个信号的信道大尺度特性可以从另一个天线端口发送一个信号的信道大尺度特性推断出来。对于具有QCL关系的两个天线端口来说,两个天线端口对应的信号中具有相同的参数;或者,一个天线端口的参数可用于确定与该天线端口具有QCL关系的另一个天线端口的参 数;又或者,两个天线端口间的参数差小于预设阈值。
其中,上述参数可以包括以下一项或多项信道大尺度参数:时延扩展(delay spread),多普勒扩展(Doppler spread),多普勒频移(Doppler shift),平均时延(average delay),平均增益,空间接收参数(spatial Rx parameters)。其中,空间接收参数可以包括发射角(angle of departure,AOD),主发射角(dominant AoD),平均发射角(mean AoD),到达角(angle of arrival,AOA),主到达角(dominant AOA),平均到达角(average AoA),信道相关矩阵,到达角的功率角度扩展谱,平均触发角(average AoD),出发角的功率角度扩展谱,发射信道相关性,接收信道相关性,发射波束成型,接收波束成型,空间信道相关性,空间滤波参数,空间接收参数等中的一项或多项。
在本申请的描述中,除非另有说明,“/”表示“或”的意思,例如,A/B可以表示A或B。本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。此外,“至少一个”是指一个或多个,“多个”是指两个或两个以上。“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
需要说明的是,本申请中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
在本申请的描述中,“指示”可以包括直接指示和间接指示,也可以包括显式指示和隐式指示。将某一信息(如下文所述的准共址指示信息)所指示的信息称为待指示信息,则具体实现过程中,对所述待指示信息进行指示的方式有很多种。例如,可以直接指示所述待指示信息,其中所述待指示信息本身或者所述待指示信息的索引等。又例如,也可以通过指示其他信息来间接指示所述待指示信息,其中该其他信息与所述待指示信息之间存在关联关系。又例如,还可以仅仅指示所述待指示信息的一部分,而所述待指示信息的其他部分则是已知的或者提前约定的。另外,还可以借助预先约定(例如协议规定)的各个信息的排列顺序来实现对特定信息的指示,从而在一定程度上降低指示开销。
此外,本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请实施例提供的技术方案可以应用于各种通信系统,例如,采用第五代(5th generation,5G)通信技术的新空口(new radio,NR)通信系统,未来演进系统或者多种通信融合系统等等。本申请提供的技术方案可以应用于多种应用场景,例如,机器对机器(machine to machine,M2M)、宏微通信、增强型移动互联网(enhanced mobile broadband,eMBB)、超高可靠超低时延通信(ultra-reliable & low latency communication,uRLLC)以及海量物联网通信(massive machine type communication,mMTC)等场景。这些场景可以包括但不限于:通信设备与通信设备之间的通信场景,网络设备与网络 设备之间的通信场景,网络设备与通信设备之间的通信场景等。下文中均是以应用于网络设备和终端之间的通信场景中为例进行说明的。
图1示出了本申请提供的技术方案所适用的一种通信系统的架构示意图,通信系统可以包括一个或多个网络设备(图1中仅示出了2个)以及一个或多个终端(图1中仅示出了一个)。其中,多个网络设备可以以CoMP技术与同一个终端进行通信。
图2示出了本申请提供的技术方案所适用的一种通信系统的架构示意图,该通信系统可以包括一个或多个网络设备(图2中仅示出了1个)以及一个或多个终端(图2中仅示出了一个)。其中,网络设备配置了多个天线面板,网络设备可使用多个天线面板与终端进行通信。可以理解的是,若网络设备配置的多个天线面板没有进行相位校准,则这多个天线面板只能用于非相干传输。换句话说,在不同天线面板上的天线端口之间是非准共址的。
需要说明的是,上述图1和图2仅为示意图,并不对本申请提供的技术方案的适用场景构成限定。
网络设备可以是无线通信的基站或基站控制器等。例如,所述基站可以包括各种类型的基站,例如:微基站(也称为小站),宏基站,中继站,接入点,TRP等,本申请实施例对此不作具体限定。在本申请实施例中,所述基站可以是全球移动通信系统(global system for mobile communication,GSM),码分多址(code division multiple access,CDMA)中的基站(base transceiver station,BTS),宽带码分多址(wideband code division multiple access,WCDMA)中的基站(node B),LTE中的演进型基站(evolutional node B,eNB或e-NodeB),物联网(internet of things,IoT)或者窄带物联网(narrow band-internet of things,NB-IoT)中的eNB,未来5G移动通信网络或者未来演进的公共陆地移动网络(public land mobile network,PLMN)中的基站,本申请实施例对此不作任何限制。
终端用于向用户提供语音和/或数据连通性服务。所述终端可以有不同的名称,例如用户设备(user equipment,UE)、接入终端、终端单元、终端站、移动站、移动台、远方站、远程终端、移动设备、无线通信设备、终端代理或终端装置等。可选的,所述终端可以为各种具有通信功能的手持设备、车载设备、可穿戴设备、计算机,本申请实施例对此不作任何限定。例如,手持设备可以是智能手机。车载设备可以是车载导航系统。可穿戴设备可以是智能手环。计算机可以是个人数字助理(personal digital assistant,PDA)电脑、平板型电脑以及膝上型电脑(laptop computer)。
图3为本申请实施例提供的网络设备和终端的硬件结构示意图。
终端包括至少一个处理器101和至少一个收发器103。可选的,终端还可以包括输出设备104、输入设备105和至少一个存储器102。
处理器101、存储器102和收发器103通过总线相连接。处理器101可以是一个通用中央处理器(central processing unit,CPU)、微处理器、特定应用集成电路(application-specific integrated circuit,ASIC),或者一个或多个用于控制本申请方案程序执行的集成电路。处理器101也可以包括多个CPU,并且处理器101可以是一个单核(single-CPU)处理器或多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路或用于处理数据(例如计算机程序指令)的处理核。
存储器102可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备、随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,本申请实施例对此不作任何限制。存储器102可以是独立存在,通过总线与处理器101相连接。存储器102也可以和处理器101集成在一起。其中,存储器102用于存储执行本申请方案的应用程序代码,并由处理器101来控制执行。处理器101用于执行存储器102中存储的计算机程序代码,从而实现本申请实施例提供的方法。
收发器103可以使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网、无线接入网(radio access network,RAN)、无线局域网(wireless local area networks,WLAN)等。收发器103包括发射机Tx和接收机Rx。
输出设备104和处理器101通信,可以以多种方式来显示信息。例如,输出设备104可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输入设备105和处理器101通信,可以以多种方式接收用户的输入。例如,输入设备105可以是鼠标、键盘、触摸屏设备或传感设备等。
网络设备包括至少一个处理器201、至少一个存储器202、至少一个收发器203和至少一个网络接口204。处理器201、存储器202、收发器203和网络接口204通过总线相连接。其中,网络接口204用于通过链路(例如S1接口)与核心网设备连接,或者通过有线或无线链路(例如X2接口)与其它网络设备的网络接口进行连接(图中未示出),本申请实施例对此不作具体限定。另外,处理器201、存储器202和收发器203的相关描述可参考终端中处理器101、存储器102和收发器103的描述,在此不再赘述。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
如图4所示,为本申请实施例提供的一种准共址指示方法,该方法包括以下步骤:
S101、网络设备生成准共址指示信息。
其中,所述准共址指示信息用于指示第一参考信号资源对应的M个天线端口组,M为大于1的整数。同一天线端口组中的任意两个天线端口之间具有准共址关系,不同天线端口组的天线端口之间不具有准共址关系。
在本申请实施例中,所述第一参考信号资源即为第一参考信号的资源。可选的,第一参考信号为CSI-RS,本申请实施例不限于此。
作为一种实现方式,所述M个天线端口组中每一个天线端口组包含一个或多个第一参考信号资源的天线端口。
在这种情况下,所述准共址指示信息至少包括以下情形之一:
(1-1)所述准共址指示信息包括M个天线端口组的信息,所述天线端口组的信 息包括多个天线端口的端口号。可选的,所述天线端口组的信息还包括天线端口组的标识。
举例来说,假设第一参考信号资源配置了天线端口#0~天线端口#3,若准共址指示信息包括了2个天线端口组的信息,其中天线端口组1的信息包括天线端口#2的端口号和天线端口#3的端口号,天线端口组2的信息包括天线端口#0的端口号和天线端口#1的端口号,则终端可以确定天线端口组1为{天线端口#2,天线端口#3},天线端口组2为{天线端口#0,天线端口#1}。
(1-2)所述准共址指示信息包括M个天线端口组的信息,所述天线端口组的信息用于指示所述天线端口组包含的天线端口的数目。
这种情况下,终端根据所述准共址指示信息以及预设规则,确定M个天线端口组中每一个天线端口组所包含的天线端口。
示例性的,上述预设规则为:按照天线端口的端口号从小到大的顺序,将指示数目的天线端口划分给相应的天线端口组。所述指示数目即为上述天线端口组的信息所指示的天线端口组包含的天线端口的数目。
举例来说,假设第一参考信号资源配置了天线端口#0~天线端口#4,若准共址指示信息包括了天线端口组1的信息和天线端口组2的信息,其中天线端口组1的信息用于指示天线端口组1包含两个天线端口,天线端口组2的信息用于指示天线端口组2包含三个天线端口。则终端可以确定天线端口组1为{天线端口#0,天线端口#1},天线端口组2为{天线端口#2、天线端口#3,天线端口#4}。
示例性的,上述预设规则为:按照天线端口的端口号从大到小的顺序,将指示数目的天线端口划分给相应的天线端口组。
举例来说,假设第一参考信号资源配置了天线端口#0~天线端口#4,若准共址指示信息包括了天线端口组1的信息和天线端口组2的信息,其中天线端口组1的信息用于指示天线端口组1包含两个天线端口,天线端口组2的信息用于指示天线端口组2包含三个天线端口。则终端可以确定天线端口组1为{天线端口#3,天线端口#4},天线端口组2为{天线端口#0,天线端口#1,天线端口#2}。
另外,需要说明的是,上述M个天线端口组的信息可以联合编码,也可以各自独立编码。可以理解的是,在采用联合编码的情况下,M个天线端口组的信息与指示信息具有关联关系,从而网络设备可以通过一个指示信息指示至少2个天线端口组的信息。
(1-3)所述准共址指示信息还用于指示所述M的取值。
这种情况下,终端根据所述准共址指示信息、第一参考信号资源的天线端口的数目、以及预设对应关系,确定M个天线端口组中每一个天线端口组所包含的天线端口的端口号。
其中,上述预设对应关系用于指示M个天线端口组中每一个天线端口组所包含的天线端口的端口号。需要说明的是,预设对应关系可以是网络设备预先配置给终端的,或者协议中定义的。
示例性的,上述预设对应关系可参考表2。需要说明的是,在表2中,P代表第一参考信号资源的天线端口的数目。可以理解的是,第一参考信号资源的天线端口的数 目由第一参考信号资源的配置信息来指示。
表2
天线端口组的索引 M=2,P=4 M=4,P=8
天线端口组1 天线端口#0,天线端口#1 天线端口#0,天线端口#1
天线端口组2 天线端口#2,天线端口#3 天线端口#2,天线端口#3
天线端口组3   天线端口#4,天线端口#5
天线端口组4   天线端口#6,天线端口#7
……    
结合表2举例说明,假设第一参考信号资源的天线端口的数目为4,准共址指示信息指示M的取值为2,则参照表2的第二列,终端可以确定天线端口组1为{天线端口#0,天线端口#1},天线端口组2为{天线端口#2,天线端口#3}。
结合表2举例说明,假设第一参考信号资源的天线端口的数目为8,准共址指示信息指示M的取值为4,则参照表2的第三列,终端可以确定天线端口组1为{天线端口#0,天线端口#1},天线端口组2为{天线端口#2,天线端口#3},天线端口组3为{天线端口#4,天线端口#5},天线端口4为{天线端口#6,天线端口#7}。
作为另一种实现方式,所述M个天线端口组中每一个天线端口组包含一个或多个所述第一参考信号资源的CDM组。
需要说明的是,若一个CDM组中的多个天线端口不具有准共址关系,则一个CDM组中多个天线端口发送的参考信号会因为信道的差异,而影响码分的正交性,从而影响终端的信道估计。因此,在本申请实施例中,以CDM组来划分天线端口组,可以保证CDM组中的所有天线端口属于同一天线端口组,也即保证CDM组中所有天线端口之间均具有准共址关系,避免影响CDM组中不同天线端口发送的信号的正交性。
在这种情况下,所述准共址指示信息至少包括以下情形之一:
(2-1)所述准共址指示信息包括M个天线端口组的信息,所述天线端口组的信息包括一个或多个CDM组的标识。
举例来说,假设第一参考信号资源配置了CDM组#1~CDM组#3,其中CDM组#1为{天线端口#0,天线端口#1},CDM组#2为{天线端口#2,天线端口#3},CDM组#3为{天线端口#4,天线端口#5}。若准共址指示信息包括2个天线端口组的信息,其中天线端口组1的信息包括CDM组#1的标识和CDM组#3的标识,天线端口组2的信息包括CDM组#2的标识。这样一来,终端可以确定天线端口组1包含CDM组#1和CDM组#3,也就是说天线端口组1为{天线端口#0,天线端口#1,天线端口#4,天线端口#5};终端可以确定天线端口组2包含CDM组#2,也就是说天线端口组2为{天线端口#2,天线端口#3}。
(2-2)所述准共址指示信息包括M个天线端口组的信息,所述天线端口组的信息用于指示所述天线端口组包含的CDM组的数目。
这种情况下,终端根据所述准共址指示信息以及预设规则,确定M个天线端口组中每一个天线端口组所包含的CDM组。
示例性的,上述预设规则为:按照CDM组的标识从小到大的顺序,将指示数目 的CDM组划分给相应的天线端口组。所述指示数目即为上述天线端口组的信息所指示的天线端口组所包含的CDM组的数目。
举例来说,假设第一参考信号资源配置了CDM组#0~CDM组#4,若准共址指示信息包括了天线端口组1的信息和天线端口组2的信息,其中天线端口组1的信息用于指示天线端口组1包含两个CDM组,天线端口组2的信息用于指示天线端口组2包含三个CDM组。则终端可以确定天线端口组1为{CDM组#0,CDM组#1},天线端口组2为{CDM组#2、CDM组#3,CDM组#4}。
示例性的,上述预设规则为:按照CDM组的标识从大到小的顺序,将指示数目的CDM组划分给相应的天线端口组。
举例来说,假设第一参考信号资源配置了CDM组#0~CDM组#4,若准共址指示信息包括了天线端口组1的信息和天线端口组2的信息,其中天线端口组1的信息用于指示天线端口组1包含两个CDM组,天线端口组2的信息用于指示天线端口组2包含三个CDM组。则终端可以确定天线端口组1为{CDM组#3,CDM组#4},天线端口组2为{CDM组#0,CDM组#1,CDM组#2}。
(2-3)所述准共址指示信息还用于指示所述M的取值。
这种情况下,终端根据所述准共址指示信息、第一参考信号资源的天线端口的数目、以及预设对应关系,确定M个天线端口组中每一个天线端口组所包含的CDM组的标识。
其中,上述预设对应关系用于指示M个天线端口组中每一个天线端口组所包含的CDM组的标识。需要说明的是,预设对应关系可以是网络设备预先配置给终端的,或者协议中定义的。
示例性的,上述预设对应关系可参考表3。需要说明的是,在表3中,K表示第一参考信号资源的CDM组的数目。其中,第一参考信号资源的CDM组的数目是网络设备预先配置的,或者是协议中定义的。
表3
天线端口组的索引 M=2,K=2 M=4,K=8
天线端口组1 CDM组#0 CDM组#0,CDM组#1
天线端口组2 CDM组#1 CDM组#2,CDM组#3
天线端口组3   CDM组#4,CDM组#5
天线端口组4   CDM组#6,CDM组#7
……    
结合表3举例说明,假设第一参考信号的CDM组的数目为2,准共址指示信息指示M的取值为2,则参照表3的第二列,终端可以确定天线端口组1包含CDM组#0,天线端口组2包含CDM组#1。
结合表3举例说明,假设第一参考信号的CDM组的数目为8,准共址指示信息指示M的取值为4,则参照表3的第三列,终端可以确定天线端口组1包含的CDM组#0和CDM组#1,天线端口组2包含CDM组#2和CMD组#3,天线端口组3包含CDM组#4和CDM组#5,天线端口组4包含CDM组#6和CDM组#7。
(2-4)所述准共址指示信息还用于指示CDM组的分组方式,所述分组方式包括时域分组方式和频域分组方式中的至少一项。
这种情况下,终端根据第一参考信号资源中CDM组的资源图样信息,以及所述分组方式,确定M个天线端口组中每一个天线端口组所包含的CDM组。其中,CDM组的资源图样信息用于指示第一参考信号资源的各个CDM组对应的时域资源。
在本申请实施例中,准共址指示信息可以以至少一个比特来表示分组方式,例如,“0”表示分组方式为时域分组方式,“1”表示分组方式为频域分组方式。
其中,时域分组方式是指将同一时域资源上的CDM组划分为一个天线端口组。可选的,时域资源包括一个或多个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号。
结合图5举例说明,CDM组#1和CDM组#2位于同一时域资源上,CDM组#3和CDM组#4位于同一时域资源上。若准共址指示信息指示CDM组的分组方式为时域分组方式,则终端可以确定CDM组#1和CDM组#2属于天线端口组1,CDM组#3和CDM组#4属于天线端口组2。
频域分组方式是指将同一频域资源上的CDM组划分为一个天线端口组。可选的,频域资源包括一个或多个子载波。
结合图6举例说明,CDM组#1和CDM组#3位于同一频域资源上,CDM组#2和CDM组#4位于同一频域资源上。若准共址指示信息指示CDM组的分组方式为频域分组方式,则终端可以确定CDM组#1和CDM组#3属于天线端口组1,CDM组#2和CDM组#4属于天线端口组2。
需要说明的是,上述时域分组方式以及频域分组方式还可以结合使用。为了便于描述,可以将时域分组方式和频域分组方式结合使用的方式,简称为时频分组方式。时频分组方式是将同一时频资源上的CDM组划分为一个天线端口组。可选的,所述时频资源包括一个或多个RE。可选的,时频分组方式适用于第一参考信号资源的天线端口较多的场景下,例如,第一参考信号资源包括32或更多的天线端口。
上述情形(1-1)至(1-3),或者上述情形(2-1)至(2-4)仅是准共址指示信息的示例,本申请实施例不限于此。
S102、网络设备向终端发送所述准共址指示信息,以使得所述终端接收到所述准共址指示信息。
可选的,所述准共址指示信息承载于无线资源控制(radio resource control,RRC)信令、介质访问控制(media access control,MAC)-控制单元(control element,CE)信令、或者下行控制信息(downlink control information,DCI)中。
另外,所述准共址指示信息可以承载于现有的信令中,或者承载于新的信令中。可以理解的是,若所述准共址指示信息承载于现有的信令中,则现有的信令使用新的字段以承载该准共址指示信息,或者现有的信令复用已有的字段以承载该准共址指示信息。
以所述准共址指示信息承载于现有的信令为例,准共址指示信息可以承载于DCI中的CSI请求域、SRS请求域、传输配置指示域(transmission configuration indicator,TCI)、SRS资源指示域、速率匹配指示域的其中至少一种。
以所述准共址指示信息承载于新的信令为例,所述新的信令可以包括在CSI-RS资源的配置信息中。
S103、终端根据所述准共址指示信息,确定第一参考信号资源所配置的多个天线端口之间的准共址关系。
可以理解的是,终端确定第一参考信号资源中多个天线端口之间的准共址关系是指,终端确定第一参考信号资源中哪些天线端口之间具有准共址关系,哪些天线端口之间不具有准共址关系。
基于图4所示的技术方案,网络设备通过下发准共址指示信息,以使终端获知第一参考信号资源对应的M个天线端口组。从而对于第一参考信号资源的多个天线端口来说,终端可以通过判断两个天线端口是否属于同一天线端口组,确定这两个天线端口是否是准共址的。以此类推,终端可以获知第一参考信号资源中多个天线端口之间的准共址关系。
如图7所示,为本申请实施例提供的另一种准共址指示方法,该方法包括以下步骤:
S201、网络设备生成第一参考信号资源对应的准共址指示信息。
可选的,所述准共址指示信息用于指示所述第一参考信号资源的多个天线端口中至少两个天线端口之间不具有准共址关系。
作为一种实现方式,所述准共址指示信息用于指示信道测量的资源和干扰测量的资源均为所述第一参考信号资源。可以理解的是,由于第一参考信号资源同时作为信道测量的资源和干扰测量的资源,因此在第一参考信号资源的多个天线端口中,一部分天线端口发送的信号对于另一部分天线端口来说是干扰信号。从而,终端可以确定第一参考信号资源的多个天线端口中至少两个天线端口之间不具有准共址关系。
S202、与步骤S102相似,详细描述可参考步骤S102,在此不再赘述。
S203a、根据第一准共址规则,将所述第一参考信号资源所配置的多个天线端口划分为M个天线端口组。
其中,M个天线端口组中每一个天线端口组包含一个或多个天线端口。
可选的,M的取值由协议定义。方式一,协议可以直接定义M的取值。例如,协议定义M的取值为2。方式二、协议可以定义M的取值与第一参考信号资源的天线端口的数目之间的对应关系。从而终端根据第一参考信号资源的天线端口的数目,可以确定M的取值。示例性的,M的取值与第一参考信号资源的天线端口的数目之间的对应关系可以如表4所示。在表4中,P表示第一参考信号资源的天线端口的数目。
表4
P的取值 M的取值
4 2
8 4
16 4
可选的,M个天线端口组中每一个天线端口组所包含的天线端口的数目也是由协议定义的,或者M个天线端口组中每一个天线端口组所包含的天线端口的数目是根据M的取值以及第一参考信号资源的天线端口的数目来确定的。
需要说明的是,所述第一准共址规则是预先配置的,或者是协议中定义的。可选的,在第一准共址规则是预先配置的情况下,上述准共址指示信息还包括:第一准共址规则的信息,所述第一准共址规则的信息可以是第一准共址规则的索引、第一准共址规则的标识等。
示例性的,所述第一准共址规则至少包括以下规则之一:
规则一、按照天线端口的端口号从小到大的顺序,将预设数目的天线端口划分为一个天线端口组。
举例来说,假设预设数目为2,第一参考信号资源配置了天线端口#0~天线端口#3,则终端将天线端口#0和天线端口#1划分为一个天线端口组,将天线端口#2和天线端口#3划分为一个天线端口组。换句话说,终端可以确定第一个天线端口组为{天线端口#0,天线端口#1},第二个天线端口组为{天线端口#2,天线端口#3}。
规则二、按照天线端口的端口号从大到小的顺序,将预设数目的天线端口划分为一个天线端口组。
举例来说,假设预设数目为2,第一参考信号资源配置了天线端口#0~天线端口#7,则终端将天线端口#7和天线端口#6划分为一个天线端口组,将天线端口#5和天线端口#4划分为一个天线端口组,将天线端口#3和天线端口#2划分为一个天线端口组,将天线端口#1和天线端口#0划分为一个天线端口组。换句话说,终端可以确定第一个天线端口组为{天线端口#6,天线端口#7},第二个天线端口组为{天线端口#4,天线端口#5},第三个天线端口组为{天线端口#2,天线端口#3},第四个天线端口组为{天线端口#0,天线端口#1}。
上述规则一和规则二仅是对第一准共址规则的示例,本申请实施例不限于此。
可以理解的是,如表5所示,上述第一准共址规则还可以以表格的形式实现。在表5中,P为第一参考信号资源的天线端口的数目。
表5
天线端口组的索引 P=4 P=8
天线端口组1 天线端口#0,天线端口#1 天线端口#0,天线端口#1
天线端口组2 天线端口#2,天线端口#3 天线端口#2,天线端口#3
天线端口组3   天线端口#4,天线端口#5
天线端口组4   天线端口#6,天线端口#7
……    
这种情况下,在终端接收到准共址指示信息之后,终端根据第一准共址规则以及第一参考信号资源的天线端口的数目,将第一参考信号资源的多个天线端口划分为M个天线端口组。
可选的,步骤S203a可替换为步骤S203b。
S203b、根据第二准共址规则,将所述第一参考信号资源所配置的多个CDM组划分为M个天线端口组。
可以理解的是,M个天线端口组中的每一个天线端口组包括一个或多个CDM组,由于CDM组包含多个天线端口,从而M个天线端口组中的每一个天线端口组包括多个天线端口。
其中,所述第二准共址规则是预先配置的,或者是协议中定义的。可选的,在第二准共址规则是预先配置的情况下,上述准共址指示信息还包括:第二准共址规则的信息,所述第二准共址规则的信息可以是第二准共址规则的索引、第二准共址规则的标识等。
示例性的,所述第二准共址规则至少包括以下规则之一:
规则一、按照CDM组的标识从小到大的顺序,将预设数目的CDM组划分为一个天线端口组。
举例来说,假设预设数目为2,第一参考信号资源配置了CDM组#0~CDM组#3,则终端将CDM组#0和CDM组#1划分为一个天线端口组,将CDM组#2和CDM组#3划分为一个天线端口组。换句话说,终端可以确定第一个天线端口组为{CDM组#0,CDM组#1},第二个天线端口组为{CDM组#2,CDM组#3}。
规则二、按照CDM组的标识从大到小的顺序,将预设数目的CDM组划分为一个天线端口组。
举例来说,假设预设数目为2,第一参考信号资源配置了CDM组#0~CDM组#7,则终端将CDM组#7和CDM组#6划分为一个天线端口组,将CDM组#5和CDM组#4划分为一个天线端口组,将CDM组#3和CDM组#2划分为一个天线端口组,将CDM组#1和CDM组#0划分为一个天线端口组。换句话说,终端可以确定第一个天线端口组为{CDM组#6,CDM组#7},第二个天线端口组为{CDM组#4,CDM组#5},第三个天线端口组为{CDM组#2,CDM组#3},第四个天线端口组为{CDM组#0,CDM组#1}。
上述规则一和规则二仅是对第二准共址规则的示例,本申请实施例不限于此。
可以理解的是,如表6所示,上述第二准共址规则还可以以表格的形式实现。在表6中,K为第一参考信号资源的CDM组的数目。
表6
天线端口组的索引 K=4 K=8
天线端口组1 CDM组#0,CDM组#1 CDM组#0,CDM组#1
天线端口组2 CDM组#2,CDM组#3 CDM组#2,CDM组#3
天线端口组3   CDM组#4,CDM组#5
天线端口组4   CDM组#6,CDM组#7
……    
这种情况下,在终端接收到准共址指示信息之后,终端根据第二准共址规则以及第一参考信号资源的CDM组的数目,将第一参考信号资源的多个CDM组划分为M个天线端口组。
基于图7所示的技术方案,网络设备发送准共址指示信息,以使得终端获知第一参考信号资源的多个天线端口中任意两个天线不一定具有准共址关系,从而终端根据预设的准共址规则,确定M个天线端口组。从而对于第一参考信号资源的多个天线端口来说,终端可以通过判断两个天线端口是否属于同一天线端口组,确定这两个天线端口是否是准共址的。以此类推,终端可以获知第一参考信号资源的多个天线端口之间的准共址关系。
如图8所示,为本申请实施例提供的另一种准共址指示方法,该方法包括以下步骤:
S301、网络设备生成第一指示信息。
其中,所述第一指示信息用于指示与所述第一参考信号资源的天线端口组具有准共址关系的第二参考信号资源的天线端口组。可以理解的是,两个天线端口组具有准共址关系,说明这两个天线端口组中包含的天线端口具有准共址关系。在这种情况下,所述第一指示信息包括以下参数的至少一项:第一参考信号资源的索引、第一参考信号资源的天线端口组的标识、第二参考信号资源的索引、以及第二参考信号资源的天线端口组的标识。
或者,所述第一指示信息用于指示与所述第一参考信号资源的天线端口具有准共址关系的第二参考信号资源的天线端口。在这种情况下,所述第一指示信息包括以下参数的至少一项:第一参考信号资源的索引、第一参考信号资源的天线端口的端口号、第二参考信号资源的索引、以及第二参考信号资源的天线端口的端口号。
可以理解的是,第一指示信息可以不包含第二参考信号资源的天线端口组的标识(或者天线端口的端口号),在这种情况下,第二参考信号资源所包含的所有天线端口与第一指示信息所对应的第一参考信号资源的天线端口组(或者天线端口)均具有准共址关系。
需要说明的是,第二参考信号资源即为第二参考信号的资源。示例性的,第二参考信号为DMRS,TRS,CSI-RS,或者SRS等,本申请实施例不限于此。可以理解的是,第一参考信号资源与第二参考信号资源不是同一参考信号资源。换句话说,第一参考信号资源的类型与第二参考信号资源的类型不相同。例如,第一参考信号资源为DMRS资源,第二参考信号资源为CSI-RS资源。或者,第一参考信号资源的索引与第二参考信号资源的索引不相同。例如,第一参考信号资源为CSI-RS资源#1,第二参考信号资源为CSI-RS资源#2。
在本申请实施例中,第一指示信息可以为第一参考信号资源中不同的天线端口组(或者天线端口)指示不同类型的第二参考信号资源。例如,第一指示信息指示天线端口组1对应的第二参考信号资源为DMRS资源,天线端口组2对应的第二参考信号资源为TRS资源。
在本申请实施例中,第一指示信息可以为第一参考信号资源中不同的天线端口组(或者天线端口)指示不同索引的第二参考信号资源。例如,第一指示信息指示天线端口组1对应的第二参考信号资源为DMRS资源#1,天线端口组2对应的第二参考信号资源为DMRS资源#2。
可选的,第一指示信息可以作为第一参考信号资源的配置信息。所述第一指示信息中包含第二参考信号资源的信息,例如第二参考信号资源的索引。举例来说,第一参考信号资源为CSI-RS资源。CSI-RS资源的配置信息中包括第一指示信息。第一指示信息包含了至少2个第二参考信号资源的索引,例如2个CSI-RS资源的索引;或者,第一指示信息包含了1个第二参考信号资源的索引,所述第二参考信号资源包括至少2组非准共址假设的天线端口组。
可选的,第一指示信息可以作为第二参考信号资源的配置信息。所述第一指示信 息中包含第一参考信号资源的信息,如包含第一参考信号资源的索引。
可选的,所述第一指示信息还包括准共址类型,准共址类型用于指示信道大尺度信息所包含的参数。举例来说,准共址类型1用于指示信道大尺度信息包含多普勒频移和多普勒扩展。准共址类型2用于指示信道大尺度信息包含平均信道增益和平均时延。
可选的,若所述第一指示信息不包括准共址类型,则信道大尺度信息包含的参数由协议定义。
S302、网络设备向终端发送所述第一指示信息,以使得所述终端接收到所述第一指示信息。
其中,所述第一指示信息可以承载于RRC信令、MAC信令和DCI中的一种或者至少两种的组合中。
作为一种实现方式,第一指示信息可以为TCI状态(state)。
基于图8所示的技术方案,终端根据第一指示信息,获知与第一参考信号资源的天线端口(或者天线端口组)具有准共址关系的第二参考信号资源的天线端口(或者天线端口组),从而终端可以从该第二参考信号资源的天线端口(或者天线端口组)的信道大尺度信息,推测出具有准共址关系的第一参考信号资源的天线端口(或者天线端口组)的信道大尺度信息。
如图9所示,为本申请实施例提供的另一种准共址指示方法,该方法包括以下步骤:
S401、网络设备生成第二指示信息。
其中,所述第二指示信息用于指示与第二参考信号资源的天线端口组具有准共址关系的第一参考信号资源的天线端口组。在这种情况下,所述第二指示信息包括以下参数的至少一项:第一参考信号资源的索引、第一参考信号资源的天线端口组的标识、第二参考信号资源的索引、以及第二参考信号资源的天线端口组的标识。
或者,所述第二指示信息用于指示与第二参考信号资源的天线端口具有准共址关系的第一参考信号资源的天线端口。在这种情况下,所述第二指示信息包括以下参数的至少一项:第一参考信号资源的索引、第一参考信号资源的天线端口组的标识、第二参考信号资源的索引、以及第二参考信号资源的天线端口组的标识。
在本申请实施例中,第二指示信息可以为第二参考信号资源中不同的天线端口组(或者天线端口)指示不同类型的第一参考信号资源。例如,第二指示信息指示天线端口组1对应的第一参考信号资源为DMRS资源,天线端口组2对应的第一参考信号资源为TRS资源。
在本申请实施例中,第二指示信息可以为第二参考信号资源中不同的天线端口组(或者天线端口)指示不同索引的第一参考信号资源。例如,第二指示信息指示天线端口组1对应的第一参考信号资源为DMRS资源#1,天线端口组2对应的第一参考信号资源为DMRS资源#2。
可选的,第二指示信息可以作为第二参考信号资源的配置信息。在这种情况下,所述第二指示信息中包含第一参考信号资源的信息,例如第一参考信号资源的索引。
举例来说,第一参考信号资源为CSI-RS资源。第二参考信号资源为DMRS资源。 从而,用于指示DMRS接收的PDSCH的配置信息包括第二指示信息。其中,第二指示信息用于指示与PDSCH中的DMRS具有准共址关系的CSI-RS资源的信息。所述准共址关系包括了PDSCH中的至少两个DMRS天线端口组与至少两个CSI-RS天线端口组之间的准共址关系。所述至少两个CSI-RS天线端口组属于这一个CSI-RS资源。这样一来,终端可以根据该第二指示信息所指示的准共址关系,接收PDSCH。
可选的,第二指示信息可以作为第一参考信号资源的配置信息。在这种情况下,所述第一指示信息包含第二参考信号资源的信息,例如第二参考信号资源的索引。
可选的,所述第二指示信息还包括准共址类型,所述准共址类型用于指示信道大尺度信息所包含的参数。或者,若所述第二指示信息不包括准共址类型,则信道大尺度信息包含的参数由协议定义。
S402、网络设备向终端发送所述第二指示信息,以使得所述终端接收到所述第二指示信息。
其中,所述第二指示信息可以承载于RRC信令、MAC信令和DCI中的一种或者至少两种的组合中。
作为一种实现方式,第二指示信息可以为TCI-state。
基于图9所示的技术方案,终端根据第二指示信息,获知与第二参考信号资源的天线端口(或者天线端口组)具有准共址关系的第一参考信号资源的天线端口(或者天线端口组),从而终端可以从该第一参考信号资源的天线端口(或者天线端口组)的信道大尺度信息,推测出具有准共址关系的第二参考信号资源的天线端口(或者天线端口组)的信道大尺度信息。
如图10所示,为本申请实施例提供的一种下行信道状态信息的上报方法,该方法包括以下步骤:
S501、终端根据第一参考信号资源中多个天线端口之间的准共址关系,确定下行信道状态信息。
其中,下行信道状态信息包括以下参数中的至少一项:预编码矩阵指示(precoding matrix indicator,PMI)、秩指示(rank indication,RI)、以及信道质量指示(channel quality indicator,CQI)。
下面对步骤S501的思路进行简单介绍。
在单小区空分复用的场景下,每个数据流可以用P个天线端口中的每一个天线端口来传输,如以下公式(1)所示:
Figure PCTCN2020071536-appb-000002
其中,x (0)(i)至x (v-1)(i)分别是层0至层v-1上的数据,y (3000)(i)至y (3000+p-1)(i)分别是天线端口#3000至天线端口#(3000+p-1)上的数据。可以理解的是,v是层的数目,相当于数据流的数目。0至v-1均是层的索引。3000至3000+p-1均是天线端口的端口号。上述层的索引以及天线端口的端口号仅是示例,不对本申请实施例构成限定。
可选的,p=[1,2,4,8,12,16,24,32]。p是网络设备期望终端进行信道测量时假设网 络侧的发送天线端口的数目,例如CSI-RS的天线端口的数目。
其中,W(i)可以称为权值矩阵,或者称为预编码矩阵。W(i)中每个元素w ij反映了数据流i映射到天线端口#(3000+j)的时候所承载的权重系数。w ij可以是复数,也可以是实数。w ij反映了承载于天线端口#(3000+j)上的信号在相位和/或幅度的调整。
W(i)可以是终端选择的预编码矩阵,也可以是预定义的预编码矩阵,本申请实施例不限于此。
另外,在信道测量后,终端可以向网络设备反馈权值矩阵。例如,终端以码书(codebook)来量化权值矩阵,确定码书中与该权值矩阵最相近的码字。之后,终端向网络设备反馈指示信息,该指示信息用于指示该码字的索引。可以理解的是,该指示信息即为PMI。
示例性的,以v=2,p=8为例,上述公式(1)可变形为如下公式(2):
Figure PCTCN2020071536-appb-000003
在多个TRP/天线面板的场景下,若多个TRP/天线面板的天线端口是非准共址的,则多个TRP/天线面板只能用于非相干传输。这种情况下,一个TRP/天线面板只能用于传输该TRP/天线面板的数据流。换而言之,一个TRP/天线面板的数据流不会映射到另一个TRP/天线面板的天线端口。
从天线端口的角度进行分析,一个TRP/天线面板包括多个准共址的天线端口,这多个准共址的天线端口用于发送该TRP/天线面板的数据流,而不用于发送其他TRP/天线面板的数据流。
从而,终端可以作出如下的数据流的传输假设:在预编码矩阵中,对于一个数据流对应的多个权重系数来说,用于发送该数据流的天线端口对应的权重系数可以为非零元素,不用于发送该数据流的天线端口对应的权重系数均为零元素。
天线端口组与数据流之间的对应关系用于指示准共址的多个天线端口具体发送哪一个数据流。天线端口组与数据流之间的对应关系由终端确定,或者网络设备配置确定,或者协议定义。
本申请实施例中,终端可以基于预设的规则假设天线端口组与数据流之间的对应关系。例如,预设的规则为特定的天线端口组编号应用于特定的数据流。举例来说,编号较小的天线端口组应用于编号较小的DMRS组传输的数据流;或者,编号较小的天线端口组应用于编号最小的数据流所在的DMRS端口组所传输的所有数据流。
可选的,所述天线端口组与数据流之间的对应关系还可以是终端上报的。例如,终端通过发送指示信息给网络设备,使得网络设备知道终端是假设哪个(些)CSI-RS天线端口组是传输哪个(些)数据流的。所述指示信息可以与RI联合上报,或者所述 指示信息可以单独上报。作为一种实现方式,所述指示信息可以是CSI-RS资源指示信息。
结合上述公式(2)举例说明,若参考信号资源配置了8个天线端口,8个天线端口分为两个天线端口组,天线端口组1为{天线端口#3000,天线端口#3001,天线端口#3002,天线端口#3003},天线端口组2为{天线端口#3004,天线端口#3005,天线端口#3006,天线端口#3007}。假设天线端口组1中的多个天线端口用于发送数据流#0,天线端口组2中的多个天线端口用于发送数据流#1。因此,在数据流#1对应的权重系数w 10至w 17中,终端可以确定天线端口#3000对应的w 10、天线端口#3001对应的w 11、天线端口#3002对应的w 12、以及天线端口#3003对应的w 13均为0。同样地,在数据流#0对应的权重系数w 00至w 07中,终端可以确定天线端口#3004对应的w 04、天线端口#3005对应的w 05,天线端口#3006对应的w 06、天线端口#3007对应的w 07均为0。因此,上述公式(2)可变形为如下公式(3):
Figure PCTCN2020071536-appb-000004
这意味着,CSI-RS资源被划分为2个天线端口组,而不同天线端口组内的天线端口不应当被假设为是QCL的。这样,不同天线端口组内的天线端口不应当被终端认为可以传输同一个数据流。也就是说,不同天线端口组内的两个天线端口对应同一个数据流的权值不应当都是非零值。否则,会导致终端假设的发送数据流的行为与网络设备的理解不一致,从而导致上报的信道状态信息不准确,降低了系统性能。
综上,终端根据正确的天线端口的准共址假设,以及数据流的传输假设,计算预编码矩阵,确定PMI,进而确定CQI。
S502、终端向网络设备发送下行信道状态信息,以使得网络设备接收到下行信道状态信息。
基于图10所示的方法,终端根据第一参考信号资源中多个天线端口之间的准共址关系,作出恰当的准共址假设,确定合适的下行信道状态信息,以保证信道测量的结果是正确的。
上述主要从每一个网元之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,每一个网元,例如网络设备和终端,为了实现上述功能,其包含了执行每一个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件来实现,或者以硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超 出本申请的范围。
本申请实施例可以根据上述方法示例对网络设备和终端进行功能模块的划分,例如,可以对应每一个功能划分每一个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以采用对应每一个功能划分每一个功能模块为例进行说明:
图11为本申请实施例提供的一种终端的结构示意图。如图11所示,终端包括:通信模块301和处理模块302。上述终端可以执行以下动作中的任意一种:
动作一、通信模块301,用于接收第一参考信号资源对应的准共址指示信息,该准共址指示信息用于指示M个天线端口组,M个天线端口组中每一个天线端口组包含一个或多个第一参考信号资源的码分复用(code division multiplexing,CDM)组,CDM组包含多个天线端口,同一天线端口组中的任意两个天线端口之间存在准共址关系,M为大于1的整数。处理模块302,用于根据准共址指示信息,确定第一参考信号资源中多个天线端口之间的准共址关系。
在动作一中,一种可能的实现方式,准共址指示信息包括M个天线端口组的信息。其中,天线端口组的信息包括一个或多个CDM组的标识;或者,天线端口组的信息用于指示天线端口组包含的CDM组的数目。
在动作一中,一种可能的实现方式,准共址指示信息还用于指示M的取值。
在动作一中,一种可能的实现方式,准共址指示信息还用于指示CDM组的分组方式,分组方式包括时域分组方式和频域分组方式中的至少一项。
动作二、通信模块301,用于接收第一参考信号资源对应的准共址指示信息,该准共址指示信息用于指示M个天线端口组,M个天线端口组中每一个天线端口组包含一个或多个第一参考信号资源的天线端口,同一天线端口组中的任意两个天线端口之间存在准共址关系,M为大于1的整数。处理模块302,用于根据准共址指示信息,确定第一参考信号资源中多个天线端口之间的准共址关系。
在动作二中,一种可能的实现方式,准共址指示信息包括M个天线端口组的信息。其中,天线端口组的信息包括多个天线端口的端口号;或者,天线端口组的信息用于指示天线端口组所包含的天线端口的数目。
在动作二中,一种可能的实现方式,准共址指示信息还用于指示M的取值。
动作三、通信模块301,用于接收第一参考信号资源对应的准共址指示信息,该准共址指示信息用于指示第一参考信号资源的多个天线端口中至少两个天线端口之间不具有准共址关系。处理模块302,用于根据第一准共址规则,将第一参考信号资源的多个天线端口划分为M个天线端口组,M为大于1的整数。
在动作三中,一种可能的实现方式,准共址指示信息用于指示信道测量的资源和干扰测量的资源均为第一参考信号资源。
在动作三中,一种可能的实现方式,准共址指示信息还包括第一准共址规则的索引。
在动作三中,一种可能的实现方式,第一准共址规则包括以下规则之一:(1)按 照天线端口的端口号从小到大的顺序,将预设数目的天线端口划分为一个天线端口组。(2)按照天线端口的端口号从大到小的顺序,将预设数目的天线端口划分为一个天线端口组。
动作四、通信模块301,用于接收第一参考信号资源对应的准共址指示信息,该准共址指示信息用于指示第一参考信号资源的多个天线端口中至少两个天线端口之间不具有准共址关系。处理模块302,用于根据第二准共址规则,将第一参考信号的多个CDM组划分为M个天线端口组,M为大于1的整数。
在动作四中,一种可能的实现方式,准共址指示信息用于指示信道测量的资源和干扰测量的资源均为第一参考信号资源。
在动作四中,一种可能的实现方式,准共址指示信息还包括第二准共址规则的索引。
在动作四中,一种可能的实现方式,第二准共址规则包括以下规则之一:(1)按照CDM组的标识从小到大的顺序,将预设数目的CDM组划分为一个天线端口组。(2)按照CDM组的标识从大到小的顺序,将预设数目的CDM组划分为一个天线端口组。
在上述动作一至动作四中,一种可能的实现方式,通信模块301,还用于接收第一指示信息;其中,第一指示信息用于指示与第一参考信号资源的天线端口组具有准共址关系的第二参考信号资源的天线端口组;或者,第一指示信息用于指示与第一参考信号资源的天线端口具有准共址关系的第二参考信号资源的天线端口。
在上述动作一至动作四中,一种可能的实现方式,通信模块301,还用于接收第二指示信息;其中,第二指示信息用于指示与第二参考信号资源的天线端口组具有准共址关系的第一参考信号资源的天线端口组;或者,第二指示信息用于指示与第二参考信号资源的天线端口具有准共址关系的第一参考信号资源的天线端口。
在上述动作一至动作四中,一种可能的实现方式,处理模块302,还用于根据第一参考信号资源的多个天线端口之间的准共址关系,确定下行信道状态信息。通信模块301,还用于向网络设备发送下行信道状态信息。
作为一个示例,结合图3所示的终端,图11中的通信模块301可以由图3中的收发器103来实现,图11中的处理模块302可以由图3中的处理器101来实现,本申请实施例对此不作任何限制。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机指令;当所述计算机可读存储介质在图3所示的终端上运行时,使得该终端执行如图4、图7至图10所示的方法。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
本申请实施例还提供一种芯片,该芯片包括处理模块和通信接口,所述通信接口用于将接收的代码指令传输至处理模块,该代码指令可以是来自芯片内部的存储器,也可以来自芯片外部的存储器或者其他器件,所述处理用于执行代码指令用于支持终端执行如图4、图7至图10所示的方法。其中,处理模块为该芯片上集成的处理器或者微处理器或者集成电路。通信接口可以为输入输出电路或者收发管脚。
本申请实施例还提供了一种包含计算机指令的计算机程序产品,当其在图3所示的终端上运行时,使得终端可以执行图4、图7至图10所示的方法。
上述本申请实施例提供的终端、计算机存储介质、芯片以及计算机程序产品均用于执行上文所提供的方法,因此,其所能达到的有益效果可参考上文所提供的方法对应的有益效果,在此不再赘述。
图12为本申请实施例提供的一种网络设备的结构示意图。如图12所示,网络设备包括:通信模块401和处理模块402。上述网络设备还可以执行以下动作中的任意一种:
动作一、处理模块402,用于生成准共址指示信息,该准共址指示信息用于指示M个天线端口组,M个天线端口组中每一个天线端口组包含一个或多个第一参考信号资源的CDM组,CDM组包含多个天线端口,同一天线端口组中的任意两个天线端口之间存在准共址关系,M为大于1的整数。通信模块401,用于向终端发送该准共址指示信息。
在动作一中,一种可能的实现方式,准共址指示信息包括M个天线端口组的信息。其中,天线端口组的信息包括一个或多个CDM组的标识;或者,天线端口组的信息用于指示天线端口组包含的CDM组的数目。
在动作一中,一种可能的实现方式,准共址指示信息还用于指示M的取值。
在动作一中,一种可能的实现方式,准共址指示信息还用于指示CDM组的分组方式,分组方式包括时域分组方式和频域分组方式中的至少一项。
动作二、处理模块402,用于生成准共址指示信息,该准共址指示信息用于指示M个天线端口组,M个天线端口组中每一个天线端口组包含一个或多个第一参考信号资源的天线端口,同一天线端口组中的任意两个天线端口之间存在准共址关系,M为大于1的整数。通信模块401,用于向终端发送该准共址指示信息。
在动作二中,一种可能的实现方式,准共址指示信息包括M个天线端口组的信息。其中,天线端口组的信息包括多个天线端口的端口号;或者,天线端口组的信息用于指示天线端口组所包含的天线端口的数目。
在动作二中,一种可能的实现方式,准共址指示信息还用于指示M的取值。
动作三、处理模块402,用于生成第一参考信号资源对应的准共址指示信息,该准共址指示信息用于指示第一参考信号资源的N个天线端口中至少两个天线端口之间不具有准共址关系。通信模块401,用于向终端发送该准共址指示信息。
在动作三中,一种可能的实现方式,准共址指示信息用于指示信道测量的资源和干扰测量的资源均为第一参考信号资源。
在动作三中,一种可能的实现方式,该准共址指示信息还包括第一准共址规则的索引或者第二准共址规则的索引。其中,第一准共址规则用于使终端将第一参考信号 资源的多个天线端口划分为M个天线端口组。第二准共址规则用于使终端将第一参考信号资源的多个CDM组划分为M个天线端口组。M为大于1的整数。
在上述动作一至动作三中,一种可能的实现方式,处理模块402,还用于生成第一指示信息,其中,第一指示信息用于指示与第一参考信号资源的天线端口组具有准共址关系的第二参考信号资源的天线端口组;或者,第一指示信息用于指示与第一参考信号资源的天线端口具有准共址关系的第二参考信号资源的天线端口。通信模块401,还用于向终端发送第一指示信息。
在上述动作一至动作三中,一种可能的实现方式,处理模块402,还用于生成第二指示信息,其中,第二指示信息用于指示与第二参考信号资源的天线端口组具有准共址关系的第一参考信号资源的天线端口组;或者,第二指示信息用于指示与第二参考信号资源的天线端口具有准共址关系的第一参考信号资源的天线端口。通信模块401,还用于向终端发送第二指示信息。
在上述动作一至动作三中,一种可能的实现方式,通信模块401,还用于接收终端发送的下行信道状态信息,所述下行信道状态信息根据第一参考信号资源中多个天线端口之间的准共址关系确定。
作为一个示例,结合图3所示的网络设备,图12中的通信模块401可以由图3中的收发器203来实现,图12中的处理模块402可以由图3中的处理器201来实现,本申请实施例对此不作任何限制。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机指令;当所述计算机可读存储介质在图3所示的网络设备上运行时,使得该网络设备执行如图4、图7至图8所示的方法。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质、或者半导体介质(例如固态硬盘)等。
本申请实施例还提供一种芯片,该芯片包括处理模块和通信接口,所述通信接口用于将接收的代码指令传输至处理模块,该代码指令可以是来自芯片内部的存储器,也可以来自芯片外部的存储器或者其他器件,所述处理用于执行代码指令用于支持网络设备执行如图4、图7至图10所示的方法。其中,处理模块为该芯片上集成的处理器或者微处理器或者集成电路。通信接口可以为输入输出电路或者收发管脚。
本申请实施例还提供了一种包含计算机指令的计算机程序产品,当其在图3所示的网络设备上运行时,使得网络设备可以执行图4、图7至图10所示的方法。
上述本申请实施例提供的网络设备、计算机存储介质、芯片以及计算机程序产品均用于执行上文所提供的方法,因此,其所能达到的有益效果可参考上文所提供的方法对应的有益效果,在此不再赘述。
本申请实施例还提供一种通信系统,该通信系统包括终端和网络设备,终端和网 络设备用于执行图4、图7至图10所示的方法。
尽管在此结合各实施例对本申请进行了描述,然而,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (65)

  1. 一种准共址指示方法,其特征在于,所述方法包括:
    接收准共址指示信息,所述准共址指示信息用于指示第一参考信号资源对应的M个天线端口组,所述M个天线端口组中每一个天线端口组包含一个或多个所述第一参考信号资源的码分复用CDM组,所述CDM组包含多个天线端口,同一天线端口组中的任意两个天线端口之间存在准共址关系,M为大于1的整数;
    根据所述准共址指示信息,确定所述第一参考信号资源的多个天线端口之间的准共址关系。
  2. 根据权利要求1所述的准共址指示方法,其特征在于,所述准共址指示信息包括M个天线端口组的信息;
    其中,所述天线端口组的信息用于指示一个或多个CDM组的标识;
    或者,所述天线端口组的信息用于指示所述天线端口组包含的CDM组的数目。
  3. 根据权利要求1所述的准共址指示方法,其特征在于,所述准共址指示信息还用于指示所述M的取值。
  4. 根据权利要求1所述的准共址指示方法,其特征在于,所述准共址指示信息还用于指示CDM组的分组方式,所述分组方式为时域分组方式和频域分组方式中至少一种。
  5. 根据权利要求1至4任一项所述的准共址指示方法,其特征在于,所述方法还包括:
    接收第一指示信息;
    其中,所述第一指示信息用于指示与所述第一参考信号资源的天线端口组具有准共址关系的第二参考信号资源的天线端口组;或者,
    所述第一指示信息用于指示与所述第一参考信号资源的天线端口具有准共址关系的第二参考信号资源的天线端口。
  6. 根据权利要求1至4任一项所述的准共址指示方法,其特征在于,所述方法还包括:
    接收第二指示信息;
    其中,所述第二指示信息用于指示与第二参考信号资源的天线端口组具有准共址关系的所述第一参考信号资源的天线端口组;或者,
    所述第二指示信息用于指示与第二参考信号资源的天线端口具有准共址关系的所述第一参考信号资源的天线端口。
  7. 根据权利要求1至6任一项所述的准共址指示方法,其特征在于,所述方法还包括:
    根据第一参考信号资源的多个天线端口之间的准共址关系,确定下行信道状态信息。
  8. 一种准共址指示方法,其特征在于,所述方法包括:
    生成准共址指示信息,所述准共址指示信息用于指示第一参考信号资源对应的M个天线端口组,所述M个天线端口组中每一个天线端口组包含一个或多个所述第一参考信号资源的码分复用CDM组,所述CDM组包含多个天线端口,同一天线端口组中 的任意两个天线端口之间存在准共址关系,M为大于1的整数;
    发送所述准共址指示信息。
  9. 根据权利要求8所述的准共址指示方法,其特征在于,所述准共址指示信息包括M个天线端口组的信息;
    其中,所述天线端口组的信息包括一个或多个CDM组的标识;
    或者,所述天线端口组的信息用于指示所述天线端口组包含的CDM组的数目。
  10. 根据权利要求8所述的准共址指示方法,其特征在于,所述准共址指示信息还用于指示所述M的取值。
  11. 根据权利要求8所述的准共址指示方法,其特征在于,所述准共址指示信息还用于指示CDM组的分组方式,所述分组方式包括时域分组方式和频域分组方式中的至少一项。
  12. 根据权利要求8至11任一项所述的准共址指示方法,其特征在于,所述方法还包括:
    接收第一指示信息;
    其中,所述第一指示信息用于指示与第一参考信号资源的天线端口组具有准共址关系的第二参考信号资源的天线端口组;或者,
    所述第一指示信息用于指示与第一参考信号资源的天线端口具有准共址关系的第二参考信号资源的天线端口。
  13. 根据权利要求8至11任一项所述的准共址指示方法,其特征在于,所述方法还包括:
    接收第二指示信息;
    其中,所述第二指示信息用于指示与第二参考信号资源的天线端口组具有准共址关系的第一参考信号资源的天线端口组;或者,
    所述第二指示信息用于指示与第二参考信号资源的天线端口具有准共址关系的第一参考信号资源的天线端口。
  14. 根据权利要求8至13任一项所述的准共址指示方法,其特征在于,所述方法还包括:
    接收下行信道状态信息,所述下行信道状态信息根据第一参考信号资源的多个天线端口之间的准共址关系来确定。
  15. 一种准共址指示方法,其特征在于,包括:
    接收准共址指示信息,所述准共址指示信息用于指示第一参考信号资源对应的M个天线端口组,所述M个天线端口组中每一个天线端口组包含一个或多个所述第一参考信号资源的天线端口,同一天线端口组中的任意两个天线端口之间存在准共址关系,M为大于1的整数;
    根据所述准共址指示信息,确定所述第一参考信号资源的多个天线端口之间的准共址关系。
  16. 根据权利要求15所述的准共址指示方法,其特征在于,所述准共址指示信息包括所述M个天线端口组的信息,天线端口组的信息包括多个天线端口的端口号;或者,天线端口组的信息用于指示天线端口组所包含的天线端口的数目。
  17. 根据权利要求15或16所述的准共址指示方法,其特征在于,所述准共址指示信息还用于指示M的取值。
  18. 一种准共址指示方法,其特征在于,包括:
    生成准共址指示信息,所述准共址指示信息用于指示第一参考信号资源对应的M个天线端口组,所述M个天线端口组中每一个天线端口组包含一个或多个所述第一参考信号资源的天线端口,同一天线端口组中的任意两个天线端口之间存在准共址关系,M为大于1的整数;
    向终端发送所述准共址指示信息。
  19. 根据权利要求18所述的准共址指示方法,其特征在于,所述准共址指示信息包括所述M个天线端口组的信息,天线端口组的信息包括多个天线端口的端口号;或者,天线端口组的信息用于指示天线端口组所包含的天线端口的数目。
  20. 根据权利要求18或19所述的准共址指示方法,其特征在于,所述准共址指示信息还用于指示M的取值。
  21. 一种准共址指示方法,其特征在于,包括:
    接收第一参考信号资源对应的准共址指示信息,所述准共址指示信息用于指示第一参考信号资源的多个天线端口中至少两个天线端口之间不具有准共址关系;
    根据第一准共址规则,将所述第一参考信号资源的多个天线端口划分为M个天线端口组,M为大于1的整数。
  22. 根据权利要求21所述的准共址指示方法,其特征在于,所述准共址指示信息用于指示第一参考信号资源的多个天线端口中至少两个天线端口之间不具有准共址关系,包括:所述准共址指示信息用于指示信道测量的资源和干扰测量的资源均为所述第一参考信号资源。
  23. 根据权利要求21或22所述的准共址指示方法,其特征在于,所述第一准共址规则包括以下规则之一:
    (1)按照天线端口的端口号从小到大的顺序,将预设数目的天线端口划分为一个天线端口组;
    (2)按照天线端口的端口号从大到小的顺序,将预设数目的天线端口划分为一个天线端口组。
  24. 根据权利要求21至23任一项所述的准共址指示方法,其特征在于,所述准共址指示信息还包括所述第一准共址规则的索引。
  25. 一种准共址指示方法,其特征在于,包括:
    接收第一参考信号资源对应的准共址指示信息,所述准共址指示信息用于指示第一参考信号资源的多个天线端口中至少两个天线端口之间不具有准共址关系;
    根据第二准共址规则,将第一参考信号的多个CDM组划分为M个天线端口组,M为大于1的整数。
  26. 根据权利要求25所述的准共址指示方法,其特征在于,所述准共址指示信息用于指示第一参考信号资源的多个天线端口中至少两个天线端口之间不具有准共址关系,包括:所述准共址指示信息用于指示信道测量的资源和干扰测量的资源均为所述第一参考信号资源。
  27. 根据权利要求25或26所述的准共址指示方法,其特征在于,所述第二准共址规则包括以下规则之一:
    (1)按照CDM组的标识从小到大的顺序,将预设数目的CDM组划分为一个天线端口组;
    (2)按照CDM组的标识从大到小的顺序,将预设数目的CDM组划分为一个天线端口组。
  28. 根据权利要求25至27任一项所述的准共址指示方法,其特征在于,所述准共址指示信息还包括所述第二准共址规则的索引。
  29. 一种准共址指示方法,其特征在于,包括:
    生成第一参考信号资源对应的准共址指示信息,该准共址指示信息用于指示第一参考信号资源的N个天线端口中至少两个天线端口之间不具有准共址关系;
    向终端发送所述准共址指示信息。
  30. 根据权利要求29所述的准共址指示方法,其特征在于,所述准共址指示信息用于指示第一参考信号资源的多个天线端口中至少两个天线端口之间不具有准共址关系,包括:所述准共址指示信息用于指示信道测量的资源和干扰测量的资源均为所述第一参考信号资源。
  31. 根据权利要求29或30所述的准共址指示方法,其特征在于,所述准共址指示信息还包括第一准共址规则的索引或者第二准共址规则的索引;所述第一准共址规则用于使所述终端将第一参考信号资源的多个天线端口划分为M个天线端口组;所述第二准共址规则用于使所述终端将第一参考信号资源的多个CDM组划分为所述M个天线端口组;M为大于1的整数。
  32. 一种终端,其特征在于,包括:
    通信模块,用于接收准共址指示信息,所述准共址指示信息用于指示第一参考信号资源对应的M个天线端口组,所述M个天线端口组中每一个天线端口组包含一个或多个所述第一参考信号资源的码分复用CDM组,所述CDM组包含多个天线端口,同一天线端口组中的任意两个天线端口之间存在准共址关系,M为大于1的整数;
    处理模块,用于根据所述准共址指示信息,确定所述第一参考信号资源的多个天线端口之间的准共址关系。
  33. 根据权利要求32所述的终端,其特征在于,所述准共址指示信息包括M个天线端口组的信息;
    其中,所述天线端口组的信息包括一个或多个CDM组的标识;
    或者,所述天线端口组的信息用于指示所述天线端口组包含的CDM组的数目。
  34. 根据权利要求32所述的终端,其特征在于,所述准共址指示信息还用于指示所述M的取值。
  35. 根据权利要求32所述的终端,其特征在于,所述准共址指示信息还用于指示CDM组的分组方式,所述分组方式包括时域分组方式和频域分组方式中的至少一项。
  36. 根据权利要求32至35任一项所述的终端,其特征在于,
    所述通信模块,还用于接收第一指示信息;
    其中,所述第一指示信息用于指示与第一参考信号资源的天线端口组具有准共址 关系的第二参考信号资源的天线端口组;或者,
    所述第一指示信息用于指示与第一参考信号资源的天线端口具有准共址关系的第二参考信号资源的天线端口。
  37. 根据权利要求32至35任一项所述的终端,其特征在于,
    所述通信模块,还用于接收第二指示信息;
    其中,所述第二指示信息用于指示与第二参考信号资源的天线端口组具有准共址关系的第一参考信号资源的天线端口组;或者,
    所述第二指示信息用于指示与第二参考信号资源的天线端口具有准共址关系的第一参考信号资源的天线端口。
  38. 根据权利要求32至37任一项所述的终端,其特征在于,
    所述处理模块,还用于根据第一参考信号资源的多个天线端口之间的准共址关系,确定下行信道状态信息。
  39. 一种网络设备,其特征在于,包括:
    处理模块,用于生成准共址指示信息,所述准共址指示信息用于指示第一参考信号资源对应的M个天线端口组,所述M个天线端口组中每一个天线端口组包含一个或多个所述第一参考信号资源的码分复用CDM组,所述CDM组包含多个天线端口,同一天线端口组中的任意两个天线端口之间存在准共址关系,M为大于1的整数;
    通信模块,用于发送所述准共址指示信息。
  40. 根据权利要求39所述的网络设备,其特征在于,所述准共址指示信息包括M个天线端口组的信息;
    其中,所述天线端口组的信息包括一个或多个CDM组的标识;
    或者,所述天线端口组的信息用于指示所述天线端口组包含的CDM组的数目。
  41. 根据权利要求39所述的网络设备,其特征在于,所述准共址指示信息还用于指示所述M的取值。
  42. 根据权利要求39所述的网络设备,其特征在于,所述准共址指示信息还用于指示CDM组的分组方式,所述分组方式包括时域分组方式和频域分组方式中的至少一项。
  43. 根据权利要求39至42任一项所述的网络设备,其特征在于,
    所述通信模块,还用于发送第一指示信息;
    其中,所述第一指示信息用于指示与第一参考信号资源的天线端口组具有准共址关系的第二参考信号资源的天线端口组;或者,
    所述第一指示信息用于指示与第一参考信号资源的天线端口具有准共址关系的第二参考信号资源的天线端口。
  44. 根据权利要求39至42任一项所述的网络设备,其特征在于,
    所述通信模块,还用于发送第二指示信息;
    其中,所述第二指示信息用于指示与第二参考信号资源的天线端口组具有准共址关系的第一参考信号资源的天线端口组;或者,
    所述第二指示信息用于指示与第二参考信号资源的天线端口具有准共址关系的第一参考信号资源的天线端口。
  45. 根据权利要求39至44任一项所述的网络设备,其特征在于,
    所述通信模块,还用于接收下行信道状态信息,所述下行信道状态信息根据第一参考信号资源的多个天线端口之间的准共址关系来确定。
  46. 一种终端,其特征在于,包括:
    通信模块,用于接收准共址指示信息,所述准共址指示信息用于指示第一参考信号资源对应的M个天线端口组,所述M个天线端口组中每一个天线端口组包含一个或多个所述第一参考信号资源的天线端口,同一天线端口组中的任意两个天线端口之间存在准共址关系,M为大于1的整数;
    处理模块,用于根据所述准共址指示信息,确定所述第一参考信号资源的多个天线端口之间的准共址关系。
  47. 根据权利要求46所述的终端,其特征在于,所述准共址指示信息包括所述M个天线端口组的信息,天线端口组的信息包括多个天线端口的端口号;或者,天线端口组的信息用于指示天线端口组所包含的天线端口的数目。
  48. 根据权利要求46或47所述的终端,其特征在于,所述准共址指示信息还用于指示M的取值。
  49. 一种网络设备,其特征在于,包括:
    处理模块,用于生成准共址指示信息,所述准共址指示信息用于指示第一参考信号资源对应的M个天线端口组,所述M个天线端口组中每一个天线端口组包含一个或多个所述第一参考信号资源的天线端口,同一天线端口组中的任意两个天线端口之间存在准共址关系,M为大于1的整数;
    通信模块,用于向终端发送所述准共址指示信息。
  50. 根据权利要求49所述的网络设备,其特征在于,所述准共址指示信息包括所述M个天线端口组的信息,天线端口组的信息包括多个天线端口的端口号;或者,天线端口组的信息用于指示天线端口组所包含的天线端口的数目。
  51. 根据权利要求49或50所述的网络设备,其特征在于,所述准共址指示信息还用于指示M的取值。
  52. 一种终端,其特征在于,包括:
    通信模块,用于接收第一参考信号资源对应的准共址指示信息,所述准共址指示信息用于指示第一参考信号资源的多个天线端口中至少两个天线端口之间不具有准共址关系;
    处理模块,用于根据第一准共址规则,将所述第一参考信号资源的多个天线端口划分为M个天线端口组,M为大于1的整数。
  53. 根据权利要求52所述的终端,其特征在于,所述准共址指示信息用于指示第一参考信号资源的多个天线端口中至少两个天线端口之间不具有准共址关系,包括:所述准共址指示信息用于指示信道测量的资源和干扰测量的资源均为所述第一参考信号资源。
  54. 根据权利要求52或53所述的终端,其特征在于,所述第一准共址规则包括以下规则之一:
    (1)按照天线端口的端口号从小到大的顺序,将预设数目的天线端口划分为一个 天线端口组;
    (2)按照天线端口的端口号从大到小的顺序,将预设数目的天线端口划分为一个天线端口组。
  55. 根据权利要求52至54任一项所述的终端,其特征在于,所述准共址指示信息还包括所述第一准共址规则的索引。
  56. 一种终端,其特征在于,包括:
    通信模块,用于接收第一参考信号资源对应的准共址指示信息,所述准共址指示信息用于指示第一参考信号资源的多个天线端口中至少两个天线端口之间不具有准共址关系;
    处理模块,用于根据第二准共址规则,将第一参考信号的多个CDM组划分为M个天线端口组,M为大于1的整数。
  57. 根据权利要求56所述的终端,其特征在于,所述准共址指示信息用于指示第一参考信号资源的多个天线端口中至少两个天线端口之间不具有准共址关系,包括:所述准共址指示信息用于指示信道测量的资源和干扰测量的资源均为所述第一参考信号资源。
  58. 根据权利要求56或57所述的终端,其特征在于,所述第二准共址规则包括以下规则之一:
    (1)按照CDM组的标识从小到大的顺序,将预设数目的CDM组划分为一个天线端口组;
    (2)按照CDM组的标识从大到小的顺序,将预设数目的CDM组划分为一个天线端口组。
  59. 根据权利要求56至58任一项所述的终端,其特征在于,所述准共址指示信息还包括所述第二准共址规则的索引。
  60. 一种网络设备,其特征在于,包括:
    处理模块,用于生成第一参考信号资源对应的准共址指示信息,该准共址指示信息用于指示第一参考信号资源的N个天线端口中至少两个天线端口之间不具有准共址关系;
    通信模块,用于向终端发送所述准共址指示信息。
  61. 根据权利要求60所述的网络设备,其特征在于,所述准共址指示信息用于指示第一参考信号资源的多个天线端口中至少两个天线端口之间不具有准共址关系,包括:所述准共址指示信息用于指示信道测量的资源和干扰测量的资源均为所述第一参考信号资源。
  62. 根据权利要求60或61所述的网络设备,其特征在于,所述准共址指示信息还包括第一准共址规则的索引或者第二准共址规则的索引;所述第一准共址规则用于使所述终端将第一参考信号资源的多个天线端口划分为M个天线端口组;所述第二准共址规则用于使所述终端将第一参考信号资源的多个CDM组划分为所述M个天线端口组;M为大于1的整数。
  63. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序包括程序指令,所述程序指令被处理器执行时使得处理器 实现如权利要求1至31任一项所述的准共址指示方法。
  64. 一种计算机程序产品,其特征在于,所述计算机程序产品包括程序指令,所述程序指令被处理器执行时使得处理器实现如权利要求1至31任一项所述的准共址指示方法。
  65. 一种芯片,其特征在于,所述芯片包括处理器,当所述处理器执行指令时,所述处理器用于实现权利要求1至31任一项所述的准共址指示方法。
PCT/CN2020/071536 2019-01-11 2020-01-10 准共址指示方法及装置 WO2020143807A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20738692.1A EP3902180A4 (en) 2019-01-11 2020-01-10 QUASI-CO-LOCATION INDICATING APPARATUS AND METHOD
US17/370,962 US11705941B2 (en) 2019-01-11 2021-07-08 Quasi-co-location indication method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910028367.7 2019-01-11
CN201910028367.7A CN111435883B (zh) 2019-01-11 2019-01-11 准共址指示方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/370,962 Continuation US11705941B2 (en) 2019-01-11 2021-07-08 Quasi-co-location indication method and apparatus

Publications (1)

Publication Number Publication Date
WO2020143807A1 true WO2020143807A1 (zh) 2020-07-16

Family

ID=71521430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/071536 WO2020143807A1 (zh) 2019-01-11 2020-01-10 准共址指示方法及装置

Country Status (4)

Country Link
US (1) US11705941B2 (zh)
EP (1) EP3902180A4 (zh)
CN (1) CN111435883B (zh)
WO (1) WO2020143807A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022082407A1 (en) * 2020-10-20 2022-04-28 Lenovo (Beijing) Limited Associating a trs with a srs for doppler shift reporting
WO2022155975A1 (zh) * 2021-01-25 2022-07-28 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备
CN115967476A (zh) * 2021-10-09 2023-04-14 索尼集团公司 电子设备、通信方法和计算机程序产品

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018028384A1 (zh) * 2016-08-10 2018-02-15 华为技术有限公司 一种信息处理方法和装置
CN107888236A (zh) * 2016-09-30 2018-04-06 华为技术有限公司 一种用于数据传输的方法和装置
CN109391413A (zh) * 2017-08-10 2019-02-26 华为技术有限公司 信息传输的方法和通信装置
CN109842468A (zh) * 2017-11-24 2019-06-04 电信科学技术研究院 数据传输方法及装置、计算机存储介质

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013119073A1 (ko) * 2012-02-11 2013-08-15 엘지전자 주식회사 채널상태정보를 보고하기 위한 방법, 이를 지원하기 위한 방법 및 이들을 위한 장치
KR102186240B1 (ko) * 2012-08-31 2020-12-03 엘지전자 주식회사 무선 통신 시스템에서 하향링크 신호 수신 방법 및 장치
CN107306177B (zh) 2016-04-22 2023-11-10 华为技术有限公司 传输数据的方法、用户设备和网络侧设备
CN113746521A (zh) * 2016-05-10 2021-12-03 诺基亚技术有限公司 天线共置和接收器假设
CN107888266B (zh) * 2016-09-30 2023-09-12 华为技术有限公司 一种准共址指示信息指示方法及设备
CN109150250B (zh) * 2016-11-04 2020-03-10 华为技术有限公司 准共址信息的发送接收方法、装置、网络设备及终端
CN109150473B (zh) * 2017-06-16 2022-10-04 华为技术有限公司 通信方法、网络设备、终端设备和系统
CN113489577B (zh) * 2017-08-09 2023-03-24 中兴通讯股份有限公司 参考信号配置信息的指示方法、基站及终端
CN112929139B (zh) * 2017-08-11 2022-05-20 中兴通讯股份有限公司 信息上报方法及装置、信息传输方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018028384A1 (zh) * 2016-08-10 2018-02-15 华为技术有限公司 一种信息处理方法和装置
CN107888236A (zh) * 2016-09-30 2018-04-06 华为技术有限公司 一种用于数据传输的方法和装置
CN109391413A (zh) * 2017-08-10 2019-02-26 华为技术有限公司 信息传输的方法和通信装置
CN109842468A (zh) * 2017-11-24 2019-06-04 电信科学技术研究院 数据传输方法及装置、计算机存储介质

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CATT: "On DMRS Design for DL", R1-1712383, 3GPP TSG RAN WG1 MEETING #90, 25 August 2017 (2017-08-25), XP051315199, DOI: 20200331142810X *
HUAWEI ET AL.: "Details of QCL assumptions and related RS design considerations", R1-1704239, 3GPP TSG RAN WG1 MEETING #88BIS, 7 April 2017 (2017-04-07), XP051242391, DOI: 20200331142603X *

Also Published As

Publication number Publication date
EP3902180A4 (en) 2022-02-23
US20210336656A1 (en) 2021-10-28
CN111435883A (zh) 2020-07-21
US11705941B2 (en) 2023-07-18
CN111435883B (zh) 2021-10-26
EP3902180A1 (en) 2021-10-27

Similar Documents

Publication Publication Date Title
WO2020156103A1 (zh) 信息反馈方法及装置
CN110601733B (zh) 预编码矩阵的配置方法、装置及计算机可读存储介质
WO2020063974A1 (zh) 功率指示方法及装置
US11705941B2 (en) Quasi-co-location indication method and apparatus
WO2015161795A1 (zh) 一种信道状态信息测量的方法、系统及设备
WO2020200114A1 (zh) Dmrs端口的指示方法及装置
WO2018202098A1 (zh) 无线通信的方法、网络设备和终端设备
WO2021254506A1 (zh) 上行传输方法及相关装置
WO2019029662A1 (zh) 信息传输的方法和通信装置
JP7130747B2 (ja) 位相追従参照信号送信方法及び装置
WO2021159493A1 (zh) 一种资源配置的方法和装置
CN109155693B (zh) 低复杂度多配置csi报告
WO2021032028A1 (zh) 频域资源分配方法及装置
WO2020259341A1 (zh) 资源确定方法及装置
WO2018202137A1 (zh) 一种通信方法及装置
WO2020108637A1 (zh) 信道探测的配置方法及装置
WO2018127141A1 (zh) 一种参考信号传输方法及装置
WO2018137397A1 (zh) 一种配置信息的方法、装置及系统
WO2020052443A1 (zh) 管理资源的方法和通信装置
WO2021013159A1 (zh) 一种信道状态信息传输方法及装置
WO2023236223A1 (zh) 一种传输配置指示状态的指示方法及装置
WO2021056588A1 (zh) 一种配置预编码的方法及装置
WO2022082775A1 (zh) 一种信道状态信息上报方法及装置
WO2023236222A1 (zh) 一种传输配置指示状态的指示方法及装置
WO2021062766A1 (zh) 一种干扰测量上报的方法和通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20738692

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020738692

Country of ref document: EP

Effective date: 20210723