WO2020063974A1 - 功率指示方法及装置 - Google Patents
功率指示方法及装置 Download PDFInfo
- Publication number
- WO2020063974A1 WO2020063974A1 PCT/CN2019/109100 CN2019109100W WO2020063974A1 WO 2020063974 A1 WO2020063974 A1 WO 2020063974A1 CN 2019109100 W CN2019109100 W CN 2019109100W WO 2020063974 A1 WO2020063974 A1 WO 2020063974A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power value
- transmit
- antenna
- terminal
- antenna port
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
- H04B7/0456—Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
- H04B7/0486—Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking channel rank into account
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W8/00—Network data management
- H04W8/22—Processing or transfer of terminal data, e.g. status or physical capabilities
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W8/00—Network data management
- H04W8/22—Processing or transfer of terminal data, e.g. status or physical capabilities
- H04W8/24—Transfer of terminal data
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
- H04B7/0456—Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
- H04B7/046—Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account
- H04B7/0465—Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account taking power constraints at power amplifier or emission constraints, e.g. constant modulus, into account
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0619—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
- H04B7/0636—Feedback format
- H04B7/0639—Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/06—TPC algorithms
- H04W52/14—Separate analysis of uplink or downlink
- H04W52/146—Uplink power control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/18—TPC being performed according to specific parameters
- H04W52/28—TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/30—TPC using constraints in the total amount of available transmission power
- H04W52/36—TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
- H04W52/365—Power headroom reporting
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/30—TPC using constraints in the total amount of available transmission power
- H04W52/36—TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
- H04W52/367—Power values between minimum and maximum limits, e.g. dynamic range
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/10—Monitoring; Testing of transmitters
- H04B17/101—Monitoring; Testing of transmitters for measurement of specific parameters of the transmitter or components thereof
- H04B17/102—Power radiated at antenna
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0404—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas the mobile station comprising multiple antennas, e.g. to provide uplink diversity
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0014—Three-dimensional division
- H04L5/0023—Time-frequency-space
Definitions
- the present application relates to the field of communication technologies, and in particular, to a power indication method and device.
- the base station needs to perform power control on the terminal.
- the purpose is to prevent the transmit power of the terminal from being too small and ensure the quality of the uplink data sent by the terminal. On the other hand, avoid the transmit power of the terminal. Too large to prevent interference to other terminals in the network.
- the terminal reports its own power classes to the network equipment, so that the network equipment can perform power control for uplink transmission to the terminal.
- the power level defines the maximum transmit power value of the terminal allowed by the network system at the same time unit in each frequency band.
- the network equipment cannot effectively perform uplink power control on the terminal based on the power level reported by the terminal.
- the present application provides a power indication method and device, which are used to enable a network device to effectively perform power control for uplink transmission to a terminal and ensure reliability of uplink transmission.
- a power indication method including: the terminal generates antenna transmission capability information, and the antenna transmission capability information is used to indicate whether a maximum transmit power value of each transmit antenna port of the terminal reaches a preset power value, or the antenna transmits The capability information is used to indicate a maximum transmit power value of each transmit antenna port of the terminal; the terminal sends antenna transmit capability information to a network device.
- the network device can learn the power status of each transmit antenna port of the terminal. In this way, when the network device schedules the uplink transmission, it is determined that the transmit power value that the terminal can use matches the transmit power value that the terminal actually uses for the uplink transmission, thereby ensuring the receiving performance of the network device.
- the antenna transmission capability information includes at least one of the following information: (1) the antenna configuration type, which is used to indicate the number of transmitting antenna ports configured by the terminal, and the maximum number of each transmitting antenna port Transmit power value; (2) the maximum transmit power value of each transmit antenna port; (3) the number of transmit antenna ports configured by the terminal, and the number of transmit antenna ports whose maximum transmit power value reaches a preset power value; 4) Power indication information of each transmit antenna port, the power indication information is used to indicate whether the maximum transmit power value of the transmit antenna port reaches a preset power value.
- the transmitting antenna port is characterized by sounding reference signal (SRS) port information; or, the transmitting antenna port is characterized by SRS port information combined with group information of the transmitting antenna group.
- SRS sounding reference signal
- the transmit antenna port is used to transmit PUSCH.
- a power indication method which includes: a network device receives antenna transmission capability information sent by a terminal, and the antenna transmission capability information is used to indicate whether a maximum transmit power value of each transmit antenna port of the terminal reaches a preset power value Or the antenna transmitting capability information is used to indicate the maximum transmitting power value of each transmitting antenna port of the terminal; the network device determines whether the maximum transmitting power value of each transmitting antenna port of the terminal reaches a preset power according to the antenna transmitting capability information value. Based on the above technical solution, the network device can determine the power situation of each transmit antenna port of the terminal. In this way, when the network device schedules the uplink transmission, it is determined that the transmit power value that the terminal can use matches the transmit power value that the terminal actually uses for the uplink transmission, thereby ensuring the receiving performance of the network device.
- the antenna transmission capability information includes at least one of the following information: (1) the antenna configuration type, which is used to indicate the number of transmitting antenna ports configured by the terminal, and the maximum number of each transmitting antenna port Transmit power value; (2) the maximum transmit power value of each transmit antenna port; (3) the number of transmit antenna ports configured by the terminal, and the number of transmit antenna ports whose maximum transmit power value reaches a preset power value; 4) Power indication information of each transmit antenna port, the power indication information is used to indicate whether the maximum transmit power value of the transmit antenna port reaches a preset power value.
- the transmitting antenna port is characterized by the SRS port information; or, the transmitting antenna port is characterized by the SRS port information and the group information of the transmitting antenna group.
- the transmit antenna port is used to transmit PUSCH.
- a terminal including: a processing module configured to generate antenna transmission capability information, and the antenna transmission capability information is used to indicate whether a maximum transmit power value of each transmit antenna port of the terminal reaches a preset power value, or The antenna transmitting capability information is used to indicate a maximum transmitting power value of each transmitting antenna port of the terminal.
- the communication module is configured to send antenna transmission capability information to a network device.
- the antenna transmission capability information includes at least one of the following information: (1) the antenna configuration type, which is used to indicate the number of transmitting antenna ports configured by the terminal, and the maximum number of each transmitting antenna port Transmit power value; (2) the maximum transmit power value of each transmit antenna port; (3) the number of transmit antenna ports configured by the terminal, and the number of transmit antenna ports whose maximum transmit power value reaches a preset power value; 4) Power indication information of each transmit antenna port, the power indication information is used to indicate whether the maximum transmit power value of the transmit antenna port reaches a preset power value.
- the transmitting antenna port is characterized by the SRS port information; or, the transmitting antenna port is characterized by the SRS port information and the group information of the transmitting antenna group.
- the transmit antenna port is used to transmit PUSCH.
- a terminal including: a processor configured to generate antenna transmission capability information, where the antenna transmission capability information is used to indicate whether a maximum transmit power value of each transmit antenna port of the terminal reaches a preset power value, or The antenna transmitting capability information is used to indicate a maximum transmitting power value of each transmitting antenna port of the terminal.
- a communication interface is used to send antenna transmission capability information to a network device.
- the antenna transmission capability information includes at least one of the following information: (1) the antenna configuration type, which is used to indicate the number of transmitting antenna ports configured by the terminal, and the maximum number of each transmitting antenna port Transmit power value; (2) the maximum transmit power value of each transmit antenna port; (3) the number of transmit antenna ports configured by the terminal, and the number of transmit antenna ports whose maximum transmit power value reaches a preset power value; 4) Power indication information of each transmit antenna port, the power indication information is used to indicate whether the maximum transmit power value of the transmit antenna port reaches a preset power value.
- the transmitting antenna port is characterized by the SRS port information; or, the transmitting antenna port is characterized by the SRS port information and the group information of the transmitting antenna group.
- the transmit antenna port is used to transmit PUSCH.
- a terminal including: a processor, the processor is configured to be coupled to a memory, read an instruction in the memory, and implement the power according to any one of the first aspects according to the instruction. Instructions.
- a computer-readable storage medium stores instructions that, when run on a computer, enable the computer to execute the power indication according to any one of the first aspects. method.
- a computer program product containing instructions which, when run on a computer, enables the computer to execute the power indication method according to any one of the first aspects.
- a chip system includes a processor for supporting a terminal to implement a function of the power indication method according to any one of the first aspects.
- the chip system further includes a memory, and the memory is configured to store program instructions and data necessary for the terminal.
- the chip system can be composed of chips, and can also include chips and other discrete devices.
- the technical effects brought by any one of the design methods in the third aspect to the eighth aspect may refer to the technical effects brought by the different design methods in the first aspect, and will not be repeated here.
- a network device including: a communication module configured to receive antenna transmission capability information sent by a terminal, and the antenna transmission capability information is used to indicate whether a maximum transmit power value of each transmit antenna port of the terminal reaches a preset power Value, or the antenna transmission capability information is used to indicate a maximum transmit power value of each transmit antenna port of the terminal.
- the processing module is configured to determine whether a maximum transmit power value of each transmit antenna port of the terminal reaches a preset power value according to the antenna transmit capability information.
- the antenna transmission capability information includes at least one of the following information: (1) the antenna configuration type, which is used to indicate the number of transmitting antenna ports configured by the terminal, and the maximum number of each transmitting antenna port Transmit power value; (2) the maximum transmit power value of each transmit antenna port; (3) the number of transmit antenna ports configured by the terminal, and the number of transmit antenna ports whose maximum transmit power value reaches a preset power value; 4) Power indication information of each transmit antenna port, the power indication information is used to indicate whether the maximum transmit power value of the transmit antenna port reaches a preset power value.
- the transmitting antenna port is characterized by the SRS port information; or, the transmitting antenna port is characterized by the SRS port information and the group information of the transmitting antenna group.
- the transmit antenna port is used to transmit PUSCH.
- a network device including: a communication interface for receiving antenna transmission capability information sent by a terminal, and the antenna transmission capability information is used to indicate whether a maximum transmit power value of each transmit antenna port of the terminal reaches a preset power Value, or the antenna transmission capability information is used to indicate a maximum transmit power value of each transmit antenna port of the terminal.
- the processor is configured to determine whether a maximum transmit power value of each transmit antenna port of the terminal reaches a preset power value according to the antenna transmit capability information.
- the antenna transmission capability information includes at least one of the following information: (1) the antenna configuration type, which is used to indicate the number of transmitting antenna ports configured by the terminal, and the maximum number of each transmitting antenna port Transmit power value; (2) the maximum transmit power value of each transmit antenna port; (3) the number of transmit antenna ports configured by the terminal, and the number of transmit antenna ports whose maximum transmit power value reaches a preset power value; 4) Power indication information of each transmit antenna port, the power indication information is used to indicate whether the maximum transmit power value of the transmit antenna port reaches a preset power value.
- the transmitting antenna port is characterized by the SRS port information; or, the transmitting antenna port is characterized by the SRS port information and the group information of the transmitting antenna group.
- the transmit antenna port is used to transmit PUSCH.
- a network device including: a processor, the processor is configured to be coupled to a memory, read an instruction in the memory, and implement, according to the instruction, any one of the foregoing second aspects Power indication method.
- a computer-readable storage medium stores instructions that, when run on a computer, enable the computer to execute the power described in any one of the second aspects. Instructions.
- a computer program product containing instructions which, when run on a computer, enables the computer to execute the power indication method according to any one of the above second aspects.
- a chip system in a fourteenth aspect, includes a processor for supporting a network device to implement a function of the power indication method according to any one of the second aspects.
- the chip system further includes a memory, and the memory is configured to store program instructions and data necessary for the network device.
- the chip system can be composed of chips, and can also include chips and other discrete devices.
- the technical effects brought by any one of the design methods in the ninth aspect to the fourteenth aspect may refer to the technical effects brought by the different design methods in the second aspect, and are not repeated here.
- FIG. 1 is a schematic diagram of a terminal antenna configuration
- FIG. 2 is a schematic diagram of another terminal antenna configuration
- FIG. 3 is a schematic structural diagram of a communication system according to an embodiment of the present application.
- FIG. 4 is a schematic diagram of a hardware structure of a terminal and a network device according to an embodiment of the present application
- FIG. 5 is a flowchart of a power indication method according to an embodiment of the present application.
- FIG. 6 is a schematic structural diagram of a terminal according to an embodiment of the present application.
- FIG. 7 is a schematic structural diagram of a network device according to an embodiment of the present application.
- the downlink resources of the system are divided into multiple orthogonal frequency divisions in terms of time.
- Multiplexed multiple access (orthogonal frequency division multiple, OFDM) symbols are divided into several subcarriers from a frequency perspective.
- the physical downlink control channel (PDCCH) in the downlink usually occupies the first two / three OFDM symbols in a subframe.
- the PDCCH is used to carry downlink control information (DCI).
- DCI downlink control information
- the DCI carries UE-specific resource allocation and other control information specific to the UE or shared by the cell.
- the physical uplink shared channel (PUSCH) in the uplink of the system is used to carry the uplink transmission data.
- PUSCH physical uplink shared channel
- DFT-Spread OFDM DFT-S-OFDM
- Frequency domain signals NR's uplink transmission supports two waveforms.
- DFT-s-OFDM waveforms are usually used. This waveform supports the largest single-stream data transmission, while ensuring single-carrier characteristics.
- resource-constrained scenarios it is usually cyclic.
- the terminal Before uplink transmission, the terminal will report the number of transmit antenna ports it can support (for example, 1Tx, 2Tx or 4Tx).
- the number of transmit antenna ports can represent the maximum number of transmission layers for uplink transmission.
- the number of transmit antenna ports also corresponds
- the dimension of the precoding matrix indicated by DCI for the current uplink transmission that is, the number of rows of the precoding matrix represents the number of transmitting antenna ports used in the current uplink transmission, and the number of rows is less than It is equal to the number of transmit antenna ports that the terminal can support.
- the number of columns of the precoding matrix represents the number of transmission layers, and the number of columns is less than or equal to the number of transmit antenna ports that the terminal can support.
- the maximum number of transmitting antenna ports used for uplink transmission is two, and the maximum number of transmission layers used for uplink transmission is two.
- the transmitting antenna port may correspond to a physical antenna port of the terminal, or a logical antenna port of the terminal's physical antenna after virtualization.
- Each transmitting antenna port can correspond to a power amplifier (PA).
- PA power amplifier
- the number of supported transmit antenna ports reported by the terminal also corresponds to the number of antenna ports (that is, the number of SRS ports) in the SRS resource based on codebook transmission, and the number of antenna ports in the SRS resource is usually less than It is equal to the number of supported transmit antenna ports reported by the terminal.
- the antenna port in each SRS resource can correspond to the transmitting antenna port used for uplink transmission, that is, the antenna port in each SRS resource corresponds to a PA.
- the number of SRS ports can be configured as two, and the maximum number of transmission layers is two. .
- the terminal will also report the maximum coherence between antennas.
- the coherent capabilities include: full-coherent capabilities and non-coherent capabilities.
- coherent capabilities include: full coherent capabilities, partial-coherent capabilities, and non-coherent capabilities.
- the full coherence capability is used to explain that all the transmitting antenna ports of the terminal can complete phase calibration and perform phase weighting, that is, all the transmitting antenna ports of the terminal can be used to send data of the same transmission layer.
- Part of the coherence capability is used to explain that there are two sets of transmit antenna ports in the terminal ’s transmit antenna ports for uplink transmission, and the transmit antenna ports in the group have completed phase calibration, and can perform phase weighting to send data of the same transmission layer.
- the phase alignment of the transmitting antenna port is not completed, and phase weighting cannot be performed.
- the data of the same transmission layer can only be transmitted by a set of transmitting antenna ports.
- Non-coherent capability means that all the transmitting antenna ports of the terminal have not completed phase calibration. Therefore, all transmitting antenna ports of the terminal cannot be used for phase weighting to send data of the same transmission layer, that is, one transmission layer data can only use all transmitting antennas. One of the transmit antenna ports in the port sends.
- the pre-stored codebook between the network device and the terminal may be shown in Table 1-7 below.
- Each codeword in the codebook is arranged in the order of increasing index values of the transmission precoding matrix indicator (TPMI) from left to right in the table.
- TPMI transmission precoding matrix indicator
- a codebook can contain three types of codewords, and each type of codeword corresponds to a coherence capability. For example, a codeword with a TPMI index value of 0-1 in Table 1 corresponds to a non-coherent capability, and a codeword with a TPMI index value of 2-5 corresponds to a fully coherent capability.
- a codeword with a TPMI index value of 0 in Table 2 corresponds to a non-coherent capability
- a codeword with a TPMI index value of 1-2 corresponds to a completely coherent capability
- a codeword with a TPMI index value of 0-3 in Table 3 corresponds to a non-coherent capability
- a codeword with a TPMI index value of 4-11 corresponds to a partially coherent capability
- a codeword with a TPMI index value of 12-27 corresponds to a fully coherent capability.
- a codeword with a TPMI index value of 0-3 in Table 4 corresponds to a non-coherent capability
- a codeword with a TPMI index value of 4-11 corresponds to a partially coherent capability
- a codeword with a TPMI index value of 12-27 corresponds to a fully coherent capability.
- a codeword with a TPMI index value of 0-5 in Table 5 corresponds to a non-coherent capability
- a codeword with a TPMI index value of 6-13 corresponds to a partially coherent capability
- a codeword with a TPMI index value of 14-21 corresponds to a fully coherent capability.
- a codeword with a TPMI index value of 0 in Table 6 corresponds to a non-coherent capability
- a codeword with a TPMI index value of 1-2 corresponds to a partially coherent capability
- a codeword with a TPMI index value of 3-6 corresponds to a fully coherent capability
- a codeword with a TPMI index value of 0 in Table 7 corresponds to a non-coherent capability
- a codeword with a TPMI index value of 1-2 corresponds to a partially coherent capability
- a codeword with a TPMI index value of 3-4 corresponds to a fully coherent capability.
- Table 4 Precoding matrix W of CP-OFDM waveforms for Layer 1 transmission of four transmit antenna ports
- the terminal Before the uplink transmission, the terminal sends the SRS on the corresponding time-frequency resource according to the SRS resource configuration, and the base station receives and measures the SRS on the corresponding time-frequency resource to obtain uplink channel information. Based on the uplink channel information, the base station instructs the terminal to send a PUSCH through the DCI carried in the PDCCH for scheduling uplink transmission.
- the transmission parameters of the DCI indicating PUSCH include: transmission layer number (TRI) and TPMI. It should be noted that the base station issues the corresponding TPMI based on the maximum coherence capability reported by the terminal, thereby indicating the corresponding codeword.
- the base station may indicate a fully coherent, partially coherent, or non-coherent type codeword.
- the base station may indicate a partially coherent, non-coherent type of codeword.
- the base station may indicate a non-coherent type of codeword.
- the transmission parameters indicated by the DCI further include: SRS resource indication (SRS resource indication).
- SRS resource indication SRS resource indication
- Each SRS resource corresponds to a transmit antenna group, and a transmit antenna group includes multiple transmit antenna ports.
- the SRI is used to indicate an SRS resource used by a terminal from a plurality of SRS resources, that is, the SRI is used to indicate a transmit antenna group that the terminal should use. Therefore, the terminal can transmit the PUSCH using the transmit antenna port included in the transmit antenna group indicated by the SRI.
- Each SRS port in the terminal corresponds to a row in the above-mentioned precoding matrix, and an element in a row of the precoding matrix is a phase-weighted coefficient of the corresponding SRS port. If the values of the elements in one row of the precoding matrix are all 0, it means that the terminal does not need to use the SRS port corresponding to the row to send a PUSCH.
- the SRS port is a transmitting antenna port for transmitting SRS.
- the SRS port is a transmitting antenna port having SRS port information.
- the SRS port information corresponds to the serial number of a row in the precoding matrix.
- the SRS port information may be an SRS port number, an SRS port identifier, or an SRS port index. Further, the SRS port information may also include other parameters related to the SRS port.
- the fields used to indicate the number of PUSCH transport layers and TPMI in DCI are the Precoding, Information, and Number of Layers fields. Each bit field index value in this field corresponds to a number of transport layers and the corresponding TPMI.
- Table 8 shows an example of the Precoding information and number of layers fields when the four transmitting antennas, the CP-OFDM waveform, and the maximum number of transmission layers are 2-4.
- Table 9 shows an example of the Precoding information and number of layers fields when the four transmit antennas, the CP-OFDM waveform, and the maximum number of transmission layers are 1.
- the power level defines the maximum transmit power value of the terminal that the network system can allow at the same time unit in each frequency band.
- Table 10 shows an example of the power level of the terminal.
- the power level can only reflect the maximum transmit power value of the terminal, and cannot reflect the maximum transmit power value of each transmit antenna port in the terminal.
- the power level can only reflect the maximum transmit power value of the terminal, and cannot reflect the maximum transmit power value of each transmit antenna port in the terminal.
- the two power amplifiers configured at the terminal have a maximum transmit power of 20 dBm, that is, the maximum transmit power value of the transmit antenna port corresponding to the two power amplifiers is 20 dBm.
- the two transmit antenna ports can be virtualized into one transmit antenna port, and the maximum transmit power value of the virtual transmit antenna port is 23 dBm. That is, the maximum transmit power value of the terminal is 23 dBm.
- a power amplifier configured by the terminal has a maximum transmit power of 20 dbm, that is, a maximum transmit power value of the transmit antenna port 0 corresponding to the power amplifier is 20 dBm.
- the other power amplifier of the terminal has a maximum transmit power of 23 dbm, that is, the maximum transmit power value of the transmit antenna port 1 corresponding to the power amplifier is 23 dBm.
- an embodiment of the present application provides a power indication method, including: the terminal generates antenna transmission capability information, and the antenna transmission capability information is used to indicate each transmitting antenna port of the terminal Whether the maximum transmission power value of the antenna reaches a preset power value, or the antenna transmission capability information is used to indicate a maximum transmission power value of each transmitting antenna port of the terminal.
- the terminal sends the antenna transmission capability information to a network device.
- the network device determines whether the maximum transmit power value of each transmit antenna port of the terminal reaches a preset power value according to the antenna transmit capability information (it can be determined directly based on the antenna transmit capability information; it is also determined first based on the antenna transmit capability information.
- the maximum transmission power value of each transmission antenna port of the terminal is described, and then determined according to the maximum transmission power value of each transmission antenna port obtained). In this way, when the network equipment performs uplink scheduling, it will comprehensively consider the power situation of each transmit antenna port of the terminal, thereby facilitating the network equipment to instruct the terminal to use a suitable transmit antenna port for uplink transmission and ensure the transmission performance of the system.
- the network device expects the terminal to perform uplink transmission with a channel transmission power of 22 dBm. If the network device only performs power control for uplink transmission according to the power level reported by the terminal, the network device may instruct the terminal to use a table In the codebook shown in 1, the precoding matrix corresponding to the TPMI index value of 0 is used for uplink transmission.
- the terminal uses the precoding matrix for uplink transmission, in fact, the terminal uses only the transmit antenna port 0 for uplink transmission.
- the maximum transmission power value of the transmitting antenna port 0 is 20 dBm, which is less than 22 dBm. In other words, the actual transmit power of the terminal cannot reach the channel transmit power.
- the network device can know that the transmit power value of the transmit antenna port 0 of the terminal is 20 dBm, and the transmit power value of the transmit antenna port 1 is 23 dBm. In this way, the network device can comprehensively consider the power situation of each transmit antenna port of the terminal, so that it can instruct the terminal to select the optimal transmit antenna port for uplink transmission. With this example, the network device can determine that the transmitting antenna port 1 is the optimal transmitting antenna port. Therefore, the DCI issued by the network device will instruct the terminal to use the precoding matrix corresponding to the TPMI index value 1 in the codebook shown in Table 1. To perform uplink transmission, that is, the network device instructs the terminal to use the transmitting antenna port 1 for uplink transmission.
- the "indication” may include a direct indication and an indirect indication, and may also include an explicit indication and an implicit indication.
- the information indicated by certain information is referred to as to-be-indicated information.
- the information to be indicated may be directly indicated, such as the information to be indicated itself or an index of the information to be indicated.
- the information to be indicated may also be indicated indirectly by indicating other information, where there is an association relationship between the other information and the information to be indicated. It is also possible to indicate only a part of the information to be indicated, and other parts of the information to be indicated are known or agreed in advance.
- an indication of specific information may also be implemented by means of an arrangement order of each piece of information agreed in advance (such as stipulated in a protocol), thereby reducing the indication overhead to a certain extent.
- the network architecture and service scenarios described in the embodiments of the present application are intended to more clearly illustrate the technical solutions of the embodiments of the present application, and do not constitute a limitation on the technical solutions provided in the embodiments of the present application. With the evolution of the network architecture and the emergence of new service scenarios, the technical solutions provided in the embodiments of the present application are also applicable to similar technical problems.
- the technical solutions provided in the embodiments of the present application can be applied to various communication systems, for example, long term evolution (LTE) communication systems, NR communication systems using 5th generation (5G) communication technologies, and future evolution systems Or a variety of communication fusion systems and so on.
- the technical solution provided in this application can be applied to various application scenarios, for example, machine-to-machine (M2M), macro communication, enhanced mobile broadband (eMBB), ultra-high reliability, ultra-low latency Communications (ul-reliable & low latency communication (uRLLC)) and mass Internet of Things (type communication) (mMTC) and other scenarios.
- M2M machine-to-machine
- eMBB enhanced mobile broadband
- mMTC mass Internet of Things
- FIG. 3 shows a schematic diagram of a communication system to which the technical solution provided in the present application is applicable.
- the communication system 10 may include one or more network devices 20 (only one is shown) and a communication device connected to each network device 20.
- FIG. 3 is only a schematic diagram, and does not constitute a limitation on an application scenario of the technical solution provided in this application.
- the network device 20 may be a base station, a base station controller, or the like for wireless communication.
- the base station may include various types of base stations, such as a micro base station (also referred to as a small station), a macro base station, a relay station, an access point, and the like, which are not specifically limited in this embodiment of the present application.
- the base station may be a global mobile communication system (Global System for Mobile Communication, GSM) or a code division multiple access (Code Division Multiple Access, CDMA) base station (Base Transceiver Station, BTS), broadband Base station (node B) in wideband code division multiple access (WCDMA), evolutionary base station (evolutionary node B, eNB or e-NodeB) in LTE, internet of things (IoT) or narrowband ENBs in the narrow band-internet of things (NB-IoT), base stations in future 5G mobile communication networks or public land mobile networks (PLMN) that are evolving in the future, this embodiment of the present application does not address this. No restrictions.
- the terminal 30 is configured to provide a voice and / or data connectivity service to a user.
- the terminal 30 may have different names, such as user equipment (UE), access terminal, terminal unit, terminal station, mobile station, mobile station, remote station, remote terminal, mobile device, wireless communication device, terminal Agent or terminal device, etc.
- the terminal 30 may be various handheld devices, vehicle-mounted devices, wearable devices, and computers with communication functions, which are not limited in the embodiments of the present application.
- the handheld device may be a smartphone.
- the vehicle-mounted device may be a vehicle-mounted navigation system.
- the wearable device may be a smart bracelet.
- the computer may be a personal digital assistant (PDA) computer, a tablet computer, and a laptop computer.
- PDA personal digital assistant
- FIG. 4 is a schematic diagram of a hardware structure of a network device 20 and a terminal 30 according to an embodiment of the present application.
- the terminal 30 includes at least one processor 301, and optionally, at least one memory 302 and at least one transceiver 303.
- the terminal 30 may further include an output device 304 and an input device 305.
- the processor 301, the memory 302, and the transceiver 303 are connected through a bus.
- the processor 301 may be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more processors for controlling the execution of the program of the solution of the present application. integrated circuit.
- the processor 301 may also include multiple CPUs, and the processor 301 may be a single-CPU processor or a multi-CPU processor.
- a processor herein may refer to one or more devices, circuits, or processing cores for processing data (such as computer program instructions).
- the memory 302 may be a read-only memory (ROM) or other types of static storage devices that can store static information and instructions, a random access memory (RAM), or other types that can store information and instructions
- the dynamic storage device can also be electrically erasable programmable read-only memory (EEPROM-ready-only memory (EEPROM)), compact disc (read-only memory (CD-ROM)) or other optical disk storage, optical disk storage (Including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be used by a computer For any other media accessed, this embodiment of the present application does not place any restrictions on this.
- the memory 302 may exist independently, and is connected to the processor 301 through a bus.
- the memory 302 may also be integrated with the processor 301.
- the memory 302 is configured to store application program code that executes the solution of the present application, and is controlled and executed by the processor 301.
- the processor 301 is configured to execute computer program code stored in the memory 302, so as to implement the method provided in the embodiment of the present application.
- the transceiver 303 can use any device such as a transceiver to communicate with other devices or communication networks, such as Ethernet, radio access network (RAN), wireless local area networks (WLAN), etc. .
- the transceiver 303 includes a transmitter Tx and a receiver Rx.
- the output device 304 communicates with the processor 301 and can display information in a variety of ways.
- the output device 304 may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector. Wait.
- the input device 305 is in communication with the processor 301 and can receive user input in a variety of ways.
- the input device 305 may be a mouse, a keyboard, a touch screen device, a sensing device, or the like.
- the network device 20 includes at least one processor 201, and optionally, at least one memory 202, at least one transceiver 203, and at least one network interface 204.
- the processor 201, the memory 202, the transceiver 203, and the network interface 204 are connected through a bus.
- the network interface 204 is used to connect to the core network device through a link (such as the S1 interface), or to connect to the network interface of the access network device through a wired or wireless link (such as the X2 interface) (not shown in the figure). This embodiment of the present application does not specifically limit this.
- a power indication method includes the following steps:
- the terminal generates antenna transmission capability information.
- the antenna transmission capability information is used to indicate a maximum transmission power value of each transmitting antenna port of the terminal.
- the antenna transmission capability information is used to indicate whether a maximum transmit power value of each transmit antenna port of the terminal reaches a preset power value.
- the preset power value may be predefined or determined according to the power level of the terminal.
- the preset power value is the maximum transmit power value corresponding to the power level reported by the terminal.
- the terminal may report a preset power value to the network device, and the preset power value may be less than or equal to a maximum transmit power value corresponding to a power level reported by the terminal, so that the network device may know the preset power value.
- the maximum transmit power value of the transmit antenna port is the maximum transmit power value of the PA corresponding to the transmit antenna port.
- Each PA corresponds to a Tx chain / transmission channel and radio frequency (RF).
- RF radio frequency
- the antenna transmission capability information includes at least one of the following information:
- the maximum transmit power value of each transmit antenna port may include the absolute value of the maximum transmit power value of each transmit antenna port, or the relative value of the maximum transmit power value of each transmit antenna port.
- the relative value of the maximum transmit power value of the transmit antenna port may be a difference between the maximum transmit power value of the transmit antenna port and a preset power value.
- the relative value of the maximum transmit power value of the transmit antenna port may be a ratio between the maximum transmit power value of the transmit antenna port and a preset power value.
- the relative value of the maximum transmit power value of the transmit antenna port can be reported after quantization using a specific step size.
- the power indication information of each transmit antenna port may be represented by one or more bits. For example, when the value of the one or more bits is 0, it indicates that the maximum transmitting power value of the transmitting antenna port reaches a preset power value. ; When the value of one or more bits is 1, it indicates that the maximum transmit power value of the transmitting antenna port does not reach the preset power value.
- An antenna configuration type where the antenna configuration type is used to indicate the number of transmit antenna ports configured by the terminal, and a maximum transmit power value of each transmit antenna port.
- the antenna configuration type of the terminal is predefined. For example, for a 2Tx terminal, one or more of the antenna configuration types may be defined in advance: the number of transmitting antenna ports of the terminal of antenna configuration type 1 is 2, and the maximum transmitting power values of the two transmitting antenna ports are both 20dBm. The number of transmitting antenna ports configured by the terminal of antenna configuration type 2 is two, and the maximum transmitting power value of the two transmitting antenna ports is 23 dBm.
- the number of transmitting antenna ports configured by a terminal with an antenna configuration type of 3 is 2, and the maximum transmitting power value of one transmitting antenna port is 23 dBm, and the maximum transmitting power value of the other transmitting antenna port is 26 dBm.
- the number of transmitting antenna ports configured by a terminal with an antenna configuration type of 4 is 2, and the maximum transmitting power value of one transmitting antenna port is 23 dBm, and the maximum transmitting power value of the other transmitting antenna port is 20 dBm.
- the number of transmitting antenna ports configured by a terminal with an antenna configuration type of 5 is two.
- the maximum transmitting power value of one transmitting antenna port is 26 dBm, and the maximum transmitting power value of the other transmitting antenna port is 26 dBm.
- terminals with antenna configuration types 1, 2 or 4 can report Class 3 (maximum transmit power is 23 dBm)
- terminals with antenna configuration types 2, 3 or 5 can report Class 2 (maximum transmit power is 26 dBm).
- the antenna configuration type is used to indicate the number of transmitting antenna groups configured by the terminal, the number of transmitting antenna ports included in each transmitting antenna group, and the number of transmitting antenna groups in each transmitting antenna group. Maximum transmit power value of each transmit antenna port.
- a terminal with an antenna configuration type of 6 is configured with two transmitting antenna groups. The number of transmitting antenna ports included in transmitting antenna group 1 is two, and the maximum transmitting power value of one transmitting antenna port is 23 dBm, and the other transmitting antenna is provided.
- the maximum transmit power value of the port is 26 dBm; the number of transmit antenna ports included in transmit antenna group 2 is 2, the maximum transmit power value of one transmit antenna port is 20 dBm, and the maximum transmit power value of the other transmit antenna port is 23 dBm.
- the number of transmit antenna ports configured by the terminal, and the number of transmit antenna ports whose maximum transmit power value reaches a preset power value Exemplarily, assuming a preset power value of 23 dBm, the terminal is configured with four transmit antenna ports, namely port 1, port 2, port 3, and port 4, the maximum transmit power value of port 1 is 20 dBm, and the maximum transmit power of port 2 The power value is 23 dBm, the maximum transmit power value of port 3 is 20 dBm, and the maximum transmit power value of port 4 is 26 dBm.
- the number of transmit antenna ports configured by the terminal included in the antenna transmit capability information reported by the terminal is 4, and the maximum transmit power value The number of transmitting antenna ports reaching the preset power value is two.
- the antenna transmitting capability information includes the number of transmitting antenna ports in each transmitting antenna group, and a transmission with a maximum transmitting power value in each transmitting antenna group reaching a preset power value. The number of antenna ports.
- the transmitting antenna port is characterized by SRS port information.
- the transmit antenna port is characterized by the SRS port information combined with the group information of the transmit antenna group.
- the group information may be a group number, a group identifier, a group index, and the like. Further, the group information may also include other parameters related to the transmitting antenna group.
- the following describes how the network equipment and the terminal determine the transmitting antenna group information to which the transmitting antenna port belongs in conjunction with the antenna transmitting capability information.
- the terminal may indicate group information of a transmitting antenna group to which each transmitting antenna port belongs in an antenna transmitting capability information in an explicit manner.
- the antenna transmitting capability information includes group information of a transmitting antenna group to which each transmitting antenna port belongs, and a maximum transmitting power value.
- the antenna transmission capability information includes group information and power indication information of a transmit antenna group to which each transmit antenna port belongs.
- the terminal may also indicate the SRS port information of each transmit antenna port and the group information of the transmit antenna group to which each transmit antenna port belongs in the antenna transmission capability information in an implicit manner.
- the antenna transmit capability information includes the maximum transmit power value of each transmit antenna port
- the position (or arrangement order) of the maximum transmit power value of the transmit antenna port in the antenna transmit capability information may be used to indicate that the transmit antenna port belongs to Group information of the transmitting antenna group.
- the antenna transmission capability information includes power indication information of each transmitting antenna port
- the position (or arrangement order) of the power indication information of the transmitting antenna port in the antenna transmitting capability information may be used to indicate the transmission to which the transmitting antenna port belongs.
- Antenna group group information may be used to indicate the transmission to which the transmitting antenna port belongs.
- the following describes how the network equipment and the terminal determine the SRS port information of the transmitting antenna port in combination with the antenna transmitting capability information.
- the terminal defines the SRS port information of each transmitting antenna port in advance, and the terminal notifies the network equipment with the antenna transmitting capability information.
- the terminal may indicate the SRS port information of each transmitting antenna port in the antenna transmitting capability information in an explicit manner.
- the antenna transmission capability information includes SRS port information and a maximum transmission power value of each transmitting antenna port.
- the antenna transmission capability information includes SRS port information and power indication information of each transmitting antenna port.
- the terminal may also indicate the SRS port information of each transmitting antenna port in the antenna transmitting capability information in an implicit manner. For example, if the antenna transmit capability information includes the maximum transmit power value of each transmit antenna port, the position of the maximum transmit power value of the transmit antenna port in the antenna transmit capability information may be used to indicate the SRS port information of the transmit antenna port. For another example, if the antenna transmitting capability information includes power indication information of each transmitting antenna port, the position of the power indicating information of the transmitting antenna port in the antenna transmitting capability information may be used to indicate SRS port information of the transmitting antenna port.
- the SRS port information of each transmitting antenna port is determined between the terminal and the network device according to a preset rule.
- the preset rule is prescribed in the standard, or is issued by the network device to the terminal.
- the preset rule is: for each transmit antenna group, determining the SRS port information corresponding to the transmit antenna port according to the order of the maximum transmit power value of each transmit antenna port in the transmit antenna group.
- the antenna transmit capability information includes 4 maximum transmit power values, which are 20dBm, 20dBm, 23dBm, and 26dBm.
- the SRS port number corresponding to the transmit antenna port whose maximum transmit power value is 26dBm (in this example)
- the SRS port information uses the SRS port number as an example) is 0, the SRS port number corresponding to the transmitting antenna port with a maximum transmitting power value of 23 dBm is 1, and the SRS port number corresponding to the transmitting antenna port having a maximum transmitting power value of 20 dBm is 2
- the SRS port number corresponding to another transmitting antenna port with a maximum transmitting power value of 20 dBm is 3.
- the maximum transmit power value of SRS port 0 is 23 dBm
- the maximum transmit power value of SRS port 1 is 23 dBm
- the maximum transmit power value of SRS port 2 and SRS port 3 are 20 dBm.
- the preset rule is: for each antenna transmission group, the transmitting antenna port with the maximum transmitting power value reaching the preset power value corresponds to the first SRS port information, and the maximum transmitting power value does not reach the preset power The value of the transmitting antenna port corresponds to the second SRS port information.
- the number of first SRS port information is the number of transmitting antenna ports whose maximum transmitting power value reaches a preset power value
- the number of second SRS port information is equal to the transmitting antenna.
- the number of transmitting antenna ports included in the group is subtracted from the number of transmitting antenna ports whose maximum transmitting power value reaches a preset power value.
- the value set of the first SRS port information and the value set of the second SRS port information may be preset or determined by the network device and the terminal through negotiation, which is not limited in the embodiment of the present application. It can be understood that the network device can obtain the number of transmit antenna ports included in each transmit antenna group and the number of transmit antenna ports whose maximum transmit power value reaches a preset power value from the antenna transmission capability information.
- the number of transmitting antenna ports included in the transmitting antenna group is the number of transmitting antenna ports configured by the terminal.
- the number of transmit antenna ports included in the transmit antenna group is 4, the number of transmit antenna ports with a maximum transmit power value reaching a preset power value is 2, and the first SRS port number (in this example, the SRS port information uses the SRS port number For example), the value set is ⁇ 0,1 ⁇ , and the value set of the second SRS port number is ⁇ 2,3 ⁇ .
- the SRS port number corresponding to a transmitting antenna port whose maximum transmitting power value reaches a preset power value is 0, and the SRS port corresponding to another transmitting antenna port whose maximum transmitting power value reaches a preset power value.
- the maximum transmit power value of SRS port 0 reaches the preset power value
- the maximum transmit power value of SRS port 1 reaches the preset power value
- the maximum transmit power value of SRS port 2 does not reach the preset power value
- SRS The maximum transmit power value of port 2 did not reach the preset power value.
- the number of transmit antenna ports included in the transmit antenna group is 4, the number of transmit antenna ports with a maximum transmit power value reaching a preset power value is 2, and the first SRS port number (in this example, the SRS port information is the SRS port For example, the value set is ⁇ 0,3 ⁇ , and the value set for the second SRS port number is ⁇ 1,2 ⁇ .
- the SRS port number corresponding to a transmitting antenna port whose maximum transmitting power value reaches a preset power value is 0, and the SRS port corresponding to another transmitting antenna port whose maximum transmitting power value reaches a preset power value. No.
- the corresponding SRS port number of a transmitting antenna port whose maximum transmitting power value does not reach the preset power value is 1, and the corresponding SRS port number of the transmitting antenna port whose maximum transmitting power value does not reach the preset power value is 2 .
- the maximum transmit power value of SRS port 0 reaches the preset power value
- the maximum transmit power value of SRS port 3 reaches the preset power value
- the maximum transmit power value of SRS port 1 does not reach the preset power value
- SRS The maximum transmit power value of port 2 did not reach the preset power value.
- the terminal sends antenna transmission capability information to the network device, so that the network device receives the antenna transmission capability information.
- the terminal sends antenna transmission capability information to the network device through non-access stratum (NAS) signaling.
- NAS non-access stratum
- the terminal may actively send antenna transmission capability information to the network device; or after the network device requests the terminal for antenna transmission capability information, the terminal sends the antenna transmission capability information to the network device.
- the network device determines whether the maximum transmit power value of each transmit antenna port of the terminal reaches a preset power value according to the antenna transmit capability information of the terminal.
- the antenna transmission capability information may indicate whether the maximum transmit power value of each transmit antenna port reaches a preset power value or indicate the maximum transmit power value of each transmit antenna port, and the network device may determine directly based on the antenna transmit capability information. Whether the maximum transmit power value reaches a preset power value; or first determine the maximum transmit power value of each transmit antenna port of the terminal according to the antenna transmit capability information, and then determine the maximum transmit according to the learned maximum transmit power value of each transmit antenna port Whether the power value reaches a preset power value.
- the network device measures each SRS port in the SRS resource and considers the maximum transmit power value that each SRS port can use for uplink transmission.
- Compensation calculations are performed on the reference signals to estimate the channel status of each SRS port, such as signal to interference plus noise ratio (SINR), signal-to-noise ratio (SNR), and reference signal receive power. (reference signal receiving power, RSRP), reference signal receiving quality (RSRQ), etc., and then select one or more SRS ports corresponding to the optimal channel state as the SRS ports for uplink transmission, and indicate through TPMI To the terminal, so that the terminal sends the uplink data using the SRS port indicated by the TPMI.
- SINR signal to interference plus noise ratio
- SNR signal-to-noise ratio
- RSRQ reference signal receiving quality
- each SRS resource corresponds to a transmitting antenna group
- the network device obtains the channel status of each transmitting antenna group based on measuring the SRS transmitted by each transmitting antenna group on the corresponding SRS resource.
- a transmitting antenna group corresponding to the optimal channel state is determined, and the terminal is instructed to use the transmitting antenna group to send uplink data through the SRI.
- the network device further selects the antenna port in the SRS resource based on the transmit antenna group corresponding to the selected SRS resource.
- the selection method is that the network device measures each SRS port in the SRS resource and considers that each SRS port is The factor of the maximum transmit power value that can be used in uplink transmission is to compensate the reference signal sent by each SRS port, estimate the channel state of each SRS port, and then select one or more SRS ports corresponding to the optimal channel state as the The SRS port used for uplink transmission is instructed to the terminal through TPMI, so that the terminal uses the SRS port indicated by TPMI to send uplink data.
- the network device learns whether the maximum transmit power value of each transmit antenna port of the terminal reaches a preset power value, in this way, the network device will comprehensively consider each transmit antenna of the terminal when performing PUSCH scheduling.
- the power status of the port is convenient for the network equipment to instruct the terminal to use an appropriate transmitting antenna port for uplink transmission and ensure the transmission performance of the system.
- each network element such as a network device and a terminal, includes a hardware structure and / or a software module corresponding to each function.
- this application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is performed by hardware or computer software-driven hardware depends on the specific application of the technical solution and design constraints. Professional technicians can use different methods to implement the described functions for each specific application, but such implementation should not be considered to be beyond the scope of this application.
- the functional modules of the network device and the terminal may be divided according to the foregoing method example.
- each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
- the above integrated modules may be implemented in the form of hardware or software functional modules. It should be noted that the division of the modules in the embodiments of the present application is schematic, and is only a logical function division. In actual implementation, there may be another division manner.
- the following description uses each function module corresponding to each function as an example:
- FIG. 6 is a schematic structural diagram of a terminal according to an embodiment of the present application.
- the terminal includes a processing module 601 and a communication module 602.
- the processing module 601 is configured to support the terminal to perform step S101 in FIG. 5 and / or other processes for the technical solution described herein.
- the communication module 602 is configured to support the terminal to perform step S102 in FIG. 5 and / or other processes for the technical solution described herein. All relevant content of each step involved in the above method embodiment can be referred to the functional description of the corresponding functional module, and will not be repeated here.
- the communication module 602 in FIG. 6 may be implemented by the transceiver 303 in FIG. 4, and the processing module 601 in FIG. 6 may be implemented by the processor 301 in FIG. 4.
- This embodiment of the application does not place any restrictions on this.
- An embodiment of the present application further provides a computer-readable storage medium, where the computer-readable storage medium stores computer instructions; when the computer-readable storage medium runs on the terminal shown in FIG. 4, the terminal executes The power indication method shown in FIG. 5.
- the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, a computer, a server, or a data center. Transmission by wire (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) to another website site, computer, server, or data center.
- wire such as coaxial cable, optical fiber, digital subscriber line (DSL)
- wireless such as infrared, wireless, microwave, etc.
- the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device including one or more servers, data centers, and the like that can be integrated with the medium.
- the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium, or a semiconductor medium (for example, a solid state disk (SSD)).
- An embodiment of the present application further provides a chip system, and the chip system includes a processor for supporting a terminal to implement the power indication method shown in FIG. 5.
- the chip system further includes a memory. This memory is used to store the necessary program instructions and data of the terminal.
- the memory may not be in the chip system.
- the chip system may be composed of a chip, and may also include a chip and other discrete devices, which are not specifically limited in the embodiments of the present application.
- the embodiment of the present application further provides a computer program product containing computer instructions, which when run on the terminal shown in FIG. 4 enables the computer to execute the power indicating method shown in FIG. 5.
- the terminal, the computer storage medium, the chip system, and the computer program product provided in the foregoing embodiments of the present application are used to implement the power indication method provided above. Therefore, for a beneficial effect that can be greater than or equal to, the method provided above The corresponding beneficial effects are not repeated here.
- FIG. 7 is a schematic structural diagram of a network device according to an embodiment of the present application.
- the network device includes: a communication module 701 and a processing module 702.
- the communication module 701 is configured to support a network device to perform step S102 in FIG. 5 and / or other processes used in the technical solution described herein.
- the processing module 702 is configured to support the network device to perform step S103 in FIG. 5 and / or other processes for the technical solution described herein. All relevant content of each step involved in the above method embodiment can be referred to the functional description of the corresponding functional module, and will not be repeated here.
- the communication module 701 in FIG. 7 may be implemented by the transceiver 203 in FIG. 4, and the processing module 702 in FIG. 7 may be implemented by the processor 201 in FIG.
- This embodiment of the present application does not place any restrictions on this.
- An embodiment of the present application further provides a computer-readable storage medium, where the computer-readable storage medium stores instructions; when the computer-readable storage medium runs on the network device shown in FIG. 4, the network device The power indication method shown in FIG. 5 is executed.
- An embodiment of the present application further provides a chip system.
- the chip system includes a processor for supporting a network device to implement the power indicating method shown in FIG. 5.
- the chip system further includes a memory. This memory is used to store the necessary program instructions and data of the terminal. Of course, the memory may not be in the chip system.
- the chip system may be composed of a chip, and may also include a chip and other discrete devices, which are not specifically limited in the embodiments of the present application.
- the embodiment of the present application further provides a computer program product containing computer instructions, which when run on the network device shown in FIG. 4, enables the computer to execute the power indicating method shown in FIG.
- the network devices, computer storage media, chip systems, and computer program products provided in the foregoing embodiments of the present application are used to implement the power indication method provided above. Therefore, for the beneficial effects that can be greater than or equal to, refer to the above provided. The beneficial effects corresponding to the method are not repeated here.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Databases & Information Systems (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Mathematical Physics (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本申请提供一种功率指示方法及装置,涉及通信技术领域,用于使网络设备能够实时地对终端进行上行传输的功率控制。该方法包括:终端生成天线发射能力信息,该天线发射能力信息用于指示终端的每一个发射天线端口的最大发射功率值是否达到预设功率值,或者,该天线发射能力信息用于指示终端的每一个发射天线端口的最大发射功率值;之后,终端向网络设备发送天线发射能力信息,以使得网络设备在调度上行传输时可以确定终端的每一个发射天线端口的最大发射功率值是否达到预设功率值。
Description
本申请要求于2018年09月29日提交国家知识产权局、申请号为201811152760.9、申请名称为“功率指示方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及通信技术领域,尤其涉及功率指示方法及装置。
在终端进行上行传输的过程中,基站需要对终端进行功率控制,其目的在于:一方面,避免终端的发射功率过小,保证终端发送的上行数据的质量;另一方面,避免终端的发射功率过大,防止对网络中的其他终端造成干扰。
当前,终端会向网络设备上报自身的功率级别(power classes),以便于网络设备对终端进行上行传输的功率控制。其中,该功率级别定义了每个频带上的同一个时间单元上,网络系统能允许的终端的最大发射功率值。但是,网络设备仅根据终端上报的功率级别,并不能有效地对终端进行上行传输的功率控制。
发明内容
本申请提供一种功率指示方法及装置,用于使网络设备能够有效地对终端进行上行传输的功率控制,保证上行传输的可靠性。
为达到上述目的,本申请提供如下技术方案:
第一方面,提供一种功率指示方法,包括:终端生成天线发射能力信息,天线发射能力信息用于指示终端的每一个发射天线端口的最大发射功率值是否达到预设功率值,或者该天线发射能力信息用于指示所述终端的每一个发射天线端口的最大发射功率值;终端向网络设备发送天线发射能力信息。基于上述技术方案,网络设备可以获知终端的各个发射天线端口的功率情况。这样一来,网络设备在调度上行传输时确定终端可以采用的发射功率值与该终端实际进行上行传输采用的发射功率值相匹配,从而保证网络设备的接收性能。
一种可能的设计中,天线发射能力信息至少包括以下信息中的一种:(1)天线配置类型,天线配置类型用于指示终端配置的发射天线端口的数目,以及每一个发射天线端口的最大发射功率值;(2)每一个发射天线端口的最大发射功率值;(3)所述终端配置的发射天线端口的数目,以及最大发射功率值达到预设功率值的发射天线端口的数目;(4)每一个发射天线端口的功率指示信息,功率指示信息用于指示发射天线端口的最大发射功率值是否达到预设功率值。
一种可能的设计中,发射天线端口以探测参考信号(sounding reference signal,SRS)端口信息来表征;或者,发射天线端口以SRS端口信息结合发射天线组的组信息来表征。
一种可能的设计中,发射天线端口用于发送PUSCH。
第二方面,提供一种功率指示方法,包括:网络设备接收终端发送的天线发射能 力信息,天线发射能力信息用于指示终端的每一个发射天线端口的最大发射功率值是否达到预设功率值,或者该天线发射能力信息用于指示所述终端的每一个发射天线端口的最大发射功率值;网络设备根据天线发射能力信息,确定终端的每一个发射天线端口的最大发射功率值是否达到预设功率值。基于上述技术方案,网络设备可以确定终端的各个发射天线端口的功率情况。这样一来,网络设备在调度上行传输时确定终端可以采用的发射功率值与该终端实际进行上行传输采用的发射功率值相匹配,从而保证网络设备的接收性能。
一种可能的设计中,天线发射能力信息至少包括以下信息中的一种:(1)天线配置类型,天线配置类型用于指示终端配置的发射天线端口的数目,以及每一个发射天线端口的最大发射功率值;(2)每一个发射天线端口的最大发射功率值;(3)所述终端配置的发射天线端口的数目,以及最大发射功率值达到预设功率值的发射天线端口的数目;(4)每一个发射天线端口的功率指示信息,功率指示信息用于指示发射天线端口的最大发射功率值是否达到预设功率值。
一种可能的设计中,发射天线端口以SRS端口信息来表征;或者,发射天线端口以SRS端口信息结合发射天线组的组信息来表征。
一种可能的设计中,发射天线端口用于发送PUSCH。
第三方面,提供一种终端,包括:处理模块,用于生成天线发射能力信息,天线发射能力信息用于指示终端的每一个发射天线端口的最大发射功率值是否达到预设功率值,或者该天线发射能力信息用于指示所述终端的每一个发射天线端口的最大发射功率值。通信模块,用于向网络设备发送天线发射能力信息。
一种可能的设计中,天线发射能力信息至少包括以下信息中的一种:(1)天线配置类型,天线配置类型用于指示终端配置的发射天线端口的数目,以及每一个发射天线端口的最大发射功率值;(2)每一个发射天线端口的最大发射功率值;(3)所述终端配置的发射天线端口的数目,以及最大发射功率值达到预设功率值的发射天线端口的数目;(4)每一个发射天线端口的功率指示信息,功率指示信息用于指示发射天线端口的最大发射功率值是否达到预设功率值。
一种可能的设计中,发射天线端口以SRS端口信息来表征;或者,发射天线端口以SRS端口信息结合发射天线组的组信息来表征。
一种可能的设计中,发射天线端口用于发送PUSCH。
第四方面,提供一种终端,包括:处理器,用于生成天线发射能力信息,天线发射能力信息用于指示终端的每一个发射天线端口的最大发射功率值是否达到预设功率值,或者该天线发射能力信息用于指示所述终端的每一个发射天线端口的最大发射功率值。通信接口,用于向网络设备发送天线发射能力信息。
一种可能的设计中,天线发射能力信息至少包括以下信息中的一种:(1)天线配置类型,天线配置类型用于指示终端配置的发射天线端口的数目,以及每一个发射天线端口的最大发射功率值;(2)每一个发射天线端口的最大发射功率值;(3)所述终端配置的发射天线端口的数目,以及最大发射功率值达到预设功率值的发射天线端口的数目;(4)每一个发射天线端口的功率指示信息,功率指示信息用于指示发射天线端口的最大发射功率值是否达到预设功率值。
一种可能的设计中,发射天线端口以SRS端口信息来表征;或者,发射天线端口以SRS端口信息结合发射天线组的组信息来表征。
一种可能的设计中,发射天线端口用于发送PUSCH。
第五方面,提供一种终端,包括:处理器,所述处理器用于与存储器耦合,并读取存储器中的指令,并根据所述指令实现如上述第一方面中任一项所述的功率指示方法。
第六方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机可以执行上述第一方面中任一项所述的功率指示方法。
第七方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述第一方面中任一项所述的功率指示方法。
第八方面,提供了一种芯片系统,该芯片系统包括处理器,用于支持终端实现上述第一方面中任一项所述的功率指示方法的功能。在一种可能的设计中,该芯片系统还包括存储器,该存储器,用于保存终端必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
其中,第三方面至第八方面中任一种设计方式所带来的技术效果可参见第一方面中不同设计方式所带来的技术效果,此处不再赘述。
第九方面,提供一种网络设备,包括:通信模块,用于接收终端发送的天线发射能力信息,天线发射能力信息用于指示终端的每一个发射天线端口的最大发射功率值是否达到预设功率值,或者该天线发射能力信息用于指示所述终端的每一个发射天线端口的最大发射功率值。处理模块,用于根据天线发射能力信息,确定终端的每一个发射天线端口的最大发射功率值是否达到预设功率值。
一种可能的设计中,天线发射能力信息至少包括以下信息中的一种:(1)天线配置类型,天线配置类型用于指示终端配置的发射天线端口的数目,以及每一个发射天线端口的最大发射功率值;(2)每一个发射天线端口的最大发射功率值;(3)所述终端配置的发射天线端口的数目,以及最大发射功率值达到预设功率值的发射天线端口的数目;(4)每一个发射天线端口的功率指示信息,功率指示信息用于指示发射天线端口的最大发射功率值是否达到预设功率值。
一种可能的设计中,发射天线端口以SRS端口信息来表征;或者,发射天线端口以SRS端口信息结合发射天线组的组信息来表征。
一种可能的设计中,发射天线端口用于发送PUSCH。
第十方面,提供一种网络设备,包括:通信接口,用于接收终端发送的天线发射能力信息,天线发射能力信息用于指示终端的每一个发射天线端口的最大发射功率值是否达到预设功率值,或者该天线发射能力信息用于指示所述终端的每一个发射天线端口的最大发射功率值。处理器,用于根据天线发射能力信息,确定终端的每一个发射天线端口的最大发射功率值是否达到预设功率值。
一种可能的设计中,天线发射能力信息至少包括以下信息中的一种:(1)天线配置类型,天线配置类型用于指示终端配置的发射天线端口的数目,以及每一个发射天线端口的最大发射功率值;(2)每一个发射天线端口的最大发射功率值;(3)所述 终端配置的发射天线端口的数目,以及最大发射功率值达到预设功率值的发射天线端口的数目;(4)每一个发射天线端口的功率指示信息,功率指示信息用于指示发射天线端口的最大发射功率值是否达到预设功率值。
一种可能的设计中,发射天线端口以SRS端口信息来表征;或者,发射天线端口以SRS端口信息结合发射天线组的组信息来表征。
一种可能的设计中,发射天线端口用于发送PUSCH。
第十一方面,提供一种网络设备,包括:处理器,所述处理器用于与存储器耦合,并读取存储器中的指令,并根据所述指令实现如上述第二方面中任一项所述的功率指示方法。
第十二方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机可以执行上述第二方面中任一项所述的功率指示方法。
第十三方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述第二方面中任一项所述的功率指示方法。
第十四方面,提供了一种芯片系统,该芯片系统包括处理器,用于支持网络设备实现上述第二方面中任一项所述的功率指示方法的功能。在一种可能的设计中,该芯片系统还包括存储器,该存储器,用于保存网络设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
其中,第九方面至第十四方面中任一种设计方式所带来的技术效果可参见第二方面中不同设计方式所带来的技术效果,此处不再赘述。
图1为一种终端天线配置的示意图;
图2为另一种终端天线配置的示意图;
图3为本申请实施例提供的一种通信系统的架构示意图;
图4为本申请实施例提供的一种终端和网络设备的硬件结构示意图;
图5为本申请实施例提供的一种功率指示方法的流程图;
图6为本申请实施例提供的一种终端的结构示意图;
图7为本申请实施例提供的一种网络设备的结构示意图。
下面先对本申请实施例涉及的一些概念进行简单介绍。
在第三代合作伙伴计划(3rd generation partnership project,3GPP)的新无线接入技术(new radio access technology,NR)系统中,系统的下行资源从时间上看被划分成了多个正交频分复用多址(orthogonal frequency division multiple,OFDM)符号,从频率上看被划分成了若干个子载波。下行链路中的物理下行链路控制信道(physical downlink control channel,PDCCH)通常占用一个子帧中前两个/三个OFDM符号。
PDCCH用于承载下行链路控制信息(downlink control information,DCI)。DCI中携带了UE特定的资源分配和UE特定的或小区共享的其他控制信息。系统的上行链路中的物理上行链路共享信道(physical uplink shared channel,PUSCH)用于承载上行发送数据,通常使用离散傅里叶变换扩展OFDM(DFT-Spread OFDM,DFT-S-OFDM) 生成频域信号。NR的上行传输中支持两种波形,针对功率受限的场景通常采用DFT-s-OFDM波形,该波形支持最大单流的数据传输,同时保证单载波特性;针对资源受限的场景通常采用循环前缀OFDM(cycle prefix OFDM,CP-OFDM)波形,该波形支持单流或者多流的数据传输以提高通信系统的频谱效率。
在上行传输之前,终端会上报其能支持的发射天线端口的数量(例如1Tx,2Tx或4Tx),发射天线端口的数量可以表征上行传输的最大传输层数,同时,发射天线端口的数量也对应了基于码本的上行传输中,DCI指示的用于当前上行传输的预编码矩阵的维度,即该预编码矩阵的行数表征了当前上行传输采用的发射天线端口的数量,且该行数小于等于终端能够支持的发射天线端口的数目,该预编码矩阵的列数表征了传输层数,且该列数小于等于终端能够支持的发射天线端口的数目。例如,对于2Tx的终端来说,上行传输采用的最大发射天线端口数为2,且上行传输采用的最大传输层数为2。其中,发射天线端口可以对应于终端的物理天线端口,或者终端的物理天线经过虚拟化之后的逻辑天线端口。每个发射天线端口可以对应一个功率放大器(power amplifier,PA)。
进一步地,该终端上报的能支持的发射天线端口的数量也对应于基于码本传输的SRS资源中的天线端口的数目(也即SRS端口的数目),SRS资源中的天线端口的数目通常小于等于终端上报的能支持的发射天线端口的数量。每个SRS资源中的天线端口可以与上行传输采用的发射天线端口一一对应,也就是说每个SRS资源中的天线端口均对应一个PA。例如,对于2Tx的终端来说,SRS端口的数目可以配置为2,且最大传输层数为2。.
终端还会上报天线间的最大相干能力。示例性的,对于2Tx的终端来说,相干能力包括:完全相干(full-coherent)能力和非相干(non-coherent)能力。对于4Tx的终端来说,相干能力包括:完全相干能力、部分相干(partial-coherent)能力以及非相干能力。
其中,完全相干能力用于说明终端的所有用于上行传输的发射天线端口能够完成相位校准,进行相位加权,也即终端的所有发射天线端口可以用于发送同一传输层的数据。
部分相干能力用于说明终端的用于上行传输的发射天线端口中存在两组发射天线端口,且组内的发射天线端口完成了相位校准,可以进行相位加权发送同一传输层的数据,而组间的发射天线端口未完成相位校准,不可以进行相位加权。并且,同一传输层的数据仅能采用一组发射天线端口传输
非相干能力是指终端的所有发射天线端口之间均未完成相位校准,因此终端的所有发射天线端口不能用于相位加权发送同一传输层的数据,也即一个传输层数据只能用所有发射天线端口中的一个发射天线端口发送。
示例性的,网络设备与终端之间预先存储的码本可以如下表1-7所示。码本中每个码字按照表格中从左到右的传输预编码矩阵指示(transmission precoding matrix indicator,TPMI)的索引值增加的顺序排列。一个码本可以包含三种类型的码字,每种类型的码字对应一种相干能力。例如,表1中TPMI索引值为0-1的码字对应非相干能力,TPMI索引值为2-5的码字对应完全相干能力。又例如,表2中TPMI索引值 为0的码字对应非相干能力,TPMI索引值为1-2的码字对应完全相干能力。又例如,表3中TPMI索引值为0-3的码字对应非相干能力,TPMI索引值为4-11的码字对应部分相干能力,TPMI索引值为12-27的码字对应完全相干能力。又例如,表4中TPMI索引值为0-3的码字对应非相干能力,TPMI索引值为4-11的码字对应部分相干能力,TPMI索引值为12-27的码字对应完全相干能力。又例如,表5中TPMI索引值为0-5的码字对应非相干能力,TPMI索引值为6-13的码字对应部分相干能力,TPMI索引值为14-21的码字对应完全相干能力。又例如,表6中TPMI索引值为0的码字对应非相干能力,TPMI索引值为1-2的码字对应部分相干能力,TPMI索引值为3-6的码字对应完全相干能力。又例如,表7中TPMI索引值为0的码字对应非相干能力,TPMI索引值为1-2的码字对应部分相干能力,TPMI索引值为3-4的码字对应完全相干能力。
表1两个发射天线端口的1层传输的预编码矩阵W
表2两个发射天线端口的2层传输的预编码矩阵W
表3四个发射天线端口的1层传输DFT-s-OFDM波形的预编码矩阵W
表4四个发射天线端口的1层传输CP-OFDM波形的预编码矩阵W
表5四个发射天线端口的2层传输CP-OFDM波形的预编码矩阵W
表6四个发射天线端口的3层传输CP-OFDM波形的预编码矩阵W
表7四个发射天线端口的4层传输CP-OFDM波形的预编码矩阵W
在上行传输之前,终端根据SRS资源配置,在相应的时频资源上发送SRS,基站在相应的时频资源上接收并测量SRS以获得上行信道信息。基于上行信道信息,基站通过用于调度上行传输的PDCCH中承载的DCI指示终端发送PUSCH。其中,该DCI指示PUSCH的传输参数包括:传输层数(transmission rank indicator,TRI)和TPMI。需要说明的是,基站基于终端上报的最大相干能力,来下发相应的TPMI,从而指示相应的码字。例如,终端上报其最大相干能力为完全相干,则基站可以指示完全相干、部分相干或者非相干类型的码字。又例如,终端上报其最大相干能力为部分相干,则基站可以指示部分相干、非相干类型的码字。又例如,终端上报其最大相干能力为非相干,则基站可以指示非相干类型的码字。
可选的,该DCI指示的传输参数还包括:SRS资源指示(SRS resource indication,SRI)。每个SRS资源对应一个发射天线组,一个发射天线组包含多个发射天线端口。SRI用于从多个SRS资源中指示终端所使用的SRS资源,也即,SRI用于指示终端应使用的发射天线组。从而,终端可以使用SRI指示的发射天线组包含的发射天线端口发射PUSCH。
终端中的每一个SRS端口对应上述预编码矩阵中的一行,预编码矩阵一行中的元素即为对应的SRS端口的相位加权的系数。若预编码矩阵一行中的元素的取值均为0,则说明终端不需使用该行对应的SRS端口发送PUSCH。在本申请实施例中,SRS端口为用于传输SRS的发射天线端口,换句话说,SRS端口为具有SRS端口信息的发射天线端口。SRS端口信息与预编码矩阵中一行的序号存在对应关系。示例性的,SRS端口信息可以为SRS端口号、SRS端口标识或者SRS端口索引。进一步的,SRS端口信息还可以包含其他与SRS端口有关的参数。
DCI中用于指示PUSCH传输层数和TPMI的字段为Precoding information and number of layers字段,该字段的每个比特域索引值对应一个传输层数以及相应的TPMI。其中,表8所示为四个发射天线、CP-OFDM波形、最大传输层数为2-4时的Precoding information and number of layers字段的示例。表9所示为四个发射天线、CP-OFDM波形、最大传输层数为1时的Precoding information and number of layers字段的示例。
表8
表9
功率级别定义了每个频带上的同一个时间单元上,网络系统能允许的终端的最大发射功率值。表10示出终端的功率级别的一个示例。
表10
需要说明的是,功率级别仅能反映终端的最大发射功率值,不能反映终端中每个发射天线端口的最大发射功率值。例如:对于Class3的终端来说,至少有以下两种天线配置:
配置1、如图1所示,终端配置的两个功率放大器具有最大20dBm的发射功率,也即与这两个功率放大器对应的发射天线端口的最大发射功率值为20dBm。两个发射天线端口可以虚拟为一个发射天线端口,虚拟出来的发射天线端口的最大发射功率值为23dBm。也即,终端的最大发射功率值为23dBm。
配置2、如图2所示,终端配置的一个功率放大器具有最大20dbm的发射功率, 也即与该功率发大器对应的发射天线端口0的最大发射功率值为20dBm。终端的另一个功率放大器具有最大23dbm的发射功率,也即与该功率发大器对应的发射天线端口1的最大发射功率值为23dBm。
为了对终端的上行传输进行有效的功率控制,本申请实施例提供一种功率指示方法,包括:终端生成天线发射能力信息,所述天线发射能力信息用于指示所述终端的每一个发射天线端口的最大发射功率值是否达到预设功率值,或者所述天线发射能力信息用于指示所述终端的每一个发射天线端口的最大发射功率值。之后,所述终端向网络设备发送所述天线发射能力信息。网络设备根据所述天线发射能力信息,确定所述终端的每一个发射天线端口的最大发射功率值是否达到预设功率值(可以直接根据天线发射能力信息确定;也根据天线发射能力信息先确定所述终端的每一个发射天线端口的最大发射功率值,再根据获知的各发射天线端口的最大发射功率值确定)。这样一来,网络设备在进行上行调度时,会综合考虑终端的每一个发射天线端口的功率情况,从而便于网络设备指示终端使用合适的发射天线端口进行上行传输,保证系统的传输性能。
示例性的,结合图2进行说明,假设网络设备希望终端以22dBm的信道发送功率进行上行传输,若网络设备仅按照终端上报的功率级别进行上行传输的功率控制,则网络设备可能指示终端使用表1所示的码本中TPMI索引值为0对应的预编码矩阵来进行上行传输。在终端采用该预编码矩阵进行上行传输的时候,实际上,终端仅使用发射天线端口0进行上行传输。其中,发射天线端口0的最大发射功率值为20dBm,小于22dBm。也就是说,终端实际的发射功率并不能达到信道发送功率。这样就会影响系统的传输性能。若采用本申请的技术方案,网络设备能够获知终端的发射天线端口0的发射功率值为20dBm,发射天线端口1的发射功率值为23dBm。这样一来,网络设备能够综合考虑终端的各个发射天线端口的功率情况,从而可以指示终端选择最优的发射天线端口进行上行传输。结合本示例,网络设备可以确定发射天线端口1为最优的发射天线端口,因此,网络设备下发的DCI会指示终端使用表1所示的码本中TPMI索引值为1对应的预编码矩阵来进行上行传输,也即网络设备指示终端使用发射天线端口1进行上行传输。
在本申请的描述中,除非另有说明,“/”表示“或”的意思,例如,A/B可以表示A或B。本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。此外,“至少一个”是指一个或多个,“多个”是指两个或两个以上。“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
在本申请的描述中,“指示”可以包括直接指示和间接指示,也可以包括显式指示和隐式指示。将某一信息(如下文所述的天线发射能力信息)所指示的信息称为待指示信息,则具体实现过程中,对所述待指示信息进行指示的方式有很多种,例如但不限于,可以直接指示所述待指示信息,如所述待指示信息本身或者所述待指示信息的索引等。也可以通过指示其他信息来间接指示所述待指示信息,其中该其他信息与所述待指示信息之间存在关联关系。还可以仅仅指示所述待指示信息的一部分,而所 述待指示信息的其他部分则是已知的或者提前约定的。例如,还可以借助预先约定(例如协议规定)的各个信息的排列顺序来实现对特定信息的指示,从而在一定程度上降低指示开销。
需要说明的是,本申请中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
此外,本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请实施例提供的技术方案可以应用于各种通信系统,例如,长期演进(long term evolution,LTE)通信系统,采用第五代(5th generation,5G)通信技术的NR通信系统,未来演进系统或者多种通信融合系统等等。本申请提供的技术方案可以应用于多种应用场景,例如,机器对机器(machine to machine,M2M)、宏微通信、增强型移动宽带(enhance mobile broadband,eMBB)、超高可靠超低时延通信(ultra-reliable&low latency communication,uRLLC)以及海量物联网通信(massive machine type communication,mMTC)等场景。
图3给出了本申请提供的技术方案所适用的一种通信系统的示意图,通信系统10可以包括一个或多个网络设备20(仅示出了1个)以及与每一网络设备20连接的一个或多个终端30。图3仅为示意图,并不构成对本申请提供的技术方案的适用场景的限定。
网络设备20可以是无线通信的基站或基站控制器等。例如,所述基站可以包括各种类型的基站,例如:微基站(也称为小站),宏基站,中继站,接入点等,本申请实施例对此不作具体限定。在本申请实施例中,所述基站可以是全球移动通信系统(global system for mobile communication,GSM)或者码分多址(code division multiple access,CDMA)中的基站(base transceiver station,BTS),宽带码分多址(wideband code division multiple access,WCDMA)中的基站(node B),LTE中的演进型基站(evolutional node B,eNB或e-NodeB),物联网(internet of things,IoT)或者窄带物联网(narrow band-internet of things,NB-IoT)中的eNB,未来5G移动通信网络或者未来演进的公共陆地移动网络(public land Mobile Network,PLMN)中的基站,本申请实施例对此不作任何限制。
终端30用于向用户提供语音和/或数据连通性服务。所述终端30可以有不同的名称,例如用户设备(user equipment,UE)、接入终端、终端单元、终端站、移动站、移动台、远方站、远程终端、移动设备、无线通信设备、终端代理或终端装置等。可选的,所述终端30可以为各种具有通信功能的手持设备、车载设备、可穿戴设备、计算机,本申请实施例对此不作任何限定。例如,手持设备可以是智能手机。车载设备可以是车载导航系统。可穿戴设备可以是智能手环。计算机可以是个人数字助理(personal digital assistant,PDA)电脑、平板型电脑以及膝上型电脑(laptop computer)。
图4为本申请实施例提供的网络设备20和终端30的硬件结构示意图。
终端30包括至少一个处理器301,可选的,还包括至少一个存储器302、至少一个收发器303。可选的,终端30进一步还可以包括输出设备304和输入设备305。
处理器301、存储器302和收发器303通过总线相连接。处理器301可以是一个通用中央处理器(central processing unit,CPU)、微处理器、特定应用集成电路(application-specific integrated circuit,ASIC),或者一个或多个用于控制本申请方案程序执行的集成电路。处理器301也可以包括多个CPU,并且处理器301可以是一个单核(single-CPU)处理器或多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路或用于处理数据(例如计算机程序指令)的处理核。
存储器302可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备、随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,本申请实施例对此不作任何限制。存储器302可以是独立存在,通过总线与处理器301相连接。存储器302也可以和处理器301集成在一起。其中,存储器302用于存储执行本申请方案的应用程序代码,并由处理器301来控制执行。处理器301用于执行存储器302中存储的计算机程序代码,从而实现本申请实施例提供的方法。
收发器303可以使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网、无线接入网(radio access network,RAN)、无线局域网(wireless local area networks,WLAN)等。收发器303包括发射机Tx和接收机Rx。
输出设备304和处理器301通信,可以以多种方式来显示信息。例如,输出设备304可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输入设备305和处理器301通信,可以以多种方式接收用户的输入。例如,输入设备305可以是鼠标、键盘、触摸屏设备或传感设备等。
网络设备20包括至少一个处理器201,可选的,还包括至少一个存储器202、至少一个收发器203和至少一个网络接口204。处理器201、存储器202、收发器203和网络接口204通过总线相连接。其中,网络接口204用于通过链路(例如S1接口)与核心网设备连接,或者通过有线或无线链路(例如X2接口)与接入网设备的网络接口进行连接(图中未示出),本申请实施例对此不作具体限定。另外,处理器201、存储器202和收发器203的相关描述可参考终端30中处理器301、存储器302和收发器303的描述,在此不再赘述。
如图5所示,为本申请实施例提供的一种功率指示方法,该方法包括以下步骤:
S101、终端生成天线发射能力信息。
其中,所述天线发射能力信息用于指示所述终端的每一个发射天线端口的最大发 射功率值。或者,所述天线发射能力信息用于指示终端的每一个发射天线端口的最大发射功率值是否达到预设功率值。需要说明的是,预设功率值可以是预先定义的,也可以根据终端的功率级别来确定。例如,所述预设功率值为终端上报的功率级别对应的最大发射功率值。可选的,终端可以将预设功率值上报给网络设备,该预设功率值满足小于或者等于该终端上报的功率级别对应的最大发射功率值,以使得网络设备获知预设功率值。
需要说明的是,发射天线端口的最大发射功率值即为与该发射天线端口对应的PA的最大发射功率值。每一个PA对应一个发射链路(Tx chain)/发射通道以及射频(radio frequency,RF),每个发射链路会产生各自的发射信号并通过PA进行功率放大。
可选的,所述天线发射能力信息至少包括以下信息之一:
(1)每一个发射天线端口的最大发射功率值。在实际应用中,天线发射能力信息包含的可以是每一个发射天线端口的最大发射功率值的绝对值,也可以是每一个发射天线端口的最大发射功率值的相对值。例如,发射天线端口的最大发射功率值的相对值可以为发射天线端口的最大发射功率值与预设功率值之间的差值。又例如,发射天线端口的最大发射功率值的相对值可以为发射天线端口的最大发射功率值与预设功率值之间的比值。发射天线端口的最大发射功率值的相对值可以在采用特定步长量化后再上报。
(2)每一个发射天线端口的功率指示信息,所述功率指示信息用于指示发射天线端口的最大发射功率值是否达到预设功率值。示例性的,发射天线端口的功率指示信息可以以一个或多个比特来表示,例如这一个或多个比特的取值均为0时,指示发射天线端口的最大发射功率值达到预设功率值;这一个或多个比特的取值均为1时,指示发射天线端口的最大发射功率值未达到预设功率值。
(3)天线配置类型,所述天线配置类型用于指示终端配置的发射天线端口的数目,以及每一个发射天线端口的最大发射功率值。可选的,终端的天线配置类型是预先定义的。例如,对于2Tx的终端而言,以天线配置类型中的一种或者多种可以预先定义:天线配置类型1的终端的发射天线端口的数目为2,两个发射天线端口的最大发射功率值均为20dBm。天线配置类型2的终端配置的发射天线端口的数目为2,两个发射天线端口的最大发射功率值为23dBm。天线配置类型为3的终端配置的发射天线端口的数目为2,其中一个发射天线端口的最大发射功率值为23dBm,另一个发射天线端口的最大发射功率值为26dBm。天线配置类型为4的终端配置的发射天线端口的数目为2,其中一个发射天线端口的最大发射功率值为23dBm,另一个发射天线端口的最大发射功率值为20dBm。天线配置类型为5的终端配置的发射天线端口的数目为2,其中一个发射天线端口的最大发射功率值为26dBm,另一个发射天线端口的最大发射功率值为26dBm。其中,天线配置类型1、2或4的终端可以上报Class 3(最大发射功率为23dBm),天线配置类型2、3或5的终端可以上报Class 2(最大发射功率为26dBm)。
进一步的,在终端配置多个发射天线组的情况下,天线配置类型用于指示终端配置的发射天线组的数目,每一个发射天线组包含的发射天线端口的数目,以及每一个发射天线组中各个发射天线端口的最大发射功率值。示例性的,天线配置类型为6的 终端配置了两个发射天线组,发射天线组1包含的发射天线端口的数目为2,其中一个发射天线端口的最大发射功率值为23dBm,另一个发射天线端口的最大发射功率值为26dBm;发射天线组2包含的发射天线端口的数目为2,其中一个发射天线端口的最大发射功率值为20dBm,另一个发射天线端口的最大发射功率值为23dBm。
(4)终端配置的发射天线端口的数目,以及最大发射功率值达到预设功率值的发射天线端口的数目。示例性的,假设预设功率值为23dBm,终端配置了4个发射天线端口,分别为端口1、端口2、端口3和端口4,端口1的最大发射功率值为20dBm,端口2的最大发射功率值为23dBm,端口3的最大发射功率值为20dBm,端口4的最大发射功率值为26dBm,则终端上报的天线发射能力信息包含的终端配置的发射天线端口的数目为4,最大发射功率值达到预设功率值的发射天线端口的数目为2。
进一步的,在终端配置多个发射天线组的情况下,天线发射能力信息包含每一个发射天线组中发射天线端口的数目,以及每一个发射天线组中最大发射功率值达到预设功率值的发射天线端口的数目。
可选的,发射天线端口以SRS端口信息来表征。或者,在终端配置多个发射天线组的情况下,发射天线端口以SRS端口信息结合发射天线组的组信息来表征。示例性的,所述组信息可以为组号、组标识、组索引等。进一步的,组信息还可以包含其他与发射天线组有关的参数。
下面结合天线发射能力信息来说明网络设备和终端如何确定发射天线端口所属的发射天线组信息。
作为一种示例,终端可以以显式的方式在天线发射能力信息中指示每一个发射天线端口所属发射天线组的组信息。例如,天线发射能力信息包含每一个发射天线端口所属发射天线组的组信息以及最大发射功率值。又例如,天线发射能力信息包含每一个发射天线端口所属发射天线组的组信息以及功率指示信息。
作为一种示例,终端也可以以隐式的方式在天线发射能力信息中指示每一个发射天线端口的SRS端口信息,以及每一个发射天线端口所属发射天线组的组信息。例如,若天线发射能力信息包含每一个发射天线端口的最大发射功率值,则发射天线端口的最大发射功率值在天线发射能力信息中的位置(或者排列顺序)可以用于指示该发射天线端口所属发射天线组的组信息。又例如,若天线发射能力信息包含每一个发射天线端口的功率指示信息,则发射天线端口的功率指示信息在天线发射能力信息中的位置(或者排列顺序)可以用于指示该发射天线端口所属发射天线组的组信息。
下面结合天线发射能力信息来说明网络设备和终端如何确定发射天线端口的SRS端口信息。
(1)终端预先定义了每一个发射天线端口的SRS端口信息,终端以天线发射能力信息通知网络设备。
作为一种示例,终端可以以显式的方式在天线发射能力信息中指示每一个发射天线端口的SRS端口信息。例如,天线发射能力信息包含每一个发射天线端口的SRS端口信息及最大发射功率值。又例如,天线发射能力信息包含每一个发射天线端口的SRS端口信息及功率指示信息。
作为另一种示例,终端也可以以隐式的方式在天线发射能力信息中指示每一个发 射天线端口的SRS端口信息。例如,若天线发射能力信息包含每一个发射天线端口的最大发射功率值,则发射天线端口的最大发射功率值在天线发射能力信息中的位置可以用于指示该发射天线端口的SRS端口信息。又例如,若天线发射能力信息包含每一个发射天线端口的功率指示信息,则发射天线端口的功率指示信息在天线发射能力信息中的位置可以用于指示该发射天线端口的SRS端口信息。
(2)终端与网络设备之间按预设规则,确定每一个发射天线端口的SRS端口信息。其中,该预设规则是标准中规定的,或者是网络设备下发给终端的。
作为一个示例,所述预设规则为:对于每一个发射天线组来说,按照该发射天线组中各个发射天线端口的最大发射功率值的排序,确定发射天线端口对应的SRS端口信息。
例如,天线发射能力信息中包含4个最大发射功率值,分别是20dBm,20dBm,23dBm,26dBm,则对于终端来说,最大发射功率值为26dBm的发射天线端口对应的SRS端口号(此示例中,SRS端口信息以SRS端口号为例)为0,最大发射功率值为23dBm的发射天线端口对应的SRS端口号为1,设置最大发射功率值为20dBm的发射天线端口对应的SRS端口号为2,另一个最大发射功率值为20dBm的发射天线端口对应的SRS端口号为3。对于网络设备来说,SRS端口0的最大发射功率值为23dBm,SRS端口1的最大发射功率值为23dBm,SRS端口2和SRS端口3的最大发射功率值均为20dBm。
作为另一个示例,所述预设规则为:对于每一个天线发射组来说,最大发射功率值达到预设功率值的发射天线端口对应第一SRS端口信息,最大发射功率值未达到预设功率值的发射天线端口对应第二SRS端口信息。
对于每一个发射天线组来说,第一SRS端口信息的数目为该发射天线组包含的最大发射功率值达到预设功率值的发射天线端口的数目,第二SRS端口信息的数目等于该发射天线组包含的发射天线端口的数目减去该发射天线组包含的最大发射功率值达到预设功率值的发射天线端口的数目。第一SRS端口信息的取值集合以及第二SRS端口信息的取值集合可以是预先设置的,或者是网络设备与终端协商确定的,本申请实施例对此不作限制。可以理解的是,网络设备可以从所述天线发射能力信息,获取每一个发射天线组包含的发射天线端口的数目,以及最大发射功率值达到预设功率值的发射天线端口的数目。
可以理解的是,在终端仅配置一个发射天线组的情况下,该发射天线组包含的发射天线端口的数量即为该终端配置的发射天线端口的数量。
例如,发射天线组包含的发射天线端口的数目为4,最大发射功率值达到预设功率值的发射天线端口的数目为2,第一SRS端口号(此示例中,SRS端口信息以SRS端口号为例)的取值集合为{0,1},第二SRS端口号的取值集合为{2,3}。这样一来,对于终端来说,一个最大发射功率值达到预设功率值的发射天线端口对应的SRS端口号为0,另一个最大发射功率值达到预设功率值的发射天线端口对应的SRS端口号为1,一个最大发射功率值未达到预设功率值的发射天线端口对应的SRS端口号为2,另一个最大发射功率值未达到预设功率值的发射天线端口对应的SRS端口号为3。对于网络设备来说,SRS端口0的最大发射功率值达到预设功率值,SRS端口1的最大发 射功率值达到预设功率值,SRS端口2的最大发射功率值未达到预设功率值,SRS端口2的最大发射功率值未达到预设功率值。
又例如,发射天线组包含的发射天线端口的数目为4,最大发射功率值达到预设功率值的发射天线端口的数目为2,第一SRS端口号(此示例中,SRS端口信息以SRS端口号为例)的取值集合为{0,3},第二SRS端口号的取值集合为{1,2}。这样一来,对于终端来说,一个最大发射功率值达到预设功率值的发射天线端口对应的SRS端口号为0,另一个最大发射功率值达到预设功率值的发射天线端口对应的SRS端口号为3,一个最大发射功率值未达到预设功率值的发射天线端口对应的SRS端口号为1,另一个最大发射功率值未达到预设功率值的发射天线端口对应的SRS端口号为2。对于网络设备来说,SRS端口0的最大发射功率值达到预设功率值,SRS端口3的最大发射功率值达到预设功率值,SRS端口1的最大发射功率值未达到预设功率值,SRS端口2的最大发射功率值未达到预设功率值。
S102、终端向网络设备发送天线发射能力信息,以使得网络设备接收天线发射能力信息。
一种实现方式中,终端通过非接入层(non-access stratum,NAS)信令向网络设备发送天线发射能力信息。
可选的,终端可以主动向网络设备发送天线发射能力信息;或者,在网络设备向终端请求天线发射能力信息之后,终端向网络设备发送天线发射能力信息。
S103、网络设备根据终端的天线发射能力信息,确定终端的每一个发射天线端口的最大发射功率值是否达到预设功率值。
针对天线发射能力信息可以指示所述每一个发射天线端口的最大发射功率值是否达到预设功率值或指示所述每一个发射天线端口的最大发射功率值,网络设备可以直接根据天线发射能力信息确定最大发射功率值是否达到预设功率值;或根据天线发射能力信息先确定所述终端的每一个发射天线端口的最大发射功率值,再根据获知的各发射天线端口的最大发射功率值确定最大发射功率值是否达到预设功率值。在网络设备仅配置了一个SRS资源时,网络设备通过对SRS资源中的各个SRS端口进行测量,并考虑各个SRS端口在上行传输时可以采用的最大发射功率值这一因素,对各个SRS端口发送的参考信号进行补偿计算,估计出各个SRS端口的信道状态,例如信号与干扰加噪声比(signal to interference plus noise ratio,SINR),信噪比(signal-noise ratio,SNR),参考信号接收功率(reference signal receiving power,RSRP),参考信号接收质量(reference signal receiving quality,RSRQ)等,然后选择最优信道状态对应的一个或多个SRS端口作为用于上行传输的SRS端口,并通过TPMI指示给终端,以便于终端采用TPMI所指示的SRS端口发送上行数据。
在网络设备配置了多个SRS资源时,每个SRS资源分别对应一个发射天线组,网络设备基于测量每一个发射天线组在对应的SRS资源上发送的SRS获取每一个发射天线组的信道状态,从而确定最优信道状态对应的发射天线组,并通过SRI指示终端使用该发射天线组发送上行数据。进一步地,网络设备基于选择的SRS资源对应的发射天线组进一步选择该SRS资源中的天线端口,选择方式为,网络设备通过对该SRS资源中的各个SRS端口进行测量,并考虑各个SRS端口在上行传输时可以采用的最大 发射功率值这一因素,对各个SRS端口发送的参考信号进行补偿计算,估计出各个SRS端口的信道状态,然后选择最优信道状态对应的一个或多个SRS端口作为用于上行传输的SRS端口,并通过TPMI指示给终端,以便于终端采用TPMI所指示的SRS端口发送上行数据。
基于上述技术方案,由于网络设备获知了终端的每一个发射天线端口的最大发射功率值是否达到预设功率值,这样一来,网络设备在进行PUSCH调度时,会综合考虑终端的每一个发射天线端口的功率情况,从而便于网络设备指示终端使用合适的发射天线端口进行上行传输,保证系统的传输性能。
上述主要从每一个网元之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,每一个网元,例如网络设备和终端,为了实现上述功能,其包含了执行每一个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对网络设备和终端进行功能模块的划分,例如,可以对应每一个功能划分每一个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以采用对应每一个功能划分每一个功能模块为例进行说明:
图6为本申请实施例提供的一种终端的结构示意图。如图6所示,终端包括:处理模块601和通信模块602。其中,所述处理模块601用于支持终端执行图5中的步骤S101,和/或用于本文描述的技术方案的其他过程。所述通信模块602用于支持终端执行图5中的步骤S102,和/或用于本文描述的技术方案的其他过程。上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
作为一个示例,结合图4所示的终端,图6中的通信模块602可以由图4中的收发器303来实现,图6中的处理模块601可以由图4中的处理器301来实现,本申请实施例对此不作任何限制。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机指令;当所述计算机可读存储介质在图4所示的终端上运行时,使得该终端执行如图5所示的功率指示方法。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、 硬盘、磁带),光介质、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
本申请实施例还提供了一种芯片系统,该芯片系统包括处理器,用于支持终端实现图5所示的功率指示方法。在一种可能的设计中,该芯片系统还包括存储器。该存储器,用于保存终端必要的程序指令和数据。当然,存储器也可以不在芯片系统中。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
本申请实施例还提供了一种包含计算机指令的计算机程序产品,当其在图4所示的终端上运行时,使得计算机可以执行图5所示的功率指示方法。
上述本申请实施例提供的终端、计算机存储介质、芯片系统以及计算机程序产品均用于执行上文所提供的功率指示方法,因此,其所能大于等于的有益效果可参考上文所提供的方法对应的有益效果,在此不再赘述。
图7为本申请实施例提供的一种网络设备的结构示意图。如图7所示,网络设备包括:通信模块701和处理模块702。其中,通信模块701用于支持网络设备执行图5中的步骤S102,和/或用于本文描述的技术方案的其他过程。处理模块702用于支持网络设备执行图5中的步骤S103,和/或用于本文描述的技术方案的其他过程。上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
作为一个示例,结合图4所示的网络设备,图7中的通信模块701可以由图4中的收发器203来实现,图7中的处理模块702可以由图4中的处理器201来实现,本申请实施例对此不作任何限制。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令;当所述计算机可读存储介质在图4所示的网络设备上运行时,使得该网络设备执行如图5所示的功率指示方法。
本申请实施例还提供了一种芯片系统,该芯片系统包括处理器,用于支持网络设备实现图5所示的功率指示方法。在一种可能的设计中,该芯片系统还包括存储器。该存储器,用于保存终端必要的程序指令和数据。当然,存储器也可以不在芯片系统中。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
本申请实施例还提供了一种包含计算机指令的计算机程序产品,当其在图4所示的网络设备上运行时,使得计算机可以执行图5所示的功率指示方法。
上述本申请实施例提供的网络设备、计算机存储介质、芯片系统以及计算机程序产品均用于执行上文所提供的功率指示方法,因此,其所能大于等于的有益效果可参考上文所提供的方法对应的有益效果,在此不再赘述。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些 措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。
Claims (28)
- 一种功率指示方法,其特征在于,所述方法包括:终端生成天线发射能力信息,所述天线发射能力信息用于指示所述终端的每一个发射天线端口的最大发射功率值是否达到预设功率值,或者所述天线发射能力信息用于指示所述终端的每一个发射天线端口的最大发射功率值;所述终端向网络设备发送所述天线发射能力信息。
- 根据权利要求1所述的功率指示方法,其特征在于,所述天线发射能力信息至少包括以下信息中的一种:天线配置类型,所述天线配置类型用于指示所述终端配置的发射天线端口的数目,以及每一个发射天线端口的最大发射功率值;每一个发射天线端口的最大发射功率值;所述终端配置的发射天线端口的数目,以及最大发射功率值达到预设功率值的发射天线端口的数目;每一个发射天线端口的功率指示信息,所述功率指示信息用于指示发射天线端口的最大发射功率值是否达到预设功率值。
- 根据权利要求1或2所述的功率指示方法,其特征在于,所述发射天线端口以探测参考信号SRS端口信息来表征;或者,所述发射天线端口以SRS端口信息结合发射天线组的组信息来表征。
- 根据权利要求1至3任一项所述的功率指示方法,其特征在于,所述发射天线端口用于发送物理上行共享信道PUSCH。
- 一种功率指示方法,其特征在于,所述方法包括:网络设备接收终端发送的天线发射能力信息,所述天线发射能力信息用于指示所述终端的每一个发射天线端口的最大发射功率值是否达到预设功率值,或者所述天线发射能力信息用于指示所述终端的每一个发射天线端口的最大发射功率值;所述网络设备根据所述天线发射能力信息,确定所述终端的每一个发射天线端口的最大发射功率值是否达到预设功率值。
- 根据权利要求5所述的功率指示方法,其特征在于,所述天线发射能力信息至少包括以下信息中的一种:天线配置类型,所述天线配置类型用于指示所述终端配置的发射天线端口的数目,以及每一个发射天线端口的最大发射功率值;每一个发射天线端口的最大发射功率值;所述终端配置的发射天线端口的数目,以及最大发射功率值达到预设功率值的发射天线端口的数目;每一个发射天线端口的功率指示信息,所述功率指示信息用于指示发射天线端口的最大发射功率值是否达到预设功率值。
- 根据权利要求5或6所述的功率指示方法,其特征在于,所述发射天线端口以探测参考信号SRS端口信息来表征;或者,所述发射天线端口以SRS端口信息结合发射天线组的组信息来表征。
- 根据权利要求5至7任一项所述的功率指示方法,其特征在于,所述发射天线 端口用于发送物理上行共享信道PUSCH。
- 一种通信装置,其特征在于,包括:处理模块,用于生成天线发射能力信息,所述天线发射能力信息用于指示终端的每一个发射天线端口的最大发射功率值是否达到预设功率值,或者所述天线发射能力信息用于指示所述终端的每一个发射天线端口的最大发射功率值;通信模块,用于向网络设备发送所述天线发射能力信息。
- 根据权利要求9所述的通信装置,其特征在于,所述天线发射能力信息至少包括以下信息中的一种:天线配置类型,所述天线配置类型用于指示所述终端配置的发射天线端口的数目,以及每一个发射天线端口的最大发射功率值;每一个发射天线端口的最大发射功率值;所述终端配置的发射天线端口的数目,以及最大发射功率值达到预设功率值的发射天线端口的数目;每一个发射天线端口的功率指示信息,所述功率指示信息用于指示发射天线端口的最大发射功率值是否达到预设功率值。
- 根据权利要求9或10所述的通信装置,其特征在于,所述发射天线端口以探测参考信号SRS端口信息来表征;或者,所述发射天线端口以SRS端口信息结合发射天线组的组信息来表征。
- 根据权利要求9至11任一项所述的通信装置,其特征在于,所述发射天线端口用于发送物理上行共享信道PUSCH。
- 一种通信装置,其特征在于,包括:通信模块,用于接收终端发送的天线发射能力信息,所述天线发射能力信息用于指示所述终端的每一个发射天线端口的最大发射功率值是否达到预设功率值,或者所述天线发射能力信息用于指示所述终端的每一个发射天线端口的最大发射功率值;处理模块,用于根据所述天线发射能力信息,确定所述终端的每一个发射天线端口的最大发射功率值是否达到预设功率值。
- 根据权利要求13所述的通信装置,其特征在于,所述天线发射能力信息至少包括以下信息中的一种:天线配置类型,所述天线配置类型用于指示所述终端配置的发射天线端口的数目,以及每一个发射天线端口的最大发射功率值;每一个发射天线端口的最大发射功率值;所述终端配置的发射天线端口的数目,以及最大发射功率值达到预设功率值的发射天线端口的数目;每一个发射天线端口的功率指示信息,所述功率指示信息用于指示发射天线端口的最大发射功率值是否达到预设功率值。
- 根据权利要求13或14所述的通信装置,其特征在于,所述发射天线端口以探测参考信号SRS端口信息来表征;或者,所述发射天线端口以SRS端口信息结合发射天线组的组信息来表征。
- 根据权利要求13至15任一项所述的通信装置,其特征在于,所述发射天线 端口用于发送物理上行共享信道PUSCH。
- 一种通信装置,其特征在于,处理器,用于生成天线发射能力信息,所述天线发射能力信息用于指示终端的每一个发射天线端口的最大发射功率值是否达到预设功率值,或者所述天线发射能力信息用于指示所述终端的每一个发射天线端口的最大发射功率值;通信接口,用于向网络设备发送所述天线发射能力信息。
- 根据权利要求17所述的通信装置,其特征在于,所述天线发射能力信息至少包括以下信息中的一种:天线配置类型,所述天线配置类型用于指示所述终端配置的发射天线端口的数目,以及每一个发射天线端口的最大发射功率值;每一个发射天线端口的最大发射功率值;所述终端配置的发射天线端口的数目,以及最大发射功率值达到预设功率值的发射天线端口的数目;每一个发射天线端口的功率指示信息,所述功率指示信息用于指示发射天线端口的最大发射功率值是否达到预设功率值。
- 根据权利要求17或18所述的通信装置,其特征在于,所述发射天线端口以探测参考信号SRS端口信息来表征;或者,所述发射天线端口以SRS端口信息结合发射天线组的组信息来表征。
- 根据权利要求17至19任一项所述的通信装置,其特征在于,所述发射天线端口用于发送物理上行共享信道PUSCH。
- 一种通信装置,其特征在于,包括:通信接口,用于接收终端发送的天线发射能力信息,所述天线发射能力信息用于指示所述终端的每一个发射天线端口的最大发射功率值是否达到预设功率值,或者所述天线发射能力信息用于指示所述终端的每一个发射天线端口的最大发射功率值;处理器,用于根据所述天线发射能力信息,确定所述终端的每一个发射天线端口的最大发射功率值是否达到预设功率值。
- 根据权利要求21所述的通信装置,其特征在于,所述天线发射能力信息至少包括以下信息中的一种:天线配置类型,所述天线配置类型用于指示所述终端配置的发射天线端口的数目,以及每一个发射天线端口的最大发射功率值;每一个发射天线端口的最大发射功率值;所述终端配置的发射天线端口的数目,以及最大发射功率值达到预设功率值的发射天线端口的数目;每一个发射天线端口的功率指示信息,所述功率指示信息用于指示发射天线端口的最大发射功率值是否达到预设功率值。
- 根据权利要求21或22所述的通信装置,其特征在于,所述发射天线端口以探测参考信号SRS端口信息来表征;或者,所述发射天线端口以SRS端口信息结合发射天线组的组信息来表征。
- 根据权利要求21至23任一项所述的通信装置,其特征在于,所述发射天线 端口用于发送物理上行共享信道PUSCH。
- 一种通信装置,其特征在于,包括:处理器和存储器;该存储器用于存储计算机执行指令,所述处理器用于执行该存储器存储的该计算机执行指令,以使所述通信装置实现如权利要求1-8中任一项所述的功率指示方法。
- 一种通信装置,其特征在于,包括:处理器和通信接口,所述处理器用于与存储器耦合,并读取存储器中的指令,使得所述通信装置实现如权利要求1-8中任一项所述的功率指示方法。
- 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当所述指令在计算机上运行时,使得计算机执行权利要求1-8中任一项所述的功率指示方法。
- 一种计算机程序产品,其特征在于,所述计算机程序产品中存储有指令,当所述计算机程序产品在计算机上运行时,使得计算机执行权利要求1-8中任一项所述的功率指示方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19868144.7A EP3852288B1 (en) | 2018-09-29 | 2019-09-29 | Power indication methods and apparatus |
US17/215,561 US11997754B2 (en) | 2018-09-29 | 2021-03-29 | Power indication method and apparatus |
US18/644,756 US20240298168A1 (en) | 2018-09-29 | 2024-04-24 | Power indication method and apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811152760.9A CN110971317B (zh) | 2018-09-29 | 2018-09-29 | 功率指示方法及装置 |
CN201811152760.9 | 2018-09-29 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/215,561 Continuation US11997754B2 (en) | 2018-09-29 | 2021-03-29 | Power indication method and apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020063974A1 true WO2020063974A1 (zh) | 2020-04-02 |
Family
ID=69949539
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/109100 WO2020063974A1 (zh) | 2018-09-29 | 2019-09-29 | 功率指示方法及装置 |
Country Status (4)
Country | Link |
---|---|
US (2) | US11997754B2 (zh) |
EP (1) | EP3852288B1 (zh) |
CN (2) | CN110971317B (zh) |
WO (1) | WO2020063974A1 (zh) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118054817A (zh) * | 2019-01-11 | 2024-05-17 | 中兴通讯股份有限公司 | 功率控制的实现方法、通信节点及存储介质 |
EP3949177A4 (en) * | 2019-03-29 | 2022-04-13 | ZTE Corporation | SYSTEMS AND PROCEDURES FOR CONFIGURATION BASED ON GROUP IDENTIFIERS |
US11516755B2 (en) * | 2019-08-16 | 2022-11-29 | Qualcomm Incorporated | Signaling and configuration of maximum transmit power using virtual ports |
US20230008524A1 (en) * | 2019-12-12 | 2023-01-12 | Ntt Docomo, Inc. | Terminal and radio communication method |
CN114126023B (zh) * | 2020-08-31 | 2024-03-26 | 华为技术有限公司 | 一种功率配置方法及装置 |
US12016042B2 (en) * | 2020-12-08 | 2024-06-18 | T-Mobile Usa, Inc. | Dynamic switching between uplink waveforms |
CN115150817B (zh) * | 2021-03-31 | 2023-07-04 | 中国电信股份有限公司 | 多天线相干性能力上报方法、终端、基站以及存储介质 |
CN117643111A (zh) * | 2021-10-20 | 2024-03-01 | Oppo广东移动通信有限公司 | 无线通信的方法、终端设备和网络设备 |
CN116095802A (zh) * | 2021-11-05 | 2023-05-09 | 大唐移动通信设备有限公司 | Srs传输功率确定方法、装置及存储介质 |
WO2023130328A1 (zh) * | 2022-01-06 | 2023-07-13 | Oppo广东移动通信有限公司 | 通信方法、终端设备及网络设备 |
KR20230112427A (ko) * | 2022-01-20 | 2023-07-27 | 삼성전자주식회사 | 무선 통신 시스템에서 상향링크 데이터 채널 전송을 위한 방법 및 장치 |
CN116761241A (zh) * | 2022-03-03 | 2023-09-15 | 华为技术有限公司 | 一种通信方法及装置 |
WO2024152303A1 (zh) * | 2023-01-19 | 2024-07-25 | Oppo广东移动通信有限公司 | 无线通信的方法、终端设备及网络设备 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107484251A (zh) * | 2016-06-08 | 2017-12-15 | 中国移动通信有限公司研究院 | 终端能力信息的上报方法、获取方法、终端及网络侧设备 |
WO2018028393A1 (zh) * | 2016-08-12 | 2018-02-15 | 中兴通讯股份有限公司 | 一种无线资源配置方法和装置 |
CN108023623A (zh) * | 2016-11-04 | 2018-05-11 | 维沃移动通信有限公司 | 一种终端信息上报、获取方法、终端及基站 |
CN108271175A (zh) * | 2017-01-03 | 2018-07-10 | 华为技术有限公司 | 功率控制方法和通信设备 |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5205456B2 (ja) * | 2008-06-23 | 2013-06-05 | パナソニック株式会社 | パワーヘッドルームの報告方法、及び移動局装置 |
JP5555763B2 (ja) * | 2009-03-17 | 2014-07-23 | インターデイジタル パテント ホールディングス インコーポレイテッド | サウンディング参照信号(srs)送信の電力制御のための方法および機器 |
MY161646A (en) * | 2009-10-02 | 2017-04-28 | Interdigital Patent Holdings Inc | Power control for devices having multiple antennas |
CN201967138U (zh) * | 2009-11-19 | 2011-09-07 | 交互数字专利控股公司 | 无线发射/接收单元 |
US9749968B2 (en) * | 2010-04-02 | 2017-08-29 | Interdigital Patent Holdings, Inc. | Uplink sounding reference signals configuration and transmission |
US9264954B2 (en) * | 2010-04-28 | 2016-02-16 | Qualcomm Incorporated | Neighbor relation information management |
CN102300303A (zh) * | 2010-06-24 | 2011-12-28 | 夏普株式会社 | 上行多输入多输出信道的功率控制方法 |
JP5270648B2 (ja) * | 2010-12-08 | 2013-08-21 | 株式会社日立製作所 | 分散アンテナシステム、基地局装置、アンテナ選択制御方法 |
WO2012093455A1 (ja) * | 2011-01-07 | 2012-07-12 | パナソニック株式会社 | 無線通信端末装置及び電力制御方法 |
JP5372984B2 (ja) * | 2011-02-22 | 2013-12-18 | 株式会社日立製作所 | 分散アンテナシステム、通信制御方法、基地局装置 |
CN102348269B (zh) * | 2011-09-27 | 2015-01-28 | 电信科学技术研究院 | 一种上行功率控制的方法和设备 |
CN103384161B (zh) * | 2012-05-02 | 2018-02-06 | 华为技术有限公司 | Mimo无线通信系统、传输方法和装置 |
WO2014051360A1 (ko) * | 2012-09-26 | 2014-04-03 | 엘지전자 주식회사 | 무선통신 시스템에서 ack/nack 수신 방법 및 장치 |
US9445390B2 (en) * | 2012-10-10 | 2016-09-13 | Telefonaktiebolaget Lm Ericsson (Publ) | Method and node for positioning in combined cell |
CN103905104B (zh) * | 2012-12-28 | 2017-12-19 | 中兴通讯股份有限公司 | 一种根据探测参考信号的多天线发送方法及终端及基站 |
EP2996378B1 (en) * | 2013-06-19 | 2019-01-30 | Huawei Technologies Co., Ltd. | Communication quality measurement method |
WO2016085092A1 (en) * | 2014-11-28 | 2016-06-02 | Samsung Electronics Co., Ltd. | Method and system for controlling transmission of code words during handover in a wireless network |
US10476650B2 (en) * | 2016-08-19 | 2019-11-12 | Qualcomm Incorporated | Control channel with flexible numerology |
WO2018204816A1 (en) * | 2017-05-05 | 2018-11-08 | Intel IP Corporation | Methods and arrangements to signal for aerial vehicles |
KR102301907B1 (ko) * | 2017-05-05 | 2021-09-15 | 삼성전자 주식회사 | 프런트홀 인터페이스 수립 방법, 사용자 장치에 대한 액세스 수행 방법, 사용자 장치에 대한 핸드오버 수행 방법 및 장치, 데이터 전달 방법, 사용자 장치 및 기지국 |
CN109151969B (zh) * | 2017-06-16 | 2022-04-05 | 中兴通讯股份有限公司 | 发送功率的确定方法及装置、终端 |
US10834625B2 (en) * | 2017-08-10 | 2020-11-10 | Qualcomm Incorporated | Carrier aggregation capability signaling |
JP7409086B2 (ja) * | 2017-08-10 | 2024-01-09 | ソニーグループ株式会社 | 通信装置、通信制御方法及びコンピュータプログラム |
US10419099B2 (en) * | 2017-11-17 | 2019-09-17 | Huawei Technologies Co., Ltd. | Phase tracking reference signal sending method and apparatus |
CN108092755B (zh) * | 2017-12-26 | 2021-05-14 | Oppo广东移动通信有限公司 | 参数调整方法及装置 |
-
2018
- 2018-09-29 CN CN201811152760.9A patent/CN110971317B/zh active Active
- 2018-09-29 CN CN202111096172.XA patent/CN113965924A/zh active Pending
-
2019
- 2019-09-29 WO PCT/CN2019/109100 patent/WO2020063974A1/zh unknown
- 2019-09-29 EP EP19868144.7A patent/EP3852288B1/en active Active
-
2021
- 2021-03-29 US US17/215,561 patent/US11997754B2/en active Active
-
2024
- 2024-04-24 US US18/644,756 patent/US20240298168A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107484251A (zh) * | 2016-06-08 | 2017-12-15 | 中国移动通信有限公司研究院 | 终端能力信息的上报方法、获取方法、终端及网络侧设备 |
WO2018028393A1 (zh) * | 2016-08-12 | 2018-02-15 | 中兴通讯股份有限公司 | 一种无线资源配置方法和装置 |
CN108023623A (zh) * | 2016-11-04 | 2018-05-11 | 维沃移动通信有限公司 | 一种终端信息上报、获取方法、终端及基站 |
CN108271175A (zh) * | 2017-01-03 | 2018-07-10 | 华为技术有限公司 | 功率控制方法和通信设备 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3852288A4 |
Also Published As
Publication number | Publication date |
---|---|
US20240298168A1 (en) | 2024-09-05 |
CN110971317A (zh) | 2020-04-07 |
US11997754B2 (en) | 2024-05-28 |
EP3852288A1 (en) | 2021-07-21 |
US20210219129A1 (en) | 2021-07-15 |
CN110971317B (zh) | 2021-09-21 |
EP3852288B1 (en) | 2024-07-31 |
CN113965924A (zh) | 2022-01-21 |
EP3852288A4 (en) | 2021-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020063974A1 (zh) | 功率指示方法及装置 | |
CN112910522B (zh) | 预编码矩阵的配置方法和装置 | |
WO2021159493A1 (zh) | 一种资源配置的方法和装置 | |
CN110139306B (zh) | 发送测量报告的方法、通信装置和系统 | |
WO2018202098A1 (zh) | 无线通信的方法、网络设备和终端设备 | |
US20230362927A1 (en) | Pusch transmission method and apparatus, device, and storage medium | |
WO2019095701A1 (zh) | 相位跟踪参考信号的发送方法及装置 | |
WO2018228228A1 (zh) | 信息传输方法及装置 | |
WO2021082930A1 (zh) | 一种终端类型的确定方法、网络设备及终端 | |
WO2020143807A1 (zh) | 准共址指示方法及装置 | |
JP2024515496A (ja) | 非コードブックベースのマルチtrpのpuschのためのシステムと方法 | |
WO2022206504A1 (zh) | Csi反馈方法、相关设备及可读存储介质 | |
WO2021120024A1 (zh) | 一种重复传输次数的指示方法及装置 | |
WO2021062766A1 (zh) | 一种干扰测量上报的方法和通信装置 | |
WO2020052419A1 (zh) | 参考信号及序列配置方法和装置 | |
US20240057071A1 (en) | Panel selection for uplink transmission | |
WO2020143805A1 (zh) | 一种通信方法及装置 | |
WO2020134945A1 (zh) | 资源上报的方法及装置 | |
WO2020098594A1 (zh) | 一种序列的生成及处理方法和装置 | |
TWI678906B (zh) | 物理上行控制通道pucch傳輸方法、使用者設備、裝置及電腦存儲介質 | |
CN111669825B (zh) | 用于共存通信的禁止资源单元指示 | |
WO2020221040A1 (zh) | 通信方法和通信装置 | |
US10992435B2 (en) | Information indication method, device, and system | |
WO2023226833A1 (zh) | 探测参考信号传输的方法和通信装置 | |
WO2024093906A1 (zh) | 一种上行发送功率确定的方法和装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19868144 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019868144 Country of ref document: EP Effective date: 20210412 |