WO2021032028A1 - 频域资源分配方法及装置 - Google Patents

频域资源分配方法及装置 Download PDF

Info

Publication number
WO2021032028A1
WO2021032028A1 PCT/CN2020/109385 CN2020109385W WO2021032028A1 WO 2021032028 A1 WO2021032028 A1 WO 2021032028A1 CN 2020109385 W CN2020109385 W CN 2020109385W WO 2021032028 A1 WO2021032028 A1 WO 2021032028A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency domain
domain resource
resource allocation
domain resources
prg
Prior art date
Application number
PCT/CN2020/109385
Other languages
English (en)
French (fr)
Inventor
施弘哲
纪刘榴
杭海存
毕晓艳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20853802.5A priority Critical patent/EP4017175A4/en
Publication of WO2021032028A1 publication Critical patent/WO2021032028A1/zh
Priority to US17/672,495 priority patent/US20220173851A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • H04L5/0039Frequency-contiguous, i.e. with no allocation of frequencies for one user or terminal between the frequencies allocated to another
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Definitions

  • This application relates to the field of communication technology, and in particular to a frequency domain resource allocation method and device.
  • the frequency domain resource allocation (FD-RA) indication field in the downlink control information can indicate the frequency domain resources allocated for the terminal device .
  • multi-point transmission technology can be used to effectively avoid interference and increase user rate.
  • multi-point refers to multiple transmission reception points (TRP), and multiple TRPs can interact with each other to cooperate to avoid interference.
  • the terminal equipment uses preset rules and FD-RA in the DCI to indicate resources.
  • the resource indicated by the RA indication field determines the resource scheduled by each TRP in different TRPs.
  • the preset rule is the parity allocation principle, that is, an odd-numbered resource block (RB) is allocated to TRP1, and an even-numbered RB is allocated to TRP2, for example, see (a) in FIG. 1.
  • the preset rule is the principle of equal division, that is, the first half of the RB number is allocated to TRP1, and the second half of the RB number is allocated to TRP2, for example, see (b) in FIG.
  • Both of these two frequency domain resource allocation methods may cause the signal reception quality of the terminal equipment to decrease.
  • the embodiments of the present application provide a frequency domain resource allocation method and device, which are used to ensure the signal reception quality of terminal equipment.
  • a frequency domain resource allocation method including: a terminal device determines M frequency domain resources according to a predetermined frequency domain resource allocation rule, and receives one or more of the M frequency domain resources data. Wherein, any two frequency domain resources in the M frequency domain resources do not overlap, each of the M frequency domain resources is associated with one piece of QCL information, and any two of the frequency domain resources are associated with different QCL information.
  • Frequency domain resource allocation rules are based on frequency domain resource allocation units.
  • the minimum granularity of frequency domain resource allocation units is x continuous RBs. Continuous RBs are continuous VRBs or continuous PRBs, and x is PRG.
  • the size, M is an integer greater than 1.
  • the method provided in the first aspect can prevent the PRBs in the same PRG from being allocated to different TRPs, that is, to ensure that the data on the PRBs in the same PRG are pre-coded using the same transmit precoding matrix, which is consistent with the communication protocol.
  • the relevant regulations that is, the data on the PRB in a PRG should be pre-coded using the same transmit pre-coding matrix
  • the terminal device can use the same channel equalization matrix to solve the multi-stream data, thereby ensuring the signal reception quality of the terminal device.
  • the frequency domain resource allocation unit is predefined or indicated through signaling.
  • the frequency domain resource allocation unit is an RBG or PRG or an interleaved resource unit. This possible implementation can prevent PRBs in the same PRG from being allocated to different TRPs.
  • the frequency domain resource allocation unit is y consecutive RBs, y is k times x, and k is a positive integer. This possible implementation can prevent PRBs in the same PRG from being allocated to different TRPs.
  • the terminal device determines M frequency domain resources according to a predetermined frequency domain resource allocation rule, including: the terminal device determines the m-th frequency domain resource among the M frequency domain resources, and the m-th frequency domain resource Including the Mi+mth frequency domain resource allocation unit among the N frequency domain resource allocation units included in the predetermined bandwidth of the terminal device, N is a positive integer, and m is an integer greater than 0 and less than or equal to M,
  • This possible implementation can make multiple frequency domain resources distributed as discretely as possible on the scheduling bandwidth, thereby obtaining better frequency domain diversity gain.
  • the granularity of the frequency domain resource allocation unit corresponds to the transmission scheme.
  • the downlink data transmitted on different frequency domain resources among the M frequency domain resources corresponds to different parts of a TB, and the frequency domain resource allocation unit is an RBG; or,
  • the downlink data transmitted on M frequency domain resources corresponds to M TBs, the M TBs are the same TB, and the frequency domain resource allocation unit is PRG.
  • the terminal device can select the frequency domain resource allocation unit according to the actual transmission scheme, which increases the scheduling flexibility of the terminal device and supports different transmission schemes.
  • the downlink data transmitted on different frequency domain resources among the M frequency domain resources corresponds to different parts of a TB, and consecutive RBs are consecutive PRBs; or,
  • the downlink data transmitted on M frequency domain resources corresponds to M TBs, the M TBs are the same TB, and consecutive RBs are consecutive VRBs.
  • the terminal device can select the frequency domain resource allocation unit according to the actual transmission scheme, which increases the scheduling flexibility of the terminal device and supports different transmission schemes.
  • x is W is the number of RBs included in the predetermined bandwidth of the terminal device.
  • a frequency domain resource allocation method which includes: a network device determines a predetermined bandwidth of a terminal device, and allocates M frequency domain resources according to a predetermined frequency domain resource allocation rule and the predetermined bandwidth. Wherein, any two frequency domain resources in the M frequency domain resources do not overlap, each of the M frequency domain resources is associated with one piece of QCL information, and any two of the frequency domain resources are associated with different QCL information.
  • Frequency domain resource allocation rules are based on frequency domain resource allocation units.
  • the minimum granularity of frequency domain resource allocation units is x continuous RBs. Continuous RBs are continuous VRBs or continuous PRBs, and x is PRG.
  • the size, M is an integer greater than 1.
  • M frequency domain resources may be resources allocated to M TRPs respectively.
  • PRBs in the same PRG can be prevented from being allocated to different TRPs, which means that the same PRG is guaranteed
  • the data on the PRB uses the same transmit precoding matrix for precoding, so as to be consistent with the relevant regulations in the communication protocol (that is, the data on the PRB in a PRG shall be precoded with the same transmit precoding matrix).
  • the terminal device can use the same channel equalization matrix to solve the multi-stream data, thereby ensuring the signal reception quality of the terminal device.
  • the frequency domain resource allocation unit is predefined or indicated through signaling.
  • the frequency domain resource allocation unit is an RBG or PRG or an interleaved resource unit. This possible implementation can prevent PRBs in the same PRG from being allocated to different TRPs.
  • the frequency domain resource allocation unit is y consecutive RBs, y is k times x, and k is a positive integer. This possible implementation can prevent PRBs in the same PRG from being allocated to different TRPs.
  • the network device allocates M frequency domain resources according to a predetermined frequency domain resource allocation rule, including: the network device allocates the Mi+mth frequency domain resource allocation unit among the N frequency domain resource allocation units included in the predetermined bandwidth
  • N is a positive integer
  • m is an integer greater than 0 and less than or equal to M
  • the granularity of the frequency domain resource allocation unit corresponds to the transmission scheme.
  • the downlink data transmitted on different frequency domain resources among the M frequency domain resources corresponds to different parts of a TB, and the frequency domain resource allocation unit is an RBG; or,
  • the downlink data transmitted on M frequency domain resources corresponds to M TBs, the M TBs are the same TB, and the frequency domain resource allocation unit is PRG.
  • the frequency domain resource allocation unit can be selected according to the actual transmission scheme, which increases scheduling flexibility and support for different transmission schemes.
  • the downlink data transmitted on different frequency domain resources among the M frequency domain resources corresponds to different parts of a TB, and consecutive RBs are consecutive PRBs; or,
  • the downlink data transmitted on M frequency domain resources corresponds to M TBs, the M TBs are the same TB, and consecutive RBs are consecutive VRBs.
  • the frequency domain resource allocation unit can be selected according to the actual transmission scheme, which increases scheduling flexibility and support for different transmission schemes.
  • x is W is the number of RBs included in the predetermined bandwidth of the terminal device.
  • a frequency domain resource allocation device including: a processing unit and a communication unit; the processing unit is configured to determine M frequency domain resources according to predetermined frequency domain resource allocation rules, and any two of the M frequency domain resources The frequency domain resources do not overlap.
  • the M frequency domain resources are each associated with one QCL information. Any two frequency domain resources in the M frequency domain resources are associated with different QCL information.
  • the frequency domain resource allocation rules are based on the frequency domain resource allocation unit.
  • the minimum granularity of the frequency domain resource allocation unit is x consecutive RBs, x is the size of the PRG, consecutive RBs are consecutive VRBs or consecutive PRBs, and M is an integer greater than 1; the communication unit uses Data is received in one or more frequency domain resources in the M frequency domain resources.
  • the frequency domain resource allocation unit is predefined or indicated through signaling.
  • the frequency domain resource allocation unit is an RBG or PRG or an interleaved resource unit.
  • the frequency domain resource allocation unit is y consecutive RBs, y is k times x, and k is a positive integer.
  • the processing unit is specifically configured to determine the m-th frequency domain resource among the M frequency-domain resources, where the m-th frequency domain resource includes N frequency domain resource allocations included in the predetermined bandwidth of the device
  • the Mi+mth frequency domain resource allocation unit in the unit N is a positive integer, and m is an integer greater than 0 and less than or equal to M,
  • the granularity of the frequency domain resource allocation unit corresponds to the transmission scheme.
  • the downlink data transmitted on different frequency domain resources among the M frequency domain resources corresponds to different parts of a TB, and the frequency domain resource allocation unit is an RBG; or,
  • the downlink data transmitted on M frequency domain resources corresponds to M TBs, the M TBs are the same TB, and the frequency domain resource allocation unit is PRG.
  • the downlink data transmitted on different frequency domain resources among the M frequency domain resources corresponds to different parts of a TB, and consecutive RBs are consecutive PRBs; or,
  • the downlink data transmitted on M frequency domain resources corresponds to M TBs, the M TBs are the same TB, and consecutive RBs are consecutive VRBs.
  • x is W is the number of RBs included in the predetermined bandwidth of the frequency domain resource allocation device.
  • the frequency domain resource allocation device is a terminal device or a chip or a chip system.
  • the processing unit may be a processor; the communication unit may be a communication interface, a transceiver, or an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • the communication unit may be a communication interface, an input/output interface, an interface circuit, an output circuit, an input circuit, a pin, or a related circuit on the chip or a chip system.
  • the processing unit may be a processor, a processing circuit, a logic circuit, or the like.
  • a frequency domain resource allocation device including: a determining unit and an allocation unit;
  • the determining unit is used to determine the predetermined bandwidth of the terminal device
  • the allocation unit is used to allocate M frequency domain resources according to predetermined frequency domain resource allocation rules and predetermined bandwidths, any two frequency domain resources in the M frequency domain resources do not overlap, and the M frequency domain resources are each associated with one QCL information, M
  • the QCL information associated with any two frequency domain resources in the frequency domain resources is different.
  • the frequency domain resource allocation rules are based on the frequency domain resource allocation unit as the unit for frequency domain resource allocation.
  • the minimum granularity of the frequency domain resource allocation unit is x consecutive RB, x are the size of the PRG, consecutive RBs are consecutive VRBs or consecutive PRBs, and M is an integer greater than 1.
  • the frequency domain resource allocation unit is predefined or indicated through signaling.
  • the frequency domain resource allocation unit is an RBG or PRG or an interleaved resource unit.
  • the frequency domain resource allocation unit is y consecutive RBs, y is k times x, and k is a positive integer.
  • the allocation unit is specifically configured to allocate the Mi+mth frequency domain resource among the N frequency domain resource allocation units included in the predetermined bandwidth to the mth frequency domain resource among the M frequency domain resources.
  • N is a positive integer
  • m is an integer greater than 0 and less than or equal to M,
  • the granularity of the frequency domain resource allocation unit corresponds to the transmission scheme.
  • the downlink data transmitted on different frequency domain resources among the M frequency domain resources corresponds to different parts of a TB, and the frequency domain resource allocation unit is an RBG; or,
  • the downlink data transmitted on M frequency domain resources corresponds to M TBs, the M TBs are the same TB, and the frequency domain resource allocation unit is PRG.
  • the downlink data transmitted on different frequency domain resources among the M frequency domain resources corresponds to different parts of a TB, and consecutive RBs are consecutive PRBs; or,
  • the downlink data transmitted on M frequency domain resources corresponds to M TBs, the M TBs are the same TB, and consecutive RBs are consecutive VRBs.
  • x is W is the number of RBs included in the predetermined bandwidth of the terminal device.
  • the frequency domain resource allocation device is a network device or a chip or a chip system.
  • the determining unit and the allocating unit may be a processing unit, and further may be a processor.
  • the determining unit and the allocating unit may be a processing unit, a processor, a processing circuit, or a logic circuit.
  • a frequency domain resource allocation method including: determining M frequency domain resources, where M is an integer greater than 1, and any two frequency domain resources in the M frequency domain resources do not overlap, Each of the M frequency domain resources is associated with one piece of QCL information, and any two of the M frequency domain resources are associated with different QCL information; in one or more of the M frequency domain resources, Domain resources send or receive data; where, when the size of the PRG is 2 or 4, the M frequency domain resources are determined by using the PRG as the frequency domain resource allocation unit; when the size of the PRG is the full bandwidth, Each PRB is the frequency domain resource allocation unit determining the M frequency domain resources, W is the number of PRBs included in the predetermined bandwidth, and W is an integer greater than 1.
  • the first frequency domain resource in the M frequency domain resources includes a PRG with an even index
  • the M frequency domain resources includes a PRG with an odd index
  • the M frequency domain resources are obtained by dividing the scheduling bandwidth of the terminal device, and the scheduling bandwidth is the PRB used for data transmission.
  • the bandwidth of the composition is 2 or 4.
  • the determining the M frequency domain resources by using the PRG as the frequency domain resource allocation unit includes: determining the M frequency domain resources
  • the m-th frequency-domain resource, the m-th frequency-domain resource includes the Mi+m-th frequency-domain resource allocation unit among the N frequency-domain resource allocation units included in the scheduling bandwidth of the terminal device, and the scheduling bandwidth is used
  • N is a positive integer
  • m is an integer greater than 0 and less than or equal to M
  • the mth frequency domain resource in the M frequency domain resources includes the first frequency domain resource in the predetermined bandwidth.
  • PRB to PRBs the M-th frequency-domain resource in the M frequency-domain resources includes the remaining PRBs in the predetermined bandwidth, and m is an integer greater than 0 and less than M.
  • M 2
  • the first frequency domain resource in the M frequency domain resources includes the first frequency domain resource in the predetermined bandwidth.
  • PRBs, and the second frequency domain resource in the M frequency domain resources includes the remaining part of the predetermined bandwidth PRB.
  • the predetermined bandwidth is a scheduled bandwidth of the terminal device, and the scheduled bandwidth is a bandwidth composed of PRBs used for data transmission.
  • the PRG when the size of the PRG is 2 or 4, the PRG is used as the frequency domain resource allocation unit, and the M frequency domain resources are determined according to a predetermined frequency domain resource allocation rule; when the size of the PRG is all In the case of bandwidth, the M frequency domain resources are determined according to the W PRBs included in the predetermined bandwidth according to a predetermined frequency domain resource allocation rule.
  • a frequency domain resource allocation device including: a processing unit and a communication unit; the processing unit is configured to determine M frequency domain resources, where M is an integer greater than 1, and the M frequency Any two frequency domain resources in the frequency domain resources do not overlap, the M frequency domain resources are each associated with one piece of QCL information, and any two frequency domain resources in the M frequency domain resources are associated with different QCL information; the communication Unit, used to send or receive data in one or more of the M frequency domain resources; wherein, when the size of the PRG is 2 or 4, the processing unit is specifically configured to use the PRG as The frequency domain resource allocation unit determines the M frequency domain resources; when the size of the PRG is the full bandwidth, the processing unit is specifically configured to Each PRB is the frequency domain resource allocation unit determining the M frequency domain resources, W is the number of PRBs included in the predetermined bandwidth, and W is an integer greater than 1.
  • the first frequency domain resource in the M frequency domain resources includes a PRG with an even index
  • the M frequency domain resources includes a PRG with an odd index
  • the M frequency domain resources are obtained by dividing the scheduling bandwidth of the terminal device, and the scheduling bandwidth is the PRB used for data transmission.
  • the bandwidth of the composition is 2 or 4.
  • the processing unit when the size of the PRG is 2 or 4, is specifically configured to: determine the m-th frequency domain resource among the M frequency-domain resources, and the m-th frequency domain resource
  • the frequency domain resources include the Mi+mth frequency domain resource allocation unit among the N frequency domain resource allocation units included in the scheduling bandwidth of the terminal device.
  • the scheduling bandwidth is the bandwidth composed of PRBs for data transmission, and N Is a positive integer, m is an integer greater than 0 and less than or equal to M
  • the mth frequency domain resource in the M frequency domain resources includes the first frequency domain resource in the predetermined bandwidth.
  • PRB to PRBs the M-th frequency-domain resource in the M frequency-domain resources includes the remaining PRBs in the predetermined bandwidth, and m is an integer greater than 0 and less than M.
  • M 2
  • the first frequency domain resource in the M frequency domain resources includes the first frequency domain resource in the predetermined bandwidth.
  • PRBs, and the second frequency domain resource in the M frequency domain resources includes the remaining part of the predetermined bandwidth PRB.
  • the predetermined bandwidth is a scheduled bandwidth of the terminal device, and the scheduled bandwidth is a bandwidth composed of PRBs used for data transmission.
  • the PRG when the size of the PRG is 2 or 4, the PRG is used as the frequency domain resource allocation unit, and the M frequency domain resources are determined according to a predetermined frequency domain resource allocation rule; when the size of the PRG is all In the case of bandwidth, the M frequency domain resources are determined according to the W PRBs included in the predetermined bandwidth according to a predetermined frequency domain resource allocation rule.
  • the frequency domain resource allocation apparatus is a terminal device, and the communication unit is specifically configured to receive data in one or more of the M frequency domain resources.
  • the frequency domain resource allocation apparatus is a network device, and the communication unit is specifically configured to send data in one or more of the M frequency domain resources.
  • a frequency domain resource allocation device including a processor.
  • the processor is connected to the memory, the memory is used to store computer-executed instructions, and the processor executes the computer-executed instructions stored in the memory, so as to implement any of the methods provided in the first aspect.
  • the memory and the processor can be integrated together or can be independent devices. In the latter case, the memory may be located in the frequency domain resource allocation device or outside the frequency domain resource allocation device.
  • the processor includes a logic circuit and an input interface.
  • the input interface is used to perform the receiving action in the corresponding method, for example, receiving data in one or more of the M frequency domain resources.
  • the frequency domain resource allocation device further includes a communication interface and a communication bus, and the processor, the memory and the communication interface are connected through the communication bus.
  • the communication interface is used to perform the sending and receiving actions in the corresponding method.
  • the communication interface may also be called a transceiver.
  • the communication interface at least includes a receiver. In this case, the receiver is used to perform the receiving action in the corresponding method, for example, receiving data in one or more of the M frequency domain resources.
  • the frequency domain resource allocation device is a terminal device or a chip in a terminal device.
  • a frequency domain resource allocation device including a processor.
  • the processor is connected to the memory, and the memory is used to store computer-executed instructions, and the processor executes the computer-executed instructions stored in the memory, thereby realizing any one of the methods provided in the second aspect.
  • the memory and the processor can be integrated together or can be independent devices. In the latter case, the memory may be located in the frequency domain resource allocation device or outside the frequency domain resource allocation device.
  • the processor includes a logic circuit and an output interface.
  • the output interface is used to perform the sending action in the corresponding method, for example, sending the allocated frequency domain resources to other devices.
  • the frequency domain resource allocation device further includes a communication interface and a communication bus, and the processor, the memory and the communication interface are connected through the communication bus.
  • the communication interface is used to perform the sending and receiving actions in the corresponding method.
  • the communication interface may also be called a transceiver.
  • the communication interface at least includes a transmitter. In this case, the transmitter is used to perform the sending action in the corresponding method, for example, sending the allocated frequency domain resources to other devices.
  • the frequency domain resource allocation device is a terminal device or a chip in a terminal device.
  • a frequency domain resource allocation device including a processor.
  • the processor is connected to the memory, the memory is used to store computer-executed instructions, and the processor executes the computer-executed instructions stored in the memory, so as to implement any of the methods provided in the third aspect.
  • the memory and the processor can be integrated together or can be independent devices. In the latter case, the memory may be located in the frequency domain resource allocation device or outside the frequency domain resource allocation device.
  • the processor includes a logic circuit, and also includes an input interface and an output interface.
  • the input interface is used to perform the receiving action in the corresponding method, for example, one or more of the M frequency domain resources receive data, and the output interface is used to perform the sending action in the corresponding method.
  • the frequency domain resource allocation device further includes a communication interface and a communication bus, and the processor, the memory and the communication interface are connected through the communication bus.
  • the communication interface is used to perform the sending and receiving actions in the corresponding method.
  • the communication interface may also be called a transceiver.
  • the communication interface includes a receiver and a transmitter. In this case, the receiver is used to perform the receiving action in the corresponding method, for example, receiving data in one or more of the M frequency domain resources, The sender is used to perform the sending action in the corresponding method.
  • the frequency domain resource allocation device is a terminal device or a chip in a terminal device. In another possible implementation manner, the frequency domain resource allocation device is a network device or a chip in a network device.
  • a frequency domain resource allocation device including: a processor and a communication interface; the communication interface is used to input and/or output information; the processor is used to execute computer-executable instructions to enable the The device implements any one of the methods provided in the first aspect.
  • a frequency domain resource allocation device including: a processor and a communication interface; the communication interface is used to input and/or output information; the processor is used to execute computer-executable instructions to enable all The device implements any one of the methods provided in the second aspect.
  • a frequency domain resource allocation device including: a processor and a communication interface; the communication interface is used to input and/or output information; the processor is used to execute computer-executable instructions to enable all The device implements any one of the methods provided in the third aspect.
  • a communication system including: the frequency domain resource allocation device provided in the third aspect and the frequency domain resource allocation device provided in the fourth aspect, or the frequency domain resource allocation device provided in the seventh aspect and the third aspect The frequency domain resource allocation device provided by the eighth aspect, or the frequency domain resource allocation device provided by the tenth aspect and the frequency domain resource allocation device provided by the eleventh aspect.
  • a computer-readable storage medium including instructions, which when run on a computer, cause the computer to execute any one of the methods provided in the first or second or third aspects.
  • a computer program product containing instructions is provided.
  • the instructions run on a computer, the computer executes any method provided in the first aspect, the second aspect, or the third aspect.
  • Figure 1 is a schematic diagram of frequency domain resource allocation
  • Figure 2 is a schematic diagram of a network architecture provided by an embodiment of the application.
  • FIG. 3 is a schematic diagram of a scene of coordinated multi-point transmission provided by an embodiment of the application.
  • FIG. 4 is a schematic diagram of TRP and terminal equipment communication provided by an embodiment of the application.
  • FIG. 5 is a schematic diagram of frequency domain interleaving between VRB and PRB according to an embodiment of this application;
  • FIG. 6 is a schematic diagram of VRB and PRB without frequency domain interleaving according to an embodiment of the application
  • FIG. 7 is a schematic diagram of the distribution of RBG in BWP according to an embodiment of the application.
  • FIG. 8 is a schematic diagram of frequency domain resources indicated by RIV provided in an embodiment of this application.
  • 9 and 10 are respectively flowcharts of a frequency domain resource allocation method provided by an embodiment of the application.
  • FIG. 11 is a schematic diagram of frequency domain resource allocation provided by an embodiment of this application.
  • FIG. 11A and FIG. 12 are respectively schematic diagrams of the distribution of a frequency domain resource allocation unit in a BWP according to an embodiment of the application;
  • FIGS. 13 to 20 are schematic diagrams of frequency domain resource allocation provided by embodiments of this application.
  • FIG. 21 is a schematic diagram of scheduling bandwidth when the frequency domain resource allocation type is Type 0 according to an embodiment of the application.
  • FIG. 22 and FIG. 23 are respectively schematic diagrams of the distribution of time-frequency domain resource allocation units in the scheduling bandwidth when a frequency domain resource allocation type is Type 0 according to an embodiment of the application;
  • 24 is a schematic diagram of a scheduling bandwidth when a frequency domain resource allocation type is Type1 according to an embodiment of the application;
  • FIG. 25 and FIG. 26 are respectively schematic diagrams of the distribution of a frequency domain resource allocation unit in the scheduling bandwidth when a frequency domain resource allocation type is Type1 according to an embodiment of the application;
  • FIG. 27 is a schematic diagram of another scheduling bandwidth when a frequency domain resource allocation type is Type1 according to an embodiment of this application;
  • FIGS. 28 and 29 are respectively schematic diagrams of the distribution of another frequency domain resource allocation unit in the scheduling bandwidth when a frequency domain resource allocation type is Type1 according to an embodiment of the application;
  • FIG. 30 and FIG. 31 are respectively schematic diagrams of frequency domain resource allocation provided by embodiments of this application.
  • FIG. 32 is a schematic diagram of the composition of a terminal device provided by an embodiment of this application.
  • 33 and 34 are respectively schematic diagrams of the composition of a first network device according to an embodiment of the application.
  • FIG. 35 and FIG. 36 are respectively schematic diagrams of the hardware structure of a communication device according to an embodiment of the application.
  • FIG. 37 is a schematic diagram of the hardware structure of a terminal device according to an embodiment of the application.
  • FIG. 38 is a schematic diagram of the hardware structure of a first network device according to an embodiment of this application.
  • A/B can mean A or B.
  • the "and/or” in this article is only an association relationship describing the associated objects, which means that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone These three situations.
  • at least one (part) means one (part) or more (parts)
  • multiple (part) means two (parts) or more than two (parts).
  • the communication system to which the technical solution provided in this application is applicable may include multiple network devices and at least one terminal device, and the terminal device may communicate with multiple network devices.
  • the terminal device can be in a cooperative transmission state of multiple network devices (for example, network device 1 and network device 2), and multiple network devices can send signaling and downlink data to the terminal device. Otherwise, the terminal device It can also send uplink data to multiple network devices.
  • Ideal backhaul ideal backhaul
  • the communication systems in the embodiments of the present application include, but are not limited to, long-term evolution (LTE) systems, fifth-generation (5th-generation, 5G) systems, NR systems, and future evolution systems or multiple communication fusion systems .
  • LTE long-term evolution
  • 5th-generation 5th-generation
  • NR NR
  • future evolution systems or multiple communication fusion systems e.g., LTE
  • the 5G system can be a non-standalone (NSA) 5G system or a standalone (SA) 5G system.
  • the network device in the embodiment of the present application is an entity on the network side that is used to send signals, receive signals, or send signals and receive signals.
  • the network equipment may be a device deployed in a radio access network (RAN) to provide wireless communication functions for terminal equipment, such as TRP, base station, various forms of control nodes (for example, network controller, wireless control Device (for example, a wireless controller in a cloud radio access network (CRAN) scenario), etc.
  • the network equipment may be various forms of macro base stations, micro base stations (also called small stations), relay stations, access points (access points, AP), etc., and may also be antenna panels of base stations.
  • the control node may be connected to multiple base stations and configure resources for multiple terminal devices covered by the multiple base stations.
  • the names of devices with base station functions may be different.
  • the LTE system may be called an evolved NodeB (eNB or eNodeB), and the 5G system or NR system may be called the next generation node base station (gNB).
  • eNB evolved NodeB
  • gNB next generation node base station
  • the specific name of the base station in this application Not limited.
  • the network equipment may also be the network equipment in the public land mobile network (PLMN) that will evolve in the future.
  • PLMN public land mobile network
  • the network equipment may include a centralized unit (CU) and a distributed unit (DU).
  • the network device may also include an active antenna unit (AAU).
  • CU realizes part of the functions of network equipment
  • DU realizes part of the functions of network equipment.
  • the CU is responsible for processing non-real-time protocols and services, and implements the functions of the radio resource control (radio resource control, RRC) layer and the packet data convergence protocol (packet data convergence protocol, PDCP) layer.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • the DU is responsible for processing physical layer protocols and real-time services, and realizes the functions of the radio link control (RLC) layer, media access control (MAC) layer, and physical (PHY) layer.
  • RLC radio link control
  • MAC media access control
  • PHY physical
  • AAU realizes some physical layer processing functions, radio frequency processing and related functions of active antennas. Since the information of the RRC layer will eventually become the information of the PHY layer, or converted from the information of the PHY layer, in this architecture, high-level signaling, such as RRC layer signaling or PDCP layer signaling, can also be It is considered to be sent by DU, or sent by DU+AAU.
  • the network device may be a device that includes one or more of a CU node, a DU node, and an AAU node.
  • the CU can be divided into network equipment in the RAN, or the CU can be divided into network equipment in the core network (core network, CN), which is not limited here.
  • the terminal device in the embodiment of the present application is an entity on the user side for receiving signals, or sending signals, or receiving signals and sending signals.
  • the terminal device is used to provide users with one or more of voice services and data connectivity services.
  • Terminal equipment can also be called user equipment (UE), terminal, access terminal, user unit, user station, mobile station, remote station, remote terminal, mobile device, user terminal, wireless communication device, user agent, or user Device.
  • the terminal device can be a mobile station (MS), subscriber unit (subscriber unit), drone, Internet of things (IoT) equipment, and wireless local area networks (WLAN).
  • the terminal device may also be a terminal device in a next-generation communication system, for example, a terminal device in a 5G system or a terminal device in a future evolved PLMN, a terminal device in an NR system, and so on.
  • M2M machine-to-machine
  • macro and micro communications enhanced mobile broadband (eMBB), ultra-reliable & low latency communication (URLLC), Internet of Vehicles, and Massive IoT communication (massive machine type communication, mMTC) and other scenarios.
  • eMBB enhanced mobile broadband
  • URLLC ultra-reliable & low latency communication
  • Massive IoT communication massive machine type communication, mMTC
  • the network architecture and service scenarios described in the embodiments of the present application are intended to more clearly illustrate the technical solutions of the embodiments of the present application, and do not constitute a limitation on the technical solutions provided in the embodiments of the present application.
  • a person of ordinary skill in the art can know that with the evolution of network architecture and the emergence of new business scenarios, the technical solutions provided in the embodiments of the present application are equally applicable to similar technical problems.
  • Quasi colocation can also be called quasi colocation.
  • the signals corresponding to the antenna ports with the QCL relationship have the same parameters, or the parameters of one antenna port can be used to determine the parameters of the other antenna port that has the QCL relationship with the antenna port, or the two antenna ports have the same parameters , Or, the parameter difference between the two antenna ports is less than a certain threshold.
  • the parameters may include one or more of the following: delay spread, Doppler spread, Doppler shift, average delay, average Gain, spatial reception parameters (spatial Rx parameters).
  • the spatial reception parameters can include one or more of the following: angle of arrival (angle of arrival, AOA), average AOA, AOA extension, angle of departure (angle of departure, AOD), average AOD, AOD extension, receiving antenna space Correlation parameters, transmit antenna spatial correlation parameters, transmit beam, receive beam, and resource identification.
  • the above-mentioned angle may be decomposition values of different dimensions, or a combination of decomposition values of different dimensions.
  • Antenna ports are antenna ports with different antenna port numbers, and/or antenna ports that have the same antenna port number for information transmission or reception in different time and/or frequency and/or code domain resources, and/or have different Antenna port number The antenna port for information transmission or reception in different time and/or frequency and/or code domain resources.
  • the resource identifier may include: channel state information reference signal (CSI-RS) resource identifier, or sounding reference signal (SRS) resource identifier, or synchronous signal broadcast channel block (synchronous signal/physical broadcast) channel block, which can be referred to as SS/PBCH block or SSB for short) resource identifier, or the resource identifier of the preamble sequence transmitted on the physical random access channel (PRACH), or demodulation reference signal (demodulation) Reference signal (DMRS) resource identifier, used to indicate the beam on the resource.
  • CSI-RS channel state information reference signal
  • SRS sounding reference signal
  • synchronous signal broadcast channel block synchronous signal/physical broadcast channel block
  • PRACH physical random access channel
  • DMRS demodulation reference signal
  • QCL relationships can be divided into the following four types based on different parameters:
  • Type A Doppler frequency shift, Doppler spread, average delay, and delay spread;
  • Type B Doppler frequency shift, Doppler spread
  • Type C Doppler frequency shift, average delay
  • Type D (type D): Space receiving parameters.
  • the QCL of type D is used to indicate different beams, that is, the QCL defined based on the spatial reception parameters.
  • the beams have the same spatial characteristics and can be received by the same receiving beam.
  • the beam can be specifically represented by various signal identifiers in the protocol, such as CSI-RS resource index, SSB index, SRS resource index, and tracking reference signal (tracking reference signal, TRS) resource index.
  • the frequency division multiplexing (FDM) transmission mode there are two transmission schemes. To distinguish them, they are marked as the first transmission scheme and the second transmission scheme. Taking two network devices (for example, two TRPs) respectively sending the first data and the second data to the terminal device as an example, the first transmission scheme and the second transmission scheme are briefly introduced below.
  • the first transmission scheme is the first transmission scheme:
  • the first transmission scheme is a transmission scheme for sending different parts of the same data to the terminal device.
  • the first data and the second data are respectively part of the same piece of data.
  • the first data is the first 400 bits of 1000-bit data
  • the second data is the last 600 bits of the 1000-bit data.
  • a piece of data can be considered as a codeword
  • a codeword can be considered as being generated by a transport block (TB).
  • TB transport block
  • the first data and the second data each carry one TB of partial information. It can be understood that the first data and the second data form a codeword and correspond to a redundancy version (RV).
  • RV redundancy version
  • the 1000-bit data needs to be divided into two TRPs for transmission.
  • the 1000-bit data can be changed according to the current resource load of the two TRPs.
  • Data is allocated to two TRPs. For example, 400 bits can be allocated to a TRP with a high load and 600 bits can be allocated to a TRP with a low load.
  • the first transmission scheme needs to correspond to a more flexible frequency domain resource allocation method.
  • the first transmission scheme may also be referred to as FDM transmission scheme A or FDM scheme 2a.
  • the second transmission scheme is the second transmission scheme:
  • the second transmission scheme is a transmission scheme for sending the same multiple pieces of data to the terminal device.
  • the first data and the second data are the same data.
  • the same data means that they carry the same TB information.
  • the first data corresponds to one TB
  • the second data corresponds to one TB
  • the two TBs are the same TB.
  • the codewords corresponding to the first data and the second data can be generated by the same TB, or can be generated by the same two TBs, each of which carries all the information of the TB. It can be understood that the first data and the second data each correspond to a codeword, and each corresponds to an RV, and the RV corresponding to the first data and the second data may be the same or different.
  • the same 400-bit TB can obtain two different RV versions of 1000-bit data through channel coding, and map them to the time-frequency resources corresponding to different TRPs.
  • MCS modulation and coding strategies
  • the second transmission scheme needs to correspond to a more uniform frequency domain resource allocation method.
  • the second transmission scheme may also be referred to as FDM transmission scheme B or FDM scheme 2b.
  • the network device will first receive a TB from the upper layer, and then the TB will go through a series of physical layer processes, including cyclic redundancy check (CRC) addition, code block (code bloc, CB) cutting, and CB-based CRC is added, and then sent to the encoding module with CB as the encoding unit, and the rate matching process is carried out.
  • CRC cyclic redundancy check
  • CB code block
  • CB-based CRC is added
  • RV can be added.
  • the CB can be spliced into a series of bitstreams. This bitstream is traditional Meaning of the code word.
  • the codeword is modulated into a modulation symbol, and the modulation symbol is mapped to the time-frequency resource of the physical channel, which is referred to as data for short. Therefore, in a general sense, there is a one-to-one correspondence between TB and codewords, and only one RV can be added to one codeword.
  • the first data and the second data are used to describe. In this context, the data can also be replaced with TB or codewords.
  • Multipoint transmission technology is a technology in which multiple TRPs perform data transmission.
  • multiple TRPs can coordinate to send downlink signals to users, and/or receive users' uplink signals through cooperation.
  • Multipoint transmission technology is mainly divided into joint transmission (JT), dynamic point selection (DPS), dynamic cell selection (DCS), coordinated beamforming (CB), and coordination Coordinated scheduling (CS), etc.
  • the multipoint transmission involved in this application is mainly a scenario of joint transmission (or called coordinated multipoint transmission).
  • the joint transmission of multiple TRPs can increase the transmission rate of terminal devices at the edge of a cell.
  • a non-joint transmission scenario see (a) in Figure 3, when a terminal device is at the edge of a cell, the communication of the terminal device will be interfered by signals sent by neighboring cells of the serving cell.
  • the solid line represents the useful data generated to the terminal device
  • the dashed line represents the interference generated to the terminal device.
  • multiple TRPs jointly send data to a terminal device, and the terminal device receives multiple copies of useful data. Therefore, the signal sent by the neighboring cell of the serving cell will not only affect the terminal device Interference can increase the transmission rate of terminal equipment at the edge of the cell.
  • URLLC is one of the important business types.
  • data throughput is often no longer the main measurement index.
  • low bit error rate and low latency have become the most critical indicators.
  • multipoint transmission technology there is channel diversity among multiple TRP channels. The use of multiple TRPs to send data can improve the reliability of the communication link. Therefore, the multipoint transmission technology can be used to enhance the reliability of the URLLC service.
  • multiple TRPs may send data to the terminal device through different channels in a frequency division manner.
  • the terminal device is in a joint transmission scenario of TRP1 and TRP2, and TRP1 and TRP2 are located in different directions of the terminal device.
  • TRP1 and TRP2 can use the above-mentioned first transmission scheme or second transmission scheme respectively in frequency domain resources. 1 and frequency domain resource 2 send data to the same terminal device.
  • the first transmission scheme is adopted, the coding gain brought by a lower code rate can be enjoyed, and when the second transmission scheme is adopted, the soft combining in the terminal device can bring additional coding gain.
  • the spatial diversity gain brought by the two TRPs can make the probability that the channels of the two TRPs are all in deep channel attenuation is very low, thereby improving the reliability of data transmission.
  • the system bandwidth can also be referred to as a carrier frequency resource, or a component carrier (CC).
  • the system bandwidth can be a continuous frequency domain resource.
  • the network device can allocate a frequency domain resource to the terminal device from the system bandwidth, so that the network device and the terminal device can use the allocated frequency domain resource for communication.
  • a BWP can also be referred to as carrier bandwidth part.
  • a BWP includes a continuous positive integer number of resource units, such as a continuous positive integer number of subcarriers, a resource block (resource block, RB), or a resource block group (RB group, RBG).
  • the BWP can be a downlink BWP or an uplink BWP.
  • the uplink BWP is used for the terminal device to send a signal to the network device
  • the downlink BWP is used for the network device to send a signal to the terminal device.
  • the number of positive integers may be 1, 2, 3, or more, which is not limited in the embodiment of the present application.
  • the terminal device can be configured with multiple BWPs.
  • the parameter set (numerology) of the BWP can be independently configured through pre-configuration or the network device sending signaling to the terminal device.
  • the numerology of different BWPs may be the same or different.
  • the numerology can be defined by but not limited to one or more of the following parameter information: subcarrier spacing, cyclic prefix (CP), time unit information, BWP bandwidth, etc.
  • numerology can be defined by subcarrier spacing and CP.
  • An RB is one of the most basic resource units.
  • an RB may include a positive integer number of subcarriers, for example, 6 or 12 subcarriers.
  • the definition of RB can also be extended to the time domain.
  • an RB includes a positive integer number of time domain symbols in the time domain.
  • one RB includes 12 subcarriers in the frequency domain, and includes 7 or 14 orthogonal frequency division multiplexing (OFDM) symbols in the time domain.
  • OFDM orthogonal frequency division multiplexing
  • the RB When performing frequency domain resource allocation, the RB is further classified into a physical resource block (PRB) or a virtual resource block (VRB).
  • PRB physical resource block
  • VRB virtual resource block
  • the frequency domain resource indicated by the FD-RA indicator field is the VRB, and the data is also first mapped to the VRB.
  • the next step is the mapping from VRB to PRB. In this step, if there is no frequency domain interleaving, the numbers of VRB and PRB correspond one-to-one.
  • the data on the VRB numbered n will be mapped to the numbered n
  • the numbers of VRB and PRB can be mapped out of order within the current BWP bandwidth.
  • the data on VRB numbered n may be mapped to the number
  • n is an integer greater than equal to zero
  • K is an integer.
  • the specific interleaving rules can refer to the prior art, which will not be repeated here.
  • RB can refer to either VRB or PRB. If it is described together with other information, it can be judged as VRB or PRB according to the specific scene. For example, when describing the RBG, unless otherwise specified, the default RBG is composed of multiple consecutive VRBs. For another example, when describing the PRG, unless otherwise specified, the PRG is composed of multiple consecutive PRBs by default.
  • RBG includes a set of consecutive VRBs.
  • the number of VRBs included in the RBG is the size of the RBG (RBG size). For example, if the size of the RBG is 2, one RBG includes two consecutive VRBs.
  • the RBG size in the NR protocol can be 2, 4, 8, 16, etc.
  • the RBG size can be determined according to the RBG configuration and BWP bandwidth.
  • the NR standard predefines two RBG configurations. In RBG configuration 1, the candidate values of RBG size are 2, 4, 8, and 16. In RBG configuration 2, the candidate values of RBG size are 4, 8, and 16.
  • the network device can indicate the RBG configuration in each BWP to the terminal device through the high-level signaling parameter rbg-Size.
  • the relationship between the RBG size, the RBG configuration, and the BWP bandwidth can be referred to Table 1.
  • the BWP bandwidth is the number of RBs included in the BWP.
  • the BWP is a continuous frequency domain resource defined by the starting RB (that is, the first RB) and the RB length. Both the start RB and the end RB in the BWP can be any RB in the system bandwidth. Therefore, part of the RB in the RBG to which the start RB or the end RB belongs may be located in the BWP, and the other part may be located outside the BWP.
  • the starting RB of the BWP is RB3, and RB2 and RB3 originally belong to the same RBG, but RB3 is inside the BWP and RB2 is outside the BWP.
  • the ending RB of the BWP is RB12. RB12 and RB13 originally belong to the same RBG, but RB3 is inside the BWP, and RB13 is outside the BWP.
  • the total number of RBGs contained in a BWP is: among them, Is the number of RBs contained in the BWP, Is the number of the starting RB in the BWP on the system bandwidth, mod is the remainder function, and P is the RBG size.
  • the size of the first RBG (numbered 0) is For the last RBG (numbered N RBG -1), if The size of the last RBG is: If The size of the last RBG is: The size of the remaining RBGs is P.
  • the number of the N RBG RBGs included in the BWP ranges from 0 to N RBG -1, and can also be numbered from 1 to N RBG or in other ways. This article takes 0 to N RBG -1 as an example for description.
  • the number of the starting RB in the BWP in the system bandwidth is 3, the size of the RBG is 2, and the BWP contains 10 RBs, then the number of RBGs contained in the BWP: Among them, the size of the first RBG (ie RBG0) is: The size of the last RBG (RBG5) is: The size of the remaining RBGs is 2.
  • One PRG includes multiple consecutive PRBs, and the data on the PRBs in each PRG is pre-coded using the same transmit pre-coding matrix.
  • the number of PRBs included in the PRG may be referred to as the PRG size (PRG size).
  • PRG size the PRG size in the NR protocol can be 2, 4, or wideband.
  • the terminal device may assume that the network device uses the same transmission precoding matrix to transmit the data on the PRB in the same PRG.
  • the division of PRG is also divided according to the system bandwidth. Therefore, the calculation method of the number of PRGs in the BWP and the size of each PRG is similar to the calculation method of the number of RBGs in the BWP and the size of each RBG. P can be replaced with PRG size, which will not be repeated here.
  • the interleaving resource unit refers to the resource unit that performs frequency domain interleaving, that is, RB bundles, which can specifically be VRB bundles or PRB bundles.
  • An interleaving resource unit is composed of multiple consecutive RBs.
  • the number of RBs included in an interleaving resource unit is called the size of the interleaving resource unit (ie, bundle size).
  • the bundle size can be selected as 2 or 4.
  • the mapping is performed in units of interleaving resource units, that is, continuous VRBs included in one interleaving resource unit are also kept in a continuous state when mapped to PRBs.
  • the division of interleaved resource units is also divided according to the system bandwidth. Therefore, the calculation method for the number of interleaved resource units and the size of each interleaved resource unit in the BWP is similar to the calculation method for the number of RBGs and the size of each RBG in the BWP. Just replace P in the formula with Bundle size, so I won’t repeat it here.
  • the network device Before data transmission, the network device sends CSI-RS to the terminal device.
  • the terminal device performs channel measurement according to the received CSI-RS and feeds back channel state information (CSI) to the network device.
  • CSI may include precoding Matrix (precoding matrix indicator, PMI), channel quality indicator (channel quality indicator, CQI), rank indicator (rank indicator, RI), etc.
  • PMI precoding matrix indicator
  • CQI channel quality indicator
  • rank indicator rank indicator
  • the network device configures CSI-RS resources for the terminal device, and configures the report format and measurement bandwidth.
  • the configured measurement bandwidth can be a full band (that is, the entire BWP) or a subband (subband).
  • the terminal device reports a CSI after performing channel measurement on the entire measurement bandwidth (ie, BWP).
  • the size of the measurement subband refers to the number of RBs included in the measurement subband.
  • BWP bandwidth Measure the size of the subband ⁇ 24 no 24-72 4,8 73-144 8,16 145-275 16,32
  • the division of measurement subbands for channel measurement is also divided according to the system bandwidth. Therefore, the calculation method of the number of measurement subbands in the BWP and the size of each measurement subband is the same as the calculation of the number of RBGs in the BWP and the size of each RBG The method is similar, just replace P in the formula with the measurement subband size, which will not be repeated here.
  • Type 0 Type 0
  • Type 1 Type 1
  • the FD-RA indication field in the DCI is composed of a bitmap, and one bit in the bitmap is used to indicate to the terminal device whether an RBG is allocated for data transmission.
  • the length of the Bitmap is equal to the number of RBGs in the BWP range (denoted as N RBG ), so as to achieve a flexible indication of the transmission bandwidth with RBG as the granularity.
  • the Bitmap may include 6 bits, and one of the 6 bits is used to indicate whether one of the 6 RBGs is allocated for data transmission.
  • the system may configure a dynamic indicator bit to indicate whether FD-RA uses Type0 or Type1. At this time, this indicator bit is placed at the beginning of the entire bitmap as the most significant bit (MSB). , That is, the length of the FD-RA indication field is N RBG +1 at this time.
  • the FD-RA indication field consists of a resource indication value (RIV).
  • RIV is a value calculated according to a certain formula. The input of the formula includes the starting VRB number and consecutive VRBs. The RIV value calculated by the combination of different starting VRB number and continuous VRB length is different. In Type1, RIV indicates a continuous VRB. For example, see Figure 8. The resource indicated by RIV can be VRB5 to VRB11.
  • the frequency domain resources allocated to the terminal device may need to be divided into multiple parts and allocated to different TRP schedulings.
  • resources in a PRG may be allocated to different TRPs. Since the TRPs in cooperation are often in different directions of the same terminal device, their respective The channels to the terminal equipment are different, so based on the results of the channel measurement, different TRPs generally use different transmit precoding matrices to send data, but the terminal equipment always defaults to the data on the PRB in the same PRG through the same
  • the precoding matrix is sent after precoding, so the terminal equipment will also use the same channel equalization matrix to solve the multi-stream data. At this time, the assumptions of the sender and the receiver are inconsistent, resulting in a gap between the precoding matrix and the channel equalization matrix. Mismatch, which will cause the signal reception quality to degrade.
  • an embodiment of the present application provides a frequency domain resource allocation method.
  • the method includes:
  • the terminal device determines M frequency domain resources according to a predetermined frequency domain resource allocation rule, where M is an integer greater than 1.
  • the terminal device may determine M frequency domain resources according to a predetermined frequency domain resource allocation rule and a predetermined bandwidth. For a specific description of frequency domain resource allocation, see below.
  • the terminal device receives data in one or more of the M frequency domain resources.
  • the frequency domain resource allocation method includes:
  • the first network device determines the foregoing predetermined bandwidth of the terminal device.
  • the first network device allocates the M frequency domain resources according to the predetermined frequency domain resource allocation rule and the predetermined bandwidth.
  • step 1002 in different scenarios, the actions performed by the first network device may be different, which will be described in detail below.
  • the M TRPs of the first network device send data to the terminal device through cooperation.
  • the first network device may be a base station
  • the TRP may be an antenna panel of the base station.
  • M TRPs correspond to M frequency domain resources in a one-to-one correspondence.
  • the first network device may send data to the terminal device through the frequency domain resources corresponding to the M TRPs.
  • the first network device may use the first transmission mode to send data to the terminal device through M TRPs, and may also use the second transmission mode to send data to the terminal device.
  • Scenario 2 M network devices excluding the first network device send data to the terminal device through cooperation.
  • the first network device may have a centralized scheduling function.
  • the first network device and the M network devices may both be base stations or TRPs.
  • M network devices have a one-to-one correspondence with M frequency domain resources.
  • the first network device sends information about the corresponding frequency domain resources to the M network devices, and the M network devices are in the corresponding frequency domain.
  • the M network devices may use the first transmission mode to send data to the terminal device, and may also use the second transmission mode to send data to the terminal device.
  • Scenario 3 M network devices including the first network device send data to the terminal device through cooperation.
  • the first network device may be a network device with a centralized scheduling function among M network devices.
  • the M network devices may all be base stations, or all TRPs.
  • M network devices have a one-to-one correspondence with M frequency domain resources.
  • the first network device sends to M-1 network devices except the first network device among the M network devices.
  • M network devices send data to the terminal device on the corresponding frequency domain resources.
  • the M network devices may use the first transmission mode to send data to the terminal device, and may also use the second transmission mode to send data to the terminal device.
  • the terminal device can determine M frequency domain resources according to a predetermined frequency domain resource allocation rule and a predetermined bandwidth.
  • the first network device can allocate M frequency domain resources according to a predetermined frequency domain resource allocation rule and a predetermined bandwidth. Any two frequency domain resources in the M frequency domain resources do not overlap, the M frequency domain resources are each associated with one QCL information, and any two frequency domain resources in the M frequency domain resources are associated with different QCL information.
  • the two frequency domain resources in (a) in FIG. 11 may each correspond to one piece of QCL information, and the two frequency domain resources correspond to different QCL information.
  • the three frequency domain resources may each correspond to one piece of QCL information, and the QCL information corresponding to the three frequency domain resources are all different.
  • the number of RBs included in different frequency domain resources in the M frequency domain resources may be the same or different.
  • the number of RBs included in the first frequency domain resource and the second frequency domain resource is the same, and the number of RBs included in the first frequency domain resource and the third frequency domain resource are The numbers are different.
  • the predetermined frequency domain resource allocation rule may be preset or configured to the terminal device through signaling or stipulated in the protocol. This application does not limit the method for the terminal device to obtain the predetermined frequency domain resource allocation rule.
  • the frequency domain resource allocation rule can be an alternate allocation rule, that is, starting from the start RB in the predetermined bandwidth, and in the direction of ascending RB number, the frequency domain resource allocation unit is used as a unit to allocate the first frequency domain resources to the M frequency domain resources, if there are remaining frequency domain resource allocation units after being allocated to the Mth frequency domain resource, they are then allocated to the first frequency domain resource to the Mth frequency domain resource in sequence, and so on. For example, referring to (a) in FIG.
  • the exemplary frequency domain resource allocation is performed starting from RB0 and taking 2 consecutive RBs as the unit, then RB0 and RB1 are allocated to the first frequency domain resource, and RB2 and RB3 are allocated to For the second frequency domain resource, RB4 and RB5 are redistributed to the first frequency domain resource, RB6 and RB7 are redistributed to the second frequency domain resource, and so on, the RBs included in a frequency domain resource are not all continuous. That is, some RBs are continuous, and some RBs are discontinuous. For another example, referring to (b) in FIG.
  • this application proposes the minimum granularity of frequency domain resource allocation units, which is x consecutive RB (continuous VRB or continuous PRB), the value of x is PRG size. It should be understood that the PRG size is a configurable value, so the minimum granularity of the frequency domain resource unit will also vary with the PRG size.
  • the granularity of the frequency domain resource allocation unit may also be other granularities, for example, RBG, interleaved resource unit, etc. below.
  • RBG interleaved resource unit
  • the granularity of the frequency domain resource allocation unit is other granularity, it cannot be smaller than the minimum granularity, that is, it cannot be smaller than the PRG size.
  • the wideband here no longer refers to the entire predetermined bandwidth, but refers to a frequency domain resource. That is, the terminal device is configured as a wideband according to the PRG size. It can be assumed that the On any frequency domain resource, the TRP uses the same transmit precoding matrix on the frequency domain resource.
  • the predetermined bandwidth When frequency domain resource allocation is performed, it is performed in a predetermined bandwidth, and the predetermined bandwidth may be BWP or system bandwidth or scheduling bandwidth. When the predetermined bandwidth is different, the frequency domain resource allocation process is also different. The following describes cases 1 (the predetermined bandwidth is BWP), case 2 (the predetermined bandwidth is the system bandwidth), and case 3 (the predetermined bandwidth is the scheduling bandwidth).
  • the frequency domain resource allocation can be based on all frequency domain resources in the BWP, that is, the frequency domain resource allocation starts from the first frequency domain resource allocation unit in the BWP until the last frequency domain resource allocation in the BWP The unit ends.
  • the value of x is the same as the PRG size.
  • x is 2.
  • the frequency domain resource allocation unit may be an RBG or a PRG or an interleaved resource unit or y (y is k times x, k is a positive integer) continuous RB or channel measurement measurement subbands. Similar to RBG, the division of frequency domain resource allocation units is also divided according to system bandwidth. Therefore, the number of frequency domain resource allocation units in BWP and the calculation method of the size of each frequency domain resource allocation unit are the same as those of RBG in BWP. The calculation method of the number and the size of each RBG is similar.
  • the total number of frequency domain resource allocation units included in one BWP is: among them, Is the number of RBs contained in the BWP, Is the number of the starting RB in the BWP on the system bandwidth, and mod is the remainder function.
  • the size of the first frequency domain resource allocation unit (numbered 0) is: For the last frequency domain resource allocation unit (numbered N-1), if The size of the last frequency domain resource allocation unit is: If The size of the last frequency domain resource allocation unit is Q. The size of the remaining frequency domain resource allocation units is Q.
  • the N frequency domain resource allocation units included in the BWP are numbered from 0 to N-1, and can also be numbered from 1 to N or in other ways. This article takes 0 to N-1 as an example for description.
  • the number of the starting RB in the BWP in the system bandwidth is 3, the size of the frequency domain resource allocation unit is 2, and the BWP contains 10 RBs, then the frequency domain resource allocation units included in the BWP are number:
  • the size of the first frequency domain resource allocation unit (that is, frequency domain resource allocation unit 0) is:
  • the size of the last frequency domain resource allocation unit (that is, frequency domain resource allocation unit 5) is:
  • the size of the remaining frequency domain resource allocation units is 2.
  • x W is the number of RBs included in the BWP of the terminal device.
  • the frequency domain resource allocation unit may be x consecutive RBs.
  • the RB is a PRB
  • the size of the PRG is the full bandwidth
  • Each PRB determines M frequency domain resources for the frequency domain resource allocation unit.
  • the mth frequency domain resource in the M frequency domain resources includes the first frequency domain resource in the BWP PRB to A PRB
  • the M-th frequency domain resource in the M frequency domain resources includes the remaining PRBs in the BWP
  • m is an integer greater than 0 and less than M. among them, Refers to Refers to "*" means "multiply by".
  • the frequency domain resource allocation method may be: the terminal device determines the m-th frequency domain resource among the M frequency-domain resources, and the m-th frequency domain resource includes N frequency domain resource allocations included in the BWP of the terminal device The Mi+mth frequency domain resource allocation unit in the unit.
  • the first network device allocates the Mi+mth frequency domain resource among the N frequency domain resource allocation units included in the BWP of the terminal device to the mth frequency domain resource among the M frequency domain resources.
  • N is a positive integer
  • m is an integer greater than 0 and less than or equal to M
  • This alternating frequency domain resource allocation method can make multiple frequency domain resources distributed on the BWP as discretely as possible, thereby obtaining better frequency domain diversity gain.
  • Mi means M*i.
  • the frequency domain resource allocation unit is also different.
  • the following cases 1.1 (frequency domain resource allocation type is Type0) and case 1.2 (frequency domain resource allocation type is Type1) are used for different frequency domain resource allocation units.
  • the process of resource allocation in the lower frequency domain is illustrated as an example.
  • Case 1.1 can be further divided into the following cases 1.1.1 and 1.1.2.
  • PRG size is not configured as wideband.
  • the frequency domain resource allocation unit may be of the following four types.
  • PRG0, PRG2, and PRG4 in PRG0 to PRG5 constitute the first frequency domain resource
  • PRG1, PRG3, and PRG5 constitute the second frequency domain resource.
  • the PRG size is always less than or equal to the RBG size, and the RBG size can be an integer multiple of the PRG size.
  • the process of frequency domain resource allocation is similar to that when the frequency domain resource allocation unit is PRG, and the allocation result obtained is also the same. The only difference is that the former is It acts in the VRB domain, and the latter acts in the PRB domain.
  • the above frequency domain resource allocation method can also be considered as: the mth frequency domain resource determined by the terminal device includes the frequency domain resource corresponding to the Mi+mth bit in the bitmap.
  • the terminal device may determine the frequency domain resource corresponding to the even-numbered bits in the bitmap as a frequency domain resource, and determine the frequency domain resource corresponding to the odd-numbered bits in the bitmap as another A frequency domain resource.
  • RB can be VRB or PRB.
  • y can be equal to PRG size or RBG size.
  • PRG size PRG size
  • RBG size the frequency domain resource allocation process is similar to that when the frequency domain resource allocation unit is a PRG, and the obtained allocation result is also the same.
  • y may not be equal to PRG size or RBG size.
  • the frequency domain resource allocation process can be applied to the VRB domain or the PRB domain.
  • the frequency domain resource allocation process is similar to the frequency domain resource allocation process when the frequency domain resource allocation unit is RBG, PRG, and y consecutive RBs. For example, if a scenario is that the measurement subband includes 4 VRBs, replacing the RBG in FIG. 15 with the measurement subband can obtain an example of frequency domain resource allocation in this scenario. The details can be understood with reference to the above and will not be repeated here.
  • the measurement subband for channel measurement can be determined according to the measurement subband configured in the most recent CSI report.
  • the frequency domain resource allocation unit is a measurement subband, it can ensure that any measurement subband after channel measurement feedback is completely allocated to a network device (for example, TRP), thereby simplifying the measurement burden of the terminal device. For example, if different measurement subbands are allocated to different network devices before channel measurement, the terminal device only needs to perform channel measurement once for a certain network device. Otherwise, the terminal device may need to perform multiple channel measurements for all network devices.
  • PRG size is configured as wideband.
  • the process of frequency domain resource allocation can be applied to the VRB domain or the PRB domain.
  • the frequency domain resource allocation unit is x consecutive RBs, and the frequency domain resource allocation unit is divided according to BWP.
  • the frequency domain resource allocation unit 0 and the frequency domain resource allocation unit 2 among the 3 frequency domain resource allocation units in the BWP constitute the first frequency domain resource
  • the frequency domain resource allocation unit 1 forms the second frequency domain resource.
  • Case 1.2 can be divided into the following case 1.2.1 and case 1.2.2.
  • PRG size is not configured as wideband.
  • the frequency domain resource allocation unit may be of the following four types.
  • the frequency domain resource allocation process is the same as the situation when the frequency domain resource allocation unit is a PRG in case 1.1.1, which can be referred to above, and will not be repeated. At this time, frequency domain interleaving may or not be performed between VRB and PRB.
  • frequency domain resource allocation process is the same as the situation when the frequency domain resource allocation unit is y consecutive RBs in case 1.1.1, please refer to the above, and will not be repeated here. .
  • frequency domain interleaving may or not be performed between VRB and PRB.
  • the frequency domain resource allocation process is the same as that when the frequency domain resource allocation unit is the measurement subband of channel measurement in case 1.1.1. Repeat it again. At this time, frequency domain interleaving may or not be performed between VRB and PRB.
  • frequency domain interleaving is performed between VRB and PRB.
  • the resource interleaving unit can be VRB bundles or PRB bundles.
  • interleaving resource unit 0 to interleaving resource unit 5 constitute the first 1 frequency domain resource
  • interleaving resource unit 1, interleaving resource unit 3, and interleaving resource unit 5 constitute a second frequency domain resource.
  • the PRB to which each interleaving resource unit is mapped can be seen in FIG. 17.
  • interlaced resource unit 0 and interlaced resource unit 2 in interlaced resource unit 0 to interlaced resource unit 3 form the first frequency domain resource
  • interlaced resource unit 1 and interlaced resource unit 3 constitutes the second frequency domain resource.
  • the PRB to which each interleaving resource unit is mapped can be seen in FIG. 18.
  • interleaving resource unit 0 and interleaving resource unit 4 among interleaving resource unit 0 to interleaving resource unit 5 constitute the first 1 frequency domain resource
  • interleaving resource unit 1, interleaving resource unit 3, and interleaving resource unit 5 constitute a second frequency domain resource.
  • interlaced resource unit 0 and interlaced resource unit 2 in interlaced resource unit 0 to interlaced resource unit 3 form the first frequency domain resource
  • interlaced resource unit 1 and interlaced resource unit 3 constitutes the second frequency domain resource.
  • PRG size is configured as wideband.
  • each network device (for example, the aforementioned M network devices) sends data on the frequency domain resources allocated for data transmission among the M frequency domain resources. Accordingly, the terminal device transmits data on the M frequency domain resources. Receive data on frequency domain resources allocated for data transmission.
  • the frequency domain resources allocated to TRP1 are RBG0 and RBG2
  • the frequency domain resources allocated to TRP2 are RBG1 and RBG3
  • the frequency domain resources allocated for data transmission indicated by the bitmap in the DCI are The domain resources are RBG1 and RBG2.
  • TRP1 can communicate with the terminal device on RBG2, and for TRP2, TRP2 can communicate with the terminal device on RBG1.
  • the frequency domain resource allocation method described in Case 1 can be understood as pre-allocating frequency domain resources, that is, once the terminal device determines the bandwidth of the BWP, M frequency domain resources can be determined, and then specific values such as bitmap or RIV can be used. To determine which frequency domain resources to transmit data on, the implementation process of this frequency domain resource allocation method is relatively simple and less complex.
  • the predetermined bandwidth is the system bandwidth
  • the frequency domain resource allocation method can adopt the method in BWP, and only needs to replace the corresponding parameters of the BWP with the corresponding parameters of the system bandwidth, for example, the frequency domain resource allocation in the calculation system bandwidth For the number of units, replace the number of RBs in the BWP with the number of RBs in the system bandwidth, and replace the number of the start RB in the BWP in the system bandwidth with the number of the start RB of the system bandwidth. Therefore, the resource allocation process in case 2 can be understood with reference to case 1, and will not be repeated.
  • Scheduling bandwidth refers to the bandwidth composed of frequency domain resources scheduled for terminal equipment for data transmission.
  • frequency domain resource allocation can be based on all frequency domain resources in the scheduling bandwidth, that is, frequency domain resource allocation starts from the first frequency domain resource allocation unit in the scheduling bandwidth until the last frequency domain resource in the scheduling bandwidth. The domain resource allocation unit ends.
  • frequency domain resource allocation type When the frequency domain resource allocation type is different, the scheduling bandwidth is determined differently.
  • the process of frequency domain resource allocation is illustrated as an example.
  • the scheduling bandwidth is the bandwidth composed of VRBs used for data transmission indicated by bitmap or the bandwidth composed of PRBs mapped to VRBs used for data transmission indicated by bitmap, and the bandwidth indicated by bitmap is used for data transmission.
  • the transmitted VRB includes at least one RBG.
  • the bitmap includes 6 bits, the 6 bits are respectively used to indicate whether RBG0 to RBG5 are allocated for data transmission. If one bit is set to 1, it means that the corresponding RBG is allocated for data transmission.
  • the scheduling bandwidth is the bandwidth composed of RBs corresponding to RBG0, RBG1, RBG3, and RBG5, that is, RB3, RB4, RB5, RB8, RB9, RB12, and RB13.
  • the frequency domain resource allocation unit may be RBG or PRG or y continuous RBs or measurement subbands of channel measurement. Similar to RBG, the division of frequency domain resource allocation units is also divided according to the system bandwidth.
  • the number of frequency domain resource allocation units in the scheduling bandwidth and the calculation method of the size of each frequency domain resource allocation unit and the frequency domain resources in BWP The calculation method for the number of allocation units and the size of each frequency domain resource allocation unit is similar, except that Q is the size of the frequency domain resource allocation unit in this scenario, and the number of RBs in the BWP is replaced with the RBs in the scheduling bandwidth.
  • the number of the start RB in the BWP in the system bandwidth is replaced by the number of the start RB in the scheduling bandwidth in the system bandwidth.
  • the size of the frequency domain resource allocation unit is 2, there are 4 frequency domain resource allocation units in the scheduling bandwidth.
  • x W is the number of RBs included in the scheduling bandwidth of the terminal device.
  • the frequency domain resource allocation unit may be x consecutive RBs.
  • the RB is a PRB
  • the size of the PRG is the full bandwidth
  • Each PRB determines M frequency domain resources for the frequency domain resource allocation unit.
  • the mth frequency domain resource in the M frequency domain resources includes the first frequency domain resource in the scheduling bandwidth.
  • PRB to PRBs the M-th frequency domain resource in the M frequency domain resources includes the remaining PRBs in the scheduling bandwidth, and m is an integer greater than 0 and less than M. among them, Refers to Refers to
  • the frequency domain resource allocation method may be: the terminal device determines the m-th frequency domain resource among the M frequency-domain resources, and the m-th frequency domain resource includes N frequency domain resources included in the scheduling bandwidth of the terminal device The Mi+mth frequency domain resource allocation unit in the allocation unit.
  • the first network device allocates the Mi+mth frequency domain resource among the N frequency domain resource allocation units included in the scheduling bandwidth of the terminal device to the mth frequency domain resource among the M frequency domain resources.
  • N is a positive integer
  • m is an integer greater than 0 and less than or equal to M
  • This alternate frequency domain resource allocation method can make multiple frequency domain resources distributed on the scheduling bandwidth as discretely as possible, thereby obtaining better frequency domain diversity gain.
  • frequency domain resource allocation unit 0 and frequency domain resource allocation unit 2 of the 4 frequency domain resource allocation units are the first frequency domain resources
  • frequency domain resource allocation unit 1 and frequency domain resource allocation unit 3 are the first frequency domain resources. 2 frequency domain resources.
  • Case 3.1 can be further divided into the following cases 3.1.1 and 3.1.2.
  • PRG size is not configured as wideband.
  • the frequency domain resource allocation unit may be PRG, RBG, y consecutive RBs, or measurement subbands for channel measurement.
  • the specific frequency domain resource allocation process is similar to case 1.1.1. The only difference is that this is for scheduling bandwidth, and case 1.1.1 is for BWP. For details, refer to case 1.1.1 for understanding. Repeat it again.
  • PRG size is configured as wideband.
  • the frequency domain resource allocation unit is x consecutive RBs, and the frequency domain resource allocation unit is divided according to the scheduling bandwidth.
  • the specific frequency domain resource allocation process is similar to case 1.1.2. The only difference is that this is for scheduling bandwidth, and case 1.1.2 is for BWP. For details, refer to case 1.1.2 for understanding. Repeat it again.
  • Case 3.2 can be divided into case 3.2.1 and case 3.2.2.
  • the scheduling bandwidth is the bandwidth composed of consecutive VRBs indicated by the RIV.
  • frequency-domain interleaving may or not be performed between VRB and PRB.
  • the frequency domain resources indicated by the RIV are VRB5 to VRB11, and the scheduled bandwidth is the bandwidth composed of VRB5 to VRB11.
  • the frequency domain resource allocation unit can be VRB bundles (when frequency domain interleaving is performed between VRB and PRB) or y continuous VRB or channel measurement measurement subbands (measurement subbands include RB is VRB). Similar to RBG, the division of frequency domain resource allocation units is also divided according to the system bandwidth. The number of frequency domain resource allocation units in the scheduling bandwidth and the calculation method of the size of each frequency domain resource allocation unit can be found in the frequency domain in BWP.
  • the number of resource allocation units and the calculation method for the size of each frequency domain resource allocation unit except that Q is the size of the frequency domain resource allocation unit in this scenario, and the number of RBs in the BWP is replaced with the VRB in the scheduling bandwidth
  • the number of the starting RB in the BWP in the system bandwidth can be replaced with the number of the starting VRB in the scheduling bandwidth in the system bandwidth. Exemplarily, based on the scheduling bandwidth shown in FIG. 24 and referring to FIG. 25, if the size of the frequency domain resource allocation unit is 2, there are 4 frequency domain resource allocation units in the scheduling bandwidth.
  • x W is the number of VRBs included in the scheduling bandwidth of the terminal device.
  • the frequency domain resource allocation unit may be x consecutive VRBs.
  • the RB is a PRB
  • the size of the PRG is the full bandwidth
  • Each PRB determines M frequency domain resources for the frequency domain resource allocation unit.
  • the mth frequency domain resource in the M frequency domain resources includes the first frequency domain resource in the scheduling bandwidth.
  • PRB to PRBs the M-th frequency domain resource in the M frequency domain resources includes the remaining PRBs in the scheduling bandwidth, and m is an integer greater than 0 and less than M. among them, Refers to Refers to
  • the frequency domain resource allocation method may be: the terminal device determines the m-th frequency domain resource among the M frequency-domain resources, and the m-th frequency domain resource includes the N frequencies included in the scheduling bandwidth of the terminal device.
  • the first network device allocates the Mi+mth frequency domain resource among the N frequency domain resource allocation units included in the scheduling bandwidth of the terminal device to the mth frequency domain resource among the M frequency domain resources.
  • N is a positive integer
  • m is an integer greater than 0 and less than or equal to M
  • This alternate frequency domain resource allocation method can make multiple frequency domain resources distributed on the scheduling bandwidth as discretely as possible, thereby obtaining better frequency domain diversity gain.
  • frequency domain resource allocation unit 0 and frequency domain resource allocation unit 2 of the 4 frequency domain resource allocation units are the first frequency domain resources
  • frequency domain resource allocation unit 1 and frequency domain resource allocation unit 3 are the first frequency domain resources. 2 frequency domain resources.
  • the frequency domain resource allocation unit can be VRB bundles (when frequency domain interleaving is performed between VRB and PRB) or y continuous VRB or channel measurement measurement subbands (measurement subbands include RB is VRB).
  • the specific frequency domain resource allocation process is similar to the process of frequency domain resource allocation in the VRB domain in case 1.2.1. The difference is only that it works on the scheduling bandwidth here, and case 1.2.1 works on the BWP. Yes, please refer to situation 1.2.1 for understanding, so I won’t repeat it.
  • the frequency domain resource allocation unit is x consecutive VRBs, and the frequency domain resource allocation unit is divided according to the scheduling bandwidth.
  • the specific frequency domain resource allocation process is similar to the process of frequency domain resource allocation in the VRB domain in case 1.2.2, except that it is applied to the scheduling bandwidth here, and case 1.2.2 is applied to the BWP Yes, the details can be understood with reference to situation 1.2.2 and will not be repeated here.
  • the scheduling bandwidth is the bandwidth formed by the PRBs mapped to the consecutive VRBs indicated by the RIV.
  • frequency-domain interleaving may or not be performed between VRB and PRB.
  • the frequency domain resource allocation unit may be PRG or y consecutive PRBs or measurement subbands of channel measurement (the RBs included in the measurement subbands are PRBs).
  • the number of frequency domain resource allocation units, the size of each frequency domain resource allocation unit, and the frequency domain resource allocation process are similar to the process of frequency domain resource allocation on the PRB domain in Case 1.2, the only difference lies in this It is used for scheduling bandwidth.
  • Case 1.2 is used for BWP.
  • PRG size is not configured as wideband
  • Case 1.2.1 for understanding.
  • PRG size When it is configured as a wideband, please refer to case 1.2.2 for understanding, and will not repeat it.
  • This part mainly introduces the method of frequency domain interleaving and time-frequency domain resource allocation between VRB and PRB.
  • the frequency-domain resources indicated by RIV are VRB5 to VRB11
  • the PRBs mapped from VRB5 to VRB11 are PRB4, PRB5, PRB6, PRB7, PRB9, PRB10, and PRB11, respectively.
  • the scheduling bandwidth is the bandwidth composed of PRB4, PRB5, PRB6, PRB7, PRB9, PRB10 and PRB11.
  • the frequency domain resource allocation unit may be PRG or PRB bundles or y consecutive PRBs or measurement subbands of channel measurement (the RBs included in the measurement subbands are PRBs).
  • the first VRB bundles only contain VRB5, and VRB5 is mapped to PRB9. If the size of the frequency domain resource allocation unit is 2, then the frequency domain resource allocation unit 2 only contains 1 PRB (Ie, PRB9), and other frequency domain resource allocation units all include 2 PRBs. If the size of the frequency domain resource allocation unit is 4, then the frequency domain resource allocation unit 1 only includes 3 PRBs, and other frequency domain resource allocation units include 4 PRBs.
  • the number of PRBs included in each frequency domain resource allocation unit is equal to that of the frequency domain resource allocation unit. size.
  • x W is the number of PRBs included in the scheduled bandwidth of the terminal device.
  • the frequency domain resource allocation unit may be x consecutive PRBs.
  • the RB is a PRB
  • the size of the PRG is the full bandwidth
  • Each PRB determines M frequency domain resources for the frequency domain resource allocation unit.
  • the mth frequency domain resource in the M frequency domain resources includes the first frequency domain resource in the scheduling bandwidth.
  • PRB to PRBs the M-th frequency domain resource in the M frequency domain resources includes the remaining PRBs in the scheduling bandwidth, and m is an integer greater than 0 and less than M. among them, Refers to Refers to
  • the frequency domain resource allocation method may be: the terminal device determines the m-th frequency domain resource among the M frequency-domain resources, and the m-th frequency domain resource includes the N frequencies included in the scheduling bandwidth of the terminal device.
  • the first network device allocates the Mi+mth frequency domain resource among the N frequency domain resource allocation units included in the scheduling bandwidth of the terminal device to the mth frequency domain resource among the M frequency domain resources.
  • N is a positive integer
  • m is an integer greater than 0 and less than or equal to M
  • This alternate frequency domain resource allocation method can make multiple frequency domain resources distributed on the scheduling bandwidth as discretely as possible, thereby obtaining better frequency domain diversity gain.
  • the frequency domain resource allocation unit may be PRG or PRB bundles or y continuous PRBs or measurement subbands of channel measurement (the RBs included in the measurement subbands are PRBs).
  • the specific frequency domain resource allocation process is similar to the process of frequency domain resource allocation in the PRB domain in case 1.2.1. The only difference is that it is applied to the scheduling bandwidth here, and case 1.2.1 is applied to the BWP. Yes, please refer to situation 1.2.1 for understanding, so I won’t repeat it.
  • the frequency domain resource allocation unit is x consecutive PRBs, and the frequency domain resource allocation unit is divided according to the scheduling bandwidth.
  • the specific frequency domain resource allocation process is similar to case 1.2.2. The difference is only that it works on the scheduling bandwidth here, and case 1.2.2 works on the BWP. For details, refer to case 1.2.2 for understanding. Repeat it again.
  • the M frequency domain resources allocated by the first network device or the terminal device are frequency domain resources used for data transmission.
  • each network device (for example, the aforementioned M network devices) sends data on M frequency domain resources, and correspondingly, the terminal device receives data on M frequency domain resources.
  • the predetermined bandwidth is BWP or system bandwidth
  • the implementation process of the resource allocation method described in the above case 1 may cause the frequency domain resources actually used for data transmission to belong to the same frequency domain resource.
  • the bitmap value is 1010, and a bit is set to 1, it means that the corresponding RBG is allocated for data transmission.
  • RBG0 and RBG2 are allocated for data transmission, and RBG0 and RBG2 belong to The same frequency domain resource means that only one TRP can communicate with the terminal device.
  • the resource allocation method described in case 3 uses alternate allocation rules to allocate frequency domain resources on the frequency domain resources used for data transmission. Therefore, the frequency domain resources allocated to each TRP Are approximately equal, so it can be guaranteed that each TRP communicating with the terminal device has resources available.
  • the method provided in the embodiments of the present application can prevent the PRBs in the same PRG from being allocated to different TRPs, that is, to ensure that the data on the PRBs in the same PRG are pre-coded using the same transmit precoding matrix, which is consistent with the communication protocol.
  • the relevant provisions that is, the data on the PRB in a PRG should be pre-coded using the same transmit pre-coding matrix
  • the terminal device can use the same channel equalization matrix to solve the multi-stream data, thereby ensuring the signal reception quality of the terminal device.
  • the frequency domain resource allocation unit may be preset or predefined or stipulated by agreement, or the following method 1 or Method 2 is determined.
  • the signaling may be high-level signaling (for example, RRC signaling, MAC CE signaling, etc.) or dynamic signaling (for example, DCI).
  • high-level signaling for example, RRC signaling, MAC CE signaling, etc.
  • dynamic signaling for example, DCI
  • the signaling may use multiple bits to indicate whether the frequency domain resource allocation unit is one of RBG, PRG, interlaced resource unit, or measurement subband of channel measurement.
  • the signaling may indicate whether the frequency domain resource allocation unit is a VRB or a PRB through one or more bits.
  • Method 1 enables the terminal device to switch the frequency domain resource allocation unit flexibly based on the instruction.
  • Manner 2 The granularity of the frequency domain resource allocation unit corresponds to the transmission scheme.
  • the transmission scheme may be the first transmission scheme or the second transmission scheme.
  • the frequency domain resource allocation unit may be different. The following describes the first case and the second case separately.
  • the frequency domain resource allocation unit is an RBG.
  • the frequency domain resource allocation unit is PRG.
  • the frequency domain resource allocation type may be Type 0, and the predetermined bandwidth is BWP or system bandwidth.
  • the first frequency domain resource is allocated to TRP1
  • the second frequency domain resource is allocated to TRP2.
  • the bitmap contains 4 bits
  • 4 The bits are used to indicate whether the 4 RBGs are allocated for data transmission. If the 4 bits are 0010, 0 means that they are not allocated for data transmission, and 1 means that they are allocated for data transmission.
  • TRP1 is available
  • the resources for data transmission include RB10 and RB11, and the resources that TRP2 can use for data transmission include RB8 and RB9. It can be seen that this allocation method is more uniform and is more suitable for the second transmission scheme.
  • the second case is a first case
  • consecutive RBs are consecutive PRBs.
  • consecutive RBs are consecutive VRBs.
  • the frequency domain resource allocation type may be Type1, frequency domain interleaving is performed between VRB and PRB, and the predetermined bandwidth is BWP or system bandwidth.
  • the continuous RBs are continuous PRBs
  • the first frequency domain resource is allocated to TRP1
  • the second frequency domain resource is allocated to TRP2, as indicated by RIV
  • the VRBs that can be used for data transmission include VRB6 to VRB12.
  • the PRBs that VRB6 to VRB12 are mapped to can be seen in (a) in Figure 31.
  • the PRBs that TRP1 can be used for data transmission include PRB8, and TRP2 can be used for data transmission.
  • the PRB includes PRB2, PRB3, PRB6, PRB7, PRB10, and PRB11. It can be seen that after interleaving in this allocation method, M frequency domain resources may be unbalanced, which is more suitable for the first transmission scheme.
  • the continuous RBs are continuous VRBs
  • the first frequency domain resource is allocated to TRP1
  • the second frequency domain resource is allocated to TRP2, as indicated by RIV.
  • the VRBs that can be used for data transmission include VRB6 to VRB12.
  • the PRBs that VRB6 to VRB12 are mapped to can be seen in (b) in Figure 31.
  • the PRBs that TRP1 can use for data transmission include PRB2, PRB3, PRB6, and PRB7, and TRB2
  • the PRBs that can be used for data transmission include PRB8, PRB10, and PRB11. It can be seen that this allocation method is more balanced and more suitable for the second transmission scheme.
  • the terminal equipment can select the frequency domain resource allocation unit according to the actual transmission scheme, which increases the scheduling flexibility of the terminal equipment and supports different transmission schemes.
  • the first case and the second case above are merely examples of the correspondence between the transmission scheme and the granularity of the frequency domain resource allocation unit. There is a difference between the transmission scheme and the granularity of the frequency domain resource allocation unit. The corresponding relationship is not limited to this.
  • the frequency domain resource allocation unit in the first transmission scheme, may be a PRG, and in the second transmission scheme, the frequency domain resource allocation unit may be an RBG.
  • consecutive RBs are consecutive VRBs
  • consecutive RBs are consecutive PRBs.
  • the transmission scheme may also correspond to the granularity of other frequency domain resource allocation units (for example, interleaved resource units or measurement subbands for channel measurement, etc.), or may not correspond to the granularity of any frequency domain resource allocation unit. This is not limited.
  • the predetermined bandwidth when the predetermined bandwidth is BWP or system bandwidth, frequency domain resource allocation may be unbalanced.
  • the predetermined bandwidth is scheduling bandwidth, frequency domain resource allocation is more balanced. Therefore, the transmission scheme is still more balanced. It may correspond to a predetermined bandwidth, for example, the first transmission scheme corresponds to BWP or system bandwidth, and the second transmission scheme corresponds to scheduled bandwidth.
  • RBG size of the measurement subbands of, PRG, interleaving resource unit, and channel measurement may also be larger or smaller than described in this application. In this case, the same applies to this application.
  • time domain resources are not described too much, but it is understandable that each network device and terminal device not only need to determine frequency domain resources when sending data.
  • the time domain resource needs to be determined, and the method for determining the time domain resource is not limited in this application.
  • each network element for example, the first network device and the terminal device, in order to implement the aforementioned functions, includes at least one of a hardware structure and a software module corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the embodiment of the present application can divide the first network device and the terminal device into functional units according to the above method examples.
  • each functional unit can be divided corresponding to each function, or two or more functions can be integrated into one processing unit. in.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit. It should be noted that the division of units in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 32 shows a schematic diagram of a possible structure of a terminal device (denoted as a terminal device 320) involved in the foregoing embodiment.
  • the terminal device 320 includes a processing unit 3201 and a communication unit 3202.
  • a storage unit 3203 is further included.
  • the processing unit 3201 is used to control and manage the actions of the terminal device. For example, the processing unit 3201 is used to execute 901 and 902 in FIG. 9 and/or the terminal device in other processes described in the embodiments of the present application. Actions.
  • the processing unit 3201 may communicate with other network entities through the communication unit 3202, for example, receive data from M network devices through M frequency domain resources, respectively.
  • the storage unit 3203 is used to store the program code and data of the terminal device.
  • the terminal device 320 may be a device or a chip or a chip system.
  • the processing unit may be a processor; the communication unit may be a communication interface, a transceiver, or an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • the communication unit may be a communication interface, an input/output interface, an interface circuit, an output circuit, an input circuit, a pin, or a related circuit on the chip or a chip system.
  • the processing unit may be a processor, a processing circuit, a logic circuit, or the like.
  • FIG. 33 shows a schematic diagram of a possible structure of the first network device (denoted as the first network device 330) involved in the foregoing embodiment.
  • the first network device 330 includes a processing unit 3301.
  • a communication unit 3302 and a storage unit 3303 is further included.
  • the processing unit 3301 is used to control and manage the actions of the first network device. For example, the processing unit 3301 is used to execute 1001 and 1002 in FIG. 10, and/or the first network in other processes described in the embodiments of the present application. Action performed by the device.
  • the processing unit 3301 may communicate with other network entities through the communication unit 3302, for example, send information about the allocated frequency domain resources to one or more of the M network devices.
  • the storage unit 3303 is used to store the program code and data of the first network device.
  • the first network device 330 may be a device, a chip or a chip system.
  • the processing unit may be a processor; the communication unit may be a communication interface, a transceiver, or an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • the communication unit may be a communication interface, an input/output interface, an interface circuit, an output circuit, an input circuit, a pin, or a related circuit on the chip or a chip system.
  • the processing unit may be a processor, a processing circuit, a logic circuit, or the like.
  • the processing unit may be a processor or a controller
  • the communication unit may be a communication interface, a transceiver, a transceiver, a transceiver circuit, a transceiver device, an input/output interface, a pin, or a circuit.
  • the communication interface is a general term and may include one or more interfaces.
  • the storage unit may be a memory, a register, a cache, a read-only memory (ROM), a random access memory (RAM), and the like.
  • the communication unit may also be referred to as a transceiver unit.
  • the antenna and control circuit with the transceiver function in the terminal device and the first network device can be regarded as a communication unit, and the processor with a processing function can be regarded as a processing unit.
  • the device for implementing the receiving function in the communication unit may be regarded as a receiving unit, which is used to perform the receiving steps in the embodiment of the present application, and the receiving unit may be a receiver, a receiver, a receiving circuit, and the like.
  • the device used for implementing the sending function in the communication unit can be regarded as the sending unit.
  • the sending unit is used to execute the sending steps in the embodiment of the present application.
  • the sending unit can be a transmitter, a transmitter, a sending circuit, and the like.
  • the integrated unit in FIG. 32 and FIG. 33 is implemented in the form of a software function module and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • a computer readable storage medium includes several instructions to enable a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • Storage media for storing computer software products include: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program code.
  • FIG. 34 also shows a schematic diagram of a possible structure of the first network device (denoted as the first network device 340) involved in the above embodiment.
  • the first network device 340 includes a determining unit 3401 and an allocation unit. Unit 3402. Among them, the determining unit 3401 is used to execute 1001 in FIG. 10, and the allocating unit 3402 is used to execute 1002 in FIG. 10.
  • the units in FIGS. 32 to 34 may also be referred to as modules.
  • the processing unit may be referred to as a processing module
  • the determining unit may be referred to as a determining module.
  • the embodiment of the present application also provides a schematic diagram of the hardware structure of a communication device (denoted as a communication device 350). See FIG. 35 or FIG. 36.
  • the communication device 350 includes a processor 3501, and optionally, a communication device connected to the processor 3501. ⁇ Memory 3502.
  • the processor 3501 may be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more programs for controlling the execution of the program of this application. integrated circuit.
  • the processor 3501 may also include multiple CPUs, and the processor 3501 may be a single-CPU (single-CPU) processor or a multi-core (multi-CPU) processor.
  • the processor here may refer to one or more devices, circuits, or processing cores for processing data (for example, computer program instructions).
  • the memory 3502 may be a ROM or other types of static storage devices that can store static information and instructions, RAM, or other types of dynamic storage devices that can store information and instructions, or an electrically erasable programmable read-only memory (electrically erasable programmable read-only memory).
  • read-only memory EEPROM
  • compact disc read-only memory, CD-ROM
  • optical disc storage including compact discs, laser discs, optical discs, digital universal discs, Blu-ray discs, etc.
  • magnetic disks A storage medium or other magnetic storage device, or any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, and the embodiment of the present application does not impose any limitation on this.
  • the memory 3502 may exist independently (in this case, the processor may be located outside the communication device or in the communication device), or may be integrated with the processor 3501. Wherein, the memory 3502 may contain computer program code.
  • the processor 3501 is configured to execute the computer program code stored in the memory 3502, so as to implement the method provided in the embodiment of the present application.
  • the communication device 350 further includes a transceiver 3503.
  • the processor 3501, the memory 3502, and the transceiver 3503 are connected by a bus.
  • the transceiver 3503 is used to communicate with other devices or communication networks.
  • the transceiver 3503 may include a transmitter and a receiver.
  • the device used for implementing the receiving function in the transceiver 3503 can be regarded as a receiver, and the receiver is used to perform the receiving steps in the embodiment of the present application.
  • the device used in the transceiver 3503 to implement the sending function can be regarded as a transmitter, and the transmitter is used to perform the sending steps in the embodiment of the present application.
  • FIG. 35 may be used to illustrate the structure of the first network device or terminal device involved in the foregoing embodiment.
  • the processor 3501 is used to control and manage the actions of the terminal device.
  • the processor 3501 is used to support the terminal device to execute the diagram. 901 and 902 in 9, and/or actions performed by the terminal device in other processes described in the embodiments of this application.
  • the processor 3501 may communicate with other network entities through the transceiver 3503, for example, communicate with the foregoing M network devices.
  • the memory 3502 is used to store the program code and data of the terminal device.
  • the processor 3501 is used to control and manage the actions of the first network device.
  • the processor 3501 is used to support The first network device executes 1001 and 1002 in FIG. 10 and/or the actions executed by the first network device in other processes described in the embodiments of the present application.
  • the processor 3501 may communicate with other network entities through the transceiver 3503, for example, communicate with one or more of the foregoing M network devices.
  • the memory 3502 is used to store the program code and data of the first network device.
  • the processor 3501 includes a logic circuit and at least one of an input interface and an output interface. Among them, the output interface is used to execute the sending action in the corresponding method, and the input interface is used to execute the receiving action in the corresponding method.
  • FIG. 36 The schematic structural diagram shown in FIG. 36 may be used to illustrate the structure of the first network device or terminal device involved in the foregoing embodiment.
  • the processor 3501 is used to control and manage the actions of the terminal device, for example, the processor 3501 is used to support the terminal device.
  • the processor 3501 may communicate with other network entities through at least one of the input interface and the output interface, for example, communicate with the foregoing M network devices.
  • the memory 3502 is used to store the program code and data of the terminal device.
  • the processor 3501 is used to control and manage the actions of the first network device.
  • the processor 3501 is used to support The first network device executes 1001 and 1002 in FIG. 10 and/or the actions executed by the first network device in other processes described in the embodiments of the present application.
  • the processor 3501 may communicate with other network entities through at least one of the input interface and the output interface, for example, communicate with one or more of the foregoing M network devices.
  • the memory 3502 is used to store the program code and data of the first network device.
  • the embodiment of the present application also provides a schematic diagram of the hardware structure of a terminal device (denoted as the terminal device 370) and a first network device (denoted as the first network device 380).
  • a terminal device denoted as the terminal device 370
  • a first network device denoted as the first network device 380.
  • FIG. 37 is a schematic diagram of the hardware structure of the terminal device 370.
  • the terminal device 370 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the entire terminal device, execute the software program, and process the data of the software program, for example, to control the terminal device to execute 901 and 902 in FIG. 9, and/ Or the actions performed by the terminal device in other processes described in the embodiments of this application.
  • the memory is mainly used to store software programs and data.
  • the control circuit also called a radio frequency circuit
  • the control circuit and the antenna together can also be called a transceiver, which is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users.
  • the processor can read the software program in the memory, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the control circuit in the control circuit.
  • the control circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal through the antenna in the form of electromagnetic waves send.
  • the control circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • FIG. 37 only shows a memory and a processor. In actual terminal devices, there may be multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, etc., which is not limited in the embodiment of the present application.
  • the processor may include a baseband processor and a central processing unit.
  • the baseband processor is mainly used to process communication protocols and communication data.
  • the central processing unit is mainly used to control the entire terminal device and execute Software program, processing the data of the software program.
  • the processor in FIG. 37 integrates the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit may also be independent processors, which are interconnected by technologies such as buses.
  • the terminal device may include multiple baseband processors to adapt to different network standards, the terminal device may include multiple central processors to enhance its processing capabilities, and various components of the terminal device may be connected through various buses.
  • the baseband processor can also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and communication data can be built in the processor, or can be stored in the memory in the form of a software program, and the processor executes the software program to realize the baseband processing function.
  • FIG. 38 is a schematic diagram of the hardware structure of the first network device 380.
  • the first network device 380 may include one or more radio frequency units, such as a remote radio unit (RRU) 3801 and one or more baseband units (BBU) (also referred to as digital unit (digital unit) , DU)) 3802.
  • RRU remote radio unit
  • BBU baseband units
  • the RRU 3801 may be referred to as a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc., and it may include at least one antenna 3811 and a radio frequency unit 3812.
  • the RRU3801 part is mainly used for the transceiver of radio frequency signals and the conversion of radio frequency signals and baseband signals.
  • the RRU3801 and BBU3802 may be physically set together, or physically separated, for example, a distributed base station.
  • the BBU3802 is the control center of the first network device, and can also be called a processing unit, which is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, and spreading.
  • the BBU3802 can be composed of one or more single boards, and multiple single boards can jointly support a single access standard radio access network (such as an LTE network), or can respectively support different access standard radio access networks. Access network (such as LTE network, 5G network or other networks).
  • the BBU 3802 also includes a memory 3821 and a processor 3822, and the memory 3821 is used to store necessary instructions and data.
  • the processor 3822 is used to control the first network device to perform necessary actions.
  • the memory 3821 and the processor 3822 may serve one or more single boards. In other words, the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits can be provided on each board.
  • the first network device 380 shown in FIG. 38 can execute 1001 and 1002 in FIG. 10 and/or actions performed by the first network device in other processes described in the embodiments of the present application.
  • the operations, functions, or operations and functions of each module in the first network device 380 are respectively set to implement the corresponding processes in the foregoing method embodiments.
  • each step in the method provided in this embodiment can be completed by an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • FIG. 37 and FIG. 38 refer to the description about the processor in FIG. 35 and FIG. 36, which will not be repeated.
  • the embodiments of the present application also provide a computer-readable storage medium, including instructions, which when run on a computer, cause the computer to execute any of the above-mentioned methods.
  • the embodiments of the present application also provide a computer program product containing instructions, which when run on a computer, cause the computer to execute any of the above methods.
  • An embodiment of the present application also provides a communication system, including: the foregoing first network device and terminal device.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • a software program it may be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on the computer, the processes or functions described in the embodiments of the present application are generated in whole or in part.
  • the computer can be a general-purpose computer, a dedicated computer, a computer network, or other programmable devices.
  • Computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • computer instructions may be transmitted from a website, computer, server, or data center through a cable (such as Coaxial cable, optical fiber, digital subscriber line (digital subscriber line, DSL) or wireless (such as infrared, wireless, microwave, etc.) transmission to another website site, computer, server or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or may include one or more data storage devices such as a server or a data center that can be integrated with the medium.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种频域资源分配方法及装置,该方法中,终端设备和网络设备根据预定频域资源分配规则确定M份频域资源,并在M份频域资源中的一份或多份频域资源上通信。M份频域资源中的任意两份频域资源不重叠,M份频域资源各自关联一个QCL信息、且其中任意两份频域资源关联的QCL信息不同。该方法中,以频域资源分配单元为单位进行频域资源分配,该频域资源分配单元的最小粒度为x个连续的VRB或PRB,x为PRG的大小,从而避免同一个PRG内的PRB被分配给不同的TRP,提高信道估计的准确性。

Description

频域资源分配方法及装置
本申请要求于2019年08月16日提交国家知识产权局、申请号为201910760494.6、申请名称为“频域资源分配方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种频域资源分配方法及装置。
背景技术
在新无线(new radio,NR)中,通过下行控制信息(downlink control information,DCI)中的频域资源分配(frequency domain resource allocation,FD-RA)指示域可以为终端设备指示分配的频域资源。
为了提高频谱利用率,在NR系统中,网络中的多个小区可以部署在相同的频段。该情况下,当终端设备处于小区的边缘时,终端设备的通信可能会受到服务小区的邻区发送的信号的干扰。为了解决该问题,可以通过多点传输技术有效地避免干扰,提高用户速率。其中,多点是指多个传输接收点(transmission reception point,TRP),多个TRP可以通过交互信息,进行协作,从而避免干扰。
为了支持多点传输下的频域资源分配,一种较为普遍的做法为:通过同一个DCI中的FD-RA指示域指示不同TRP调度的资源,终端设备通过预设规则和DCI中的FD-RA指示域指示的资源确定不同的TRP中的每个TRP调度的资源。一种可能的实现方式,预设规则为奇偶分配原则,即奇数编号的资源块(resource block,RB)分配给TRP1,偶数编号的RB分配给TRP2,例如,参见图1中的(a)。另一种可能的实现方式,预设规则为前后均分原则,即RB编号的前一半分配给TRP1,RB编号的后一半分配给TRP2,例如,参见图1中的(b)。这两种频域资源分配方式,都可能会导致终端设备的信号接收质量下降。
发明内容
本申请实施例提供了一种频域资源分配方法及装置,用于保证终端设备的信号接收质量。
为达到上述目的,本申请实施例提供如下技术方案:
第一方面,提供了一种频域资源分配方法,包括:终端设备根据预定频域资源分配规则确定M份频域资源,并在M份频域资源中的一份或多份频域资源接收数据。其中,M份频域资源中的任意两份频域资源不重叠,M份频域资源各自关联一个QCL信息、且其中的任意两份频域资源关联的QCL信息不同。频域资源分配规则以频域资源分配单元为单位进行频域资源分配,频域资源分配单元的最小粒度为x个连续的RB,连续的RB为连续的VRB或连续的PRB,x为PRG的大小,M为大于1的整数。第一方面提供的方法,可以避免同一个PRG内的PRB被分配给不同的TRP,也就是保证了同一个PRG内的PRB上的数据采用同一发送预编码矩阵进行预编码,从而与通信协议中的相关规定(即一个PRG中的PRB上的数据要采用相同的发送预编码矩阵进行预编码)保持一致。同时,针对同一个PRG内的PRB上的数据,终端设备可以采用同一个信道均衡矩阵解多流数据,从而保证终端设备的信号接收质量。
在一种可能的实现方式中,频域资源分配单元为预定义或通过信令指示的。
在一种可能的实现方式中,频域资源分配单元为RBG或PRG或交织资源单元。该种可能的实现方式,可以避免同一个PRG内的PRB被分配给不同的TRP。
在一种可能的实现方式中,频域资源分配单元为y个连续的RB,y为x的k倍,k为正整数。该种可能的实现方式,可以避免同一个PRG内的PRB被分配给不同的TRP。
在一种可能的实现方式中,终端设备根据预定频域资源分配规则确定M份频域资源,包括:终端设备确定M份频域资源中的第m份频域资源,第m份频域资源包括终端设备的预定带宽中包括的N个频域资源分配单元中的第Mi+m个频域资源分配单元,N为正整数,m为大于0小于等于M的整数,
Figure PCTCN2020109385-appb-000001
该种可能的实现方式,可以使得多份频域资源尽量离散地分布在调度带宽上,从而获得更好的频域分集增益。
在一种可能的实现方式中,频域资源分配单元的粒度与传输方案对应。
在一种可能的实现方式中,在第一传输方案下,在M份频域资源中的不同频域资源上传输的下行数据对应一个TB的不同部分,频域资源分配单元为RBG;或者,在第二传输方案下,在M份频域资源上传输的下行数据对应M个TB,M个TB为相同的TB,频域资源分配单元为PRG。该种可能的实现方式,终端设备可以根据实际的传输方案选择频域资源分配单元,增加了终端设备的调度灵活性和对不同传输方案的支持。
在一种可能的实现方式中,在第一传输方案下,在M份频域资源中的不同频域资源上传输的下行数据对应一个TB的不同部分,连续的RB为连续的PRB;或者,在第二传输方案下,在M份频域资源上传输的下行数据对应M个TB,M个TB为相同的TB,连续的RB为连续的VRB。该种可能的实现方式,终端设备可以根据实际的传输方案选择频域资源分配单元,增加了终端设备的调度灵活性和对不同传输方案的支持。
在一种可能的实现方式中,当PRG的大小配置为全带宽时,x为
Figure PCTCN2020109385-appb-000002
W为终端设备的预定带宽中包含的RB的个数。
第二方面,提供了一种频域资源分配方法,包括:网络设备确定终端设备的预定带宽,并根据预定频域资源分配规则和预定带宽分配M份频域资源。其中,M份频域资源中的任意两份频域资源不重叠,M份频域资源各自关联一个QCL信息、且其中的任意两份频域资源关联的QCL信息不同。频域资源分配规则以频域资源分配单元为单位进行频域资源分配,频域资源分配单元的最小粒度为x个连续的RB,连续的RB为连续的VRB或连续的PRB,x为PRG的大小,M为大于1的整数。第二方面提供的方法,M份频域资源可以是分别为M个TRP分配的资源,该情况下,可以避免同一个PRG内的PRB被分配给不同的TRP,也就是保证了同一个PRG内的PRB上的数据采用同一发送预编码矩阵进行预编码,从而与通信协议中的相关规定(即一个PRG中的PRB上的数据要采用相同的发送预编码矩阵进行预编码)保持一致。同时,针对同一个PRG内的PRB上的数据,终端设备可以采用同一个信道均衡矩阵解多流数据,从而保证终端设备的信号接收质量。
在一种可能的实现方式中,频域资源分配单元为预定义或通过信令指示的。
在一种可能的实现方式中,频域资源分配单元为RBG或PRG或交织资源单元。该种可能的实现方式,可以避免同一个PRG内的PRB被分配给不同的TRP。
在一种可能的实现方式中,频域资源分配单元为y个连续的RB,y为x的k倍,k为正整数。该种可能的实现方式,可以避免同一个PRG内的PRB被分配给不同的TRP。
在一种可能的实现方式中,网络设备根据预定频域资源分配规则分配M份频域资源, 包括:网络设备将预定带宽中包括的N个频域资源分配单元中的第Mi+m个分配给M份频域资源中的第m份频域资源,N为正整数,m为大于0小于等于M的整数,
Figure PCTCN2020109385-appb-000003
该种可能的实现方式,可以使得多份频域资源尽量离散地分布在调度带宽上,从而获得更好的频域分集增益。
在一种可能的实现方式中,频域资源分配单元的粒度与传输方案对应。
在一种可能的实现方式中,在第一传输方案下,在M份频域资源中的不同频域资源上传输的下行数据对应一个TB的不同部分,频域资源分配单元为RBG;或者,在第二传输方案下,在M份频域资源上传输的下行数据对应M个TB,M个TB为相同的TB,频域资源分配单元为PRG。该种可能的实现方式,可以根据实际的传输方案选择频域资源分配单元,增加了调度灵活性和对不同传输方案的支持。
在一种可能的实现方式中,在第一传输方案下,在M份频域资源中的不同频域资源上传输的下行数据对应一个TB的不同部分,连续的RB为连续的PRB;或者,在第二传输方案下,在M份频域资源上传输的下行数据对应M个TB,M个TB为相同的TB,连续的RB为连续的VRB。该种可能的实现方式,可以根据实际的传输方案选择频域资源分配单元,增加了调度灵活性和对不同传输方案的支持。
在一种可能的实现方式中,当PRG的大小配置为全带宽时,x为
Figure PCTCN2020109385-appb-000004
W为终端设备的预定带宽中包含的RB的个数。
第三方面,提供了一种频域资源分配装置,包括:处理单元和通信单元;处理单元,用于根据预定频域资源分配规则确定M份频域资源,M份频域资源中的任意两份频域资源不重叠,M份频域资源各自关联一个QCL信息,M份频域资源中的任意两份频域资源关联的QCL信息不同,频域资源分配规则以频域资源分配单元为单位进行频域资源分配,频域资源分配单元的最小粒度为x个连续的RB,x为PRG的大小,连续的RB为连续的VRB或连续的PRB,M为大于1的整数;通信单元,用于在M份频域资源中的一份或多份频域资源接收数据。
在一种可能的实现方式中,频域资源分配单元为预定义或通过信令指示的。
在一种可能的实现方式中,频域资源分配单元为RBG或PRG或交织资源单元。
在一种可能的实现方式中,频域资源分配单元为y个连续的RB,y为x的k倍,k为正整数。
在一种可能的实现方式中,处理单元,具体用于确定M份频域资源中的第m份频域资源,第m份频域资源包括装置的预定带宽中包括的N个频域资源分配单元中的第Mi+m个频域资源分配单元,N为正整数,m为大于0小于等于M的整数,
Figure PCTCN2020109385-appb-000005
在一种可能的实现方式中,频域资源分配单元的粒度与传输方案对应。
在一种可能的实现方式中,在第一传输方案下,在M份频域资源中的不同频域资源上传输的下行数据对应一个TB的不同部分,频域资源分配单元为RBG;或者,在第二传输方案下,在M份频域资源上传输的下行数据对应M个TB,M个TB为相同的TB,频域资源分配单元为PRG。
在一种可能的实现方式中,在第一传输方案下,在M份频域资源中的不同频域资源上传输的下行数据对应一个TB的不同部分,连续的RB为连续的PRB;或者,在第二传输方案下,在M份频域资源上传输的下行数据对应M个TB,M个TB为相同的TB,连续 的RB为连续的VRB。
在一种可能的实现方式中,当PRG的大小配置为全带宽时,x为
Figure PCTCN2020109385-appb-000006
W为频域资源分配装置的预定带宽中包含的RB的个数。
在一种可能的实现方式中,频域资源分配装置为终端设备或芯片或芯片系统。
当该装置为终端设备时,所述处理单元可以是处理器;所述通信单元可以是通信接口、收发器,或,输入/输出接口。可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
当该装置为芯片或芯片系统时,所述通信单元可以是该芯片或芯片系统上的通信接口、输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。所述处理单元可以是处理器、处理电路或逻辑电路等。
第四方面,提供了一种频域资源分配装置,包括:确定单元和分配单元;
确定单元,用于确定终端设备的预定带宽;
分配单元,用于根据预定频域资源分配规则和预定带宽分配M份频域资源,M份频域资源中的任意两份频域资源不重叠,M份频域资源各自关联一个QCL信息,M份频域资源中的任意两份频域资源关联的QCL信息不同,频域资源分配规则以频域资源分配单元为单位进行频域资源分配,频域资源分配单元的最小粒度为x个连续的RB,x为PRG的大小,连续的RB为连续的VRB或连续的PRB,M为大于1的整数。
在一种可能的实现方式中,频域资源分配单元为预定义或通过信令指示的。
在一种可能的实现方式中,频域资源分配单元为RBG或PRG或交织资源单元。
在一种可能的实现方式中,频域资源分配单元为y个连续的RB,y为x的k倍,k为正整数。
在一种可能的实现方式中,分配单元,具体用于将预定带宽中包括的N个频域资源分配单元中的第Mi+m个分配给M份频域资源中的第m份频域资源,N为正整数,m为大于0小于等于M的整数,
Figure PCTCN2020109385-appb-000007
在一种可能的实现方式中,频域资源分配单元的粒度与传输方案对应。
在一种可能的实现方式中,在第一传输方案下,在M份频域资源中的不同频域资源上传输的下行数据对应一个TB的不同部分,频域资源分配单元为RBG;或者,在第二传输方案下,在M份频域资源上传输的下行数据对应M个TB,M个TB为相同的TB,频域资源分配单元为PRG。
在一种可能的实现方式中,在第一传输方案下,在M份频域资源中的不同频域资源上传输的下行数据对应一个TB的不同部分,连续的RB为连续的PRB;或者,在第二传输方案下,在M份频域资源上传输的下行数据对应M个TB,M个TB为相同的TB,连续的RB为连续的VRB。
在一种可能的实现方式中,当PRG的大小配置为全带宽时,x为
Figure PCTCN2020109385-appb-000008
W为终端设备的预定带宽中包含的RB的个数。
在一种可能的实现方式中,频域资源分配装置为网络设备或芯片或芯片系统。
当该装置为网络设备时,所述确定单元和所述分配单元可以是处理单元,进一步的可以是处理器。
当该装置为芯片或芯片系统时,所述确定单元和所述分配单元可以是处理单元、处理 器、处理电路或逻辑电路等。
第五方面,提供了一种频域资源分配方法,包括:确定M份频域资源,其中,M为大于1的整数,所述M份频域资源中的任意两份频域资源不重叠,所述M份频域资源各自关联一个QCL信息,所述M份频域资源中的任意两份频域资源关联的QCL信息不同;在所述M份频域资源中的一份或多份频域资源发送或接收数据;其中,当PRG的大小为2或4时,以PRG为频域资源分配单元确定所述M份频域资源;当PRG的大小为全带宽时,以
Figure PCTCN2020109385-appb-000009
个PRB为频域资源分配单元确定所述M份频域资源,W为预定带宽中包含的PRB的个数,W为大于1的整数。
在一种可能的实现方式中,当PRG的大小为2或4时,M=2,所述M份频域资源中的第一份频域资源包括索引为偶数的PRG,所述M份频域资源中的第二份频域资源包括索引为奇数的PRG。
在一种可能的实现方式中,当PRG的大小为2或4时,所述M份频域资源为对终端设备的调度带宽进行划分得到,所述调度带宽为用于进行数据传输的PRB所组成的带宽。
在一种可能的实现方式中,当PRG的大小为2或4时,所述以PRG为频域资源分配单元确定所述M份频域资源,包括:确定所述M份频域资源中的第m份频域资源,所述第m份频域资源包括终端设备的调度带宽中包括的N个频域资源分配单元中的第Mi+m个频域资源分配单元,所述调度带宽为用于进行数据传输的PRB所组成的带宽,N为正整数,m为大于0小于等于M的整数,
Figure PCTCN2020109385-appb-000010
在一种可能的实现方式中,当PRG的大小为全带宽时,所述M份频域资源中的第m份频域资源包括所述预定带宽中第
Figure PCTCN2020109385-appb-000011
个PRB至第
Figure PCTCN2020109385-appb-000012
个PRB,所述M份频域资源中的第M份频域资源包括所述预定带宽中的剩余的PRB,m为大于0小于M的整数。
在一种可能的实现方式中,M=2,所述M份频域资源中的第一份频域资源包括所述预定带宽中的前
Figure PCTCN2020109385-appb-000013
个PRB,所述M份频域资源中的第二份频域资源包括所述预定带宽中剩余的
Figure PCTCN2020109385-appb-000014
个PRB。
在一种可能的实现方式中,所述预定带宽为终端设备的调度带宽,所述调度带宽为用于进行数据传输的PRB所组成的带宽。
在一种可能的实现方式中,当PRG的大小为2或4时,以PRG为频域资源分配单元,根据预定频域资源分配规则确定所述M份频域资源;当PRG的大小为全带宽时,根据所述预定带宽中包含的W个PRB,以预定频域资源分配规则确定所述M份频域资源。
第六方面,提供了一种频域资源分配装置,包括:处理单元和通信单元;所述处理单元,用于确定M份频域资源,其中,M为大于1的整数,所述M份频域资源中的任意两份频域资源不重叠,所述M份频域资源各自关联一个QCL信息,所述M份频域资源中的任意两份频域资源关联的QCL信息不同;所述通信单元,用于在所述M份频域资源中的一份或多份频域资源发送或接收数据;其中,当PRG的大小为2或4时,所述处理单元,具体用于以PRG为频域资源分配单元确定所述M份频域资源;当PRG的大小为全带宽时,所述处理单元,具体用于以
Figure PCTCN2020109385-appb-000015
个PRB为频域资源分配单元确定所述M份频域资源,W为预定带宽中包含的PRB的个数,W为大于1的整数。
在一种可能的实现方式中,当PRG的大小为2或4时,M=2,所述M份频域资源中的第一份频域资源包括索引为偶数的PRG,所述M份频域资源中的第二份频域资源包括索引为奇数的PRG。
在一种可能的实现方式中,当PRG的大小为2或4时,所述M份频域资源为对终端 设备的调度带宽进行划分得到,所述调度带宽为用于进行数据传输的PRB所组成的带宽。
在一种可能的实现方式中,当PRG的大小为2或4时,所述处理单元,具体用于:确定所述M份频域资源中的第m份频域资源,所述第m份频域资源包括终端设备的调度带宽中包括的N个频域资源分配单元中的第Mi+m个频域资源分配单元,所述调度带宽为用于进行数据传输的PRB所组成的带宽,N为正整数,m为大于0小于等于M的整数,
Figure PCTCN2020109385-appb-000016
在一种可能的实现方式中,当PRG的大小为全带宽时,所述M份频域资源中的第m份频域资源包括所述预定带宽中第
Figure PCTCN2020109385-appb-000017
个PRB至第
Figure PCTCN2020109385-appb-000018
个PRB,所述M份频域资源中的第M份频域资源包括所述预定带宽中的剩余的PRB,m为大于0小于M的整数。
在一种可能的实现方式中,M=2,所述M份频域资源中的第一份频域资源包括所述预定带宽中的前
Figure PCTCN2020109385-appb-000019
个PRB,所述M份频域资源中的第二份频域资源包括所述预定带宽中剩余的
Figure PCTCN2020109385-appb-000020
个PRB。
在一种可能的实现方式中,所述预定带宽为终端设备的调度带宽,所述调度带宽为用于进行数据传输的PRB所组成的带宽。
在一种可能的实现方式中,当PRG的大小为2或4时,以PRG为频域资源分配单元,根据预定频域资源分配规则确定所述M份频域资源;当PRG的大小为全带宽时,根据所述预定带宽中包含的W个PRB,以预定频域资源分配规则确定所述M份频域资源。
在一种可能的实现方式中,所述频域资源分配装置为终端设备,所述通信单元,具体用于在所述M份频域资源中的一份或多份频域资源接收数据。
在一种可能的实现方式中,所述频域资源分配装置为网络设备,所述通信单元,具体用于在所述M份频域资源中的一份或多份频域资源发送数据。
第七方面,提供了一种频域资源分配装置,包括:处理器。处理器与存储器连接,存储器用于存储计算机执行指令,处理器执行存储器存储的计算机执行指令,从而实现第一方面提供的任意一种方法。其中,存储器和处理器可以集成在一起,也可以为独立的器件。若为后者,存储器可以位于频域资源分配装置内,也可以位于频域资源分配装置外。
在一种可能的实现方式中,处理器包括逻辑电路,还包括输入接口。其中,输入接口用于执行相应方法中的接收的动作,例如,在M份频域资源中的一份或多份频域资源接收数据。
在一种可能的实现方式中,频域资源分配装置还包括通信接口和通信总线,处理器、存储器和通信接口通过通信总线连接。通信接口用于执行相应方法中的收发的动作。通信接口也可以称为收发器。可选的,通信接口至少包括接收器,该情况下,接收器用于执行相应方法中的接收的动作,例如,在M份频域资源中的一份或多份频域资源接收数据。
在一种可能的实现方式中,频域资源分配装置为终端设备或终端设备中的芯片。
第八方面,提供了一种频域资源分配装置,包括:处理器。处理器与存储器连接,存储器用于存储计算机执行指令,处理器执行存储器存储的计算机执行指令,从而实现第二方面提供的任意一种方法。其中,存储器和处理器可以集成在一起,也可以为独立的器件。若为后者,存储器可以位于频域资源分配装置内,也可以位于频域资源分配装置外。
在一种可能的实现方式中,处理器包括逻辑电路,还包括输出接口。其中,输出接口用于执行相应方法中的发送的动作,例如,向其他设备发送分配的频域资源。
在一种可能的实现方式中,频域资源分配装置还包括通信接口和通信总线,处理器、存储器和通信接口通过通信总线连接。通信接口用于执行相应方法中的收发的动作。通信接口也可以称为收发器。可选的,通信接口至少包括发送器,该情况下,发送器用于执行相应方法中的发送的动作,例如,向其他设备发送分配的频域资源。
在一种可能的实现方式中,频域资源分配装置为终端设备或终端设备中的芯片。
第九方面,提供了一种频域资源分配装置,包括:处理器。处理器与存储器连接,存储器用于存储计算机执行指令,处理器执行存储器存储的计算机执行指令,从而实现第三方面提供的任意一种方法。其中,存储器和处理器可以集成在一起,也可以为独立的器件。若为后者,存储器可以位于频域资源分配装置内,也可以位于频域资源分配装置外。
在一种可能的实现方式中,处理器包括逻辑电路,还包括输入接口和输出接口。其中,输入接口用于执行相应方法中的接收的动作,例如,在M份频域资源中的一份或多份频域资源接收数据,输出接口用于执行相应方法中的发送的动作。
在一种可能的实现方式中,频域资源分配装置还包括通信接口和通信总线,处理器、存储器和通信接口通过通信总线连接。通信接口用于执行相应方法中的收发的动作。通信接口也可以称为收发器。可选的,通信接口包括接收器和发送器,该情况下,接收器用于执行相应方法中的接收的动作,例如,在M份频域资源中的一份或多份频域资源接收数据,发送器用于执行相应方法中的发送的动作。
在一种可能的实现方式中,频域资源分配装置为终端设备或终端设备中的芯片。在另一种可能的实现方式中,频域资源分配装置为网络设备或网络设备中的芯片。
第十方面,提供了一种频域资源分配装置,包括:处理器和通信接口;所述通信接口,用于输入和/或输出信息;所述处理器用于执行计算机执行指令,以使所述装置实现第一方面提供的任意一种方法。
第十一方面,提供了一种频域资源分配装置,包括:处理器和通信接口;所述通信接口,用于输入和/或输出信息;所述处理器用于执行计算机执行指令,以使所述装置实现第二方面提供的任意一种方法。
第十二方面,提供了一种频域资源分配装置,包括:处理器和通信接口;所述通信接口,用于输入和/或输出信息;所述处理器用于执行计算机执行指令,以使所述装置实现第三方面提供的任意一种方法。
第十三方面,提供了一种通信系统,包括:第三方面提供的频域资源分配装置和第四方面提供的频域资源分配装置,或者,第七方面提供的频域资源分配装置和第八方面提供的频域资源分配装置,或者,第十方面提供的频域资源分配装置和第十一方面提供的频域资源分配装置。
第十四方面,提供了一种计算机可读存储介质,包括指令,当该指令在计算机上运行时,使得计算机执行第一方面或第二方面或第三方面提供的任意一种方法。
第十五方面,提供了一种包含指令的计算机程序产品,当该指令在计算机上运行时,使得计算机执行第一方面或第二方面或第三方面提供的任意一种方法。
第三方面至第十五方面中的任一种实现方式所带来的技术效果可参见第一方面或第二方面中对应实现方式所带来的技术效果,此处不再赘述。
其中,需要说明的是,上述各个方面中的任意一个方面的各种可能的实现方式,在方 案不矛盾的前提下,均可以进行组合。
附图说明
图1为一种频域资源分配示意图;
图2为本申请实施例提供的网络架构示意图;
图3为本申请实施例提供的多点协作传输的场景示意图;
图4为本申请实施例提供的TRP与终端设备通信的示意图;
图5为本申请实施例提供的VRB与PRB进行频域交织的示意图;
图6为本申请实施例提供的VRB与PRB不进行频域交织的示意图;
图7为本申请实施例提供的一种RBG在BWP中的分布示意图;
图8为本申请实施例提供的RIV指示的频域资源的示意图;
图9和图10分别为本申请实施例提供的一种频域资源分配方法的流程图;
图11为本申请实施例提供的一种频域资源分配示意图;
图11A和图12分别为本申请实施例提供的一种频域资源分配单元在BWP中的分布示意图;
图13至图20分别为本申请实施例提供的一种频域资源分配示意图;
图21为本申请实施例提供的一种频域资源分配类型为Type0时的调度带宽示意图;
图22和图23分别为本申请实施例提供的一种频域资源分配类型为Type0时频域资源分配单元在调度带宽中的分布示意图;
图24为本申请实施例提供的一种频域资源分配类型为Type1时的一种调度带宽示意图;
图25和图26分别为本申请实施例提供的一种频域资源分配类型为Type1时的一种频域资源分配单元在调度带宽中的分布示意图;
图27为本申请实施例提供的一种频域资源分配类型为Type1时的另一种调度带宽示意图;
图28和图29分别为本申请实施例提供的一种频域资源分配类型为Type1时的另一种频域资源分配单元在调度带宽中的分布示意图;
图30和图31分别为本申请实施例提供的一种频域资源分配示意图;
图32为本申请实施例提供的一种终端设备的组成示意图;
图33和图34分别为本申请实施例提供的一种第一网络设备的组成示意图;
图35和图36分别为本申请实施例提供的一种通信装置的硬件结构示意图;
图37为本申请实施例提供的一种终端设备的硬件结构示意图;
图38为本申请实施例提供的一种第一网络设备的硬件结构示意图。
具体实施方式
在本申请的描述中,除非另有说明,“/”表示“或”的意思,例如,A/B可以表示A或B。本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。此外,“至少一个(份)”是指一个(份)或多个(份),“多个(份)”是指两个(份)或两个(份)以上。“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
需要说明的是,本申请中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
本申请提供的技术方案所适用的通信系统中可以包括多个网络设备和至少一个终端设备,终端设备可以和多个网络设备通信。参见图2,终端设备可以处在多个网络设备(例如,网络设备1和网络设备2)的协作传输状态下,多个网络设备均可以向终端设备发送信令和下行数据,反之,终端设备也可以向多个网络设备发送上行数据。网络设备之间可以进行理想回传(ideal backhaul),即网络设备之间基本没有交互时延,因此,多个网络设备与终端设备的协作传输可以通过同一个DCI调度,例如,由其中一个网络设备向终端设备发送调度多个网络设备的数据的DCI。
其中,本申请实施例中的通信系统包括但不限于长期演进(long term evolution,LTE)系统、第五代(5th-generation,5G)系统、NR系统,以及未来演进系统或者多种通信融合系统。其中,5G系统可以为非独立组网(non-standalone,NSA)的5G系统或独立组网(standalone,SA)的5G系统。
本申请实施例中的网络设备为网络侧的一种用于发送信号,或者,接收信号,或者,发送信号和接收信号的实体。网络设备可以为部署在无线接入网(radio access network,RAN)中为终端设备提供无线通信功能的装置,例如可以为TRP、基站、各种形式的控制节点(例如,网络控制器、无线控制器(例如,云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器))等。具体的,网络设备可以为各种形式的宏基站,微基站(也称为小站),中继站,接入点(access point,AP)等,也可以为基站的天线面板。所述控制节点可以连接多个基站,并为所述多个基站覆盖下的多个终端设备配置资源。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同。例如,LTE系统中可以称为演进型基站(evolved NodeB,eNB或eNodeB),5G系统或NR系统中可以称为下一代基站节点(next generation node base station,gNB),本申请对基站的具体名称不作限定。网络设备还可以是未来演进的公共陆地移动网络(public land mobile network,PLMN)中的网络设备等。
在一些部署中,网络设备可以包括集中式单元(centralized unit,CU)和分布式单元(Distributed Unit,DU)。网络设备还可以包括有源天线单元(active antenna unit,AAU)。CU实现网络设备的部分功能,DU实现网络设备的部分功能。比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC)层,分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令或PDCP层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,CU可以划分为RAN中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,在此不 做限制。
本申请实施例中的终端设备是用户侧的一种用于接收信号,或者,发送信号,或者,接收信号和发送信号的实体。终端设备用于向用户提供语音服务和数据连通性服务中的一种或多种。终端设备还可以称为用户设备(user equipment,UE)、终端、接入终端、用户单元、用户站、移动站、远方站、远程终端、移动设备、用户终端、无线通信设备、用户代理或用户装置。终端设备可以是移动站(mobile station,MS)、用户单元(subscriber unit)、无人机、物联网(internet of things,IoT)设备、无线局域网(wireless local area networks,WLAN)中的站点(station,ST)、蜂窝电话(cellular phone)、智能电话(smart phone)、无绳电话、无线数据卡、平板型电脑、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)设备、膝上型电脑(laptop computer)、机器类型通信(machine type communication,MTC)终端、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备(也可以称为穿戴式智能设备)。终端设备还可以为下一代通信系统中的终端设备,例如,5G系统中的终端设备或者未来演进的PLMN中的终端设备,NR系统中的终端设备等。
本申请实施例提供的技术方案可以应用于多种通信场景。例如,机器对机器(machine to machine,M2M)、宏微通信、增强型移动宽带(enhanced mobile broadband,eMBB)、超高可靠超低时延通信(ultra-reliable&low latency communication,URLLC)、车联网以及海量物联网通信(massive machine type communication,mMTC)等场景。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定。本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
为了使得本申请实施例更加的清楚,以下对与本申请实施例相关的概念和部分内容作简单介绍。
1、准共址(quasi colocation,QCL)关系
准共址也可以称为准同位。具有QCL关系的天线端口对应的信号中具有相同的参数,或者,一个天线端口的参数可用于确定与该天线端口具有QCL关系的另一个天线端口的参数,或者,两个天线端口具有相同的参数,或者,两个天线端口间的参数差小于某阈值。其中,所述参数可以包括以下一项或多项:时延扩展(delay spread),多普勒扩展(Doppler spread),多普勒频移(Doppler shift),平均时延(average delay),平均增益,空间接收参数(spatial Rx parameters)。其中,空间接收参数可以包括以下的一项或多项:到达角(angle of arrival,AOA)、平均AOA、AOA扩展、离开角(angle of departure,AOD)、平均AOD、AOD扩展、接收天线空间相关性参数、发送天线空间相关性参数、发射波束、接收波束以及资源标识。
其中,上述角度可以为不同维度的分解值,或不同维度分解值的组合。天线端口为具有不同天线端口编号的天线端口,和/或,具有相同天线端口号在不同时间和/或频率和/或码域资源内进行信息发送或接收的天线端口,和/或,具有不同天线端口号在不同时间和/或频率和/或码域资源内进行信息发送或接收的天线端口。资源标识可以包括:信道状态信 息参考信号(channel state information reference signal,CSI-RS)资源标识,或探测参考信号(sounding reference signal,SRS)资源标识,或同步信号广播信道块(synchronous signal/physical broadcast channel block,可以简称为SS/PBCH block,也可以简称为SSB)资源标识,或物理随机接入信道(physical random access channel,PRACH)上传输的前导序列的资源标识,或解调参考信号(demodulation reference signal,DMRS)的资源标识,用于指示资源上的波束。
在NR协议中,QCL关系可以基于不同的参数分为以下四种类型:
类型A(type A):多普勒频移、多普勒扩展、平均时延、时延扩展;
类型B(type B):多普勒频移、多普勒扩展;
类型C(type C):多普勒频移、平均时延;
类型D(type D):空间接收参数。
其中类型为D的QCL用于指示不同的波束,即,基于空间接收参数定义的QCL。波束具有相同的空间特征,可以采用同一个接收波束来接收。波束在协议中具体地可以通过各种信号的标识来表示,例如CSI-RS的资源索引,SSB的索引,SRS的资源索引,跟踪参考信号(tracking reference signal,TRS)的资源索引。
2、第一传输方案、第二传输方案
在频分复用(frequency division multiplexing,FDM)的传输方式下,包括两种传输方案。为区分,分别记为第一传输方案和第二传输方案。以下以两个网络设备(例如两个TRP)分别向终端设备发送第一数据和第二数据为例,对第一传输方案和第二传输方案作简单介绍。
第一传输方案:
第一传输方案是指向终端设备发送同一份数据的不同部分的传输方案。此时,第一数据和第二数据分别为同一份数据的一部分,例如,第一数据为1000比特数据的前400个比特,第二数据为该1000比特数据的后600个比特。其中,一份数据可以认为是一个码字,一个码字可以认为由一个传输块(transport block,TB)生成。也就是说,第一数据和第二数据各自携带了一个TB的部分信息。可以理解,该第一数据和第二数据组成一个码字,且对应一个冗余版本(redundancy version,RV)。
在第一传输方案下,假设一个400bit的TB经过信道编码之后得到1000bit的数据,1000bit的数据需要分给两个TRP进行传输,为了提高传输效率,可以根据两个TRP当前的资源负载将1000bit的数据分给两个TRP,例如,可以给负载高的TRP分配400bit,给负载低的TRP分配600bit,为了适应两个TRP当前的负载,第一传输方案需要对应更加灵活的频域资源分配方式。
第一传输方案也可以称为FDM传输方案A或FDM方案2a。
第二传输方案:
第二传输方案是指向终端设备发送相同的多份数据的传输方案。此时,第一数据和第二数据为相同的数据。其中,相同的数据表示它们携带的TB信息是相同的。例如,第一数据对应一个TB,第二数据也对应一个TB,这两个TB为相同的TB。
这意味着第一数据和第二数据对应的码字可以由同一个TB生成,也可以分别由相同的两个TB生成,它们各自都携带了这个TB的全部信息。可以理解,第一数据和第二数据各 自对应一个码字,且各自对应一个RV,第一数据和第二数据各自对应的RV可以相同,也可以不同。
在第二传输方案下,同一个400bit的TB经过信道编码可以分别得到两个不同RV版本的1000bit的数据,映射到不同TRP所对应的时频资源上,为了确保调制与编码策略(modulation and coding scheme,MCS)相同或者接近,不同TRP的资源也要相同或接近,因此第二传输方案需要对应更加均匀的频域资源分配方式。
第二传输方案也可以称为FDM传输方案B或FDM方案2b。
在本文的描述中,关于TB、码字和数据的内容在此处做统一解释。网络设备首先会从高层收到一个TB,然后这个TB会经历一系列物理层流程,包括循环冗余校验(cyclic redundancy check,CRC)添加,码块(code bloc,CB)切割,基于CB的CRC添加,然后以CB为编码单位送进编码模块,并且进行速率匹配过程,在速率匹配过程中可以添加RV,从编码模块出来之后的CB可以再拼接成一串比特流,该比特流便是传统意义上的码字。码字经过调制便成了调制符号,将调制符号映射到物理信道的时频资源上,简称为数据。因此,一般意义上,TB和码字有一一对应关系,且一个码字只能添加一个RV。在本申请实施例中,当区分两个TRP发送的数据时,用第一数据、第二数据来描述,在这种语境下,数据也可以替换为TB或者码字。
3、多点传输技术
多点传输技术即多个TRP进行数据传输的技术。在多点传输技术中,多个TRP可以通过协作为用户发送下行信号,和/或,通过协作接收用户的上行信号。
多点传输技术主要分为联合传输(Joint transmission,JT)、动态点选择(dynamic point selection,DPS)、动态小区选择(dynamic cell selection,DCS)、协调波束成型(coordinated beam forming,CB)、协调调度(coordinated scheduling,CS)等。
本申请涉及到的多点传输主要是联合传输(或称为多点协作传输)场景,通过多个TRP的联合传输,能够提升处于小区边缘的终端设备的传输速率。示例性的,在非联合传输场景,参见图3中的(a),当终端设备处于小区的边缘,终端设备的通信会受到服务小区的邻区发送的信号的干扰。图3中的(a)和图3中的(b)中,实线表示对终端设备产生的有用数据,虚线表示对终端设备产生的干扰。在联合传输场景,参见图3中的(b),多个TRP联合给一个终端设备发送数据,终端设备收到多份有用数据,因此,服务小区的邻区发送的信号不仅不会对终端设备产生干扰,反而可以提升处于小区边缘的终端设备的传输速率。
4、多点协作的数据传输
5G及未来演进通信技术中,URLLC是重要业务类型之一。在URLLC业务中,数据吞吐量往往不再是主要的衡量指标,相比之下,低误码率和低时延成为最关键的指标。在多点传输技术中,多个TRP的信道之间存在信道多样性,采用多个TRP发送数据的方式可以提升通信链路的可靠性,因此多点传输技术可用于URLLC业务的可靠性增强。
具体的,多个TRP可以以频分的方式通过不同的信道向终端设备发送数据。示例性的,参见图4,终端设备处于TRP1和TRP2的联合传输场景下,TRP1和TRP2位于终端设备的不同方向,TRP1和TRP2可以采用上述第一传输方案或第二传输方案分别在频域资源1和频域资源2发送数据给同一个终端设备。其中,采用第一传输方案时,可以享受较低码率带来的编码增益,采用第二传输方案时,可以在终端设备做软合并带来额外的编码增益。此外, 两个TRP带来的空间分集增益可以使得两个TRP的信道全部处于信道深衰的可能性很低,从而提高数据传输可靠性。
5、系统带宽
在无线通信系统中,系统带宽又可以称为载波频率资源,或者载波单元(component carrier,CC)。系统带宽可以是一段连续的频域资源。网络设备可以从系统带宽中,为终端设备分配一段频域资源,以便于网络设备和终端设备之间可以利用被分配的频域资源进行通信。
6、部分带宽(bandwidth part,BWP)
BWP也可以称为载波带宽部分(carrier bandwidth part)。在频域,一个BWP中包括连续正整数个资源单元,比如包括连续正整数个子载波、资源块(resource block,RB)、或者资源块组(RB group,RBG)。BWP可以是下行BWP或者上行BWP。其中,上行BWP用于终端设备向网络设备发送信号,下行BWP用于网络设备向终端设备发送信号。在本申请实施例中,正整数个可以是1个、2个、3个或者更多个,本申请实施例对此不做限制。
终端设备可以配置有多个BWP。针对每个BWP,可以通过预配置或者网络设备向终端设备发送信令的方式,独立配置该BWP的参数集(numerology)。不同BWP的numerology可能相同,也可能不同。numerology可以通过但不限于以下参数信息中的一种或多种定义:子载波间隔,循环前缀(cyclic prefix,CP)、时间单位的信息、BWP的带宽等。例如,numerology可以由子载波间隔和CP来定义。
7、RB
RB是最基本的资源单位之一,在频域上,一个RB可以包括正整数个子载波,例如6个或12个。RB的定义还可以扩展到时域,例如:一个RB在时域上包括正整数个时域符号。示例性的,一个RB在频域上包括12个子载波,在时域上包括7或14个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号。
在进行频域资源分配的时候,RB还会进一步区分为物理资源块(physical resource block,PRB)或虚拟资源块(virtual resource block,VRB)。通过DCI中的FD-RA指示域分配频域资源的时候,FD-RA指示域所指示的频域资源为VRB,数据也是首先映射到VRB上。而后一个步骤,是从VRB到PRB的映射,在这个步骤中,如果没有频域交织,则VRB与PRB的编号一一对应,例如编号为n的VRB上的数据,会映射到编号为n的PRB上,示例性的,可参见图5;如果经历频域交织,则VRB和PRB的编号在当前BWP带宽内可以错序映射,例如,编号为n的VRB上的数据,可能会映射到编号为n+K的PRB上,示例性的,可参见图6。这里n为大于等零的整数,K为整数。具体交织规则可参考现有技术,在此不再赘述。
本申请实施例若无特别说明,RB既可以指VRB,也可以指PRB。若与其他信息一起描述时,可根据具体场景判断为VRB还是PRB。例如,描述RBG时,如无特殊说明,默认RBG由连续的多个VRB组成。再例如,描述PRG时,如无特殊说明,默认PRG由连续的多个PRB组成。
8、资源块组(resource block groups,RBG)
RBG包括一组连续的VRB。RBG中包含的VRB的个数即RBG的大小(RBG size)。例如,RBG size为2,则一个RBG包括连续的2个VRB。目前,NR协议中RBG size可以为2、4、8、16等。
对于终端设备来说,RBG size可根据RBG配置以及BWP带宽来确定。目前,NR标准预定义了两种RBG配置。在RBG配置1中,RBG size的候选值为2、4、8、16;在RBG配置2中,RBG size的候选值为4、8、16。网络设备可通过高层信令参数rbg-Size来向终端设备指示每个BWP中的RBG配置。
示例性的,RBG size与RBG配置、BWP带宽的关系可参考表1,BWP带宽即BWP所包含的RB的个数。
表1
BWP带宽 RBG配置1 RBG配置2
1-36 2 4
37-72 4 8
73-144 8 16
145-275 16 16
9、BWP中RBG的个数以及大小
RBG的划分是按照系统带宽进行划分的,即,第一个RBG由系统带宽起始的P个RB组成,依次类推,P为RBG size。具体如图7所示,当P=2时,从RB0开始,每2个RB组成一个RBG,其中RB0为系统带宽中编号最小的RB。
BWP是由起始RB(即第一个RB)和RB长度定义的一段连续的频域资源。BWP中的起始RB和结束RB均可以为系统带宽中的任何RB。因此,起始RB或结束RB所属的RBG中的RB可能一部分位于BWP内,另一部分位于BWP外。例如图7所示,BWP的起始RB为RB3,RB2和RB3本来是属于同一个RBG的,但是RB3在BWP内,RB2在BWP外。BWP的结束RB为RB12,RB12和RB13本来是属于同一个RBG的,但是RB3在BWP内,RB13在BWP外。
因此,BWP内RBG的个数和大小的计算方法如下所示:
一个BWP包含的RBG的总数为:
Figure PCTCN2020109385-appb-000021
其中,
Figure PCTCN2020109385-appb-000022
为BWP所包含的RB的数目,
Figure PCTCN2020109385-appb-000023
为BWP中的起始RB在系统带宽上的编号,mod为取余函数,P为RBG size。
其中,第1个RBG(编号为0)的大小为
Figure PCTCN2020109385-appb-000024
针对最后一个RBG(编号为N RBG-1),若
Figure PCTCN2020109385-appb-000025
最后一个RBG的大小为:
Figure PCTCN2020109385-appb-000026
Figure PCTCN2020109385-appb-000027
Figure PCTCN2020109385-appb-000028
最后一个RBG的大小为:
Figure PCTCN2020109385-appb-000029
其余的RBG的大小均为P。
BWP中包含的N RBG个RBG的编号从0到N RBG-1,也可以从1到N RBG或采用其他方式编号,本文中以0到N RBG-1为例进行说明。
示例性的,参见图7,BWP中起始RB在系统带宽中的编号为3,RBG的大小为2,BWP中包含10个RB,则BWP中包含的RBG个数:
Figure PCTCN2020109385-appb-000030
Figure PCTCN2020109385-appb-000031
其中,第一个RBG(即RBG0)的大小为:
Figure PCTCN2020109385-appb-000032
Figure PCTCN2020109385-appb-000033
最后一个RBG(即RBG5)的大小为:
Figure PCTCN2020109385-appb-000034
Figure PCTCN2020109385-appb-000035
其余RBG的大小均为2。
10、预编码资源组(precoding resource group,PRG)
一个PRG包括多个连续的PRB,每个PRG中的PRB上的数据采用相同的发送预编码矩阵进行预编码。PRG中包含的PRB的个数可以称为PRG的大小(PRG size)。目前,NR协 议中PRG size可以为2、4或全带宽(wideband)。
此外,终端设备可以假设网络设备采用相同的发送预编码矩阵发送同一个PRG中的PRB上的数据。
PRG的划分同样是按照系统带宽划分的,因此,BWP内PRG的个数和各个PRG的大小的计算方法与BWP内RBG的个数和各个RBG的大小的计算方法类似,只需要将公式中的P替换为PRG size即可,在此不再赘述。
11、交织资源单元
交织资源单元是指进行频域交织的资源单元,即RB bundles,具体可以为VRB bundles或PRB bundles。一个交织资源单元由多个连续的RB组成。一个交织资源单元所包含的RB的个数称为交织资源单元的大小(即bundle size)。例如,bundle size可选取值为2或4。
当VRB通过频域交织映射到PRB时,以交织资源单元为单位进行映射,即一个交织资源单元所包含的连续的VRB,映射到PRB时,也保持连续的状态。
交织资源单元的划分同样是按照系统带宽划分的,因此,BWP内交织资源单元的个数和各个交织资源单元的大小的计算方法与BWP内RBG的个数和各个RBG的大小的计算方法类似,只需要将公式中的P替换为Bundle size即可,在此不再赘述。
12、测量带宽
在进行数据传输之前,网络设备会向终端设备发送CSI-RS,终端设备根据接收到的CSI-RS进行信道测量并向网络设备反馈信道状态信息(channel state information,CSI),CSI可以包括预编码矩阵(precoding matrix indicator,PMI),信道质量指示(channel quality indicator,CQI)、秩指示(rank indication,RI)等。在进行信道测量之前,网络设备给终端设备配置CSI-RS资源,并配置上报格式和测量带宽。其中,配置的测量带宽可以是全带(即整个BWP),也可以是子带(subband)。当为全带时,终端设备在整个测量带宽(即BWP)进行信道测量后上报一份CSI。当为测量子带时,意味着整个测量带宽被分为多个测量子带,针对每个测量子带可以上报一份CSI。其中,测量子带的大小和BWP带宽的关系可参考表2。其中,测量子带的大小即测量子带包含的RB的个数。
表2
BWP带宽 测量子带的大小
<24
24-72 4,8
73-144 8,16
145-275 16,32
信道测量的测量子带的划分同样是按照系统带宽划分的,因此,BWP内测量子带的个数和各个测量子带的大小的计算方法与BWP内RBG的个数和各个RBG的大小的计算方法类似,只需要将公式中的P替换为测量子带大小即可,在此不再赘述。
13、现有的频域资源分配类型
现有的频域资源分配类型有两种:类型0(Type0)和类型1(Type1)。
频域资源分配Type0中,DCI中的FD-RA指示域由一个位图(bitmap)组成,bitmap中的1个bit用于向终端设备指示一个RBG是否被分配用于进行数据传输。Bitmap的长度等于BWP范围内RBG的数量(记为N RBG),以此达到以RBG为颗粒度的传输带宽的灵活指示。 基于图7所示的示例,Bitmap中可以包括6个bit,6个bit中一个bit用于指示6个RBG中的一个RBG是否被分配用于进行数据传输。另外,在某些情况下,系统可能会配置一个动态指示比特来指示FD-RA采用的是Type0还是Type1,此时这个指示比特作为最高有效位(most significant bit,MSB)放在整个bitmap的开头,即此时FD-RA指示域的长度为N RBG+1。
频域资源分配Type1中,FD-RA指示域由一个资源指示值(resource indication value,RIV)组成,RIV是根据一个确定的公式计算出来的一个值,公式的输入有起始VRB编号和连续VRB的长度,不同的起始VRB编号和连续VRB长度的组合计算获得的RIV值不同。在Type1类型中,RIV指示一段连续的VRB。示例性的,参见图8。RIV指示的资源可以为VRB5至VRB11。
为了支持多点传输,分配给终端设备的频域资源可能需要划分为多份,分别分配给不同的TRP调度。根据背景技术中提到的现有的频域资源分配的方式,一个PRG内的资源有可能分配给不同的TRP,由于处于协作中的TRP往往处在同一个终端设备的不同的方向,其各自到终端设备的信道是不同的,因此基于信道测量的结果,不同TRP一般会采用不同的发送预编码矩阵发送数据,然而终端设备则始终会默认同一个PRG内的PRB上的数据是通过相同的发送预编码矩阵进行预编码后发送的,因此终端设备也会采用同一个信道均衡矩阵解多流数据,此时,发送方和接收方的假设不一致,导致发送预编码矩阵和信道均衡矩阵之间不匹配,从而会导致信号接收质量下降。
为了解决该问题,本申请实施例提供了一种频域资源分配方法。
针对终端设备,参见图9,该方法包括:
901、终端设备根据预定频域资源分配规则确定M份频域资源,M为大于1的整数。
步骤901在具体实现时,终端设备可以根据预定频域资源分配规则和预定带宽确定M份频域资源。关于频域资源分配的具体描述参见下文。
902、终端设备在M份频域资源中的一份或多份频域资源接收数据。
针对网络设备(记为第一网络设备),参见图10,该频域资源分配方法包括:
1001、第一网络设备确定终端设备的上述预定带宽。
1002、第一网络设备根据上述预定频域资源分配规则和上述预定带宽分配上述M份频域资源。
在步骤1002之后,在不同的场景下,第一网络设备执行的动作可以不同,以下具体进行描述。
场景1、第一网络设备的M个TRP通过协作向终端设备发送数据。
在场景1下,示例性的,第一网络设备可以为基站,TRP可以为基站的天线面板。
在场景1下,M个TRP与M份频域资源一一对应,在步骤1002之后,第一网络设备可以通过M个TRP分别对应的频域资源向终端设备发送数据。第一网络设备可以通过M个TRP采用第一传输模式向终端设备发送数据,也可以采用第二传输模式向终端设备发送数据。
场景2、不包括第一网络设备在内的M个网络设备通过协作向终端设备发送数据。
在场景2下,第一网络设备可以具有集中调度功能。第一网络设备和M个网络设备可以均为基站,也可以均为TRP。
在场景2下,M个网络设备与M份频域资源一一对应,在步骤1002之后,第一网络 设备向M个网络设备发送对应的频域资源的信息,M个网络设备在对应的频域资源上向终端设备发送数据。M个网络设备可以采用第一传输模式向终端设备发送数据,也可以采用第二传输模式向终端设备发送数据。
场景3、包括第一网络设备在内的M个网络设备通过协作向终端设备发送数据。
在场景3下,第一网络设备可以为M个网络设备中的具有集中调度功能的网络设备。M个网络设备可以均为基站,也可以均为TRP。
在场景3下,M个网络设备与M份频域资源一一对应,在步骤1002之后,第一网络设备向M个网络设备中的除第一网络设备之外的M-1个网络设备发送对应的频域资源的信息,M个网络设备在对应的频域资源上向终端设备发送数据。M个网络设备可以采用第一传输模式向终端设备发送数据,也可以采用第二传输模式向终端设备发送数据。
以下对上述频域资源分配的具体过程作详细阐述。
上述频域资源分配方法中,终端设备根据预定频域资源分配规则和预定带宽可以确定M份频域资源。相应的,第一网络设备根据预定频域资源分配规则和预定带宽可以分配M份频域资源。M份频域资源中的任意两份频域资源不重叠,M份频域资源各自关联一个QCL信息,M份频域资源中的任意两份频域资源关联的QCL信息不同。例如,图11中的(a)中的2份频域资源可以各自对应一个QCL信息、且2份频域资源对应的QCL信息不同。图11中的(b)中,3份频域资源可以各自对应一个QCL信息、且3份频域资源对应的QCL信息均不同。M份频域资源中的不同份的频域资源中包含的RB的个数可以相同也可以不同。例如,图11中的(b)中,第1份频域资源和第2份频域资源包含的RB的个数相同,第1份频域资源和第3份频域资源包含的RB的个数不同。
预定频域资源分配规则可以为预设的或通过信令配置给终端设备的或协议规定的,本申请对终端设备获取预定频域资源分配规则的方法不作限定。其中,频域资源分配规则可以为交替分配规则,即从预定带宽中的起始RB开始,按照RB编号升序的方向,以频域资源分配单元为单位依次分配给第1份频域资源至第M份频域资源,若分配至第M份频域资源之后,还有剩余的频域资源分配单元,则再依次分配给第1份频域资源至第M份频域资源,以此类推。例如,参见图11中的(a),示例性的从RB0开始,以连续的2个RB为单位进行频域资源分配,则RB0和RB1分配给第1份频域资源,RB2和RB3分配给第2份频域资源,RB4和RB5再分配给第1份频域资源,RB6和RB7再分配给第2份频域资源,依次类推,则一份频域资源包括的RB不全是连续的,即有些RB之间是连续的,有些RB之间是不连续的。再例如,参见图11中的(b),示例性的从RB0开始,以连续的6个RB进行频域资源分配,其中,RB0至RB5分配给第1份频域资源,RB6至RB11分配给第2份频域资源,RB12至RB15分配给第3份频域资源,此时,任一份频域资源包括的RB全是连续的。可以理解的是,图11中的(a)和图11中的(b)进行频域资源分配的方法是一样的,即交替地分配,导致频域资源分配结果不同的原因在于频域资源分配单元的粒度不同。其中,图11中的(a)中是以连续的2个RB为单位进行频域资源分配的,而图11中的(b)中是以连续的6个RB为单位进行分配的。如上所述的交替分配规则,也可以称为梳状分配规则,交错分配规则或交织分配规则,本申请实施例对分配规则的名称不做限定。
如前述在为多个TRP分配频域资源时,为了确保同一个PRG内的PRB不会被同时分 配给不同的TRP,本申请提出频域资源分配单元的最小粒度,该最小粒度为x个连续的RB(连续的VRB或连续的PRB),x的取值为PRG size。应理解,PRG size是一个可配值,因此频域资源单元的最小粒度也会随PRG size的变化而变化。
可选的,频域资源分配单元的粒度除了可以为该最小粒度之外,还可以为其他粒度,例如,下文中的RBG、交织资源单元等,具体可参见下文中的相关描述。但是,当频域资源分配单元的粒度为其他粒度时,其不能小于最小粒度,即不能小于PRG size。
应理解,当PRG size配置为wideband时,这里的wideband不再指向整个预定带宽,而是指向一份频域资源,即终端设备根据PRG size配置为wideband,可以假设在M份频域资源中的任一份频域资源上,TRP在该份频域资源上所采用的发送预编码矩阵相同。
在进行频域资源分配时,是在预定带宽中进行的,预定带宽可以为BWP或系统带宽或调度带宽。预定带宽不同时,频域资源分配的过程也有所不同,以下通过情况1(预定带宽为BWP)、情况2(预定带宽为系统带宽)和情况3(预定带宽为调度带宽)分别进行描述。
情况1、预定带宽为BWP
在情况1下,频域资源分配可以基于BWP内的所有频域资源,即频域资源分配是从BWP内的第一个频域资源分配单元开始,直到该BWP内的最后一个频域资源分配单元结束。
在情况1下,当PRG size未被配置为wideband时,x的值与PRG size相同。例如,PRG size配置为2时,x为2。PRG size配置为4时,x为4。此时,频域资源分配单元可以为RBG或PRG或交织资源单元或y(y为x的k倍,k为正整数)个连续的RB或信道测量的测量子带。与RBG类似的,频域资源分配单元的划分也是按照系统带宽进行划分的,因此,BWP中的频域资源分配单元的个数以及各个频域资源分配单元大小的计算方法与BWP中的RBG的个数以及各个RBG大小的计算方法类似。
具体的,若将频域资源分配单元大小记为Q,则一个BWP包含的频域资源分配单元的总数为:
Figure PCTCN2020109385-appb-000036
其中,
Figure PCTCN2020109385-appb-000037
为BWP所包含的RB的数目,
Figure PCTCN2020109385-appb-000038
为BWP中的起始RB在系统带宽上的编号,mod为取余函数。
其中,第1个频域资源分配单元(编号为0)的大小为:
Figure PCTCN2020109385-appb-000039
针对最后一个频域资源分配单元(编号为N-1),若
Figure PCTCN2020109385-appb-000040
最后一个频域资源分配单元的大小为:
Figure PCTCN2020109385-appb-000041
Figure PCTCN2020109385-appb-000042
最后一个频域资源分配单元的大小为Q。其余的频域资源分配单元的大小均为Q。
BWP中包含的N个频域资源分配单元的编号从0到N-1,也可以从1到N或采用其他方式编号,本文中以0到N-1为例进行说明。示例性的,参见图11A,BWP中起始RB在系统带宽中的编号为3,频域资源分配单元的大小为2,BWP中包含10个RB,则BWP中包含的频域资源分配单元个数:
Figure PCTCN2020109385-appb-000043
其中,第一个频域资源分配单元(即频域资源分配单元0)的大小为:
Figure PCTCN2020109385-appb-000044
Figure PCTCN2020109385-appb-000045
最后一个频域资源分配单元(即频域资源分配单元5)的大小为:
Figure PCTCN2020109385-appb-000046
其余频域资源分配单元的大小均为2。
在情况1下,当PRG size被配置为wideband时,x为
Figure PCTCN2020109385-appb-000047
W为终端设备的BWP中包含的RB的个数。此时,频域资源分配单元可以为x个连续的RB。也就是说,在RB为PRB的情况下,当PRG的大小为全带宽时,以
Figure PCTCN2020109385-appb-000048
个PRB为频域资源分配单元确定M份频域资源。
具体的,当PRG的大小为全带宽时,M份频域资源中的第m份频域资源包括BWP中第
Figure PCTCN2020109385-appb-000049
个PRB至第
Figure PCTCN2020109385-appb-000050
个PRB,M份频域资源中的第M份频域资源包括BWP中的剩余的PRB,m为大于0小于M的整数。其中,
Figure PCTCN2020109385-appb-000051
是指
Figure PCTCN2020109385-appb-000052
是指
Figure PCTCN2020109385-appb-000053
“*”表示“乘以”。
该情况下,频域资源分配单元的划分是按照BWP进行划分的,从BWP的起始RB开始,每x个连续的RB为一个频域资源分配单元。其中,由于W不一定是M的整数倍,因此,最后一个频域资源分配单元的大小可以是小于x的。示例性的,假设BWP中包括16个RB,M=3,则x=6,参见图12,BWP中可以包括3个频域资源分配单元,其中,频域资源分配单元0和频域资源分配单元1的大小均为6,频域资源分配单元2的大小为4。
在情况1下,频域资源分配方法可以为:终端设备确定M份频域资源中的第m份频域资源,第m份频域资源包括终端设备的BWP中包括的N个频域资源分配单元中的第Mi+m个频域资源分配单元。相应的,第一网络设备将终端设备的BWP中包括的N个频域资源分配单元中的第Mi+m个分配给M份频域资源中的第m份频域资源。其中,N为正整数,m为大于0小于等于M的整数,
Figure PCTCN2020109385-appb-000054
该种交替频域资源分配方法,可以使得多份频域资源尽量离散地分布在BWP上,从而获得更好的频域分集增益。其中,Mi是指M*i。
示例性的,参见图13中的(a)和图13中的(b)。BWP中包括5个频域资源分配单元。若M=2,则参见图13中的(a),5个频域资源分配单元中的频域资源分配单元0、频域资源分配单元2和频域资源分配单元4为第1份频域资源,频域资源分配单元1和频域资源分配单元3为第2份频域资源。若M=3,则参见图13中的(b),5个频域资源分配单元中的频域资源分配单元0和频域资源分配单元3为第1份频域资源,频域资源分配单元1和频域资源分配单元4为第2份频域资源,频域资源分配单元2为第3份频域资源。
在频域资源分配类型不同时,频域资源分配单元也有所不同,以下通过情况1.1(频域资源分配类型为Type0)、情况1.2(频域资源分配类型为Type1)对不同频域资源分配单元下频域资源分配的过程作示例性说明。
情况1.1、Type0
情况1.1又可以分为以下情况1.1.1和情况1.1.2。
情况1.1.1、PRG size未被配置为wideband。
此时,频域资源分配单元可以为以下4种。
(1)PRG
示例性的,假设PRG size=2,M=2,参见图14,PRG0至PRG5中的PRG0、PRG2和PRG4组成第1份频域资源,PRG1、PRG3和PRG5组成第2份频域资源。
(2)RBG
需要说明的是,PRG size总是小于等于RBG size,RBG size可以为PRG size的整数倍。
当频域资源分配单元为RBG、且RBG size=PRG size时,频域资源分配的过程与频域资源分配单元为PRG时是类似的,所得到的分配结果也是相同的,区别仅在于前者是作用在VRB域,而后者是作用在PRB域的。
当频域资源分配单元为RBG、且RBG size>PRG size时,示例性的,假设RBG size=4,PRG size=2,M=2,参见图15,RBG0至RBG3中的RBG0和RBG2组成第1份频域资源, RBG1和RBG3组成第2份频域资源。
若频域资源分配单元为RBG,上述频域资源分配的方法也可以认为是:终端设备确定的第m份频域资源包括bitmap中的第Mi+m个比特对应的频域资源。示例性的,当M=2时,终端设备可以将bitmap中的偶数位的比特对应的频域资源确定为一份频域资源,将bitmap中的奇数位的比特对应的频域资源确定为另一份频域资源。
(3)y个连续的RB
此处RB可以为VRB,也可以为PRB。
y可以等于PRG size或RBG size。当y=PRG size时,频域资源分配的过程与频域资源分配单元为PRG时是类似的,所得到的分配结果也是相同的。当y=RBG size时,频域资源分配的过程与频域资源分配单元为RBG时是类似的,所得到的分配结果也是相同的。
y也可以不等于PRG size或RBG size,例如,PRG size=2,RBG size=4时,y可以等于6或8等。假设y=6,M=2,参见图16,6个连续的RB为1个频域资源分配单元,则频域资源分配单元0至频域资源分配单元3中的频域资源分配单元0和频域资源分配单元2组成第1份频域资源,频域资源分配单元1和频域资源分配单元3组成第2份频域资源。
(4)信道测量的测量子带
该情况下,频域资源分配的过程可以作用在VRB域也可以作用在PRB域。
频域资源分配单元为信道测量的测量子带时,频域资源分配的过程与频域资源分配单元为RBG、PRG和y个连续的RB时的频域资源分配过程是类似的。例如,若一种场景为测量子带包括4个VRB时,将图15中的RBG替换为测量子带则可以得到该场景下的频域资源分配的示例。具体可参照上文进行理解,不再赘述。
其中,信道测量的测量子带可以根据最近一次的CSI上报所配置的测量子带确定。频域资源分配单元为测量子带时,可以确保任何一个经过信道测量反馈后的测量子带被完整的分配给一个网络设备(例如,TRP),从而简化终端设备的测量负担。例如,在信道测量之前便将不同的测量子带分配给不同的网络设备,则终端设备只需要针对某一个网络设备进行一次信道测量。否则,终端设备就可能需要针对所有的网络设备分别进行多次信道测量。
情况1.1.2、PRG size被配置为wideband。
情况1.1.2下,频域资源分配的过程可以作用在VRB域也可以作用在PRB域。
情况1.1.2下,频域资源分配单元为x个连续的RB、且频域资源分配单元的划分是按照BWP进行划分的。示例性的,基于图12所示的示例,假设M=2,则BWP中的3个频域资源分配单元中的频域资源分配单元0和频域资源分配单元2组成第1份频域资源,频域资源分配单元1组成第2份频域资源。
情况1.1.2下,一份频域资源中的全部的频域资源上的数据采用相同的发送预编码矩阵进行预编码。相应的,针对同一个PRG内的PRB上的数据,终端设备采用同一个信道均衡矩阵解多流数据。
情况1.2、Type1
情况1.2又可以分为以下情况1.2.1和情况1.2.2。
情况1.2.1、PRG size未被配置为wideband。
此时,频域资源分配单元可以为以下4种。
(1)PRG
当频域资源分配单元为PRG时,频域资源分配过程与情况1.1.1中频域资源分配单元为PRG时的情况是相同的,可参见上文,不再赘述。此时,VRB和PRB之间可以进行频域交织,也可以不进行频域交织。
(2)y个连续的RB
当频域资源分配单元为y个连续的RB时,频域资源分配过程与情况1.1.1中频域资源分配单元为y个连续的RB时的情况是相同的,可参见上文,不再赘述。此时,VRB和PRB之间可以进行频域交织,也可以不进行频域交织。
(3)信道测量的测量子带
当频域资源分配单元为信道测量的测量子带时,频域资源分配过程与情况1.1.1中频域资源分配单元为信道测量的测量子带时的情况是相同的,可参见上文,不再赘述。此时,VRB和PRB之间可以进行频域交织,也可以不进行频域交织。
(4)资源交织单元
该情况下,VRB和PRB之间进行频域交织。根据上文可知,资源交织单元可以为VRB bundles或PRB bundles。
当资源交织单元为VRB bundles时,假设bundle size=2,M=2,参见图17,交织资源单元0至交织资源单元5中的交织资源单元0、交织资源单元2和交织资源单元4组成第1份频域资源,交织资源单元1、交织资源单元3和交织资源单元5组成第2份频域资源。其中,各个交织资源单元映射到的PRB可参见图17。假设bundle size=4,M=2,参见图18,交织资源单元0至交织资源单元3中的交织资源单元0和交织资源单元2组成第1份频域资源,交织资源单元1和交织资源单元3组成第2份频域资源。其中,各个交织资源单元映射到的PRB可参见图18。
当资源交织单元为PRB bundles时,假设bundle size=2,M=2,参见图19,交织资源单元0至交织资源单元5中的交织资源单元0、交织资源单元2和交织资源单元4组成第1份频域资源,交织资源单元1、交织资源单元3和交织资源单元5组成第2份频域资源。假设bundle size=4,M=2,参见图20,交织资源单元0至交织资源单元3中的交织资源单元0和交织资源单元2组成第1份频域资源,交织资源单元1和交织资源单元3组成第2份频域资源。
情况1.2.2、PRG size被配置为wideband。
情况1.2.2下频域资源分配的过程与情况1.1.2是相同的,可参见上文,不再赘述。
情况1下,第一网络设备或终端设备所分配的频域资源并不一定全部被分配用于进行数据传输,具体用于进行数据传输的频域资源还需要通过DCI中的bitmap或RIV指示。该情况下,各个网络设备(例如,上述M个网络设备)在M份频域资源中的被分配用于进行数据传输的频域资源上发送数据,相应的,终端设备在M份频域资源中的被分配用于进行数据传输的频域资源上接收数据。示例性的,参见图15,假设分配给TRP1的频域资源为RBG0和RBG2,分配给TRP2的频域资源为RBG1和RBG3,若DCI中的bitmap所指示的被分配用于进行数据传输的频域资源为RBG1和RBG2,则针对TRP1,TRP1可以在RBG2上与终端设备通信,针对TRP2,TRP2可以在RBG1上与终端设备通信。情况1所述的频域资源分配方法可以理解为预先分配频域资源,即一旦终端设备确定BWP的带 宽,便可以确定M份频域资源,而后,再通过bitmap或RIV等具体的取值,确定在哪些频域资源上传输数据,这种频域资源分配方法的实现过程较为简单,复杂度较低。
情况2、预定带宽为系统带宽
当预定带宽为系统带宽时,频域资源分配的方法可以采用BWP中的方法,只需要将BWP的相应参数替换为系统带宽的相应参数即可,例如,在计算系统带宽中的频域资源分配单元的个数时,将BWP中的RB的个数替换为系统带宽中的RB的个数,将BWP中的起始RB在系统带宽中的编号替换为系统带宽的起始RB的编号。因此,情况2下的资源分配过程可参见情况1进行理解,不再赘述。
情况3、预定带宽为调度带宽
调度带宽是指为终端设备调度的用于进行数据传输的频域资源所组成的带宽。在情况3下,频域资源分配可以基于调度带宽内的所有频域资源,即频域资源分配是从调度带宽内的第一个频域资源分配单元开始,直到该调度带宽内的最后一个频域资源分配单元结束。
在频域资源分配类型不同时,调度带宽的确定也有所不同,以下通过情况3.1(频域资源分配类型为Type0)、情况3.2(频域资源分配类型为Type1)对不同频域资源分配类型下频域资源分配的过程作示例性说明。
情况3.1、Type0
情况3.1下,调度带宽为bitmap指示的用于进行数据传输的VRB所组成的带宽或bitmap指示的用于进行数据传输的VRB所映射到的PRB所组成的带宽,bitmap所指示的用于进行数据传输的VRB包括至少一个RBG。示例性的,参见图21,若bitmap包括6个比特,6个比特分别用于指示RBG0至RBG5是否被分配用于进行数据传输,若1个bit置1代表对应的RBG被分配用于进行数据传输、且6个比特的值为110101时,RBG0、RBG1、RBG3和RBG5被分配用于进行数据传输。此时,调度带宽为由RBG0、RBG1、RBG3和RBG5对应的RB,即RB3、RB4、RB5、RB8、RB9、RB12和RB13所组成的带宽。
当PRG size未被配置为wideband时,频域资源分配单元可以为RBG或PRG或y个连续的RB或信道测量的测量子带。与RBG类似的,频域资源分配单元的划分也是按照系统带宽进行划分的,调度带宽中的频域资源分配单元的个数以及各个频域资源分配单元大小的计算方法与BWP中的频域资源分配单元的个数以及各个频域资源分配单元大小的计算方法类似,只不过将Q取值为该场景下的频域资源分配单元大小,BWP中的RB的个数替换为调度带宽中的RB的个数,BWP中的起始RB在系统带宽中的编号替换为调度带宽中的起始RB在系统带宽中的编号即可。示例性的,基于图21所示的调度带宽,参见图22,若频域资源分配单元大小为2时,调度带宽中有4个频域资源分配单元。
当PRG size被配置为wideband时,x为
Figure PCTCN2020109385-appb-000055
W为终端设备的调度带宽中包含的RB的个数。此时,频域资源分配单元可以为x个连续的RB。也就是说,在RB为PRB的情况下,当PRG的大小为全带宽时,以
Figure PCTCN2020109385-appb-000056
个PRB为频域资源分配单元确定M份频域资源。
具体的,当PRG的大小为全带宽时,M份频域资源中的第m份频域资源包括调度带宽中第
Figure PCTCN2020109385-appb-000057
个PRB至第
Figure PCTCN2020109385-appb-000058
个PRB,M份频域资源中的第M份频域资源包括调度带宽中的剩余的PRB,m为大于0小于M的整数。其中,
Figure PCTCN2020109385-appb-000059
是指
Figure PCTCN2020109385-appb-000060
是指
Figure PCTCN2020109385-appb-000061
该情况下,频域资源分配单元是按照调度带宽进行划分的,从调度带宽的起始RB开始,每x个连续的RB为一个频域资源分配单元。其中,由于W不一定是M的整数倍,因此,最后一个频域资源分配单元的大小可以是小于x的。示例性的,基于图21所示的调度带宽,若M=2,则x=4,参见图23,调度带宽中可以包括2个频域资源分配单元。其中,频域资源分配单元0的大小为4,频域资源分配单元1的大小为3。
在情况3.1下,频域资源分配方法可以为:终端设备确定M份频域资源中的第m份频域资源,第m份频域资源包括终端设备的调度带宽中包括的N个频域资源分配单元中的第Mi+m个频域资源分配单元。相应的,第一网络设备将终端设备的调度带宽中包括的N个频域资源分配单元中的第Mi+m个分配给M份频域资源中的第m份频域资源。其中,N为正整数,m为大于0小于等于M的整数,
Figure PCTCN2020109385-appb-000062
该种交替频域资源分配方法,可以使得多份频域资源尽量离散地分布在调度带宽上,从而获得更好的频域分集增益。
示例性的,基于图22所示的调度带宽,包括4个频域资源分配单元。若M=2,4个频域资源分配单元中的频域资源分配单元0和频域资源分配单元2为第1份频域资源,频域资源分配单元1和频域资源分配单元3为第2份频域资源。
情况3.1又可以分为以下情况3.1.1和情况3.1.2。
情况3.1.1、PRG size未被配置为wideband。
情况3.1.1下,频域资源分配单元可以为PRG、RBG、y个连续的RB或信道测量的测量子带。具体的频域资源分配过程与情况1.1.1是类似的,区别仅在于此处是作用在调度带宽上,情况1.1.1是作用在BWP中的,具体可参照情况1.1.1进行理解,不再赘述。
情况3.1.2、PRG size被配置为wideband。
情况3.1.2下,频域资源分配单元为x个连续的RB、且频域资源分配单元的划分是按照调度带宽进行划分的。具体的频域资源分配过程与情况1.1.2是类似的,区别仅在于此处是作用在调度带宽上,情况1.1.2是作用在BWP中的,具体可参照情况1.1.2进行理解,不再赘述。
情况3.2、Type1
情况3.2又可以分为情况3.2.1和情况3.2.2。
情况3.2.1、调度带宽为RIV指示的连续的VRB所组成的带宽。
情况3.2.1下,VRB和PRB之间可以进行频域交织,也可以不进行频域交织。
示例性的,参见图24,RIV指示的频域资源为VRB5至VRB11,则调度带宽为由VRB5至VRB11所组成的带宽。
当PRG size未被配置为wideband时,频域资源分配单元可以为VRB bundles(VRB和PRB之间进行频域交织时)或y个连续的VRB或信道测量的测量子带(测量子带包括的RB为VRB)。与RBG类似的,频域资源分配单元的划分也是按照系统带宽进行划分的,调度带宽中的频域资源分配单元的个数以及各个频域资源分配单元大小的计算方法可以参见BWP中的频域资源分配单元的个数以及各个频域资源分配单元大小的计算方法,只不过将Q取值为该场景下的频域资源分配单元大小,BWP中的RB的个数替换为调度带宽中的VRB的个数,BWP中的起始RB在系统带宽中的编号替换为调度带宽中的起始VRB在系统带宽中的编号即可。示例性的,基于图24所示的调度带宽,参见图25,若频域资源分配单元大小为2时,调度带宽中有4个频域资源分配单元。
当PRG size被配置为wideband时,x为
Figure PCTCN2020109385-appb-000063
W为终端设备的调度带宽中包含的VRB的个数。此时,频域资源分配单元可以为x个连续的VRB。也就是说,在RB为PRB的情况下,当PRG的大小为全带宽时,以
Figure PCTCN2020109385-appb-000064
个PRB为频域资源分配单元确定M份频域资源。
具体的,当PRG的大小为全带宽时,M份频域资源中的第m份频域资源包括调度带宽中第
Figure PCTCN2020109385-appb-000065
个PRB至第
Figure PCTCN2020109385-appb-000066
个PRB,M份频域资源中的第M份频域资源包括调度带宽中的剩余的PRB,m为大于0小于M的整数。其中,
Figure PCTCN2020109385-appb-000067
是指
Figure PCTCN2020109385-appb-000068
是指
Figure PCTCN2020109385-appb-000069
该情况下,频域资源分配单元是按照调度带宽进行划分的,从调度带宽的起始VRB开始,每x个连续的VRB为一个频域资源分配单元。其中,由于W不一定是M的整数倍,因此,最后一个频域资源分配单元的大小可以是小于x的。示例性的,基于图24所示的调度带宽,若M=2,则x=4,参见图26,调度带宽中可以包括2个频域资源分配单元。其中,频域资源分配单元0的大小为4,频域资源分配单元1的大小为3。
在情况3.2.1下,频域资源分配方法可以为:终端设备确定M份频域资源中的第m份频域资源,第m份频域资源包括终端设备的调度带宽中包括的N个频域资源分配单元中的第Mi+m个频域资源分配单元。相应的,第一网络设备将终端设备的调度带宽中包括的N个频域资源分配单元中的第Mi+m个分配给M份频域资源中的第m份频域资源。其中,N为正整数,m为大于0小于等于M的整数,
Figure PCTCN2020109385-appb-000070
该种交替频域资源分配方法,可以使得多份频域资源尽量离散地分布在调度带宽上,从而获得更好的频域分集增益。
示例性的,基于图25所示的调度带宽,包括4个频域资源分配单元。若M=2,4个频域资源分配单元中的频域资源分配单元0和频域资源分配单元2为第1份频域资源,频域资源分配单元1和频域资源分配单元3为第2份频域资源。
在PRG size未被配置为wideband时,频域资源分配单元可以为VRB bundles(VRB和PRB之间进行频域交织时)或y个连续的VRB或信道测量的测量子带(测量子带包括的RB为VRB)。具体的频域资源分配过程与情况1.2.1中的在VRB域上进行频域资源分配的过程是类似的,区别仅在于此处是作用在调度带宽上,情况1.2.1是作用在BWP中的,具体可参照情况1.2.1进行理解,不再赘述。
在PRG size被配置为wideband时,频域资源分配单元为x个连续的VRB、且频域资源分配单元的划分是按照调度带宽进行划分的。具体的频域资源分配过程与情况1.2.2中的在VRB域上进行频域资源分配的过程是类似的,区别仅在于此处是作用在调度带宽上,情况1.2.2是作用在BWP中的,具体可参照情况1.2.2进行理解,不再赘述。
情况3.2.2、调度带宽为RIV指示的连续的VRB映射到的PRB所组成的带宽。
情况3.2.2下,VRB和PRB之间可以进行频域交织,也可以不进行频域交织。在不进行频域交织时,频域资源分配单元可以为PRG或y个连续的PRB或信道测量的测量子带(测量子带包括的RB为PRB)。此时,频域资源分配单元的个数和各个频域资源分配单元大小、以及频域资源分配过程与情况1.2中的在PRB域上进行频域资源分配的过程是类似的,区别仅在于此处是作用在调度带宽上,情况1.2是作用在BWP中的,具体可参照情况1.2进行理解,具体的,当PRG size未被配置为wideband时,可参照情况1.2.1进行理解,当PRG size被配置为wideband时,可参照情况1.2.2进行理解,不再赘述。
该部分主要介绍VRB和PRB之间进行频域交织时频域资源分配的方法。在进行频域交织时,示例性的,参见图27,RIV指示的频域资源为VRB5至VRB11,VRB5至VRB11映射到的PRB分别为PRB4、PRB5、PRB6、PRB7、PRB9、PRB10和PRB11,则调度带宽为由PRB4、PRB5、PRB6、PRB7、PRB9、PRB10和PRB11所组成的带宽。
当PRG size未被配置为wideband时,频域资源分配单元可以为PRG或PRB bundles或y个连续的PRB或信道测量的测量子带(测量子带包括的RB为PRB)。该情况下,调度带宽中的频域资源分配单元的个数为
Figure PCTCN2020109385-appb-000071
VRB与PRB之间进行频域交织时,若第1个VRB bundles包含的VRB的个数小于bundle size,例如,bundle size=2,第1个VRB bundles仅包含一个VRB时,包含第1个VRB bundles映射到的PRB bundles的频域资源分配单元包含的PRB的个数是小于频域资源分配单元的大小的。最后一个VRB bundles同理。示例性的,参见图28,bundle size=2,第1个VRB bundles仅包含VRB5,VRB5映射到PRB9,若频域资源分配单元的大小为2,则频域资源分配单元2仅包含1个PRB(即PRB9),而其他频域资源分配单元均包含2个PRB。若频域资源分配单元的大小为4,则频域资源分配单元1仅包含3个PRB,其他频域资源分配单元包含4个PRB。若第1个VRB bundles包含的VRB的个数和最后一个VRB bundles包含的VRB的个数均等于bundle size,则每个频域资源分配单元包含的PRB的个数均等于频域资源分配单元的大小。
当PRG size被配置为wideband时,x为
Figure PCTCN2020109385-appb-000072
W为终端设备的调度带宽中包含的PRB的个数。此时,频域资源分配单元可以为x个连续的PRB。也就是说,在RB为PRB的情况下,当PRG的大小为全带宽时,以
Figure PCTCN2020109385-appb-000073
个PRB为频域资源分配单元确定M份频域资源。
具体的,当PRG的大小为全带宽时,M份频域资源中的第m份频域资源包括调度带宽中第
Figure PCTCN2020109385-appb-000074
个PRB至第
Figure PCTCN2020109385-appb-000075
个PRB,M份频域资源中的第M份频域资源包括调度带宽中的剩余的PRB,m为大于0小于M的整数。其中,
Figure PCTCN2020109385-appb-000076
是指
Figure PCTCN2020109385-appb-000077
是指
Figure PCTCN2020109385-appb-000078
该情况下,频域资源分配单元是按照调度带宽进行划分的,从调度带宽的起始PRB开始,每x个连续的PRB为一个频域资源分配单元。其中,由于W不一定是M的整数倍,因此,最后一个频域资源分配单元的大小可以是小于x的。示例性的,基于图28所示的调度带宽,若M=2,则x=4,参见图29,调度带宽中可以包括2个频域资源分配单元。其中,频域资源分配单元0的大小为4,频域资源分配单元1的大小为3。
在情况3.2.2下,频域资源分配方法可以为:终端设备确定M份频域资源中的第m份频域资源,第m份频域资源包括终端设备的调度带宽中包括的N个频域资源分配单元中的第Mi+m个频域资源分配单元。相应的,第一网络设备将终端设备的调度带宽中包括的N个频域资源分配单元中的第Mi+m个分配给M份频域资源中的第m份频域资源。其中,N为正整数,m为大于0小于等于M的整数,
Figure PCTCN2020109385-appb-000079
该种交替频域资源分配方法,可以使得多份频域资源尽量离散地分布在调度带宽上,从而获得更好的频域分集增益。
示例性的,基于图28所示的调度带宽,若频域资源分配单元的大小为2,则调度带宽包括4个频域资源分配单元。若M=2,4个频域资源分配单元中的频域资源分配单元0和频域资源分配单元2为第1份频域资源,频域资源分配单元1和频域资源分配单元3为第2份频域资源。
在PRG size未被配置为wideband时,频域资源分配单元可以为PRG或PRB bundles 或y个连续的PRB或信道测量的测量子带(测量子带包括的RB为PRB)。具体的频域资源分配过程与情况1.2.1中的在PRB域上进行频域资源分配的过程是类似的,区别仅在于此处是作用在调度带宽上,情况1.2.1是作用在BWP中的,具体可参照情况1.2.1进行理解,不再赘述。
在PRG size被配置为wideband时,频域资源分配单元为x个连续的PRB、且频域资源分配单元的划分是按照调度带宽进行划分的。具体的频域资源分配过程与情况1.2.2是类似的,区别仅在于此处是作用在调度带宽上,情况1.2.2是作用在BWP中的,具体可参照情况1.2.2进行理解,不再赘述。
在情况3下,第一网络设备或终端设备所分配的M份频域资源为用于进行数据传输的频域资源。该情况下,各个网络设备(例如,上述M个网络设备)在M份频域资源上发送数据,相应的,终端设备在M份频域资源上接收数据。
上述实施例中,预定带宽为BWP或系统带宽时,上述情况1所述的资源分配方法虽然实现过程简单,但是可能会使得实际用于进行数据传输的频域资源恰好都属于同一份频域资源,例如,参见图15,若bitmap取值为1010,1个bit置1代表对应的RBG被分配用于进行数据传输,此时,RBG0和RBG2被分配用于进行数据传输,而RBG0和RBG2属于同一份频域资源,也就意味着,只能一个TRP与终端设备进行通信。预定带宽为调度带宽时,情况3所述的资源分配方法由于是在用于进行数据传输的频域资源上采用交替分配规则进行频域资源分配的,因此,每个TRP分配到的频域资源是大致相等的,因此,可以保证每个与终端设备通信的TRP都有资源可用。
本申请实施例提供的方法,可以避免同一个PRG内的PRB被分配给不同的TRP,也就是保证了同一个PRG内的PRB上的数据采用同一发送预编码矩阵进行预编码,从而与通信协议中的相关规定(即一个PRG中的PRB上的数据要采用相同的发送预编码矩阵进行预编码)保持一致。同时,针对同一个PRG内的PRB上的数据,终端设备可以采用同一个信道均衡矩阵解多流数据,从而保证终端设备的信号接收质量。
终端设备和第一网络设备在进行频域资源分配之前,需要先确定频域资源分配单元,频域资源分配单元可以为预设的或预定义的或协议规定的,也可以通过以下方式1或方式2确定。
方式1、频域资源分配单元为通过信令指示的。
其中,该信令可以为高层信令(例如,RRC信令、MAC CE信令等)或动态信令(例如,DCI)。
例如,该信令可以通过多个比特指示频域资源分配单元为RBG、PRG、交织资源单元或是信道测量的测量子带中的一种。
再例如,该信令可以通过1个或多个比特指示频域资源分配单元为VRB还是PRB。进一步的,如果频域资源分配单元的最小粒度为系统预设的,例如系统预设x=2,或,系统预设频域资源分配单元的最小粒度为PRG(此时,x=PRG size)的情况下,还可以通过1个或多个比特指示k的值,以用于计算y的值,其中,y=k*x。
方式1使得终端设备可以基于指示灵活的切换频域资源分配单元。
方式2、频域资源分配单元的粒度与传输方案对应。
其中,传输方案可以为第一传输方案或第二传输方案。关于第一传输方案和第二传输 方法的描述可参见上文,在此不再赘述。在不同的传输方案下,频域资源分配单元可以不同,以下通过第一种情况和第二种情况分别进行描述。
第一种情况:
在第一传输方案下,频域资源分配单元为RBG。
在第二传输方案下,频域资源分配单元为PRG。
可选的,第一种情况下,频域资源分配类型可以为Type0,且预定带宽为BWP或系统带宽。
参见图30中的(a)所示的两份频域资源,假设第1份频域资源分配给了TRP1,第2份频域资源分配给了TRP2,若bitmap中包含4个比特,4个比特分别用于指示4个RBG是否被分配用于进行数据传输,若4个比特为0010,0代表未被分配用于进行数据传输,1代表被分配用于进行数据传输,此时,TRP1可用于进行数据传输的资源包括RB8至RB11,TRP2没有可用于进行数据传输的RB,由此可知,这种分配方式更加的灵活,更加适用于第一传输方案。
参见图30中的(b)所示的两份频域资源,假设第1份频域资源分配给了TRP1,第2份频域资源分配给了TRP2,若bitmap中包含4个比特,4个比特分别用于指示4个RBG是否被分配用于进行数据传输,若4个比特为0010,0代表未被分配用于进行数据传输,1代表被分配用于进行数据传输,此时,TRP1可用于进行数据传输的资源包括RB10和RB11,TRP2可用于进行数据传输的资源包括RB8和RB9,由此可知,这种分配方式更加的均匀,更加适用于第二传输方案。
第二种情况:
在第一传输方案下,连续的RB为连续的PRB。
在第二传输方案下,连续的RB为连续的VRB。
可选的,第二种情况下,频域资源分配类型可以为Type1、VRB和PRB之间进行频域交织、且预定带宽为BWP或系统带宽。
示例性的,参见图31中的(a),当连续的RB为连续的PRB时,假设第1份频域资源分配给了TRP1,第2份频域资源分配给了TRP2,RIV所指示的可用于进行数据传输的VRB包括VRB6至VRB12,VRB6至VRB12映射到的PRB可参见图31中的(a),此时,TRP1可用于进行数据传输的PRB包括PRB8,TRP2可用于进行数据传输的PRB包括PRB2、PRB3、PRB6、PRB7、PRB10和PRB11,由此可知,这种分配方式在交织后,M份频域资源可能不均衡,更加适用于第一传输方案。
示例性的,参见图31中的(b),当连续的RB为连续的VRB时,假设第1份频域资源分配给了TRP1,第2份频域资源分配给了TRP2,RIV所指示的可用于进行数据传输的VRB包括VRB6至VRB12,VRB6至VRB12映射到的PRB可参见图31中的(b),此时,TRP1可用于进行数据传输的PRB包括PRB2、PRB3、PRB6和PRB7,TRP2可用于进行数据传输的PRB包括PRB8、PRB10和PRB11,由此可知,这种分配方式更加的均衡,更加适用于第二传输方案。
第二种情况中,终端设备可以根据实际的传输方案选择频域资源分配单元,增加了终端设备的调度灵活性和对不同传输方案的支持。
需要说明的是,上述第一种情况和第二种情况仅仅是对传输方案与频域资源分配单元 的粒度之间的对应关系作了一个示例,传输方案与频域资源分配单元的粒度之间的对应关系不仅限于此。例如,在第一种情况下,也可以第一传输方案下,频域资源分配单元为PRG,第二传输方案下,频域资源分配单元为RBG。在第二种情况下,也可以第一传输方案下,连续的RB为连续的VRB,第二传输方案下,连续的RB为连续的PRB。另外,传输方案也可以与其他的频域资源分配单元的粒度(例如,交织资源单元或信道测量的测量子带等)对应,也可以不与任何频域资源分配单元的粒度对应,本申请对此不作限制。
另外,需要说明的是,根据上述描述可知,预定带宽为BWP或系统带宽时,频域资源分配可能不均衡,预定带宽为调度带宽时,频域资源分配是更加均衡的,因此,传输方案还可以与预定带宽对应,例如,第一传输方案对应BWP或系统带宽,第二传输方案对应调度带宽。
需要说明的是,本申请实施例中的RBG、PRG、交织资源单元和信道测量的测量子带的大小的描述是依据协议中的相关规定进行描述的,在实际实现时或未来协议中,RBG、PRG、交织资源单元和信道测量的测量子带的大小也可以比本申请描述的更大或更小,此时,对于本申请同样适用。
另外,本申请主要目的在于阐述频域资源如何分配,因此,对于时域资源并未过多描述,但是可以理解的是,各个网络设备和终端设备在发送数据时,不仅仅需要确定频域资源,还需要确定时域资源,对于时域资源确定的方法本申请不作限定。
上述主要从方法的角度对本申请实施例的方案进行了介绍。可以理解的是,各个网元,例如,第一网络设备和终端设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和软件模块中的至少一个。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对第一网络设备和终端设备进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
示例性的,图32示出了上述实施例中所涉及的终端设备(记为终端设备320)的一种可能的结构示意图,该终端设备320包括处理单元3201和通信单元3202。可选的,还包括存储单元3203。
其中,处理单元3201用于对终端设备的动作进行控制管理,例如,处理单元3201用于执行图9中的901和902,和/或本申请实施例中所描述的其他过程中的终端设备执行的动作。处理单元3201可以通过通信单元3202与其他网络实体通信,例如,分别通过M份频域资源从M个网络设备接收数据。存储单元3203用于存储终端设备的程序代码和数据。
其中,终端设备320可以为一个设备也可以为芯片或芯片系统。
当终端设备320为一个设备时,所述处理单元可以是处理器;所述通信单元可以是通信接口、收发器,或,输入/输出接口。可选地,所述收发器可以为收发电路。可选地,所 述输入/输出接口可以为输入/输出电路。
当终端设备320为芯片或芯片系统时,所述通信单元可以是该芯片或芯片系统上的通信接口、输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。所述处理单元可以是处理器、处理电路或逻辑电路等。
示例性的,图33示出了上述实施例中所涉及的第一网络设备(记为第一网络设备330)的一种可能的结构示意图,该第一网络设备330包括处理单元3301。可选的,还包括通信单元3302和存储单元3303中的至少一个。
处理单元3301用于对第一网络设备的动作进行控制管理,例如,处理单元3301用于执行图10中的1001和1002,和/或本申请实施例中所描述的其他过程中的第一网络设备执行的动作。处理单元3301可以通过通信单元3302与其他网络实体通信,例如,向M个网络设备中的一个或多个发送所分配的频域资源的信息。存储单元3303用于存储第一网络设备的程序代码和数据。
其中,第一网络设备330可以为一个设备也可以为芯片或芯片系统。
当第一网络设备330为一个设备时,所述处理单元可以是处理器;所述通信单元可以是通信接口、收发器,或,输入/输出接口。可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
当第一网络设备330为芯片或芯片系统时,所述通信单元可以是该芯片或芯片系统上的通信接口、输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。所述处理单元可以是处理器、处理电路或逻辑电路等。
图32和图33中,处理单元可以是处理器或控制器,通信单元可以是通信接口、收发器、收发机、收发电路、收发装置、输入/输出接口、管脚或电路等。其中,通信接口是统称,可以包括一个或多个接口。存储单元可以是存储器、寄存器、缓存、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)等。
图32和图33中,通信单元也可以称为收发单元。终端设备和第一网络设备中的具有收发功能的天线和控制电路可以视为通信单元,具有处理功能的处理器可以视为处理单元。可选的,通信单元中用于实现接收功能的器件可以视为接收单元,接收单元用于执行本申请实施例中的接收的步骤,接收单元可以为接收机、接收器、接收电路等。通信单元中用于实现发送功能的器件可以视为发送单元,发送单元用于执行本申请实施例中的发送的步骤,发送单元可以为发送机、发送器、发送电路等。
图32和图33中的集成的单元如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。存储计算机软件产品的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
示例性的,图34还示出了上述实施例中所涉及的第一网络设备(记为第一网络设备340)的一种可能的结构示意图,该第一网络设备340包括确定单元3401和分配单元3402。其中,确定单元3401用于执行图10中的1001,分配单元3402用于执行图10中的1002。
图32至图34中的单元也可以称为模块,例如,处理单元可以称为处理模块,确定单元可以称为确定模块。
本申请实施例还提供了一种通信装置(记为通信装置350)的硬件结构示意图,参见图35或图36,该通信装置350包括处理器3501,可选的,还包括与处理器3501连接的存储器3502。
处理器3501可以是一个通用中央处理器(central processing unit,CPU)、微处理器、特定应用集成电路(application-specific integrated circuit,ASIC),或者一个或多个用于控制本申请方案程序执行的集成电路。处理器3501也可以包括多个CPU,并且处理器3501可以是一个单核(single-CPU)处理器,也可以是多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路或用于处理数据(例如计算机程序指令)的处理核。
存储器3502可以是ROM或可存储静态信息和指令的其他类型的静态存储设备、RAM或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,本申请实施例对此不作任何限制。存储器3502可以是独立存在(此时,处理器可以位于通信装置外,也可以位于通信装置内),也可以和处理器3501集成在一起。其中,存储器3502中可以包含计算机程序代码。处理器3501用于执行存储器3502中存储的计算机程序代码,从而实现本申请实施例提供的方法。
在第一种可能的实现方式中,参见图35,通信装置350还包括收发器3503。处理器3501、存储器3502和收发器3503通过总线相连接。收发器3503用于与其他设备或通信网络通信。可选的,收发器3503可以包括发射机和接收机。收发器3503中用于实现接收功能的器件可以视为接收机,接收机用于执行本申请实施例中的接收的步骤。收发器3503中用于实现发送功能的器件可以视为发射机,发射机用于执行本申请实施例中的发送的步骤。
基于第一种可能的实现方式,图35所示的结构示意图可以用于示意上述实施例中所涉及的第一网络设备或终端设备的结构。
当图35所示的结构示意图用于示意上述实施例中所涉及的终端设备的结构时,处理器3501用于对终端设备的动作进行控制管理,例如,处理器3501用于支持终端设备执行图9中的901和902,和/或本申请实施例中所描述的其他过程中的终端设备执行的动作。处理器3501可以通过收发器3503与其他网络实体通信,例如,与上述M个网络设备通信。存储器3502用于存储终端设备的程序代码和数据。
当图35所示的结构示意图用于示意上述实施例中所涉及的第一网络设备的结构时,处理器3501用于对第一网络设备的动作进行控制管理,例如,处理器3501用于支持第一网络设备执行图10中的1001和1002,和/或本申请实施例中所描述的其他过程中的第一网络设备执行的动作。处理器3501可以通过收发器3503与其他网络实体通信,例如,与上述M个网络设备中的一个或多个通信。存储器3502用于存储第一网络设备的程序代码和数据。
在第二种可能的实现方式中,处理器3501包括逻辑电路以及输入接口和输出接口中的至少一个。其中,输出接口用于执行相应方法中的发送的动作,输入接口用于执行相应方法中的接收的动作。
基于第二种可能的实现方式,参见图36,图36所示的结构示意图可以用于示意上述实施例中所涉及的第一网络设备或终端设备的结构。
当图36所示的结构示意图用于示意上述实施例中所涉及的终端设备的结构时,处理器3501用于对终端设备的动作进行控制管理,例如,处理器3501用于支持终端设备图9中的901至902,和/或本申请实施例中所描述的其他过程中的终端设备执行的动作。处理器3501可以通过输入接口和输出接口中的至少一个与其他网络实体通信,例如,与上述M个网络设备通信。存储器3502用于存储终端设备的程序代码和数据。
当图36所示的结构示意图用于示意上述实施例中所涉及的第一网络设备的结构时,处理器3501用于对第一网络设备的动作进行控制管理,例如,处理器3501用于支持第一网络设备执行图10中的1001和1002,和/或本申请实施例中所描述的其他过程中的第一网络设备执行的动作。处理器3501可以通过输入接口和输出接口中的至少一个与其他网络实体通信,例如,与上述M个网络设备中的一个或多个通信。存储器3502用于存储第一网络设备的程序代码和数据。
另外,本申请实施例还提供了一种终端设备(记为终端设备370)和第一网络设备(记为第一网络设备380)的硬件结构示意图,具体可分别参见图37和图38。
图37为终端设备370的硬件结构示意图。为了便于说明,图37仅示出了终端设备的主要部件。如图37所示,终端设备370包括处理器、存储器、控制电路、天线以及输入输出装置。
处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端设备进行控制,执行软件程序,处理软件程序的数据,例如,用于控制终端设备执行图9中的901和902,和/或本申请实施例中所描述的其他过程中的终端设备执行的动作。存储器主要用于存储软件程序和数据。控制电路(也可以称为射频电路)主要用于基带信号与射频信号的转换以及对射频信号的处理。控制电路和天线一起也可以叫做收发器,主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端设备开机后,处理器可以读取存储器中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过天线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至控制电路中的控制电路,控制电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,控制电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图37仅示出了一个存储器和处理器。在实际的终端设备中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备进行控制, 执行软件程序,处理软件程序的数据。图37中的处理器集成了基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端设备可以包括多个基带处理器以适应不同的网络制式,终端设备可以包括多个中央处理器以增强其处理能力,终端设备的各个部件可以通过各种总线连接。该基带处理器也可以表述为基带处理电路或者基带处理芯片。该中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储器中,由处理器执行软件程序以实现基带处理功能。
图38为第一网络设备380的硬件结构示意图。第一网络设备380可包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)3801和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元(digital unit,DU))3802。
该RRU3801可以称为收发单元、收发机、收发电路、或者收发器等等,其可以包括至少一个天线3811和射频单元3812。该RRU3801部分主要用于射频信号的收发以及射频信号与基带信号的转换。该RRU3801与BBU3802可以是物理上设置在一起,也可以物理上分离设置的,例如,分布式基站。
该BBU3802为第一网络设备的控制中心,也可以称为处理单元,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。
在一个实施例中,该BBU3802可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网络),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其它网)。该BBU3802还包括存储器3821和处理器3822,该存储器3821用于存储必要的指令和数据。该处理器3822用于控制第一网络设备进行必要的动作。该存储器3821和处理器3822可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
应理解,图38所示的第一网络设备380能够执行图10中的1001和1002,和/或本申请实施例中所描述的其他过程中的第一网络设备执行的动作。第一网络设备380中的各个模块的操作,功能,或者,操作和功能,分别设置为实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详述描述。
在实现过程中,本实施例提供的方法中的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。图37和图38中的关于处理器的其他描述可参见图35和图36中的与处理器相关的描述,不再赘述。
本申请实施例还提供了一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行上述任一方法。
本申请实施例还提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述任一方法。
本申请实施例还提供了一种通信系统,包括:上述第一网络设备和终端设备。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程 序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看附图、公开内容、以及所附权利要求书,可理解并实现公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (59)

  1. 一种频域资源分配方法,其特征在于,包括:
    确定M份频域资源,其中,M为大于1的整数,所述M份频域资源中的任意两份频域资源不重叠,所述M份频域资源各自关联一个准共址QCL信息,所述M份频域资源中的任意两份频域资源关联的QCL信息不同;
    在所述M份频域资源中的一份或多份频域资源发送或接收数据;
    其中,
    当预编码资源组PRG的大小为2或4时,以PRG为频域资源分配单元确定所述M份频域资源;
    当PRG的大小为全带宽时,以
    Figure PCTCN2020109385-appb-100001
    个物理资源块PRB为频域资源分配单元确定所述M份频域资源,W为预定带宽中包含的PRB的个数,W为大于1的整数。
  2. 根据权利要求1所述的方法,其特征在于,当PRG的大小为2或4时,M=2,所述M份频域资源中的第一份频域资源包括索引为偶数的PRG,所述M份频域资源中的第二份频域资源包括索引为奇数的PRG。
  3. 根据权利要求1或2所述的方法,其特征在于,当PRG的大小为2或4时,所述M份频域资源为对终端设备的调度带宽进行划分得到,所述调度带宽为用于进行数据传输的PRB所组成的带宽。
  4. 根据权利要求1所述的方法,其特征在于,当PRG的大小为2或4时,所述以PRG为频域资源分配单元确定所述M份频域资源,包括:
    确定所述M份频域资源中的第m份频域资源,所述第m份频域资源包括终端设备的调度带宽中包括的N个频域资源分配单元中的第Mi+m个频域资源分配单元,所述调度带宽为用于进行数据传输的PRB所组成的带宽,N为正整数,m为大于0小于等于M的整数,
    Figure PCTCN2020109385-appb-100002
  5. 根据权利要求1所述的方法,其特征在于,当PRG的大小为全带宽时,所述M份频域资源中的第m份频域资源包括所述预定带宽中第
    Figure PCTCN2020109385-appb-100003
    个PRB至第
    Figure PCTCN2020109385-appb-100004
    个PRB,所述M份频域资源中的第M份频域资源包括所述预定带宽中的剩余的PRB,m为大于0小于M的整数。
  6. 根据权利要求1或5所述的方法,其特征在于,M=2,所述M份频域资源中的第一份频域资源包括所述预定带宽中的前
    Figure PCTCN2020109385-appb-100005
    个PRB,所述M份频域资源中的第二份频域资源包括所述预定带宽中剩余的
    Figure PCTCN2020109385-appb-100006
    个PRB。
  7. 根据权利要求1、2、5、6中任一项所述的方法,其特征在于,所述预定带宽为终端设备的调度带宽,所述调度带宽为用于进行数据传输的PRB所组成的带宽。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,
    当PRG的大小为2或4时,以PRG为频域资源分配单元,根据预定频域资源分配规则确定所述M份频域资源;
    当PRG的大小为全带宽时,根据所述预定带宽中包含的W个PRB,以预定频域资源分配规则确定所述M份频域资源。
  9. 一种频域资源分配装置,其特征在于,包括:处理单元和通信单元;
    所述处理单元,用于确定M份频域资源,其中,M为大于1的整数,所述M份频域 资源中的任意两份频域资源不重叠,所述M份频域资源各自关联一个准共址QCL信息,所述M份频域资源中的任意两份频域资源关联的QCL信息不同;
    所述通信单元,用于在所述M份频域资源中的一份或多份频域资源发送或接收数据;
    其中,
    当预编码资源组PRG的大小为2或4时,所述处理单元,具体用于以PRG为频域资源分配单元确定所述M份频域资源;
    当PRG的大小为全带宽时,所述处理单元,具体用于以
    Figure PCTCN2020109385-appb-100007
    个物理资源块PRB为频域资源分配单元确定所述M份频域资源,W为预定带宽中包含的PRB的个数,W为大于1的整数。
  10. 根据权利要求9所述的装置,其特征在于,当PRG的大小为2或4时,M=2,所述M份频域资源中的第一份频域资源包括索引为偶数的PRG,所述M份频域资源中的第二份频域资源包括索引为奇数的PRG。
  11. 根据权利要求9或10所述的装置,其特征在于,当PRG的大小为2或4时,所述M份频域资源为对终端设备的调度带宽进行划分得到,所述调度带宽为用于进行数据传输的PRB所组成的带宽。
  12. 根据权利要求9所述的装置,其特征在于,当PRG的大小为2或4时,所述处理单元,具体用于:
    确定所述M份频域资源中的第m份频域资源,所述第m份频域资源包括终端设备的调度带宽中包括的N个频域资源分配单元中的第Mi+m个频域资源分配单元,所述调度带宽为用于进行数据传输的PRB所组成的带宽,N为正整数,m为大于0小于等于M的整数,
    Figure PCTCN2020109385-appb-100008
  13. 根据权利要求9所述的装置,其特征在于,当PRG的大小为全带宽时,所述M份频域资源中的第m份频域资源包括所述预定带宽中第
    Figure PCTCN2020109385-appb-100009
    个PRB至第
    Figure PCTCN2020109385-appb-100010
    个PRB,所述M份频域资源中的第M份频域资源包括所述预定带宽中的剩余的PRB,m为大于0小于M的整数。
  14. 根据权利要求9或13所述的装置,其特征在于,M=2,所述M份频域资源中的第一份频域资源包括所述预定带宽中的前
    Figure PCTCN2020109385-appb-100011
    个PRB,所述M份频域资源中的第二份频域资源包括所述预定带宽中剩余的
    Figure PCTCN2020109385-appb-100012
    个PRB。
  15. 根据权利要求9、10、13、14中任一项所述的装置,其特征在于,所述预定带宽为终端设备的调度带宽,所述调度带宽为用于进行数据传输的PRB所组成的带宽。
  16. 根据权利要求9-15任一项所述的装置,其特征在于,
    当PRG的大小为2或4时,以PRG为频域资源分配单元,根据预定频域资源分配规则确定所述M份频域资源;
    当PRG的大小为全带宽时,根据所述预定带宽中包含的W个PRB,以预定频域资源分配规则确定所述M份频域资源。
  17. 根据权利要求9-16任一项所述的装置,其特征在于,所述频域资源分配装置为终端设备,
    所述通信单元,具体用于在所述M份频域资源中的一份或多份频域资源接收数据。
  18. 根据权利要求9-16任一项所述的装置,其特征在于,所述频域资源分配装置为网络设备,
    所述通信单元,具体用于在所述M份频域资源中的一份或多份频域资源发送数据。
  19. 一种频域资源分配方法,其特征在于,包括:
    终端设备根据预定频域资源分配规则确定M份频域资源,所述M份频域资源中的任意两份频域资源不重叠,所述M份频域资源各自关联一个准共址QCL信息,所述M份频域资源中的任意两份频域资源关联的QCL信息不同,所述频域资源分配规则以频域资源分配单元为单位进行频域资源分配,所述频域资源分配单元的最小粒度为x个连续的资源块RB,x为预编码资源组PRG的大小,所述连续的RB为连续的虚拟资源块VRB或连续的物理资源块PRB,M为大于1的整数;
    所述终端设备在所述M份频域资源中的一份或多份频域资源接收数据。
  20. 根据权利要求19所述的方法,其特征在于,所述频域资源分配单元为预定义或通过信令指示的。
  21. 根据权利要求19或20所述的方法,其特征在于,所述频域资源分配单元为资源块组RBG或PRG或交织资源单元。
  22. 根据权利要求19或20所述的方法,其特征在于,所述频域资源分配单元为y个连续的RB,y为x的k倍,k为正整数。
  23. 根据权利要求19-22任一项所述的方法,其特征在于,所述终端设备根据预定频域资源分配规则确定M份频域资源,包括:
    所述终端设备确定所述M份频域资源中的第m份频域资源,所述第m份频域资源包括所述终端设备的预定带宽中包括的N个频域资源分配单元中的第Mi+m个频域资源分配单元,N为正整数,m为大于0小于等于M的整数,
    Figure PCTCN2020109385-appb-100013
  24. 根据权利要求19-23任一项所述的方法,其特征在于,所述频域资源分配单元的粒度与传输方案对应。
  25. 根据权利要求19-23任一项所述的方法,其特征在于,在第一传输方案下,在所述M份频域资源中的不同频域资源上传输的下行数据对应一个传输块TB的不同部分,所述频域资源分配单元为RBG;或者,在第二传输方案下,在所述M份频域资源上传输的下行数据对应M个TB,所述M个TB为相同的TB,所述频域资源分配单元为PRG。
  26. 根据权利要求19-23任一项所述的方法,其特征在于,在第一传输方案下,在所述M份频域资源中的不同频域资源上传输的下行数据对应一个传输块TB的不同部分,所述连续的RB为连续的PRB;或者,在第二传输方案下,在所述M份频域资源上传输的下行数据对应M个TB,所述M个TB为相同的TB,所述连续的RB为连续的VRB。
  27. 根据权利要求19-26任一项所述的方法,其特征在于,当所述PRG的大小配置为全带宽时,x为
    Figure PCTCN2020109385-appb-100014
    所述W为所述终端设备的预定带宽中包含的RB的个数。
  28. 一种频域资源分配方法,其特征在于,包括:
    网络设备确定终端设备的预定带宽;
    所述网络设备根据预定频域资源分配规则和所述预定带宽分配M份频域资源,所述M份频域资源中的任意两份频域资源不重叠,所述M份频域资源各自关联一个准共址QCL信息,所述M份频域资源中的任意两份频域资源关联的QCL信息不同,所述频域资源分配规则以频域资源分配单元为单位进行频域资源分配,所述频域资源分配单元的最小粒度为x个连续的资源块RB,x为预编码资源组PRG的大小,所述连续的RB为连续的虚拟 资源块VRB或连续的物理资源块PRB,M为大于1的整数。
  29. 根据权利要求28所述的方法,其特征在于,所述频域资源分配单元为预定义或通过信令指示的。
  30. 根据权利要求28或29所述的方法,其特征在于,所述频域资源分配单元为资源块组RBG或PRG或交织资源单元。
  31. 根据权利要求28或29所述的方法,其特征在于,所述频域资源分配单元为y个连续的RB,y为x的k倍,k为正整数。
  32. 根据权利要求28-31任一项所述的方法,其特征在于,所述网络设备根据预定频域资源分配规则分配M份频域资源,包括:
    所述网络设备将所述预定带宽中包括的N个频域资源分配单元中的第Mi+m个分配给所述M份频域资源中的第m份频域资源,N为正整数,m为大于0小于等于M的整数,
    Figure PCTCN2020109385-appb-100015
  33. 根据权利要求28-32任一项所述的方法,其特征在于,所述频域资源分配单元的粒度与传输方案对应。
  34. 根据权利要求28-32任一项所述的方法,其特征在于,在第一传输方案下,在所述M份频域资源中的不同频域资源上传输的下行数据对应一个传输块TB的不同部分,所述频域资源分配单元为RBG;或者,在第二传输方案下,在所述M份频域资源上传输的下行数据对应M个TB,所述M个TB为相同的TB,所述频域资源分配单元为PRG。
  35. 根据权利要求28-32任一项所述的方法,其特征在于,在第一传输方案下,在所述M份频域资源中的不同频域资源上传输的下行数据对应一个传输块TB的不同部分,所述连续的RB为连续的PRB;或者,在第二传输方案下,在所述M份频域资源上传输的下行数据对应M个TB,所述M个TB为相同的TB,所述连续的RB为连续的VRB。
  36. 根据权利要求28-35任一项所述的方法,其特征在于,当所述PRG的大小配置为全带宽时,x为
    Figure PCTCN2020109385-appb-100016
    所述W为所述终端设备的预定带宽中包含的RB的个数。
  37. 一种频域资源分配装置,其特征在于,包括:处理单元和通信单元;
    所述处理单元,用于根据预定频域资源分配规则确定M份频域资源,所述M份频域资源中的任意两份频域资源不重叠,所述M份频域资源各自关联一个准共址QCL信息,所述M份频域资源中的任意两份频域资源关联的QCL信息不同,所述频域资源分配规则以频域资源分配单元为单位进行频域资源分配,所述频域资源分配单元的最小粒度为x个连续的资源块RB,x为预编码资源组PRG的大小,所述连续的RB为连续的虚拟资源块VRB或连续的物理资源块PRB,M为大于1的整数;
    所述通信单元,用于在所述M份频域资源中的一份或多份频域资源接收数据。
  38. 根据权利要求37所述的装置,其特征在于,所述频域资源分配单元为预定义或通过信令指示的。
  39. 根据权利要求37或38所述的装置,其特征在于,所述频域资源分配单元为资源块组RBG或PRG或交织资源单元。
  40. 根据权利要求37或38所述的装置,其特征在于,所述频域资源分配单元为y个连续的RB,y为x的k倍,k为正整数。
  41. 根据权利要求37-40任一项所述的装置,其特征在于,
    所述处理单元,具体用于确定所述M份频域资源中的第m份频域资源,所述第m份频域资源包括所述装置的预定带宽中包括的N个频域资源分配单元中的第Mi+m个频域资源分配单元,N为正整数,m为大于0小于等于M的整数,
    Figure PCTCN2020109385-appb-100017
  42. 根据权利要求37-41任一项所述的装置,其特征在于,所述频域资源分配单元的粒度与传输方案对应。
  43. 根据权利要求37-41任一项所述的装置,其特征在于,在第一传输方案下,在所述M份频域资源中的不同频域资源上传输的下行数据对应一个传输块TB的不同部分,所述频域资源分配单元为RBG;或者,在第二传输方案下,在所述M份频域资源上传输的下行数据对应M个TB,所述M个TB为相同的TB,所述频域资源分配单元为PRG。
  44. 根据权利要求37-41任一项所述的装置,其特征在于,在第一传输方案下,在所述M份频域资源中的不同频域资源上传输的下行数据对应一个传输块TB的不同部分,所述连续的RB为连续的PRB;或者,在第二传输方案下,在所述M份频域资源上传输的下行数据对应M个TB,所述M个TB为相同的TB,所述连续的RB为连续的VRB。
  45. 根据权利要求37-44任一项所述的装置,其特征在于,当所述PRG的大小配置为全带宽时,x为
    Figure PCTCN2020109385-appb-100018
    所述W为所述装置的预定带宽中包含的RB的个数。
  46. 一种频域资源分配装置,其特征在于,包括:确定单元和分配单元;
    所述确定单元,用于确定终端设备的预定带宽;
    所述分配单元,用于根据预定频域资源分配规则和所述预定带宽分配M份频域资源,所述M份频域资源中的任意两份频域资源不重叠,所述M份频域资源各自关联一个准共址QCL信息,所述M份频域资源中的任意两份频域资源关联的QCL信息不同,所述频域资源分配规则以频域资源分配单元为单位进行频域资源分配,所述频域资源分配单元的最小粒度为x个连续的资源块RB,x为预编码资源组PRG的大小,所述连续的RB为连续的虚拟资源块VRB或连续的物理资源块PRB,M为大于1的整数。
  47. 根据权利要求46所述的装置,其特征在于,所述频域资源分配单元为预定义或通过信令指示的。
  48. 根据权利要求46或47所述的装置,其特征在于,所述频域资源分配单元为资源块组RBG或PRG或交织资源单元。
  49. 根据权利要求46或47所述的装置,其特征在于,所述频域资源分配单元为y个连续的RB,y为x的k倍,k为正整数。
  50. 根据权利要求46-49任一项所述的装置,其特征在于,
    所述分配单元,具体用于将所述预定带宽中包括的N个频域资源分配单元中的第Mi+m个分配给所述M份频域资源中的第m份频域资源,N为正整数,m为大于0小于等于M的整数,
    Figure PCTCN2020109385-appb-100019
  51. 根据权利要求46-50任一项所述的装置,其特征在于,所述频域资源分配单元的粒度与传输方案对应。
  52. 根据权利要求46-50任一项所述的装置,其特征在于,在第一传输方案下,在所述M份频域资源中的不同频域资源上传输的下行数据对应一个传输块TB的不同部分,所述频域资源分配单元为RBG;或者,在第二传输方案下,在所述M份频域资源上传输的下行数据对应M个TB,所述M个TB为相同的TB,所述频域资源分配单元为PRG。
  53. 根据权利要求46-50任一项所述的装置,其特征在于,在第一传输方案下,在所述M份频域资源中的不同频域资源上传输的下行数据对应一个传输块TB的不同部分,所述连续的RB为连续的PRB;或者,在第二传输方案下,在所述M份频域资源上传输的下行数据对应M个TB,所述M个TB为相同的TB,所述连续的RB为连续的VRB。
  54. 根据权利要求46-53任一项所述的装置,其特征在于,当所述PRG的大小配置为全带宽时,x为
    Figure PCTCN2020109385-appb-100020
    所述W为所述终端设备的预定带宽中包含的RB的个数。
  55. 根据权利要求9-18或37-45任一项所述的装置,其特征在于,所述通信单元为收发器,所述处理单元为处理器。
  56. 一种频域资源分配装置,其特征在于,包括:处理器;
    所述处理器与存储器连接,所述存储器用于存储计算机执行指令,所述处理器执行所述存储器存储的所述计算机执行指令,以使所述装置实现如权利要求1-8任一项所述的方法,或者,以使所述装置实现如权利要求19-36任一项所述的方法。
  57. 一种频域资源分配装置,其特征在于,包括:处理器和通信接口;
    所述通信接口,用于输入和/或输出信息;
    所述处理器用于执行计算机执行指令,以使所述装置实现如权利要求1-8任一项所述的方法,或者,以使所述装置实现如权利要求19-36任一项所述的方法。
  58. 一种计算机可读存储介质,其特征在于,包括计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1-8中任一项所述的方法,或者,以使所述计算机实现如权利要求19-36任一项所述的方法。
  59. 一种计算机程序产品,其特征在于,包括计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1-8中任一项所述的方法,或者,以使所述计算机实现如权利要求19-36任一项所述的方法。
PCT/CN2020/109385 2019-08-16 2020-08-14 频域资源分配方法及装置 WO2021032028A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20853802.5A EP4017175A4 (en) 2019-08-16 2020-08-14 METHOD AND APPARATUS FOR ALLOCATING FREQUENCY DOMAIN RESOURCES
US17/672,495 US20220173851A1 (en) 2019-08-16 2022-02-15 Frequency domain resource allocation method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910760494.6 2019-08-16
CN201910760494.6A CN112399590B (zh) 2019-08-16 2019-08-16 频域资源分配方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/672,495 Continuation US20220173851A1 (en) 2019-08-16 2022-02-15 Frequency domain resource allocation method and apparatus

Publications (1)

Publication Number Publication Date
WO2021032028A1 true WO2021032028A1 (zh) 2021-02-25

Family

ID=74603103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/109385 WO2021032028A1 (zh) 2019-08-16 2020-08-14 频域资源分配方法及装置

Country Status (4)

Country Link
US (1) US20220173851A1 (zh)
EP (1) EP4017175A4 (zh)
CN (1) CN112399590B (zh)
WO (1) WO2021032028A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210127395A1 (en) * 2017-06-16 2021-04-29 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Wireless communication method and device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210076388A1 (en) * 2019-10-11 2021-03-11 Intel Corporation Resource allocation for multi-transmission reception point (trp) communications
US11832284B2 (en) * 2020-03-31 2023-11-28 Qualcomm Incorporated Disjoint resource indication for full-duplex operation
CN113498183A (zh) * 2020-04-03 2021-10-12 维沃移动通信有限公司 频域资源指示的方法及设备
CN115707124A (zh) * 2021-08-06 2023-02-17 华为技术有限公司 一种参考信号的传输方法及装置
CN117322103A (zh) * 2022-04-28 2023-12-29 北京小米移动软件有限公司 频域资源确定方法及装置、通信设备及存储介质
CN117042155A (zh) * 2022-04-29 2023-11-10 大唐移动通信设备有限公司 资源确定方法、装置、终端及网络侧设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108347776A (zh) * 2017-01-25 2018-07-31 华为技术有限公司 一种通信系统中资源分配的方法及设备
WO2018174641A2 (en) * 2017-03-23 2018-09-27 Samsung Electronics Co., Ltd. Method and apparatus for transmitting data in wireless communication system

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3399663A4 (en) * 2016-02-03 2019-01-16 Samsung Electronics Co., Ltd. METHOD AND APPARATUS FOR CONFIGURING A REFERENCE SIGNAL AND FOR GENERATING CHANNEL INFORMATION IN A MOBILE COMMUNICATION SYSTEM
WO2018082010A1 (en) * 2016-11-04 2018-05-11 Qualcomm Incorporated Ue-assisted physical resource block group (prg) configuration and signaling
CN108809609B (zh) * 2017-08-11 2019-07-09 华为技术有限公司 一种dmrs指示和接收方法,发射端和接收端
US20190150118A1 (en) * 2017-11-10 2019-05-16 Qualcomm Incorporated Virtual resource block to physical resource block mapping in new radio
EP3711266B1 (en) * 2017-11-17 2022-06-15 Telefonaktiebolaget LM Ericsson (Publ) Systems and methods regarding frequency-selective srs transmission and pusch precoding
CN110034888A (zh) * 2018-01-12 2019-07-19 华为技术有限公司 一种无线通信装置及无线通信方法
WO2020029081A1 (en) * 2018-08-07 2020-02-13 Qualcomm Incorporated Methods and apparatus for flexible resource allocation
US11563514B2 (en) * 2019-02-14 2023-01-24 Qualcomm Incorporated Dynamic switching between different multi-transmission/reception point schemes
DE112020001341T5 (de) * 2019-03-20 2021-12-16 Apple Inc. Bündelung von physikalischen Ressourcen-Blöcken im Multi-TRP-Betrieb
EP3949226A1 (en) * 2019-03-27 2022-02-09 Lenovo (Singapore) Pte. Ltd. Method and apparatus for downlink resource allocation for multi-transmission and reception point transmission
US11082984B2 (en) * 2019-06-24 2021-08-03 Qualcomm Incorporated Frequency domain resource allocation for frequency division multiplexing schemes with single downlink control information associated with multiple transmission configuration indication states
US11671970B2 (en) * 2019-08-07 2023-06-06 Qualcomm Incorporated LCP restriction enhancement

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108347776A (zh) * 2017-01-25 2018-07-31 华为技术有限公司 一种通信系统中资源分配的方法及设备
WO2018174641A2 (en) * 2017-03-23 2018-09-27 Samsung Electronics Co., Ltd. Method and apparatus for transmitting data in wireless communication system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Evaluation results for multi-TRP/panel transmission", 3GPP DRAFT; R1-1906036, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20190513 - 20190517, 3 May 2019 (2019-05-03), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051708078 *
HUAWEI, HISILICON: "Summary of Evaluation Results for Multi-TRP transmission with Enhanced Reliability", 3GPP DRAFT; R1-1907707 SUMMARY OF EVALUATION RESULTS FOR RELIABILITY ROBUSTNESS BASED MULTI-TRP TRANSMISSION_V0, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20190513 - 20190517, 16 May 2019 (2019-05-16), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051736967 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210127395A1 (en) * 2017-06-16 2021-04-29 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Wireless communication method and device
US11937242B2 (en) * 2017-06-16 2024-03-19 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Wireless communication method and device

Also Published As

Publication number Publication date
CN112399590A (zh) 2021-02-23
US20220173851A1 (en) 2022-06-02
EP4017175A4 (en) 2022-11-16
CN112399590B (zh) 2023-11-10
EP4017175A1 (en) 2022-06-22

Similar Documents

Publication Publication Date Title
WO2021032028A1 (zh) 频域资源分配方法及装置
CN111295847B (zh) 发送和接收信号的方法、装置和系统
JP7364004B2 (ja) チャネル状態情報の測定目的の指示方法、装置及び通信システム
CN111385042B (zh) 干扰测量的方法和通信装置
US11109406B2 (en) Scheduling method and device in wireless communication system providing broadband service
US10686501B2 (en) Precoding information signaling method and apparatus for uplink transmission in mobile communication system using a plurality of array antennas
WO2018202098A1 (zh) 无线通信的方法、网络设备和终端设备
US20210219302A1 (en) Information Determining Method And Apparatus
WO2018127141A1 (zh) 一种参考信号传输方法及装置
KR20220050597A (ko) 네트워크 협력통신을 위한 채널상태정보 보고 방법 및 장치
WO2021013159A1 (zh) 一种信道状态信息传输方法及装置
WO2018202137A1 (zh) 一种通信方法及装置
WO2020169063A1 (zh) 一种数据传输方法及通信装置
WO2021018209A1 (zh) 一种dmrs端口指示方法及装置
EP3435554B1 (en) Antenna port indication method and apparatus
CN114007262A (zh) 通信方法及装置
CN111435883B (zh) 准共址指示方法及装置
CN109996339B (zh) 一种通信方法及装置
EP4210378A1 (en) Channel state information reporting method and apparatus
CN111193581B (zh) 发送和接收物理下行控制信道的方法以及通信装置
WO2020156471A1 (zh) 信号传输方法及装置
US11985661B2 (en) Systems and methods for PDSCH based CSI measurement
CN115119282B (zh) Ue配对方法、装置及存储介质
WO2023142120A1 (zh) 通信方法、装置、设备、芯片、存储介质、产品及程序
CN112423313B (zh) 传输块大小确定方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20853802

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020853802

Country of ref document: EP

Effective date: 20220316